Science.gov

Sample records for protects human retinal

  1. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  2. Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Valluripalli, Vinod; Shi, Pu; Wang, Jiawei; Lin, Yi-An; Cui, Honggang; Kannan, Ram; Hinton, David R; MacKay, J. Andrew

    2014-01-01

    αB-crystallin is a protein chaperone with anti-apoptotic and anti-inflammatory activity that is apically secreted in exosomes by polarized human retinal pigment epithelium. A 20 amino acid mini-peptide derived from residues 73-92 of αB-crystallin protects human retinal pigment epithelial (RPE) cells from oxidative stress, a process involved in the progression of age related macular degeneration (AMD). Unfortunately, due to its small size, its development as a therapeutic requires a robust controlled release system. To achieve this goal, the αB-crystallin peptide was re-engineered into a protein polymer nanoparticle/macromolecule with the purpose of increasing the hydrodynamic radius/molecular weight and enhancing potency via multivalency or an extended retention time. The peptide was recombinantly fused with two high molecular weight (~40 kD) protein polymers inspired by human tropoelastin. These elastin-like-polypeptides (ELPs) include: i) a soluble peptide called S96; and ii) a diblock copolymer called SI that assembles multivalent nanoparticles at physiological temperature. Fusion proteins, cryS96 and crySI, were found to reduce aggregation of alcohol dehydrogenase and insulin, which demonstrates that ELP fusion did not diminish chaperone activity. Next their interaction with RPE cells was evaluated under oxidative stress. Unexpectedly, H2O2-induced stress dramatically enhanced cellular uptake and nuclear localization of both cryS96 and crySI ELPs. Accompanying uptake, both fusion proteins protected RPE cells from apoptosis, as indicated by reduced caspase 3 activation and TUNEL staining. This study demonstrates the in vitro feasibility of modulating the hydrodynamic radius for small peptide chaperones by seamless fusion with protein polymers; furthermore, they may have therapeutic applications in diseases associated with oxidative stress, such as AMD. PMID:24780268

  3. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies. PMID:27020758

  4. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation.

    PubMed

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-12-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD.

  5. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    PubMed Central

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  6. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  7. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    PubMed

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  8. N-tert-butyl hydroxylamine, a mitochondrial antioxidant, protects human retinal pigment epithelial cells from iron overload: relevance to macular degeneration.

    PubMed

    Voloboueva, Ludmila A; Killilea, David W; Atamna, Hani; Ames, Bruce N

    2007-12-01

    Age-related macular degeneration (AMD) is the leading cause of severe visual impairment in the elderly in developed countries. AMD patients have elevated levels of iron within the retinal pigment epithelia (RPE), which may lead to oxidative damage to mitochondria, disruption of retinal metabolism, and vision impairment or loss. As a possible model for iron-induced AMD, we investigated the effects of excess iron in cultured human fetal RPE cells on oxidant levels and mitochondrial cytochrome c oxidase (complex IV) function and tested for protection by N-tert-butyl hydroxylamine (NtBHA), a known mitochondrial antioxidant. RPE exposure to ferric ammonium citrate resulted in a time- and dose-dependent increase in intracellular iron, which increased oxidant production and decreased glutathione (GSH) levels and mitochondrial complex IV activity. NtBHA addition to iron-overloaded RPE cells led to a reduction of intracellular iron content, oxidative stress, and partial restoration of complex IV activity and GSH content. NtBHA might be useful in AMD due to its potential to reduce oxidative stress, mitochondrial damage, and age-related iron accumulation, which may damage normal RPE function and lead to loss of vision.

  9. Molecular pharmacodynamics of emixustat in protection against retinal degeneration

    PubMed Central

    Zhang, Jianye; Kiser, Philip D.; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-01-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators. PMID:26075817

  10. Molecular pharmacodynamics of emixustat in protection against retinal degeneration.

    PubMed

    Zhang, Jianye; Kiser, Philip D; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P; Palczewski, Krzysztof

    2015-07-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators.

  11. SiC protective coating for photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-08-01

    Objective. To evaluate plasma-enhanced, chemically vapor deposited (PECVD) amorphous silicon carbide (α-SiC:H) as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach. Retinal prostheses were implanted in rats sub-retinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiN x and thermal SiO2 were measured in accelerated soaking tests in saline at 87 °C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results. At 87 °C SiN x dissolved at 18.3 ± 0.3 nm d‑1, while SiO2 grown at high temperature (1000 °C) dissolved at 0.104 ± 0.008 nm d‑1. SiC films demonstrated the best stability, with no quantifiable change after 112 d. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance. SiC coatings demonstrating no erosion in accelerated aging test for 112 d at 87 °C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4 month follow-up in vivo. The optimal thickness of SiC layers is about 560 nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects.

  12. SiC protective coating for photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-08-01

    Objective. To evaluate plasma-enhanced, chemically vapor deposited (PECVD) amorphous silicon carbide (α-SiC:H) as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach. Retinal prostheses were implanted in rats sub-retinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiN x and thermal SiO2 were measured in accelerated soaking tests in saline at 87 °C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results. At 87 °C SiN x dissolved at 18.3 ± 0.3 nm d-1, while SiO2 grown at high temperature (1000 °C) dissolved at 0.104 ± 0.008 nm d-1. SiC films demonstrated the best stability, with no quantifiable change after 112 d. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance. SiC coatings demonstrating no erosion in accelerated aging test for 112 d at 87 °C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4 month follow-up in vivo. The optimal thickness of SiC layers is about 560 nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects.

  13. Bimatoprost protects retinal neuronal damage via Akt pathway.

    PubMed

    Takano, Norihito; Tsuruma, Kazuhiro; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2013-02-28

    Worldwide, prostaglandin analogs, such as bimatoprost, have become the major therapeutic class for medical treatment of glaucoma because of their efficacy and generally well tolerated systemic safety profile. However, the detailed mechanism of the direct action of bimatoprost on retinal ganglion cells (RGC) has rarely been understood. Thus, in this study, we elucidated the mechanism of the protective effects of bimatoprost on RGC against oxidative stress. To examine the protective effects of bimatoprost, cultured RGC with various concentrations of bimatoprost (in both free acid and amide form) were exposed to l-buthionin-(S,R)-sulfoximine (BSO) plus glutamate or serum depletion in vitro and intravitreal injection of N-methyl-D-aspartate (NMDA) was used to induce retinal damage in vivo. To elucidate the protective mechanism of bimatoprost, we used western blot analysis to investigate the phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Bimatoprost significantly reduced BSO plus glutamate- and serum deprivation-induced death in concentration-dependent manners. Bimatoprost induced activation of Akt and ERK, and a phosphatidylinositol 3-kinase inhibitor, LY294002, attenuated the protective effect of bimatoprost. On the other hand, a mitogen-activated protein kinase kinase inhibitor, U0126, exhibited protective effect unexpectedly. Moreover, ERK was more phosphorylated by attenuation of Akt activity in cultured RGC. In an in vivo study, bimatoprost reduced NMDA-induced RGC death. Taken together, these findings indicate that bimatoprost has protective effects on in vitro and in vivo retinal damage, suggesting that the mechanism underlying may be via the Akt pathway, which may modulate the ERK pathway.

  14. Protective effect of autophagy on human retinal pigment epithelial cells against lipofuscin fluorophore A2E: implications for age-related macular degeneration.

    PubMed

    Zhang, J; Bai, Y; Huang, L; Qi, Y; Zhang, Q; Li, S; Wu, Y; Li, X

    2015-11-12

    Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. Degeneration of retinal pigment epithelial (RPE) cells is a crucial causative factor responsible for the onset and progression of AMD. A2E, a major component of toxic lipofuscin implicated in AMD, is deposited in RPE cells with age. However, the mechanism whereby A2E may contribute to the pathogenesis of AMD remains unclear. We demonstrated that A2E was a danger signal of RPE cells, which induced autophagy and decreased cell viability in a concentration- and time-dependent manner. Within 15 min after the treatment of RPE with 25 μM A2E, the induction of autophagosome was detected by transmission electron microscopy. After continuous incubating RPE cells with A2E, intense punctate staining of LC3 and increased expression of LC3-II and Beclin-1 were identified. Meanwhile, the levels of intercellular adhesion molecule (ICAM), interleukin (IL)1β, IL2, IL-6, IL-8, IL-17A, IL-22, macrophage cationic peptide (MCP)-1, stromal cell-derived factor (SDF)-1, and vascular endothelial growth factor A (VEGFA) were elevated. The autophagic inhibitor 3-methyladenine (3-MA) and activator rapamycin were also used to verify the effect of autophagy on RPE cells against A2E. Our results revealed that 3-MA decreased the autophagosomes and LC3 puncta induced by A2E, increased inflammation-associated protein expression including ICAM, IL1β, IL2, IL-6, IL-8, IL-17A, IL-22, and SDF-1, and upregulated VEGFA expression. Whereas rapamycin augmented the A2E-mediated autophagy, attenuated protein expression of inflammation-associated and angiogenic factors, and blocked the Akt/mTOR pathway. Taken together, A2E induces autophagy in RPE cells at the early stage of incubation, and this autophagic response can be inhibited by 3-MA or augmented by rapamycin via the mTOR pathway. The enhancement of autophagy has a protective role in RPE cells against the adverse effects of A2E by reducing the

  15. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Hanifin, John P.; Rollag, Mark D.; Wang, Jenny; Cooper, Howard; Brainard, George C.

    2003-01-01

    Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.

  16. Tetrandrine protects mouse retinal ganglion cells from ischemic injury

    PubMed Central

    Li, Weiyi; Yang, Chen; Lu, Jing; Huang, Ping; Barnstable, Colin J; Zhang, Chun; Zhang, Samuel S

    2014-01-01

    This study aimed to determine the protective effects of tetrandrine (Tet) on murine ischemia-injured retinal ganglion cells (RGCs). For this, we used serum deprivation cell model, glutamate and hydrogen peroxide (H2O2)-induced RGC-5 cell death models, and staurosporine-differentiated neuron-like RGC-5 in vitro. We also investigated cell survival of purified primary-cultured RGCs treated with Tet. An in vivo retinal ischemia/reperfusion model was used to examine RGC survival after Tet administration 1 day before ischemia. We found that Tet affected RGC-5 survival in a dose- and time-dependent manner. Compared to dimethyl sulfoxide treatment, Tet increased the numbers of RGC-5 cells by 30% at 72 hours. After 48 hours, Tet protected staurosporine-induced RGC-5 cells from serum deprivation-induced cell death and significantly increased the relative number of cells cultured with 1 mM H2O2 (P<0.01). Several concentrations of Tet significantly prevented 25-mM-glutamate-induced cell death in a dose-dependent manner. Tet also increased primary RGC survival after 72 and 96 hours. Tet administration (10 μM, 2 μL) 1 day before retinal ischemia showed RGC layer loss (greater survival), which was less than those in groups with phosphate-buffered saline intravitreal injection plus ischemia in the central (P=0.005, n=6), middle (P=0.018, n=6), and peripheral (P=0.017, n=6) parts of the retina. Thus, Tet conferred protective effects on serum deprivation models of staurosporine-differentiated neuron-like RGC-5 cells and primary cultured murine RGCs. Furthermore, Tet showed greater in vivo protective effects on RGCs 1 day after ischemia. Tet and ciliary neurotrophic factor maintained the mitochondrial transmembrane potential (ΔΨm) of primary cultured RGCs and inhibited the expression of activated caspase-3 and bcl-2 in ischemia/reperfusion-insult retinas. PMID:24711693

  17. Characterization of stress response in human retinal epithelial cells

    PubMed Central

    Giansanti, Vincenzo; Villalpando Rodriguez, Gloria E; Savoldelli, Michelle; Gioia, Roberta; Forlino, Antonella; Mazzini, Giuliano; Pennati, Marzia; Zaffaroni, Nadia; Scovassi, Anna Ivana; Torriglia, Alicia

    2013-01-01

    The pathogenesis of age-related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE-19) cells to 5-(N,N-hexamethylene)amiloride (HMA), an inhibitor of Na+/H+ exchangers. We observed that ARPE-19 cells treated with HMA are unable to activate ‘classical’ apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this protective mechanism becomes the executioner of cell death. This switch in autophagy property as a function of time for a single stimulus is here shown for the first time. The activation of autophagy was observed, at a lesser extent, with etoposide, suggesting that this event might be a general response of ARPE cells to stress and the most important pathway involved in cell resistance to adverse conditions and toxic stimuli. PMID:23205553

  18. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation.

    PubMed

    Liu, Xiaobin; Ward, Keith; Xavier, Christy; Jann, Jamieson; Clark, Abbot F; Pang, Iok-Hou; Wu, Hongli

    2016-08-01

    Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD). Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effects of RTA 408 on Nrf2 and its downstream target genes. Primary human RPE cells were pretreated with RTA 408 and then incubated in 200μM H2O2 for 6h. Cell viability was measured with the WST-8 assay. Apoptosis was quantitatively measured by annexin V/propidium iodide (PI) double staining and Hoechst 33342 fluorescent staining. Reduced (GSH) and oxidized glutathione (GSSG) were measured using colorimetric assays. Nrf2 activation and its downstream effects on phase II enzymes were examined by Western blot. Treatment of RPE cells with nanomolar ranges (10 and 100nM) of RTA 408 markedly attenuated H2O2-induced viability loss and apoptosis. RTA 408 pretreatment significantly protected cells from oxidative stress-induced GSH loss, GSSG formation and decreased ROS production. RTA 408 activated Nrf2 and increased the expression of its downstream genes, such as HO-1, NQO1, SOD2, catalase, Grx1, and Trx1. Consequently, the enzyme activities of NQO1, Grx1, and Trx1 were fully protected by RTA 408 pretreatment under oxidative stress. Moreover, knockdown of Nrf2 by siRNA significantly reduced the cytoprotective effects of RTA 408. In conclusion, our data suggest that RTA 408 protect primary human RPE cells from oxidative stress-induced damage by activating Nrf2 and its downstream genes. PMID:26773873

  19. Regulation of human retinal blood flow by endothelin-1.

    PubMed

    Polak, Kaija; Luksch, Alexandra; Frank, Barbara; Jandrasits, Kerstin; Polska, Elzbieta; Schmetterer, Leopold

    2003-05-01

    There is evidence from in vitro and animal studies that endothelin is a major regulator of retinal blood flow. We set out to characterize the role of the endothelin-system in the blood flow control of the human retina. Two studies in healthy subjects were performed. The study design was randomized, placebo-controlled, double-masked, balanced, two-way crossover in protocol A and three way-way crossover in protocol B. In protocol A 18 healthy male subjects received intravenous endothelin-1 (ET-1) in a dose of 2.5 ng kg (-1)min(-1) for 30 min or placebo on two different study days and retinal vessel diameters were measured. In protocol B 12 healthy male subjects received ET-1 in stepwise increasing doses of 0, 1.25, 2.5 and 5 ng kg (-1)min(-1) (each infusion step over 20 min) in co-infusion with the specific ET(A)-receptor antagonist BQ123 (60 microg min (-1)) or placebo or BQ123 alone investigating retinal vessel diameters, retinal blood velocity and retinal blood flow. Measurements of retinal vessel size were done with the Zeiss retinal vessel analyzer. Measurements of blood velocities were done with bi-directional laser Doppler velocimetry. From these measurements retinal blood flow was calculated. In protocol A exogenous ET-1 tended to decrease retinal arterial diameter, but this effect was not significant versus placebo. No effect on retinal venous diameter was seen. In protocol B retinal venous blood velocity and retinal blood flow was significantly reduced after administration of exogenous ET-1. These effects were significantly blunted when BQ-123 was co-administered. By contrast, BQ-123 alone had no effect on retinal hemodynamic parameters. Concluding, BQ123 antagonizes the effects of exogenously administered ET-1 on retinal blood flow in healthy subjects. In addition, the results of the present study are compatible with the hypothesis that ET-1 exerts its vasoconstrictor effects in the retina mainly on the microvessels.

  20. KR-31378, a potassium-channel opener, induces the protection of retinal ganglion cells in rat retinal ischemic models.

    PubMed

    Choi, Anho; Choi, Jun-Sub; Yoon, Yone-Jung; Kim, Kyung-A; Joo, Choun-Ki

    2009-04-01

    KR-31378 is a newly developed K(ATP)-channel opener. To investigate the ability of KR-31378 to protect retinal ganglion cells (RGC), experiments were conducted using two retinal ischemia models. Retinal ischemia was induced by transient high intraocular pressure (IOP) for acute ischemia and by three episcleral vein occlusion for chronic retinal ischemia. KR-31378 was injected intraperitoneally and administered orally in the acute and chronic ischemia models, respectively. Under the condition of chronic ischemia, RGC density in the KR-31378-treated group was statistically higher than that in the non-treated group, and IOP was reduced. In the acute retinal ischemia model, 90% of RGC were degenerated after one week in non-treated retina, but, RGC in KR-31378-treated retina were protected from ischemic damage in a dose-dependent manner and showed inhibited glial fibrillary acidic protein (GFAP) expression. Furthermore, the KR-31378 protective effect was inhibited by glibenclamide treatment in acute ischemia. These findings indicate that systemic KR-31378 treatment may protect against ischemic injury-induced ganglion cell loss in glaucoma.

  1. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo.

    PubMed

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-01-01

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms. PMID:27144578

  2. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo.

    PubMed

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-05-02

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms.

  3. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo

    PubMed Central

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-01-01

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms. PMID:27144578

  4. Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy

    PubMed Central

    Mendel, Thomas A.; Clabough, Erin B. D.; Kao, David S.; Demidova-Rice, Tatiana N.; Durham, Jennifer T.; Zotter, Brendan C.; Seaman, Scott A.; Cronk, Stephen M.; Rakoczy, Elizabeth P.; Katz, Adam J.; Herman, Ira M.; Peirce, Shayn M.; Yates, Paul A.

    2013-01-01

    Background Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. Methodology/Principal Findings We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection). Conclusions/Significance ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of

  5. Efficacy and Safety of Human Retinal Progenitor Cells

    PubMed Central

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  6. Nitric oxide regulates retinal vascular tone in humans.

    PubMed

    Dorner, Guido T; Garhofer, Gerhard; Kiss, Barbara; Polska, Elzbieta; Polak, Kaija; Riva, Charles E; Schmetterer, Leopold

    2003-08-01

    The purpose of the present study was to investigate the contribution of basal nitric oxide (NO) on retinal vascular tone in humans. In addition, we set out to elucidate the role of NO in flicker-induced retinal vasodilation in humans. Twelve healthy young subjects were studied in a three-way crossover design. Subjects received an intravenous infusion of either placebo or NG-monomethyl-L-arginine (L-NMMA; 3 or 6 mg/kg over 5 min), an inhibitor of NO synthase. Thereafter, diffuse luminance flicker was consecutively performed for 16, 32, and 64 s at a frequency of 8 Hz. The effect of L-NMMA on retinal arterial and venous diameter was assessed under resting conditions and during the hyperemic flicker response. Retinal vessel diameter was measured with a Zeiss retinal vessel analyzer. L-NMMA significantly reduced arterial diameter (3 mg/kg: -2%; 6 mg/kg: -4%, P < 0.001) and venous diameter (3 mg/kg: -5%; 6 mg/kg: -8%, P < 0.001). After placebo infusion, flicker induced a significant increase in retinal vessel diameter (P < 0.001). At a flicker duration of 64 s, arterial diameter increased by 4% and venous diameter increased by 3%. L-NMMA did not abolish these hyperemic responses but blunted venous vasodilation (P = 0.017) and arterial vasodilation (P = 0.02) in response to flicker stimulation. Our data indicate that NO contributes to basal retinal vascular tone in humans. In addition, NO appears to play a role in flicker-induced vasodilation of the human retinal vasculature.

  7. Beneficial protective effect of pramipexole on light-induced retinal damage in mice.

    PubMed

    Shibagaki, Keiichi; Okamoto, Kazuyoshi; Katsuta, Osamu; Nakamura, Masatsugu

    2015-10-01

    We investigated the effects of pramipexole, a potent dopamine receptor D2/D3 agonist, on light-induced retinal damage in mice, H2O2-induced retinal pigment epithelium ARPE-19 cell injury in humans, and hydroxyl radical scavenging activity in a cell-free system. Pramipexole (0.1 and 1 mg/kg body weight) was orally administered to mice 1 h before light exposure (5000 lux, 2 h). Electrophysiological and morphologic studies were performed to evaluate the effects of the pramipexole on light-induced retinal damage in mice. Pramipexole significantly prevented the reduction of the a- and b-wave electroretinogram (ERG) amplitudes caused by light exposure in a dose-dependent manner. In parallel, damage to the inner and outer segments (IS/OS) of the photoreceptors, loss of photoreceptor nuclei, and the number of Tdt-mediated dUTP nick-end labeling (TUNEL)-positive cells in the outer nuclear layer (ONL) caused by light exposure were notably ameliorated by pramipexole. Additionally, pramipexole suppressed H2O2-induced ARPE-19 cell death in vitro in a concentration-dependent manner. The effect of pramipexole was significant at concentrations of 10(-6) M or higher. Pramipexole also significantly prevented H2O2-induced activation of caspases-3/7 and the intracellular accumulation of reactive oxygen species (ROS) in a concentration-dependent manner ranging from 10(-5) to 10(-3) M. Furthermore, pramipexole increased the scavenging activity toward a hydroxyl radical generated from H2O2 in a Fenton reaction. Our results suggest that pramipexole protects against light-induced retinal damage as an antioxidant and that it may be a novel and effective therapy for retinal degenerative disorders, such as dry age-related macular degeneration.

  8. Protection against methanol-induced retinal toxicity by LED photostimulation

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Wong-Riley, Margaret T. T.; Eells, Janis T.

    2002-06-01

    We have initiated experiments designed to test the hypothesis that 670-nm Light-Emitting Diode (LED) exposure will attenuate formate-induced retinal dysfunction in a rodent model of methanol toxicity. Methanol intoxication produces toxic injury to the retina. The toxic metabolite formed in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit cytochrome oxidase activity. 670-nm LED light has been hypothesized to act by stimulating cytochrome oxidase activity. To test this hypothesis, one group of animals was intoxicated with methanol, a second group was intoxicated with methanol and LED-treated and a third group was untreated. LED treatment (670 nm for 1 min 45 seconds equals 50 mW/cm2, 4 joules/cm2) was administered at 5, 25, and 50 hours after the initial dose of methanol. At 72 hours of methanol intoxication, retinal function was assessed by measurement of ERG responses and retinas were prepared for histologic analysis. ERG responses recorded in methanol-intoxicated animals revealed profound attenuation of both rod-dominated and UV-cone mediated responses. In contrast, methanol- intoxicated animals exposed to LED treatment exhibited a nearly complete recovery of rod-dominated ERG responses and a slight improvement of UV-cone mediated ERG responses. LED treatment also protected the retina against the histopathologic changes produced by formate in methanol intoxication. These data provide evidence that LED phototherapy protects the retina against the cytotoxic actions of formate and are consistent with the hypothesis that LED photostimulation improves mitochondrial respiratory chain function.

  9. Accidental human laser retinal injuries from military laser systems

    NASA Astrophysics Data System (ADS)

    Stuck, Bruce E.; Zwick, Harry; Molchany, Jerome W.; Lund, David J.; Gagliano, Donald A.

    1996-04-01

    The time course of the ophthalmoscopic and functional consequences of eight human laser accident cases from military laser systems is described. All patients reported subjective vision loss with ophthalmoscopic evidence of retinal alteration ranging from vitreous hemorrhage to retinal burn. Five of the cases involved single or multiple exposures to Q-switched neodymium radiation at close range whereas the other three incidents occur over large ranges. Most exposures were within 5 degrees of the foveola, yet none directly in the foveola. High contrast visual activity improved with time except in the cases with progressive retinal fibrosis between lesion sites or retinal hole formation encroaching the fovea. In one patient the visual acuity recovered from 20/60 at one week to 20/25 in four months with minimal central visual field loss. Most cases showed suppression of high and low spatial frequency contrast sensitivity. Visual field measurements were enlarged relative to ophthalmoscopic lesion size observations. Deep retinal scar formation and retinal traction were evident in two of the three cases with vitreous hemorrhage. In one patient, nerve fiber layer damage to the papillo-macular bundle was clearly evident. Visual performance measured with a pursuit tracking task revealed significant performance loss relative to normal tracking observers even in cases where acuity returned to near normal levels. These functional and performance deficits may reflect secondary effects of parafoveal laser injury.

  10. Primary amines protect against retinal degeneration in mouse models of retinopathies

    PubMed Central

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730

  11. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation.

    PubMed

    Cia, David; Cubizolle, Aurélie; Crauste, Céline; Jacquemot, Nathalie; Guillou, Laurent; Vigor, Claire; Angebault, Claire; Hamel, Christian P; Vercauteren, Joseph; Brabet, Philippe

    2016-09-01

    Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.

  12. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation.

    PubMed

    Cia, David; Cubizolle, Aurélie; Crauste, Céline; Jacquemot, Nathalie; Guillou, Laurent; Vigor, Claire; Angebault, Claire; Hamel, Christian P; Vercauteren, Joseph; Brabet, Philippe

    2016-09-01

    Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases. PMID:27072643

  13. Office for Human Research Protections

    MedlinePlus

    ... Office for Human Research Protections The Office for Human Research Protections (OHRP) provides leadership in the protection of the rights, welfare, and wellbeing of human subjects involved in ...

  14. Hydroxytyrosol protects retinal pigment epithelial cells from acrolein-induced oxidative stress and mitochondrial dysfunction

    PubMed Central

    Liu, Zhongbo; Sun, Lijuan; Zhu, Lu; Jia, Xu; Li, Xuesen; Jia, Haiqun; Wang, Ying; Weber, Peter; Long, Jiangang; Liu, Jiankang

    2008-01-01

    Hydroxytyrosol (HTS) is a natural polyphenol abundant in olive oil. Increasing evidence indicates HTS has beneficial effect on human health for preventing various diseases. In the present study, we investigated the protective effects of HTS on acrolein-induced toxicity in human retinal pigment epithelial cell line, ARPE-19, a cellular model of smoking- and age-related macular degeneration. Acrolein, a major component of the gas phase cigarette smoke and also a product of lipid peroxidation in vivo, at 75 µmol/L for 24 h caused significant loss of cell viability, oxidative damage (increase in oxidant generation and oxidative damage to proteins and DNA, decrease in antioxidants and antioxidant enzymes, and also inactivation of the Keap1/Nrf2 pathway), and mitochon-drial dysfunction (decrease in membrane potential, activities of mitochondrial complexes, viable mitochondria, oxygen consumption, and factors for mitochondrial biogenesis, and increase in calcium). Pre-treatment with HTS dose dependently and also time dependently protected the ARPE-19 cells from acrolein-induced oxidative damage and mitochondrial dysfunction. A short-term pre-treatment with HTS (48 h) required >75 µmol/L for showing protection while a long-term pre-treatment (7 days) showed protective effect from 5 µmol/L on. The protective effect of HTS in this model was as potent as that of established mitochondria-targeting antioxidant nutrients. These results suggest that HTS is also a mitochondrial-targeting antioxidant nutrient and that dietary administration of HTS may be an effective measure in reducing and or preventing cigarette smoke-induced or age-related retinal pigment epithelial degeneration, such as age-associated macular degeneration. PMID:20938484

  15. The molecular basis of human retinal and vitreoretinal diseases.

    PubMed

    Berger, Wolfgang; Kloeckener-Gruissem, Barbara; Neidhardt, John

    2010-09-01

    During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives. PMID:20362068

  16. Oligomeric proanthocyanidin protects retinal ganglion cells against oxidative stress-induced apoptosis.

    PubMed

    Wang, Hui; Zhang, Chanjuan; Lu, Dan; Shu, Xiaoming; Zhu, Lihong; Qi, Renbing; So, Kwok-Fai; Lu, Daxiang; Xu, Ying

    2013-09-01

    The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuroprotective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal ganglion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 μmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H2O2) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H2O2 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H2O2-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process.

  17. Protective responses to sublytic complement in the retinal pigment epithelium.

    PubMed

    Tan, Li Xuan; Toops, Kimberly A; Lakkaraju, Aparna

    2016-08-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4(-/-) Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4(-/-) mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  18. Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment.

    PubMed

    Arteni, Ana-Andreea; Fradot, Mathias; Galzerano, Denise; Mendes-Pinto, Maria M; Sahel, José-Alain; Picaud, Serge; Robert, Bruno; Pascal, Andrew A

    2015-01-01

    Human retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health-specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive. We have measured the Raman signals originating from MP carotenoids in ex vivo human retinal tissue, in order to assess their structure and conformation. We show that it is possible to distinguish between lutein and zeaxanthin, by their excitation profile (related to their absorption spectra) and the position of their ν1 Raman mode. In addition, analysis of the ν4 Raman band indicates that these carotenoids are present in a specific, constrained conformation in situ, consistent with their binding to specific proteins as postulated in the literature. We discuss how these conclusions relate to the function of these pigments in macular protection. We also address the possibilities for a more accurate, consistent measurement of MP levels by Raman spectroscopy.

  19. Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment

    PubMed Central

    Arteni, Ana-Andreea; Fradot, Mathias; Galzerano, Denise; Mendes-Pinto, Maria M.; Sahel, José-Alain; Picaud, Serge; Robert, Bruno; Pascal, Andrew A.

    2015-01-01

    Human retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health–specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive. We have measured the Raman signals originating from MP carotenoids in ex vivo human retinal tissue, in order to assess their structure and conformation. We show that it is possible to distinguish between lutein and zeaxanthin, by their excitation profile (related to their absorption spectra) and the position of their ν1 Raman mode. In addition, analysis of the ν4 Raman band indicates that these carotenoids are present in a specific, constrained conformation in situ, consistent with their binding to specific proteins as postulated in the literature. We discuss how these conclusions relate to the function of these pigments in macular protection. We also address the possibilities for a more accurate, consistent measurement of MP levels by Raman spectroscopy. PMID:26313550

  20. Topography of retinal recovery processes in humans

    PubMed Central

    Mazinani, Babac E; Merx, Elke; Plange, Niklas; Walter, Peter; Roessler, Gernot F

    2014-01-01

    Background The purpose of this study was to examine retinal recovery processes to pographically by the application of three flash sequences with specific interstimulus intervals. Methods Twelve healthy subjects underwent multifocal electroretinography with a light-emitting diode stimulator. Every flash sequence consisted of three flashes with 25 msec between the first and the second flash and 35 msec between the second and the third flash. The interval between the third and the first flash of the next step was 85 msec. The interstimulus interval-dependent amplitude reductions of the multifocal electroretinographic response for these three intervals yielded three data points that were used to determine the complete curve of the recovery kinetics. Results Amplitude reductions were higher with shorter interstimulus intervals. The mean half-life periods of the recovery kinetics for the different concentric rings and all subjects were: ring 1, 29.3±5.9 msec; ring 2, 24.2±6.4 msec; ring 3, 23±4.1 msec; ring 4, 23.1±4.6 msec; and ring 5, 22.3±4.4 msec. The differences between the first and all other rings were statistically significant (P<0.05). Conclusion The kinetics of the amplitude recovery after short interstimulus intervals showed a spatial distribution, with faster recovery toward the macular periphery. PMID:25349472

  1. Retinal Remodeling and Metabolic Alterations in Human AMD

    PubMed Central

    Jones, Bryan W.; Pfeiffer, Rebecca L.; Ferrell, William D.; Watt, Carl B.; Tucker, James; Marc, Robert E.

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease. PMID:27199657

  2. Enhanced antioxidant and protective activities on retinal ganglion cells of carotenoids-overexpressing transgenic carrot.

    PubMed

    Yoon, Kee Dong; Kang, Suk-Nam; Bae, Ji-Yeong; Lee, Haeng-Soon; Kwak, Sang-Soo; Jang, Insurk; Kim, Il-Suk; Lee, Cheol Ho; Bae, Jung Myung; Lee, Shin Woo; Ahn, Mi-Jeong

    2013-08-01

    Carotenoids are considered to act as antioxidants and protect humans from serious disorders such as skin degeneration and ageing, cardiovascular disease, certain types of cancer, and age-related diseases of the eye. In this study, these chemopreventive activities of a carotenoids-overexpressing transgenic carrot were evaluated. The results of DPPH, hydroxyl, and superoxide radical scavenging tests demonstrate that the acetone extract obtained from the taproots of the carrot plants exhibits significant antioxidant activity. A higher activity was detected in the transgenic carrot extract compared with the wild-type extract. A chemopreventive activity test for degenerative diseases of the eye revealed that pretreatment with the carrot extract reduced cell death in a retinal ganglion cell line, RGC-5 cells exposed to 1-buthionine- (R,S)-sulfoximine and L-glutamic acid.

  3. Production of Retinal Cells from Confluent Human iPS Cells.

    PubMed

    Reichman, Sacha; Goureau, Olivier

    2016-01-01

    Human induced pluripotent stem (hiPS) cells could be used as an unlimited source of retinal cells for the treatment of retinal degenerative diseases. Although much progress has been made in the differentiation of pluripotent stem cells towards different retinal lineages, the production of retinal cells from hiPS cells for therapeutic approaches require the development of easy and standardized protocols. In this chapter, we describe a simple and effective protocol for retinal differentiation of hiPS cells bypassing embryoid body formation and the use of exogenous molecules and substrates. In 2 weeks, confluent hiPS cells cultured in pro-neural medium can generate both retinal pigmented epithelial cells and self-forming neural retina-like structures containing retinal progenitor cells. These progenitors can be differentiated into all retinal cell types, including retinal ganglion cells and precursors of photoreceptors, which could find important applications in regenerative medicine. This differentiation system and the resulting hiPS-derived retinal cells will also offer opportunity to study the molecular and cellular mechanisms underlying human retinal development, and the establishment of in vitro models of human retinal degenerative diseases. PMID:25417064

  4. Production of Retinal Cells from Confluent Human iPS Cells.

    PubMed

    Reichman, Sacha; Goureau, Olivier

    2016-01-01

    Human induced pluripotent stem (hiPS) cells could be used as an unlimited source of retinal cells for the treatment of retinal degenerative diseases. Although much progress has been made in the differentiation of pluripotent stem cells towards different retinal lineages, the production of retinal cells from hiPS cells for therapeutic approaches require the development of easy and standardized protocols. In this chapter, we describe a simple and effective protocol for retinal differentiation of hiPS cells bypassing embryoid body formation and the use of exogenous molecules and substrates. In 2 weeks, confluent hiPS cells cultured in pro-neural medium can generate both retinal pigmented epithelial cells and self-forming neural retina-like structures containing retinal progenitor cells. These progenitors can be differentiated into all retinal cell types, including retinal ganglion cells and precursors of photoreceptors, which could find important applications in regenerative medicine. This differentiation system and the resulting hiPS-derived retinal cells will also offer opportunity to study the molecular and cellular mechanisms underlying human retinal development, and the establishment of in vitro models of human retinal degenerative diseases.

  5. Inhibition of the oxidative stress-induced miR-23a protects the human retinal pigment epithelium (RPE) cells from apoptosis through the upregulation of glutaminase and glutamine uptake.

    PubMed

    Li, Dan-Dan; Zhong, Bin-Wu; Zhang, Hai-Xia; Zhou, Hong-Yan; Luo, Jie; Liu, Yang; Xu, Gui-Chun; Luan, Chun-Sheng; Fang, Jun

    2016-10-01

    The degeneration of retinal pigment epithelium (RPE) cells in the sub retinal pigment epithelial space and choroid is an initial pathological characteristic for the age-related macular degeneration which is the leading cause of severe vision loss in old people. Moreover, oxidative stress is implicated as a major inducer of RPE cell death. Here, we assessed the correlation between the H2O2-induced RPE cell death and glutamine metabolism. We found under low glutamine supply (20 %), the ARPE-19 cells were more susceptive to H2O2-induced apoptosis. Moreover, the glutamine uptake and the glutaminase (GLS) were suppressed by H2O2 treatments. Moreover, we observed miR-23a was upregulated by H2O2 treatments and overexpression of miR-23a significantly sensitized ARPE-19 cells to H2O2. Importantly, Western blotting and luciferase assay demonstrated GLS1 is a direct target of miR-23a in RPE cells. Inhibition of the H2O2-induced miR-23a by antagomiR protected the RPE cells from the oxidative stress-induced cell death. In addition, recovery of GLS1 expression in miR-23a overexpressed RPE cells rescued the H2O2-induced cell death. This study illustrated a mechanism for the protection of the oxidative-induced RPE cell death through the recovery of glutamine metabolism by inhibition of miR-23a, contributing to the discovery of novel targets and the developments of therapeutic strategies for the prevention of RPE cells from oxidative stress.

  6. Inhibition of the oxidative stress-induced miR-23a protects the human retinal pigment epithelium (RPE) cells from apoptosis through the upregulation of glutaminase and glutamine uptake.

    PubMed

    Li, Dan-Dan; Zhong, Bin-Wu; Zhang, Hai-Xia; Zhou, Hong-Yan; Luo, Jie; Liu, Yang; Xu, Gui-Chun; Luan, Chun-Sheng; Fang, Jun

    2016-10-01

    The degeneration of retinal pigment epithelium (RPE) cells in the sub retinal pigment epithelial space and choroid is an initial pathological characteristic for the age-related macular degeneration which is the leading cause of severe vision loss in old people. Moreover, oxidative stress is implicated as a major inducer of RPE cell death. Here, we assessed the correlation between the H2O2-induced RPE cell death and glutamine metabolism. We found under low glutamine supply (20 %), the ARPE-19 cells were more susceptive to H2O2-induced apoptosis. Moreover, the glutamine uptake and the glutaminase (GLS) were suppressed by H2O2 treatments. Moreover, we observed miR-23a was upregulated by H2O2 treatments and overexpression of miR-23a significantly sensitized ARPE-19 cells to H2O2. Importantly, Western blotting and luciferase assay demonstrated GLS1 is a direct target of miR-23a in RPE cells. Inhibition of the H2O2-induced miR-23a by antagomiR protected the RPE cells from the oxidative stress-induced cell death. In addition, recovery of GLS1 expression in miR-23a overexpressed RPE cells rescued the H2O2-induced cell death. This study illustrated a mechanism for the protection of the oxidative-induced RPE cell death through the recovery of glutamine metabolism by inhibition of miR-23a, contributing to the discovery of novel targets and the developments of therapeutic strategies for the prevention of RPE cells from oxidative stress. PMID:27411920

  7. Tauroursodeoxycholic Acid Protects Retinal Function and Structure in rd1 Mice.

    PubMed

    Lawson, Eric C; Bhatia, Shagun K; Han, Moon K; Aung, Moe H; Ciavatta, Vincent; Boatright, Jeffrey H; Pardue, Machelle T

    2016-01-01

    We explored the potential protective effects of tauroursodeoxycholic acid (TUDCA) on cone photoreceptor survival in a model of rapid retinal degeneration, the ß-Pde6 (rd1) (rd1) mouse model. We injected two strains of rd1 mice (B6.C3-Pde6b (rd1) Hps4(le)/J and C57BL/6J-Pde6b (rd1-2)/J mice) daily from postnatal day (P) 6 to P21 with TUDCA or vehicle. At P21, retinal function was evaluated with light-adapted electroretinography (ERG) and retinal structure was observed with plastic or frozen sections. TUDCA treatment partially preserved function and structure in B6.C3-Pde6b (rd1) Hps4(le)/J mice but only partially preserved structure in C57BL/6J-Pde6b (rd1-2)/J mice. Our results suggest a possible intervention for patients undergoing rapid retinal degeneration.

  8. Zinc uptake in vitro by human retinal pigment epithelium

    SciTech Connect

    Newsome, D.A.; Rothman, R.J.

    1987-11-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied /sup 65/Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM /sup 65/Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM /sup 65/Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of /sup 65/Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to /sup 65/Zn retained approximately 70% of accumulated /sup 65/Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of /sup 65/Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc.

  9. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension

    PubMed Central

    Mi, Xue-Song; Feng, Qian; Lo, Amy Cheuk Yin; Chang, Raymond Chuen-Chung; Lin, Bin; Chung, Sookja Kim; So, Kwok-Fai

    2012-01-01

    Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aβ and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy. PMID:23094016

  10. Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury.

    PubMed

    Arfuzir, N N N; Lambuk, L; Jafri, A J A; Agarwal, R; Iezhitsa, I; Sidek, S; Agarwal, P; Bakar, N S; Kutty, M K; Yusof, A P Md; Krasilnikova, A; Spasov, A; Ozerov, A; Mohd Ismail, N

    2016-06-14

    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress. PMID:27012609

  11. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Dongqing; Xu, Yidan; Hang, Hui; Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  12. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide

    PubMed Central

    Vugler, Anthony A.; Yu, Lu; Semo, Maayan; Coffey, Pete; Moss, Stephen E.; Greenwood, John

    2011-01-01

    Purpose In several species the retinal pigment epithelium (RPE) has the potential to transdifferentiate into retinal cells to regenerate functional retinal tissue after injury. However, this capacity for regeneration is lost in mammals. The synthetic retinoic acid derivative, fenretinide [N(4-hydroxyphenyl) retinamide], induces a neuronal-like phenotype in the human adult retinal pigment epithelial cell line (ARPE-19). These changes are characterized by the appearance of neural-like processes and the expression of neuronal markers not normally associated with RPE cells. Here we assess whether fenretinide can induce a neuroretinal cell phenotype in ARPE-19 cells, by examining retinal cell marker expression. Methods ARPE-19 cells were treated daily with culture medium containing either 3 μM fenretinide or dimethyl sulfoxide as a control for 7 days. Cells were processed for immunocytochemistry, western blotting, and for analysis by PCR to examine the expression of a panel of RPE, neural, and retinal-associated cellular markers, including classical and non-canonical opsins. Results Treatment with fenretinide for 7 days induced the formation of neuronal-like processes in ARPE-19 cells. Fenretinide induced the expression of the cone long wavelength sensitive opsin (OPN1lw) but not rhodopsin (RHO), while decreasing the expression of RPE cell markers. Many of the neuronal and retinal specific markers examined were expressed in both control and fenretinide treated cells, including those involved in photoreceptor cell development and the multipotency of neural retinal progenitor cells. Interestingly, ARPE-19 cells also expressed both photoreceptor specific and non-specific canonical opsins. Conclusions The expression of retinal-associated markers and loss of RPE cell markers in control ARPE-19 cells suggests that these cells might have dedifferentiated from an RPE cell phenotype under standard culture conditions. The expression of molecules, such as the transcription

  13. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  14. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

    PubMed

    Lee, Hak Sung; Jun, Jae-Hyun; Jung, Eun-Ha; Koo, Bon Am; Kim, Yeong Shik

    2014-08-13

    Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  15. Enriched retinal ganglion cells derived from human embryonic stem cells.

    PubMed

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  16. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  17. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells.

    PubMed Central

    Henry, D N; Del Monte, M; Greene, D A; Killen, P D

    1993-01-01

    Aldose reductase (AR2), a putative "hypertonicity stress protein" whose gene is induced by hyperosmolarity, protects renal medullary cells against the interstitial hyperosmolarity of antidiuresis by catalyzing the synthesis of millimolar concentrations of intracellular sorbitol from glucose. Although AR2 gene induction has been noted in a variety of renal and nonrenal cells subjected to hypertonic stress in vitro, the functional significance of AR2 gene expression in cells not normally exposed to a hyperosmolar milieu is not fully understood. The physiological impact of basal AR2 expression in such cells may be limited to hyperglycemic states in which AR2 promotes pathological polyol accumulation, a mechanism invoked in the pathogenesis of diabetic complications. Since AR2 overexpression in the retinal pigment epithelium has been associated with diabetic retinopathy, the regulation of AR2 gene expression and associated changes in sorbitol and myo-inositol were studied in human retinal pigment epithelial cells in culture. The relative abundance of aldehyde reductase (AR1) and AR2 mRNA was quantitated by filter hybridization of RNA from several human retinal pigment epithelial cell lines exposed to hyperglycemic and hyperosmolar conditions in vitro. AR2 but not AR1 mRNA was significantly increased some 11- to 18-fold by hyperosmolarity in several retinal pigment epithelial cell lines. A single cell line with a 15-fold higher basal level of AR2 mRNA than other cell lines tested demonstrated no significant increase in AR2 mRNA in response to hypertonic stress. This cell line demonstrated accelerated and exaggerated production of sorbitol and depletion of myo-inositol upon exposure to 20 mM glucose. Therefore, abnormal AR2 expression may enhance the sensitivity of cells to the biochemical consequences of hyperglycemia potentiating the development of diabetic complications. Images PMID:8349800

  18. Selenium Protects Retinal Cells from Cisplatin-Induced Alterations in Carbohydrate Residues

    PubMed Central

    Akşit, Dilek; Yazıcı, Alper; Akşit, Hasan; Sarı, Esin S.; Yay, Arzu; Yıldız, Onur; Kılıç, Adil; Ermiş, Sıtkı S.; Seyrek, Kamil

    2016-01-01

    Background: Investigate alterations in the expression and localization of carbohydrate units in rat retinal cells exposed to cisplatin toxicity. Aims: The aim of the study was to evaluate putative protective effects of selenium on retinal cells subjected to cisplatin. Study Design: Animal experiment. Methods: Eighteen healthy Wistar rats were divided into three equal groups: 1. Control, 2. Cisplatin and 3. Cisplatin+selenium groups. After anesthesia, the right eye of each rat was enucleated. Results: Histochemically, retinal cells of control groups reacted with α-2,3-bound sialic acid-specific Maackia amurensis lectin (MAA) strongly, while cisplatin reduced the staining intensity for MAA. However, selenium administration alleviated the reducing effect of cisplatin on the binding sites for MAA in retinal cells. The staining intensity for N-acetylgalactosamine (GalNAc residues) specific Griffonia simplicifolia-1 (GSL–1) was relatively slight in control animals and cisplatin reduced this slight staining for GSL-1 further. Selenium administration mitigated the reducing effect of cisplatin on the binding sites for GSL-1. A diffuse staining for N-acetylglucosamine (GlcNAc) specific wheat germ agglutinin (WGA) was observed throughout the retina of the control animals. In particular, cells localized in the inner plexiform and photoreceptor layers are reacted strongly with WGA. Compared to the control animals, binding sites for WGA in the retina of rats given cisplatin were remarkably decreased. However, the retinal cells of rats given selenium reacted strongly with WGA. Conclusion: Cisplatin reduces α-2,3-bound sialic acid, GlcNAc and GalNAc residues in certain retinal cells. However, selenium alleviates the reducing effect of cisplatin on carbohydrate residues in retinal cells.

  19. Selenium Protects Retinal Cells from Cisplatin-Induced Alterations in Carbohydrate Residues

    PubMed Central

    Akşit, Dilek; Yazıcı, Alper; Akşit, Hasan; Sarı, Esin S.; Yay, Arzu; Yıldız, Onur; Kılıç, Adil; Ermiş, Sıtkı S.; Seyrek, Kamil

    2016-01-01

    Background: Investigate alterations in the expression and localization of carbohydrate units in rat retinal cells exposed to cisplatin toxicity. Aims: The aim of the study was to evaluate putative protective effects of selenium on retinal cells subjected to cisplatin. Study Design: Animal experiment. Methods: Eighteen healthy Wistar rats were divided into three equal groups: 1. Control, 2. Cisplatin and 3. Cisplatin+selenium groups. After anesthesia, the right eye of each rat was enucleated. Results: Histochemically, retinal cells of control groups reacted with α-2,3-bound sialic acid-specific Maackia amurensis lectin (MAA) strongly, while cisplatin reduced the staining intensity for MAA. However, selenium administration alleviated the reducing effect of cisplatin on the binding sites for MAA in retinal cells. The staining intensity for N-acetylgalactosamine (GalNAc residues) specific Griffonia simplicifolia-1 (GSL–1) was relatively slight in control animals and cisplatin reduced this slight staining for GSL-1 further. Selenium administration mitigated the reducing effect of cisplatin on the binding sites for GSL-1. A diffuse staining for N-acetylglucosamine (GlcNAc) specific wheat germ agglutinin (WGA) was observed throughout the retina of the control animals. In particular, cells localized in the inner plexiform and photoreceptor layers are reacted strongly with WGA. Compared to the control animals, binding sites for WGA in the retina of rats given cisplatin were remarkably decreased. However, the retinal cells of rats given selenium reacted strongly with WGA. Conclusion: Cisplatin reduces α-2,3-bound sialic acid, GlcNAc and GalNAc residues in certain retinal cells. However, selenium alleviates the reducing effect of cisplatin on carbohydrate residues in retinal cells. PMID:27606141

  20. Mimicking Retinal Development and Disease With Human Pluripotent Stem Cells.

    PubMed

    Sinha, Divya; Phillips, Jenny; Joseph Phillips, M; Gamm, David M

    2016-04-01

    As applications of human pluripotent stem cells (hPSCs) continue to be refined and pursued, it is important to keep in mind that the strengths and weaknesses of this technology lie with its developmental origins. The remarkable capacity of differentiating hPSCs to recapitulate cell and tissue genesis has provided a model system to study stages of human development that were not previously amenable to investigation and experimentation. Furthermore, demonstration of developmentally appropriate, stepwise differentiation of hPSCs to specific cell types offers support for their authenticity and their suitability for use in disease modeling and cell replacement therapies. However, limitations to farming cells and tissues in an artificial culture environment, as well as the length of time required for most cells to mature, are some of the many issues to consider before using hPSCs to study or treat a particular disease. Given the overarching need to understand and modulate the dynamics of lineage-specific differentiation in stem cell cultures, this review will first examine the capacity of hPSCs to serve as models of retinal development. Thereafter, we will discuss efforts to model retinal disorders with hPSCs and present challenges that face investigators who aspire to use such systems to study disease pathophysiology and/or screen for therapeutics. We also refer readers to recent publications that provide additional insight and details on these rapidly evolving topics. PMID:27116663

  1. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration

    PubMed Central

    Shirai, Hiroshi; Mandai, Michiko; Matsushita, Keizo; Kuwahara, Atsushi; Yonemura, Shigenobu; Nakano, Tokushige; Assawachananont, Juthaporn; Kimura, Toru; Saito, Koichi; Terasaki, Hiroko; Eiraku, Mototsugu; Sasai, Yoshiki; Takahashi, Masayo

    2016-01-01

    Retinal transplantation therapy for retinitis pigmentosa is increasingly of interest due to accumulating evidence of transplantation efficacy from animal studies and development of techniques for the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells into retinal tissues or cells. In this study, we aimed to assess the potential clinical utility of hESC-derived retinal tissues (hESC-retina) using newly developed primate models of retinal degeneration to obtain preparatory information regarding the potential clinical utility of these hESC-retinas in transplantation therapy. hESC-retinas were first transplanted subretinally into nude rats with or without retinal degeneration to confirm their competency as a graft to mature to form highly specified outer segment structure and to integrate after transplantation. Two focal selective photoreceptor degeneration models were then developed in monkeys by subretinal injection of cobalt chloride or 577-nm optically pumped semiconductor laser photocoagulation. The utility of the developed models and a practicality of visual acuity test developed for monkeys were evaluated. Finally, feasibility of hESC-retina transplantation was assessed in the developed monkey models under practical surgical procedure and postoperational examinations. Grafted hESC-retina was observed differentiating into a range of retinal cell types, including rod and cone photoreceptors that developed structured outer nuclear layers after transplantation. Further, immunohistochemical analyses suggested the formation of host–graft synaptic connections. The findings of this study demonstrate the clinical feasibility of hESC-retina transplantation and provide the practical tools for the optimization of transplantation strategies for future clinical applications. PMID:26699487

  2. Aldose Reductase Inhibition Alleviates Hyperglycemic Effects on Human Retinal Pigment Epithelial Cells

    PubMed Central

    Chang, Kun-Che; Snow, Anson; LaBarbera, Daniel V.; Petrash, J. Mark

    2014-01-01

    Chronic hyperglycemia is an important risk factor involved in the onset and progression of diabetic retinopathy (DR). Among other effectors, aldose reductase (AR) has been linked to the pathogenesis of this degenerative disease. The purpose of this study was to investigate whether the novel AR inhibitor, beta-glucogallin (BGG), can offer protection against various hyperglycemia-induced abnormalities in human adult retinal pigment epithelia (ARPE-19) cells. AR is an enzyme that contributes to cellular stress by production of reactive oxygen species (ROS) under high glucose conditions. A marked decrease in cell viability (from 100% to 78%) following long-term exposure (4 days) of RPE cells to high glucose (HG) was largely prevented by siRNA-mediated knockdown of AR gene expression (from 79% to 97%) or inhibition using sorbinil (from 66% to 86%). In HG, BGG decreased sorbitol accumulation (44%), ROS production (27%) as well as ER stress (22%). Additionally, we demonstrated that BGG prevented loss of mitochondrial membrane potential (MMP) under HG exposure. We also showed that AR inhibitor pretreatment reduced retinal microglia-induced apoptosis in APRE-19 cells. These results suggest that BGG may be useful as a therapeutic agent against retinal degeneration in the diabetic eye by preventing RPE cell death. PMID:25451566

  3. Protective effect of basic fibroblast growth factor on retinal injury induced by argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; San, Q.; Wang, C. Z.; Yang, Z. F.; Kang, H. X.; Qian, H. W.

    2010-12-01

    Laser photocoagulation treatment is often complicated by a side effect of visual impairment, which is caused by the unavoidable laser-induced retinal destruction. At present no specific is found to cure this retinopathy. The aim of this study was to observe the neuroprotective effect of bFGF on laser-induced retinal injury. Chinchilla rabbits were divided into three groups and argon laser lesions were created in the retinas. Then bFGF or dexamethasone, a widely used ophthalmic preparation, or saline was given severally by retrobulbar injection. The retinal lesions were evaluated histologically and morphometrically, and visual function was examined by ERG. The results showed that bFGF administration better preserved morphology of retinal photoreceptors and significantly diminished the area of the lesions. Furthermore, bFGF promoted the restoration of the ERG b-wave amplitude. In rabbits treated with dexamethasone, however, the lesions showed almost no ameliorative changes. This is the first study to investigate the potential role of bFGF as a remedial agent in laser photocoagulation treatment. These findings suggest that bFGF has significant neuroprotective properties in the retina and this type of neuroprotection may be of clinical significance in reducing iatrogenic laser-induced retinal injuries in humans.

  4. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  5. Exercise and Cyclic Light Preconditioning Protect Against Light-Induced Retinal Degeneration and Evoke Similar Gene Expression Patterns.

    PubMed

    Chrenek, Micah A; Sellers, Jana T; Lawson, Eric C; Cunha, Priscila P; Johnson, Jessica L; Girardot, Preston E; Kendall, Cristina; Han, Moon K; Hanif, Adam; Ciavatta, Vincent T; Gogniat, Marissa A; Nickerson, John M; Pardue, Machelle T; Boatright, Jeffrey H

    2016-01-01

    To compare patterns of gene expression following preconditioning cyclic light rearing versus preconditioning aerobic exercise. BALB/C mice were preconditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice were maintained for an additional 2 weeks and for assessment of retinal function by electroretinogram (ERG). Both preconditioning protocols partially but significantly preserved retinal function and morphology and induced similar leukemia inhibitory factor (LIF) gene expression pattern. The data demonstrate that exercise preconditioning and cyclic light preconditioning protect photoreceptors against LIRD and evoke a similar pattern of retinal LIF gene expression. It may be that similar stress response pathways mediate the protection provided by the two preconditioning modalities.

  6. Hsp90 inhibition protects against inherited retinal degeneration

    PubMed Central

    Aguilà, Mònica; Bevilacqua, Dalila; McCulley, Caroline; Schwarz, Nele; Athanasiou, Dimitra; Kanuga, Naheed; Novoselov, Sergey S.; Lange, Clemens A.K.; Ali, Robin R.; Bainbridge, James W.; Gias, Carlos; Coffey, Peter J.; Garriga, Pere; Cheetham, Michael E.

    2014-01-01

    The molecular chaperone Hsp90 is important for the functional maturation of many client proteins, and inhibitors are in clinical trials for multiple indications in cancer. Hsp90 inhibition activates the heat shock response and can improve viability in a cell model of the P23H misfolding mutation in rhodopsin that causes autosomal dominant retinitis pigmentosa (adRP). Here, we show that a single low dose of the Hsp90 inhibitor HSP990 enhanced visual function and delayed photoreceptor degeneration in a P23H transgenic rat model. This was associated with the induction of heat shock protein expression and reduced rhodopsin aggregation. We then investigated the effect of Hsp90 inhibition on a different type of rod opsin mutant, R135L, which is hyperphosphorylated, binds arrestin and disrupts vesicular traffic. Hsp90 inhibition with 17-AAG reduced the intracellular accumulation of R135L and abolished arrestin binding in cells. Hsf-1−/− cells revealed that the effect of 17-AAG on P23H aggregation was dependent on HSF-1, whereas the effect on R135L was HSF-1 independent. Instead, the effect on R135L was mediated by a requirement of Hsp90 for rhodopsin kinase (GRK1) maturation and function. Importantly, Hsp90 inhibition restored R135L rod opsin localization to wild-type (WT) phenotype in vivo in rat retina. Prolonged Hsp90 inhibition with HSP990 in vivo led to a posttranslational reduction in GRK1 and phosphodiesterase (PDE6) protein levels, identifying them as Hsp90 clients. These data suggest that Hsp90 represents a potential therapeutic target for different types of rhodopsin adRP through distinct mechanisms, but also indicate that sustained Hsp90 inhibition might adversely affect visual function. PMID:24301679

  7. Predicting the Incidence of Human Cataract through Retinal Imaging Technology.

    PubMed

    Horng, Chi-Ting; Sun, Han-Ying; Liu, Hsiang-Jui; Lue, Jiann-Hwa; Yeh, Shang-Min

    2015-11-01

    With the progress of science, technology and medicine, the proportion of elderly people in society has gradually increased over the years. Thus, the medical care and health issues of this population have drawn increasing attention. In particular, among the common medical problems of the elderly, the occurrence of cataracts has been widely observed. In this study, we developed retinal imaging technology by establishing a human eye module with ray tracing. Periodic hole arrays with different degrees were constructed on the anterior surface of the lens to emulate the eyesight decline caused by cataracts. Then, we successfully predicted the incidence of cataracts among people with myopia ranging from -3.0 D to -9.0 D. Results show that periodic hole arrays cause severe eyesight decline when they are centralized in the visual center. However, the wide distribution of these arrays on the anterior surface of the lens would not significantly affect one's eyesight. PMID:26610533

  8. Retinal Protective Effects of Resveratrol via Modulation of Nitric Oxide Synthase on Oxygen-induced Retinopathy

    PubMed Central

    Kim, Woo Taek

    2010-01-01

    Purpose Retinopathy of prematurity (ROP) is one of the leading causes of blindness, with retinal detachment occurring due to oxygen toxicity in preterm infants. Recently, advances in neonatal care have led to improved survival rates for preterm infants, and ROP has increased in incidence. In the present study, we aimed to determine whether or not resveratrol exhibits protective effects in an animal model of ROP and in primary retinal cell cultures of neonatal rat via nitric oxide (NO)-modulating actions using western blotting and real-time PCR with inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS) antibodies and mRNAs. Methods In an in vivo oxygen-induced retinopathy (OIR) model, cyclic hyperoxia was induced with 80% O2 for one day and 21% O2 for one day from P1 to P14 in newborn Sprague-Dawley (SD) rats. Resveratrol was injected intravitreally for seven days and rats were sacrificed at P21. In vitro OIR primary retinal cell culture was performed using P0-2 SD rats. Hyperoxia injuries were induced through 100% O2 exposure for six hours. Western blotting and real-time PCR using iNOS, eNOS, nNOS antibodies and primers were performed in the rat model of ROP and the dispersed retinal cell culture. Results In both in vivo and in vitro OIR, the expression of iNOS antibody and mRNA was increased and of eNOS and nNOS were reduced in the resveratrol-treated group. Conclusions In conclusion, resveratrol appeared to exert retinal protective effects via modulation of NO-mediated mechanism in in vivo and in vitro OIR models. PMID:20379461

  9. Multifunctional PEG Retinylamine Conjugate Provides Prolonged Protection against Retinal Degeneration in Mice

    PubMed Central

    2015-01-01

    A polyethylene glycol (PEG) retinylamine (Ret-NH2) conjugate PEG-GFL-NH-Ret with a glycine-phenylalanine-leucine (GFL) spacer was synthesized for controlled oral delivery of Ret-NH2 to treat retinal degenerative diseases, including Stargardt disease (STGD) and age-related macular degeneration (AMD). The peptide spacer was introduced for sustained release of the drug by digestive enzymes in the gastrointestinal tract. The pharmacokinetics experiments showed that the PEG conjugate could control the sustained drug release after oral administration and had much lower nonspecific liver drug accumulation than the free drug in wild-type female C57BL mice. In the mean time, the conjugate maintained the same concentration of Ret-NH2 in the eye as the free drug. Also, PEG-GFL-NH-Ret at a Ret-NH2 equivalent dose of 25 mg/kg produced complete protection of Abca4–/–Rdh8–/– mouse retinas against light-induced retinal degeneration for 3 days after oral administration, as revealed by OCT retina imaging, whereas free Ret-NH2 did not provide any protection under identical conditions. The polymer conjugate PEG-GFL-NH-Ret has great potential for controlled delivery of Ret-NH2 to the eye for effective protection against retinal degenerative diseases. PMID:25390360

  10. Multifunctional PEG retinylamine conjugate provides prolonged protection against retinal degeneration in mice.

    PubMed

    Yu, Guanping; Wu, Xueming; Ayat, Nadia; Maeda, Akiko; Gao, Song-Qi; Golczak, Marcin; Palczewski, Krzysztof; Lu, Zheng-Rong

    2014-12-01

    A polyethylene glycol (PEG) retinylamine (Ret-NH2) conjugate PEG-GFL-NH-Ret with a glycine-phenylalanine-leucine (GFL) spacer was synthesized for controlled oral delivery of Ret-NH2 to treat retinal degenerative diseases, including Stargardt disease (STGD) and age-related macular degeneration (AMD). The peptide spacer was introduced for sustained release of the drug by digestive enzymes in the gastrointestinal tract. The pharmacokinetics experiments showed that the PEG conjugate could control the sustained drug release after oral administration and had much lower nonspecific liver drug accumulation than the free drug in wild-type female C57BL mice. In the mean time, the conjugate maintained the same concentration of Ret-NH2 in the eye as the free drug. Also, PEG-GFL-NH-Ret at a Ret-NH2 equivalent dose of 25 mg/kg produced complete protection of Abca4(-/-)Rdh8(-/-) mouse retinas against light-induced retinal degeneration for 3 days after oral administration, as revealed by OCT retina imaging, whereas free Ret-NH2 did not provide any protection under identical conditions. The polymer conjugate PEG-GFL-NH-Ret has great potential for controlled delivery of Ret-NH2 to the eye for effective protection against retinal degenerative diseases.

  11. Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques.

    PubMed

    Kiss, Barbara; Polska, Elzbieta; Dorner, Guido; Polak, Kaija; Findl, Oliver; Mayrl, Gabriele Fuchsjäger; Eichler, Hans-Georg; Wolzt, Michael; Schmetterer, Leopold

    2002-07-01

    Retinal vasculature shows pronounced vasoconstriction in response to hyperoxia, which appears to be related to the constant oxygen demand of the retina. However, the exact amount of blood flow reduction and the exact time course of this phenomenon are still a matter of debate. We set out to investigate the retinal response to hyperoxia using innovative techniques for the assessment of retinal hemodynamics. In a total of 48 healthy volunteers we studied the effect of 100% O(2) breathing on retinal blood flow using two methods. Red blood cell movement in larger retinal veins was quantified with combined laser Doppler velocimetry and retinal vessel size measurement. Retinal white blood cell movement was quantified with the blue field entoptic technique. The time course of retinal vasoconstriction in response to hyperoxia was assessed by continuous vessel size determination using the Zeiss retinal vessel analyzer. The response to hyperoxia as measured with combined laser Doppler velocimetry and vessel size measurement was almost twice as high as that observed with the blue field technique. Vasoconstriction in response to 100% O(2) breathing occurred within the first 5 min and no counterregulatory or adaptive mechanisms were observed. Based on these results we hypothesize that hyperoxia-induced vasoconstriction differentially affects red and white blood cell movement in the human retina. This hypothesis is based on the complex interactions between red and white blood cells in microcirculation, which have been described in detail for other vascular beds.

  12. Thrombin induces Sp1-mediated antiviral effects in cytomegalovirus-infected human retinal pigment epithelial cells.

    PubMed

    Scholz, Martin; Vogel, Jens-Uwe; Höver, Gerold; Prösch, Susanna; Kotchetkov, Ruslan; Cinatl, Jaroslav; Koch, Frank; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2004-11-01

    Human cytomegalovirus (HCMV) retinitis causing retinal detachment and destruction of the blood-retina barrier is closely related to retinal hemorrhage/coagulation. However, the effects of procoagulants on HCMV (re)activation in retinal cells have not been investigated yet. Therefore, we studied whether thrombin modulates the expression of HCMV immediate early (IE) and late (L) genes in cultured human retinal pigment epithelial cells (RPE). Thrombin specifically stimulated the protease-activated receptor-1 (PAR-1) on RPE and, surprisingly, inhibited basal and 12,0-tetradecanoylphorbol 13-acetate-stimulated HCMV IE gene expression in infected RPE. On the other hand, HCMV strongly induced Sp1 DNA binding activity, which was prevented by thrombin/PAR1-mediated Sp1 hyperphosphorylation. Our data suggest that thrombin/PAR-1 may inhibit Sp1-dependent HCMV replication, which might be an important regulatory mechanism for HCMV persistence and replication in RPE.

  13. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells

    SciTech Connect

    Wielgus, Albert R.; Zhao, Baozhong; Chignell, Colin F.; Hu, Dan-Ning; Roberts, Joan E.

    2010-01-01

    The water-soluble nanoparticle hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have previously found that fullerol is both cytotoxic and phototoxic to human lens epithelial cells (HLE B-3) and that the endogenous antioxidant lutein blocked some of this phototoxicity. In the present study we have found that fullerol induces cytotoxic and phototoxic damage to human retinal pigment epithelial cells. Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm, and cell viability, cell metabolism and membrane permeability were estimated using trypan blue, MTS and LDH assays, respectively. Fullerol was cytotoxic toward hRPE cells maintained in the dark at concentrations higher than 10 muM. Exposure to an 8.5 J.cm{sup -2} dose of visible light in the presence of > 5 muM fullerol induced TBARS formation and early apoptosis, indicating phototoxic damage in the form of lipid peroxidation. Pretreatment with 10 and 20 muM lutein offered some protection against fullerol photodamage. Using time resolved photophysical techniques, we have now confirmed that fullerol produces singlet oxygen with a quantum yield of PHI = 0.05 in D{sub 2}O and with a range of 0.002-0.139 in various solvents. As our previous studies have shown that fullerol also produces superoxide in the presence of light, retinal phototoxic damage may occur through both type I (free radical) and type II (singlet oxygen) mechanisms. In conclusion, ocular exposure to fullerol, particularly in the presence of sunlight, may lead to retinal damage.

  14. [Study of blue light induced DNA damage of retinal pigment epithelium(RPE) cells and the protection of vitamin C].

    PubMed

    Zhou, Jian Wei; Ren, Guo Liang; Zhang, Xiao Ming; Zhu, Xi; Lin, Hai Yan; Zhou, Ji Lin

    2003-10-01

    To evaluate protection of vitamin C on blue light-induced DNA damage of human retinal pigment epithelium (RPE) cells. The cultured RPE cells were divided into 3 groups: Control group (no blue light exposure), blue light exposure group (blue light exposure for 20 minutes) and blue light exposure + vitamin C group (blue light exposure + 100 mumol/L vitamin C). Travigen's comet assay kit and Euclid comet assay software were used to assay the DNA damage levels. The DNA percentage in the tail of electrophoretogram in the three groups were 18.44%, 54.42% and 32.43% respectively (p < 0.01). Tail moments were 8.2, 48.3, and 18.4 respectively (p < 0.01). Blue light could induce DNA damage to RPE cells but vitamin C could protect the RPE cells from the blue light-induced DNA damage.

  15. Melanin precursor 5,6-dihydroxyindol: protective effects and cytotoxicity on retinal cells in vitro and in vivo.

    PubMed

    Heiduschka, Peter; Blitgen-Heinecke, Petra; Tura, Aysegül; Kokkinou, Despina; Julien, Sylvie; Hofmeister, Sabine; Bartz-Schmidt, Karl Ulrich; Schraermeyer, Ulrich

    2007-12-01

    5,6-dihydroxyindole (DHI) is a melanin pigment precursor with antioxidant properties. In the light of a report about cytotoxicity of DHI, the aim of this study was to assess possible toxic effects of DHI on cells related to the eye, such as human ARPE-19 cells and mouse retinal explants. Moreover, DHI was tested on its effects on retinal function in vivo using electroretinography. We found cytotoxicity of DHI against ARPE-19 cells at 100 microM, but not at 10 microM. 10 microM DHI exhibited a slight, though not significant protective activity against UV-A damage in ARPE-19 cells. We found cytoprotection in cultured mouse retinas by 50 microM DHI or its diacetylated derivative 5,6-diacetoxyindole (DAI), respectively. In ERG measurements in vivo, amplitudes were decreased only slightly by 100 microM DHI compared to saline, whereas a better preservation of amplitudes was visible at 10 microM DHI, in particular with respect to cones. In histological sections, more cones were found at 10 microM DHI than at 100 microM DHI. As a conclusion, DHI shows a slight protective effect at 10 microM both in vitro and in vivo. At 100 microM, it shows a strong cytotoxicity in vitro, which is strongly reduced in vivo.

  16. Bright cyclic light rearing-mediated retinal protection against damaging light exposure in adrenalectomized mice.

    PubMed

    Tanito, Masaki; Anderson, Robert E

    2006-09-01

    Previous studies have shown that albino rats and mice raised in bright cyclic light are protected from light-induced retinal damage. We tested if the stress response mediated by the adrenal grand is involved in the initiation of this neuroprotective phenomenon. Balb/c mice that were adrenalectomized (Adrex) or sham operated at 28 days of age were kept under dim (5 lux) or bright (400 lux) cyclic light (12h on/off) for 2 weeks. Thereafter, their electroretinogram (ERG), outer nuclear layer (ONL) thickness and area, and plasma corticosterone levels were measured in animals with (dim+light and bright+light groups) and without (dim and bright groups) damaging light exposure (3000 lux for 24 h). In the dim+light group, a- and b-wave amplitudes and the ONL thicknesses and areas were significantly higher in the Adrex animals than the sham animals, indicating that adrenalectomy itself yielded retinal protection. In the Adrex animals, the ONL areas were significantly larger in the bright+light group than the dim+light group, indicating that bright cyclic light rearing yielded further retinal tolerance, even in the absence of the adrenal gland. In sham animals, the plasma corticosterone concentration did not change between the dim and the light groups. Accordingly, glucocorticoid secreted from the adrenal gland is not likely to be required for the mechanisms of the light-adaptation neuroprotection phenomenon in mice.

  17. Protective effect of Lycium barbarum polysaccharide on retinal ganglion cells in vitro

    PubMed Central

    Yang, Min; Gao, Na; Zhao, Ying; Liu, Li-Xia; Lu, Xue-Jing

    2011-01-01

    AIM To observe the effect of Lycium barbarum polysaccharide (LBP) on rat retinal ganglion cells (RGCs) in vitro. METHODS Retinal cells of neonatal Sprague-Dawley rats were collected 1 to 3 days after birth, and co-cultured with different concentrations of LBP for 24 hours. Absorbance values (OD) were recorded using MTT assay for calculating survival rates. RESULTS All the test groups had protective effects on RGCs. The group with 10mg/mL concentration of LBP had the most significantly difference of OD value compared with that in control group (P<0.01). CONCLUSION LBP can increase the survival rate and promote the growth of mixed cultured rat RGCs. PMID:22553684

  18. Retinal and post-retinal contributions to the quantum efficiency of the human eye revealed by electrical neuroimaging

    PubMed Central

    Manasseh, Gibran; de Balthasar, Chloe; Sanguinetti, Bruno; Pomarico, Enrico; Gisin, Nicolas; de Peralta, Rolando Grave; Andino, Sara L. Gonzalez

    2013-01-01

    The retina is one of the best known quantum detectors with rods able to reliably respond to single photons. However, estimates on the number of photons eliciting conscious perception, based on signal detection theory, are systematically above these values after discounting by retinal losses. One possibility is that there is a trade-off between the limited motor resources available to living systems and the excellent reliability of the visual photoreceptors. On this view, the limits to sensory thresholds are not set by the individual reliability of the receptors within each sensory modality (as often assumed) but rather by the limited central processing and motor resources available to process the constant inflow of sensory information. To investigate this issue, we reproduced the classical experiment from Hetch aimed to determine the sensory threshold in human vision. We combined a careful physical control of the stimulus parameters with high temporal/spatial resolution recordings of EEG signals and behavioral variables over a relatively large sample of subjects (12). Contrarily to the idea that the limits to visual sensitivity are fully set by the statistical fluctuations in photon absorption on retinal photoreceptors we observed that the state of ongoing neural oscillations before any photon impinges the retina helps to determine if the responses of photoreceptors have access to central conscious processing. Our results suggest that motivational and attentional off-retinal mechanisms play a major role in reducing the QE efficiency of the human visual system when compared to the efficiency of isolated retinal photoreceptors. Yet, this mechanism might subserve adaptive behavior by enhancing the overall multisensory efficiency of the whole system composed by diverse reliable sensory modalities. PMID:24302913

  19. Retinal and post-retinal contributions to the quantum efficiency of the human eye revealed by electrical neuroimaging.

    PubMed

    Manasseh, Gibran; de Balthasar, Chloe; Sanguinetti, Bruno; Pomarico, Enrico; Gisin, Nicolas; de Peralta, Rolando Grave; Andino, Sara L Gonzalez

    2013-01-01

    The retina is one of the best known quantum detectors with rods able to reliably respond to single photons. However, estimates on the number of photons eliciting conscious perception, based on signal detection theory, are systematically above these values after discounting by retinal losses. One possibility is that there is a trade-off between the limited motor resources available to living systems and the excellent reliability of the visual photoreceptors. On this view, the limits to sensory thresholds are not set by the individual reliability of the receptors within each sensory modality (as often assumed) but rather by the limited central processing and motor resources available to process the constant inflow of sensory information. To investigate this issue, we reproduced the classical experiment from Hetch aimed to determine the sensory threshold in human vision. We combined a careful physical control of the stimulus parameters with high temporal/spatial resolution recordings of EEG signals and behavioral variables over a relatively large sample of subjects (12). Contrarily to the idea that the limits to visual sensitivity are fully set by the statistical fluctuations in photon absorption on retinal photoreceptors we observed that the state of ongoing neural oscillations before any photon impinges the retina helps to determine if the responses of photoreceptors have access to central conscious processing. Our results suggest that motivational and attentional off-retinal mechanisms play a major role in reducing the QE efficiency of the human visual system when compared to the efficiency of isolated retinal photoreceptors. Yet, this mechanism might subserve adaptive behavior by enhancing the overall multisensory efficiency of the whole system composed by diverse reliable sensory modalities. PMID:24302913

  20. Engineering a blood-retinal barrier with human embryonic stem cell-derived retinal pigment epithelium: transcriptome and functional analysis.

    PubMed

    Peng, Shaomin; Gan, Geliang; Qiu, Caihong; Zhong, Mei; An, Hongyan; Adelman, Ron A; Rizzolo, Lawrence J

    2013-07-01

    Retinal degenerations are a major cause of impaired vision in the elderly. Degenerations originate in either photoreceptors or the retinal pigment epithelium (RPE). RPE forms the outer blood-retinal barrier and functions intimately with photoreceptors. Animal models and cultures of RPE are commonly used to screen potential pharmaceuticals or explore RPE replacement therapy, but human RPE differs from that of other species. Human RPE forms a barrier using tight junctions composed of a unique set of claudins, proteins that determine the permeability and selectivity of tight junctions. Human adult RPE fails to replicate these properties in vitro. To develop a culture model for drug development and tissue-engineering human retina, RPE were derived from human embryonic stem cells (hESCs). Barrier properties of RPE derived from the H1 and H9 hESC lines were compared with a well-regarded model of RPE function, human fetal RPE isolated from 16-week-gestation fetuses (hfRPE). A serum-free medium (SFM-1) that enhanced the redifferentiation of hfRPE in culture also furthered the maturation of hESC-derived RPE. In SFM-1, the composition, selectivity, and permeability of tight junctions were similar to those of hfRPE. Comparison of the transcriptomes by RNA sequencing and quantitative reverse transcription-polymerase chain reaction revealed a high correlation between the hESCs and hfRPE, but there were notable differences in the expression of adhesion junction and membrane transport genes. These data indicated that hESC-derived RPE is highly differentiated but may be less mature than RPE isolated from 16-week fetuses. The study identified a panel of genes to monitor the maturation of RPE.

  1. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration.

    PubMed

    Osborne, Andrew; Hopes, Marina; Wright, Phillip; Broadway, David C; Sanderson, Julie

    2016-02-01

    There is a growing need for models of human diseases that utilise native, donated human tissue in order to model disease processes and develop novel therapeutic strategies. In this paper we assessed the suitability of adult human retinal explants as a potential model of chronic retinal ganglion cell (RGC) degeneration. Our results confirmed that RGC markers commonly used in rodent studies (NeuN, βIII Tubulin and Thy-1) were appropriate for labelling human RGCs and followed the expected differential expression patterns across, as well as throughout, the macular and para-macular regions of the retina. Furthermore, we showed that neither donor age nor post-mortem time (within 24 h) significantly affected the initial expression levels of RGC markers. In addition, the feasibility of using human post mortem donor tissue as a long-term model of RGC degeneration was determined with RGC protein being detectable up to 4 weeks in culture with an associated decline in RGC mRNA and significant, progressive, apoptotic labelling of NeuN(+) cells. Differences in RGC apoptosis might have been influenced by medium compositions indicating that media constituents could play a role in supporting axotomised RGCs. We propose that using ex vivo human explants may prove to be a useful model for testing the effectiveness of neuroprotective strategies.

  2. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration

    PubMed Central

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration. PMID:26042773

  3. Dietary supplement enriched in antioxidants and omega-3 protects from progressive light-induced retinal degeneration.

    PubMed

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration.

  4. Quinotrierixin inhibits proliferation of human retinal pigment epithelial cells

    PubMed Central

    Chen, Chen; Wang, Joshua J.; Li, Jingming; Yu, Qiang

    2013-01-01

    Purpose To investigate the effect of quinotrierixin, a previously reported inhibitor of X-box binding protein 1 (XBP1), on cell proliferation and viability in human retinal pigment epithelium (RPE) cells. Methods Subconfluent human RPE cells (ARPE-19) were exposed to quinotrierixin for 16–24 h. Cell proliferation was determined with 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, hemocytometer counts, and CyQUANT NF Cell Proliferation Assay. Apoptosis was detected with terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling assay. XBP1 mRNA splicing and expression of endoplasmic reticulum stress response genes were determined in cells exposed to thapsigargin in the presence or absence of quinotrierixin. Overexpression of spliced XBP1 was achieved with adenovirus. Results Quinotrierixin reduced RPE cell proliferation in a dose-dependent manner without inducing apoptosis. In cells exposed to thapsigargin, quinotrierixin inhibited XBP1 mRNA splicing and PKR-like endoplasmic reticulum kinase activation, and reduced cellular and nuclear levels of spliced XBP1 and C/EBP homologous protein. Paradoxically, quinotrierixin exacerbated endoplasmic reticulum stress-induced phosphorylation of eIF2α, which in turn led to decreased protein translation. Overexpressing spliced XBP1 partially reversed the inhibition of cell proliferation by quinotrierixin. These results suggest that inhibiting XBP1 splicing contributes to quinotrierixin’s negative effect on RPE cell proliferation, but other mechanisms such as reduction of protein translation are also involved. Conclusions Quinotrierixin inhibits RPE cell proliferation and may be used as a novel antiproliferative drug for treating proliferative vitreoretinopathy. Future studies are needed to investigate the in vivo effect of quinotrierixin on RPE proliferation in animal models of proliferative vitreoretinopathy. PMID:23335849

  5. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology.

    PubMed

    Wilkinson-Berka, Jennifer L; Tan, Genevieve; Jaworski, Kassie; Miller, Antonia G

    2009-01-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) is being evaluated as a treatment for diabetic retinopathy; however, whether the mineralocorticoid receptor (MR) and aldosterone influence retinal vascular pathology is unknown. We examined the effect of MR antagonism on pathological angiogenesis in rats with oxygen-induced retinopathy (OIR). To determine the mechanisms by which the MR and aldosterone may influence retinal angiogenesis; inflammation and glucose-6-phosphate dehydrogenase (G6PD) were evaluated in OIR and cultured bovine retinal endothelial cells (BRECs) and bovine retinal pericytes (BRPs). In OIR, MR antagonism (spironolactone) was antiangiogenic. Aldosterone may mediate the pathogenic actions of MR in the retina, with 11beta-hydroxysteroid dehydrogenase type 2 mRNA being detected and with aldosterone stimulating proliferation and tubulogenesis in BRECs and exacerbating angiogenesis in OIR, which was attenuated with spironolactone. The MR and aldosterone modulated retinal inflammation, with leukostasis and monocyte chemoattractant protein-1 mRNA and protein in OIR being reduced by spironolactone and increased by aldosterone. A reduction in G6PD may be an early response to aldosterone. In BRECs, BRPs, and early OIR, aldosterone reduced G6PD mRNA, and in late OIR, aldosterone increased mRNA for the NAD(P)H oxidase subunit Nox4. A functional retinal MR-aldosterone system was evident with MR expression, translocation of nuclear MR, and aldosterone synthase expression, which was modulated by RAAS blockade. We make the first report that MR and aldosterone influence retinal vasculopathy, which may involve inflammatory and G6PD mechanisms. MR antagonism may be relevant when developing treatments for retinopathies that target the RAAS.

  6. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis. PMID:26653970

  7. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.

  8. Idebenone protects against retinal damage and loss of vision in a mouse model of Leber's hereditary optic neuropathy.

    PubMed

    Heitz, Fabrice D; Erb, Michael; Anklin, Corinne; Robay, Dimitri; Pernet, Vincent; Gueven, Nuri

    2012-01-01

    Leber's hereditary optic neuropathy (LHON) is an inherited disease caused by mutations in complex I of the mitochondrial respiratory chain. The disease is characterized by loss of central vision due to retinal ganglion cell (RGC) dysfunction and optic nerve atrophy. Despite progress towards a better understanding of the disease, no therapeutic treatment is currently approved for this devastating disease. Idebenone, a short-chain benzoquinone, has shown promising evidence of efficacy in protecting vision loss and in accelerating recovery of visual acuity in patients with LHON. It was therefore of interest to study suitable LHON models in vitro and in vivo to identify anatomical correlates for this protective activity. At nanomolar concentrations, idebenone protected the rodent RGC cell line RGC-5 against complex I dysfunction in vitro. Consistent with the reported dosing and observed effects in LHON patients, we describe that in mice, idebenone penetrated into the eye at concentrations equivalent to those which protected RGC-5 cells from complex I dysfunction in vitro. Consequently, we next investigated the protective effect of idebenone in a mouse model of LHON, whereby mitochondrial complex I dysfunction was caused by exposure to rotenone. In this model, idebenone protected against the loss of retinal ganglion cells, reduction in retinal thickness and gliosis. Furthermore, consistent with this protection of retinal integrity, idebenone restored the functional loss of vision in this disease model. These results support the pharmacological activity of idebenone and indicate that idebenone holds potential as an effective treatment for vision loss in LHON patients.

  9. Progressive outer retinal necrosis: manifestation of human immunodeficiency virus infection.

    PubMed

    Lo, Phey Feng; Lim, Rongxuan; Antonakis, Serafeim N; Almeida, Goncalo C

    2015-01-01

    We present the case of a 54-year-old man who developed progressive outer retinal necrosis (PORN) as an initial manifestation of HIV infection without any significant risk factors for infection with HIV. PORN is usually found as a manifestation of known AIDS late in the disease. Our patient presented with transient visual loss followed by decrease in visual acuity and facial rash. Subsequent investigation revealed anterior chamber tap positive for varicella zoster virus (VZV), as well as HIV positivity, with an initial CD4 count of 48 cells/µL. Systemic and intravitreal antivirals against VZV, and highly active antiretroviral therapy against HIV were started, which halted further progression of retinal necrosis. This case highlights the importance of suspecting PORN where there is a rapidly progressive retinitis, and also testing the patient for HIV, so appropriate treatment can be started. PMID:25948844

  10. Progressive outer retinal necrosis: manifestation of human immunodeficiency virus infection.

    PubMed

    Lo, Phey Feng; Lim, Rongxuan; Antonakis, Serafeim N; Almeida, Goncalo C

    2015-05-06

    We present the case of a 54-year-old man who developed progressive outer retinal necrosis (PORN) as an initial manifestation of HIV infection without any significant risk factors for infection with HIV. PORN is usually found as a manifestation of known AIDS late in the disease. Our patient presented with transient visual loss followed by decrease in visual acuity and facial rash. Subsequent investigation revealed anterior chamber tap positive for varicella zoster virus (VZV), as well as HIV positivity, with an initial CD4 count of 48 cells/µL. Systemic and intravitreal antivirals against VZV, and highly active antiretroviral therapy against HIV were started, which halted further progression of retinal necrosis. This case highlights the importance of suspecting PORN where there is a rapidly progressive retinitis, and also testing the patient for HIV, so appropriate treatment can be started.

  11. Lithium chloride protects retinal neurocytes from nutrient deprivation by promoting DNA non-homologous end-joining

    SciTech Connect

    Zhuang Jing; Li Fan; Liu Xuan; Liu Zhiping; Lin Jianxian; Ge Yihong; Kaminski, Joseph M.; Summers, James Bradley; Wang Zhichong; Ge Jian Yu Keming

    2009-03-13

    Lithium chloride is a therapeutic agent for treatment of bipolar affective disorders. Increasing numbers of studies have indicated that lithium has neuroprotective effects. However, the molecular mechanisms underlying the actions of lithium have not been fully elucidated. This study aimed to investigate whether lithium chloride produces neuroprotective function by improving DNA repair pathway in retinal neurocyte. In vitro, the primary cultured retinal neurocytes (85.7% are MAP-2 positive cells) were treated with lithium chloride, then cultured with serum-free media to simulate the nutrient deprived state resulting from ischemic insult. The neurite outgrowth of the cultured cells increased significantly in a dose-dependent manner when exposed to different levels of lithium chloride. Genomic DNA electrophoresis demonstrated greater DNA integrity of retinal neurocytes when treated with lithium chloride as compared to the control. Moreover, mRNA and protein levels of Ligase IV (involved in DNA non-homologous end-joining (NHEJ) pathway) in retinal neurocytes increased with lithium chloride. The end joining activity assay was performed to determine the role of lithium on NHEJ in the presence of extract from retinal neurocytes. The rejoining levels in retinal neurocytes treated with lithium were significantly increased as compared to the control. Furthermore, XRCC4, the Ligase IV partner, and the transcriptional factor, CREB and CTCF, were up-regulated in retinal cells after treating with 1.0 mM lithium chloride. Therefore, our data suggest that lithium chloride protects the retinal neural cells from nutrient deprivation in vitro, which may be similar to the mechanism of cell death in glaucoma. The improvement in DNA repair pathway involving in Ligase IV might have an important role in lithium neuroprotection. This study provides new insights into the neural protective mechanisms of lithium chloride.

  12. Hybrid vitronectin-mimicking polycaprolactone scaffolds for human retinal progenitor cell differentiation and transplantation.

    PubMed

    Lawley, Elodie; Baranov, Petr; Young, Michael

    2015-01-01

    Many advances have been made in an attempt to treat retinal degenerative diseases, such as age-related macular degeneration and retinitis pigmentosa. The irreversible loss of photoreceptors is common to both, and currently no restorative clinical treatment exists. It has been shown that retinal progenitor and photoreceptor precursor cell transplantation can rescue the retinal structure and function. Importantly, retinal progenitor cells can be collected from the developing neural retina with further expansion and additional modification in vitro, and the delivery into the degenerative host can be performed as a single-cell suspension injection or as a complex graft transplantation. Previously, we have described several polymer scaffolds for culture and transplantation of retinal progenitor cells of both mouse and human origin. This tissue engineering strategy increases donor cell survival and integration. We have also shown that biodegradable poly(ɛ-caprolactone) induces mature photoreceptor differentiation from human retinal progenitor cells. However, poor adhesive properties limit its use, and therefore it requires additional surface modification. The aim of this work was to study vitronectin-mimicking oligopeptides (Synthemax II-SC) poly(ɛ-caprolactone) films and their effects on human retinal progenitor cell adhesion, proliferation, and differentiation. Here, we show that the incorporation of vitronectin-mimicking oligopeptide into poly(ɛ-caprolactone) leads to dose-dependent increases in cell adhesion; the optimum dose identified as 30 µg/ml. Inhibition of human retinal progenitor cells proliferation was seen on poly(ɛ-caprolactone) and was maintained with the hybrid scaffold. This has been shown to be beneficial for driving cell differentiation. Additionally, we observed equal expression of Nrl, rhodopsin, recoverin, and rod outer membrane 1 after differentiation on the hybrid scaffold as compared to the standard fibronectin coating of poly

  13. Politics and Human Welfare: Retinitis Pigmentosa Patients in South Africa.

    ERIC Educational Resources Information Center

    McKendrick, B. W.; Leketi, M.

    1990-01-01

    The study found that apartheid impacted the sociopsychological and physical circumstances of 12 African and 11 White people with retinitis pigmentosa in South Africa. Findings are discussed in terms of onset of condition, effects on subjects' lives, knowledge of social services, and needs unmet by existing services. (JDD)

  14. Investigation of the Protective Effects of Taurine against Alloxan-Induced Diabetic Retinal Changes via Electroretinogram and Retinal Histology with New Zealand White Rabbits

    PubMed Central

    Yeh, Shang-Min; Chen, Yi-Chen; Lin, Shiun-Long

    2014-01-01

    The purpose of this study was to investigate the protective role of orally administered taurine against diabetic retinal changes via electroretinogram (ERG) and retinal histology on rabbits. Rabbits were randomly assigned into groups: Group I (vehicle administration only); Group II (diabetes: induced by 100 mg/kg alloxan injection); Group III (diabetes and fed with 200 mg/kg taurine); and Group IV (diabetes and fed with 400 mg/kg taurine). The body weight and blood glucose levels of the rabbits were monitored weekly. The ERG was measured on weeks 5 and 15. Retinal histology was analyzed in the end of the experiment. Results revealed that a taurine supplement significantly ameliorates the alloxan-induced hyperglycemia and protects the retina from electrophysiological changes. Group II showed a significant (P < 0.05) change in the mean scotopic b-wave amplitude when compared to that of Group I, whereas the diabetic rabbits treated with taurine (Group III and IV) were analogous to Group I. Histologically, the amount of Bipolar and Müller cells showed no difference (P > 0.05) between all groups and when compared with those of Group I. Our study provides solid evidences that taurine possesses an antidiabetic activity, reduced loss of body weight, and less electrophysiological changes of the diabetic retina. PMID:25298779

  15. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope.

    PubMed

    Tam, Johnny; Tiruveedhula, Pavan; Roorda, Austin

    2011-03-02

    Adaptive Optics Scanning Laser Ophthalmoscopy was used to noninvasively acquire videos of single-file flow through live human retinal parafoveal capillaries. Videos were analyzed offline to investigate capillary flow dynamics. Certain capillaries accounted for a clear majority of leukocyte traffic (Leukocyte-Preferred-Paths, LPPs), while other capillaries primarily featured plasma gap flow (Plasma-Gap-Capillaries, PGCs). LPPs may serve as a protective mechanism to prevent inactivated leukocytes from entering exchange capillaries, and PGCs may serve as relief valves to minimize flow disruption due to the presence of a leukocyte in a neighboring LPP.

  16. Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro

    SciTech Connect

    Rymaszewski, Z.; Cohen, R.M.; Chomczynski, P. )

    1991-01-15

    Growth hormone (GH) has been implicated in the pathogenesis of proliferative diabetic retinopathy. The authors sought to determine whether this could be mediated by an effect of GH on proliferation of endothelial cells, and, for this purpose, established long-term cultures of human retinal microvascular endothelial cells (hREC) from normal postmortem human eyes. High-purity hREC preparations were selected for experiments, based on immunogluorescence with acetylated low density lipoprotein (LDL) and anti-factor VIII-related antigen. Growth requirements for these cells were complex, including serum for maintenance at slow growth rates and additional mitogens for more rapid proliferation. Exposure of hREC to physiologic doses of human GH (hGH) resulted in 100% greater cell number vs. control but could be elicited only in the presence of serum. When differing serum conditions were compared, hGH stimulated ({sup 3}H)thymidine incorporation up to 1.6- to 2.2-fold under each condition and increased DNA content significantly in the presence of human, horse, and fetal calf serum. In summary, hREC respond to physiologic concentrations of hGH in vitro with enhanced proliferation. This specific effect of GH on retinal microvascular endothelial cells supports the hypothesis of role for GH in endothelial cell biology.

  17. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    PubMed Central

    Chen, Li; Tao, Yong; Feng, Jing; Jiang, Yan Rong

    2015-01-01

    Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases. PMID:26491547

  18. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy

    PubMed Central

    Jiang, Tingting; Cai, Jiyang; Fan, Jiawen; Zhang, Xiaozhe

    2016-01-01

    Oxidative stress and inflammation are important pathogenic factors contributing to the etiology of diabetic retinopathy (DR). Melatonin is an endogenous hormone that exhibits a variety of biological effects including antioxidant and anti-inflammatory functions. The goals of this study were to determine whether melatonin could ameliorate retinal injury and to explore the potential mechanisms. Diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (60 mg/kg) in Sprague-Dawley rats. Melatonin (10 mg kg−1 daily, i.p.) was administered from the induction of diabetes and continued for up to 12 weeks, after which the animals were sacrificed and retinal samples were collected. The retina of diabetic rats showed depletion of glutathione and downregulation of glutamate cysteine ligase (GCL). Melatonin significantly upregulated GCL by retaining Nrf2 in the nucleus and stimulating Akt phosphorylation. The production of proinflammatory cytokines and proteins, including interleukin 1β, TNF-α, and inducible nitric oxide synthase (iNOS), was inhibited by melatonin through the NF-κB pathway. At 12 weeks, melatonin prevented the significant decrease in the ERG a- and b-wave amplitudes under the diabetic condition. Our results suggest potent protective functions of melatonin in diabetic retinopathy. In addition to being a direct antioxidant, melatonin can exert receptor-mediated signaling effects to attenuate inflammation and oxidative stress of the retina. PMID:27143993

  19. Association of reduced Connexin 43 expression with retinal vascular lesions in human diabetic retinopathy.

    PubMed

    Tien, Thomas; Muto, Tetsuya; Zhang, Joyce; Sohn, Elliott H; Mullins, Robert F; Roy, Sayon

    2016-05-01

    Connexin 43 (Cx43) downregulation promotes apoptosis in retinal vascular cells of diabetic animal models; however, its relevance to human diabetic retinopathy has not been established. In this study, we investigated whether diabetes alters Cx43 expression and promotes retinal vascular lesions in human retinas. Diabetic human eyes (aged 64-94 years) and non-diabetic human eyes (aged 61-90 years) were analyzed in this study. Retinal protein samples and retinal capillary networks were assessed for Cx43 level by Western blot (WB) analysis and immunostaining. In parallel, retinal capillary networks were stained with hematoxylin and periodic acid Schiff to determine the extent of pericyte loss (PL) and acellular capillaries (AC) in these retinas. Cx43 protein expression was significantly reduced in the diabetic retinas compared to non-diabetic retinas as indicated by WB analysis (81 ± 11% of control). Additionally, a significant decrease in the number of Cx43 plaques per unit length of vessel was observed in the diabetic retinas compared to those of non-diabetic retinas (62 ± 10% of control; p < 0.005). Importantly, a strong inverse relationship was noted between Cx43 expression and the relative number of AC (r = -0.89; p < 0.0005), and between Cx43 expression and number of pericyte loss (r = -0.88; p < 0.0005). Overall, these results show that Cx43 expression is reduced in the human diabetic retinas and Cx43 reduction is associated with increased vascular cell death. These findings suggest that diabetes decreases retinal Cx43 expression and that the development of PL and AC is associated with reduced Cx43 expression in human diabetic retinopathy. PMID:26738943

  20. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

    PubMed Central

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-01-01

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases. PMID:25032851

  1. First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis

    PubMed Central

    Ayton, Lauren N.; Blamey, Peter J.; Guymer, Robyn H.; Luu, Chi D.; Nayagam, David A. X.; Sinclair, Nicholas C.; Shivdasani, Mohit N.; Yeoh, Jonathan; McCombe, Mark F.; Briggs, Robert J.; Opie, Nicholas L.; Villalobos, Joel; Dimitrov, Peter N.; Varsamidis, Mary; Petoe, Matthew A.; McCarthy, Chris D.; Walker, Janine G.; Barnes, Nick; Burkitt, Anthony N.; Williams, Chris E.; Shepherd, Robert K.; Allen, Penelope J.

    2014-01-01

    Retinal visual prostheses (“bionic eyes”) have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. Trial Registration Clinicaltrials.gov NCT01603576 PMID:25521292

  2. The relation between resolution measurements and numbers of retinal ganglion cells in the same human subjects.

    PubMed

    Popovic, Zoran; Sjöstrand, Johan

    2005-08-01

    Limiting factors of resolution have previously only been investigated by using resolution data and retinal ganglion cell spacing data from different individuals. We report on our unique opportunity to study the intra-individual relationship in three human subjects between retinal ganglion cell separations and resolution thresholds, measured with high-pass resolution perimetry. Our data show that resolution is directly proportional to half the midget population, in accordance with the hypothesis that a dichotomous midget ON/OFF population mediates resolution. PMID:15924946

  3. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death.

    PubMed

    Meléndez García, Rodrigo; Arredondo Zamarripa, David; Arnold, Edith; Ruiz-Herrera, Xarubet; Noguez Imm, Ramsés; Baeza Cruz, German; Adán, Norma; Binart, Nadine; Riesgo-Escovar, Juan; Goffin, Vincent; Ordaz, Benito; Peña-Ortega, Fernando; Martínez-Torres, Ataúlfo; Clapp, Carmen; Thebault, Stéphanie

    2016-05-01

    The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.

  4. Detection of Anatomic Structures in Human Retinal Imagery

    SciTech Connect

    Tobin Jr, Kenneth William; Chaum, Edward; Muthusamy Govindasamy, Vijaya Priya; Karnowski, Thomas Paul

    2007-01-01

    The widespread availability of electronic imaging devices throughout the medical community is leading to a growing body of research on image processing and analysis to diagnose retinal disease such as diabetic retinopathy (DR). Productive computer-based screening of large, at-risk populations at low cost requires robust, automated image analysis. In this paper we present results for the automatic detection of the optic nerve and localization of the macula using digital red-free fundus photography. Our method relies on the accurate segmentation of the vasculature of the retina followed by the determination of spatial features describing the density,average thickness, and average orientation of the vasculature in relation to the position of the optic nerve. Localization of the macula follows using knowledge of the optic nerve location to detect the horizontal raphe of the retina using a geometric model of the vasculature. We report 90.4% detection performance for the optic nerve and 92.5% localization performance for the macula for red-free fundus images representing a population of 345 images corresponding to 269 patients with 18 different pathologies associated with DR and other common retinal diseases such as age-related macular degeneration.

  5. Retinal images in the human eye with implanted intraocular lens

    NASA Astrophysics Data System (ADS)

    Zając, Marek; Siedlecki, Damian; Nowak, Jerzy

    2007-04-01

    A typical proceeding in cataract is based on the removal of opaque crystalline lens and inserting in its place the artificial intraocular lens (IOL). The quality of retinal image after such procedure depends, among others, on the parameters of the IOL, so the design of the implanted lens is of great importance. An appropriate choice of the IOL material, especially in relation to its biocompatibility, is often considered. However the parameter, which is often omitted during the IOL design is its chromatic aberration. In particular lack of its adequacy to the chromatic aberration of a crystalline lens may cause problems. In order to fit better chromatic aberration of the eye with implanted IOL to that of the healthy eye we propose a hybrid - refractive-diffractive IOL. It can be designed in such way that the total longitudinal chromatic aberration of an eye with implanted IOL equals the total longitudinal chromatic aberration of a healthy eye. In this study we compare the retinal image quality calculated numerically on the basis of the well known Liou-Brennan eye model with typical IOL implanted with that obtained if the IOL is done as hybrid (refractive-diffractive) design.

  6. Novel mutations in PDE6B causing human retinitis pigmentosa

    PubMed Central

    Cheng, Lu-Lu; Han, Ru-Yi; Yang, Fa-Yu; Yu, Xin-Ping; Xu, Jin-Ling; Min, Qing-Jie; Tian, Jie; Ge, Xiang-Lian; Zheng, Si-Si; Lin, Ye-Wen; Zheng, Yi-Han; Qu, Jia; Gu, Feng

    2016-01-01

    AIM To identify the genetic defects of a Chinese patient with sporadic retinitis pigmentosa (RP). METHODS Ophthalmologic examinations were performed on the sporadic RP patient, 144 genes associated with retinal diseases were scanned with capture next generation sequencing (CNGS) approach. Two heterozygous mutations in PDE6B were confirmed in the pedigree by Sanger sequencing subsequently. The carrier frequency of PDE6B mutations of reported PDE6B mutations based on the available two public exome databases (1000 Genomes Project and ESP6500 Genomes Project) and one in-house exome database was investigated. RESULTS We identified compound heterozygosity of two novel nonsense mutations c.1133G>A (p.W378X) and c.2395C>T (p.R799X) in PDE6B, one reported causative gene for RP. Neither of the two mutations in our study was presented in three exome databases. Two mutations (p.R74C and p.T604I) in PDE6B have relatively high frequencies in the ESP6500 and in-house databases, respectively, while no common dominant mutation in each of the database or across all databases. CONCLUSION We demonstrates that compound heterozygosity of two novel nonsense mutations in PDE6B could lead to RP. These results collectively point to enormous potential of next-generation sequencing in determining the genetic etiology of RP and how various mutations in PDE6B contribute to the genetic heterogeneity of RP. PMID:27588261

  7. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma

    PubMed Central

    Pitha, Ian F.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary Ellen; Oglesby, Ericka N.; Berlinicke, Cynthia A.; Mitchell, Katherine L.; Kim, Jessica; Jefferys, Joan J.

    2015-01-01

    Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes

  8. Inner Retinal Oxygen Extraction Fraction in Response to Light Flicker Stimulation in Humans

    PubMed Central

    Felder, Anthony E.; Wanek, Justin; Blair, Norman P.; Shahidi, Mahnaz

    2015-01-01

    Purpose Light flicker has been shown to stimulate retinal neural activity, increase blood flow, and alter inner retinal oxygen metabolism (MO2) and delivery (DO2). The purpose of the study was to determine the change in MO2 relative to DO2 due to light flicker stimulation in humans, as assessed by the inner retinal oxygen extraction fraction (OEF). Methods An optical imaging system, based on a modified slit lamp biomicroscope, was developed for simultaneous measurements of retinal vascular diameter (D) and oxygen saturation (SO2). Retinal images were acquired in 20 healthy subjects before and during light flicker stimulation. Arterial and venous D (DA and DV) and SO2 (SO2A and SO2V) were quantified within a circumpapillary region. Oxygen extraction fraction was defined as the ratio of MO2 to DO2 and was calculated as (SO2A − SO2V)/SO2A. Reproducibility of measurements was assessed. Results Coefficients of variation and intraclass correlation coefficients of repeated measurements were <5% and ≥0.83, respectively. During light flicker stimulation, DA, DV , and SO2V significantly increased (P ≤ 0.004). Oxygen extraction fraction was 0.37 ± 0.08 before light flicker and significantly decreased to 0.31 ± 0.07 during light flicker (P = 0.001). Conclusions Oxygen extraction fraction before and during light flicker stimulation is reported in human subjects for the first time. Oxygen extraction fraction decreased during light flicker stimulation, indicating the change in DO2 exceeded that of MO2. This technology is potentially useful for the detection of changes in OEF response to light flicker in physiological and pathological retinal conditions. PMID:26469748

  9. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death

    PubMed Central

    Fang, Yuan; Su, Tu; Qiu, Xiaorong; Mao, Pingan; Xu, Yidan; Hu, Zizhong; Zhang, Yi; Zheng, Xinhua; Xie, Ping; Liu, Qinghuai

    2016-01-01

    It is known that oxidative stress plays a pivotal role in age-related macular degeneration (AMD) pathogenesis. Alpha-mangostin is the main xanthone purified from mangosteen known as anti-oxidative properties. The aim of the study was to test the protective effect of alpha-mangostin against oxidative stress both in retina of light-damaged mice model and in hydrogen peroxide (H2O2)-stressed RPE cells. We observed that alpha-mangostin significantly inhibited light-induced degeneration of photoreceptors and 200 μM H2O2-induced apoptosis of RPE cells. 200 μM H2O2-induced generation of reactive oxygen species (ROS) and light-induced generation of malondialdehyde (MDA) were suppressed by alpha-mangostin. Alpha-mangostin stimulation resulted in an increase of superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity and glutathione (GSH) content both in vivo and vitro. Furthermore, the mechanism of retinal protection against oxidative stress by alpha-mangostin involves accumulation and the nuclear translocation of the NF-E2-related factor (Nrf2) along with up-regulation the expression of heme oxygenas-1 (HO-1). Meanwhile, alpha-mangostin can activate the expression of PKC-δ and down-regulate the expression of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, P38. The results suggest that alpha-mangostin could be a new approach to suspend the onset and development of AMD. PMID:26888416

  10. Rat neurosphere cells protect axotomized rat retinal ganglion cells and facilitate their regeneration.

    PubMed

    Hill, Andrew J; Zwart, Isabel; Samaranayake, Asanka Nuwan; Al-Allaf, Faisal; Girdlestone, John; Mehmet, Huseyin; Navarrete, Roberto; Navarrete, Cristina; Jen, Ling-Sun

    2009-07-01

    We investigated the ability of a population of rat neural stem and precursor cells derived from rat embryonic spinal cord to protect injured neurons in the rat central nervous system (CNS). The neonatal rat optic pathway was used as a model of CNS injury, whereby retinal ganglion cells (RGCs) were axotomized by lesion of the lateral geniculate nucleus one day after birth. Neural stem and precursor cells derived from expanded neurospheres (NS) were transplanted into the lesion site at the time of injury. Application of Fast Blue tracer dye to the lesion site demonstrated that significant numbers of RGCs survived at 4 and 8 weeks in animals that received a transplant, with an average of 28% survival, though in some individual cases survival was greater than 50%. No RGCs survived in animals that received a lesion alone. Furthermore, labeled RGCs were also observed when Fast Blue was applied to the superior colliculus (SC) at 4 weeks, suggesting that neurosphere cells also facilitated RGC to regenerate to their normal target. Transplanted cells did not migrate or express neural markers after transplantation, and secreted several neurotrophic factors in vitro. We conclude that NS cells can protect injured CNS neurons and promote their regeneration. These effects are not attributable to cell replacement, and may be mediated via secretion of neurotrophic factors. Thus, neuroprotection by stem cell populations may be a more viable approach for treatment of CNS disorders than cell replacement therapy.

  11. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  12. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    SciTech Connect

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul; Jung, Sang Hoon

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+} was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  13. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells.

    PubMed

    Ohlemacher, Sarah K; Iglesias, Clara L; Sridhar, Akshayalakshmi; Gamm, David M; Meyer, Jason S

    2015-01-01

    The protocol outlined below is used to differentiate human pluripotent stem cells (hPSCs) into retinal cell types through a process that faithfully recapitulates the stepwise progression observed in vivo. From pluripotency, cells are differentiated to a primitive anterior neural fate, followed by progression into two distinct populations of retinal progenitors and forebrain progenitors, each of which can be manually separated and purified. The hPSC-derived retinal progenitors are found to self-organize into three-dimensional optic vesicle-like structures, with each aggregate possessing the ability to differentiate into all major retinal cell types. The ability to faithfully recapitulate the stepwise in vivo development in a three-dimensional cell culture system allows for the study of mechanisms underlying human retinogenesis. Furthermore, this methodology allows for the study of retinal dysfunction and disease modeling using patient-derived cells, as well as high-throughput pharmacological screening and eventually patient-specific therapies. PMID:25640818

  14. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  15. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress.

    PubMed

    Wang, Kaijun; Jiang, Yiqian; Wang, Wei; Ma, Jian; Chen, Min

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H2O2) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H2O2-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H2O2 were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H2O2. Reversely, escin was more potent against H2O2 damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H2O2 was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling. PMID:26505797

  16. Cortical reorganization after long-term adaptation to retinal lesions in humans.

    PubMed

    Chung, Susana T L

    2013-11-13

    Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial-tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial-tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.

  17. Retinal illuminance and contrast sensitivity in human infants.

    PubMed

    Shannon, E; Skoczenski, A M; Banks, M S

    1996-01-01

    Several investigators have related infants' low contrast sensitivity to immaturities in the optics and receptor lattice of the immature eye. A critical element in the modeling is how much the lower photon catch of the immature retina reduces sensitivity; the assumptions vary from square-root to Weber's law and lead to very different modeling outcomes. We measured the relationship between retinal illuminance and contrast sensitivity at different spatial frequencies. The sweep visual-evoked potential was used to measure thresholds in 2- and 3-month olds and adults over a 2.5-log-unit range of illuminances. The contrast threshold vs illuminance functions were fit by power functions. The best-fitting exponents for adults were about -0.5 at higher spatial frequencies (consistent with square-root law) and lower at lower frequencies. The best-fitting exponents for 2- and 3-month olds were -0.2 to -0.35 which indicates that threshold is less affected by changes in illuminance than is the case in adults. These results suggest that none of the models relating optical and receptoral immaturities to infants' spatial vision has assumed an appropriate relationship between lower photon catch and contrast sensitivity. Once the models are modified to incorporate the relationship obtained in the present experiment, the predictions fall well short of explaining 2-month olds' low contrast sensitivity.

  18. In vitro assays for evaluating the ultraviolet B-induced damage in cultured human retinal pigment epithelial cells.

    PubMed

    Youn, Hyun-Yi; Bantseev, Vladimir; Bols, Niels C; Cullen, Anthony P; Sivak, Jacob G

    2007-07-27

    The present study demonstrates broadband UV-B-induced damage of cultured human retinal pigment epithelial cells as an effort to develop an in vitro model that can be used, along with in vivo research and other in vitro efforts, to evaluate the need for retinal UV protection in humans after cataract removal. The human retinal pigment epithelial cell line, ARPE-19, was cultured in two groups: control and treated. Treated cells were irradiated with three broadband UVB radiations at energy levels of 0.05, 0.1 and 0.2J/cm(2). After irradiation, cells were incubated for 48h while cellular viability, morphology, and phagocytotic activity were analyzed using the Alamar blue assay, confocal microscopy, and fluorescent microspheres. Confocal analysis concentrated on the study of the cell nuclei and mitochondria. The Alamar blue assay of UV-B-exposed cells showed dose and time-dependent decreases in cellular viability in comparison to control cells. Loss of cell viability was measured at the two higher energy levels (0.2 and 0.1J/cm(2)), but the cell group exposed to 0.05J/cm(2) showed no significant viability change at 1-h time point. Morphological evaluation also showed dose and time-dependent degradation of mitochondria and nucleic acids. Cells exposed with 0.05J/cm(2) UVB did not show significant degradation of mitochondria and nucleic acids during the entire culture period. Phagocytotic activity assay data for UVB-exposed cells showed dose-dependent decreases in phagocytotic activity in comparison with the control cells. The control cells have significantly greater capacities for uptake than the 0.1 and 0.2J/cm(2) UV-B-exposed cells, while the 0.05J/cm(2) UV-B-exposed cell group showed no significant difference from the control cell group. The findings suggest that UVB radiation-induced cultured RPE cell damage can be evaluated by assays that probe cellular viability, morphological change, and phagocytotic activity, and that these assay methods together provide a

  19. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  20. VSX2 and ASCL1 Are Indicators of Neurogenic Competence in Human Retinal Progenitor Cultures

    PubMed Central

    Wright, Lynda S.; Pinilla, Isabel; Saha, Jishnu; Clermont, Joshua M.; Lien, Jessica S.; Borys, Katarzyna D.; Capowski, Elizabeth E.; Phillips, M. Joseph; Gamm, David M.

    2015-01-01

    Three dimensional (3D) culture techniques are frequently used for CNS tissue modeling and organoid production, including generation of retina-like tissues. A proposed advantage of these 3D systems is their potential to more closely approximate in vivo cellular microenvironments, which could translate into improved manufacture and/or maintenance of neuronal populations. Visual System Homeobox 2 (VSX2) labels all multipotent retinal progenitor cells (RPCs) and is known to play important roles in retinal development. In contrast, the proneural transcription factor Acheate scute-like 1 (ASCL1) is expressed transiently in a subset of RPCs, but is required for the production of most retinal neurons. Therefore, we asked whether the presence of VSX2 and ASCL1 could gauge neurogenic potential in 3D retinal cultures derived from human prenatal tissue or ES cells (hESCs). Short term prenatal 3D retinal cultures displayed multiple characteristics of human RPCs (hRPCs) found in situ, including robust expression of VSX2. Upon initiation of hRPC differentiation, there was a small increase in co-labeling of VSX2+ cells with ASCL1, along with a modest increase in the number of PKCα+ neurons. However, 3D prenatal retinal cultures lost expression of VSX2 and ASCL1 over time while concurrently becoming refractory to neuronal differentiation. Conversely, 3D optic vesicles derived from hESCs (hESC-OVs) maintained a robust VSX2+ hRPC population that could spontaneously co-express ASCL1 and generate photoreceptors and other retinal neurons for an extended period of time. These results show that VSX2 and ASCL1 can serve as markers for neurogenic potential in cultured hRPCs. Furthermore, unlike hESC-OVs, maintenance of 3D structure does not independently convey an advantage in the culture of prenatal hRPCs, further illustrating differences in the survival and differentiation requirements of hRPCs extracted from native tissue vs. those generated entirely in vitro. PMID:26292211

  1. Characterization of human retinal vessel arborisation in normal and amblyopic eyes using multifractal analysis

    PubMed Central

    Tălu, Stefan; Vlăduţiu, Cristina; Lupaşcu, Carmen A.

    2015-01-01

    AIM To characterize the human retinal vessel arborisation in normal and amblyopic eyes using multifractal geometry and lacunarity parameters. METHODS Multifractal analysis using a box counting algorithm was carried out for a set of 12 segmented and skeletonized human retinal images, corresponding to both normal (6 images) and amblyopia states of the retina (6 images). RESULTS It was found that the microvascular geometry of the human retina network represents geometrical multifractals, characterized through subsets of regions having different scaling properties that are not evident in the fractal analysis. Multifractal analysis of the amblyopia images (segmented and skeletonized versions) show a higher average of the generalized dimensions (Dq) for q=0, 1, 2 indicating a higher degree of the tree-dimensional complexity associated with the human retinal microvasculature network whereas images of healthy subjects show a lower value of generalized dimensions indicating normal complexity of biostructure. On the other hand, the lacunarity analysis of the amblyopia images (segmented and skeletonized versions) show a lower average of the lacunarity parameter Λ than the corresponding values for normal images (segmented and skeletonized versions). CONCLUSION The multifractal and lacunarity analysis may be used as a non-invasive predictive complementary tool to distinguish amblyopic subjects from healthy subjects and hence this technique could be used for an early diagnosis of patients with amblyopia. PMID:26558216

  2. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model.

    PubMed Central

    Caprioli, Joseph; Ishii, Yoko; Kwong, Jacky M K

    2003-01-01

    PURPOSE: To study the effects of geranylgeranylacetone (GCA) on the expression of inducible (HSP72) and constitutive (HSC70) heat shock proteins (HSPs) on retinal ganglion cells (RGCs) in a rat model of glaucoma. METHODS: Adult Wistar rats were given intraperitoneal injections of GGA, 200 mg/kg daily. Western blot analysis and immunohistochemical staining for HSP72 and HSC70 were performed after 1, 3, and 7 days of GGA administration. After 7 days of GGA pretreatment, intraocular pressure (IOP) was elevated unilaterally by repeated trabecular argon laser photocoagulation 5 days after intracameral injection of india ink. After the first laser photocoagulation, CGA was given twice a week. RGC survival was evaluated after 5 weeks of IOP elevation. Immunohistochemistry and TdT-mediated biotin-dUTP nick end labeling (TUNEL) were performed after 1 week of IOP elevation. Quercetin, an inhibitor of HSP expression, was also administered to a separate group. RESULTS: There was increased expression of HSP72 in RGCs at 3 and 7 days after GGA administration, but HSC70 was unchanged. After 5 weeks of IOP elevation, there was 27% +/- 6% loss of RGCs. The administration of GGA significantly reduced the loss of RGCs, lessened optic nerve damage, decreased the number of TUNEL-positive cells in the RGC layer, and increased HSP72. Quercetin administration abolished these protective effects. CONCLUSIONS: These results demonstrate that systemic administration of GGA protects RGCs from glaucomatous damage in a rat model and suggest a novel pathway for netroprotection for patients with glaucoma. PMID:14971562

  3. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity

    PubMed Central

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen; Fischer, Andy J.

    2015-01-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. PMID:26272753

  4. Surface elastic properties of human retinal pigment epithelium melanosomes.

    PubMed

    Guo, Senli; Hong, Lian; Akhremitchev, Boris B; Simon, John D

    2008-01-01

    Atomic force microscope (AFM) imaging and nanoindentation measurements in water were used to probe the mechanical properties of retinal pigment epithelium melanosomes isolated from 14-year-old and 76-year-old donors. Topographic imaging reveals surface roughness similar to previous measurements on dry melanosomes. Force-indentation measurements show different types of responses that were catalogued into four different categories. In these measurements no permanent surface damage of melanosomes was observed as revealed by imaging before and after indentation measurements. The indentation measurements that exhibited nearly elastic responses were used to determine the Young's modulus of melanosomes. The average Young's modulus values are similar for 14-year-old and 76-year-old melanosomes with a somewhat narrower distribution for the 14-year-old sample. These elastic modulus values are considerably higher than the modulus of organelles with cytoplasm (<1 MPa) and approaching values of the modulus of protein crystals (approximately 100 MPa) indicating rather high packing density of biologic material in melanosomes. The width of the Young's modulus distributions is considerable spanning from few megapascals to few tens of megapascals indicating large heterogeneity in the structure. A fraction of the force curves cannot be described by the homogeneous elastic sample model; these force curves are consistent with approximately 10 nm structural heterogeneity in melanosomes. The approach-withdraw hysteresis indicates a significant viscoelasticity, particularly in the samples from the 14-year-old sample. Adhesion of the AFM probe was detected on approximately 3% and approximately 20% of the surface of 14-year-old and 76-year-old samples, respectively. In light of previous studies on these same melanosomes using photoelectron emission microscopy, this adhesion is attributed to the presence of lipofuscin on the surface of the melanosomes. This suggestion indicates that part of

  5. A new approach to optic disc detection in human retinal images using the firefly algorithm.

    PubMed

    Rahebi, Javad; Hardalaç, Fırat

    2016-03-01

    There are various methods and algorithms to detect the optic discs in retinal images. In recent years, much attention has been given to the utilization of the intelligent algorithms. In this paper, we present a new automated method of optic disc detection in human retinal images using the firefly algorithm. The firefly intelligent algorithm is an emerging intelligent algorithm that was inspired by the social behavior of fireflies. The population in this algorithm includes the fireflies, each of which has a specific rate of lighting or fitness. In this method, the insects are compared two by two, and the less attractive insects can be observed to move toward the more attractive insects. Finally, one of the insects is selected as the most attractive, and this insect presents the optimum response to the problem in question. Here, we used the light intensity of the pixels of the retinal image pixels instead of firefly lightings. The movement of these insects due to local fluctuations produces different light intensity values in the images. Because the optic disc is the brightest area in the retinal images, all of the insects move toward brightest area and thus specify the location of the optic disc in the image. The results of implementation show that proposed algorithm could acquire an accuracy rate of 100 % in DRIVE dataset, 95 % in STARE dataset, and 94.38 % in DiaRetDB1 dataset. The results of implementation reveal high capability and accuracy of proposed algorithm in the detection of the optic disc from retinal images. Also, recorded required time for the detection of the optic disc in these images is 2.13 s for DRIVE dataset, 2.81 s for STARE dataset, and 3.52 s for DiaRetDB1 dataset accordingly. These time values are average value.

  6. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... available? Are there any related diseases? What is retinitis pigmentosa? Retinitis pigmentosa (RP) refers to a group of ...

  7. Retinol and retinal metabolism. Relationship to the state of differentiation of cultured human keratinocytes.

    PubMed Central

    Siegenthaler, G; Saurat, J H; Ponec, M

    1990-01-01

    -differentiated keratinocytes did not generate retinoic acid from retinol despite showing alcohol dehydrogenase activity. The results suggest that: (1) retinol metabolism in human keratinocytes is different from that of other alcohols, (2) retinal is an intermediate metabolite in the conversion of retinol into retinoic acid, and (3) differentiating keratinocytes rich in CRABP are probably target cells for retinoic acid action. PMID:2163611

  8. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa

    PubMed Central

    Lukovic, Dunja; Artero Castro, Ana; Delgado, Ana Belen Garcia; Bernal, María de los Angeles Martín; Luna Pelaez, Noelia; Díez Lloret, Andrea; Perez Espejo, Rocío; Kamenarova, Kunka; Fernández Sánchez, Laura; Cuenca, Nicolás; Cortón, Marta; Avila Fernandez, Almudena; Sorkio, Anni; Skottman, Heli; Ayuso, Carmen; Erceg, Slaven; Bhattacharya, Shomi S.

    2015-01-01

    Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches. PMID:26263531

  9. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa

    PubMed Central

    Lukovic, Dunja; Artero Castro, Ana; Delgado, Ana Belen Garcia; Bernal, María de los Angeles Martín; Luna Pelaez, Noelia; Díez Lloret, Andrea; Perez Espejo, Rocío; Kamenarova, Kunka; Fernández Sánchez, Laura; Cuenca, Nicolás; Cortón, Marta; Avila Fernandez, Almudena; Sorkio, Anni; Skottman, Heli; Ayuso, Carmen; Erceg, Slaven; Bhattacharya, Shomi S.

    2015-01-01

    Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches. PMID:26263531

  10. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies.

    PubMed

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  11. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies

    PubMed Central

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  12. Generation of Highly Enriched Populations of Optic Vesicle-Like Retinal Cells from Human Pluripotent Stem Cells

    PubMed Central

    Ohlemacher, Sarah K.; Iglesias, Clara L.; Sridhar, Akshayalakshmi; Gamm, David M.; Meyer, Jason S.

    2015-01-01

    The procedure to efficiently and reproducibly differentiate retinal cells from human pluripotent stem cells (hPSCs) is described below. Cells are taken through a stepwise protocol to direct them toward a neural fate by treatment with neural induction medium (NIM), then to a retinal fate by exposure to retinal differentiation medium (RDM). Undifferentiated hPSCs are enzymatically lifted from matrigel-coated plates and exposed to NIM in suspension. Differentiation in suspension allows the cells to form 3 dimensional aggregates. At 7 days of differentiation, aggregates are plated and attach to 6 well plates, where a neuroepithelial fate begins to be established. Upon 16 days of differentiation, neurospheres are lifted and maintained in RDM to create a three-dimensional optic vesicle-like structure. This procedure allows for the efficient and timely generation of a variety of retinal cell types, including ganglion cells, retinal pigment epithelium, as well as cone and rod photoreceptors. The use of this protocol to generate a myriad of retinal cell types facilitates in vitro studies of human retinogenesis, and will enable retinal dysfunction to be more easily studied in vitro, as well as providing a large population of cells with which to aid in drug development and patient specific therapies. PMID:25640818

  13. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  14. Retinal blood flow indices in patients infected with human immunodeficiency virus.

    PubMed Central

    Yung, C W; Harris, A; Massicotte, S; Chioran, G; Krombach, G; Danis, R; Wolf, S

    1996-01-01

    AIMS/BACKGROUND: Abnormal blood flow dynamics are believed to contribute to the development of retinal microvascular disease in patients infected with human immunodeficiency virus (HIV). In this study, the scanning laser ophthalmoscope (SLO) was used, combined with fluorescein angiography, to measure retinal blood flow indices in HIV seropositive patients. METHODS: Arteriovenous passage time (AVP) and perifoveal capillary blood flow velocity (CFV) were measured in 23 HIV infected patients and 23 control subjects with SLO fluorescein angiography. RESULTS: No significant difference in AVP was found between the two groups. However, CFV was significantly reduced in HIV infected patients (p = 0.013). CONCLUSION: Patients infected with HIV show abnormal haemodynamics at the level of the perifoveal capillaries. PMID:8949717

  15. The effect of acute ethanol consumption on the human retinal circulation: a study in diabetic and non-diabetic subjects.

    PubMed

    Dhasmana, D; Herbert, L; Patel, V; Chen, H C; Jones, M; Kohner, E M

    1994-01-01

    The effects of acute ethanol consumption on retinal haemodynamics and retinal vascular autoregulation to oxygen in the human retinal circulation were studied in 10 diabetic (mean age +/- SD: 38.2 +/- 11.1) and 16 non-diabetic (mean age +/- SD: 32.4 +/- 8.8) subjects. Subjects drank 0.5 g of ethanol, as vodka, per kg of body weight, diluted in sugar-free orange juice. Retinal blood flow was determined using laser Doppler velocimetry and computerised image analysis. The effect of ethanol on oxygen reactivity, as a measure of autoregulation, was also determined after 60% oxygen inhalation. All subjects demonstrated a significant fall in mean arterial blood pressure (control group 3.3%, p = 0.04, diabetic subjects 5.7%, p = 0.05), after ethanol intake. Ethanol caused no significant change in retinal blood flow. Oxygen reactivity was found to be 38.3% (22.4-47.7, median and interquartile range) in the non-diabetic subjects at baseline, and 30.7% (10.8-42.1) after ethanol ingestion. In diabetic subjects, the oxygen reactivity was 33.2% (19.8-46.8) at baseline and 24.5% (21.1-32.1) after ethanol. In this study ethanol did not significantly affect retinal blood flow or impair autoregulation. These results suggest that the retinal circulation may be able to autoregulate despite the presence of ethanol, in contrast to other vascular beds where ethanol changes flow. PMID:7819729

  16. Ginsenoside Rg-1 Protects Retinal Pigment Epithelium (RPE) Cells from Cobalt Chloride (CoCl2) and Hypoxia Assaults

    PubMed Central

    Yao, Jin; Zhao, Yu-xia; Duan, Jing; Cao, Cong; Jiang, Qin

    2013-01-01

    Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia. PMID:24386346

  17. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium.

    PubMed

    Reichman, Sacha; Terray, Angélique; Slembrouck, Amélie; Nanteau, Céline; Orieux, Gaël; Habeler, Walter; Nandrot, Emeline F; Sahel, José-Alain; Monville, Christelle; Goureau, Olivier

    2014-06-10

    Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease.

  18. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy.

    PubMed

    Yi, Ji; Chen, Siyu; Shu, Xiao; Fawzi, Amani A; Zhang, Hao F

    2015-10-01

    We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina. PMID:26504622

  19. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    PubMed

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation.

  20. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    PubMed

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation. PMID:26715411

  1. Nuclear Factor (Erythroid-Derived)-Related Factor 2-Associated Retinal Pigment Epithelial Cell Protection under Blue Light-Induced Oxidative Stress

    PubMed Central

    Kataoka, Keiko; Kimoto, Reona; Hwang, Shiang-Jyi; Nagasaka, Yosuke; Tsunekawa, Taichi; Nonobe, Norie; Ito, Yasuki; Terasaki, Hiroko

    2016-01-01

    Purpose. It is a matter of increasing concern that exposure to light-emitting diodes (LED), particularly blue light (BL), damages retinal cells. This study aimed to investigate the retinal pigment epithelium (RPE) damage caused by BL and to elucidate the role of nuclear factor (erythroid-derived)-related factor 2 (Nrf2) in the pathogenesis of BL-induced RPE damage. Methods. ARPE-19, a human RPE cell line, and mouse primary RPE cells from wild-type and Nrf2 knockout (Nrf2−/−) mice were cultured under blue LED exposure (intermediate wavelength, 450 nm). Cell death rate and reactive oxygen species (ROS) generation were measured. TUNEL staining was performed to detect apoptosis. Real-time polymerase chain reaction was performed on NRF2 mRNA, and western blotting was performed to detect Nrf2 proteins in the nucleus or cytoplasm of RPE cells. Results. BL exposure increased cell death rate and ROS generation in ARPE-19 cells in a time-dependent manner; cell death was caused by apoptosis. Moreover, BL exposure induced NRF2 mRNA upregulation and Nrf2 nuclear translocation in RPE. Cell death rate was significantly higher in RPE cells from Nrf2−/− mice than from wild-type mice. Conclusions. The Nrf2 pathway plays an important role in protecting RPE cells against BL-induced oxidative stress. PMID:27774118

  2. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines

    PubMed Central

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-01-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  3. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    PubMed

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  4. A2E and lipofuscin distributions in macaque retinal pigment epithelium are similar to human.

    PubMed

    Pallitto, Patrick; Ablonczy, Zsolt; Jones, E Ellen; Drake, Richard R; Koutalos, Yiannis; Crouch, Rosalie K; Donello, John; Herrmann, Julia

    2015-10-01

    The accumulation of lipofuscin, an autofluorescent aging marker, in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD). Lipofuscin contains several visual cycle byproducts, most notably the bisretinoid N-retinylidene-N-retinylethanolamine (A2E). Previous studies with human donor eyes have shown a significant mismatch between lipofuscin autofluorescence (AF) and A2E distributions. The goal of the current project was to examine this relationship in a primate model with a retinal anatomy similar to that of humans. Ophthalmologically naive young (<10 years., N = 3) and old (>10 years., N = 4) Macaca fascicularis (macaque) eyes, were enucleated, dissected to yield RPE/choroid tissue, and flat-mounted on indium-tin-oxide-coated conductive slides. To compare the spatial distributions of lipofuscin and A2E, fluorescence and mass spectrometric imaging were carried out sequentially on the same samples. The distribution of lipofuscin fluorescence in the primate RPE reflected previously obtained human results, having the highest intensities in a perifoveal ring. Contrarily, A2E levels were consistently highest in the periphery, confirming a lack of correlation between the distributions of lipofuscin and A2E previously described in human donor eyes. We conclude that the mismatch between lipofuscin AF and A2E distributions is related to anatomical features specific to primates, such as the macula, and that this primate model has the potential to fill an important gap in current AMD research. PMID:26223373

  5. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin; Kannan, Rangaramanujam M.

    2015-02-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE

  6. Human retinal pigment epithelial lysis of extracellular matrix: functional urokinase plasminogen activator receptor, collagenase, and elastase.

    PubMed Central

    Elner, Susan G

    2002-01-01

    PURPOSE: To show (1) human retinal pigment epithelial (HRPE) expression of functional urokinase plasminogen activator receptor (uPAR; CD87), (2) HRPE secretion of collagenase and elastase, (3) uPAR-dependent HRPE migration, and (4) uPAR expression in diseased human retinal tissue. METHODS: Immunohistochemistry for uPAR was performed on cultured HRPE cells and in sections of human retina. Double-immunofluorescent staining of live human RPE cells with anti-CR3 antibody (CD11b) was performed to demonstrate the physical proximity of this beta 2 integrin with uPAR and determine whether associations were dependent on RPE confluence and polarity. Extracellular proteolysis by HRPE uPAR was evaluated using fluorescent bodipy-BSA and assessed for specificity by plasminogen activator inhibitor-1 (PAI-1) inhibition. The effect of interleukin-1 beta (IL-1 beta) on uPAR expression was assessed. Collagenase and elastase secretion by unstimulated and IL-1-stimulated HRPE cells was measured by 3H-labelled collagen and elastin cleavage. HRPE-associated collagenase was also assessed by cleavage of fluorescent DQ-collagen and inhibited by phenanthroline. Using an extracellular matrix assay, the roles of uPAR and collagenase in HRPE migration were assessed. RESULTS: Immunoreactive uPAR was detected on cultured HRPE cells and increased by IL-1. On elongated, live HRPE cells, uPAR dissociated from CD11b (CR3) and translocated to anterior poles of migrating cells. Extracellular proteolysis was concentrated at sites of uPAR expression and specifically inhibited by PAI-1. Cultured HRPE cells secreted substantial, functional collagenase and elastase. IL-1 upregulated uPAR, collagenase, and elastase activities. Specific inhibition of uPAR, and to a lesser degree collagenase, reduced HRPE migration in matrix/gel assays. Immunoreactive uPAR was present along the HRPE basolateral membrane in retinal sections and in sections of diseased retinal tissue. CONCLUSIONS: HRPE cells express functional u

  7. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats.

    PubMed

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What's more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity. PMID:27463726

  8. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats

    PubMed Central

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What’s more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity. PMID:27463726

  9. Regulation of the human tyrosinase gene in retinal pigment epithelium cells: the significance of transcription factor orthodenticle homeobox 2 and its polymorphic binding site

    PubMed Central

    Putula, Jaana; Mannermaa, Eliisa; Urtti, Arto; Honkakoski, Paavo

    2012-01-01

    Purpose Tyrosinase is the rate-limiting enzyme responsible for melanin biosynthesis in the retinal pigment epithelium (RPE) of the eye. Melanin has an important role in retinal development, function, and protection against light-induced oxidative stress, and melanin levels are associated with age-related macular degeneration (AMD). Because the levels of and protection afforded by melanin seem to decline with increasing age, proper regulation of the human tyrosinase gene (TYR) in the RPE is an important but insufficiently understood process. Our purpose was to obtain detailed information on regulation of the TYR gene promoter in the human RPE and to specify the role of orthodenticle homeobox 2 (OTX2) and microphthalmia-associated transcription factor (MITF). Methods We used luciferase reporter constructs to study regulation of the human TYR gene promoter in cultured human RPE cells. We further studied the role of OTX2 and MITF, their binding sites, and endogenous expression by using mutagenesis, electrophoretic mobility shift assay, yeast two-hybrid assay, RNA interference, and gene expression analyses. Results In the RPE, OTX2 activated the human TYR gene promoter via direct trans-activation of novel OTX2 binding elements. In addition, we found that indirect activation by OTX2 via more proximal MITF binding sites, even in the absence of OTX2 sites, took place. These results are consistent with the physical interaction observed between OTX2 and MITF. Overexpression or knockdown of OTX2 in RPE cells resulted in corresponding changes in tyrosinase mRNA expression. Finally, we found that a single nucleotide polymorphism (SNP rs4547091) at the most proximal OTX2 binding site is associated with altered nuclear protein binding and a remarkable decrease in TYR promoter activity in RPE cells. This single nucleotide polymorphism (SNP) is more common in the European population in which AMD is also more prevalent. Conclusions In the RPE, OTX2 activates the human TYR gene

  10. Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue.

    PubMed

    Kawa, Milosz P; Machalinska, Anna; Roginska, Dorota; Machalinski, Boguslaw

    2014-01-01

    Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly, especially in Western countries. Although the prevalence, risk factors, and clinical course of the disease are well described, its pathogenesis is not entirely elucidated. AMD is associated with a variety of biochemical abnormalities, including complement components deposition in the retinal pigment epithelium-Bruch's membrane-choriocapillaris complex. Although the complement system (CS) is increasingly recognized as mediating important roles in retinal biology, its particular role in AMD pathogenesis has not been precisely defined. Unrestricted activation of the CS following injury may directly damage retinal tissue and recruit immune cells to the vicinity of active complement cascades, therefore detrimentally causing bystander damage to surrounding cells and tissues. On the other hand, recent evidence supports the notion that an active complement pathway is a necessity for the normal maintenance of the neurosensory retina. In this scenario, complement activation appears to have beneficial effect as it promotes cell survival and tissue remodeling by facilitating the rapid removal of dying cells and resulting cellular debris, thus demonstrating anti-inflammatory and neuroprotective activities. In this review, we discuss both the beneficial and detrimental roles of CS in degenerative retina, focusing on the diverse aspects of CS functions that may promote or inhibit macular disease.

  11. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system.

    PubMed

    Yanai, Anat; Laver, Christopher R J; Gregory-Evans, Cheryl Y; Liu, Ran R; Gregory-Evans, Kevin

    2015-06-01

    Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.

  12. Type VII Collagen Expression in the Human Vitreoretinal Interface, Corpora Amylacea and Inner Retinal Layers.

    PubMed

    Wullink, Bart; Pas, Hendri H; Van der Worp, Roelofje J; Kuijer, Roel; Los, Leonoor I

    2015-01-01

    Type VII collagen, as a major component of anchoring fibrils found at basement membrane zones, is crucial in anchoring epithelial tissue layers to their underlying stroma. Recently, type VII collagen was discovered in the inner human retina by means of immunohistochemistry, while proteomic investigations demonstrated type VII collagen at the vitreoretinal interface of chicken. Because of its potential anchoring function at the vitreoretinal interface, we further assessed the presence of type VII collagen at this site. We evaluated the vitreoretinal interface of human donor eyes by means of immunohistochemistry, confocal microscopy, immunoelectron microscopy, and Western blotting. Firstly, type VII collagen was detected alongside vitreous fibers6 at the vitreoretinal interface. Because of its known anchoring function, it is likely that type VII collagen is involved in vitreoretinal attachment. Secondly, type VII collagen was found within cytoplasmic vesicles of inner retinal cells. These cells resided most frequently in the ganglion cell layer and inner plexiform layer. Thirdly, type VII collagen was found in astrocytic cytoplasmic inclusions, known as corpora amylacea. The intraretinal presence of type VII collagen was confirmed by Western blotting of homogenized retinal preparations. These data add to the understanding of vitreoretinal attachment, which is important for a better comprehension of common vitreoretinal attachment pathologies.

  13. Direct visualization and characterization of erythrocyte flow in human retinal capillaries

    PubMed Central

    Bedggood, Phillip; Metha, Andrew

    2012-01-01

    Imaging the retinal vasculature offers a surrogate view of systemic vascular health, allowing noninvasive and longitudinal assessment of vascular pathology. The earliest anomalies in vascular disease arise in the microvasculature, however current imaging methods lack the spatiotemporal resolution to track blood flow at the capillary level. We report here on novel imaging technology that allows direct, noninvasive optical imaging of erythrocyte flow in human retinal capillaries. This was made possible using adaptive optics for high spatial resolution (1.5 μm), sCMOS camera technology for high temporal resolution (460 fps), and tunable wavebands from a broadband laser for maximal erythrocyte contrast. Particle image velocimetry on our data sequences was used to quantify flow. We observed marked spatiotemporal variability in velocity, which ranged from 0.3 to 3.3 mm/s, and changed by up to a factor of 4 in a given capillary during the 130 ms imaging period. Both mean and standard deviation across the imaged capillary network varied markedly with time, yet their ratio remained a relatively constant parameter (0.50 ± 0.056). Our observations concur with previous work using less direct methods, validating this as an investigative tool for the study of microvascular disease in humans. PMID:23243576

  14. In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography

    PubMed Central

    Pinhas, Alexander; Dubow, Michael; Shah, Nishit; Chui, Toco Y.; Scoles, Drew; Sulai, Yusufu N.; Weitz, Rishard; Walsh, Joseph B.; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B.

    2013-01-01

    The adaptive optics scanning light ophthalmoscope (AOSLO) allows visualization of microscopic structures of the human retina in vivo. In this work, we demonstrate its application in combination with oral and intravenous (IV) fluorescein angiography (FA) to the in vivo visualization of the human retinal microvasculature. Ten healthy subjects ages 20 to 38 years were imaged using oral (7 and/or 20 mg/kg) and/or IV (500 mg) fluorescein. In agreement with current literature, there were no adverse effects among the patients receiving oral fluorescein while one patient receiving IV fluorescein experienced some nausea and heaving. We determined that all retinal capillary beds can be imaged using clinically accepted fluorescein dosages and safe light levels according to the ANSI Z136.1-2000 maximum permissible exposure. As expected, the 20 mg/kg oral dose showed higher image intensity for a longer period of time than did the 7 mg/kg oral and the 500 mg IV doses. The increased resolution of AOSLO FA, compared to conventional FA, offers great opportunity for studying physiological and pathological vascular processes. PMID:24009994

  15. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells.

    PubMed

    Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H; Weber, Bernhard H F

    2015-05-19

    In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.

  16. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells.

    PubMed

    Gao, Lixiong; Chen, Xi; Zeng, Yuxiao; Li, Qiyou; Zou, Ting; Chen, Siyu; Wu, Qian; Fu, Caiyun; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro. PMID:27435522

  17. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells

    PubMed Central

    Gao, Lixiong; Chen, Xi; Zeng, Yuxiao; Li, Qiyou; Zou, Ting; Chen, Siyu; Wu, Qian; Fu, Caiyun; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro. PMID:27435522

  18. Degradation in the degree of polarization in human retinal nerve fiber layer

    PubMed Central

    Yin, Biwei; Wang, Bingqing; Rylander, Henry G.; Milner, Thomas E.

    2014-01-01

    Abstract. Using a fiber-based swept-source (SS) polarization-sensitive optical coherence tomography (PS-OCT) system, we investigate the degree of polarization (DOP) of light backscattered from the retinal nerve fiber layer (RNFL) in normal human subjects. Algorithms for processing data were developed to analyze the deviation in phase retardation and intensity of backscattered light in directions parallel and perpendicular to the nerve fiber axis (fast and slow axes of RNFL). Considering superior, inferior, and nasal quadrants, we observe the strongest degradation in the DOP with increasing RNFL depth in the temporal quadrant. Retinal ganglion cell axons in normal human subjects are known to have the smallest diameter in the temporal quadrant, and the greater degradation observed in the DOP suggests that higher polarimetric noise may be associated with neural structure in the temporal RNFL. The association between depth degradation in the DOP and RNFL structural properties may broaden the utility of PS-OCT as a functional imaging technique. PMID:24390374

  19. Minimization of Retinal Slip Cannot Explain Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Existing models assume that pursuit attempts a direct minimization of retinal image motion or "slip" (e.g. Robinson et al., 1986; Krauzlis & Weisberger, 1989). Using occluded line-figure stimuli, we have previously shown that humans can accurately pursue stimuli for which perfect tracking does not zero retinal slip (Neurologic ARCO). These findings are inconsistent with the standard control strategy of matching eye motion to a target-motion signal reconstructed by adding retinal slip and eye motion, but consistent with a visual front-end which estimates target motion via a global spatio-temporal integration for pursuit and perception. Another possible explanation is that pursuit simply attempts to minimize slip perpendicular to the segments (and neglects parallel "sliding" motion). To resolve this, 4 observers (3 naive) were asked to pursue the center of 2 types of stimuli with identical velocity-space descriptions and matched motion energy. The line-figure "diamond" stimulus was viewed through 2 invisible 3 deg-wide vertical apertures (38 cd/m2 equal to background) such that only the sinusoidal motion of 4 oblique line segments (44 cd/m2 was visible. The "cross" was identical except that the segments exchanged positions. Two trajectories (8's and infinity's) with 4 possible initial directions were randomly interleaved (1.25 cycles, 2.5s period, Ax = Ay = 1.4 deg). In 91% of trials, the diamond appeared rigid. Correspondingly, pursuit was vigorous (mean Again: 0.74) with a V/H aspect ratio approx. 1 (mean: 0.9). Despite a valid rigid solution, the cross however appeared rigid in 8% of trials. Correspondingly, pursuit was weaker (mean Hgain: 0.38) with an incorrect aspect ratio (mean: 1.5). If pursuit were just minimizing perpendicular slip, performance would be the same in both conditions.

  20. Quantitative Autofluorescence and Cell Density Maps of the Human Retinal Pigment Epithelium

    PubMed Central

    Ach, Thomas; Huisingh, Carrie; McGwin, Gerald; Messinger, Jeffrey D.; Zhang, Tianjiao; Bentley, Mark J.; Gutierrez, Danielle B.; Ablonczy, Zsolt; Smith, R. Theodore; Sloan, Kenneth R.; Curcio, Christine A.

    2014-01-01

    Purpose. Lipofuscin (LF) accumulation within RPE cells is considered pathogenic in AMD. To test whether LF contributes to RPE cell loss in aging and to provide a cellular basis for fundus autofluorescence (AF) we created maps of human RPE cell number and histologic AF. Methods. Retinal pigment epithelium–Bruch's membrane flat mounts were prepared from 20 donor eyes (10 ≤ 51 and 10 > 80 years; postmortem: ≤4.2 hours; no retinal pathologies), preserving foveal position. Phalloidin-binding RPE cytoskeleton and LF-AF (488-nm excitation) were imaged at up to 90 predefined positions. Maps were assembled from 83,330 cells in 1470 locations. From Voronoi regions representing each cell, the number of neighbors, cell area, and total AF intensity normalized to an AF standard was determined. Results. Highly variable between individuals, RPE-AF increases significantly with age. A perifoveal ring of high AF mirrors rod photoreceptor topography and fundus-AF. Retinal pigment epithelium cell density peaks at the fovea, independent of age, yet no net RPE cell loss is detectable. The RPE monolayer undergoes considerable lifelong re-modeling. The relationship of cell size and AF, a surrogate for LF concentration, is orderly and linear in both groups. Autofluorescence topography differs distinctly from the topography of age-related rod loss. Conclusions. Digital maps of quantitative AF, cell density, and packing geometry provide metrics for cellular-resolution clinical imaging and model systems. The uncoupling of RPE LF content, cell number, and photoreceptor topography in aging challenges LF's role in AMD. PMID:25034602

  1. Protection by an oral disubstituted hydroxylamine derivative against loss of retinal ganglion cell differentiation following optic nerve crush.

    PubMed

    Lindsey, James D; Duong-Polk, Karen X; Dai, Yi; Nguyen, Duy H; Leung, Christopher K; Weinreb, Robert N

    2013-01-01

    Thy-1 is a cell surface protein that is expressed during the differentiation of retinal ganglion cells (RGCs). Optic nerve injury induces progressive loss in the number of RGCs expressing Thy-1. The rate of this loss is fastest during the first week after optic nerve injury and slower in subsequent weeks. This study was undertaken to determine whether oral treatment with a water-soluble N-hydroxy-2,2,6,6-tetramethylpiperidine derivative (OT-440) protects against loss of Thy-1 promoter activation following optic nerve crush and whether this effect targets the earlier quick phase or the later slow phase. The retina of mice expressing cyan fluorescent protein under control of the Thy-1 promoter (Thy1-CFP mice) was imaged using a blue-light confocal scanning laser ophthalmoscope (bCSLO). These mice then received oral OT-440 prepared in cream cheese or dissolved in water, or plain vehicle, for two weeks and were imaged again prior to unilateral optic nerve crush. Treatments and weekly imaging continued for four more weeks. Fluorescent neurons were counted in the same defined retinal areas imaged at each time point in a masked fashion. When the counts at each time point were directly compared, the numbers of fluorescent cells at each time point were greater in the animals that received OT-440 in cream cheese by 8%, 27%, 52% and 60% than in corresponding control animals at 1, 2, 3 and 4 weeks after optic nerve crush. Similar results were obtained when the vehicle was water. Rate analysis indicated the protective effect of OT-440 was greatest during the first two weeks and was maintained in the second two weeks after crush for both the cream cheese vehicle study and water vehicle study. Because most of the fluorescent cells detected by bCSLO are RGCs, these findings suggest that oral OT-440 can either protect against or delay early degenerative responses occurring in RGCs following optic nerve injury.

  2. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma

    NASA Astrophysics Data System (ADS)

    Schori, Hadas; Kipnis, Jonathan; Yoles, Eti; Woldemussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Schwartz, Michal

    2001-03-01

    Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ± 101 compared with 1,414 ± 36; P <0.05), but not when they were immunized 48h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8%±6.8% to 4.3%±1.6%, without affecting the intraocular pressure

  3. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    PubMed Central

    Yang, Fan; Wang, Dongmei; Wu, Lingling; Li, Ying

    2015-01-01

    Purpose To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs) in a rat model of chronic glaucoma. Methods Eighty Wistar rats were randomly divided into triptolide group (n=40) and normal saline (NS) group (n=40). Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP), anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF)-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed. Results Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05), with no statistical difference between the two groups (P>0.05). RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05). Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90) than the NS group (35.06±7.59) (P<0.05). TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01). The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia. Conclusion Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. PMID:26604697

  4. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells

    PubMed Central

    Kambhampati, Siva P.; Mishra, Manoj K.; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A.; Kannan, Rangaramanujam M.

    2016-01-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (~21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ~100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  5. Electrophysiological characterization of ionic transport by the retinal exchanger expressed in human embryonic kidney cells.

    PubMed Central

    Navanglone, A; Rispoli, G; Gabellini, N; Carafoli, E

    1997-01-01

    The retinal Na+:Ca2+, K+exchanger cDNA was transiently expressed in human embryonic kidney (HEK 293) cells by transfection with plasmid DNA. The correct targeting of the expressed protein to the plasma membrane was confirmed by immunocytochemistry. The reverse exchange offrent (Ca2+ imported per Na+ extruded) was measured in whole-cell voltage-clamp experiments after intracellular perfusion with Na+ (Na+i, 128 mM) and extracellular perfusion with Ca2+ (Ca2o+, 1 mM) and Ko+ (20 mM). As expected, the exchange current was suppressed by removing Ca2o+. Surprisingly, however, it was also abolished by increasing Na+o to almost abolish the Na+ gradient, and it was almost unaffected by the removal of Ko+. Apparently, then, at variance with the exchanger in the rod outer segment, the retinal exchanger expressed in 293 cells acts essentially as a Na+:Ca2+ exchanger and does not require K+ for its electrogenic activity. Images FIGURE 1 PMID:9199770

  6. Protective Effect of Carnosic Acid, a Pro-Electrophilic Compound, in Models of Oxidative Stress and Light-Induced Retinal Degeneration

    PubMed Central

    Rezaie, Tayebeh; McKercher, Scott R.; Kosaka, Kunio; Seki, Masaaki; Wheeler, Larry; Viswanath, Veena; Chun, Teresa; Joshi, Rabina; Valencia, Marcos; Sasaki, Shunsuke; Tozawa, Terumasa; Satoh, Takumi; Lipton, Stuart A.

    2012-01-01

    Purpose. The herb rosemary has been reported to have antioxidant and anti-inflammatory activity. We have previously shown that carnosic acid (CA), present in rosemary extract, crosses the blood–brain barrier to exert neuroprotective effects by upregulating endogenous antioxidant enzymes via the Nrf2 transcriptional pathway. Here we investigated the antioxidant and neuroprotective activity of CA in retinal cell lines exposed to oxidative stress and in a rat model of light-induced retinal degeneration (LIRD). Methods. Retina-derived cell lines ARPE-19 and 661W treated with hydrogen peroxide were used as in vitro models for testing the protective activity of CA. For in vivo testing, dark-adapted rats were given intraperitoneal injections of CA prior to exposure to white light to assess protection of the photoreceptor cells. Retinal damage was assessed by measuring outer nuclear layer thickness and by electroretinogram (ERG). Results. In vitro, CA significantly protected retina-derived cell lines (ARPE-19 and 661W) against H2O2-induced toxicity. CA induced antioxidant phase 2 enzymes and reduced formation of hyperoxidized peroxiredoxin (Prx)2. Similarly, we found that CA protected retinas in vivo from LIRD, producing significant improvement in outer nuclear layer thickness and ERG activity. Conclusions. These findings suggest that CA may potentially have clinical application to diseases affecting the outer retina, including age-related macular degeneration and retinitis pigmentosa, in which oxidative stress is thought to contribute to disease progression. PMID:23081978

  7. RNA-Seq Reveals a Role for NFAT-Signaling in Human Retinal Microvascular Endothelial Cells Treated with TNFα

    PubMed Central

    Penn, John S.

    2015-01-01

    TNFα has been identified as playing an important role in pathologic complications associated with diabetic retinopathy and retinal inflammation, such as retinal leukostasis. However, the transcriptional effects of TNFα on retinal microvascular endothelial cells and the different signaling pathways involved are not yet fully understood. In the present study, RNA-seq was used to profile the transcriptome of human retinal microvascular endothelial cells (HRMEC) treated for 4 hours with TNFα in the presence or absence of the NFAT-specific inhibitor INCA-6, in order to gain insight into the specific effects of TNFα on RMEC and identify any involvement of NFAT signaling. Differential expression analysis revealed that TNFα treatment significantly upregulated the expression of 579 genes when compared to vehicle-treated controls, and subsequent pathway analysis revealed a TNFα-induced enrichment of transcripts associated with cytokine-cytokine receptor interactions, cell adhesion molecules, and leukocyte transendothelial migration. Differential expression analysis comparing TNFα-treated cells to those co-treated with INCA-6 revealed 10 genes whose expression was significantly reduced by the NFAT inhibitor, including those encoding the proteins VCAM1 and CX3CL1 and cytokines CXCL10 and CXCL11. This study identifies the transcriptional effects of TNFα on HRMEC, highlighting its involvement in multiple pathways that contribute to retinal leukostasis, and identifying a previously unknown role for NFAT-signaling downstream of TNFα. PMID:25617622

  8. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  9. Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging

    PubMed Central

    Ben Ami, Tal; Tong, Yuehong; Bhuiyan, Alauddin; Huisingh, Carrie; Ablonczy, Zsolt; Ach, Thomas; Curcio, Christine A.; Smith, R. Theodore

    2016-01-01

    Purpose Discovery of candidate spectra for abundant fluorophore families in human retinal pigment epithelium (RPE) by ex vivo hyperspectral imaging. Methods Hyperspectral autofluorescence emission images were captured between 420 and 720 nm (10-nm intervals), at two excitation bands (436–460, 480–510 nm), from three locations (fovea, perifovea, near-periphery) in 20 normal RPE/Bruch's membrane (BrM) flatmounts. Mathematical factorization extracted a BrM spectrum (S0) and abundant lipofuscin/melanolipofuscin (LF/ML) spectra of RPE origin (S1, S2, S3) from each tissue. Results Smooth spectra S1 to S3, with perinuclear localization consistent with LF/ML at all three retinal locations and both excitations in 14 eyes (84 datasets), were included in the analysis. The mean peak emissions of S0, S1, and S2 at λex 436 nm were, respectively, 495 ± 14, 535 ± 17, and 576 ± 20 nm. S3 was generally trimodal, with peaks at either 580, 620, or 650 nm (peak mode, 650 nm). At λex 480 nm, S0, S1, and S2 were red-shifted to 526 ± 9, 553 ± 10, and 588 ± 23 nm, and S3 was again trimodal (peak mode, 620 nm). S1 often split into two spectra, S1A and S1B. S3 strongly colocalized with melanin. There were no significant differences across age, sex, or retinal location. Conclusions There appear to be at least three families of abundant RPE fluorophores that are ubiquitous across age, retinal location, and sex in this sample of healthy eyes. Further molecular characterization by imaging mass spectrometry and localization via super-resolution microscopy should elucidate normal and abnormal RPE physiology involving fluorophores. Translational Relevance Our results help establish hyperspectral autofluorescence imaging of the human retinal pigment epithelium as a useful tool for investigating retinal health and disease. PMID:27226929

  10. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells.

    PubMed

    Han, Meng; Bindewald-Wittich, Almut; Holz, Frank G; Giese, Guenter; Niemz, Markolf H; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F

    2006-01-01

    Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.

  11. Hydrogen peroxide induces microvilli on human retinal pigment epithelial cells in culture.

    PubMed

    Reid, G G; Edwards, J G; Marshall, G E; Sutcliffe, R G; Lee, W R

    1995-02-01

    We have found that hydrogen peroxide (10(-4)-10(-2) M) rapidly induces microvilli on separate cells and confluent sheets of human retinal pigment epithelium in culture. t-butyl hydroperoxide and sodium arsenite do not induce microvilli. A role for hydrogen peroxide as an intercellular messenger has previously been proposed in the inflammatory response, in which hydrogen peroxide from phagocytes may signal to vascular endothelial cells. Our observations thus provide a second example of the induction of what may be a physiological response by this potentially toxic agent. In the retina, hydrogen peroxide released from illuminated photoreceptors may elongate the microvilli which extend into the spaces between them. Increased numbers of microvilli and their protrusion further into the photoreceptor layer may enhance various interactions between the two cell types, including the antioxidant functions of the epithelium.

  12. Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system.

    PubMed

    Figueiro, Mariana G; Bierman, Andrew; Rea, Mark S

    2008-06-20

    Light is the major synchronizer of circadian rhythms to the 24-h solar day. The intrinsically photosensitive retinal ganglion cells (ipRGCs) play a central role in circadian regulation but cones also provide, albeit indirectly, input to these cells. In humans, spectrally opponent blue versus yellow (b-y) bipolar cells lying distal to the ganglion cell layer were hypothesized to provide direct input to the ipRGCs and therefore, the circadian system should exhibit subadditivity to some types of polychromatic light. Ten subjects participated in a within-subjects 3-night protocol. Three experimental conditions were employed that provided the same total irradiance at both eyes: (1) one unit of blue light (lambda(max)=450 nm, 0.077 W/m(2)) to the left eye plus one unit of green light (lambda(max)=525 nm, 0.211 W/m(2)) to the right eye, (2) one unit of blue light to the right eye plus one unit of green light to the left eye, and (3) 1/2 unit of blue light plus 1/2 unit of green light to both eyes. The first two conditions did not differ significantly in melatonin suppression while the third condition had significantly less melatonin suppression than conditions 1 and 2. Furthermore, the magnitudes of suppression were well predicted by a previously published model of circadian phototransduction incorporating spectral opponency. As was previously demonstrated, these results show that the human circadian system exhibits a subadditive response to certain polychromatic light spectra. This study demonstrates for the first time that subadditivity is due to spectrally opponent (color) retinal neurons.

  13. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells

    PubMed Central

    Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M.; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M.; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H.; Weber, Bernhard H. F.

    2015-01-01

    In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1−/−) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1−/− mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex—that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies. PMID:25941382

  14. MCP-1–Activated Monocytes Induce Apoptosis in Human Retinal Pigment Epithelium

    PubMed Central

    Yang, Dongli; Elner, Susan G.; Chen, Xun; Field, Matthew G.; Petty, Howard R.

    2011-01-01

    Purpose. The inflammatory response in age-related macular degeneration (AMD) is characterized by mononuclear leukocyte infiltration of the outer blood–retina barrier formed by the retinal pigment epithelium (RPE). A key mechanistic element in AMD progression is RPE dysfunction and apoptotic cell loss. The purpose of this study was to evaluate whether monocyte chemoattractant protein (MCP)-1–activated monocytes induce human RPE apoptosis and whether Ca2+ and reactive oxygen species (ROS) are involved in this process. Methods. A cell-based fluorometric assay was used to measure intracellular Ca2+ concentrations ([Ca2+]i) in RPE cells loaded with fluorescent Ca2+ indicator. Intracellular RPE ROS levels were measured by using the 5- and 6-chloromethyl-2′,7′-dichlorodihydrofluorescence diacetate acetyl ester (CM-H2DCFDA) assay. RPE apoptosis was evaluated by activated caspase-3, Hoechst staining, and apoptosis ELISA. Results. MCP-1–activated human monocytes increased [Ca2+]i, ROS levels, and apoptosis in RPE cells, all of which were inhibited by 8-bromo-cyclic adenosine diphosphoribosyl ribose (8-Br-cADPR), an antagonist of cADPR. Although the ROS scavengers pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) significantly inhibited ROS production and apoptosis induced by activated monocytes, they did not affect induced Ca2+ levels. The induced Ca2+ levels and apoptosis in RPE cells were inhibited by an antibody against cluster of differentiation antigen 14 (CD14), an adhesion molecule expressed by these cells. Conclusions. These results indicate that CD14, Ca2+, and ROS are involved in activated monocyte-induced RPE apoptosis and that cADPR contributes to these changes. Understanding the complex interactions among CD14, cADPR, Ca2+, and ROS may provide new insights and treatments of retinal diseases, including AMD. PMID:21447688

  15. Salvia miltiorrhiza extracts protect against retinal injury in a rat glaucoma model.

    PubMed

    Zhu, Qi; Su, Guanfang; Nie, Lili; Wang, Chenguang; He, Yuxi; Liu, Xin

    2014-06-01

    Glaucoma is a serious progressive degenerative disorder of the eye that leads to the continuous loss of retinal ganglion cells. Traditional Chinese medicine provides an important source for new drug screening and identification. The present study used Salvia miltiorrhiza (Danshen) extracts to examine the potential neuroprotective effects for the eye in a rat model of experimental glaucoma. The results of the study indicated that Salvia miltiorrhiza extracts were unable to prevent intraocular pressure increase in the laser-induced glaucoma model, but the treatment did reduce cell loss during glaucoma progression. Therefore, the results provide the basis for the development of a novel therapeutic agent that exhibits neuroprotective effects against glaucoma. In the future, further studies are required to purify the extracts and determine the effective bioactive components of Salvia miltiorrhiza.

  16. The Use of Cultured Human Fetal Retinal Pigment Epithelium in Studies of the Classical Retinoid Visual Cycle and Retinoid-based Disease Processes

    PubMed Central

    Hu, Jane; Bok, Dean

    2013-01-01

    Human fetal retinal pigment epithelium (hfRPE), when harvested by mechanical dissection and cultured initially under low calcium conditions, will proliferate and tolerate cryopreservation for future use. Cryopreserved cells can be subsequently thawed and cultured in standard calcium and in the presence of appropriate nutrients to a high state of differentiation, allowing recapitulation of multiple in vivo functions. In this review we briefly discuss some of our previous studies of the classical retinoid visual cycle and introduce current studies in our laboratory that involve two new areas of investigation; the dynamic response of the receptor for retinol binding protein, STRA6 to the addition of holo-retinol binding protein to the culture medium and the protective complement-based response of hfRPE to the ingestion of toxic byproducts of the visual cycle. This response is studied in the context of genotyped hfRPE expressing either predisposing or protective variants of complement factor H. PMID:24060345

  17. Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80(+) /Ly6c(+) macrophages in a mouse model of retinal degeneration.

    PubMed

    Fukuda, Shinichi; Nagano, Masumi; Yamashita, Toshiharu; Kimura, Kenichi; Tsuboi, Ikki; Salazar, Georgina; Ueno, Shinji; Kondo, Mineo; Kunath, Tilo; Oshika, Tetsuro; Ohneda, Osamu

    2013-10-01

    Retinitis pigmentosa is a group of inherited eye disorders that result in profound vision loss with characteristic retinal neuronal degeneration and vasculature attenuation. In a mouse model of retinitis pigmentosa, endothelial progenitor cells (EPC) from bone marrow rescued the vasculature and photoreceptors. However, the mechanisms and cell types underlying these protective effects were uncertain. We divided EPC, which contribute to angiogenesis, into two subpopulations based on their aldehyde dehydrogenase (ALDH) activity and observed that EPC with low ALDH activity (Alde-Low) had greater neuroprotection and vasoprotection capabilities after injection into the eyes of an rd1 mouse model of retinitis pigmentosa compared with EPC with high ALDH activity (Alde-High). Of note, Alde-Low EPC selectively recruited F4/80(+) /Ly6c(+) monocyte-derived macrophages from bone marrow into retina through CCL2 secretion. In addition, the mRNA levels of CCR2, the neurotrophic factors TGF-β1 and IGF-1, and the anti-inflammatory mediator interleukin-10 were higher in migrated F4/80(+) /Ly6c(+) monocyte-derived macrophages as compared with F4/80(+) /Ly6c(-) resident retinal microglial cells. These results suggest a novel therapeutic approach using EPC to recruit neuroprotective macrophages that delay the progression of neural degenerative disease.

  18. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  19. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells

    PubMed Central

    Nahomi, Rooban B.; Palmer, Allison; Roth, Katelyn E.; Fort, Patrice E.; Nagaraj, Ram H.

    2013-01-01

    The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25 mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells. PMID:24252613

  20. Conditioned Medium from Early-Outgrowth Bone Marrow Cells Is Retinal Protective in Experimental Model of Diabetes.

    PubMed

    Duarte, Diego A; Papadimitriou, Alexandros; Gilbert, Richard E; Thai, Kerri; Zhang, Yanling; Rosales, Mariana A B; Lopes de Faria, José B; Lopes de Faria, Jacqueline M

    2016-01-01

    Bone marrow-derived cells were demonstrated to improve organ function, but the lack of cell retention within injured organs suggests that the protective effects are due to factors released by the cells. Herein, we tested cell therapy using early outgrowth cells (EOCs) or their conditioned media (CM) to protect the retina of diabetic animal models (type 1 and type 2) and assessed the mechanisms by in vitro study. Control and diabetic (db/db) mice (8 weeks of age) were randomized to receive a unique intravenous injection of 5×105EOCs or 0.25 ml thrice weekly tail-vein injections of 10x concentrated CM and Wystar Kyoto rats rendered diabetic were randomized to receive 0.50 ml thrice weekly tail-vein injections of 10x concentrated CM. Four weeks later, the animals were euthanized and the eyes were enucleated. Rat retinal Müller cells (rMCs) were exposed for 24 h to high glucose (HG), combined or not with EOC-conditioned medium (EOC-CM) from db/m EOC cultures. Diabetic animals showed increase in diabetic retinopathy (DR) and oxidative damage markers; the treatment with EOCs or CM infusions significantly reduced this damage and re-established the retinal function. In rMCs exposed to diabetic milieu conditions (HG), the presence of EOC-CM reduced reactive oxygen species production by modulating the NADPH-oxidase 4 system, thus upregulating SIRT1 activity and deacetylating Lys-310-p65-NFκB, decreasing GFAP and VEGF expressions. The antioxidant capacity of EOC-CM led to the prevention of carbonylation and nitrosylation posttranslational modifications on the SIRT1 molecule, preserving its activity. The pivotal role of SIRT1 on the mode of action of EOCs or their CM was also demonstrated on diabetic retina. These findings suggest that EOCs are effective as a form of systemic delivery for preventing the early molecular markers of DR and its conditioned medium is equally protective revealing a novel possibility for cell-free therapy for the treatment of DR. PMID:26836609

  1. Conditioned Medium from Early-Outgrowth Bone Marrow Cells Is Retinal Protective in Experimental Model of Diabetes

    PubMed Central

    Duarte, Diego A.; Papadimitriou, Alexandros; Gilbert, Richard E.; Thai, Kerri; Zhang, Yanling; Rosales, Mariana A. B.; Lopes de Faria, José B.; Lopes de Faria, Jacqueline M.

    2016-01-01

    Bone marrow-derived cells were demonstrated to improve organ function, but the lack of cell retention within injured organs suggests that the protective effects are due to factors released by the cells. Herein, we tested cell therapy using early outgrowth cells (EOCs) or their conditioned media (CM) to protect the retina of diabetic animal models (type 1 and type 2) and assessed the mechanisms by in vitro study. Control and diabetic (db/db) mice (8 weeks of age) were randomized to receive a unique intravenous injection of 5×105EOCs or 0.25 ml thrice weekly tail-vein injections of 10x concentrated CM and Wystar Kyoto rats rendered diabetic were randomized to receive 0.50 ml thrice weekly tail-vein injections of 10x concentrated CM. Four weeks later, the animals were euthanized and the eyes were enucleated. Rat retinal Müller cells (rMCs) were exposed for 24 h to high glucose (HG), combined or not with EOC-conditioned medium (EOC-CM) from db/m EOC cultures. Diabetic animals showed increase in diabetic retinopathy (DR) and oxidative damage markers; the treatment with EOCs or CM infusions significantly reduced this damage and re-established the retinal function. In rMCs exposed to diabetic milieu conditions (HG), the presence of EOC-CM reduced reactive oxygen species production by modulating the NADPH-oxidase 4 system, thus upregulating SIRT1 activity and deacetylating Lys-310-p65-NFκB, decreasing GFAP and VEGF expressions. The antioxidant capacity of EOC-CM led to the prevention of carbonylation and nitrosylation posttranslational modifications on the SIRT1 molecule, preserving its activity. The pivotal role of SIRT1 on the mode of action of EOCs or their CM was also demonstrated on diabetic retina. These findings suggest that EOCs are effective as a form of systemic delivery for preventing the early molecular markers of DR and its conditioned medium is equally protective revealing a novel possibility for cell-free therapy for the treatment of DR. PMID:26836609

  2. Course for undergraduate students: analysis of the retinal image quality of a human eye model

    NASA Astrophysics Data System (ADS)

    del Mar Pérez, Maria; Yebra, Ana; Fernández-Oliveras, Alicia; Ghinea, Razvan; Ionescu, Ana M.; Cardona, Juan C.

    2014-07-01

    In teaching of Vision Physics or Physiological Optics, the knowledge and analysis of the aberration that the human eye presents are of great interest, since this information allows a proper evaluation of the quality of the retinal image. The objective of the present work is that the students acquire the required competencies which will allow them to evaluate the optical quality of the human visual system for emmetropic and ammetropic eye, both with and without the optical compensation. For this purpose, an optical system corresponding to the Navarro-Escudero eye model, which allows calculating and evaluating the aberration of this eye model in different ammetropic conditions, was developed employing the OSLO LT software. The optical quality of the visual system will be assessed through determinations of the third and fifth order aberration coefficients, the impact diagram, wavefront analysis, calculation of the Point Spread Function and the Modulation Transfer Function for ammetropic individuals, with myopia or hyperopia, both with or without the optical compensation. This course is expected to be of great interest for student of Optics and Optometry Sciences, last courses of Physics or medical sciences related with human vision.

  3. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    PubMed

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.

  4. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    PubMed

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC. PMID:22989198

  5. Dissociation of retinal and headcentric disparity signals in dorsal human cortex

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van Den Berg, Albert V.

    2015-01-01

    Recent fMRI studies have shown fusion of visual motion and disparity signals for shape perception (Ban et al., 2012), and unmasking camouflaged surfaces (Rokers et al., 2009), but no such interaction is known for typical dorsal motion pathway tasks, like grasping and navigation. Here, we investigate human speed perception of forward motion and its representation in the human motion network. We observe strong interaction in medial (V3ab, V6) and lateral motion areas (MT+), which differ significantly. Whereas the retinal disparity dominates the binocular contribution to the BOLD activity in the anterior part of area MT+, headcentric disparity modulation of the BOLD response dominates in area V3ab and V6. This suggests that medial motion areas not only represent rotational speed of the head (Arnoldussen et al., 2011), but also translational speed of the head relative to the scene. Interestingly, a strong response to vergence eye movements was found in area V1, which showed a dependency on visual direction, just like vertical-size disparity. This is the first report of a vertical-size disparity correlate in human striate cortex. PMID:25759642

  6. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.

  7. Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells.

    PubMed

    Fan, Yue; Qiao, Yuan; Huang, Jianmei; Tang, Minke

    2016-01-01

    Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2 (-)), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function. PMID:27019662

  8. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants.

    PubMed

    Sieving, Paul A; Caruso, Rafael C; Tao, Weng; Coleman, Hanna R; Thompson, Darby J S; Fullmer, Keri R; Bush, Ronald A

    2006-03-01

    Neurotrophic factors are agents with a promising ability to retard progression of neurodegenerative diseases and are effective in slowing photoreceptor degeneration in animal models of retinitis pigmentosa. Here we report a human clinical trial of a neurotrophic factor for retinal neurodegeneration. In this Phase I safety trial, human ciliary neurotrophic factor (CNTF) was delivered by cells transfected with the human CNTF gene and sequestered within capsules that were surgically implanted into the vitreous of the eye. The outer membrane of the encapsulated cell implant is semipermeable to allow CNTF to reach the retina. Ten participants received CNTF implants in one eye. When the implants were removed after 6 months, they contained viable cells with minimal cell loss and gave CNTF output at levels previously shown to be therapeutic for retinal degeneration in rcd1 dogs. Although the trial was not powered to form a judgment as to clinical efficacy, of seven eyes for which visual acuity could be tracked by conventional reading charts, three eyes reached and maintained improved acuities of 10-15 letters, equivalent to two- to three-line improvement on standard Snellen acuity charts. A surgically related choroidal detachment in one eye resulted in a transient acuity decrease that resolved with conservative management. This Phase I trial indicated that CNTF is safe for the human retina even with severely compromised photoreceptors. The approach to delivering therapeutic proteins to degenerating retinas using encapsulated cell implants may have application beyond disease caused by genetic mutations.

  9. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line

    PubMed Central

    Sluch, Valentin M.; Davis, Chung-ha O.; Ranganathan, Vinod; Kerr, Justin M.; Krick, Kellin; Martin, Russ; Berlinicke, Cynthia A.; Marsh-Armstrong, Nicholas; Diamond, Jeffrey S.; Mao, Hai-Quan; Zack, Donald J.

    2015-01-01

    Retinal ganglion cell (RGC) injury and cell death from glaucoma and other forms of optic nerve disease is a major cause of irreversible vision loss and blindness. Human pluripotent stem cell (hPSC)-derived RGCs could provide a source of cells for the development of novel therapeutic molecules as well as for potential cell-based therapies. In addition, such cells could provide insights into human RGC development, gene regulation, and neuronal biology. Here, we report a simple, adherent cell culture protocol for differentiation of hPSCs to RGCs using a CRISPR-engineered RGC fluorescent reporter stem cell line. Fluorescence-activated cell sorting of the differentiated cultures yields a highly purified population of cells that express a range of RGC-enriched markers and exhibit morphological and physiological properties typical of RGCs. Additionally, we demonstrate that aligned nanofiber matrices can be used to guide the axonal outgrowth of hPSC-derived RGCs for in vitro optic nerve-like modeling. Lastly, using this protocol we identified forskolin as a potent promoter of RGC differentiation. PMID:26563826

  10. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line.

    PubMed

    Sluch, Valentin M; Davis, Chung-ha O; Ranganathan, Vinod; Kerr, Justin M; Krick, Kellin; Martin, Russ; Berlinicke, Cynthia A; Marsh-Armstrong, Nicholas; Diamond, Jeffrey S; Mao, Hai-Quan; Zack, Donald J

    2015-11-13

    Retinal ganglion cell (RGC) injury and cell death from glaucoma and other forms of optic nerve disease is a major cause of irreversible vision loss and blindness. Human pluripotent stem cell (hPSC)-derived RGCs could provide a source of cells for the development of novel therapeutic molecules as well as for potential cell-based therapies. In addition, such cells could provide insights into human RGC development, gene regulation, and neuronal biology. Here, we report a simple, adherent cell culture protocol for differentiation of hPSCs to RGCs using a CRISPR-engineered RGC fluorescent reporter stem cell line. Fluorescence-activated cell sorting of the differentiated cultures yields a highly purified population of cells that express a range of RGC-enriched markers and exhibit morphological and physiological properties typical of RGCs. Additionally, we demonstrate that aligned nanofiber matrices can be used to guide the axonal outgrowth of hPSC-derived RGCs for in vitro optic nerve-like modeling. Lastly, using this protocol we identified forskolin as a potent promoter of RGC differentiation.

  11. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line.

    PubMed

    Sluch, Valentin M; Davis, Chung-ha O; Ranganathan, Vinod; Kerr, Justin M; Krick, Kellin; Martin, Russ; Berlinicke, Cynthia A; Marsh-Armstrong, Nicholas; Diamond, Jeffrey S; Mao, Hai-Quan; Zack, Donald J

    2015-01-01

    Retinal ganglion cell (RGC) injury and cell death from glaucoma and other forms of optic nerve disease is a major cause of irreversible vision loss and blindness. Human pluripotent stem cell (hPSC)-derived RGCs could provide a source of cells for the development of novel therapeutic molecules as well as for potential cell-based therapies. In addition, such cells could provide insights into human RGC development, gene regulation, and neuronal biology. Here, we report a simple, adherent cell culture protocol for differentiation of hPSCs to RGCs using a CRISPR-engineered RGC fluorescent reporter stem cell line. Fluorescence-activated cell sorting of the differentiated cultures yields a highly purified population of cells that express a range of RGC-enriched markers and exhibit morphological and physiological properties typical of RGCs. Additionally, we demonstrate that aligned nanofiber matrices can be used to guide the axonal outgrowth of hPSC-derived RGCs for in vitro optic nerve-like modeling. Lastly, using this protocol we identified forskolin as a potent promoter of RGC differentiation. PMID:26563826

  12. Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells

    PubMed Central

    Maruotti, Julien; Sripathi, Srinivas R.; Bharti, Kapil; Fuller, John; Wahlin, Karl J.; Ranganathan, Vinod; Sluch, Valentin M.; Berlinicke, Cynthia A.; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z.; Bhutto, Imran; Lutty, Gerard A.; Zack, Donald J.

    2015-01-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule–only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE. PMID:26269569

  13. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells.

    PubMed

    Xiang, Ping; Wu, Kun-Chao; Zhu, Ying; Xiang, Lue; Li, Chong; Chen, Deng-Long; Chen, Feng; Xu, Guotong; Wang, Aijun; Li, Min; Jin, Zi-Bing

    2014-12-01

    Various artificial membranes have been used as scaffolds for retinal pigment epithelium cells (RPE) for monolayer reconstruction, however, long-term cell viability and functionality are still largely unknown. This study aimed to construct an ultrathin porous nanofibrous film to mimic Bruch's membrane, and in particular to investigate human RPE cell responses to the resultant substrates. An ultrathin porous nanofibrous membrane was fabricated by using regenerated wild Antheraea pernyi silk fibroin (RWSF), polycaprolactone (PCL) and gelatin (Gt) and displayed a thickness of 3-5 μm, with a high porosity and an average fiber diameter of 166 ± 85 nm. Human RPE cells seeded on the RWSF/PCL/Gt membranes showed a higher cell growth rate (p < 0.05), and a typical expression pattern of RPE signature genes, with reduced expression of inflammatory mediators. With long-term cultivation on the substrates, RPE cells exhibited characteristic polygonal morphology and development of apical microvilli. Immunocytochemisty demonstrated RPE-specific expression profiles in cells after 12-weeks of co-culture on RWSF/PCL/Gt membranes. Interestingly, the cells on the RWSF/PCL/Gt membranes functionally secreted polarized PEDF and phagocytosed labeled porcine POS. Furthermore, RWSF/PCL/Gt membranes transplanted subsclerally exhibited excellent biocompatibility without any evidence of inflammation or rejection. In conclusion, we established a novel RWSF-based substrate for growth of RPE cells with excellent cytocompatibility in vitro and biocompatibility in vivo for potential use as a prosthetic Bruch's membrane for RPE transplantation.

  14. Differential expression of TYRP1 in adult human retinal pigment epithelium and uveal melanoma cells

    PubMed Central

    QIU, CHUN; LI, PENG; BI, JIANJUN; WU, QING; LU, LINNA; QIAN, GUANXIANG; JIA, RENBING; JIA, RONG

    2016-01-01

    Uveal melanoma (UM) is the most frequently occurring primary intraocular malignancy in adults. Tyrosinase (TYR) is a copper-containing enzyme and a type I membrane protein that is involved in the generation of melanin, the main pigment in vertebrates. TYR-related protein 1 (TYRP1) is regarded to have a crucial role in the immunotherapy of melanoma. As biomarkers, the TYR-related proteins, TYRP1 and TYRP2, exhibit specific expression in melanocytes, while also contributing to melanin synthesis within melanosomes. In the present study, the differential expression of TYRP1 was investigated at the mRNA, protein and morphological levels in four human UM cell lines (SP6.5, OM431, OCM1 and OCM290) and the human retinal pigment epithelium (RPE) cell line, using polymerase chain reaction, western blotting, immunocytochemistry and immunofluorescence staining. It was found that SP6.5 cells expressed the highest level of TYRP1, in comparison to SP6.5 OCM1 and OM431 cells, which produced less TYRP1, and OCM290 cells, which produced almost no TYRP1. No TYRP1 protein expression was identified in the RPE cell line. These findings indicate the potential use of TYRP1 in the development of therapy for UM. PMID:27073483

  15. Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography.

    PubMed

    Cense, Barry; Chen, Teresa C; Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2002-09-15

    To our knowledge, this is the first demonstration of in vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer (RNFL) by use of polarization-sensitive optical coherence tomography (PS-OCT). Because glaucoma causes nerve fiber layer damage, which may cause loss of retinal birefringence, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces quasi-real-time images of the human retina in vivo . Preliminary measurements of a healthy volunteer showed that the double-pass phase retardation per unit depth of the RNFL near the optic nerve head is 39+/-6( degrees )/100microm . PMID:18026517

  16. Development of Lead Hammerhead Ribozyme Candidates against Human Rod Opsin mRNA for Retinal Degeneration Therapy

    PubMed Central

    Abdelmaksoud, Heba E.; Yau, Edwin H.; Zuker, Michael; Sullivan, Jack M.

    2011-01-01

    To identify lead candidate allele-independent hammerhead ribozymes (hhRz) for the treatment of autosomal dominant mutations in the human rod opsin (RHO) gene, we tested a series of hhRzs for potential to significantly knockdown human RHO gene expression in a human cell expression system. Multiple computational criteria were used to select target mRNA regions likely to be single stranded and accessible to hhRz annealing and cleavage. Target regions are tested for accessibility in a human cell culture expression system where the hhRz RNA and target mRNA and protein are coexpressed. The hhRz RNA is embedded in an adenoviral VAI RNA chimeric RNA of established structure and properties which are critical to the experimental paradigm. The chimeric hhRz-VAI RNA is abundantly transcribed so that the hhRzs are expected to be in great excess over substrate mRNA. HhRz-VAI traffics predominantly to the cytoplasm to colocalize with the RHO mRNA target. Colocalization is essential for second-order annealing reactions. The VAI chimera protects the hhRz RNA from degradation and provides for a long half life. With cell lines chosen for high transfection efficiency and a molar excess of hhRz plasmid over target plasmid, the conditions of this experimental paradigm are specifically designed to evaluate for regions of accessibility of the target mRNA in cellulo. Western analysis was used to measure the impact of hhRz expression on RHO protein expression. Three lead candidate hhRz designs were identified that significantly knockdown target protein expression relative to control (p < 0.05). Successful lead candidates (hhRz CUC↓ 266, hhRz CUC↓ 1411, hhRz AUA↓ 1414) targeted regions of human RHO mRNA that were predicted to be accessible by a bioinformatics approach, whereas regions predicted to be inaccessible supported no knockdown. The maximum opsin protein level knockdown is approximately 30% over a 48 hr paradigm of testing. These results validate a rigorous computational

  17. Retinal pigment epithelial cell proliferation

    PubMed Central

    Temple, Sally

    2015-01-01

    The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration. PMID:26041390

  18. A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.; Jones, Melissa K.; Ferguson, Dave L.; Bryda, Elizabeth C.

    2015-01-01

    Purpose The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells. Methods SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1rnu allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1rnu allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1rnu mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers. Results After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery. Conclusions This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression. PMID:24817311

  19. Cell-Deposited Matrix Improves Retinal Pigment Epithelium Survival on Aged Submacular Human Bruch's Membrane

    PubMed Central

    Sugino, Ilene K.; Gullapalli, Vamsi K.; Sun, Qian; Wang, Jianqiu; Nunes, Celia F.; Cheewatrakoolpong, Noounanong; Johnson, Adam C.; Degner, Benjamin C.; Hua, Jianyuan; Liu, Tong; Chen, Wei; Li, Hong

    2011-01-01

    Purpose. To determine whether resurfacing submacular human Bruch's membrane with a cell-deposited extracellular matrix (ECM) improves retinal pigment epithelial (RPE) survival. Methods. Bovine corneal endothelial (BCE) cells were seeded onto the inner collagenous layer of submacular Bruch's membrane explants of human donor eyes to allow ECM deposition. Control explants from fellow eyes were cultured in medium only. The deposited ECM was exposed by removing BCE. Fetal RPE cells were then cultured on these explants for 1, 14, or 21 days. The explants were analyzed quantitatively by light microscopy and scanning electron microscopy. Surviving RPE cells from explants cultured for 21 days were harvested to compare bestrophin and RPE65 mRNA expression. Mass spectroscopy was performed on BCE-ECM to examine the protein composition. Results. The BCE-treated explants showed significantly higher RPE nuclear density than did the control explants at all time points. RPE expressed more differentiated features on BCE-treated explants than on untreated explants, but expressed very little mRNA for bestrophin or RPE65. The untreated young (<50 years) and African American submacular Bruch's membrane explants supported significantly higher RPE nuclear densities (NDs) than did the Caucasian explants. These differences were reduced or nonexistent in the BCE-ECM-treated explants. Proteins identified in the BCE-ECM included ECM proteins, ECM-associated proteins, cell membrane proteins, and intracellular proteins. Conclusions. Increased RPE survival can be achieved on aged submacular human Bruch's membrane by resurfacing the latter with a cell-deposited ECM. Caucasian eyes seem to benefit the most, as cell survival is the worst on submacular Bruch's membrane in these eyes. PMID:21398292

  20. Effects of emulsification, purity, and fluorination of silicone oil on human retinal pigment epithelial cells.

    PubMed

    Friberg, T R; Verstraeten, T C; Wilcox, D K

    1991-06-01

    When silicone oil is used as a vitreous substitute, reproliferation of vitreoretinal membranes beneath the oil occurs frequently. Nevertheless, the effects of various properties of silicone oils such as purity, viscosity, fluorination, or emulsification on cellular proliferation have not been established. Human retinal pigment epithelial (RPE) cells were grown to confluence on filters, and then covered with silicone oil. The cellular monolayers were fed from below. At 72 hr and 14 days a proliferation index was determined by measuring 3H-thymidine incorporation into the cells. An assay for the enzyme gamma-glutamyl-transpeptidase (gamma GTP) was also done to assess cell polarization under some oils. A total of 14 different oils were studied. At 72 hr, emulsified oil was associated with significantly less proliferation than unemulsified oil, a difference that disappeared at 2 weeks. Neither fluorination nor viscosity had a significant effect on RPE proliferation. In addition, RPE proliferation indices were not significantly different from one another when purified oils were compared with most commercial-grade oils. However, a very contaminated oil was associated with a significantly higher proliferation index compared with severe purified or medical-grade oils.

  1. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells.

    PubMed

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  2. Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DuBose, Theodore B.; Milanfar, Peyman; Izatt, Joseph A.; Farsiu, Sina

    2016-03-01

    The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.

  3. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  4. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid.

    PubMed

    Zhang, Pingbo; Kirby, David; Dufresne, Craig; Chen, Yan; Turner, Randi; Ferri, Sara; Edward, Deepak P; Van Eyk, Jennifer E; Semba, Richard D

    2016-04-01

    The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false-positive rates of <0.1% and <1%, respectively. Forty-three unambiguous protein isoforms were identified in iris, ciliary body, and RPE/choroid. Four "missing proteins" were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194. PMID:26834087

  5. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  6. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    PubMed Central

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  7. Further assessment of neuropathology in retinal explants and neuroprotection by human neural progenitor cells

    NASA Astrophysics Data System (ADS)

    Mohlin, Camilla; Liljekvist-Soltic, Ingela; Johansson, Kjell

    2011-10-01

    Explanted rat retinas show progressive photoreceptor degeneration that appears to be caspase-12-dependent. Decrease in photoreceptor density eventually affects the inner retina, particularly in the bipolar cell population. Explantation and the induced photoreceptor degeneration are accompanied by activation of Müller and microglia cells. The goal of this study was to determine whether the presence of a feeder layer of human neural progenitor cells (hNPCs) could suppress the degenerative and reactive changes in the explants. Immunohistochemical analyses showed considerable sprouting of rod photoreceptor axon terminals into the inner retina and reduced densities of cone and rod bipolar cells. Both sprouting and bipolar cell degenerations were significantly lower in retinas cultured with feeder layer cells compared to cultured controls. A tendency toward reduced microglia activation in the retinal layers was also noted in the presence of feeder layer cells. These results indicate that hNPCs or factors produced by them can limit the loss of photoreceptors and secondary injuries in the inner retina. The latter may be a consequence of disrupted synaptic arrangement.

  8. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    PubMed Central

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  9. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Reichenbach, Andreas; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE) cells. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1

  10. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  11. Human subjects research handbook: Protecting human research subjects. Second edition

    SciTech Connect

    1996-01-30

    This handbook serves as a guide to understanding and implementing the Federal regulations and US DOE Orders established to protect human research subjects. Material in this handbook is directed towards new and continuing institutional review board (IRB) members, researchers, institutional administrators, DOE officials, and others who may be involved or interested in human subjects research. It offers comprehensive overview of the various requirements, procedures, and issues relating to human subject research today.

  12. Protective effects of NSP-116, a novel imidazolyl aniline derivative, against light-induced retinal damage in vitro and in vivo.

    PubMed

    Izawa, Hiroshi; Shimazawa, Masamitsu; Inoue, Yuki; Uchida, Seiichi; Moroe, Hiroko; Tsuruma, Kazuhiro; Hara, Hideaki

    2016-07-01

    In this study, we investigated the protective effects of NSP-116 [4-(4-acetylpiperazin-1-yl)-2-(1H-imidazol-1-yl) aniline], a novel imidazolyl aniline derivative, against light-induced photoreceptor cell damage. In an in vitro experiment, murine photoreceptor (661W) cells were damaged by exposure to light for 24h. Viability of 661W cells after light exposure was assessed by Hoechst 33342/Propidium iodide nuclear staining and a tetrazolium salt (WST-8) assay. Intracellular radical production in 661W cells was evaluated using the reactive oxygen species (ROS) sensitive probe 5-(and 6)-chloromethyl-2, 7-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA). NSP-116 significantly suppressed light-induced cell death and ROS production in 661W cells. In an in vivo mouse experiment, retinal damage was induced by exposure to white light at 8000lx for 3h after dark adaptation. Retinal damage was evaluated by recording the electroretinogram and measuring the outer nuclear layer (ONL) thickness at 5 days after light exposure. Single oral administration of NSP-116 before light exposure protected retinal function and ONL thinning after light exposure. Furthermore, the effect of NSP-116 on lipid peroxidation was evaluated using thiobarbituric acid reactive substance (TBARS) assay in porcine retina, and was found to decrease the production of TBARS. Electron spin resonance (ESR) measurements showed that NSP-116 exhibited radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide anion radical (∙O2(-)), and hydroxyl radical (∙OH). These findings suggest that NSP-116 has protective effects against light-induced photoreceptor degeneration in vitro and in vivo as a free radical scavenger, and it may be a novel therapeutic agent for retinal degenerative disorders, such as dry age-related macular degeneration (AMD).

  13. Thrombin stimulates IL-6 and IL-8 expression in cytomegalovirus-infected human retinal pigment epithelial cells.

    PubMed

    Scholz, Martin; Vogel, Jens-Uwe; Höver, Gerold; Kotchetkov, Ruslan; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2004-02-01

    Recently, we reported that thrombin specifically stimulates protease-activated receptor-1 (PAR-1) signaling in RPE entailing inhibition of Sp1 dependent HCMV replication. We now studied whether thrombin modulates the expression of the proinflammatory cytokine/chemokines IL-6 and IL-8 in mock- and cytomegalovirus-infected human retinal pigment epithelial cells (RPE). Our data show that thrombin/PAR-1 stimulates IL-6 and IL-8 gene transcription and protein secretion in both mock- and HCMV-infected RPE. Thrombin/PAR-1-mediated signaling stimulated PKC and NF-kappaB-dependent IL-6 and IL-8 gene expression via phosphoinositide 3-kinase and further downstream via p42/44 and p38 MAPKs. Thus, thrombin/PAR-1-mediated IL-6/IL-8 gene expression is uncoupled from Sp1 inhibition and may support proinflammatory pathomechanisms probably involved in hemorrhage/HCMV retinitis progression.

  14. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography.

    PubMed

    Cense, Barry; Chen, Teresa C; Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-01-01

    Glaucoma causes damage of the nerve fiber layer, which may cause loss of retinal birefringence. Therefore, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces real-time images of the human retina in vivo, coregistered with retinal video images of the location of PS-OCT scans. Preliminary measurements of a healthy volunteer show that the double-pass phase retardation per unit of depth of the RNFL is not constant and varies with location, with values between 0.18 and 0.37 deg/microm. A trend in the preliminary measurements shows that the nerve fiber layer located inferior and superior to the optic nerve head is more birefringent than the thinner layer of nerve fiber tissue in the temporal and nasal regions. PMID:14715063

  15. Regulation of tyrosinase expression and activity in cultured human retinal pigment epithelial cells.

    PubMed

    Abul-Hassan, K; Walmsley, R; Tombran-Tink, J; Boulton, M

    2000-12-01

    The purpose of this study was to investigate the regulation of tyrosinase gene expression and activity in cultured human retinal pigment epithelial (RPE) cells. The tyrosinase promoter (Ty.prom) region (400 bp) was PCR amplified and cloned into a modified mammalian expression vector (pcDNA3.1) upstream of a firefly luciferase (Luc) cDNA and was designated 'pcDNA3.1-Ty.prom.Luc'. The plasmid was co-transfected into RPE cells with a second mammalian expression plasmid (pRL-TK) containing a herpes simplex virus thymidine kinase promoter region upstream of Renilla Luc in a protocol designated the 'dual luciferase assay' (DLA). After co-transfection, cells were treated with a range of potential melanogenic agents; basic fibroblast growth factor (bFGF), methyl methane sulphonate, alpha-melanocyte stimulating hormone, verapamil, phorbol myristate acetate, cholera toxin (CT), pigment epithelium derived factor (PEDF), and L-tyrosine. The expression of tyrosinase promoter and enzymatic activities were determined 48 hr post-transfection using the DLA and DOPA oxidase assays, respectively. Tyrosinase activity could not be detected in RPE cells with any of the treatments. Tyrosinase promoter activity was significantly up-regulated in RPE cells treated with bFGF, PEDF, verapamil, CT and tyrosine compared with control cells. In conclusion, the tyrosinase gene is not only expressed but can be regulated in response to different chemicals in cultured human RPE cells. However, it appears that RPE cells in culture lack a post-transcriptional and/or translational modification point(s), which are necessary for tyrosinase enzymic activity. PMID:11153695

  16. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium

    PubMed Central

    Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B.; Weinberger, Dov; Sredni, Benjamin

    2016-01-01

    Purpose Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch’s membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Methods Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Results Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Conclusions Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases. PMID:27293373

  17. Protective Effect of Fucoxanthin Isolated from Laminaria japonica against Visible Light-Induced Retinal Damage Both in Vitro and in Vivo.

    PubMed

    Liu, Yixiang; Liu, Meng; Zhang, Xichun; Chen, Qingchou; Chen, Haixiu; Sun, Lechang; Liu, Guangming

    2016-01-20

    With increasingly serious eye exposure to light stresses, such as light-emitting diodes, computers, and widescreen mobile phones, efficient natural compounds for preventing visible light-induced retinal damages are becoming compelling needs in the modern society. Fucoxanthin, as the main light absorption system in marine algae, may possess an outstanding bioactivity in vision protection because of its filtration of blue light and excellent antioxidative activity. In this work, both in vitro and in vivo simulated visible light-induced retinal damage models were employed. The in vitro results revealed that fucoxanthin exhibited better bioactivities than lutein, zeaxanthin, and blueberry anthocyanins in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular reactive oxygen species in retinal pigment epithelium cells. The in vivo experiment also confirmed the superiority of fucoxanthin than lutein in protecting retina against photoinduced damage. This excellent bioactivity may be attributed to its unique structural features, including allenic, epoxide, and acetyl groups. Fucoxanthin is expected to be an important ocular nutrient in the future. PMID:26708928

  18. Protective Effect of Fucoxanthin Isolated from Laminaria japonica against Visible Light-Induced Retinal Damage Both in Vitro and in Vivo.

    PubMed

    Liu, Yixiang; Liu, Meng; Zhang, Xichun; Chen, Qingchou; Chen, Haixiu; Sun, Lechang; Liu, Guangming

    2016-01-20

    With increasingly serious eye exposure to light stresses, such as light-emitting diodes, computers, and widescreen mobile phones, efficient natural compounds for preventing visible light-induced retinal damages are becoming compelling needs in the modern society. Fucoxanthin, as the main light absorption system in marine algae, may possess an outstanding bioactivity in vision protection because of its filtration of blue light and excellent antioxidative activity. In this work, both in vitro and in vivo simulated visible light-induced retinal damage models were employed. The in vitro results revealed that fucoxanthin exhibited better bioactivities than lutein, zeaxanthin, and blueberry anthocyanins in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular reactive oxygen species in retinal pigment epithelium cells. The in vivo experiment also confirmed the superiority of fucoxanthin than lutein in protecting retina against photoinduced damage. This excellent bioactivity may be attributed to its unique structural features, including allenic, epoxide, and acetyl groups. Fucoxanthin is expected to be an important ocular nutrient in the future.

  19. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  20. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.

    PubMed

    Zhu, Yu; Carido, Madalena; Meinhardt, Andrea; Kurth, Thomas; Karl, Mike O; Ader, Marius; Tanaka, Elly M

    2013-01-01

    A goal in human embryonic stem cell (hESC) research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE) cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia. PMID:23358448

  1. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.

    PubMed

    Zhu, Yu; Carido, Madalena; Meinhardt, Andrea; Kurth, Thomas; Karl, Mike O; Ader, Marius; Tanaka, Elly M

    2013-01-01

    A goal in human embryonic stem cell (hESC) research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE) cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.

  2. Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

    PubMed Central

    Yang, Ming-Hui; Krishnamoorthy, Raghu R.; Jong, Shiang-Bin; Chu, Pei-Yu; Yang, Yuan-Han; Chen, Wen-Cheng; Chen, Sharon Chia-Ju; Dibas, Adnan; Yorio, Thomas; Chung, Tze-Wen; Tyan, Yu-Chang

    2011-01-01

    The purpose of this paper was to characterize proteins secreted from the human nonpigmented ciliary epithelial (HNPE) cells, which have differentiated a rat retinal ganglion cell line, RGC-5. Undifferentiated RGC-5 cells have been shown to express several marker proteins characteristic of retinal ganglion cells. However, RGC-5 cells do not respond to N-methyl-D aspartate (NMDA), or glutamate. HNPE cells have been shown to secrete numbers of neuropeptides or neuroproteins also found in the aqueous humor, many of which have the ability to influence the activity of neuronal cells. This paper details the profile of HNPE cell-secreted proteins by proteomic approaches. The experimental results revealed the identification of 132 unique proteins from the HNPE cell-conditioned SF-medium. The biological functions of a portion of these identified proteins are involved in cell differentiation. We hypothesized that a differentiation system of HNPE cell-conditioned SF-medium with RGC-5 cells can induce a differentiated phenotype in RGC-5 cells, with functional characteristics that more closely resemble primary cultures of rat retinal ganglion cells. These proteins may replace harsh chemicals, which are currently used to induce cell differentiation. PMID:21860587

  3. Expression and Functional Roles of Caspase-5 in Inflammatory Responses of Human Retinal Pigment Epithelial Cells

    PubMed Central

    Bian, Zong-Mei; Elner, Susan G.; Khanna, Hemant; Murga-Zamalloa, Carlos A.; Patil, Suresh

    2011-01-01

    Purpose. To investigate the expression, activation, and functional involvement of caspase-5 in human retinal pigment epithelial (hRPE) cells. Methods. Expression and activation of caspase-5 in primary cultured hRPE cells, telomerase-immortalized hTERT-RPE1 cells (hTERT-RPE1), or both, were measured after stimulation with proinflammatory agents IL-1β, TNF-α, lipopolysaccharide (LPS), interferon-γ, monocyte coculture, adenosine triphosphate (ATP), or endoplasmic reticulum (ER) stress inducers. Immunomodulating agents dexamethasone (Dex), IL-10, and triamcinolone acetonide (TA) were used to antagonize proinflammatory stimulation. Cell death ELISA and TUNEL staining assays were used to assess apoptosis. Results. Caspase-5 mRNA expression and protein activation were induced by LPS and monocyte-hRPE coculture. Caspase-5 activation appeared as early as 2 hours after challenge by LPS and consistently increased to 24 hours. Meanwhile, caspase-1 expression and protein activation were induced by LPS. Activation of caspase-5 was blocked or reduced by Dex, IL-10, and TA. Activation of caspase-5 and -1 was also enhanced by ATP and ER stress inducers. Expression and activation of caspase-5 were inhibited by a caspase-1–specific inhibitor. Caspase-5 knockdown reduced caspase-1 protein expression and activation and inhibited TNF-α–induced IL-8 and MCP-1. In contrast to caspase-4, the contribution of caspase-5 to stress-induced apoptosis was moderate. Conclusions. Caspase-5 mRNA synthesis, protein expression, and catalytic activation were highly regulated in response to various proinflammatory stimuli, ATP, and ER stress inducers. Mutual activation between caspase-5 and -1 suggests caspase-5 may work predominantly in concert with caspase-1 in modulating hRPE inflammatory responses. PMID:21969293

  4. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans.

    PubMed

    Cao, Dingcai; Nicandro, Nathaniel; Barrionuevo, Pablo A

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs. PMID:25624466

  5. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans

    PubMed Central

    Cao, Dingcai; Nicandro, Nathaniel; Barrionuevo, Pablo A.

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs. PMID:25624466

  6. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells.

    PubMed

    Sorkio, Anni; Porter, Patrick J; Juuti-Uusitalo, Kati; Meenan, Brian J; Skottman, Heli; Burke, George A

    2015-09-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.

  7. 48 CFR 352.270-4 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following provision: Notice to Offerors of Requirements of 45 CFR Part 46, Protection of Human Subjects... protection of human subjects, 45 CFR Part 46, are available from the Office for Human Research Protections... directly regulated by 45 CFR Part 46. (c) Activities in which the only involvement of human subjects...

  8. 48 CFR 1552.223-70 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Protection of human... 1552.223-70 Protection of human subjects. As prescribed in 1523.303-70, insert the following contract clause when the contract involves human test subjects. Protection of Human Subjects (APR 1984) (a)...

  9. 48 CFR 1552.223-70 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Protection of human... 1552.223-70 Protection of human subjects. As prescribed in 1523.303-70, insert the following contract clause when the contract involves human test subjects. Protection of Human Subjects (APR 1984) (a)...

  10. 48 CFR 352.270-4 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following provision: Notice to Offerors of Requirements of 45 CFR Part 46, Protection of Human Subjects... protection of human subjects, 45 CFR Part 46, are available from the Office for Human Research Protections... directly regulated by 45 CFR Part 46. (c) Activities in which the only involvement of human subjects...

  11. 48 CFR 1552.223-70 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Protection of human... 1552.223-70 Protection of human subjects. As prescribed in 1523.303-70, insert the following contract clause when the contract involves human test subjects. Protection of Human Subjects (APR 1984) (a)...

  12. 48 CFR 1552.223-70 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Protection of human... 1552.223-70 Protection of human subjects. As prescribed in 1523.303-70, insert the following contract clause when the contract involves human test subjects. Protection of Human Subjects (APR 1984) (a)...

  13. 48 CFR 352.270-4 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following provision: Notice to Offerors of Requirements of 45 CFR Part 46, Protection of Human Subjects... protection of human subjects, 45 CFR Part 46, are available from the Office for Human Research Protections... directly regulated by 45 CFR Part 46. (c) Activities in which the only involvement of human subjects...

  14. 48 CFR 352.270-4 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following provision: Notice to Offerors of Requirements of 45 CFR Part 46, Protection of Human Subjects... protection of human subjects, 45 CFR Part 46, are available from the Office for Human Research Protections... directly regulated by 45 CFR Part 46. (c) Activities in which the only involvement of human subjects...

  15. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures — a new donor for cell therapy

    PubMed Central

    Li, Zhengya; Li, Qiyou; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases. PMID:27009841

  16. Retinitis pigmentosa and retinal oedema.

    PubMed Central

    Spalton, D J; Bird, A C; Cleary, P E

    1978-01-01

    Twenty-five patients with retinitis pigmentosa and retinal leakage were investigated. Oedema was present in dominant and X-linked inherited disease and is likely to be present in recessive disease as well. We suggest that this might be a general response seen in many types of tapeto-retinal degeneration to actively degenerating photoreceptors or pigment epithelium. Images PMID:638111

  17. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  18. CERKL Knockdown Causes Retinal Degeneration in Zebrafish

    PubMed Central

    Riera, Marina; Burguera, Demian; Garcia-Fernàndez, Jordi; Gonzàlez-Duarte, Roser

    2013-01-01

    The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration. PMID:23671706

  19. α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension

    PubMed Central

    Wang, Xiaolei; Su, Jier; Ding, Jingwen; Han, Song; Ma, Wei; Luo, Hong; Hughes, Guy; Meng, Zhaoyang; Yin, Yi; Wang, Yanling; Li, Junfa

    2016-01-01

    Objective Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms. Materials and methods In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot. Results In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH. Conclusion In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma. PMID:27799744

  20. Intravitreal injection of erythropoietin protects against retinal vascular regression at the early stage of diabetic retinopathy in streptozotocin-induced diabetic rats.

    PubMed

    Mitsuhashi, Junko; Morikawa, Shunichi; Shimizu, Kazuhiko; Ezaki, Taichi; Yasuda, Yoshiko; Hori, Sadao

    2013-01-01

    A single intravitreal injection of erythropoietin (EPO) (50 ng/eye) or phosphate-buffered saline was administered to 5-week-old Sprague-Dawley rats at the onset of diabetes mellitus (DM) to determine and evaluate the protective effect of EPO on retinal microvessels. DM was induced by an intraperitoneal injection of streptozotocin (STZ; 60 mg/kg body weight). Morphological changes in microvessels in flat retinal preparations were evaluated during the subsequent 4 weeks by three-dimensional imaging of all blood vessels stained with fluorescein isothiocyanate-conjugated tomato lectin, following immunofluorescence techniques. No marked differences were observed in the shape or density of retinal vessels and the number of retinal capillary branches of the four groups [control, EPO, DM, and DM/EPO] up to 4 weeks after STZ administration. We also observed unique type IV collagen-positive filamentous structures that lacked both cellular elements and blood circulation (lectin-/type IV+ acellular strands), suggesting regressed vessel remnants. The lectin-/type IV+ acellular strands were detected soon after the onset of DM in the diabetic rats, and the number of these structures increased in the DM group (P < 0.01). A single intravitreal injection of EPO caused a significant reduction in the number of lectin-/type IV+ acellular strands to levels observed in the control group. However, the lectin-/type IV+ acellular strands were observed in the central area of the retina near the optic disc in all four groups. Intravitreal injection of EPO resulted in downregulation of the EPO receptor, vascular endothelial growth factor (VEGF), and VEGF receptor at 4 weeks. We conclude that EPO may play a primary role against the progression of diabetic retinopathy by reducing blood vessel degeneration at a very early disease stage. PMID:23178551

  1. Radicicol but not geldanamycin evokes oxidative stress response and efflux protein inhibition in ARPE-19 human retinal pigment epithelial cells.

    PubMed

    Ryhänen, Tuomas; Mannermaa, Eliisa; Oksala, Niku; Viiri, Johanna; Paimela, Tuomas; Salminen, Antero; Atalay, Mustafa; Kaarniranta, Kai

    2008-04-28

    Drug delivery to retinal cells has represented a major challenge for ophthalmologists for many decades. However, drug targeting to the retina is essential in therapies against retinal diseases such as age-related macular degeneration, the most common reason of blindness in the developed countries. Retinal cells are chronically exposed to oxidative stress that contributes to cellular senescence and may cause neovascularization in the most severe age-related macular degeneration cases. Various pre- and clinical studies have revealed that heat shock protein 90 (HSP90) inhibitors, such as geldanamycin and radicicol, are promising drugs in the treatment of different malignant processes. In this study, our goal was to compare the effects of 0.1 microM, 1 microM or 5 microM geldanamycin or radicicol on the oxidative stress response, cytotoxicity, and efflux protein activity (a protein pump which removes drugs from cells) in ARPE-19 (human retinal pigment epithelial, RPE) cells. Our findings indicate that geldanamycin and radicicol increased HSP70 and HSP27 expression analyzed by western blotting. Cellular levels of protein carbonyls were increased in response to 0.1 microM (P=0.048 for 24 h, P=0.018 for 48 h) or 5 microM (P=0.030 for 24 h, P=0.046 for 48 h) radicicol but not to geldanamycin analyzed by ELISA assay. In addition, HNE-protein adducts were accumulated in the RPE cells exposed to 0.1 microM or 5 microM radicicol but not to geldanamycin analyzed by western blotting. However, MTT assay revealed that 5 microM geldanamycin reduced cellular viability 20-30% (P<0.05 for 24 h, P<0.01 for 48 h), but this was not observed at any radicicol concentration in RPE cells. Interestingly, the increased oxidative stress response was associated with efflux protein inhibition (20-30%) when the cells were exposed to 1 microM or 5 microM (P<0.05) radicicol, but not in geldanamycin-treated RPE cells. These novel findings help in understanding the influence of HSP90 inhibition and

  2. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress.

    PubMed

    Zhu, Xue; Wang, Ke; Zhang, Kai; Tan, Xuhua; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2015-01-01

    Blood-retinal barrier (BRB) breakdown is one of the primary causes of diabetic retinopathy (DR). The pro-inflammatory factor interleukin-1β (IL-1β) was reported to be involved in the induction of BRB breakdown during the pathogenesis of DR. In the present study, we investigated the protective effect of tetramethylpyrazine (TMP), a major active component of the traditional herb Ligusticum chuanxiong, on IL-1β-induced cell death of the rat retinal capillary endothelial TR-iBRB2 cells. Our results showed that IL-1β-induced cell dysfunction in TR-iBRB2 cells via inducing nitrative/oxidative stress; however, such effect was attenuated with the pre-treatment of TMP. The cellular protective effect of TMP was likely to be mediated through the inhibition of inducible nitric oxide synthase (iNOS) expression and leukostasis as well as suppression of reactive oxygen species (ROS) generation, mitochondrial dysfunction and MAPKs activation. These findings significantly contribute to a better understanding of the protective effect of TMP in DR and form the basis of the therapeutic development of TMP in treating such disease in the future. PMID:26370989

  3. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress

    PubMed Central

    Zhu, Xue; Wang, Ke; Zhang, Kai; Tan, Xuhua; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2015-01-01

    Blood-retinal barrier (BRB) breakdown is one of the primary causes of diabetic retinopathy (DR). The pro-inflammatory factor interleukin-1β (IL-1β) was reported to be involved in the induction of BRB breakdown during the pathogenesis of DR. In the present study, we investigated the protective effect of tetramethylpyrazine (TMP), a major active component of the traditional herb Ligusticum chuanxiong, on IL-1β-induced cell death of the rat retinal capillary endothelial TR-iBRB2 cells. Our results showed that IL-1β-induced cell dysfunction in TR-iBRB2 cells via inducing nitrative/oxidative stress; however, such effect was attenuated with the pre-treatment of TMP. The cellular protective effect of TMP was likely to be mediated through the inhibition of inducible nitric oxide synthase (iNOS) expression and leukostasis as well as suppression of reactive oxygen species (ROS) generation, mitochondrial dysfunction and MAPKs activation. These findings significantly contribute to a better understanding of the protective effect of TMP in DR and form the basis of the therapeutic development of TMP in treating such disease in the future. PMID:26370989

  4. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration

    PubMed Central

    Nagineni, Chandrasekharam N.; Kommineni, Vijay K.; Ganjbaksh, Nader; Nagineni, Krishnasai K.; Hooks, John J.; Detrick, Barbara

    2015-01-01

    Chemokine reeptor-3 (CCR-3) was shown to be associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). AMD is a vision threatening retinal disease that affects the aging population world-wide. Retinal pigment epithelium and choroid in the posterior part of the retina are the key tissues targeted in the pathogenesis of CNV in AMD. We used human retinal pigment epithelial (HRPE) and choroidal fibroblast (HCHF) cells, prepared from aged adult human donor eyes, to evaluate the expression of major CCR-3 ligands, CCL-5, CCL -7, CCL-11,CCL-24 and CCL-26. Microarray analysis of gene expression in HRPE cells treated with inflammatory cytokine mix (ICM= IFN-γ+TNF-α+IL-1β) revealed 75 and 23-fold increase in CCL-5 and CCL-7 respectively, but not CCL-11, CCL-24 and CCL-26. Chemokine secretion studies of the production of CCL5 and CCL7 by HRPE corroborated with the gene expression analysis data. When the HRPE cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent manner. Similar to the gene expression data, the ICM did not enhance HRPE production of CCL-11, CCL-24 and CCL-26. CCL-11 and CCL-26 were increased with IL-4 treatment and this HRPE production was augmented in the presence of TNF-α and IL1β. When HCHF cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent fashion. IL-4 induced low levels of CCL-11 and CCL-26 in HCHF and this production was significantly enhanced by TNF-α. Under these conditions, neither HRPE nor HCHF were demonstrated to produce CCL-24. These data demonstrate that chronic inflammation triggers CCL-5 and CCL-7 release by HRPE and HCHF and the subsequent interactions with CCR3 may participate in pathologic processes in AMD. PMID:26618046

  5. Ultrathin Polyimide Membrane as Cell Carrier for Subretinal Transplantation of Human Embryonic Stem Cell Derived Retinal Pigment Epithelium

    PubMed Central

    Ilmarinen, Tanja; Hiidenmaa, Hanna; Kööbi, Peeter; Nymark, Soile; Sorkio, Anni; Wang, Jing-Huan; Stanzel, Boris V.; Thieltges, Fabian; Alajuuma, Päivi; Oksala, Olli; Kataja, Marko; Uusitalo, Hannu; Skottman, Heli

    2015-01-01

    In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat eyes were analyzed with electroretinography (ERG) and histology. After analyzing the surface and permeability properties of PI, subretinal PI membrane transplantations with and without hESC-RPE were performed in rabbits. The rabbits were followed for three months and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT), and histology. Animals were immunosuppressed with cyclosporine the entire follow-up time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT showed good placement of the PI. However, there was loss of pigmentation on the hESC-RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atrophy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal atrophy were observed around the membranes. The porous ultrathin PI membrane was well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation. However, the rejection of the transplanted cells seems to be a major problem and the given immunosuppression was insufficient for reduction of xenograft induced inflammation. PMID:26606532

  6. Calibration-free measurement of the oxygen saturation in human retinal vessels

    NASA Astrophysics Data System (ADS)

    Schweitzer, Dietrich; Leistritz, Lutz; Hammer, Martin; Scibor, Mateusz; Bartsch, Ulrich; Strobel, Juergen

    1995-05-01

    of a piglet measured by reflectometry with the oxygen saturation of the left ventricular and the venous blood measured by a laboratory hemoximeter. First results of the measurement of the oxygen saturation in human retinal vessels are demonstrated.

  7. Retinal detachment

    PubMed Central

    2010-01-01

    Introduction Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment, where a retinal "break" allows the ingress of fluid from the vitreous cavity to the subretinal space, resulting in retinal separation. It occurs in about 1 in 10,000 people a year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent progression from retinal breaks or lattice degeneration to retinal detachment? What are the effects of different surgical interventions in people with rhegmatogenous retinal detachment? What are the effects of interventions to treat proliferative vitreoretinopathy occurring as a complication of retinal detachment or previous treatment for retinal detachment? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 21 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: corticosteroids, cryotherapy, daunorubicin, fluorouracil plus low molecular weight heparin, laser photocoagulation, pneumatic retinopexy, scleral buckling, short-acting or long-acting gas tamponade, silicone oil tamponade, and vitrectomy. PMID:21406128

  8. 75 FR 59264 - Secretary's Advisory Committee on Human Research Protections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... HUMAN SERVICES Secretary's Advisory Committee on Human Research Protections AGENCY: Department of Health and Human Services, Office of the Secretary, Office of the Assistant Secretary for Health. ACTION..., notice is hereby given that the Secretary's Advisory Committee on Human Research Protections...

  9. Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration

    PubMed Central

    Choudhury, S; Bhootada, Y; Gorbatyuk, O; Gorbatyuk, M

    2013-01-01

    The UPR is activated in the mouse retina expressing misfolded T17M rhodopsin (RHO) during autosomal dominant retinitis pigmentosa (ADRP) progression. Therefore, the goal of this study is to validate the UPR-induced caspase-7 as a new therapeutic target that modulates the UPR, reduces the level of apoptosis and protects the ADRP retina from retinal degeneration and light-induced damage. Mice were analyzed using ERG, SD-OCT and histology to determine the role of caspase-7 ablation. The results of these experiments demonstrate the significant preservation of photoreceptors and their function in T17M RHO CASP-7 retinas from P30 to P90 compared with control mice. These mice were also protected from the light-induced decline in the ERG responses and apoptosis. The RNA and protein analyses of T17M RHO+Csp7-siRNA, Tn+Csp7-siRNA 661W cells and T17M RHO CASP-7 retinas revealed that caspase-7 ablation reprograms the UPR and reduces JNK-induced apoptosis. This reduction is believed to occur through the downregulation of the mTOR and Hif1a proteins. In addition, decline in activated PARP1 was detected in T17M RHO CASP-7 retina. Altogether, our findings indicate that the targeting of caspase-7 in T17M RHO mice could be a feasible therapeutic strategy for advanced stages of ADRP. PMID:23470535

  10. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma.

    PubMed

    Khan, Mehnaz; Walters, Laura L; Li, Qiang; Thomas, Dafydd G; Miller, Jason M L; Zhang, Qitao; Sciallis, Andrew P; Liu, Yu; Dlouhy, Brian J; Fort, Patrice E; Archer, Steven M; Demirci, Hakan; Dou, Yali; Rao, Rajesh C

    2015-11-01

    Retinoblastoma (RB) is the most common primary intraocular cancer in children, and the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin-embedded human RB tissue, cryopreserved mouse retina, and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal retinal pigment epithelium (RPE) and fetal and adult retina, mouse retina and embryonic stem (ES) cells. Although enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i impaired intracellular adenosine triphosphate (ATP) production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma. PMID:26280220

  11. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro

    PubMed Central

    2014-01-01

    Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition

  12. 34 CFR 75.681 - Protection of human research subjects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 1221e-3 and 3474) Cross reference: See 34 CFR part 97—Protection of Human Subjects. ... 34 Education 1 2011-07-01 2011-07-01 false Protection of human research subjects. 75.681 Section... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.681 Protection of...

  13. 34 CFR 75.681 - Protection of human research subjects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 1221e-3 and 3474) Cross reference: See 34 CFR part 97—Protection of Human Subjects. ... 34 Education 1 2010-07-01 2010-07-01 false Protection of human research subjects. 75.681 Section... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.681 Protection of...

  14. 34 CFR 75.681 - Protection of human research subjects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 1221e-3 and 3474) Cross Reference: See 34 CFR part 97—Protection of Human Subjects. ... 34 Education 1 2014-07-01 2014-07-01 false Protection of human research subjects. 75.681 Section... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.681 Protection of...

  15. 34 CFR 75.681 - Protection of human research subjects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 1221e-3 and 3474) Cross reference: See 34 CFR part 97—Protection of Human Subjects. ... 34 Education 1 2012-07-01 2012-07-01 false Protection of human research subjects. 75.681 Section... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.681 Protection of...

  16. 34 CFR 75.681 - Protection of human research subjects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 1221e-3 and 3474) Cross Reference: See 34 CFR part 97—Protection of Human Subjects. ... 34 Education 1 2013-07-01 2013-07-01 false Protection of human research subjects. 75.681 Section... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.681 Protection of...

  17. 48 CFR 1252.223-72 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....223-72 Protection of human subjects. As prescribed in (TAR) 48 CFR 1223.7000(b), insert the following... Traffic Safety Administration (NHTSA) policies and procedures for the protection of human subjects... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Protection of...

  18. 48 CFR 1252.223-72 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....223-72 Protection of human subjects. As prescribed in (TAR) 48 CFR 1223.7000(b), insert the following... Traffic Safety Administration (NHTSA) policies and procedures for the protection of human subjects... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Protection of...

  19. Inactivity of human β,β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment

    PubMed Central

    Li, Binxing; Vachali, Preejith P.; Gorusupudi, Aruna; Shen, Zhengqing; Sharifzadeh, Hassan; Besch, Brian M.; Nelson, Kelly; Horvath, Madeleine M.; Frederick, Jeanne M.; Baehr, Wolfgang; Bernstein, Paul S.

    2014-01-01

    The macula of the primate retina uniquely concentrates high amounts of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin, but the underlying biochemical mechanisms for this spatial- and species-specific localization have not been fully elucidated. For example, despite abundant retinal levels in mice and primates of a binding protein for zeaxanthin and meso-zeaxanthin, the pi isoform of glutathione S-transferase (GSTP1), only human and monkey retinas naturally contain detectable levels of these carotenoids. We therefore investigated whether or not differences in expression, localization, and activity between mouse and primate carotenoid metabolic enzymes could account for this species-specific difference in retinal accumulation. We focused on β,β-carotene-9′,10′-dioxygenase (BCO2, also known as BCDO2), the only known mammalian xanthophyll cleavage enzyme. RT-PCR, Western blot analysis, and immunohistochemistry (IHC) confirmed that BCO2 is expressed in both mouse and primate retinas. Cotransfection of expression plasmids of human or mouse BCO2 into Escherichia coli strains engineered to produce zeaxanthin demonstrated that only mouse BCO2 is an active zeaxanthin cleavage enzyme. Surface plasmon resonance (SPR) binding studies showed that the binding affinities between human BCO2 and lutein, zeaxanthin, and meso-zeaxanthin are 10- to 40-fold weaker than those for mouse BCO2, implying that ineffective capture of carotenoids by human BCO2 prevents cleavage of xanthophyll carotenoids. Moreover, BCO2 knockout mice, unlike WT mice, accumulate zeaxanthin in their retinas. Our results provide a novel explanation for how primates uniquely concentrate xanthophyll carotenoids at high levels in retinal tissue. PMID:24982131

  20. Cell-mediated immunity in F 344 rats bearing intraocular tumors derived from human adenovirus 12-induced retinal tumor.

    PubMed

    Kobayashi, M; Mukai, N; Solish, S P; Sawada, T; Pomeroy, M E

    1983-10-01

    The eyes of 10 F344 rats were inoculated with retinal tumor cells (EXP-5 cell line) induced by human adenovirus 12. The animals were killed at 4 weeks thereafter, and the cytotoxicity of their lymphocytes was investigated by using 51Cr-releasing assay. The percentage of EXP-5 cells killed in vitro by lymphocytes was higher in 10 rats with ocular tumors (24.6% +/- 6.1%, mean +/- SD) than in 10 control rats (6.2% +/- 1.8%). Morphologic investigation using syngeneic spleen cells confirmed the presence of lymphoid cells, resembling T-lymphocytes, adhering to EXP-5 cells. The influence of subcutaneous injection of EXP-5 cells on the growth of intravitreously injected tumor cells was investigated. Cells injected subcutaneously prior to intravitreous injection elicited an immune response that was capable of controlling vitreous tumor growth. These findings suggest that the rats with transplanted retinal tumors develop a cell-mediated immune response in the early stage of tumor bearing, and that a state of pre-existing specific immunity can overcome so-called "immunologic privilege" of the vitreous body.

  1. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium.

    PubMed

    Calejo, Maria Teresa; Ilmarinen, Tanja; Jongprasitkul, Hatai; Skottman, Heli; Kellomäki, Minna

    2016-07-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in developed countries, characterised by the degeneration of the retinal pigment epithelium (RPE), a pigmented cell monolayer that closely interacts with the photoreceptors. RPE transplantation is thus considered a very promising therapeutic option to treat this disease. In this work, porous honeycomb-like films are for the first time investigated as scaffold materials for human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE). By changing the conditions during film preparation, it was possible to produce films with homogeneous pore distribution and adequate pore size (∼3-5 µm), that is large enough to ensure high permeability but small enough to enable cell adherence and spreading. A brief dip-coating procedure with collagen type IV enabled the homogeneous adsorption of the protein to the walls and bottom of pores, increasing the hydrophilicity of the surface. hESC-RPE adhered and proliferated on all the collagen-coated materials, regardless of small differences in pore size. The differentiation of hESC-RPE was confirmed by the detection of specific RPE protein markers. These results suggest that the porous honeycomb films can be promising candidates for hESC-RPE tissue engineering, importantly enabling the free flow of ions and molecules across the material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1646-1656, 2016.

  2. Retinal cartography.

    PubMed

    Mosier, M A

    1982-10-01

    This paper analyses retinal cartography in terms of its reflection of anatomic data and its relation to several forms of geographic methods of map-making. It shows that the distances between anatomic landmarks of the eye are reasonably similar to the relative distances on the retinal drawing chart currently used. Two forms of geographic cartography--azimuth equidistant and orthographic--are described and compared with retinal cartography. The retinal drawing chart currently used most closely approximates an azimuth equidistant projection, which suffers from circumferential distortion, a fact that retinal surgeons must keep in mind. It is therefore recommended that the chart be modified to have equally spaced concentric circles and clearer identification of the ora serrata; the present accurate marking of anatomic landmarks, such as the equator and the posterior border of the ciliary body, should be preserved.

  3. The protection of rat retinal ganglion cells from ischemia/reperfusion injury by the inhibitory peptide of mitochondrial μ-calpain.

    PubMed

    Ozaki, Taku; Yamashita, Tetsuro; Tomita, Hiroshi; Sugano, Eriko; Ishiguro, Sei-Ichi

    2016-09-30

    Intracellular Ca(2+)-dependent cysteine proteases such as calpains have been suggested as critical factors in retinal ganglion cell (RGC) death. However, it is unknown whether mitochondrial calpains are involved in RGC death. The purpose of the present study was to determine whether the inhibition of mitochondrial μ-calpain activity protects against RGC death during ischemia/reperfusion (I/R) injury. This study used a well-established rat model of experimental acute glaucoma involving I/R injury. A specific peptide inhibitor of mitochondrial μ-calpain, Tat-μCL, was topically applied to rats via eye drops three times a day for 5 days after I/R. RGC death was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The truncation of apoptosis-inducing factor (AIF) was determined by western blot analyses. Retinal morphology was determined after staining with hematoxyline and eosin. In addition, the number of Fluoro Gold-labeled RGCs in flat-mounted retinas was used to determine the percentage of surviving RGCs after I/R injury. After 1 day of I/R, RGC death was observed in the ganglion cell layer. Treatment with Tat-μCL eye drops significantly prevented the death of RGCs and the truncation of AIF. After 5 days of I/R, RGC death decreased by approximately 40%. However, Tat-μCL significantly inhibited the decrease in the retinal sections and flat-mounted retinas. The results suggested that mitochondrial μ-calpain is associated with RGC death during I/R injury via truncation of AIF. In addition, the inhibition of mitochondrial μ-calpain activity by Tat-μCL had a neuroprotective effect against I/R-induced RGC death. PMID:27596965

  4. 45 CFR 63.31 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Protection of human subjects. 63.31 Section 63.31 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED... Protection of human subjects. All grants made pursuant to this part are subject to the specific provisions...

  5. 48 CFR 1523.303-70 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Protection of human... Hazardous Material and Material Safety Data 1523.303-70 Protection of human subjects. Contracting Officers shall insert the contract clause at 1552.223-70 when the contract involves human test subjects....

  6. 45 CFR 63.31 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Protection of human subjects. 63.31 Section 63.31 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED... Protection of human subjects. All grants made pursuant to this part are subject to the specific provisions...

  7. 48 CFR 1523.303-70 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Protection of human... Hazardous Material and Material Safety Data 1523.303-70 Protection of human subjects. Contracting Officers shall insert the contract clause at 1552.223-70 when the contract involves human test subjects....

  8. 48 CFR 252.235-7004 - Protection of Human Subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements of 32 CFR Part 219, as well as the terms of the assurance, which the Human Research Protection...) component (32 CFR 219.103). (2) Human Research Protection Official (HRPO) means the individual designated by... information (32 CFR 219.102(f)). For example, this could include the use of human organs, tissue, and...

  9. 48 CFR 252.235-7004 - Protection of Human Subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements of 32 CFR Part 219, as well as the terms of the assurance, which the Human Research Protection...) component (32 CFR 219.103). (2) Human Research Protection Official (HRPO) means the individual designated by... information (32 CFR 219.102(f)). For example, this could include the use of human organs, tissue, and...

  10. 45 CFR 63.31 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Protection of human subjects. 63.31 Section 63.31 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED... Protection of human subjects. All grants made pursuant to this part are subject to the specific provisions...

  11. 45 CFR 63.31 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Protection of human subjects. 63.31 Section 63.31 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED... Protection of human subjects. All grants made pursuant to this part are subject to the specific provisions...

  12. 48 CFR 252.235-7004 - Protection of Human Subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements of 32 CFR Part 219, as well as the terms of the assurance, which the Human Research Protection...) component (32 CFR 219.103). (2) Human Research Protection Official (HRPO) means the individual designated by... information (32 CFR 219.102(f)). For example, this could include the use of human organs, tissue, and...

  13. 48 CFR 1523.303-70 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Protection of human... Hazardous Material and Material Safety Data 1523.303-70 Protection of human subjects. Contracting Officers shall insert the contract clause at 1552.223-70 when the contract involves human test subjects....

  14. 48 CFR 1523.303-70 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Protection of human... Hazardous Material and Material Safety Data 1523.303-70 Protection of human subjects. Contracting Officers shall insert the contract clause at 1552.223-70 when the contract involves human test subjects....

  15. 48 CFR 252.235-7004 - Protection of Human Subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements of 32 CFR Part 219, as well as the terms of the assurance, which the Human Research Protection...) component (32 CFR 219.103). (2) Human Research Protection Official (HRPO) means the individual designated by... information (32 CFR 219.102(f)). For example, this could include the use of human organs, tissue, and...

  16. 48 CFR 1523.303-70 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Protection of human... Hazardous Material and Material Safety Data 1523.303-70 Protection of human subjects. Contracting Officers shall insert the contract clause at 1552.223-70 when the contract involves human test subjects....

  17. 45 CFR 63.31 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Protection of human subjects. 63.31 Section 63.31 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED... Protection of human subjects. All grants made pursuant to this part are subject to the specific provisions...

  18. 48 CFR 352.270-4 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Protection of human subjects. 352.270-4 Section 352.270-4 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... following provision: Notice to Offerors of Requirements of 45 CFR Part 46, Protection of Human...

  19. Characterization and Pharmacologic Targeting of EZH2, a Fetal Retinal Protein and Epigenetic Regulator, in Human Retinoblastoma

    PubMed Central

    Khan, Mehnaz; Walters, Laura L.; Li, Qiang; Thomas, Dafydd G.; Miller, Jason M.L.; Zhang, Qitao; Sciallis, Andrew P.; Liu, Yu; Dlouhy, Brian J.; Fort, Patrice E.; Archer, Steven M.; Demirci, Hakan; Dou, Yali; Rao, Rajesh C.

    2015-01-01

    Retinoblastoma (RB) is the most common primary intraocular cancer in children, a nd the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin embedded human RB tissue, cryopreserved mouse retina; and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal RPE and fetal and adult retina, mouse retina and embryonic stem (ES) cells. While enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i inhibitors impaired intracellular ATP production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma. PMID:26280220

  20. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter

    PubMed Central

    Luz-Madrigal, Agustín; Clapp, Carmen; Aranda, Jorge; Vaca, Luis

    2007-01-01

    Background Endothelial cells are a target for gene therapy because they are implicated in a number of vascular diseases. Recombinant baculovirus have emerged as novel gene delivery vectors. However, there is no information available concerning the use of endothelial-specific promoters in the context of the baculovirus genome. In the present study, we have generated a recombinant baculovirus containing the human flt-1 promoter (BacFLT-GFP) driving the expression of the green fluorescent protein. Transcriptional gene targeting was analyzed in vitro in different mammalian cell lines and in vivo in adult rat retinal vasculature. Results BacFLT-GFP evoked the highest levels of expression in the endothelial cell line BUVEC-E6E7-1, similar to those reached by recombinant baculovirus carrying the CMV promoter (112% relative to BacCMV-GFP, n = 4). Interestingly, BacFLT-GFP directed high levels of expression in rat glioma C6 and in human glioblastoma CH235 cells (34.78% and 47.86% relative to BacCMV-GFP, respectively). Histone deacetylase inhibitors such as butyrate or trichostatin A enhanced the transcriptional activity of both BacCMV-GFP and BacFLT-GFP. Thus, in this study histone deacetylation appears to be a central mechanism for the silencing of baculovirus, independently of the promoter utilized. In vivo transcriptional targeting was demonstrated in adult rat retinal vasculature by intravitreal delivery of BacFLT-GFP and immunohistochemical staining with von Willebrand factor (vWF). Analysis by fluorescence microscopy and deconvolved three-dimensional confocal microscopy of retinal whole mounts obtained after 3 days of baculovirus injection showed that most GFP-expressing cells localized to the inner limiting membrane (ILM) and ganglion cell layer (GCL) and colocalize with vWF (70%, n = 10) in blood vessels, confirming the endothelial phenotype of the transduced cells. Conclusion Taken together, our results indicate that the restricted expression in endothelial cells

  1. Retinal Prosthesis

    PubMed Central

    Weiland, James D.; Humayun, Mark S.

    2015-01-01

    Retinal prosthesis have been translated from the laboratory to the clinical over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials, highlights technology breakthroughs that will contribute to next generation of retinal prostheses. PMID:24710817

  2. Research Resource: Nuclear Receptor Atlas of Human Retinal Pigment Epithelial Cells: Potential Relevance to Age-Related Macular Degeneration

    PubMed Central

    Dwyer, Mary A.; Kazmin, Dmitri; Hu, Peng; McDonnell, Donald P.

    2011-01-01

    Retinal pigment epithelial (RPE) cells play a vital role in retinal physiology by forming the outer blood–retina barrier and supporting photoreceptor function. Retinopathies including age-related macular degeneration (AMD) involve physiological and pathological changes in the epithelium, severely impairing the retina and effecting vision. Nuclear receptors (NRs), including peroxisome proliferator-activated receptor and liver X receptor, have been identified as key regulators of physiological pathways such as lipid metabolic dysregulation and inflammation, pathways that may also be involved in development of AMD. However, the expression levels of NRs in RPE cells have yet to be systematically surveyed. Furthermore, cell culture lines are widely used to study the biology of RPE cells, without knowledge of the differences or similarities in NR expression and activity between these in vitro models and in vivo RPE. Using quantitative real-time PCR, we assessed the expression patterns of all 48 members of the NR family plus aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in human RPE cells. We profiled freshly isolated cells from donor eyes (in vivo), a spontaneously arising human cell line (in vitro), and primary cell culture lines (in vitro) to determine the extent to which NR expression in the cultured cell lines reflects that of in vivo. To evaluate the validity of using cell culture models for investigating NR receptor biology, we determined transcriptional activity and target gene expression of several moderately and highly expressed NRs in vitro. Finally, we identified a subset of NRs that may play an important role in pathobiology of AMD. PMID:21239617

  3. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    PubMed Central

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular

  4. Evaluation of an Optimized Injection System for Retinal Gene Therapy in Human Patients.

    PubMed

    Fischer, M Dominik; Hickey, Doron G; Singh, Mandeep S; MacLaren, Robert E

    2016-08-01

    Many retinal gene therapy clinical trials require subretinal injections of small volumes of adeno-associated viral (AAV) vector solutions in patients with retinal dystrophies, using equipment not specifically designed for this purpose. We therefore evaluated an optimized injection system in order to identify variables that might influence the rate of injection and final dose of vector delivered. An optimized injection system was assembled with a 41G polytetrafluoroethylene tip for retinal gene therapy. Flow rate was recorded at relevant infusion pressures (2-22 psi [14-152 kPa]), different target pressures (0.02-30 mm Hg [0.003-4 kPa]) and temperatures (18°C vs. 36°C) using a semiautomated Accurus(®) Surgical System. Retention of AAV2/8 and AAV2/8(Y733F) vector was quantified after simulating loading/injection with or without 0.001% Pluronic(®) F-68 (PF-68). The optimized injection system provided a linear flow rate (μl/s)-to-infusion pressure (psi) relationship (y = 0.62x; r(2) = 0.99), independent of temperature and pressure changes relevant for intraocular surgery (18-36°C, 0.02-30 mm Hg). Differences in length of 41G polytetrafluoroethylene tips caused significant variation in flow rate (p < 0.001). Use of PF-68 significantly (p < 0.001) reduced loss of vector genomes in the injection system by 55% (AAV2/8) and 52% (AAV2/8(Y733F)). A customized subretinal injection system assembled using equipment currently available in the operating room can deliver a controlled volume of vector at a fixed rate across a range of possible clinical parameters encountered in vitreoretinal surgery. The inclusion of 0.001% PF-68 had a significant effect on the final dose of vector genomes delivered. The described technique is currently used successfully in a clinical trial. PMID:27480111

  5. MEK/ERK pathway mediates UVB-induced AQP1 downregulation and water permeability impairment in human retinal pigment epithelial cells.

    PubMed

    Jiang, Qin; Cao, Cong; Lu, Shan; Kivlin, Rebecca; Wallin, Brittany; Chu, Wenming; Bi, Zhigang; Wang, Xinru; Wan, Yinsheng

    2009-06-01

    Aquaporins (AQPs) are a family of 13 small ( approximately 30 kDa/monomer), hydrophobic, integral membrane proteins. AQPs are expressed in various epithelial and endothelial cells involved in fluid transport. Here, we demonstrated for the first time that AQP1 is expressed in cultured human retinal pigment epithelial (RPE) cells (ARPE-19 cell line). Ultraviolet radiation (UVB) and H2O2, two major factors causing RPE cell damage, induced AQP1 downregulation which was mediated by MEK/ERK activation. UV and H2O2 as well as AQP1-specific siRNA knockdown impaired water permeability of ARPE-19 cells. Notably, pretreatment with all-trans retinoic acid attenuated UV- and H2O2-induced AQP1 downregulation and water permeability impairment. Considering that water permeability is involved in multiple functions of RPE cells such as cellular junction formation, fluid or protein exchange and barrier formation, our data elucidated a novel mechanism through which UV radiation and oxidative stress induce eye cell damage. Our results further support the notion that all-trans retinoic acid might be useful for protection against UV or oxidative stress-induced eye cell damage. PMID:19424603

  6. Retinal Disorders

    MedlinePlus

    ... be serious enough to cause blindness. Examples are Macular degeneration - a disease that destroys your sharp, central vision Diabetic eye disease Retinal detachment - a medical emergency, when the retina is ... children. Macular pucker - scar tissue on the macula Macular hole - ...

  7. PINK1 and Parkin cooperatively protect neurons against constitutively active TRP channel-induced retinal degeneration in Drosophila

    PubMed Central

    Huang, Z; Ren, S; Jiang, Y; Wang, T

    2016-01-01

    Calcium has an important role in regulating numerous cellular activities. However, extremely high levels of intracellular calcium can lead to neurotoxicity, a process commonly associated with degenerative diseases. Despite the clear role of calcium cytotoxicity in mediating neuronal cell death in this context, the pathological mechanisms remain controversial. We used a well-established Drosophila model of retinal degeneration, which involves the constitutively active TRPP365 channels, to study calcium-induced neurotoxicity. We found that the disruption of mitochondrial function was associated with the degenerative process. Further, increasing autophagy flux prevented cell death in TrpP365 mutant flies, and this depended on the PINK1/Parkin pathway. In addition, the retinal degeneration process was also suppressed by the coexpression of PINK1 and Parkin. Our results provide genetic evidence that mitochondrial dysfunction has a key role in the pathology of cellular calcium neurotoxicity. In addition, the results demonstrated that maintaining mitochondrial homeostasis via PINK1/Parkin-dependent mitochondrial quality control can potentially alleviate cell death in a wide range of neurodegenerative diseases. PMID:27054334

  8. Involvement of TonEBP/NFAT5 in osmoadaptative response of human retinal pigmented epithelial cells to hyperosmolar stress

    PubMed Central

    Libert, Sarah; Willermain, François; Weber, Célia; Bryla, Angélic; Salik, Dany; Gregoire, Françoise; Bolaky, Nargis; Caspers, Laure; Perret, Jason

    2016-01-01

    Purpose: Macular edema, a frequently encountered complication of diabetic retinopathy (DR), results from alterations of the blood retinal barrier (BRB) and leads to modifications of the retinal pigmented epithelium (RPE) functions. Osmolar changes of the surrounding medium could be responsible for modifications of the RPE functions leading to disturbance of retinal homeostasis. The expression, activation and function of the key hyperosmolar response factor Tonicity Enhancer Binding Protein (TonEBP also called nuclear factor of activated T-cell 5 - NFTA5) was investigated in ARPE-19 cells, derived from human RPE, in response to hyperosmolar stimulation. Methods: ARPE-19 cells were exposed to hyperosmolar medium. TonEBP mRNA and protein levels were quantified by qRT-PCR and semi-quantitative Western blot. TonEBP nuclear translocation was investigated by immunofluorescence. TonEBP transactivation activity was measured using a reported plasmid containing TonEBP binding sites. Results: In response to hyperosmolar stimulation of ARPE-19 cells, a dose-dependent increase in TonEBP mRNA and protein levels, as well as TonEBP nuclear translocation were observed. TonEBP transactivation activity was further demonstrated using a reporter plasmid containing TonEBP binding sites. A dominant negative form of TonEBP abolished NaCl-induced increase in TonEBP transactivation activity, and inhibited the increase of the target genes aldose reductase and sodium-dependent taurine transporter mRNA levels. SB203580, an inhibitor of two of the p38 protein kinase’s isoforms (p38α and p38β) inhibited the TonEBP nuclear translocation and transactivation activity in ARPE-19 cells exposed to hyperosmolar stimulation. Conclusions: Our data demonstrates the involvement of TonEBP in the mechanisms responsible for osmoadaptation to hyperosmolar stress in RPE cells. Given the emerging role of TonEBP in different pathological pathways, these data open new perspectives for the analysis of the

  9. Pathway to Retinal Oximetry

    PubMed Central

    Beach, James

    2014-01-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry. PMID:25237591

  10. Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply

    PubMed Central

    Bui, Bang V.

    2016-01-01

    Regional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a) the smallest vessels of the circulation make a comparable contribution, and b) the response should be localised intermittently along such vessels, due to the known distribution of contractile mural cells. To assess these hypotheses in human neural tissue in vivo, we imaged the retinal microvasculature (diameters 3–28 μm) non-invasively, using adaptive optics, before and after delivery of focal (360 μm) patches of flickering visible light. Our results demonstrated a definite average response in 35% of all vessel segments analysed. In these responding vessels, the magnitude of proportional dilation (mean ± SEM for pre-capillary arterioles 13 ± 5%, capillaries 31 ± 8%, and post-capillary venules 10 ± 3%) is generally far greater than the magnitudes we and others have measured in the larger retinal vessels, supporting proposition a) above. The dilations observed in venules were unexpected based on previous animal work, and may be attributed either to differences in stimulus or species. Response heterogeneity across the network was high; responses were also heterogeneous along individual vessels (45% of vessel segments showed demonstrable locality in their response). These observations support proposition b) above. We also observed a definite average constriction across 7% of vessel segments (mean ± SEM constriction for capillaries -16 ± 3.2%, and post-capillary venules -18 ± 12%), which paints a picture of dynamic redistribution of flow throughout the smallest vessel networks in the retina in response to local, stimulus-driven metabolic demand. PMID:27617960

  11. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells

    SciTech Connect

    Tagami, Mizuki; Kusuhara, Sentaro; Imai, Hisanori; Uemura, Akiyoshi; Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira

    2010-10-01

    Research highlights: {yields} Exogenous VEGF decreases MRP4 expression in a dose-dependent manner. {yields} MRP4 knockdown leads to enhanced cell migration. {yields} MRP4 knockdown suppresses caspase-3-mediated cell apoptosis. {yields} MRP4 knockdown produces cell assembly and cell aggregation. -- Abstract: The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  12. Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply.

    PubMed

    Duan, Angelina; Bedggood, Phillip A; Bui, Bang V; Metha, Andrew B

    2016-01-01

    Regional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a) the smallest vessels of the circulation make a comparable contribution, and b) the response should be localised intermittently along such vessels, due to the known distribution of contractile mural cells. To assess these hypotheses in human neural tissue in vivo, we imaged the retinal microvasculature (diameters 3-28 μm) non-invasively, using adaptive optics, before and after delivery of focal (360 μm) patches of flickering visible light. Our results demonstrated a definite average response in 35% of all vessel segments analysed. In these responding vessels, the magnitude of proportional dilation (mean ± SEM for pre-capillary arterioles 13 ± 5%, capillaries 31 ± 8%, and post-capillary venules 10 ± 3%) is generally far greater than the magnitudes we and others have measured in the larger retinal vessels, supporting proposition a) above. The dilations observed in venules were unexpected based on previous animal work, and may be attributed either to differences in stimulus or species. Response heterogeneity across the network was high; responses were also heterogeneous along individual vessels (45% of vessel segments showed demonstrable locality in their response). These observations support proposition b) above. We also observed a definite average constriction across 7% of vessel segments (mean ± SEM constriction for capillaries -16 ± 3.2%, and post-capillary venules -18 ± 12%), which paints a picture of dynamic redistribution of flow throughout the smallest vessel networks in the retina in response to local, stimulus-driven metabolic demand. PMID:27617960

  13. Experimental endostatin-GFP gene transfection into human retinal vascular endothelial cells using ultrasound-targeted cationic microbubble destruction

    PubMed Central

    Xu, Yan; Xie, Zongyuan; Zhou, Yu; Zhou, Xiyuan; Li, Pan; Wang, Zhigang

    2015-01-01

    Purpose The purpose of this study was to investigate whether ultrasound-targeted cationic microbubble destruction could effectively deliver endostatin-green fluorescent protein (ES-GFP) plasmids to human retinal vascular endothelial cells (HRECs). Methods Cationic microbubbles (CMBs) were prepared and then compared with neutral microbubbles (NMBs) and liposomes. First, the two types of microbubbles were characterized in terms of size and zeta potential. The cell viability of the HRECs was measured using the 3-(4,5-dimthylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide (MTT) assay. The transcription and expression of endostatin, VEGF, Bcl-2, and Bcl-xl were measured via quantitative real-time PCR (qPCR) and western blotting, respectively. Results CMBs differed significantly from NMBs in terms of the zeta potential, but no differences in size were detected. Following ultrasound-targeted microbubble destruction (UTMD)-mediated gene therapy, the transcription and expression of endostatin were highest in the CMB group (p<0.05), while the transcription and expression of VEGF, Bcl-2, and Bcl-xl were lowest compared with the other groups. Moreover, the inhibition of HREC growth was enhanced following treatment with CMBs compared with NMBs or liposomes in vitro (p<0.01). Conclusions This study demonstrated that ultrasound-mediated cationic microbubbles could enhance the transfection efficiency of ES-GFP, which had obvious impacts on the inhibition of the growth process of HRECs in vitro. These results suggest that the combination of UTMD and ES-GFP compounds might be a useful tool for gene therapy targeting retinal neovascularization. PMID:26321867

  14. Bioelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  15. 48 CFR 1352.235-70 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Protection of human subjects. As prescribed in 48 CFR 1335.006(a), insert the following provision: Protection... from 15 CFR part 27. These categories may be found at 15 CFR 27.101(b). (c) In the event the human... Department of Commerce at 15 CFR part 27, requires contractors to maintain appropriate policies...

  16. 48 CFR 1352.235-70 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Protection of human subjects. As prescribed in 48 CFR 1335.006(a), insert the following provision: Protection... from 15 CFR Part 27. These categories may be found at 15 CFR 27.101(b). (c) In the event the human... Department of Commerce at 15 CFR Part 27, requires contractors to maintain appropriate policies...

  17. 48 CFR 1352.235-70 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Protection of human subjects. As prescribed in 48 CFR 1335.006(a), insert the following provision: Protection... from 15 CFR part 27. These categories may be found at 15 CFR 27.101(b). (c) In the event the human... Department of Commerce at 15 CFR part 27, requires contractors to maintain appropriate policies...

  18. 48 CFR 1352.235-70 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Protection of human subjects. As prescribed in 48 CFR 1335.006(a), insert the following provision: Protection... from 15 CFR part 27. These categories may be found at 15 CFR 27.101(b). (c) In the event the human... Department of Commerce at 15 CFR part 27, requires contractors to maintain appropriate policies...

  19. 48 CFR 1352.235-70 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Protection of human subjects. As prescribed in 48 CFR 1335.006(a), insert the following provision: Protection... from 15 CFR part 27. These categories may be found at 15 CFR 27.101(b). (c) In the event the human... Department of Commerce at 15 CFR part 27, requires contractors to maintain appropriate policies...

  20. In vitro interaction between coxsackievirus B3 VP1 protein and human pleckstrin homology domain retinal protein (PHR1).

    PubMed

    Zhou, Ying; Zhang, Zhiqin; Wang, Hongluan; Xia, Yanhua; Li, Xiuzhen; Yan, Yan; Zou, Weiwen; Zeng, Lingbing; Huang, Xiaotian

    2015-10-01

    Coxsackievirus B3 (CVB3) infection causes central nervous system diseases including aseptic meningitis and encephalitis. To understand the mechanism of this virus, a yeast two-hybrid system was used to screen cellular proteins from a human heart cDNA library. The results revealed that the human Pleckstrin Homology Domain Retinal protein (PHR1), a PH domain-containing protein with low expression in the heart and high expression in the brain, interacts with CVB3 VP1, a major structural protein of CVB3. Yeast mating assays and in vitro coimmunoprecipitation verified the interaction between CVB3 VP1 and PHR1. An α-galactosidase assay indicated that of α-galactosidase activity was higher in positive clones than in controls suggesting a strong interaction. Furthermore, assay of deletion mutants defined the minimal region of PHR1 required for its interaction with VP1 as amino acids 95-172 and two regions of VP1 required for its interaction with PHR1 as amino acids 729-767 and 811-859. The results revealed multiple binding sites between PHR1 and CVB3 VP1 and suggested that the strong interaction between these two proteins might play an important role in central nervous system disease in the human brain.

  1. Photoreceptor Rescue by an Abbreviated Human RPGR Gene in a Murine Model of X-linked Retinitis Pigmentosa

    PubMed Central

    Pawlyk, Basil S.; Adamian, Michael; Sun, Xun; Bulgakov, Oleg V.; Shu, Xinhua; Smith, Alexander J.; Berson, Eliot L.; Ali, Robin R.; Khani, Shahrokh; F.Wright, Alan; Sandberg, Michael A.; Li, Tiansen

    2015-01-01

    The X-linked RP3 gene codes for the ciliary protein RPGR and accounts for over 10% of inherited retinal degenerations. The critical RPGR-ORF15 splice variant contains a highly repetitive purine-rich linker region that renders it unstable and difficult to adapt for gene therapy. To test the hypothesis that the precise length of the linker region is not critical for function, we evaluated whether AAV-mediated replacement gene therapy with a human ORF15 variant containing in-frame shortening of the linker region could reconstitute RPGR function in vivo. We delivered human RPGR-ORF15 replacement genes with deletion of most (314-codons, “short form”) or 1/3 (126-codons, “long form”) of the linker region to Rpgr null mice. Human RPGR-ORF15 expression was detected post-treatment with both forms of ORF15 transgenes. However, only the long form correctly localized to the connecting cilia and led to significant functional and morphological rescue of rods and cones. Thus the highly repetitive region of RPGR is functionally important but that moderate shortening of its length, which confers the advantage of added stability, preserves its function. These findings provide a theoretical basis for optimizing replacement gene design in clinical trials for X-linked RP3. PMID:26348595

  2. Neutron effects in humans: protection considerations

    SciTech Connect

    Fry, R.J.M.

    1985-01-01

    Committee I of the International Commission on Radiological Protection has recommended that the Quality Factor for neutrons should be changed from 10 to 20. This article is an interesting recount of the tale of Q from the viewpoint of an observer which illustrates many of the problems that the selection of protection standards pose. 32 refs., 5 tabs.

  3. Decreased glutathione transferase levels in rd1/rd1 mouse retina: replenishment protects photoreceptors in retinal explants.

    PubMed

    Ahuja, P; Caffé, A R; Ahuja, S; Ekström, P; van Veen, T

    2005-01-01

    Currently much attention is focused on glutathione S transferase (GST)-induced suppression of apoptosis. The objective of our studies was therefore to see if GST isoenzymes rescue photoreceptors in retinal explants from rd1/rd1 mice, in which photoreceptors degenerate rapidly. Eyes from C3H rd1/rd1 and +/+ mice were collected at various time points between postnatal day (PN) 2 and PN28. Localization and content of alpha-GST and mu-GST was investigated by immunofluorescence and semi-quantitative Western blot analysis, respectively. In addition, PN2 and PN7 retinal explants were cultured till PN28, during which they were treated with 10 ng/ml alpha-GST or mu-GST. The spatiotemporal expression of both GST isoforms was closely similar: early presence in ganglion cell layer after which staining became restricted to Muller cells (particularly in the endfeet) and horizontal cell fibers in both rd1/rd1 and +/+. Doublets of alpha-GST and mu-GST were detected by Western blot analysis. Densitometry of these bands indicated steady reduction of alpha-GST content in rd1/rd1 retina starting from the second postnatal week. When alpha-GST and mu-GST were added exogenously to rd1/rd1 explants, photoreceptor rescue was produced that was more prominent in PN2 than in PN7 explants and more effective by alpha-GST than mu-GST. We propose that alpha-GST neuroprotection is mediated by reduction of tissue oxidative stress. PMID:15749346

  4. Method and system for the diagnosis of disease using retinal image content and an archive of diagnosed human patient data

    DOEpatents

    Tobin, Kenneth W; Karnowski, Thomas P; Chaum, Edward

    2013-08-06

    A method for diagnosing diseases having retinal manifestations including retinal pathologies includes the steps of providing a CBIR system including an archive of stored digital retinal photography images and diagnosed patient data corresponding to the retinal photography images, the stored images each indexed in a CBIR database using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the stored images. A query image of the retina of a patient is obtained. Using image processing, regions or structures in the query image are identified. The regions or structures are then described using the plurality of feature vectors. At least one relevant stored image from the archive based on similarity to the regions or structures is retrieved, and an eye disease or a disease having retinal manifestations in the patient is diagnosed based on the diagnosed patient data associated with the relevant stored image(s).

  5. Optimization of In Vivo Confocal Autofluorescence Imaging of the Ocular Fundus in Mice and Its Application to Models of Human Retinal Degeneration

    PubMed Central

    Issa, Peter Charbel; Singh, Mandeep S.; Lipinski, Daniel M.; Chong, Ngaihang V.; Delori, François C.; Barnard, Alun R.; MacLaren, Robert E.

    2012-01-01

    Purpose. To investigate the feasibility and to identify sources of experimental variability of quantitative and qualitative fundus autofluorescence (AF) assessment in mice. Methods. Blue (488 nm) and near-infrared (790 nm) fundus AF imaging was performed in various mouse strains and disease models (129S2, C57Bl/6, Abca4−/−, C3H-Pde6brd1/rd1, Rho−/−, and BALB/c mice) using a commercially available scanning laser ophthalmoscope. Gray-level analysis was used to explore factors influencing fundus AF measurements. Results. A contact lens avoided cataract development and resulted in consistent fundus AF recordings. Fundus illumination and magnification were sensitive to changes of the camera position. Standardized adjustment of the recorded confocal plane and consideration of the pupil area allowed reproducible recording of fundus AF from the retinal pigment epithelium with an intersession coefficient of repeatability of ±22%. Photopigment bleaching occurred during the first 1.5 seconds of exposure to 488 nm blue light (∼10 mW/cm2), resulting in an increase of fundus AF. In addition, there was a slight decrease in fundus AF during prolonged blue light exposure. Fundus AF at 488 nm was low in animals with an absence of a normal visual cycle, and high in BALB/c and Abca4−/− mice. Degenerative alterations in Pde6brd1/rd1 and Rho−/− were reminiscent of findings in human retinal disease. Conclusions. Investigation of retinal phenotypes in mice is possible in vivo using standardized fundus AF imaging. Correlation with postmortem analysis is likely to lead to further understanding of human disease phenotypes and of retinal degenerations in general. Fundus AF imaging may be useful as an outcome measure in preclinical trials, such as for monitoring effects aimed at lowering lipofuscin accumulation in the retinal pigment epithelium. PMID:22169101

  6. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2.

    PubMed

    Phillips, M Joseph; Perez, Enio T; Martin, Jessica M; Reshel, Samantha T; Wallace, Kyle A; Capowski, Elizabeth E; Singh, Ruchira; Wright, Lynda S; Clark, Eric M; Barney, Patrick M; Stewart, Ron; Dickerson, Sarah J; Miller, Michael J; Percin, E Ferda; Thomson, James A; Gamm, David M

    2014-06-01

    Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny. PMID:24532057

  7. Facilitation of uniform maturation of human retinal pigment epithelial cells through collective movement in culture.

    PubMed

    Sonoi, Rie; Kim, Mee-Hae; Kino-Oka, Masahiro

    2016-02-01

    Understanding of the fundamental mechanisms that govern tight junction formation of retinal pigment epithelial (RPE) cells provides surface design strategies for promoting their maturation in culture. RPE cells were cultured to investigate their migratory behavior and the expression of tight junction protein ZO-1 in the central and peripheral regions of a culture vessel. Regardless of locational differences in the culture vessel, the cells at day 1 were elongated in shape, did not form tight junctions, and migrated actively. As the culture progressed, the cells in the central region slowly moved with morphological change of a cobblestone-like shape via interaction between contact cells and exhibiting the shift from random migration to collective movement toward the center, accompanied by tight junction formation. On the other hand, the cells in the peripheral region maintained the random migration at day 5, meaning spatial heterogeneity in maturation in the vessel. At day 5, RPE cells were incubated in medium with Rac1 inhibitor and the exposure to the Rac1 inhibitor triggered the rapid conversion of migratory behavior from random migration to collective movement toward the center of the vessel, resulting in uniform maturation. These findings indicate that the change in migratory patterns is an important cues and the collective movement toward the center causes the facilitation of uniform maturation in the vessel.

  8. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT.

    PubMed

    Sugita, Mitsuro; Pircher, Michael; Zotter, Stefan; Baumann, Bernhard; Roberts, Philipp; Makihira, Tomoyuki; Tomatsu, Nobuhiro; Sato, Makoto; Vass, Clemens; Hitzenberger, Christoph K

    2015-03-01

    We present a new semi-automatic processing method for retinal nerve fiber bundle tracing based on polarization sensitive optical coherence tomography (PS-OCT) data sets. The method for tracing is based on a nerve fiber orientation map that covers the fovea and optic nerve head (ONH) regions. In order to generate the orientation map, two types of information are used: optic axis orientation based on polarization data, and complementary information obtained from nerve fiber layer (NFL) local thickness variation to reveal fiber bundle structures around the fovea. The corresponding two orientation maps are fused into a combined fiber orientation map. En face maps of NFL retardation, thickness, and unit-depth-retardation (UDR, equivalent to birefringence) are transformed into "along-trace" maps by using the obtained traces of the nerve fiber bundles. The method is demonstrated in the eyes of healthy volunteers, and as an example of further analyses utilizing this method, maps illustrating the gradients of NFL retardation, thickness, and UDR are demonstrated.

  9. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT.

    PubMed

    Sugita, Mitsuro; Pircher, Michael; Zotter, Stefan; Baumann, Bernhard; Roberts, Philipp; Makihira, Tomoyuki; Tomatsu, Nobuhiro; Sato, Makoto; Vass, Clemens; Hitzenberger, Christoph K

    2015-03-01

    We present a new semi-automatic processing method for retinal nerve fiber bundle tracing based on polarization sensitive optical coherence tomography (PS-OCT) data sets. The method for tracing is based on a nerve fiber orientation map that covers the fovea and optic nerve head (ONH) regions. In order to generate the orientation map, two types of information are used: optic axis orientation based on polarization data, and complementary information obtained from nerve fiber layer (NFL) local thickness variation to reveal fiber bundle structures around the fovea. The corresponding two orientation maps are fused into a combined fiber orientation map. En face maps of NFL retardation, thickness, and unit-depth-retardation (UDR, equivalent to birefringence) are transformed into "along-trace" maps by using the obtained traces of the nerve fiber bundles. The method is demonstrated in the eyes of healthy volunteers, and as an example of further analyses utilizing this method, maps illustrating the gradients of NFL retardation, thickness, and UDR are demonstrated. PMID:25798324

  10. Reprogramming Human Retinal Pigmented Epithelial Cells to Neurons Using Recombinant Proteins

    PubMed Central

    Hu, Qirui; Chen, Renwei; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Somatic cells can be reprogrammed to an altered lineage by overexpressing specific transcription factors. To avoid introducing exogenous genetic material into the genome of host cells, cell-penetrating peptides can be used to deliver transcription factors into cells for reprogramming. Position-dependent C-end rule (CendR) cell- and tissue-penetrating peptides provide an alternative to the conventional cell-penetrating peptides, such as polyarginine. In this study, we used a prototypic, already active CendR peptide, RPARPAR, to deliver the transcription factor SOX2 to retinal pigmented epithelial (RPE) cells. We demonstrated that RPE cells can be directly reprogrammed to a neuronal fate by introduction of SOX2. Resulting neuronal cells expressed neuronal marker mRNAs and proteins and downregulated expression of RPE markers. Cells produced extensive neurites and developed synaptic machinery capable of dye uptake after depolarization with potassium. The RPARPAR-mediated delivery of SOX2 alone was sufficient to allow cell lineage reprogramming of both fetal and stem cell-derived RPE cells to become functional neurons. PMID:25298373

  11. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal

    PubMed Central

    Nossoni, Zahra; Assar, Zahra; Yapici, Ipek; Nosrati, Meisam; Wang, Wenjing; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James

    2014-01-01

    Cellular retinol-binding proteins (CRBPs) I and II, which are members of the intracellular lipid-binding protein (iLBP) family, are retinoid chaperones that are responsible for the intracellular transport and delivery of both retinol and retinal. Although structures of retinol-bound CRBPI and CRBPII are known, no structure of a retinal-bound CRBP has been reported. In addition, the retinol-bound human CRBPII (hCRBPII) structure shows partial occupancy of a non­canonical conformation of retinol in the binding pocket. Here, the structure of retinal-bound hCRBPII and the structure of retinol-bound hCRBPII with retinol fully occupying the binding pocket are reported. It is further shown that the retinoid derivative seen in both the zebrafish CRBP and the hCRBPII structures is likely to be the product of flux-dependent and wavelength-dependent X-ray damage during data collection. The structures of retinoid-bound CRBPs are compared and contrasted, and rationales for the differences in binding affinities for retinal and retinol are provided. PMID:25478840

  12. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal.

    PubMed

    Nossoni, Zahra; Assar, Zahra; Yapici, Ipek; Nosrati, Meisam; Wang, Wenjing; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James

    2014-12-01

    Cellular retinol-binding proteins (CRBPs) I and II, which are members of the intracellular lipid-binding protein (iLBP) family, are retinoid chaperones that are responsible for the intracellular transport and delivery of both retinol and retinal. Although structures of retinol-bound CRBPI and CRBPII are known, no structure of a retinal-bound CRBP has been reported. In addition, the retinol-bound human CRBPII (hCRBPII) structure shows partial occupancy of a noncanonical conformation of retinol in the binding pocket. Here, the structure of retinal-bound hCRBPII and the structure of retinol-bound hCRBPII with retinol fully occupying the binding pocket are reported. It is further shown that the retinoid derivative seen in both the zebrafish CRBP and the hCRBPII structures is likely to be the product of flux-dependent and wavelength-dependent X-ray damage during data collection. The structures of retinoid-bound CRBPs are compared and contrasted, and rationales for the differences in binding affinities for retinal and retinol are provided. PMID:25478840

  13. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin

    PubMed Central

    Chiang, Wei-Chieh; Joseph, Victory; Matthes, Michael T.; Lewin, Alfred S.; Gorbatyuk, Marina S.; Ahern, Kelly; LaVail, Matthew M.

    2016-01-01

    RHO (Rod opsin) encodes a G-protein coupled receptor that is expressed exclusively by rod photoreceptors of the retina and forms the essential photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin disease mutations cause rod opsin protein misfolding and trigger endoplasmic reticulum (ER) stress, leading to activation of the Unfolded Protein Response (UPR) signal transduction network. Chop is a transcriptional activator that is induced by ER stress and promotes cell death in response to chronic ER stress. Here, we examined the role of Chop in transgenic mice expressing human P23H rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception of one time point, we found no significant induction of Chop in these animals and no significant change in retinal degeneration by histology and electrophysiology when hP23H Rho Tg animals were bred into a Chop−/− background. Our results indicate that Chop does not play a significant causal role during retinal degeneration in these animals. We suggest that other modules of the ER stress-induced UPR signaling network may be involved photoreceptor disease induced by P23H rhodopsin. PMID:26427410

  14. Prospects of Stem Cells for Retinal Diseases.

    PubMed

    Ng, Tsz Kin; Lam, Dennis S C; Cheung, Herman S

    2013-01-01

    Retinal diseases, including glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration, are the leading causes of irreversible visual impairment and blindness in developed countries. Traditional and current treatment regimens are based on surgical or medical interventions to slow down the disease progression. However, the number of retinal cells would continue to diminish, and the diseases could not be completely cured. There is an emerging role of stem cells in retinal research. The stem cell therapy on retinal diseases is based on 2 theories: cell replacement therapy and neuroprotective effect. The former hypothesizes that new retinal cells could be regenerated from stem cells to substitute the damaged cells in the diseased retina, whereas the latter believes that the paracrine effects of stem cells modulate the microenvironments of the diseased retina so as to protect the retinal neurons. This article summarizes the choice of stem cells in retinal research. Moreover, the current progress of retinal research on stem cells and the clinical applications of stem cells on retinal diseases are reviewed. In addition, potential challenges and future prospects of retinal stem cell research are discussed.

  15. Efficiency of Membrane Protein Expression Following Infection with Recombinant Adenovirus of Polarized Non-Transformed Human Retinal Pigment Epithelial Cells.

    PubMed

    Müller, Claudia; Blenkinsop, Timothy A; Stern, Jeffrey H; Finnemann, Silvia C

    2016-01-01

    Transient expression of exogenous proteins facilitates studies of molecular mechanisms and utility for transplantation of retinal pigment epithelial (RPE) cells in culture. Here, we compared expression of the membrane protein β5 integrin-GFP (β5-GFP) in two recently established models of differentiated human RPE, adult RPE stem cell-derived RPE and primary fetal RPE, upon infection with recombinant adenovirus or transfection with DNA in liposomes. We varied viral titer and duration of virus incubation and examined β5-GFP and the tight junction marker ZO-1 in manipulated cells by confocal microscopy. Fewer than 5 % of cells expressed β5-GFP after liposome-mediated transfection. The percentage of cells with detectable β5-GFP exceeded 90 % after adenovirus infection for as little as 1 h. Decreasing virus titer two-fold did not alter the fraction of cells expressing β5-GFP but increased variability of β5-GFP level among cells. In cells with low expression levels, β5-GFP localized mostly to the apical plasma membrane like endogenous αvβ5 integrin. In cells with high expression levels, β5-GFP localized to the cytoplasm in addition to the apical surface suggesting accumulation in trafficking compartments. Altogether, adenovirus delivery yields efficient exogenous membrane protein expression of correct polarity in differentiated human RPE cells in culture. PMID:26427482

  16. Glycoconjugates in human milk: protecting infants from disease.

    PubMed

    Peterson, Robyn; Cheah, Wai Yuen; Grinyer, Jasmine; Packer, Nicolle

    2013-12-01

    Breastfeeding is known to have many health benefits for a newborn. Not only does human milk provide an excellent source of nutrition, it also contains components that protect against infection from a wide range of pathogens. Some of the protective properties of human milk can be attributed to the immunoglobulins. Yet, there is another level of defense provided by the "sweet" protective agents that human milk contains, including free oligosaccharides, glycoproteins and glycolipids. Sugar epitopes in human milk are similar to the glycan receptors that serve as pathogen adhesion sites in the human gastrointestinal tract and other epithelial cell surfaces; hence, the milk glycans can competitively bind to and remove the disease-causing microorganisms before they cause infection. The protective value of free oligosaccharides in human milk has been well researched and documented. Human milk glycoconjugates have received less attention but appear to play an equally important role. Here, we bring together the breadth of research that has focused on the protective mechanisms of human milk glycoconjugates, with a particular focus on the glycan moieties that may play a role in disease prevention. In addition, human milk glycoconjugates are compared with bovine milk glycoconjugates in terms of their health benefits for the human infant.

  17. 34 CFR 76.681 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Protection of human subjects. 76.681 Section 76.681 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS What Conditions Must... of human subjects. If a State or a subgrantee uses a human subject in a research project, the...

  18. 34 CFR 76.681 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Protection of human subjects. 76.681 Section 76.681 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS What Conditions Must... of human subjects. If a State or a subgrantee uses a human subject in a research project, the...

  19. 34 CFR 76.681 - Protection of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Protection of human subjects. 76.681 Section 76.681 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS What Conditions Must... of human subjects. If a State or a subgrantee uses a human subject in a research project, the...

  20. 34 CFR 76.681 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Protection of human subjects. 76.681 Section 76.681 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS What Conditions Must... of human subjects. If a State or a subgrantee uses a human subject in a research project, the...

  1. 34 CFR 76.681 - Protection of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Protection of human subjects. 76.681 Section 76.681 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS What Conditions Must... of human subjects. If a State or a subgrantee uses a human subject in a research project, the...

  2. 48 CFR 252.235-7004 - Protection of Human Subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information (32 CFR 219.102(f)). For example, this could include the use of human organs, tissue, and body... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Protection of Human... requirements of 32 CFR Part 219, as well as the terms of the assurance, which the Human Research...

  3. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    PubMed

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-01

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases.

  4. Infants' ability to respond to depth from the retinal size of human faces: comparing monocular and binocular preferential-looking.

    PubMed

    Tsuruhara, Aki; Corrow, Sherryse; Kanazawa, So; Yamaguchi, Masami K; Yonas, Albert

    2014-11-01

    To examine sensitivity to pictorial depth cues in young infants (4 and 5 months-of-age), we compared monocular and binocular preferential looking to a display on which two faces were equidistantly presented and one was larger than the other, depicting depth from the size of human faces. Because human faces vary little in size, the correlation between retinal size and distance can provide depth information. As a result, adults perceive a larger face as closer than a smaller one. Although binocular information for depth provided information that the faces in our display were equidistant, under monocular viewing, no such information was provided. Rather, the size of the faces indicated that one was closer than the other. Infants are known to look longer at apparently closer objects. Therefore, we hypothesized that infants would look longer at a larger face in the monocular than in the binocular condition if they perceived depth from the size of human faces. Because the displays were identical in the two conditions, any difference in looking-behavior between monocular and binocular viewing indicated sensitivity to depth information. Results showed that 5-month-old infants preferred the larger, apparently closer, face in the monocular condition compared to the binocular condition when static displays were presented. In addition, when presented with a dynamic display, 4-month-old infants showed a stronger 'closer' preference in the monocular condition compared to the binocular condition. This was not the case when the faces were inverted. These results suggest that even 4-month-old infants respond to depth information from a depth cue that may require learning, the size of faces.

  5. Planetary Protection Considerations for Human And Robotic Missions to Mars

    NASA Astrophysics Data System (ADS)

    Mogul, R.; Stabekis, P. D.; Race, M. S.; Conley, C. A.

    2012-06-01

    Incorporating planetary protection into human missions, as supported by NASA Policy Directive NPD 8020.7G, is essential to preventing the forward contamination of Mars, ensuring astronaut health, and preventing backward contamination of Earth.

  6. Chemotherapeutic response of tumor derived from human adenovirus 12--induced retinal tumor cell line in syngeneic CDF (F 344) rats.

    PubMed

    Kobayashi, M; Mukai, N; Solish, S P; Sawada, T; Pomeroy, M E

    1983-01-01

    The effect of two anticancer agents, vincristine (VCR) and cyclophosphamide (CTX), on an established cell line (EXP-5) derived from human adenovirus serotype 12 (Ad 12)--induced retinal tumor was studied in vitro and in vivo. VCR at a concentration of 5 and 10 micrograms/ml of culture medium and CTX at 50 and 100 micrograms/ml suppressed growth in vitro. EXP-5 cells were transplanted into the vitreous of 56 inbred CDF (F 344 strain) rats. The implants grew almost exclusively as intravitreous tumors within one month. When the tumor was full grown in the vitreous, VCR and CTX were administered intravenously, singly or in combination, on a schedule based on the protocol CCG-961 for localized unilateral retinoblastoma, Reese-Ellsworth group 5. At a dosage of 0.05 mg/kg, VCR was effective in reducing tumor size; at a dosage of 5 mg/kg, CTX did not reduce tumor size. Combined VCR/CTX therapy induced reduction of about two thirds in tumor size in 2 of 10 treated animals; in all 10 animals, the tumor became morphologically less distinct during the course of treatment although some characteristic features remained. Cytotoxic tumor changes (necrosis, fibrous proliferation, cell transformation, and bizarre giant cells) were observed in all treated animals. This model used the EXP-5 cell line grown in the vitreous, thereby providing a potential tool for evaluating growth and chemotherapeutic responsiveness of retinoblastoma.

  7. Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis

    PubMed Central

    Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean

    2015-01-01

    Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100

  8. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application.

    PubMed

    Kamao, Hiroyuki; Mandai, Michiko; Okamoto, Satoshi; Sakai, Noriko; Suga, Akiko; Sugita, Sunao; Kiryu, Junichi; Takahashi, Masayo

    2014-02-11

    Age-related macular degeneration (AMD) causes severe visual impairment due in part to age-dependent impairment of retinal pigment epithelium (RPE). It has been suggested that autologous human induced pluripotent stem cells (hiPSCs) may represent a useful cell source for the generation of graft RPE. We generated hiPSC-derived RPE (hiPSC-RPE) cell sheets optimized to meet clinical use requirements, including quality, quantity, consistency, and safety. These cell sheets are generated as a monolayer of cells without any artificial scaffolds, express typical RPE markers, form tight junctions that exhibit polarized secretion of growth factors, and show phagocytotic ability and gene-expression patterns similar to those of native RPE. Additionally, upon transplantation, autologous nonhuman primate iPSC-RPE cell sheets showed no immune rejection or tumor formation. These results suggest that autologous hiPSC-RPE cell sheets may serve as a useful form of graft for use in tissue replacement therapy for AMD. PMID:24527394

  9. 48 CFR 1252.223-72 - Protection of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....223-72 Protection of human subjects. As prescribed in (TAR) 48 CFR 1223.7000(b), insert the following... CFR 4.703. (h) Periodic reviews shall be conducted by the Contractor to assure, through appropriate... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Protection of...

  10. 48 CFR 1252.223-72 - Protection of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....223-72 Protection of human subjects. As prescribed in (TAR) 48 CFR 1223.7000(b), insert the following... CFR 4.703. (h) Periodic reviews shall be conducted by the Contractor to assure, through appropriate... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Protection of...

  11. 48 CFR 1552.223-70 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Protection of human subjects. 1552.223-70 Section 1552.223-70 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and...

  12. 48 CFR 1252.223-72 - Protection of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....223-72 Protection of human subjects. As prescribed in (TAR) 48 CFR 1223.7000(b), insert the following... CFR 4.703. (h) Periodic reviews shall be conducted by the Contractor to assure, through appropriate... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Protection of...

  13. RPGR transcription studies in mouse and human tissues reveal a retina-specific isoform that is disrupted in a patient with X-linked retinitis pigmentosa.

    PubMed

    Kirschner, R; Rosenberg, T; Schultz-Heienbrok, R; Lenzner, S; Feil, S; Roepman, R; Cremers, F P; Ropers, H H; Berger, W

    1999-08-01

    X-linked retinitis pigmentosa (XLRP) is a genetically heterogeneous group of progressive retinal degenerations. The disease process is initiated by premature apoptosis of rod photoreceptor cells in the retina, which leads to reduced visual acuity and, eventually, complete blindness. Mutations in the retinitis pigmentosa GTPase regulator ( RPGR ), a ubiquitously expressed gene at the RP3 locus in Xp21.1, account for approximately 20% of all X-linked cases. We have analysed the expression of this gene by northern blot hybridization, cDNA library screening and RT-PCR in various organs from mouse and man. These studies revealed at least 12 alternatively spliced isoforms. Some of the transcripts are tissue specific and contain novel exons, which elongate or truncate the previously reported open reading frame of the mouse and human RPGR gene. One of the newly identified exons is expressed exclusively in the human retina and mouse eye and contains a premature stop codon. The deduced polypeptide lacks 169 amino acids from the C-terminus of the ubiquitously expressed variant, including an isoprenylation site. Moreover, this exon was found to be deleted in a family with XLRP. Our results indicate tissue-dependent regulation of alternative splicing of RPGR in mouse and man. The discovery of a retina-specific transcript may explain why phenotypic abberations in RP3 are confined to the eye.

  14. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    PubMed

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  15. Does biodiversity protect humans against infectious disease?

    PubMed

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  16. Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta.

    PubMed

    Kutty, R K; Nagineni, C N; Kutty, G; Hooks, J J; Chader, G J; Wiggert, B

    1994-05-01

    Antibodies specific for heme oxygenase-1 (HO-1) were produced in rabbits, using the multiple antigen peptide (MAP) technique, and were employed to investigate the ability of transforming growth factor-beta 1 (TGF-beta 1) to induce the HO-1 protein in cultured human retinal pigment epithelial (RPE) cells. Western blot analyses showed that the cytokine induced HO-1 in these cells in a time- and dose-dependent manner. TGF-beta 1 also increased the mRNA for HO-1 in treated cells prior to the increase in HO-1 protein. The induction was effectively blocked by a neutralizing antibody preparation against TGF-beta 1. When tested under similar conditions, other growth factors such as basic fibroblast growth factor-I, platelet-derived growth factor, insulin-like growth factor, transforming growth factor-alpha, and epidermal growth factor did not show appreciable induction of HO-1. Lipopolysaccharide, tumor necrosis factor-alpha, and interferon-gamma were also not inducers, although TGF-beta 2 effectively induced HO-1. Heavy metal ions and thiol reagents were also highly potent inducers of HO-1 in human RPE cells. The induction of HO-1 by TGF-beta 1 was also observed in bovine choroid fibroblasts, but not in HELA, HEL or bovine corneal fibroblasts. Our results demonstrate for the first time that HO-1 can be induced by an important cytokine, TGF-beta 1, causing an increase in the expression of both HO-1 message and protein in specific neuroepithelial and fibroblast cells.

  17. Calcium overload is associated with lipofuscin formation in human retinal pigment epithelial cells fed with photoreceptor outer segments

    PubMed Central

    Zhang, L; Hui, Y-N; Wang, Y-S; Ma, J-X; Wang, J-B; Ma, L-N

    2011-01-01

    Purpose To investigate the role of Ca2+ in lipofuscin formation in human retinal pigment epithelial (RPE) cells that phagocytize bovine photoreceptor outer segments (POSs). Methods Cultured human RPE cells fed with 2 × 107 per l bovine POS were treated with flunarizine, an antagonist of Ca2+ channel, or/and centrophenoxine, a lipofuscin scavenger. The Ca2+ changes and lipofuscin formation were measured with fluoresence dye Fluo-3/AM ester, laser scanning confocal microscopy (LSCM) and flow cytometry (FCM). The activity of RPE cells was measured by methyl thiazolyl tetrazolium (MTT) assay and argyrophilic nucleolar organizer regions (AgNORs) assay. Results The Ca2+ fluorescence intensity (CFI) of RPE cells fed with POS was significantly increased compared with the controls (165.36±29.92 U). It reached a peak with 777.33±63.86 U (P<0.01) at 12 h, and then decreased but still maintained a high level of 316.90±36.07 U (P<0.01) for 4 days. Flunarizine and centrophenoxine significantly decreased the Ca2+ overload to 227.18±14.00 U at 12 h and 211.06±20.45 U at 4 days. FCM confirmed these changes. The drugs also showed an inhibitory effect on the lipofuscin formation. The proliferation rate of the cells fed with POS increased significantly. Both drugs had inhibitory effects on the activity of the cultured cells. This tendency was confirmed by AgNORs assay. Conclusions The Ca2+ inflow initiated lipofuscin accumulation in RPE cells fed with POS. Flunarizine and centrophenoxine can decrease Ca2+ overload and lipofuscin formation in RPE cells, accompanied by maintaining cellular vitality. PMID:21311572

  18. The peripheral retinal 'map'.

    PubMed Central

    Williams, D. H.

    1975-01-01

    The condition of the periphery of the retinal field of the human eye is of considerable significance, it is suggested, to those participating in various sporting activities. Its boundaries shrink and expand depending upon the physiological conditions imposed both upon the eye and upon the organism as a whole. Consequently its message to the brain may be impaired under stress with resulting danger owing to delayed response. Images Fig. 3 Fig. 4 Fig. 5 PMID:1148574

  19. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    SciTech Connect

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin Yan, Biao

    2013-09-06

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.

  20. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment Vision Simulator Mar. 01, 2016 How does a detached or torn retina affect your vision? If a retinal tear is occurring, you may ...

  1. Retinal holes.

    PubMed

    Foos, R Y

    1978-09-01

    Holes of the peripheral retina, defined as full-thickness breaks of trophic origin with no associated flap or free operculum, were found in 136 (2.4%) eyes from 2,800 autopsied subjects. Primary retinal holes (those with no indication of a proximal causative lesion and with no lattice degeneration in either eye) occurred in only eight of the 5,600 eyes studied; all were unilateral, single, less than 0.25 disk diameter in size, within the basal zone, and in eyes from elderly subjects. Secondary holes were found in 128 (2.3%) of eyes and of these, lattice degeneration was the most common cause (103). Other lesions complicated by hole formation included zonular traction tufts (10), chorioretinitis (9), meridional folds (3), and pavingstone degeneration (2). Retinal holes in surgically aphakic eyes did not differ qualitatively or quantitatively from those in age-matched phakic eyes.

  2. 17β-Estradiol Protects the Retinal Nerve Cells Suppressing TLR2 Mediated Immune-Inflammation and Apoptosis from Oxidative Stress Insult Independent of PI3K.

    PubMed

    Li, Hongbo; Zhu, Chunhui; Wang, Baoying; Zhu, Wenhua; Feng, Yan; Du, Fangying; Wang, Shaolan; Hu, Chenghu; Ma, Jie; Yu, Xiaorui

    2016-10-01

    The excessive apoptosis of retinal nerve cells (RNCs) could cause a variety of retinal neurodegenerative diseases which could result in the irreversible blindness. In this study, the experiment models of H2O2 and light-induced oxidative insult in the retina of Sprague-Dawley (SD) rat were used. We demonstrated the role of toll-like receptor 2 (TLR2) in apoptosis and immune-inflammation induced by oxidative stress insult. Meanwhile, we also tried to elucidate the modulating mechanism of 17β-estradiol (E2) resistant to TLR2 induced by oxidative stress insult. The cell apoptosis induced by oxidative stress was examined by annexin V-FITC/propidium iodide (PI) assay using flow cytometry and the expressions of TLR2 and inflammatory cytokines were determined by real-time PCR and western blotting. Peptidoglycan (PGN) as the ligand of TLR2 and small interfering RNAs of TLR2 (siTLR2) were used to determine the role of TLR2. From the results, firstly, we demonstrated that E2 could reduce the expressions of TLR2 and inflammatory cytokines including TNF-ɑ, IFN-γ, and IL-1β induced by oxidative stress; secondly, the phosphoinositide 3-kinase (PI3K) could not influence the effect of E2 on reducing TLR2 expression induced by H2O2 in RNCs; thirdly, PGN could promote the damage effect of H2O2 by transforming RNCs from late apoptosis to necrosis, however, E2 could decrease the cell apoptosis mediated by PGN; and finally, the apoptosis of RNCs and the expressions of the inflammatory cytokines induced by H2O2 administration were significantly inhibited after TLR2 interference. In summary, E2 reduces the TLR2-mediated immune-inflammation, thereby protecting RNCs against oxidative stress-induced apoptosis via a PI3K-independent signaling pathway. The present results provide evidence that inhibiting of TLR2-mediated immune-inflammation might be a possible therapeutic way to exert auxiliary role on E2 neuroprotection. PMID:27596287

  3. Retinal Angiogenesis Effects of TGF-β1 and Paracrine Factors Secreted From Human Placental Stem Cells in Response to a Pathological Environment.

    PubMed

    Kim, Kyung-Sul; Park, Ji-Min; Kong, TaeHo; Kim, Chul; Bae, Sang-Hun; Kim, Han Wool; Moon, Jisook

    2016-01-01

    Abnormal angiogenesis is a primary cause of many eye diseases, including diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. Mesenchymal stem cells (MSCs) are currently being investigated as a treatment for several such retinal diseases based on their neuroprotective and angiogenic potentials. In this study, we evaluated the role of systemically injected human placental amniotic membrane-derived MSCs (AMSCs) on pathological neovascularization of proliferative retinopathy. We determined that AMSCs secrete higher levels of transforming growth factor-β (TGF-β1) than other MSCs, and the secreted TGF-β1 directly suppresses the proliferation of endothelial cells under pathological conditions in vitro. Moreover, in a mouse model of oxygen-induced retinopathy, intraperitoneally injected AMSCs migrated into the retina and suppressed excessive neovascularization of the vasculature via expression of TGF-β1, and the antineovascular effect of AMSCs was blocked by treatment with TGF-β1 siRNA. These findings are the first to demonstrate that TGF-β1 secreted from AMSCs is one of the key factors to suppress retinal neovascularization in proliferative retinopathy and further elucidate the therapeutic function of AMSCs for the treatment of retinal neovascular diseases. PMID:26065854

  4. High-speed two-photon excited autofluorescence imaging of ex vivo human retinal pigment epithelial cells toward age-related macular degeneration diagnostic.

    PubMed

    La Schiazza, Olivier; Bille, Josef F

    2008-01-01

    Age-related macular degeneration (AMD) is among the major concerns in ophthalmology, as it is the primary cause for irreversible blindness in developed countries. Nevertheless, there is poor understanding of the origins and mechanisms that trigger this important ocular disease. In common clinical pratice, AMD is monitored by autofluorescence imaging of the retinal pigment epithelial (RPE) cells through a confocal scanning laser ophthalmoscope. The RPE cells derive their dominant autofluorescence from the lipofuscin granules that accumulate in the cytoplasm with increasing age and disease. We explored a different approach to retinal RPE imaging using two-photon excited autofluorescence, offering intrinsic three-dimensional resolution, larger sensing depth and reduced photodamage compared to single-photon excited fluorescence ophthalmoscopy. A two-photon microscope, based on the architecture of a conventional scanning laser ophthalmoscope (HRT, Heidelberg Engineering, Germany), was designed for autofluorescence imaging on retina samples from postmortem human-donor eyes. We were able to visualize at video-rate speed single RPE lipofuscin granules, demonstrating the potential to develop this method toward clinical practice for patients with RPE-related retinal disease like AMD.

  5. Retinal Angiogenesis Effects of TGF-β1 and Paracrine Factors Secreted From Human Placental Stem Cells in Response to a Pathological Environment.

    PubMed

    Kim, Kyung-Sul; Park, Ji-Min; Kong, TaeHo; Kim, Chul; Bae, Sang-Hun; Kim, Han Wool; Moon, Jisook

    2016-01-01

    Abnormal angiogenesis is a primary cause of many eye diseases, including diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. Mesenchymal stem cells (MSCs) are currently being investigated as a treatment for several such retinal diseases based on their neuroprotective and angiogenic potentials. In this study, we evaluated the role of systemically injected human placental amniotic membrane-derived MSCs (AMSCs) on pathological neovascularization of proliferative retinopathy. We determined that AMSCs secrete higher levels of transforming growth factor-β (TGF-β1) than other MSCs, and the secreted TGF-β1 directly suppresses the proliferation of endothelial cells under pathological conditions in vitro. Moreover, in a mouse model of oxygen-induced retinopathy, intraperitoneally injected AMSCs migrated into the retina and suppressed excessive neovascularization of the vasculature via expression of TGF-β1, and the antineovascular effect of AMSCs was blocked by treatment with TGF-β1 siRNA. These findings are the first to demonstrate that TGF-β1 secreted from AMSCs is one of the key factors to suppress retinal neovascularization in proliferative retinopathy and further elucidate the therapeutic function of AMSCs for the treatment of retinal neovascular diseases.

  6. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors.

    PubMed

    Jin, Hong Lan; Lee, Sung-Chan; Kwon, Yong Sam; Choung, Se-Young; Jeong, Kwang Won

    2016-01-01

    Age-related macular degeneration (AMD) is a common retinal disease that leads to irreversible central vision loss in the elderly population. Recent studies have identified many factors related to the development of dry AMD, such as aging, cigarette smoking, genetic predispositions, and oxidative stress, eventually inducing the accumulation of lipofuscin, which is one of the most critical risk factors. One of the major lipofuscins in retinal pigment epithelial (RPE) cells is N-retinylidene-N-retinylethanolamine (also known as A2E), a pyridinium bis-retinoid. Currently there is a lack of effective therapy to prevent or restore vision loss caused by dry AMD. Recent studies have shown that 430 nm blue light induces the oxidation of A2E and the activation of caspase-3 to subsequently cause the death of RPE cells, suggesting that removal of A2E from retinal pigment cells might be critical for preventing AMD. Here, we developed a fluorescence-labeled A2E analog (A2E-BDP) that functions similar to A2E in RPE cells, but is more sensitive to detection than A2E. A2E-BDP-based tracing of intracellular A2E will be helpful, not only for studying the accumulation and removal of A2E in human RPE cells but also for identifying possible inhibitors of AMD. PMID:26604166

  7. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis. PMID:27747237

  8. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  9. Retinal blood vessels extraction using probabilistic modelling.

    PubMed

    Kaba, Djibril; Wang, Chuang; Li, Yongmin; Salazar-Gonzalez, Ana; Liu, Xiaohui; Serag, Ahmed

    2014-01-01

    The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.

  10. Human retinal Müller cells synthesize collagens of the vitreous and vitreoretinal interface in vitro

    PubMed Central

    van Luyn, Marja J.A.; van der Worp, Roelofje J.; Pas, Hendri H.; Hooymans, Johanna M.M.; Los, Leonoor I.

    2008-01-01

    Purpose To investigate the capacity of cultured Müller cells to synthesize collagens, since previous studies indicated that Müller cells could be involved in collagen remodeling at the vitreoretinal border in adult human eyes. Methods Spontaneously immortalized cultured human Müller cells were analyzed for the presence of mRNA of types I-VII, IX, XI, and XVII collagen by RT–PCR. Furthermore, Müller cells were immunocytochemically stained for light microscopic (LM) evaluation of these collagens and their main characteristics. Finally, cell extracts and culture medium were evaluated by western blot (WB) analysis using anticollagen antibodies. Results Cultured Müller cells contained mRNA for types I-VII, IX, and XI collagen, but not for type XVII collagen. LM and WB confirmed the intracellular expression of all the above-mentioned collagens with the exception of type XVII. Collagen secretion into the medium was established for types I-VII, IX, and XI collagen. Conclusions Cultured Müller cells can synthesize internal limiting lamina and vitreous collagens. Possible collagen production by Müller cells could explain and expand on previous in vivo morphological findings in the embryonic and postnatal period and in pathologic conditions. PMID:18385800

  11. Retinal Macroglial Responses in Health and Disease

    PubMed Central

    de Hoz, Rosa; Rojas, Blanca; Ramírez, Ana I.; Salazar, Juan J.; Gallego, Beatriz I.; Triviño, Alberto; Ramírez, José M.

    2016-01-01

    Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies. PMID:27294114

  12. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    NASA Technical Reports Server (NTRS)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  13. Planetary protection for humans in space: Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Conley, Catharine A.; Rummel, John D.

    When searching for life beyond Earth, the unique capabilities provided by human astronauts will only be advantageous if the biological contamination associated with human presence is monitored and minimized. Controlling biological contamination during planetary exploration is termed 'planetary protection,' and will be a critical element in the human exploration of other solar system bodies. To ensure the safety and health of the astronauts and the Earth, while preserving science value, planetary protection considerations must be incorporated from the earliest stages of mission planning and development. Issues of concern to planetary protection involve both 'forward contamination,' which is the contamination of other solar system bodies by Earth microbes and organic materials, and 'backward contamination,' which is the contamination of Earth systems by potential alien life. Forward contamination concerns include contamination that might invalidate current or future scientific exploration of a particular solar system body, and that may disrupt the planetary environment or a potential endogenous (alien) ecosystem. Backward contamination concerns include both immediate and long-term effects on the health of the astronaut explorers from possible biologically active materials encountered during exploration, as well as the possible contamination of the Earth. A number of national and international workshops held over the last seven years have generated a consensus regarding planetary protection policies and requirements for human missions to Mars, and a 2007 workshop held by NASA has considered the issues and benefits to planetary protection that might be offered by a return to the Moon. Conclusions from these workshops recognize that some degree of forward contamination associated with human astronaut explorers is inevitable. Nonetheless, the principles and policies of planetary protection, developed by COSPAR in conformance with the 1967 Outer Space Treaty, can and

  14. Retinas in a Dish Peek into Inherited Retinal Degeneration.

    PubMed

    Duong, Thu T; Vasireddy, Vidyullatha; Mills, Jason A; Bennett, Jean

    2016-06-01

    Human retinal degeneration can cause blindness, and the lack of relevant model systems has made identifying underlying mechanisms challenging. Parfitt et al. (2016) generate three-dimensional retinal tissue from patient-derived induced pluripotent stem cells to identify how CEP290 mutations cause retinal degeneration, and show an antisense approach can correct disease-associated phenotypes. PMID:27257755

  15. miR-17-3p Exacerbates Oxidative Damage in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Tian, Bo; Maidana, Daniel E.; Dib, Bernard; Miller, John B.; Bouzika, Peggy; Miller, Joan W.; Vavvas, Demetrios G.; Lin, Haijiang

    2016-01-01

    Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes. PMID:27505139

  16. Blue light-induced inflammatory marker expression in the retinal pigment epithelium-choroid of mice and the protective effect of a yellow intraocular lens material in vivo.

    PubMed

    Narimatsu, Toshio; Negishi, Kazuno; Miyake, Seiji; Hirasawa, Manabu; Osada, Hideto; Kurihara, Toshihide; Tsubota, Kazuo; Ozawa, Yoko

    2015-03-01

    Oxidative stress in the retinal pigment epithelium (RPE) is a well-accepted pathogenic change in vision-threatening diseases such as age-related macular degeneration. One source of oxidative stress is excessive light exposure, which causes excessive activation of the visual cycle. Because short wavelength light (blue light) has more energy, it is reported to be more harmful to photoreceptor cells than the other wavelengths of light. However, the biological effect of blue light in the RPE of living animals and the protective effect of a yellow intraocular lens (IOL) material that blocks blue light is still obscure. Therefore, we compared the pathogenic effect in the RPE-choroid complexes of mice exposed to light in a box made of a clear or a yellow IOL material. We measured the level of reactive oxygen species (ROS) using 2', 7'-dichlorodihydrofluorescein diacetate, the mRNA levels of inflammatory cytokines and a macrophage marker by real-time polymerase chain reaction, and the protein level of monocyte chemotactic protein-1 (MCP-1) by ELISA. The ROS level after light exposure was suppressed in the RPE-choroids of light-exposed mice in the yellow IOL material box. In parallel, all the inflammatory cytokines that we measured and a macrophage marker were also suppressed in the RPE-choroids of light-exposed mice in the yellow IOL material box. Therefore, a yellow IOL material suppressed, and thus blue light exacerbated, the increase in the ROS level and inflammatory cytokine expression as well as macrophage recruitment in the RPE-choroid in vivo after light exposure.

  17. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment Epithelium

    PubMed Central

    Zhao, Peter Y.; Gan, Geliang; Peng, Shaomin; Wang, Shao-Bin; Chen, Bo; Adelman, Ron A.; Rizzolo, Lawrence J.

    2015-01-01

    Purpose. Calcium regulates many functions of the RPE. Its concentration in the subretinal space and RPE cytoplasm is closely regulated. Transient receptor potential (TRP) channels are a superfamily of ion channels that are moderately calcium-selective. This study investigates the subcellular localization and potential functions of TRP channels in a first-passage culture model of human fetal RPE (hfRPE). Methods. The RPE isolated from 15- to 16-week gestation fetuses were maintained in serum-free media. Cultures were treated with barium chloride (BaCl2) in the absence and presence of TRP channel inhibitors and monitored by the transepithelial electrical resistance (TER). The expression of TRP channels was determined using quantitative RT-PCR, immunoblotting, and immunofluorescence confocal microscopy. Results. Barium chloride substantially decreased TER and disrupted cell–cell contacts when added to the apical surface of RPE, but not when added to the basolateral surface. The effect could be partially blocked by the general TRP inhibitor, lanthanum chloride (LaCl3, ~75%), or an inhibitor of calpain (~25%). Family member-specific inhibitors, ML204 (TRPC4) and HC-067047 (TRPV4), had no effect on basal channel activity. Expression of TRPC4, TRPM1, TRPM3, TRPM7, and TRPV4 was detected by RT-PCR and immunoblotting. The TRPM3 localized to the base of the primary cilium, and TRPC4 and TRPM3 localized to apical tight junctions. The TRPV4 localized to apical microvilli in a small subset of cells. Conclusions. The TRP channels localized to subdomains of the apical membrane, and BaCl2 was only able to dissociate tight junctions when presented to the apical membrane. The data suggest a potential role for TRP channels as sensors of [Ca2+] in the subretinal space. PMID:25736794

  18. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin.

    PubMed

    Bray, A F; Cevallos, R R; Gazarian, K; Lamas, M

    2014-11-01

    Human adult dental pulp stem cells (DPSCs) are self-renewing stem cells that originate from the neural crest during development and remain within the dental pulp niche through adulthood. Due to their multi-lineage differentiation potential and their relative ease of access they represent an exciting alternative for autologous stem cell-based therapies in neurodegenerative diseases. In animal models, DPSCs transplanted into the brain differentiate into functional neurons or astrocytes in response to local environmental cues that appear to influence the fate of the surviving cells. Here we tested the hypothesis that DPSCs might be able to respond to factors present in the retina enabling the regenerative potential of these cells. We evaluated the response of DPSCs to conditioned media from organotypic explants from control and chemically damaged rat retinas. To evaluate cell differentiation, we analyzed the expression of glial fibrillary acidic protein (GFAP), early neuronal and retinal markers (polysialic acid-neural cell adhesion molecule (PSA-NCAM); Pax6; Ascl1; NeuroD1) and the late photoreceptor marker rhodopsin, by immunofluorescence and reverse transcription polymerase chain reaction (RT-PCR). Exposure of DPSC cultures to conditioned media from control retinas induced a 39% reduction on the number of DPSCs that expressed GFAP; the expression of Pax6, Ascl1, PSA-NCAM or NeuroD1 was undetectable or did not change significantly. Expression of rhodopsin was not detectable in control or after exposure of the cultures with retinal conditioned media. By contrast, 44% of DPSCs exposed to conditioned media from damaged retinas were immunopositive to this protein. This response could not be reproduced when conditioned media from Müller-enriched primary cultures was used. Finally, quantitative RT-PCR was performed to compare the relative expression of glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and brain

  19. Retinoids for Treatment of Retinal Diseases

    PubMed Central

    Palczewski, Krzysztof

    2010-01-01

    Knowledge about retinal photoreceptor signal transduction and the visual cycle required for normal eyesight has expanded exponentially over the past decade. Substantial progress in human genetics has allowed identification of candidate genes and complex networks underlying inherited retinal diseases. Natural mutations in animal models that mimic human diseases have been characterized and advanced genetic manipulation now permits generation of small mammalian models of human retinal diseases. Pharmacological repair of defective visual processes in animal models not only validates their involvement in vision but also provides great promise for developing improved therapies for the millions that are progressing towards blindness or are almost completely robbed of eyesight. PMID:20435355

  20. Texture Descriptors Ensembles Enable Image-Based Classification of Maturation of Human Stem Cell-Derived Retinal Pigmented Epithelium

    PubMed Central

    Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari

    2016-01-01

    Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we

  1. [The human embryo: a reality in need of protection].

    PubMed

    Junquera de Estéfani, R

    2000-01-01

    Today many advances in biotechnology involve the use of human embryos, which suffer the consequences of experimentation-research and are considered to be mere sources of raw materials. Given this the facto situation, it is crucial that embryos are afforded recognition. If they are considered to be human beings many of these actions should be banned. If not, then they should be permitted. At the root of this problem lies the great question facing philosophers and scientists, namely, when does life become human? This issue should be addressed in an interdisciplinary manner due to the ethical, religious, philosophical, biological and other aspects involved. However, aside from this debate, the mere fact that embryos belong to our species and possess intrinsic potential make them deserving of respect and protection. The Law therefore should intervene to provide this protection and prevent uncontrolled actions by researchers working alone in their laboratories.

  2. Planetary protection issues in advance of human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Davis, Wanda L.

    1989-01-01

    The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

  3. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    SciTech Connect

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  4. Issues around radiological protection of the environment and its integration with protection of humans: promoting debate on the way forward.

    PubMed

    Brownless, G P

    2007-12-01

    This paper explores issues to consider around integrating direct, explicit protection of the environment into the current system of radiological protection, which is focused on the protection of humans. Many issues around environmental radiological protection have been discussed, and ready-to-use toolboxes have been constructed for assessing harm to non-human biota, but it is not clear how (or even if) these should be fitted into the current system of protection. Starting from the position that the current approach to protecting the environment (namely that it follows from adequately protecting humans) is generally effective, this paper considers how explicit radiological protection of the environment can be integrated with the current system, through developing a 'worked example' of how this could be done and highlighting issues peculiar to protection of the environment. The aim of the paper is to promote debate on this topic, with the ultimate aim of ensuring that any changes to the system are consensual and robust.

  5. Planetary protection issues linked to human missions to Mars

    NASA Astrophysics Data System (ADS)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  6. Planetary Protection Issues in the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  7. Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Hansson, Magnus L; Albert, Silvia; González Somermeyer, Louisa; Peco, Rubén; Mejía-Ramírez, Eva; Montserrat, Núria; Izpisua Belmonte, Juan Carlos

    2015-02-27

    Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements, such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient, but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study, we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand, administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly, transfection of mRNA encoding a key regulator of RPE gene expression, microphthalmia-associated transcription factor (MITF), confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF, primarily localized in the nucleus. Despite these findings, quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings, therefore, show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe, efficient, and functional.

  8. Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Hansson, Magnus L; Albert, Silvia; González Somermeyer, Louisa; Peco, Rubén; Mejía-Ramírez, Eva; Montserrat, Núria; Izpisua Belmonte, Juan Carlos

    2015-02-27

    Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements, such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient, but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study, we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand, administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly, transfection of mRNA encoding a key regulator of RPE gene expression, microphthalmia-associated transcription factor (MITF), confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF, primarily localized in the nucleus. Despite these findings, quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings, therefore, show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe, efficient, and functional. PMID:25555917

  9. Efficacy of PARP inhibition in Pde6a mutant mouse models for retinitis pigmentosa depends on the quality and composition of individual human mutations

    PubMed Central

    Jiao, K; Sahaboglu, A; Zrenner, E; Ueffing, M; Ekström, P A R; Paquet-Durand, F

    2016-01-01

    Retinitis pigmentosa (RP), an inherited blinding disease, is caused by a variety of different mutations that affect retinal photoreceptor function and survival. So far there is neither effective treatment nor cure. We have previously shown that poly(ADP-ribose)polymerase (PARP) acts as a common and critical denominator of cell death in photoreceptors, qualifying it as a potential target for future therapeutic intervention. A significant fraction of RP-causing mutations affect the genes for the rod photoreceptor phosphodiesterase 6A (PDE6A) subunit, but it is not known whether they all engage the same death pathway. Analysing three homozygous point mutations (Pde6a R562W, D670G, and V685M) and one compound heterozygous Pde6aV685M/R562W mutation in mouse models that match human RP patients, we demonstrate excessive activation of PARP, which correlated in time with the progression of photoreceptor degeneration. The causal involvement of PARP activity in the neurodegenerative process was confirmed in organotypic retinal explant cultures treated with the PARP-selective inhibitor PJ34, using different treatment time-points and durations. Remarkably, the neuroprotective efficacy of PARP inhibition correlated inversely with the strength of the genetically induced insult, with the D670G mutant showing the best treatment effects. Our results highlight PARP as a target for neuroprotective interventions in RP caused by PDE6A mutations and are a first attempt towards personalized, genotype-matched therapy development for RP. In addition, for each of the different mutant situations, our work identifies windows of opportunity for an optimal treatment regimen for further in vivo experimentation and possibly clinical studies. PMID:27551530

  10. Planetary protection issues related to human missions to Mars

    NASA Astrophysics Data System (ADS)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  11. Branch retinal vein occlusion.

    PubMed

    Hamid, Sadaf; Mirza, Sajid Ali; Shokh, Ishrat

    2008-01-01

    Retinal vein occlusions (RVO) are the second commonest sight threatening vascular disorder. Branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) are the two basic types of vein occlusion. Branch retinal vein occlusion is three times more common than central retinal vein occlusion and- second only to diabetic retinopathy as the most common retinal vascular cause of visual loss. The origin of branch retinal vein occlusion undoubtedly includes both systemic factors such as hypertension and local anatomic factors such as arteriovenous crossings. Branch retinal vein occlusion causes a painless decrease in vision, resulting in misty or distorted vision. Current treatment options don't address the underlying aetiology of branch retinal vein occlusion. Instead they focus on treating sequelae of the occluded venous branch, such as macular oedema, vitreous haemorrhage and traction retinal detachment from neovascularization. Evidences suggest that the pathogenesis of various types of retinal vein occlusion, like many other ocular vascular occlusive disorders, is a multifactorial process and there is no single magic bullet that causes retinal vein occlusion. A comprehensive management of patients with retinal vascular occlusions is necessary to correct associated diseases or predisposing abnormalities that could lead to local recurrences or systemic event. Along with a review of the literature, a practical approach for the management of retinal vascular occlusions is required, which requires collaboration between the ophthalmologist and other physicians: general practitioner, cardiologist, internist etc. as appropriate according to each case. PMID:19385476

  12. Comparative retinal physiology in anthropoids.

    PubMed

    Kremers, J; Lee, B B

    1998-11-01

    During the last decade it has become clear that colour vision in platyrrhines (New World monkeys) differs from the uniform trichromatic pattern normally found in catarrhines (Old World monkeys, apes and human). Colour vision in most platyrrhine species is polymorphic, with many dichromatic individuals. The comparison of response properties in retinal ganglion cells and lateral geniculate cells between catarrhines and playrrhines elucidates how the evolution of trichromatic colour vision influenced the post-receptoral processing. We find that spatial and temporal processing is very similar in the platyrrhine and catarrhine retina, strongly suggesting that the retinal structure and function, found in living anthropoids, was already present in their common ancestor. PMID:9893846

  13. Retinitis pigmentosa in southern Africa.

    PubMed

    Greenberg, J; Bartmann, L; Ramesar, R; Beighton, P

    1993-11-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders which are a common cause of genetic blindness. The relative frequencies of the different forms of RP in South Africa, as determined from the register at the DNA banking centre for RP at the Department of Human Genetics, University of Cape Town, are presented and discussed. Of the 125 families analysed, 29 (23%) showed autosomal dominant, 33 (27%) autosomal recessive and 3 (3%) X-linked inheritance. In 10 families the pedigree data were insufficient to allow accurate genetic subtyping and a further 50 patients were sporadic without a family history of RP or other syndromic features which would allow categorization.

  14. [Human genetic data from a data protection law perspective].

    PubMed

    Schulte In den Bäumen, Tobias

    2007-02-01

    The collection and use of genetic data have caused much concern in the German population. Data protection is widely seen as the tool to address these fears. The term genetic data is not self-explanatory, as it depends on the different types of genetic diseases. The protection of genetic data as defined with regard to the different sets of diseases needs to fit into the preexisting data protection legislation. Still, the particularities of genetic data such as the multipersonal impact need to be considered. A balance between the information needs of society and the right to privacy requires a medically driven criteria. The medical term of indication which corresponds with the data protection term of purpose should serve as a tool in order to balance the rights of the patients and their relatives or between clients and third persons involved. Some countries have set up new legislative acts to address the challenges of human genetics. The current state of German data protection law leaves citizen rather unprotected as long as the data are used for medical purposes in a wider sense. A special law on the collection of genetic data has been discussed for several years, but it should be questioned whether the scope of a sector-specific law would serve citizens better. It seems to be preferable to adjust the existing Data Protection Act rather than drafting a specific law which covers the field of human genetics. This adaptation should reflect upon the different technical ways in which genetic data are collected and used. PMID:17238055

  15. [Human genetic data from a data protection law perspective].

    PubMed

    Schulte In den Bäumen, Tobias

    2007-02-01

    The collection and use of genetic data have caused much concern in the German population. Data protection is widely seen as the tool to address these fears. The term genetic data is not self-explanatory, as it depends on the different types of genetic diseases. The protection of genetic data as defined with regard to the different sets of diseases needs to fit into the preexisting data protection legislation. Still, the particularities of genetic data such as the multipersonal impact need to be considered. A balance between the information needs of society and the right to privacy requires a medically driven criteria. The medical term of indication which corresponds with the data protection term of purpose should serve as a tool in order to balance the rights of the patients and their relatives or between clients and third persons involved. Some countries have set up new legislative acts to address the challenges of human genetics. The current state of German data protection law leaves citizen rather unprotected as long as the data are used for medical purposes in a wider sense. A special law on the collection of genetic data has been discussed for several years, but it should be questioned whether the scope of a sector-specific law would serve citizens better. It seems to be preferable to adjust the existing Data Protection Act rather than drafting a specific law which covers the field of human genetics. This adaptation should reflect upon the different technical ways in which genetic data are collected and used.

  16. TNF-α Mediates PKCδ/JNK1/2/c-Jun-Dependent Monocyte Adhesion via ICAM-1 Induction in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Lee, I-Ta; Liu, Shiau-Wen; Chi, Pei-Ling; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Retinal inflammatory diseases induced by cytokines, such as tumor necrosis factor-α (TNF-α) are associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the retinal pigment epithelial cells (RPECs). Retinal pigment epithelium (RPE) is a monolayer of epithelial cells that forms the outer blood-retinal barrier in the posterior segment of the eye, and is also implicated in the pathology of, such as neovascularization in age-related macular degeneration (AMD). However, the detailed mechanisms of TNF-α-induced ICAM-1 expression are largely unclear in human RPECs. We demonstrated that in RPECs, TNF-α could induce ICAM-1 protein and mRNA expression and promoter activity, and monocyte adhesion. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of PKCs (Ro318220), PKCδ (Rottlerin), MEK1/2 (U0126), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, TRAF2, JNK2, p42, or c-Jun. We showed that TNF-α could stimulate the TNFR1 and TRAF2 complex formation. TNF-α-stimulated JNK1/2 was also reduced by Rottlerin or SP600125. However, Rottlerin had no effect on TNF-α-induced p42/p44 MAPK phosphorylation. We observed that TNF-α induced c-Jun phosphorylation which was inhibited by Rottlerin or SP600125. On the other hand, TNF-α-stimulated ICAM-1 promoter activity was prominently lost in RPECs transfected with the point-mutated AP-1 ICAM-1 promoter plasmid. These results suggest that TNF-α-induced ICAM-1 expression and monocyte adhesion is mediated through a TNFR1/TRAF2/PKCδ/JNK1/2/c-Jun pathway in RPECs. These findings concerning TNF-α-induced ICAM-1 expression in RPECs imply that TNF-α might play an important role in ocular inflammation and diseases. PMID:25675437

  17. Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions.

    PubMed

    Foresti, Roberta; Bucolo, Claudio; Platania, Chiara Maria Bianca; Drago, Filippo; Dubois-Randé, Jean-Luc; Motterlini, Roberto

    2015-09-01

    Retinal pigment epithelial cells exert an important supporting role in the eye and develop adaptive responses to oxidative stress or high glucose levels, as observed during diabetes. Endogenous antioxidant defences are mainly regulated by Nrf2, a transcription factor that is activated by naturally-derived and electrophilic compounds. Here we investigated the effect of the Nrf2 activators dimethylfumarate (DMF) and carnosol on antioxidant pathways, oxygen consumption rate and wound healing in human retinal pigment epithelial cells (ARPE-19) cultured in medium containing normal (NG, 5mM) or high (HG, 25 mM) glucose levels. We also assessed wound healing using an in vivo corneal epithelial injury model. We found that Nrf2 nuclear translocation and heme oxygenase activity increased in ARPE cells treated with 10 μM DMF or carnosol irrespective of glucose culture conditions. However, HG rendered retinal cells more sensitive to regulators of glutathione synthesis or inhibition and caused a decrease of both cellular and mitochondrial reactive oxygen species. Culture in HG also reduced ATP production and mitochondrial function as measured with the Seahorse XF analyzer and electron microscopy analysis revealed morphologically damaged mitochondria. Acute treatment with DMF or carnosol did not restore mitochondrial function in HG cells; conversely, the compounds reduced cellular maximal respiratory and reserve capacity, which were completely prevented by N-acetylcysteine thus suggesting the involvement of thiols in this effect. Interestingly, the scratch assay showed that wound closure was faster in cells cultured in HG than NG and was accelerated by carnosol. This effect was reversed by an inhibitor of heme oxygenase activity. Moreover, topical application of carnosol to the cornea of diabetic rats significantly accelerated wound healing. In summary, these data indicate that culture of retinal epithelial cells in HG does not affect the activation of the Nrf2/heme oxygenase

  18. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  19. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    PubMed

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema.

  20. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  1. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  2. Characterisation of the canine rod-cone dysplasia type one gene (rod photoreceptor cGMP phosphodiesterase beta subunit (PDEB)) - a model for human retinitis pigmentosa

    SciTech Connect

    Clements, P.J.M.; Gregory, C.Y.; Petersen-Jones, S.M.

    1994-09-01

    Rod-cone dysplasia type one (rod-1) is an early onset, autosomal recessive retinal dystrophy segregating in the Irish setter breed. It is a model for certain forms of human autosomal recessive retinitis pigmentosa (arRP) caused by mutations in the same gene, PDEB. We confirmed the codon 807 Trp to Stop mutation and were the first to show cosegregation of the mutant allele with disease in a pedigree. We believe that this currently represents the best animal model available for some aspects of arRP, since canine tissues are relatively easy to access compared to human and yet the canine eye is of comparable size, unlike that of the rd mouse. This facilitates therapeutic intervention particularly at the subretinal level. In order to more fully investigate this model we have been characterizing the PDEB gene in the normal dog. Using PCR we have partially mapped the intron/exon structure, demonstrating a very high degree of evolutionary conservation with the mouse and human genes. RT-PCR has been used to reveal expression in a variety of neural and non-neural tissues. A PCR product spanning exons 19 to 22 (which also contains the site for the rcd-1 mutation) is detected in retina but also in tissues such as visual cortex, cerebral cortex, cerebellum, lateral geniculate nucleus, adrenal gland, lung, kidney and ovary. All of these tissues gave a negative result with primers for rds/peripherin, a gene which is expressed in rods and cones. This raises interesting questions about the regulation of PDEB transcripts which is initially being investigated by Northern analysis. In addition, anchored PCR techniques have generated upstream genomic sequences and we are currently mapping the 5{prime} extent of the mRNA transcript in the retina. This will facilitate the analysis of potential upstream promoter elements involved in directing expression.

  3. Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium.

    PubMed

    Ablonczy, Zsolt; Higbee, Daniel; Grey, Angus C; Koutalos, Yiannis; Schey, Kevin L; Crouch, Rosalie K

    2013-11-15

    The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI-IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.

  4. Protection of human subjects with disability: guidelines for research.

    PubMed

    Stineman, M G; Musick, D W

    2001-12-01

    Typically, protection of human subjects is a shared responsibility involving the local institutional review board (IRB) and the clinical investigator, guided by federal and state law as well as local organizational policy. The IRB screens protocols to ensure subjects' safety by making sure that risks are acceptable and do not outweigh benefits. However, the recruitment of subjects, as well as obtaining consent, is the principal investigator's responsibility. Through the process of informed consent, the clinical investigator is obliged to ensure that each subject understands all treatments proposed and their potential benefits and risks. Achieving truly informed consent from people with major developmental, physical, sensory, communicative, or cognitive disabilities may be particularly difficult. Spurred on by increasing research of relevance to rehabilitation medicine and the patients served, we review legal, ethical, and moral issues surrounding the processes of obtaining informed consent and offer specific recommendations for protecting people with disabilities.

  5. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes

    PubMed Central

    Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  6. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes.

    PubMed

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Kumar, L M Sharath; Prakash, N S; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  7. Genetic pediatric retinal diseases

    PubMed Central

    Say, Emil Anthony T.

    2014-01-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high.

  8. Genetic pediatric retinal diseases.

    PubMed

    Say, Emil Anthony T

    2014-12-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high. PMID:27625880

  9. The physician's role in the protection of human research subjects.

    PubMed

    Williams, John R

    2006-01-01

    Responsibility for the protection of human research subjects is shared by investigators, research ethics committees, sponsors/funders, research institutions, governments and, the focus of this article, physicians who enrol patients in clinical trials. The article describes the general principles of the patient-physician relationship that should regulate the participation of physicians in clinical trials and proposes guidelines for determining when and how such participation should proceed. The guidelines deal with the following stages of the trial: when first considering participation, when deciding whether to enrol patients, when asking patients to participate, when the trial is underway and when it is completed. PMID:16501643

  10. Retinal Nerve Fiber and Optic Disc Morphology in Patients with Human Immunodeficiency Virus Using the Heidelberg Retina Tomography 3

    PubMed Central

    Bartsch, Dirk-Uwe; Kozak, Igor; Grant, Igor; Knudsen, Victoria L.; Weinreb, Robert N.; Lee, Byung Ro; Freeman, William R.

    2015-01-01

    Purpose To use novel confocal scanning ophthalmoscopy technology to test hypothesis that HIV-seropositive patients without history of retinitis with a history of a low CD4 count are more likely to have damage to their retinal nerve fiber layer (RNFL) when compared to patients with high CD4 count. In addition, we compared optic disc morphologic changes with glaucoma. Design Cross-sectional study. Participants and Controls 171 patients were divided into four groups. The control group consisted of 40 eyes of 20 HIV-seronegative patients. The second group consisted of 80 eyes of 41 HIV-positive patients whose CD4 cell count never dropped below 100 (1.0 x 109/L). The third group consisted of 44 eyes of 26 HIV-positive patients with a history of low CD4 counts <100. Fourth group consisted of 79 eyes of 79 patients with confirmed glaucoma who served as positive controls. Testing Confocal scanning laser ophthalmoscopy was performed with the Heidelberg Retina Tomograph (HRT3) and data were analyzed with HRT3, software (Heyex version 1.5.10.0). Main Outcome Measures Disc area, cup area, cup volume, rim volume, mean cup depth, maximum cup depth, cup-to-disc ration, mean RNFL thickness, and RNFL cross-sectional area. Results Analysis of the global optic nerve and cup parameters showed no difference in disk area among the four groups. There was also no difference in cup, rim volume, mean cup depth, or maximum cup depth among the first three groups but they were all different from glaucoma group. The RNFL was thinner in glaucoma and both HIV-positive groups compared to HIV-seronegative subjects. The cross sectional RNFL area was thinner in both high and low CD4 HIV-positive groups compared to HIV-seronegative group in the nasal and temporal/inferior sectors, respectively. Glaucoma group showed thinning in all sectors. Conclusions HIV retinopathy results in retinal nerve fiber layer loss without structural optic nerve supportive tissue change. RNFL damage may occur early in HIV

  11. Stem Cells, Retinal Ganglion Cells, and Glaucoma

    PubMed Central

    Sluch, Valentin M.; Zack, Donald J.

    2015-01-01

    Retinal ganglion cells represent an essential neuronal cell type for vision. These cells receive inputs from light-sensing photoreceptors via retinal interneurons and then relay these signals to the brain for further processing. Retinal ganglion cell diseases that result in cell death, e.g. glaucoma, often lead to permanent damage since mammalian nerves do not regenerate. Stem cell differentiation can generate cells needed for replacement or can be used to generate cells capable of secreting protective factors to promote survival. In addition, stem cell-derived cells can be used in drug screening research. Here, we discuss the current state of stem cell research potential for interference in glaucoma and other optic nerve diseases with a focus on stem cell differentiation to retinal ganglion cells. PMID:24732765

  12. Multifaceted pathways protect human skin from UV radiation.

    PubMed

    Natarajan, Vivek T; Ganju, Parul; Ramkumar, Amrita; Grover, Ritika; Gokhale, Rajesh S

    2014-07-01

    The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.

  13. The human beta-subunit of rod photoreceptor cGMP phosphodiesterase: complete retinal cDNA sequence and evidence for expression in brain.

    PubMed

    Collins, C; Hutchinson, G; Kowbel, D; Riess, O; Weber, B; Hayden, M R

    1992-07-01

    We have identified and sequenced cDNA clones that encode for the human beta-subunit of rod cGMP phosphodiesterase (PDEB). A single 2565-bp open reading frame that codes for an 854-amino-acid protein was identified. The human beta-subunit protein is 90% identical to the bovine beta-subunit and 91% identical to the mouse protein. Northern blot analysis indicates that the gene is expressed as an abundant 3.5-kb transcript in retina and as a rare 2.9-kb transcript in brain. The isolation of cDNAs from human brain cDNA libraries confirms the brain as a site of expression for this gene. The molecular defect underlying retinal degeneration in the rd mouse has been found to be a nonsense mutation in the beta-subunit of the mouse cGMP PDE, resulting in a truncated protein (Pittler et al., 1991b, Proc. Natl. Acad. Sci. USA. 88: 8322-8326). The molecular cloning of the cDNA encoding for the PDEB represents the first step in establishing whether this gene plays a causative role in any one of the several human hereditary retinopathies or, based on its localization to chromosome 4p 16.3, in the pathogenesis of Huntington disease.

  14. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration

    PubMed Central

    Jones, Melissa K.; Lu, Bin; Saghizadeh, Mehrnoosh

    2016-01-01

    Purpose Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell–based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell–based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. Methods RNA-seq data of retinas from RCS rats injected with hNPCs (RCShNPCs) were compared to sham surgery in RCS (RCSsham) and wild-type Long Evans (LEsham) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Results Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCSsham and LEsham samples. Additionally, 283 genes were differentially expressed between the RCShNPCs and RCSsham samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCSsham. Pathway analysis of the differential expression gene sets identified three affected pathways in RCShNPCs, which all play roles in phagocytosis signaling. Immunofluorescent

  15. Planetary protection issues and human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1991-01-01

    A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns for planetary protection (PP) have arisen of two fronts: (1) forward contamination of Mars by spacecraft-borne terrestrial microbes which could interfere with exobiological analyses; and (2) back contamination of Earth by species that may be present in returned Mars samples. The United States is also signatory to an international treaty designed to protect Earth and planets from harmful cross-contamination during exploration. Therefore, it is timely to assess the necessity for, and impact of, PP procedures on the mission set comprising the human exploration of Mars. The ground-rules adopted at a recent workshop which addressed PP questions of this type are presented. In addition, the workshop produced several recommendations for dealing with forward and back contamination concerns for non-scientific perspectives, including public relations, legal, regulatory, international, and environmental.

  16. Capsomer Vaccines Protect Mice from Vaginal Challenge with Human Papillomavirus

    PubMed Central

    Wu, Wai-Hong; Gersch, Elizabeth; Kwak, Kihyuck; Jagu, Subhashini; Karanam, Balasubramanyam; Huh, Warner K.; Garcea, Robert L.; Roden, Richard B. S.

    2011-01-01

    Capsomers were produced in bacteria as glutathione-S-transferase (GST) fusion proteins with human papillomavirus type 16 L1 lacking the first nine and final 29 residues (GST-HPV16L1Δ) alone or linked with residues 13–47 of HPV18, HPV31 and HPV45 L2 in tandem (GST-HPV16L1Δ-L2x3). Subcutaneous immunization of mice with GST-HPV16L1Δ or GST-HPV16L1Δ-L2x3 in alum and monophosphoryl lipid A induced similarly high titers of HPV16 neutralizing antibodies. GST-HPV16L1Δ-L2x3 also elicited moderate L2-specific antibody titers. Intravaginal challenge studies showed that immunization of mice with GST-HPV16 L1Δ or GST-HPV16L1Δ-L2x3 capsomers, like Cervarix®, provided complete protection against HPV16. Conversely, vaccination with GST-HPV16 L1Δ capsomers failed to protect against HPV18 challenge, whereas mice immunized with either GST-HPV16L1Δ-L2x3 capsomers or Cervarix® were each completely protected. Thus, while the L2-specific response was moderate, it did not interfere with immunity to L1 in the context of GST-HPV16L1Δ-L2x3 and is sufficient to mediate L2-dependent protection against an experimental vaginal challenge with HPV18. PMID:22069498

  17. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture

    PubMed Central

    Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D

    2014-01-01

    Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865

  18. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells

    PubMed Central

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD. PMID:26237736

  19. Synergistic effects of gamma interferon on inflammatory mediators that induce interleukin-6 gene expression and secretion by human retinal pigment epithelial cells.

    PubMed Central

    Nagineni, C N; Detrick, B; Hooks, J J

    1994-01-01

    The retinal pigment epithelial (RPE) cell is a potent regulatory cell within the retina. It helps to maintain normal retinal activity, and following gamma interferon (IFN-gamma) exposure, it may express major histocompatibility complex class II molecules and function as an antigen-presenting cell. Since interleukin-1 (IL-1) and IL-6 are potent cytokines observed in ocular inflammatory processes, we initiated studies to evaluate conditions which enable RPE cells to produce these cytokines. Cultures of human RPE cells from two eye donors were established and characterized, and enzyme immunoassays were employed to screen for IL-1 and IL-6 production. Treatment of RPE cells with lipopolysaccharide (LPS) or recombinant tumor necrosis factor alpha, IL-1, or IFN-gamma resulted in a significant level of secretion of IL-6. In contrast, treatment with recombinant epidermal growth factor, basic fibroblast growth factor, platelet-derived growth factor, or transforming growth factor alpha, or LPS can dramatically augment the secretion of IL-6 by RPE cells. Thus, these inflammatory mediators can act alone or synergistically with IFN-gamma to activate RPE cells and dramatically increase the expression and secretion of IL-6. In contrast, IL-1 was not detected following stimulation with any of the above-mentioned cytokines or LPS. Characterization of IL-6 protein production by RPE cells revealed that 98% of the protein is promptly secreted by the cell, its induction is dependent upon the time and concentration of the stimulant, and the continuous presence of the stimulant is required for IL-6 production. Moreover, Western blot (immunoblot) analysis of secreted proteins revealed that IL-6 was produced in multiple molecular forms.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8556503

  20. 78 FR 10538 - Protections for Subjects in Human Research Involving Pesticides

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... AGENCY 40 CFR Part 26 RIN 2070-AJ76 Protections for Subjects in Human Research Involving Pesticides... tailored amendments to the portions of its rules for the protection of human subjects of research applying... human subjects and to persons who submit the results of human research with pesticides to EPA....

  1. [Human habitats and the protection of health in Islam].

    PubMed

    Hadrović, A

    1997-01-01

    Architecture is an expression so wide in its dimensions and meanings, that it can be compared to expression "life". Architecture is a synthesis and an expression of all rational and irrational that attributes a man, family, community in general, or mankind at all-im one hand; and rational expression of physical structure given by architects, in other hand. Thus, architecture comes down from the highest spheres of philosophy, sociology, discussions on ethics etc., to life. That is the way how architecture becomes defining frame of human life. Human habitude and health protection in islam could be elaborated through theoretical concept of architecturally defined space (ADS), that considers (treats) architecture as a complex system, consisting of four fundamental elements: man, environment, limits and perspectives. Each of these elements, when looking from the perspective of islam, has its specific characteristics, that author discusses in this paper. No doubt, in islamic sphere of life there is a wide spectrum of architectural programmes, that follows natural environment, and has a goal to confirm human and general social values.

  2. Analysis of Retinal Vascular Branching in Human Subjects Undergoing 70-Day Head-Down Tilt by NASAs VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vyas, Ruchi J.; Raghunandan, Sneha; Vu, Amanda C.; Zanello, Susana B.; Ploutz-Snyder, Rob; Taibbi, Giovanni; Vizzeri, Gianmarco

    2016-01-01

    Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects before and after head-down tilt (HDT), a ground-based microgravity analog with NASA's VESsel GENeration Analysis (VESGEN) software. Methods. Spectralis® infrared (IR) fundus images were collected from both eyes of 6 subjects before and after 70 days of bed rest at 6 degree HDT (NASA Campaign 11). For our retrospective study, branching patterns in arterial and venous trees are mapped by VESGEN into vessel branching generations (Gx) that are quantified by parameters such as densities of vessel length (Lv), area (Av), number (Nv) and fractal dimension (Df) as described previously for diabetic retinopathy (IOVS 51(1):498). Results are further assigned by VESGEN into groups of large (G1-3), medium (G4-6) and small (G=7) vessels. Results. All subjects remained asymptomatic throughout duration of HDT. To date, we have analyzed one IR image from each of the 12 eyes. Interestingly, two groups of the masked study population identified by VESGEN are distinguished by the presence or absence of small veins (G=7). For example, L=7 and Av=7 are 2.7+/-1.3 E-4 px/px2 and 7.2+/-3.6 E-4 px2/px2 in 6 retinas, but 0 in the other 6 retinas. Nonetheless, the space-filling properties of the entire venous trees were remarkably uniform by all parameters, such as Df = 1.56+/-0.02 for 6 retinas with G=7 and 1.55+/-0.02 for retinas without G=7. No small arteries (G=7) were detected. Conclusions. For our preliminary masked analysis, two groups of venous trees with and without small veins (G=7) were clearly revealed by VESGEN. Upon completing all images and unmasking the subject status of before and after HDT, we will determine

  3. 17β-Estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma

    PubMed Central

    Tatrai, Katalin Prokai; Xin, Hua; Nguyen, Vien; Szarka, Szabolcs; Blazics, Balazs; Prokai, Laszlo; Koulen, Peter

    2013-01-01

    Neuroprotection in glaucoma as a curative strategy complementary to current therapies to lower intraocular pressure (IOP) is highly desirable. This study was designed to investigate neuroprotection by 17β-estradiol (E2) to prevent retinal ganglion cell (RGC) death in a glaucoma model of surgically elevated IOP in rats. We found that daily treatment with E2 containing eye drops resulted in significant E2 concentration in the retina with concomitant profound neuroprotective therapeutic benefits, even in the presence of continually elevated IOP. The number of apoptotic cells in the RGC layer was significantly decreased in the E2-treated group, when compared to the vehicle-treated controls. Deterioration in visual acuity in these animals was also markedly prevented. Using mass spectrometry-based proteomics, beneficial changes in the expression of several proteins implicated in the maintenance of retinal health were also found in the retina of E2-treated animals. On the other hand, systemic side-effects could not be avoided with the eye drops, as confirmed by the measured high circulating estrogen levels and through the assessment of the uterus representing a typical hormone-sensitive peripheral organ. Collectively, the demonstrated significant neuroprotective effect of topical E2 in the selected animal model of glaucoma provides a clear rationale for further studies aiming at targeting E2 into the eye while avoiding systemic E2 exposure to diminish undesirable off target side-effects. PMID:23841874

  4. 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma.

    PubMed

    Prokai-Tatrai, Katalin; Xin, Hua; Nguyen, Vien; Szarka, Szabolcs; Blazics, Balazs; Prokai, Laszlo; Koulen, Peter

    2013-08-01

    Neuroprotection in glaucoma as a curative strategy complementary to current therapies to lower intraocular pressure (IOP) is highly desirable. This study was designed to investigate neuroprotection by 17β-estradiol (E2) to prevent retinal ganglion cell (RGC) death in a glaucoma model of surgically elevated IOP in rats. We found that daily treatment with E2-containing eye drops resulted in significant E2 concentration in the retina with concomitant profound neuroprotective therapeutic benefits, even in the presence of continually elevated IOP. The number of apoptotic cells in the RGC layer was significantly decreased in the E2-treated group, when compared to the vehicle-treated controls. Deterioration in visual acuity in these animals was also markedly prevented. Using mass spectrometry-based proteomics, beneficial changes in the expression of several proteins implicated in the maintenance of retinal health were also found in the retina of E2-treated animals. On the other hand, systemic side effects could not be avoided with the eye drops, as confirmed by the measured high circulating estrogen levels and through the assessment of the uterus representing a typical hormone-sensitive peripheral organ. Collectively, the demonstrated significant neuroprotective effect of topical E2 in the selected animal model of glaucoma provides a clear rationale for further studies aiming at targeting E2 into the eye while avoiding systemic E2 exposure to diminish undesirable off-target side effects. PMID:23841874

  5. Imaging retinal mosaics in the living eye.

    PubMed

    Rossi, E A; Chung, M; Dubra, A; Hunter, J J; Merigan, W H; Williams, D R

    2011-03-01

    Adaptive optics imaging of cone photoreceptors has provided unique insight into the structure and function of the human visual system and has become an important tool for both basic scientists and clinicians. Recent advances in adaptive optics retinal imaging instrumentation and methodology have allowed us to expand beyond cone imaging. Multi-wavelength and fluorescence imaging methods with adaptive optics have allowed multiple retinal cell types to be imaged simultaneously. These new methods have recently revealed rod photoreceptors, retinal pigment epithelium (RPE) cells, and the smallest retinal blood vessels. Fluorescence imaging coupled with adaptive optics has been used to examine ganglion cells in living primates. Two-photon imaging combined with adaptive optics can evaluate photoreceptor function non-invasively in the living primate retina.

  6. Imaging retinal mosaics in the living eye

    PubMed Central

    Rossi, E A; Chung, M; Dubra, A; Hunter, J J; Merigan, W H; Williams, D R

    2011-01-01

    Adaptive optics imaging of cone photoreceptors has provided unique insight into the structure and function of the human visual system and has become an important tool for both basic scientists and clinicians. Recent advances in adaptive optics retinal imaging instrumentation and methodology have allowed us to expand beyond cone imaging. Multi-wavelength and fluorescence imaging methods with adaptive optics have allowed multiple retinal cell types to be imaged simultaneously. These new methods have recently revealed rod photoreceptors, retinal pigment epithelium (RPE) cells, and the smallest retinal blood vessels. Fluorescence imaging coupled with adaptive optics has been used to examine ganglion cells in living primates. Two-photon imaging combined with adaptive optics can evaluate photoreceptor function non-invasively in the living primate retina. PMID:21390064

  7. Genetics Home Reference: retinitis pigmentosa

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions retinitis pigmentosa retinitis pigmentosa Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Retinitis pigmentosa is a group of related eye disorders that ...

  8. ABC proteins protect the human body and maintain optimal health.

    PubMed

    Ueda, Kazumitsu

    2011-01-01

    Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.

  9. DHHS human subjects protection: the new regulations revisited.

    PubMed

    Grunder, T M

    1983-01-01

    In January of 1981 DHHS released its revised regulations for the protection of human subjects. These new regulations established five categories of federally funded research--primarily in the educational, social and behavioral sciences--which, at local Institutional Review Board (IRB) US ISSN (0193-7758) 1168 option, could be made exempt from mandated peer review. A survey of the 562 member IRB system was conducted to determine, among other things, what policies individual review boards had established with regard to these optionally exempted categories. 341 (61%) of the IRBs responded to the survey. Results indicate that the IRBs have overwhelmingly opted to maintain review procedures at some level in each of the "exempted" categories and that these procedures, as well as the other DHHS standards, are being applied almost universally to all research regardless of funding source. This article presents data on IRBs and their implications for the educational, social and behavioral sciences. PMID:10263330

  10. Human Threat Management Systems: Self-Protection and Disease Avoidance

    PubMed Central

    Neuberg, Steven L.; Kenrick, Douglas T.; Schaller, Mark

    2010-01-01

    Humans likely evolved precautionary systems designed to minimize the threats to reproductive fitness posed by highly interdependent ultrasociality. A review of research on the self-protection and disease avoidance systems reveals that each system is functionally distinct and domain-specific: Each is attuned to different cues; engages different emotions, inferences, and behavioral inclinations; and is rooted in somewhat different neurobiological substrates. These systems share important features, however. Each system is functionally coherent, in that perceptual, affective, cognitive, and behavioral processes work in concert to reduce fitness costs of potential threats. Each system is biased in a risk-averse manner, erring toward precautionary responses even when available cues only heuristically imply threat. And each system is functionally flexible, being highly sensitive to specific ecological and dispositional cues that signal greater vulnerability to the relevant threat. These features characterize a general template useful for understanding not only the self-protection and disease avoidance systems, but also a broader set of evolved, domain-specific precautionary systems. PMID:20833199

  11. Does biodiversity protect humans against infectious disease? Reply

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.; DeLeo, Giulio; Young, Hillary S.; Hudson, Peter J.; Kuris, Armand M.

    2016-01-01

    The dilution effect is the sort of idea that everyone wants to be true. If nature protects humans against infectious disease, imagine the implications: nature's value could be tallied in terms of human suffering avoided. This makes a potent argument for conservation, convincing even to those who would otherwise be disinclined to support conservation initiatives. The appeal of the dilution effect has been recognized by others: “the desire to make the case for conservation has led to broad claims regarding the benefits of nature conservation for human health” (Bauch et al. 2015). Randolph and Dobson (2012) were among the first to critique these claims, making the case that promotion of conservation to reduce Lyme disease risk, although well intentioned, was flawed. Along with Randolph and Dobson's critique, there have been several calls for a more nuanced scientific assessment of the relationship between biodiversity and disease transmission (Dunn 2010, Salkeld et al. 2013, Wood and Lafferty 2013, Young et al. 2013). In response, supporters of the dilution effect have instead increased the scope of their generalizations with review papers, press releases, and, like Levi et al. (2015), letters. These responses have been successful; it is not uncommon to read papers that repeat the assertion that biodiversity generally interferes with disease transmission and that conservation will therefore generally benefit human health. Here, we explain how Levi et al. (2015) and other, similar commentaries use selective interpretation and shifting definitions to argue for the generality of the dilution effect hypothesis.

  12. Retinal hemorrhages in newborn.

    PubMed

    Govind, A; Kumari, S; Lath, N K

    1989-02-01

    Two hundred and fifty eight newborn babies were studied for the presence of retinal hemorrhages between 1-3 days of birth. The overall incidence of retinal hemorrhages was found to be 18.9%. It was observed that the incidence of retinal hemorrhages was higher in unassisted vaginal deliveries than in assisted births. Also, a two fold higher incidence was noted in term infants as compared to preterm babies. No association was seen with birth asphyxia.

  13. 3H-1,2-dithiole-3-thione protects retinal pigment epithelium cells against Ultra-violet radiation via activation of Akt-mTORC1-dependent Nrf2-HO-1 signaling

    PubMed Central

    Li, Ke-ran; Yang, Su-qing; Gong, Yi-qing; Yang, Hong; Li, Xiu-miao; Zhao, Yu-xia; Yao, Jin; Jiang, Qin; Cao, Cong

    2016-01-01

    Excessive UV radiation and reactive oxygen species (ROS) cause retinal pigment epithelium (RPE) cell injuries. Nrf2 regulates transcriptional activation of many anti-oxidant genes. Here, we tested the potential role of 3H-1,2-dithiole-3-thione (D3T) against UV or ROS damages in cultured RPE cells (both primary cells and ARPE-19 line). We showed that D3T significantly inhibited UV-/H2O2-induced RPE cell death and apoptosis. UV-stimulated ROS production was dramatically inhibited by D3T pretreatment. D3T induced Nrf2 phosphorylation in cultured RPE cells, causing Nrf2 disassociation with KEAP1 and its subsequent nuclear accumulation. This led to expression of antioxidant response elements (ARE)-dependent gene heme oxygenase-1 (HO-1). Nrf2-HO-1 activation was required for D3T-mediated cytoprotective effect. Nrf2 shRNA knockdown or S40T dominant negative mutation as well as the HO-1 inhibitor Zinc protoporphyrin (ZnPP) largely inhibited D3T’s RPE cytoprotective effects against UV radiation. Yet, exogenous overexpression Nrf2 enhanced D3T’s activity in RPE cells. Further studies showed that D3T activated Akt/mTORC1 in cultured RPE cells. Akt-mTORC1 inhibitors, or Akt1 knockdown by shRNA, not only inhibited D3T-induced Nrf2-HO-1 activation, but also abolished the RPE cytoprotective effects. In vivo, D3T intravitreal injection protected from light-induced retinal dysfunctions in mice. Thus, D3T protects RPE cells from UV-induced damages via activation of Akt-mTORC1-Nrf2-HO-1 signaling axis. PMID:27151674

  14. Characterization and mapping of the human rhodopsin kinase gene and screening of the gene for mutations in patients with retinitis pigmentosa

    SciTech Connect

    Khani, S.C.; Lin, D.; Magovcevic, I.

    1994-09-01

    Rhodopsin kinase (RK) is a cytosolic enzyme in rod photoreceptors that initiates the deactivation of the phototransductions cascade by phosphorylating photoactivated rhodopsin. Although the cDNA sequence of bovine RK has been determined previously, no human cDNA or genomic sequence has thus far been available for genetic studies. In order to investigate the possible role of this candidate gene in retinitis pigmentosa (RP) and allied diseases, we have isolated and characterized human cDNA and genomic clones derived from the RK locus. The coding sequence of the human gene is 1692 nucleotides in length and is split into seven exons. The human and the bovine sequence show 84% identity at the nucleotide level and 92% identity at the amino acid level. Thus far, the intronic sequences flanking each exon except for one have been determined. We have also mapped the human RK gene to chromosome 13q34 using fluorescence in situ hybridization. To our knowledge, no RP gene has as yet been linked to this region. However, since the substrate for RK (rhodopsin) and other members of the phototransduction cascade have been implicated in the pathogenesis of RP, it is conceivable that defects in RK can also cause some forms of this disease. We are evaluating this possibility by screening DNA from 173 patients with autosomal recessive RP and 190 patients with autosomal dominant RP. So far, we have found 11 patients with variant bands. In one patient with autosomal dominant RP we discovered the missense change Ser536Leu. Cosegregation studies and further sequencing of the variant bands are currently underway.

  15. [New drug therapy for retinal degeneration].

    PubMed

    Ohguro, Hiroshi

    2008-01-01

    retinal degeneration. Nilvadipine showed beneficial effects against retinal degeneration in all models tested, but retinoid derivatives and anthocyanine showed these beneficial effects in only some models. Thus our present data allowed us to test the effectiveness of nilvadipine in the treatment of human RP patients.

  16. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni E; Vuorimaa-Laukkanen, Elina P; Hakola, Hanna M; Liang, Huamin; Ujula, Tiina A; Valle-Delgado, Juan José; Österberg, Monika; Yliperttula, Marjo L; Skottman, Heli

    2015-05-01

    The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls. PMID:25771016

  17. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model.

    PubMed

    Plaza Reyes, Alvaro; Petrus-Reurer, Sandra; Antonsson, Liselotte; Stenfelt, Sonya; Bartuma, Hammurabi; Panula, Sarita; Mader, Theresa; Douagi, Iyadh; André, Helder; Hovatta, Outi; Lanner, Fredrik; Kvanta, Anders

    2016-01-12

    Human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells could replace lost tissue in geographic atrophy (GA) but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model. PMID:26724907

  18. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni E; Vuorimaa-Laukkanen, Elina P; Hakola, Hanna M; Liang, Huamin; Ujula, Tiina A; Valle-Delgado, Juan José; Österberg, Monika; Yliperttula, Marjo L; Skottman, Heli

    2015-05-01

    The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls.

  19. Plasmalemma Vesicle-Associated Protein Has a Key Role in Blood-Retinal Barrier Loss.

    PubMed

    Wisniewska-Kruk, Joanna; van der Wijk, Anne-Eva; van Veen, Henk A; Gorgels, Theo G M F; Vogels, Ilse M C; Versteeg, Danielle; Van Noorden, Cornelis J F; Schlingemann, Reinier O; Klaassen, Ingeborg

    2016-04-01

    Loss of blood-retinal barrier (BRB) properties induced by vascular endothelial growth factor (VEGF) and other factors is an important cause of diabetic macular edema. Previously, we found that the presence of plasmalemma vesicle-associated protein (PLVAP) in retinal capillaries associates with loss of BRB properties and correlates with increased vascular permeability in diabetic macular edema. In this study, we investigated whether absence of PLVAP protects the BRB from VEGF-induced permeability. We used lentiviral-delivered shRNA or siRNA to inhibit PLVAP expression. The barrier properties of in vitro BRB models were assessed by measuring transendothelial electrical resistance, permeability of differently sized tracers, and the presence of endothelial junction complexes. The effect of VEGF on caveolae formation was studied in human retinal explants. BRB loss in vivo was studied in the mouse oxygen-induced retinopathy model. The inhibition of PLVAP expression resulted in decreased VEGF-induced BRB permeability of fluorescent tracers, both in vivo and in vitro. PLVAP inhibition attenuated transendothelial electrical resistance reduction induced by VEGF in BRB models in vitro and significantly increased transendothelial electrical resistance of the nonbarrier human umbilical vein endothelial cells. Furthermore, PLVAP knockdown prevented VEGF-induced caveolae formation in retinal explants but did not rescue VEGF-induced alterations in endothelial junction complexes. In conclusion, PLVAP is an essential cofactor in VEGF-induced BRB permeability and may become an interesting novel target for diabetic macular edema therapy.

  20. Cell volume regulation in cultured human retinal Müller cells is associated with changes in transmembrane potential.

    PubMed

    Fernández, Juan M; Di Giusto, Gisela; Kalstein, Maia; Melamud, Luciana; Rivarola, Valeria; Ford, Paula; Capurro, Claudia

    2013-01-01

    Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known to be partially mediated by the activation of K(+) and anion channels. However, the precise mechanisms underlying osmotic swelling and subsequent cell volume regulation in Müller cells have been evaluated by only a few studies. Although the activation of ion channels during the RVD response may alter transmembrane potential (Vm), no studies have actually addressed this issue in Müller cells. The aim of the present work is to evaluate RVD using a retinal Müller cell line (MIO-M1) under different extracellular ionic conditions, and to study a possible association between RVD and changes in Vm. Cell volume and Vm changes were evaluated using fluorescent probe techniques and a mathematical model. Results show that cell swelling and subsequent RVD were accompanied by Vm depolarization followed by repolarization. This response depended on the composition of extracellular media. Cells exposed to a hypoosmotic solution with reduced ionic strength underwent maximum RVD and had a larger repolarization. Both of these responses were reduced by K(+) or Cl(-) channel blockers. In contrast, cells facing a hypoosmotic solution with the same ionic strength as the isoosmotic solution showed a lower RVD and a smaller repolarization and were not affected by blockers. Together, experimental and simulated data led us to propose that the efficiency of the RVD process in Müller glia depends not only on the activation of ion channels, but is also strongly modulated by concurrent changes in the membrane potential. The relationship between ionic fluxes, changes in ion permeabilities and ion concentrations -all leading to changes in Vm- define the success of RVD. PMID:23451196

  1. Profiling the microRNA Expression in Human iPS and iPS-derived Retinal Pigment Epithelium

    PubMed Central

    Wang, Heuy-Ching; Greene, Whitney A; Kaini, Ramesh R; Shen-Gunther, Jane; Chen, Hung-I H; Cai, Hong; Wang, Yufeng

    2014-01-01

    The purpose of this study is to characterize the microRNA (miRNA) expression profiles of induced pluripotent stem (iPS) cells and retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE). MiRNAs have been demonstrated to play critical roles in both maintaining pluripotency and facilitating differentiation. Gene expression networks accountable for maintenance and induction of pluripotency are linked and share components with those networks implicated in oncogenesis. Therefore, we hypothesize that miRNA expression profiling will distinguish iPS cells from their iPS-RPE progeny. To identify and analyze differentially expressed miRNAs, RPE was derived from iPS using a spontaneous differentiation method. MiRNA microarray analysis identified 155 probes that were statistically differentially expressed between iPS and iPS-RPE cells. Up-regulated miRNAs including miR-181c and miR-129–5p may play a role in promoting differentiation, while down-regulated miRNAs such as miR-367, miR-18b, and miR-20b are implicated in cell proliferation. Subsequent miRNA–target and network analysis revealed that these miRNAs are involved in cellular development, cell cycle progression, cell death, and survival. A systematic interrogation of temporal and spatial expression of iPS-RPE miRNAs and their associated target mRNAs will provide new insights into the molecular mechanisms of carcinogenesis, eye differentiation and development. PMID:25392691

  2. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device

    PubMed Central

    Hahn, Paul; Migacz, Justin; O’Connell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A.; Izatt, Joseph A.; Toth, Cynthia A.

    2013-01-01

    Purpose We have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Methods Prior to human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. MIOCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective Institutional Review Board-approved study. MIOCT images were obtained before and at pauses in surgical maneuvers and were compared based on pre-determined diagnostic criteria to images obtained with a high-resolution research handheld spectral domain OCT system (HHOCT, Bioptigen Inc., Research Triangle Park, NC) at the same time point. Cohorts of five consecutive patients were imaged. Successful endpoints were pre-defined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of patients. Results MIOCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made prior to MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. MIOCT imaging in normal human volunteers demonstrated high-resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated post-surgical changes in retinal morphology. Two cohorts of five patients were imaged. In the

  3. 10 CFR 63.321 - Individual protection standard for human intrusion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Individual protection standard for human intrusion. 63.321... Standards Human Intrusion Standard § 63.321 Individual protection standard for human intrusion. (a) DOE must determine the earliest time after disposal that the waste package would degrade sufficiently that a...

  4. 10 CFR 35.6 - Provisions for the protection of human research subjects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Provisions for the protection of human research subjects... Information § 35.6 Provisions for the protection of human research subjects. (a) A licensee may conduct research involving human research subjects only if it uses the byproduct materials specified on its...

  5. 10 CFR 63.321 - Individual protection standard for human intrusion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Individual protection standard for human intrusion. 63.321... Standards Human Intrusion Standard § 63.321 Individual protection standard for human intrusion. (a) DOE must determine the earliest time after disposal that the waste package would degrade sufficiently that a...

  6. 10 CFR 35.6 - Provisions for the protection of human research subjects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Provisions for the protection of human research subjects... Information § 35.6 Provisions for the protection of human research subjects. (a) A licensee may conduct research involving human research subjects only if it uses the byproduct materials specified on its...

  7. 10 CFR 63.321 - Individual protection standard for human intrusion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Individual protection standard for human intrusion. 63.321... Standards Human Intrusion Standard § 63.321 Individual protection standard for human intrusion. (a) DOE must determine the earliest time after disposal that the waste package would degrade sufficiently that a...

  8. 10 CFR 35.6 - Provisions for the protection of human research subjects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Provisions for the protection of human research subjects... Information § 35.6 Provisions for the protection of human research subjects. (a) A licensee may conduct research involving human research subjects only if it uses the byproduct materials specified on its...

  9. 10 CFR 63.321 - Individual protection standard for human intrusion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Individual protection standard for human intrusion. 63.321... Standards Human Intrusion Standard § 63.321 Individual protection standard for human intrusion. (a) DOE must determine the earliest time after disposal that the waste package would degrade sufficiently that a...

  10. Stem cells in retinal regeneration: past, present and future.

    PubMed

    Ramsden, Conor M; Powner, Michael B; Carr, Amanda-Jayne F; Smart, Matthew J K; da Cruz, Lyndon; Coffey, Peter J

    2013-06-01

    Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.

  11. Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions.

    PubMed

    Heidinger, V; Hicks, D; Sahel, J; Dreyfus, H

    1999-02-01

    Glutamate is the most abundant excitatory amino acid in the central nervous system. It has also been described as a potent toxin when present in high concentrations because excessive stimulation of its receptors leads to neuronal death. Glial influence on neuronal survival has already been shown in the central nervous system, but the mechanisms underlying glial neuroprotection are only partly known. When cells isolated from newborn rat retina were maintained in culture as enriched neuronal populations, 80% of the cells were destroyed by application of excitotoxic concentrations of glutamate. Massive neuronal death was also observed in newborn retinal cultures containing large numbers of glia, or when neurons were seeded onto feeder layers of purified cells prepared from immature (postnatal 8 day) rat retina. When newborn retinal neurons were seeded onto feeder layers of purified glial cells prepared from adult retinas, application of excitotoxic amino acids no longer led to neuronal death. Furthermore, neuronal death was not observed in mixed neuron/glial cultures prepared from adult retina. However, in all cases (newborn and adult) application of kainate led to amacrine cell-specific death. Activity of glutamine synthetase, a key glial enzyme involved in glutamate detoxification, was assayed in these cultures in the presence or absence of exogenous glutamate. Whereas pure glial cultures alone (from young or adult retina) showed low activity that was not stimulated by glutamate addition, mixed or co-cultured neurons and adult glia exhibited up to threefold higher levels of activity following glutamate treatment. These data indicate that two conditions must be satisfied to observe glial neuroprotection: maturation of glutamine synthetase expression, and neuron-glial signalling through glutamate-elicited responses. PMID:9932869

  12. Retinitis pigmentosa in southern Africa.

    PubMed

    Greenberg, J; Bartmann, L; Ramesar, R; Beighton, P

    1993-11-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders which are a common cause of genetic blindness. The relative frequencies of the different forms of RP in South Africa, as determined from the register at the DNA banking centre for RP at the Department of Human Genetics, University of Cape Town, are presented and discussed. Of the 125 families analysed, 29 (23%) showed autosomal dominant, 33 (27%) autosomal recessive and 3 (3%) X-linked inheritance. In 10 families the pedigree data were insufficient to allow accurate genetic subtyping and a further 50 patients were sporadic without a family history of RP or other syndromic features which would allow categorization. PMID:8313621

  13. Antineurofilament and antiretinal antibodies in AIDS patients with cytomegalovirus retinitis.

    PubMed Central

    Rosberger, D F; Tshering, S L; Polsky, B; Heinemann, M H; Klein, R F; Cunningham-Rundles, S

    1994-01-01

    Sera obtained from AIDS patients with cytomegalovirus (CMV) retinitis before and after treatment with foscarnet, AIDS patients with human immunodeficiency virus (HIV) retinopathy, AIDS patients without retinal disease, and normal healthy controls with and without positive CMV serologies were assayed for the presence of antibodies against the 200-kDa outer, 160-kDa middle, and 68-kDa core subunits of the neurofilament triplet. Additional studies were performed to determine the presence of antibodies reactive with proteins extracted from crude human retinal antigen preparations. Antibodies against the 200-, 260-, and 68-kDa proteins of the neurofilament triplet were detected in 15 of 15 AIDS patients with CMV retinitis. The expression of these antibodies was unaffected, qualitatively, by successful treatment with foscarnet. In contrast, only 30% of patients with HIV retinopathy unrelated to CMV, fewer than 35% of AIDS patients with positive CMV titers but without evident retinitis, and fewer than 25% of healthy controls with positive or negative CMV titers possessed antibodies against any of the triplet proteins (P < 0.001). Antibodies against several clusters of retinal antigens were also identified in the sera of patients with CMV retinitis. In summary, the data indicate that retinal elements damaged by CMV infection induce an antibody response against the 200-, 160-, and 68kDa components of the neurofilament triplet as well as other, as yet undefined retinal antigens. Images PMID:8556483

  14. The Retinitis Pigmentosa Student: Selected Aspects.

    ERIC Educational Resources Information Center

    Sullivan, Franklin N.

    1984-01-01

    The characteristic features of RP (retinitis pigmentosa-an untreatable conditions usually resulting in night blindness) are discussed and functioning considerations in the classroom (including the use of protective devices and mobility aids) are noted. Classroom modifications such as darklined paper and black pens are suggested. (CL)

  15. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  16. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  17. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    PubMed

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  18. Modern retinal laser therapy.

    PubMed

    Kozak, Igor; Luttrull, Jeffrey K

    2015-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  19. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    PubMed Central

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  20. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    PubMed

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  1. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    PubMed

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  2. Punicalagin promotes autophagy to protect primary human syncytiotrophoblasts from apoptosis.

    PubMed

    Wang, Ying; Chen, Baosheng; Longtine, Mark S; Nelson, D Michael

    2016-02-01

    Punicalagin is a prominent polyphenol in pomegranate juice that protects cultured syncytiotrophoblasts from stress-induced apoptosis. Here, we test the hypothesis that punicalagin has this effect by inhibiting the mTOR kinase pathway to enhance autophagic turnover and limit apoptosis in cultured primary human syncytiotrophoblasts. In syncytiotrophoblasts, starvation, rapamycin, or punicalagin all decreased the expression of phosphorylated ribosomal protein S6, a downstream target of the mTOR kinase, and of the autophagy markers, LC3-II and p62. In contrast, in the presence of bafilomycin, an inhibitor of late stages of autophagy and degradation in the autophagolysosome, syncytiotrophoblasts exposed to starvation, rapamycin, or punicalagin all showed increased levels of LC3-II and p62. The number of LC3-II punctae also increased in punicalagin-treated syncytiotrophoblasts exposed to chloroquine, another inhibitor of autophagic degradation, and punicalagin increased the number of lysosomes. The apoptosis-reducing effect of punicalagin was attenuated by inhibition of autophagy using bafilomycin or knockdown of the autophagy related gene, ATG16L1. Collectively, these data support the hypothesis that punicalagin modulates the crosstalk between autophagy and apoptosis to promote survival in cultured syncytiotrophoblasts. PMID:26659860

  3. Human migration, protected areas, and conservation outreach in Tanzania.

    PubMed

    Salerno, Jonathan D; Borgerhoff Mulder, Monique; Kefauver, Shawn C

    2014-06-01

    A recent discussion debates the extent of human in-migration around protected areas (PAs) in the tropics. One proposed argument is that rural migrants move to bordering areas to access conservation outreach benefits. A counter proposal maintains that PAs have largely negative effects on local populations and that outreach initiatives even if successful present insufficient benefits to drive in-migration. Using data from Tanzania, we examined merits of statistical tests and spatial methods used previously to evaluate migration near PAs and applied hierarchical modeling with appropriate controls for demographic and geographic factors to advance the debate. Areas bordering national parks in Tanzania did not have elevated rates of in-migration. Low baseline population density and high vegetation productivity with low interannual variation rather than conservation outreach explained observed migration patterns. More generally we argue that to produce results of conservation policy significance, analyses must be conducted at appropriate scales, and we caution against use of demographic data without appropriate controls when drawing conclusions about migration dynamics.

  4. 10 CFR 63.321 - Individual protection standard for human intrusion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion Standard § 63.321 Individual protection standard for human intrusion. (a) DOE...

  5. Subchronic Toluene Exposure alters Retinal Function in Long Evans Rats: Experimental Evidence Supporting Observations from Studies of Exposed Humans.

    EPA Science Inventory

    Studies of humans chronically exposed to volatile organic solvents commonly report impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports have been controversial, however, in part due to a lack of confirmation from controlled...

  6. Highly Sensitive In Vitro Methods for Detection of Residual Undifferentiated Cells in Retinal Pigment Epithelial Cells Derived from Human iPS Cells

    PubMed Central

    Kuroda, Takuya; Yasuda, Satoshi; Kusakawa, Shinji; Hirata, Naoya; Kanda, Yasunari; Suzuki, Kazuhiro; Takahashi, Masayo; Nishikawa, Shin-Ichi; Kawamata, Shin; Sato, Yoji

    2012-01-01

    Human induced pluripotent stem cells (hiPSCs) possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs). These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay): soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR). Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE) cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×104 RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research. PMID:22615985

  7. Blockade of Jagged/Notch pathway abrogates transforming growth factor β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells.

    PubMed

    Chen, X; Xiao, W; Liu, X; Zeng, M; Luo, L; Wu, M; Ye, S; Liu, Y

    2014-05-01

    The epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays a key role in proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR), which lead to the loss of vision. The Jagged/Notch pathway has been reported to be essential in EMT during embryonic development, fibrotic diseases and cancer metastasis. However, the function of Jagged/Notch signaling in EMT of RPE cells is unknown. Thus, we hypothesized that a crosstalk between Notch and transforming growth factor β2 (TGF-β2) signaling could induce EMT in RPE cells, which subsequently contributes to PVR and PDR. Here, we demonstrate that Jagged-1/Notch pathway is involved in the TGF-β2-mediated EMT of human RPE cells. Blockade of Notch pathway with DAPT (a specific inhibitor of Notch receptor cleavage) and knockdown of Jagged-1 expression inhibited TGF-β2-induced EMT through regulating the expression of Snail, Slug and ZEB1. Besides the canonical Smad signaling pathway, the noncanonical PI3K/Akt and MAPK pathway also contributed to TGF-β2-induced up-regulation of Jagged-1 in RPE cells. Overexpression of Jagged-1 could mimic TGF-β2 induce EMT. Our data suggest that the Jagged-1/Notch signaling pathway plays a critical role in TGF-β2-induced EMT in human RPE cells, and may contribute to the development of PVR and PDR. Inhibition of the Jagged/Notch signaling pathway, therefore, may have therapeutic value in the prevention and treatment of PVR and PDR.

  8. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  9. Functional analysis of retinal microglia and their effects on progenitors.

    PubMed

    Carter, Debra A; Balasubramaniam, Balini; Dick, Andrew D

    2013-01-01

    The identification of stem/progenitor cells within the retinal neural environment has opened up the possibility of therapy via cellular replacement and/or reprogramming of resident cell populations. Within the neuro-retinal niche, following injury or in disease states (including inflammation and degeneration), cellular responses affect tissue homeostasis, reduce cell density, disrupt tissue architecture, and produce scar formation. Microglia (resident retinal immune cell tissue macrophage) are key to the maintenance of retinal homeostasis and are implicated in responses that may influence the control and behavior of retinal progenitors. Factors to consider in the generation of a transplantable cell resource with good migratory and integrative capacity include their yield, purity, and functional viability. Utilizing human postmortem retina, we have created a research platform to isolate, culture, and characterize adult retinal microglia as well as analyze their effect on retinal progenitors. Here, we describe techniques using magnetic labeled bead cell separation to isolate pure populations of retinal CD133(+) precursor cells and CD11b(+) microglia from primary adult retinal cell suspensions (RCSs), enabling flow cytometric cell phenotypic and qPCR genotypic analysis, as well as functional analysis by real-time ratiometric calcium imaging.

  10. Engrafted Human Induced Pluripotent Stem Cell-Derived Anterior Specified Neural Progenitors Protect the Rat Crushed Optic Nerve

    PubMed Central

    Satarian, Leila; Javan, Mohammad; Kiani, Sahar; Hajikaram, Maryam; Mirnajafi-Zadeh, Javad; Baharvand, Hossein

    2013-01-01

    Background Degeneration of retinal ganglion cells (RGCs) is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs) following intravitreal transplantation. Methodology/Principal Findings NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs) and transplanted into rats whose optic nerves have been crushed (ONC). hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1′ -dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM). The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. Conclusions/Significance The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases. PMID:23977164

  11. Retinal and optic nerve diseases.

    PubMed

    Margalit, Eyal; Sadda, Srinivas R

    2003-11-01

    A variety of disease processes can affect the retina and/or the optic nerve, including vascular or ischemic disease, inflammatory or infectious disease, and degenerative disease. These disease processes may selectively damage certain parts of the retina or optic nerve, and the specific areas that are damaged may have implications for the design of potential therapeutic visual prosthetic devices. Outer retinal diseases include age-related macular degeneration, pathologic myopia, and retinitis pigmentosa. Although the retinal photoreceptors may be lost, the inner retina is relatively well-preserved in these diseases and may be a target for retinal prosthetic devices. Inner retinal diseases include retinal vascular diseases such as diabetic retinopathy, retinal venous occlusive disease, and retinopathy of prematurity. Other retinal diseases such as ocular infections (retinitis, endophthalmitis) may affect all retinal layers. Because the inner retinal cells, including the retinal ganglion cells, may be destroyed in these diseases (inner retinal or whole retinal), prosthetic devices that stimulate the inner retina may not be effective. Common optic nerve diseases include glaucoma, optic neuritis, and ischemic optic neuropathy. Because the ganglion cell nerve fibers themselves are damaged, visual prosthetics for these diseases will need to target more distal portions of the visual pathway, such as the visual cortex. Clearly, a sound understanding of retinal and optic nerve disease pathophysiology is critical for designing and choosing the optimal visual prosthetic device.

  12. 10 CFR 35.6 - Provisions for the protection of human research subjects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Provisions for the protection of human research subjects. 35.6 Section 35.6 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Information § 35.6 Provisions for the protection of human research subjects. (a) A licensee may...

  13. Protective function of pyridoxamine on retinal photoreceptor cells via activation of the p‑Erk1/2/Nrf2/Trx/ASK1 signalling pathway in diabetic mice.

    PubMed

    Ren, Xiang; Sun, Hong; Zhang, Chenghong; Li, Chen; Wang, Jinlei; Shen, Jie; Yu, Dong; Kong, Li

    2016-07-01

    The present study aimed to investigate the mechanisms that mediate the protective effects of pyridoxamine (PM) on light‑damaged retinal photoreceptor cells in diabetic mice. A high‑fat diet and streptozotocin were used to induce a mouse model of type II diabetes. During the experiment, mice were divided the mice into three types of group, as follows: Control groups (negative control and light‑damaged groups); experimental groups (diabetic and diabetic light‑damaged groups); and treatment groups (25, 50 and 100 mg/kg PM‑treated groups). Using hematoxylin‑eosin staining, the number of nuclear layer cells were counted. Western blotting and immunohistochemistry were performed to measure the levels of thioredoxin (Trx), phospho‑extracellular signal‑regulated kinase 1/2 (p‑Erk1/2), nuclear factor erythroid 2‑related factor 2 (Nrf2) and apoptosis signal‑regulating kinase 1 (ASK1). The photoreceptor cell count in the outer nuclear layer of the light‑damaged, diabetic control and diabetic light‑damaged groups were significantly reduced compared with the negative control group (P<0.001). The cell counts in the PM‑treated groups were significantly increased compared with the diabetic group (P<0.001). Compared with the negative control group, the light‑damaged, diabetic and diabetic light‑damaged groups exhibited significantly decreased Trx, p‑Erk1/2 and Nrf2 expression levels (P<0.001), and significantly increased ASK1 expression levels (P<0.001). However, in the PM‑treated groups, Trx, p‑Erk1/2 and Nrf2 expression levels were significantly increased (P<0.001), and ASK1 expression was significantly decreased (P<0.001). The results of the present study demonstrate that PM protects retinal photoreceptor cells against light damage in diabetic mice, and that its mechanism may be associated with the upregulation of Trx, p‑Erk1/2 and Nrf2 expression, and the downregulation of ASK1 expression. PMID:27177199

  14. Prolonged Prevention of Retinal Degeneration with Retinylamine Loaded Nanoparticles

    PubMed Central

    Puntel, Anthony; Maeda, Akiko; Golczak, Marcin; Gao, Song-Qi; Yu, Guanping; Palczewski, Krzysztof; Lu, Zheng-Rong

    2015-01-01

    Retinal degeneration impairs the vision of millions in all age groups worldwide. Increasing evidence suggests that the etiology of many retinal degenerative diseases is associated with impairment in biochemical reactions involved in the visual cycle, a metabolic pathway responsible for regeneration of the visual chromophore (11-cis-retinal). Inefficient clearance of toxic retinoid metabolites, especially all-trans-retinal, is considered responsible for photoreceptor cytotoxicity. Primary amines, including retinylamine, are effective in lowing the concentration of all-trans-retinal within the retina and thus prevent retina degeneration in mouse models of human retinopathies. Here we achieved prolonged prevention of retinal degeneration by controlled delivery of retinylamine to the eye from polylactic acid nanoparticles in Abca4−/−Rdh8−/− (DKO) mice, an animal model of Stargardt disease/age-related macular degeneration. Subcutaneous administration of the nanoparticles containing retinylamine provided a constant supply of the drug to the eye for about a week and resulted in effective prolonged prevention of light-induced retinal degeneration in DKO mice. Retinylamine nanoparticles hold promise for prolonged prophylactic treatment of human retinal degenerative diseases, including Stargardt disease and age-related macular degeneration. PMID:25617130

  15. Retinal vein occlusion

    MedlinePlus

    ... most often caused by hardening of the arteries ( atherosclerosis ) and the formation of a blood clot. Blockage ... arteries that have been thickened or hardened by atherosclerosis cross over and place pressure on a retinal ...

  16. Retinal artery occlusion

    MedlinePlus

    ... eds. Textbook of Family Medicine . 9th ed. Philadelphia, PA: Elsevier; 2016:chap 17. Duker JS. Retinal arterial ... M, Duker JS, eds. Ophthalmology. 4th ed. Philadelphia, PA: Elsevier; 2014:chap 6.18. Reiss GR, Sipperley ...

  17. Two Rare Human Mitofusin 2 Mutations Alter Mitochondrial Dynamics and Induce Retinal and Cardiac Pathology in Drosophila

    PubMed Central

    Chen, Yun; Bhandari, Poonam; Zhao, Peter; Jowdy, Casey C.; Engelhard, John T.; Dorn, Gerald W.

    2012-01-01

    Mitochondrial fusion is essential to organelle homeostasis and organ health. Inexplicably, loss of function mutations of mitofusin 2 (Mfn2) specifically affect neurological tissue, causing Charcot Marie Tooth syndrome (CMT) and atypical optic atrophy. As CMT-linked Mfn2 mutations are predominantly within the GTPase domain, we postulated that Mfn2 mutations in other functional domains might affect non-neurological tissues. Here, we defined in vitro and in vivo consequences of rare human mutations in the poorly characterized Mfn2 HR1 domain. Human exome sequencing data identified 4 rare non-synonymous Mfn2 HR1 domain mutations, two bioinformatically predicted as damaging. Recombinant expression of these (Mfn2 M393I and R400Q) in Mfn2-null murine embryonic fibroblasts (MEFs) revealed incomplete rescue of characteristic mitochondrial fragmentation, compared to wild-type human Mfn2 (hMfn2); Mfn2 400Q uniquely induced mitochondrial fragmentation in normal MEFs. To compare Mfn2 mutation effects in neurological and non-neurological tissues in vivo, hMfn2 and the two mutants were expressed in Drosophila eyes or heart tubes made deficient in endogenous fly mitofusin (dMfn) through organ-specific RNAi expression. The two mutants induced similar Drosophila eye phenotypes: small eyes and an inability to rescue the eye pathology induced by suppression of dMfn. In contrast, Mfn2 400Q induced more severe cardiomyocyte mitochondrial fragmentation and cardiac phenotypes than Mfn2 393I, including heart tube dilation, depressed fractional shortening, and progressively impaired negative geotaxis. These data reveal a central functional role for Mfn2 HR1 domains, describe organ-specific effects of two Mfn2 HR1 mutations, and strongly support prospective studies of Mfn2 400Q in heritable human heart disease of unknown genetic etiology. PMID:22957060

  18. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease

    PubMed Central

    Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T.; Wong, Brittany; Smit-McBride, Zeljka

    2016-01-01

    Purpose To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. Methods CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcus pyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Results Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. Conclusions The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases. PMID:27768202

  19. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  20. Complement Factor H Expressed by Retinal Pigment Epithelium Cells Can Suppress Neovascularization of Human Umbilical Vein Endothelial Cells: An in vitro Study

    PubMed Central

    Zhang, Yi; Huang, Qing; Tang, Min; Zhang, Junjun; Fan, Wei

    2015-01-01

    Complement factor H (CFH) is one of the most important soluble complement regulatory proteins and is closely associated with age-related macular degeneration (AMD), the leading cause of irreversible central vision loss in the elderly population in developed countries. Our study searches to investigate whether CFH expression is changed in oxidative damaged retinal pigment epithelium (RPE) cells and the role of CFH in the in vitro neovascularization. First, it was confirmed by immunofluorescence staining that CFH was expressed by ARPE-19 cells. CFH mRNA and protein in oxidative (H2O2) damaged ARPE-19 cells were both reduced, as determined by Real-time PCR and Western blotting analysis. Enzyme-linked immunosorbent assay (ELISA) also showed that ARPE-19 cells treated with H2O2 caused an increase in C3a content, which indicates complement activation. Then, wound assays were performed to show that CFH expression suppression promoted human umbilical vein endothelial cell (HUVECs) migration. Thereafter, ARPE-19 cells were transfected with CFH-specific siRNA and CFH knockdown was confirmed with the aid of Real-time PCR, immunofluorescence staining and Western blotting. The ELISA results showed that specific CFH knockdown in ARPE-19 cells activated the complement system. Finally, in vitro matrigel tube formation assay was performed to determine whether change of CFH expression in RPE would affect tube formation by HUVECs. More tubes were formed by HUVECs co-cultured with ARPE-19 cells transfected with CFH specific-siRNA when compared with controls. Our results suggested that RPE cells might be the local CFH source, and RPE cell injuries (such as oxidative stress) may cause CFH expression suppression, which in turn may lead to complement activation and promotion of tube formation by HUVECs. This finding is of importance in elucidating the role of complement in the pathogenesis of ocular neovascularization including choroidal neovascularization. PMID:26091360

  1. Evaluation of the Structure–Function Relationship in Glaucoma Using a Novel Method for Estimating the Number of Retinal Ganglion Cells in the Human Retina

    PubMed Central

    Raza, Ali S.; Hood, Donald C.

    2015-01-01

    Purpose We developed a simple method for estimating the number of retinal ganglion cells (RGCs) in the human retina using optical coherence tomography (OCT), compared it to a previous approach, and demonstrated its potential for furthering our understanding of the structure–function relationship in glaucoma. Methods Swept-source (ss) OCT data and 10-2 visual fields (VFs) were obtained from 43 eyes of 36 healthy controls, and 50 eyes of 50 glaucoma patients and suspects. Using estimates of RGC density from the literature and relatively few assumptions, estimates of the number of RGCs in the macula were obtained based on ssOCT-derived RGC layer thickness measurements. Results The RGC estimates were in general agreement with previously published values derived from histology, whereas a prior method based on VF sensitivity did not agree as well with histological data and had significantly higher (P = 0.001) and more variable (P < 0.001) RGC estimates than the new method based on ssOCT. However, the RGC estimates of the new approach were not zero for extreme VF losses, suggesting that a residual, non-RGC contribution needs to be added. Finally, the new ssOCT-derived RGC estimates were significantly (P < 0.001 to P = 0.018) related to VF sensitivity (Spearman's ρ = 0.26–0.47), and, in contrast to claims made in prior studies, statistically significant RGC loss did not occur more often than statistically significant visual loss. Conclusions The novel method for estimating RGCs yields values that are closer to histological estimates than prior methods, while relying on considerably fewer assumptions. Although the value added for clinical applications is yet to be determined, this approach is useful for assessing the structure–function relationship in glaucoma. PMID:26305526

  2. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells.

    PubMed

    Käpylä, Elli; Sorkio, Anni; Teymouri, Shokoufeh; Lahtonen, Kimmo; Vuori, Leena; Valden, Mika; Skottman, Heli; Kellomäki, Minna; Juuti-Uusitalo, Kati

    2014-12-01

    In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for h

  3. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate.

    PubMed

    Pennington, Britney O; Clegg, Dennis O; Melkoumian, Zara K; Hikita, Sherry T

    2015-02-01

    Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies. PMID:25593208

  4. Retinal detachment in pseudophakia.

    PubMed

    Galin, M A; Poole, T A; Obstbaum, S A

    1979-07-01

    In a series of cataract patients excluding myopic individuals, under age 60 years, and cases in which vitreous loss occurred, retinal detachment was no less frequent after intracapsular cataract extraction and Sputnik iris supported lenses than in controls. Both groups were followed up for a minimum of two years. The detachments predominantly occurred from retinal breaks in areas of the retina that looked normal preoperatively. PMID:464014

  5. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    SciTech Connect

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  6. Automated retinal layer segmentation and characterization

    NASA Astrophysics Data System (ADS)

    Luisi, Jonathan; Briley, David; Boretsky, Adam; Motamedi, Massoud

    2014-05-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.

  7. Intrinsic optical signal imaging of retinal physiology: a review.

    PubMed

    Yao, Xincheng; Wang, Benquan

    2015-09-01

    Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.

  8. Intrinsic optical signal imaging of retinal physiology: a review

    NASA Astrophysics Data System (ADS)

    Yao, Xincheng; Wang, Benquan

    2015-09-01

    Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.

  9. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.

    PubMed

    Bantseev, Vladimir; Youn, Hyun-Yi

    2006-12-01

    Mitochondria provide energy generated by oxidative phosphorylation and at the same time play a central role in apoptosis and aging. As a byproduct of respiration, the electron transport chain is known to be the major intracellular site for the generation of reactive oxygen species (ROS). Exposure to solar and occupational ultraviolet (UV) radiation, and thus production of ROS and subsequent cell death, has been implicated in a large spectrum of skin and ocular pathologies, including cataract. Retinal pigment epithelial cell apoptosis generates photoreceptor dysfunction and ultimately visual impairment. The purpose of this article was to characterize in vitro changes following oxidative stress with UV-B radiation in (a) ocular lens optics and cellular function in terms of mitochondrial dynamics of bovine lens epithelium and superficial cortical fiber cells and (b) human retinal pigment epithelial (ARPE-19) cells. Cultured bovine lenses and confluent cultures of ARPE-19 cells were irradiated with broadband UV-B radiation at energy levels of 0.5 and 1.0 J/cm(2). Lens optical function (spherical aberration) was monitored daily up to 14 days using an automated laser scanning system that was developed at the University of Waterloo. This system consists of a single collimated scanning helium-neon laser source that projects a thin (0.05 mm) laser beam onto a plain mirror mounted at 45 degrees on a carriage assembly. This mirror reflects the laser beam directly up through the scanner table surface and through the lens under examination. A digital camera captures the actual position and slope of the laser beam at each step. When all steps have been made, the captured data for each step position is used to calculate the back vertex distance for each position and the difference in that measurement between beams. To investigate mitochondrial movement, the mitochondria-specific fluorescent dye Rhodamine 123 was used. Time series were acquired with a Zeiss 510 (configuration Meta

  10. Rat retinal transcriptome

    PubMed Central

    Kozhevnikova, Oyuna S.; Korbolina, Elena E.; Ershov, Nikita I.; Kolosova, Natalia G.

    2013-01-01

    Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq). We identified 160 and 146 age-regulated genes in Wistar and OXYS retinas, respectively. The majority of them are related to the immune system and extracellular matrix turnover. Only 24 age-regulated genes were common for the two strains, suggestive of different rates and mechanisms of aging. Over 600 genes showed significant differences in expression between the two strains. These genes are involved in disease-associated pathways such as immune response, inflammation, apoptosis, Ca2+ homeostasis and oxidative stress. The altered expression for selected genes was confirmed by qRT-PCR analysis. To our knowledge, this study represents the first analysis of retinal transcriptome from young and old rats with biologic replicates generated by RNA-Seq technology. We can conclude that the development of AMD-like retinopathy in OXYS rats is associated with an imbalance in immune and inflammatory responses. Aging alters the expression profile of numerous genes in the retina, and the genetic background of OXYS rats has a profound impact on the development of AMD-like retinopathy. PMID:23656783

  11. Oxidized Lipoprotein Uptake Through the CD36 Receptor Activates the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Gnanaguru, Gopalan; Choi, Ariel R.; Amarnani, Dhanesh; D'Amore, Patricia A.

    2016-01-01

    Purpose Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. Methods Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. Results Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 μM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. Conclusions These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression. PMID:27607416

  12. Expression, Localization, and Function of Junctional Adhesion Molecule-C (JAM-C) in Human Retinal Pigment Epithelium

    PubMed Central

    Economopoulou, Matina; Hammer, Jeffrey; Wang, Fei; Fariss, Robert; Maminishkis, Arvydas; Miller, Sheldon S.

    2009-01-01

    Purpose To determine the localization of JAM-C in human RPE and characterize its functions. Methods Immunofluorescence, Western blot, and PCR was used to identify the localization and expression of JAM-C, ZO-1, N-cadherin, and ezrin in cultures of human fetal RPE (hfRPE) with or without si-RNA mediated JAM-C knockdown and in adult native RPE wholemounts. A transepithelial migration assay was used to study the migration of leukocytes through the hfRPE monolayer. Results JAM-C localized at the tight junctions of cultured hfRPE cells and adult native RPE. During initial junction formation JAM-C was recruited to the primordial cell– cell contacts and after JAM-C knockdown, the organization of N-cadherin and ZO-1 at those contacts was disrupted. JAM-C knockdown caused a delay in the hfRPE cell polarization, as shown by reduced apical staining of ezrin. JAM-C inhibition significantly decreased the chemokine-induced transmigration of granulocytes but not monocytes through the hfRPE monolayer. Conclusions JAM-C localizes specifically in the tight junctions of hfRPE and adult native RPE. It is important for tight junction formation in hfRPE, possibly by regulating the recruitment of N-cadherin and ZO-1 at the cell– cell contacts, and has a role in the polarization of hfRPE cells. Finally, JAM-C promotes the basal-to-apical transmigration of granulocytes but not monocytes through the hfRPE monolayer. PMID:19060272

  13. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-01-01

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. PMID:27511757

  14. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids.

  15. Historic Preservation An unusual way to protect human subjects in research

    SciTech Connect

    Prendergast, Ellen L.

    2001-09-15

    The Hanford Cultural Resources Laboratory (HCRL) at the Hanford Site interacts with human subjects in a variety of ways, some of which constitute human subjects research. A key element in this work is determining what constitutes 'research' and thus requires application of special measures to protect human subjects.

  16. Applying photoacoustics to quantification of melanin concentration in retinal pigment epithelium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Zhang, Hao F.; Liu, Wenzhong

    2016-03-01

    The melanin in the retinal pigment epithelium (RPE) protects retina and other ocular tissues by photo-screening and acting as antioxidant and free radical scavenger. It helps maintain normal visual functions since human eye is subjected to lifelong high oxygen stress and photon exposure. Loss of the RPE melanin weakens the protection mechanism and jeopardizes ocular health. Local decrease in the RPE melanin concentration is believed to be both a cause and a sign of early-stage age-related macular degeneration (AMD), the leading blinding disease in developed world. Current technology cannot quantitatively measure the RPE melanin concentration which might be a promising marker in early AMD screening. Photoacoustic ophthalmoscopy (PAOM), as an emerging optical absorption-based imaging technology, can potentially be applied to measure the RPE melanin concentration if the dependence of the detectable photoacoustic (PA) signal amplitudes on the RPE melanin concentrations is verified. In this study, we tested the feasibility of using PA signal ratio from RPE melanin and the nearby retinal blood vessels as an indicator of the RPE melanin variation. A novel whole eye optical model was designed and Monte Carlo modeling of light (MCML) was employed. We examined the influences on quantification from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness. The results show that the scheme is robust to individual histological and illumination variations. This study suggests that PAOM is capable of quantitatively measuring the RPE melanin concentration in vivo.

  17. Vitamin A derivatives as treatment options for retinal degenerative diseases.

    PubMed

    Perusek, Lindsay; Maeda, Tadao

    2013-07-12

    The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.

  18. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases

    PubMed Central

    Perusek, Lindsay; Maeda, Tadao

    2013-01-01

    The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients. PMID:23857173

  19. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have r