Science.gov

Sample records for protects retina ganglion

  1. Topography of ganglion cell production in the cat's retina

    SciTech Connect

    Walsh, C.; Polley, E.H.

    1985-03-01

    The ganglion cells of the cat's retina form several classes distinguishable in terms of soma size, axon diameter, dendritic morphology, physiological properties, and central connections. Labeling with (/sup 3/H)thymidine shows that the ganglion cells which survive in the adult are produced as several temporally shifted, overlapping waves: medium-sized cells are produced before large cells, whereas the smallest ganglion cells are produced throughout the period of ganglion cell generation. Large cells and medium-sized cells show the same distinctive pattern of production, forming rough spirals around the area centralis. The oldest cells tend to lie superior and nasal to the area centralis, whereas cells in the inferior nasal retina and inferior temporal retina are, in general, progressively younger. Within each retinal quadrant, cells nearer the area centralis tend to be older than cells in the periphery, but there is substantial overlap. The retinal raphe divides the superior temporal quadrant into two zones with different patterns of cell addition. Superior temporal retina near the vertical meridian adds cells only slightly later than superior nasal retina, whereas superior temporal retina near the horizontal meridian adds cells very late, contemporaneously with inferior temporal retina. The broader wave of production of smaller ganglion cells seems to follow this same spiral pattern at its beginning and end. The presence of the area centralis as a nodal point about which ganglion cell production in the retinal quadrants pivots suggests that the area centralis is already an important retinal landmark even at the earliest stages of retinal development.

  2. Hedgehogs and retinal ganglion cells: organizers of the mammalian retina.

    PubMed

    Dakubo, Gabriel D; Wallace, Valerie A

    2004-03-01

    The mature vertebrate retina develops from a population of multipotential neural progenitor cells that give rise to all of the retinal neurons and one glial cell type. Retinal histogenesis is regulated, in part, by cell extrinsic cues. A growing number of studies now implicate signaling by members of the Hedgehog (Hh) family of morphogens in vertebrate retinal development. In this review we will discuss the role of Hh signals from retinal ganglion cells (RGCs), the projection neurons of the retina, on proliferation, differentiation and lamination in the neural retina.

  3. Twelve chromatically opponent ganglion cell types in turtle retina.

    PubMed

    Rocha, F A F; Saito, C A; Silveira, L C L; de Souza, J M; Ventura, D F

    2008-01-01

    The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has an ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working in the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.

  4. Directional Excitatory Input to Direction-Selective Ganglion Cells in the Rabbit Retina.

    PubMed

    Percival, Kumiko A; Venkataramani, Sowmya; Smith, Robert G; Rowland Taylor, W

    2017-03-14

    Directional responses in retinal ganglion cells are generated in large part by direction-selective release of GABA from starburst amacrine cells onto direction-selective ganglion cells (DSGCs). The excitatory inputs to DSGCs are also widely reported to be direction-selective, however, recent evidence suggests that glutamate release from bipolar cells is not directional, and directional excitation seen in patch-clamp analyses may be an artifact resulting from incomplete voltage control. Here we test this voltage-clamp-artifact hypothesis in recordings from 62 On-Off DSGCs in the rabbit retina. The strength of the directional excitatory signal varies considerably across the sample of cells, but is not correlated with the strength of directional inhibition, as required for a voltage-clamp artifact. These results implicate additional mechanisms in generating directional excitatory inputs to DSGCs. This article is protected by copyright. All rights reserved.

  5. Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development.

    PubMed

    Renna, Jordan M; Chellappa, Deepa K; Ross, Christopher L; Stabio, Maureen E; Berson, David M

    2015-09-01

    Melanopsin ganglion cells express the photopigment melanopsin and are the first functional photoreceptors to develop in the mammalian retina. They have been shown to play a variety of important roles in visual development and behavior in the early postnatal period (Johnson et al., 2010; Kirkby and Feller, 2013; Rao et al., 2013; Renna et al., 2011). Here, we probed the maturation of the dendritic arbors of melanopsin ganglion cells during this developmental period in mice. We found that some melanopsin ganglion cells (mainly the M1-subtype) transiently extend their dendrites not only into the inner plexiform layer (where they receive synaptic inputs from bipolar and amacrine cells) but also into the outer plexiform layer, where in mature retina, rod and cone photoreceptors are thought to contact only bipolar and horizontal cells. Thus, some immature melanopsin ganglion cells are biplexiform. This feature is much less common although still present in the mature retina. It reaches peak incidence 8-12 days after birth, before the eyes open and bipolar cells are sufficiently mature to link rods and cones to ganglion cells. At this age, some outer dendrites of melanopsin ganglion cells lie in close apposition to the axon terminals of cone photoreceptors and express a postsynaptic marker of glutamatergic transmission, postsynaptic density-95 protein (PSD-95). These findings raise the possibility of direct, monosynaptic connections between cones and melanopsin ganglion cells in the early postnatal retina. We provide a detailed description of the developmental profile of these processes and consider their possible functional and evolutionary significance.

  6. Spontaneous activity of morphologically identified ganglion cells in the developing ferret retina.

    PubMed

    Liets, Lauren C; Olshausen, Bruno A; Wang, Guo-Yong; Chalupa, Leo M

    2003-08-13

    Whole-cell patch-clamp recordings were made from morphologically identified ganglion cells in the intact retina of developing ferrets. As early as 3 d after birth, all ganglion cells exhibited bursts of spontaneous activity, with the interval between bursts gradually decreasing with maturity. By 2 weeks after birth, ganglion cells could be morphologically differentiated into three major classes (alpha, beta, and gamma), and at this time each cell class was characterized by a distinct pattern of spontaneous activity. Dual patch-clamp recordings from pairs of neighboring cells revealed that cells of all morphological classes burst in a coordinated manner, regardless of cell type. These observations suggest that a common mechanism underlies the bursting patterns exhibited by all ganglion cell classes, and that class-specific firing patterns emerge coincident with retinal ganglion cell morphological differentiation.

  7. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina

    SciTech Connect

    Braas, K.M.; Zarbin, M.A.; Snyder, S.H.

    1987-06-01

    Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner plexiform layer and in select cells in the inner nuclear layer. Adenosine A1 receptors, labeled with the agonists L-(/sup 3/H)phenylisopropyladenosine and /sup 125/I-labeled hydroxy-phenylisopropyladenosine, were autoradiographically localized. The highest levels of binding sites occurred in the nerve fiber, ganglion cell, and inner plexiform layers of the retina in all the species examined. The distribution of adenosine A1 receptor sites closely parallels that of retinal neurons and fibers containing immunoreactive adenosine. These results suggest a role for endogenous adenosine as a coneurotransmitter in ganglion cells and their fibers in the optic nerve.

  8. Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus L.).

    PubMed

    Andrade-da-Costa, B L; Pessoa, V F; Bousfield, J D; Clarke, R J

    1989-01-01

    The distribution of ganglion cell densities and sizes was studied in Nissl-stained flat-mount retinae of the two-toed sloth. The area centralis, a weak specialization with low ganglion cell density, is located in the temporal retina close to the center of the eye. The presence of a visual streak was noted. The distribution of different ganglion cell sizes was approximately equal throughout the retina. Although the retinal organization differs from that of the closely related three-toed sloth, the presumed function of retinal specializations in both species is to guide limb movements by permitting visualization of the branch along which the animal is climbing.

  9. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina

    PubMed Central

    Galindo-Romero, Caridad; Harun-Or-Rashid, Mohammad; Jiménez-López, Manuel; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2016-01-01

    We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina. PMID:27611432

  10. Synaptic inputs to the ganglion cells in the tiger salamander retina.

    PubMed

    Wunk, D F; Werblin, F S

    1979-03-01

    The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main types of ganglion cell: "on" center, "off" center, "on-off", and a "hybrid" cell that responds transiently to center, but sustainedly, to surround illumination. The results lead to these inferences. The on-ganglion cell receives excitatory synpatic input from the on bipolars and that synapse is "silent" in the dark. The off-ganglion cell receives excitatory synaptic input from the off bipolars with this synapse tonically active in the dark. The on-off and hybrid ganglion cells receive a transient excitatory input with narrow receptive field, not simply correlated with the activity of any presynaptic cell. All cell types receive a broad field transient inhibitory input, which apparently originates in the transient amacrine cells. Thus, most, but not all, ganglion cell responses can be explained in terms of synaptic inputs from bipolar and amacrine cells, integrated at the ganglion cell membrane.

  11. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    PubMed

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage.

  12. Diosmin Protects Rat Retina from Ischemia/Reperfusion Injury

    PubMed Central

    Tong, Nianting; Zhang, Zhenzhen; Gong, Yuanyuan; Yin, Lili

    2012-01-01

    Abstract Objective Diosmin, a natural flavone glycoside, possesses antioxidant activity and has been used to alleviate ischemia/reperfusion (I/R) injury. The aim of this study was to clarify whether the administration of diosmin has a protective effect against I/R injury induced using the high intraocular pressure (IOP) model in rat retina, and to determine the possible antioxidant mechanisms involved. Methods Retinal I/R injury was induced in the rats by elevating the IOP to 110 mmHg for 60 min. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. The levels of malondialdehyde (MDA) and the activities of total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the retinal tissues were determined 24 h after I/R injury. At 7 days post-I/R injury, electroretinograms (ERGs) were recorded, and the density of surviving retinal ganglion cells (RGCs) was estimated by counting retrograde tracer-labeled cells in whole-mounted retinas. Retinal histological changes were also examined and quantified using light microscopy. Results Diosmin significantly decreased the MDA levels and increased the activities of T-SOD, GSH-Px, and CAT in the retina of rats compared with the ischemia group (P<0.05), and suppressed the I/R-induced reduction in the a- and b-wave amplitudes of the ERG (P<0.05). The thickness of the entire retina, inner nuclear layer, inner plexiform layer, and outer retinal layer and the number of cells in the ganglion cell layer were significantly less after I/R injury (P<0.05), and diosmin remarkably ameliorated these changes on retinal morphology. Diosmin also attenuated the I/R-induced loss of RGCs of the rat retina (P<0.05). Conclusion Diosmin protected the retina from I/R injury, possibly via a mechanism involving the regulation of oxidative parameters. PMID:22509733

  13. Self-facilitation of ganglion cells in the retina of the turtle

    PubMed Central

    Marchiafava, P. L.; Torre, V.

    1977-01-01

    1. Ganglion cells responses to illumination and to optic nerve stimulation were recorded intracellularly from the retina of the turtle. All ganglion cells were identified by their antidromic responses to optic nerve stimulation. 2. When solitary spikes are produced following antidromic, orthodromic or intracellular stimulation, about 20% of the recorded ganglion cells show an additional depolarization along the falling phase of the action potential (post-spike depolarization, PSD). 3. The PSD following the antidromic action potential disappears upon collision with a direct spike or when the antidromic spike is prevented from invading the cell soma. 4. By pairing two optic nerve stimuli the PSD is depressed with brief interstimulus intervals, but gradually recovers to the control amplitude 600-800 msec after the conditioning shock. 5. The PSD is tentatively interpreted as an e.p.s.p. transmitted by ganglion cell collaterals originating at the level of the soma dendritic complex of the recorded cell. 6. The interspike interval histogram of ganglion cells showing PSD is characterized by a peak at about 10 msec, as opposed to a peak between 12 and 100 msec observed in cells without PSD. It is suggested that the occurrence of PSD facilitate the onset of additional action potentials at brief interspikes intervals, thus potentiating ganglion cell discharges. PMID:874914

  14. Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina

    PubMed Central

    Nath, Amurta

    2016-01-01

    Orientation selectivity (OS) is a prominent and well studied feature of early visual processing in mammals, but recent work has highlighted the possibility that parallel OS circuits might exist in multiple brain locations. Although both classic and modern work has identified an OS mechanism in selective wiring from lateral geniculate nucleus (LGN) to primary visual cortex, OS responses have now been found upstream of cortex in mouse LGN and superior colliculus, suggesting a possible origin in the retina. Indeed, retinal OS responses have been reported for decades in rabbit and more recently in mouse. However, we still know very little about the properties and mechanisms of retinal OS in the mouse, including whether there is a distinct OS ganglion cell type, which orientations are represented, and what are the synaptic mechanisms of retinal OS. We have identified two novel types of OS ganglion cells in the mouse retina that are highly selective for horizontal and vertical cardinal orientations. Reconstructions of the dendritic trees of these OS ganglion cells and measurements of their synaptic conductances offer insights into the mechanism of the OS computation at the earliest stage of the visual system. SIGNIFICANCE STATEMENT Orientation selectivity (OS) is one of the most well studied computations in the brain and has become a prominent model system in various areas of sensory neuroscience. Although the cortical mechanism of OS suggested by Hubel and Wiesel (1962) has been investigated intensely, other OS cells exist upstream of cortex as early as the retina and the mechanisms of OS in subcortical regions are much less well understood. We identified two ON retinal ganglion cells (RGCs) in mouse that compute OS along the horizontal (nasal–temporal) and vertical (dorsoventral) axes of visual space. We show the relationship between dendritic morphology and OS for each RGC type and reveal new synaptic mechanisms of OS computation in the retina. PMID:26985031

  15. The ciliary margin zone of the mammalian retina generates retinal ganglion cells

    PubMed Central

    Marcucci, Florencia; Murcia-Belmonte, Veronica; Coca, Yaiza; Ferreiro-Galve, Susana; Wang, Qing; Kuwajima, Takaaki; Khalid, Sania; Ross, M. Elizabeth; Herrera, Eloisa; Mason, Carol

    2016-01-01

    Summary The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live-imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. As Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2−/− mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity. PMID:28009286

  16. Histamine Reduces Flash Sensitivity of ON Ganglion Cells in the Primate Retina

    PubMed Central

    Akimov, Nikolay P.; Marshak, David W.; Frishman, Laura J.; Yusupov, Rafail G.

    2010-01-01

    Purpose. In Old World primates, the retina receives input from histaminergic neurons in the posterior hypothalamus. They are a subset of the neurons that project throughout the central nervous system and fire maximally during the day. The contribution of these neurons to vision, was examined by applying histamine to a dark-adapted, superfused baboon eye cup preparation while making extracellular recordings from peripheral retinal ganglion cells. Methods. The stimuli were 5-ms, 560-nm, weak, full-field flashes in the low scotopic range. Ganglion cells with sustained and transient ON responses and two cell types with OFF responses were distinguished; their responses were recorded with a 16-channel microelectrode array. Results. Low micromolar doses of histamine decreased the rate of maintained firing and the light sensitivity of ON ganglion cells. Both sustained and transient ON cells responded similarly to histamine. There were no statistically significant effects of histamine in a more limited study of OFF ganglion cells. The response latencies of ON cells were approximately 5 ms slower, on average, when histamine was present. Histamine also reduced the signal-to-noise ratio of ON cells, particularly in those cells with a histamine-induced increase in maintained activity. Conclusions. A major action of histamine released from retinopetal axons under dark-adapted conditions, when rod signals dominate the response, is to reduce the sensitivity of ON ganglion cells to light flashes. These findings may relate to reports that humans are less sensitive to light stimuli in the scotopic range during the day, when histamine release in the retina is expected to be at its maximum. PMID:20207974

  17. Histamine reduces flash sensitivity of on ganglion cells in the primate retina.

    PubMed

    Akimov, Nikolay P; Marshak, David W; Frishman, Laura J; Glickman, Randolph D; Yusupov, Rafail G

    2010-07-01

    PURPOSE. In Old World primates, the retina receives input from histaminergic neurons in the posterior hypothalamus. They are a subset of the neurons that project throughout the central nervous system and fire maximally during the day. The contribution of these neurons to vision, was examined by applying histamine to a dark-adapted, superfused baboon eye cup preparation while making extracellular recordings from peripheral retinal ganglion cells. METHODS. The stimuli were 5-ms, 560-nm, weak, full-field flashes in the low scotopic range. Ganglion cells with sustained and transient ON responses and two cell types with OFF responses were distinguished; their responses were recorded with a 16-channel microelectrode array. RESULTS. Low micromolar doses of histamine decreased the rate of maintained firing and the light sensitivity of ON ganglion cells. Both sustained and transient ON cells responded similarly to histamine. There were no statistically significant effects of histamine in a more limited study of OFF ganglion cells. The response latencies of ON cells were approximately 5 ms slower, on average, when histamine was present. Histamine also reduced the signal-to-noise ratio of ON cells, particularly in those cells with a histamine-induced increase in maintained activity. CONCLUSIONS. A major action of histamine released from retinopetal axons under dark-adapted conditions, when rod signals dominate the response, is to reduce the sensitivity of ON ganglion cells to light flashes. These findings may relate to reports that humans are less sensitive to light stimuli in the scotopic range during the day, when histamine release in the retina is expected to be at its maximum.

  18. ON ganglion cells are intrinsically photosensitive in the tiger salamander retina.

    PubMed

    Rajaraman, Kaveri

    2012-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) have been well characterized in mammalian systems, both morphologically and electrophysiologically. They show slow, sustained responses to bright light in the absence of photoreceptor-based input, mediated by the photopigment melanopsin. Only one mammalian melanopsin gene is expressed in a small fraction of the retinal ganglion cell population, but there are two genes for melanopsin among nonmammalian vertebrates that are widely expressed in a variety of retinal and extraretinal cell types, along with other photosensitive pigments. The current study provides an electrophysiological study of ipRGCs in the larval tiger salamander (Ambystoma tigrinum), a nonmammalian vertebrate with a well-characterized retina. The results show that the ipRGC population is equivalent to the ON ganglion cell population in the tiger salamander retina. This sheds light on the evolutionary trajectory and functional significance of intrinsic photosensitivity through the vertebrate lineage and also affects our understanding of ON cell activity and development. We have characterized the nature of the intrinsic responses of the ON cell population, compared intrinsic and synaptically based receptive fields, and quantified the spectrum of the intrinsic activity. A wider action spectrum of intrinsic photosensitivity was obtained than would be expected for a single opsin photopigment, suggesting the expression of multiple photopigments in the salamander ipRGC. J. Comp. Neurol., 2012. © 2011 Wiley Periodials, Inc.

  19. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina

    PubMed Central

    Rodriguez, Allen R.; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C.

    2014-01-01

    There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On Western blots these antibodies recognize a single band at ~24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit and monkey retina. RBPMS immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semi-quantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1) immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at three weeks, and all Brn3a, SMI-32 and melanopsin immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to CFP-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs. PMID:24318667

  20. Synaptic drive and impulse generation in ganglion cells of turtle retina.

    PubMed

    Baylor, D A; Fettiplace, R

    1979-03-01

    1. Light reponses and electrical constants of ganglion cells in the retina of the turtle were examined by intracellular recording in eyecup preparations. 2. In 'on', 'off', and 'on/off' cells, the impulses produced by illumination of the centre of the receptive field arose from slow synaptic depolarizations. The ganglion cells also exhibited inhibitory synaptic potentials. 3. The synaptic depolarization evoked by a step change in light intensity rose more slowly than the response of the cones in which the excitation originated, and the depolarization then declined in spite of a well maintained cone response. This behaviour is consistent with the notion advanced previously that, during transmission to ganglion cells, receptor signals are relayed through the equivalent of a bandpass filter. 4. The e.p.s.p.s evoked by light grew when the membrane was hyperpolarized by injected current and decreased when the membrane was depolarized. The i.p.s.p.s reversed at a level slightly negative to the resting potential in darkness. 5. In neither 'on' nor 'off' ganglion cells did the synaptic potentials evoked by step changes in illumination show the hyperpolarizing phases expected of a linear filter. The absence of hyperpolarizations is consistent with a rectification which permits transmission of depolarizations but not hyperpolarizations from bipolar to ganglion cells. 6. In darkness the membrane potential of some ganglion cells showed random depolarizations which brought the potential near the threshold for impulse generation. 7. With very small spots in the receptive field centre the 'on' responses of ganglion cells to flashes and steps of light grew approximately linearly with stimulus intensity. The step reponse was not, however, related to the flash response by superposition. Larger spots in the field centre gave responses which grew non-linearly with the intensity of even dim stimuli. 8 Depolarizing current passed through the recording electrode elicited a repetitive

  1. Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina.

    PubMed

    Masri, Rania A; Percival, Kumiko A; Koizumi, Amane; Martin, Paul R; Grünert, Ulrike

    2016-06-15

    Parallel visual pathways originate at the first synapse in the retina, where cones make connections with cone bipolar cells that in turn contact ganglion cells. There are more ganglion cell types than bipolar types, suggesting that there must be divergence from bipolar to ganglion cells. Here we analyze the contacts between an OFF bipolar type (DB3a) and six ganglion cell types in the retina of the marmoset monkey (Callithrix jacchus). Ganglion cells were transfected via particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP), and DB3a cells were labeled via immunohistochemistry. Ganglion cell types that fully or partially costratified with DB3a cells included OFF parasol, OFF midget, broad thorny, recursive bistratified, small bistratified, and large bistratified cells. On average, the number of DB3a contacts to parasol cells (18 contacts per axon terminal) is higher than that to other ganglion cell types (between four and seven contacts). We estimate that the DB3a output to OFF parasol cells accounts for at least 30% of the total DB3a output. Furthermore, we found that OFF parasol cells receive approximately 20% of their total bipolar input from DB3a cells, suggesting that other diffuse bipolar types also provide input to OFF parasol cells. We conclude that DB3a cells preferentially contact OFF parasol cells but also provide input to other ganglion cell types.

  2. Novel Methodology for Creating Macaque Retinas with Sortable Photoreceptors and Ganglion Cells

    PubMed Central

    Choudhury, Shreyasi; Strang, Christianne E.; Alexander, John J.; Scalabrino, Miranda L.; Lynch Hill, Julie; Kasuga, Daniel T.; Witherspoon, C. Douglas; Boye, Sanford L.; Gamlin, Paul D.; Boye, Shannon E.

    2016-01-01

    Purpose: The ability to generate macaque retinas with sortable cell populations would be of great benefit to both basic and translational studies of the primate retina. The purpose of our study was therefore to develop methods to achieve this goal by selectively labeling, in life, photoreceptors (PRs) and retinal ganglion cells (RGCs) with separate fluorescent markers. Methods: Labeling of macaque (Macaca fascicularis) PRs and RGCs was accomplished by subretinal delivery of AAV5-hGRK1-GFP, and retrograde transport of micro-ruby™ from the lateral geniculate nucleus, respectively. Retinas were anatomically separated into different regions. Dissociation conditions were optimized, and cells from each region underwent fluorescent activated cell sorting (FACS). Expression of retinal cell type- specific genes was assessed by quantitative real-time PCR to characterize isolated cell populations. Results: We show that macaque PRs and RGCs can be simultaneously labeled in-life and enriched populations isolated by FACS. Recovery from different retinal regions indicated efficient isolation/enrichment for PRs and RGCs, with the macula being particularly amendable to this technique. Conclusions: The methods and materials presented here allow for the identification of novel reagents designed to target RGCs and/or photoreceptors in a species that is phylogenetically and anatomically similar to human. These techniques will enable screening of intravitreally-delivered AAV capsid libraries for variants with increased tropism for PRs and/or RGCs and the evaluation of vector tropism and/or cellular promoter activity of gene therapy vectors in a clinically relevant species. PMID:27990105

  3. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation

    PubMed Central

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S.

    2016-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  4. Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya).

    PubMed

    Muniz, José Augusto Pereira Carneiro; de Athaide, Luana Modesto; Gomes, Bruno Duarte; Finlay, Barbara L; Silveira, Luiz Carlos de Lima

    2014-01-01

    Unlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines) and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700-45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5-1.75 mm from the fovea, reaching mean values between 2,050-3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region.

  5. Ganglion Cell and Displaced Amacrine Cell Density Distribution in the Retina of the Howler Monkey (Alouatta caraya)

    PubMed Central

    Muniz, José Augusto Pereira Carneiro; de Athaide, Luana Modesto; Gomes, Bruno Duarte; Finlay, Barbara L.; Silveira, Luiz Carlos de Lima

    2014-01-01

    Unlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines) and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700–45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5–1.75 mm from the fovea, reaching mean values between 2,050–3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region. PMID:25546077

  6. Morphology and Immunoreactivity of Retrogradely Double-Labeled Ganglion Cells in the Mouse Retina

    PubMed Central

    Wu, Samuel M.

    2011-01-01

    Purpose. To examine the specificity and reliability of a retrograde double-labeling technique that was recently established for identification of retinal ganglion cells (GCs) and to characterize the morphology of displaced (d)GCs (dGs). Methods. A mixture of the gap-junction–impermeable dye Lucifer yellow (LY) and the permeable dye neurobiotin (NB) was applied to the optic nerve stump for retrograde labeling of GCs and the cells coupled with them. A confocal microscope was adopted for morphologic observation. Results. GCs were identified by LY labeling, and they were all clearly labeled by NB. Cells coupled to GCs contained a weak NB signal but no LY. LY and NB revealed axon bundles, somas and dendrites of GCs. The retrogradely identified GCs numbered approximately 50,000 per retina, and they constituted 44% of the total neurons in the ganglion cell layer (GCL). Somas of retrogradely identified dGs were usually negative for glycine, ChAT (choline acetyltransferase), bNOS (brain-type nitric oxidase), GAD (glutamate decarboxylase), and glial markers, and occasionally, they were weakly GABA-positive. dGs averaged 760 per retina and composed 1.7% of total GCs. Sixteen morphologic subtypes of dGs were encountered, three of which were distinct from known GCs. dGs sent dendrites to either sublaminas of the IPL, mostly sublamina a. Conclusions. The retrograde labeling is reliable for identification of GCs. dGs participate in ON and OFF light pathways but favor the OFF pathway. ChAT, bNOS, glycine, and GAD remain reliable AC markers in the GCL. GCs may couple to GABAergic ACs, and the gap junctions likely pass NB and GABA. PMID:21482641

  7. Physiological and morphological characterization of ganglion cells in the salamander retina

    PubMed Central

    Wang, Jing; Jacoby, Roy; Wu, Samuel M.

    2016-01-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON–OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON–OFF RGCs. Dendritic field diameters of RGCs ranged 102–490 µm: narrow field (<200 µm, 31% of RGCs), medium field (200–300 µm, 45%) and wide field (>300 µm, 24%). Dendritic ramification patterns of RGCs agree with the sub-lamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON–OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645

  8. Physiological and morphological characterization of ganglion cells in the salamander retina.

    PubMed

    Wang, Jing; Jacoby, Roy; Wu, Samuel M

    2016-02-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON-OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON-OFF RGCs. Dendritic field diameters of RGCs ranged 102-490 μm: narrow field (<200 μm, 31% of RGCs), medium field (200-300 μm, 45%) and wide field (>300 μm, 24%). Dendritic ramification patterns of RGCs agree with the sublamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON-OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification.

  9. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina

    PubMed Central

    Vila, Alejandro; Huynh, Uyen-Chi N.; Brecha, Nicholas C.

    2008-01-01

    Purpose To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. Methods CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD67), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. Results CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 μm in diameter, and they had a density of 2636±347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD67, GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. Conclusions The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells. PMID:18728756

  10. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina.

    PubMed

    Arman, A Cyrus; Sampath, Alapakkam P

    2012-05-01

    The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.

  11. Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina

    PubMed Central

    Hilgen, Gerrit; Pirmoradian, Sahar; Pamplona, Daniela; Kornprobst, Pierre; Cessac, Bruno; Hennig, Matthias H.; Sernagor, Evelyne

    2017-01-01

    We have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to different contrasts not only revealed a complex developmental profile for ON, OFF and ON-OFF responses, but also unveiled differences between dorsal and ventral RGC responses. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental profile of ON and OFF responses exhibited antagonistic behaviour, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive field (RF) center sizes decrease, spike-triggered averaged responses to white noise become stronger, and centers become more circular while maintaining differences between RGC types. We conclude that the maturation of retinal functionality is not spatially homogeneous, likely reflecting ecological requirements that favour earlier maturation of the dorsal retina. PMID:28186129

  12. Degeneration stage-specific response pattern of retinal ganglion cell spikes in rd10 mouse retina.

    PubMed

    Park, D J; Senok, S S; Goo, Y S

    2015-01-01

    It is known that with retinal degeneration there is rewiring of retinal networks. Consequently, electrical stimulation of the degenerating retina produces responses that differ according to the stage of retinal degeneration. We sought to delineate a degeneration stage-specific parameter for the response pattern of retinal ganglion cell (RGC) spikes as a strategy for stage-specific electrical stimulation for perceptual efficiency of prosthetic vision devices. Electrically-evoked RGC spikes were recorded at different degeneration stages in the rd10 mouse model for human retinitis pigmentosa (RP). Retinal explants mounted on an 8×8 multi-electrode array were stimulated by applying 1 Hz cathodic-phase first biphasic current pulses. RGC firing rate during the first 100 ms post-stimulus was compared to that during the 100-1000 ms period and a response ratio of 100 ms (RR100 ms) was calculated through the different postnatal weeks. Our results show that during post-stimulus 100-1000 ms, the degree of correlation between pulse amplitude and evoked RGC spikes drastically decreases at PNW 4.5. This pattern was closely matched by the RR100 ms curve at this stage. We conclude that the RR100 ms might be a good indicator of the therapeutic potential of a retinal electrical prosthesis.

  13. Low-voltage activated calcium currents in ganglion cells of the tiger salamander retina: experiment and simulation.

    PubMed

    Henderson, Dori; Miller, Robert F

    2007-01-01

    We examined the functional properties of a low-voltage-activated (LVA) calcium current in ganglion cells of the neotenous tiger salamander (Ambystoma tigrinum) retina. Our analysis was based on whole-cell recordings from acutely dissociated ganglion cell bodies identified by retrograde dye injections. Using a continuously perfused cell preparation, the LVA current was isolated with the use of potassium channel blocking agents added to the bathing medium and the pipette solution, while tetrodotoxin was added to the bathing medium to block Na+ channels. Approximately 70% of ganglion cells had an easily identified LVA current. The LVA current activated at membrane potentials more positive than -90 mV, and inactivated rapidly. It was relatively insensitive to nickel (IC50 > 500 microM) and amiloride (IC50 > 750 microM). Voltage- and current-clamp studies allowed us to generate a model of this current using the NEURON simulation program. Studies were also carried out to measure the LVA Ca2+ current in ganglion cells with dendrites to confirm that it had a significant dendritic representation. Physiological mechanisms that may depend on LVA Ca2+ currents are discussed with an emphasis on the role that dendrites play in ganglion cell function.

  14. Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F. III

    2009-06-01

    We and other research groups are designing an electronic retinal prosthesis to provide vision for patients who are blind due to photoreceptor degeneration. In this study, we examined the effect of stimulus waveform on the amount of current needed to activate retinal ganglion cells (RGCs) when the retinal neural network is stimulated. Isolated retinas of wild-type and rd1 mice were stimulated with cathodal and anodal monophasic current pulses of 1 ms duration and symmetric biphasic current pulses (1 ms per phase) delivered through an electrode that was located subretinally. For both wild-type and rd1 mouse retinas, cathodal current pulses were least effective in activating most RGCs. The median threshold current for a cathodal current pulse was 2.0-4.4 fold higher than the median threshold current for either an anodal or a biphasic current pulse. In wild-type mouse retinas, the median threshold current for activating RGCs with anodal current pulses was 23% lower than that with biphasic current pulses. In rd1 mouse retinas, the median threshold currents for anodal and biphasic current pulses were about the same. However, the variance in thresholds of rd1 RGCs for biphasic pulse stimulation was much smaller than for anodal pulse stimulation. Thus, a symmetric biphasic current pulse may be the best stimulus for activating the greatest number of RGCs in retinas devoid of photoreceptors.

  15. Melanopsin‐expressing ganglion cells on macaque and human retinas form two morphologically distinct populations

    PubMed Central

    Liao, Hsi‐Wen; Ren, Xiaozhi; Peterson, Beth B.; Marshak, David W.; Yau, King‐Wai; Gamlin, Paul D.

    2016-01-01

    ABSTRACT The long‐term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were identified based on dendritic stratification in either the inner or the outer portion of the inner plexiform layer (IPL). Variation in dendritic field size and cell density with eccentricity was confirmed, and dendritic spines, a new feature of melanopsin cells, were described. The spines were the sites of input from DB6 diffuse bipolar cell axon terminals to the inner stratifying type of melanopsin cells. The outer stratifying melanopsin type received inputs from DB6 bipolar cells via a sparse outer axonal arbor. Outer stratifying melanopsin cells also received inputs from axon terminals of dopaminergic amacrine cells. On the outer stratifying melanopsin cells, ribbon synapses from bipolar cells and conventional synapses from amacrine cells were identified in electron microscopic immunolabeling experiments. Both inner and outer stratifying melanopsin cell types were retrogradely labeled following tracer injection in the lateral geniculate nucleus (LGN). In addition, a method for targeting melanopsin cells for intracellular injection using their intrinsic fluorescence was developed. This technique was used to demonstrate that melanopsin cells were tracer coupled to amacrine cells and would be applicable to electrophysiological experiments in the future. J. Comp. Neurol. 524:2845–2872, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26972791

  16. Wogonin prevents TLR4-NF-κB-medicated neuro-inflammation and improves retinal ganglion cells survival in retina after optic nerve crush

    PubMed Central

    Lu, Lin; Lu, Xi; Wang, Jiawei; Xu, Fan; Yu, Shanshan; Huang, Jingjing; Liang, Xiaoling

    2016-01-01

    Chronic neuro-inflammation is involved in the death of retinal ganglion cells (RGCs) in glaucoma. The aim of this study is to determine whether wogonin can suppress inflammatory responses and rescue RGCs death after optic nerve crush (ONC), an ideal animal model of glaucoma. Wogonin was administered intraperitoneally 10 min after establishment of ONC model. In this study, wogonin treatment reduced RGCs loss and inhibited RGCs apoptosis demonstrated by the increased Brn3a labeling RGCs at day 14 and the decreased cleaved caspase-3 expression at day 7 after ONC, respectively. In ONC model, number of GFAP-positive glial cells and iba1-positive microglial cells were increased, combined of the elevated level of pro-inflammatory cytokines released in retina at day 7. However, most of these responses were inhibited after wogonin treatment. The level of TLR4 expression, NF-κB-P65 nucleus location and NF-κB-P65 phosphorylation were increased in retina at day 1 after ONC, which was significantly reduced after wogonin treatment. These results demonstrated that wogonin protected RGCs survival and suppressed neuro-inflammation in retina after ONC by inhibiting TLR4-NF-κB pathways. We conclude that wogonin could be a possible strategy for the treatment of glaucoma. PMID:27756890

  17. Light-evoked synaptic activity of retinal ganglion and amacrine cells is regulated in developing mouse retina

    PubMed Central

    He, Quanhua; Wang, Ping; Tian, Ning

    2010-01-01

    Recent studies have shown a continued maturation of visual responsiveness and synaptic activity of retina after eye opening, including the size of receptive fields of retinal ganglion cells (RGCs), light-evoked synaptic output of RGCs, bipolar cell spontaneous synaptic inputs to RGCs, and the synaptic connections between RGCs and ON and OFF bipolar cells. Light deprivation retarded some of these age-dependent changes. However, many other functional and morphological features of RGCs are not sensitive to visual experience. To determine whether light-evoked synaptic responses of RGCs undergo developmental change, we directly examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to RGCs in developing retinas and found that both light-evoked excitatory and inhibitory synaptic currents decreased, but not increased, with age. We also examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to amacrine cells in developing retinas and found that the light-evoked synaptic input of amacrine cells is also down-regulated in developing mouse retina. Different from the developmental changes of RGC spontaneous synaptic activity, dark rearing has little effect on the developmental changes of light-evoked synaptic activity of both RGCs and amacrine cells. Therefore, we concluded that the synaptic mechanisms mediating spontaneous and light-evoked synaptic activity of RGCs and amacrine cells are likely to be different. PMID:21091802

  18. Retina

    MedlinePlus

    ... biology of the retina. In: Tasman W, Jaeger EA, eds. Duane's Foundations of Clinical Ophthalmology . 2013 ed. ... and retina with ultrasound. In: Tasman W, Jaeger EA, eds. Duane's Ophthalmology . 2013 ed. Philadelphia, PA: Lippincott ...

  19. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration

    NASA Astrophysics Data System (ADS)

    Habib, Amgad G.; Cameron, Morven A.; Suaning, Gregg J.; Lovell, Nigel H.; Morley, John W.

    2013-06-01

    Objective. Visual prostheses currently in development aim to restore some form of vision to patients suffering from diseases such as age-related macular degeneration and retinitis pigmentosa. Most rely on electrically stimulating inner retinal cells via electrodes implanted on or near the retina, resulting in percepts of light termed ‘phosphenes’. Activation of spatially distinct populations of cells in the retina is key for pattern vision to be produced. To achieve this, the electrical stimulation must be localized, activating cells only in the direct vicinity of the stimulating electrode(s). With this goal in mind, a hexagonal return (hexapolar) configuration has been proposed as an alternative to the traditional monopolar or bipolar return configurations for electrically stimulating the retina. This study investigated the efficacy of the hexapolar configuration in localizing the activation of retinal ganglion cells (RGCs), compared to a monopolar configuration. Approach. Patch-clamp electrophysiology was used to measure the activation thresholds of RGCs in whole-mount rabbit retina to monopolar and hexapolar electrical stimulation, applied subretinally. Main results. Hexapolar activation thresholds for RGCs located outside the hex guard were found to be significantly (>2 fold) higher than those located inside the area of tissue bounded by the hex guard. The hexapolar configuration localized the activation of RGCs more effectively than its monopolar counterpart. Furthermore, no difference in hexapolar thresholds or localization was observed when using cathodic-first versus anodic-first stimulation. Significance. The hexapolar configuration may provide an improved method for electrically stimulating spatially distinct populations of cells in retinal tissue.

  20. Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina

    PubMed Central

    Nemargut, Joseph P.; Zhu, Junling; Savoie, Brian T.; Wang, Guo-Yong

    2009-01-01

    Patch-clamp recordings were made from retinal ganglion cells in the mouse retina. Under dark adaptation, blockage of BKCa channels increases the spontaneous excitatory postsynaptic currents (EPSCs) and light-evoked On-EPSCs, while it decreases the light-evoked Off inhibitory postsynaptic currents (IPSCs). However, under light adaptation it decreases the light-evoked On-EPSCs, the spontaneous IPSCs and the light-evoked On- and Off-IPSCs. Blockage of BKCa channels significantly altered the outputs of RGCs by changing their light-evoked responses into a bursting pattern and increasing the light-evoked depolarization of the membrane potentials, while it did not significantly change the peak firing rates of light-evoked responses. PMID:19084033

  1. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  2. Apelin-36 is protective against N-methyl-D-aspartic-acid-induced retinal ganglion cell death in the mice.

    PubMed

    Sakamoto, Kenji; Murakami, Yuta; Sawada, Shohei; Ushikubo, Hiroko; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2016-11-15

    Retinal ganglion cell death in glaucoma is caused at least in part by a large Ca(2+) influx through N-methyl-D-aspartic acid (NMDA) receptors. Apelin is a peptide originally found in the tissue extracts of bovine stomach. Recent studies have been shown that apelin protects against the ischemic-reperfused injury in the brain. We examined whether apelin had protective effects on the NMDA-induced retinal ganglion cell (RGC) death using B6.Cg-TgN(Thy1-CFP)23Jrs/J transgenic mice, which express the enhanced cyan fluorescent protein in RGCs in the retina, in vivo. The mice were anesthetized by ketamine and xylazine, and NMDA (40 nmol/eye) was intravitreally injected. We evaluated the effects of apelin-13, [Glp(1)]-apelin-13, a potent agonist of apelin receptor, and apelin-36 on the NMDA-induced retinal ganglion cell death. NMDA-induced retinal ganglion cell loss was clearly seen 7 days after NMDA injection. Intravitreal apelin-36 (0.33 nmol/eye), but not apelin-13 (1 nmol/eye) nor [Glp(1)]-apelin-13 (1 nmol/eye), simultaneously injected with NMDA significantly reduced the cell loss. The protective effect of apelin-36 was not reduced by ML221 (0.1 nmol/eye; 5-[(4-Nitrobenzoyl)oxy]-2-[(2-pyrimidinylthio)methyl]-4H-pyran-4-one), an apelin receptor antagonist, GF109203X (0.03 nmol/eye), a protein kinase C inhibitor, U0126 (0.2 nmol/eye), a MAPK/ERK kinase inhibitor, LY294002 (0.1 nmol/eye), a phosphoinositide 3-kinase inhibitor, Akti 1/2 (0.05 nmol/eye), an Akt inhibitor, or 4,5,6,7-tetrabromobenzotriazole (0.2 nmol/eye), a casein kinase-2 inhibitor. In addition, human apelin-36 did not affect the kainic-acid (20 nmol/eye)-induced ganglion cell death. The present study suggests that apelin-36 protects against the NMDA-induced ganglion cell death independently of the activation of apelin receptor in the murine retina in vivo.

  3. Shh/Boc Signaling Is Required for Sustained Generation of Ipsilateral Projecting Ganglion Cells in the Mouse Retina

    PubMed Central

    Sánchez-Camacho, Cristina; Carreres, M. Isabel; Herrera, Eloisa; Okada, Ami; Bovolenta, Paola

    2013-01-01

    Sonic Hedgehog (Shh) signaling is an important determinant of vertebrate retinal ganglion cell (RGC) development. In mice, there are two major RGC populations: (1) the Islet2-expressing contralateral projecting (c)RGCs, which both produce and respond to Shh; and (2) the Zic2-expressing ipsilateral projecting RGCs (iRGCs), which lack Shh expression. In contrast to cRGCs, iRGCs, which are generated in the ventrotemporal crescent (VTC) of the retina, specifically express Boc, a cell adhesion molecule that acts as a high-affinity receptor for Shh. In Boc−/− mutant mice, the ipsilateral projection is significantly decreased. Here, we demonstrate that this phenotype results, at least in part, from the misspecification of a proportion of iRGCs. In Boc−/− VTC, the number of Zic2-positive RGCs is reduced, whereas more Islet2/Shh-positive RGCs are observed, a phenotype also detected in Zic2 and Foxd1 null embryos. Consistent with this observation, organization of retinal projections at the dorsallateral geniculate nucleus is altered in Boc−/− mice. Analyses of the molecular and cellular consequences of introducing Shh into the developing VTC and Zic2 and Boc into the central retina indicate that Boc expression alone is in sufficient to fully activate the ipsilateral program and that Zic2 regulates Shh expression. Taking these data together, we propose that expression of Boc in cells from the VTC is required to sustain Zic2 expression, likely by regulating the levels of Shh signaling from the nearby cRGCs. Zic2, in turn, directly or indirectly, counteracts Shh and Islet2 expression in the VTC and activates the ipsilateral program. PMID:23678105

  4. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    PubMed Central

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  5. Responses and Receptive Fields of Amacrine Cells and Ganglion Cells in the Salamander Retina

    PubMed Central

    Zhang, Ai-Jun; Wu, Samuel M.

    2013-01-01

    Retinal amacrine cells (ACs) and ganglion cells (GCs) have been shown to display large morphological diversity, and here we show that four types of ACs and three types of GCs exhibit physiologically-distinguishable properties. They are the sustained ON ACs; sustained OFF ACs; transient ON-OFF ACs; transient ON-OFF ACs with wide receptive fields; sustained ON-center/OFF-surround GCs; sustained OFF-center/ON-surround GCs and transient ON-OFF GCs. By comparing response waveforms, receptive fields and relative rod/cone inputs of ACs and GCs with the corresponding parameters of various types of the presynaptic bipolar cells (BCs), we analyze how different types of BCs mediate synaptic inputs to various ACs and GCs. Although more types of third-order retinal neurons may be identified by more refined classification criteria, our observations suggest that many morphologically-distinct ACs and GCs share very similar physiological responses. PMID:20085780

  6. Morphological signs of apoptosis in axotomized ganglion cells of the rabbit retina.

    PubMed

    Germain, F; Fernández, E; de la Villa, P

    2007-02-09

    Optic nerve section in mammals induces apoptotic death of retinal ganglion cells (RGCs). However, a small population of RGCs survives for a relatively long time. These cells experience significant morphological changes due to the apoptotic process, but some of these changes are not clearly differentiated from those experienced in necrotic cells. In the present work, rabbit RGCs were studied 1 month after optic nerve section using light microscopy after neurobiotin injection, transmission electron microscopy (EM) and scanning electron microscopy (SEM). Apoptosis was identified by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling and characteristic signs of apoptosis were observed in the EM images. Ultrastructural analyses showed vacuolar degeneration in the cytoplasm and normal cellular structure loss. Signs of membrane changes were observed in axotomized RGCs by SEM. Early changes seen in the cell membrane suggest that axotomy may cause important changes in the cytoskeleton. We conclude that characteristic signs of apoptosis at the cell membrane level are clearly observed in rabbit RGCs after axotomy and they may be responsible for the cellular death.

  7. Survey on Amacrine Cells Coupling to Retrograde-Identified Ganglion Cells in the Mouse Retina

    PubMed Central

    Pang, Ji-Jie; Paul, David L.; Wu, Samuel M.

    2013-01-01

    Purpose. Retinal amacrine cells (ACs) may make inhibitory chemical synapses and potentially excitatory gap junctions on ganglion cells (GCs). The total number and subtypes of ACs coupled to the entire GC population were investigated in wild-type and three lines of transgenic mice. Methods. GCs and GC-coupled ACs were identified by the previously established LY-NB (Lucifer yellow–Neurobiotin) retrograde double-labeling technique, in conjunction with specific antibodies and confocal microscopy. Results. GC-coupled ACs (NB-positive and LY-negative) comprised nearly 11% of displaced ACs and 4% of conventional ACs in wild-type mice, and were 9% and 4% of displaced ACs in Cx45−/− and Cx36/45−/− mice, respectively. Their somas were small in Cx36/45−/− mice, but variable in other strains. They were mostly γ-aminobutyric acid (GABA)-immunoreactive (IR) and located in the GC layer. They comprised only a small portion in the AC subpopulations, including GABA-IR, glycine-IR, calretinin-IR, 5-HT-accumulating, and ON-type choline acetyltransferase (ChAT) ACs in wild-type and ChAT transgenic mice (ChAT- tdTomato). In the distal 80% of the inner plexiform layer (IPL), dense GC dendrites coexisted with rich glycine-IR and GABA-IR. In the inner 20% of the IPL, sparse GC dendrites presented with a major GABA band and sparse glycine-IR. Conclusions. Various subtypes of ACs may couple to GCs. ACs of the same immunoreactivity may either couple or not couple to GCs. Cx36 and Cx45 dominate GC-AC coupling except for small ACs. The overall potency of GC-AC coupling is moderate, especially in the proximal 20% of the IPL, where inhibitory chemical signals are dominated by GABA ACs. PMID:23821205

  8. The rat retina has five types of ganglion-cell photoreceptors

    PubMed Central

    Reifler, Aaron N.; Chervenak, Andrew P.; Dolikian, Michael E.; Benenati, Brian A.; Meyers, Benjamin S.; Demertzis, Zachary D.; Lynch, Andrew M.; Li, Benjamin Y.; Wachter, Rebecca D.; Abufarha, Fady S.; Dulka, Eden A.; Pack, Weston; Zhao, Xiwu; Wong, Kwoon Y.

    2014-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells’ synaptic photoresponses were far more transient than those of M2–M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs’ melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings. PMID:25450063

  9. Orexin-A differentially modulates AMPA-preferring responses of ganglion cells and amacrine cells in rat retina.

    PubMed

    Zheng, Chao; Deng, Qin-Qin; Liu, Lei-Lei; Wang, Meng-Ya; Zhang, Gong; Sheng, Wen-Long; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2015-06-01

    By activating their receptors (OX1R and OX2R) orexin-A/B regulate wake/sleeping states, feeding behaviors, but the function of these peptides in the retina remains unknown. Using patch-clamp recordings and calcium imaging in rat isolated retinal cells, we demonstrated that orexin-A suppressed α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-preferring receptor-mediated currents (AMPA-preferring currents) in ganglion cells (GCs) through OX1R, but potentiated those in amacrine cells (ACs) through OX2R. Consistently, in rat retinal slices orexin-A suppressed light-evoked AMPA-preferring receptor-mediated excitatory postsynaptic currents in GCs, but potentiated those in ACs. Intracellular dialysis of GDP-β-S or preincubation with the Gi/o inhibitor pertussis toxin (PTX) abolished both the effects. Either cAMP/the protein kinase A (PKA) inhibitor Rp-cAMP or cGMP/the PKG blocker KT5823 failed to alter the orexin-A effects. Whilst both of them involved activation of protein kinase C (PKC), the effects on GCs and ACs were respectively eliminated by the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor and phosphatidylcholine (PC)-PLC inhibitor. Moreover, in GCs orexin-A increased [Ca(2+)]i and the orexin-A effect was blocked by intracellular Ca(2+)-free solution and by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. In contrast, orexin-A did not change [Ca(2+)]i in ACs and the orexin-A effect remained in intracellular or extracellular Ca(2+)-free solution. We conclude that a distinct Gi/o/PI-PLC/IP3/Ca(2+)-dependent PKC signaling pathway, following the activation of OX1R, is likely responsible for the orexin-A effect on GCs, whereas a Gi/o/PC-PLC/Ca(2+)-independent PKC signaling pathway, following the activation of OX2R, mediates the orexin-A effect on ACs. These two actions of orexin-A, while working in concert, provide a characteristic way for modulating information processing in the inner retina.

  10. Effects of pH Buffering on Horizontal and Ganglion Cell Light Responses in Primate Retina: Evidence for the Proton Hypothesis of Surround Formation

    PubMed Central

    Davenport, Christopher M.; Detwiler, Peter B.; Dacey, Dennis M.

    2011-01-01

    Negative feedback from horizontal cells to cone photoreceptors is regarded as the critical pathway for the formation of the antagonistic surround of retinal neurons, yet the mechanism by which horizontal cells accomplish negative feedback has been difficult to determine. Recent evidence suggests that feedback uses a novel, non-GABAergic pathway that directly modulates the calcium current in cones. In non-mammalian vertebrates, enrichment of retinal pH buffering capacity attenuates horizontal cell feedback, supporting one model in which feedback occurs by horizontal cell modulation of the extracellular pH in the cone synaptic cleft. Here we test the effect of exogenous pH buffering on the response dynamics of H1 horizontal cells and the center-surround receptive field structure of parasol ganglion cells in the macaque monkey retina. Enrichment of the extracellular buffering capacity with HEPES selectively attenuates surround antagonism in parasol ganglion cells. The H1 horizontal cell light response includes a slow, depolarizing component that is attributed to negative feedback to cones. This part of the response is attenuated by HEPES and other pH buffers in a dose-dependent manner that is correlated with predicted buffering capacity. The selective effects of pH buffering on the parasol cell surround and H1 cell light response suggests that, in primate retina, horizontal cell feedback to cones is mediated via a pH-dependent mechanism and is a major determinant of the ganglion cell receptive field surround. PMID:18184788

  11. Octreotide Protects the Mouse Retina against Ischemic Reperfusion Injury through Regulation of Antioxidation and Activation of NF-κB

    PubMed Central

    Wang, Jun; Sun, Ziqiang; Shen, Junsheng; Wu, Dongdong; Liu, Fang; Yang, Ruisheng; Ji, Shaoping; Ji, Ailing; Li, Yanzhang

    2015-01-01

    Somatostatin (SST), an endogenous peptide, may exert anti-inflammatory and neuroprotective effects on retinal injury induced by ischemia. Retinal ischemic reperfusion (I/R) injury always produces many reactive oxygen species (ROS), which can aggravate the tissue damage. The effects of octreotide (OCT), a SST analogue, on retinal I/R injury and ROS formation, are not very clear. In this study, we observed the effects of OCT on morphological changes, oxidative stress, and cell death, induced by retinal I/R injury. The activation of nuclear factor κB (NF-κB) and intercellular adhesion molecule-1 (ICAM-1) were further evaluated in I/R retina treated with or without OCT. The retinal layer thickness was increased at 1 day after I/R and decreased at 7 days after I/R (P < 0.05). This effect was associated with increase in MDA and ROS levels (P < 0.05). The Tunel-positive cells increased and the number of ganglion cell layer (GCL) neurons decreased significantly after I/R injury. The expression of p-p65 and ICAM-1 increased significantly in I/R retinas (P < 0.05). Each effect was markedly attenuated by application of OCT. These data indicate that OCT protects the retina against retinal I/R damage, which could be through inhibition of oxidative stress and downregulation of NF-κB and ICAM-1 expression. PMID:26175842

  12. Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury

    PubMed Central

    Fan, Jie; Wu, Bill X.; Crosson, Craig E.

    2016-01-01

    Purpose Acid sphingomyelinase (ASMase) catalyzes the hydrolysis of sphingomyelin to ceramide and mediates multiple responses involved in inflammatory and apoptotic signaling. However, the role ASMase plays in ischemic retinal injury has not been investigated. The purpose of this study was to investigate how reduced ASMase expression impacts retinal ischemic injury. Methods Changes in ceramide levels and ASMase activity were determined by high performance liquid chromatography-tandem mass spectrometry analysis and ASMase activity. Retinal function and morphology were assessed by electroretinography (ERG) and morphometric analyses. Levels of TNF-α were determined by ELISA. Activation of p38 MAP kinase was assessed by Western blot analysis. Results In wild-type mice, ischemia produced a significant increase in retinal ASMase activity and ceramide levels. These increases were associated with functional deficits as measured by ERG analysis and significant structural degeneration in most retinal layers. In ASMase+/− mice, retinal ischemia did not significantly alter ASMase activity, and the rise in ceramide levels were significantly reduced compared to levels in retinas from wild-type mice. In ASMase+/− mice, functional and morphometric analyses of ischemic eyes revealed significantly less retinal degeneration than in injured retinas from wild-type mice. The ischemia-induced increase in retinal TNF-α levels was suppressed by the administration of the ASMase inhibitor desipramine, or by reducing ASMase expression. Conclusions Our results demonstrate that reducing ASMase expression provides partial protection from ischemic injury. Hence, the production of ceramide and subsequent mediators plays a role in the development of ischemic retinal injury. Modulating ASMase may present new opportunities for adjunctive therapies when treating retinal ischemic disorders. PMID:27571014

  13. Oligomeric proanthocyanidin protects retinal ganglion cells against oxidative stress-induced apoptosis

    PubMed Central

    Wang, Hui; Zhang, Chanjuan; Lu, Dan; Shu, Xiaoming; Zhu, Lihong; Qi, Renbing; So, Kwok-Fai; Lu, Daxiang; Xu, Ying

    2013-01-01

    The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuroprotective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal ganglion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 μmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H2O2) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H2O2 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H2O2-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process. PMID:25206541

  14. The neurosteroid dehydroepiandrosterone (DHEA) protects the retina from AMPA-induced excitotoxicity: NGF TrkA receptor involvement.

    PubMed

    Kokona, Despina; Charalampopoulos, Ioannis; Pediaditakis, Iosif; Gravanis, Achille; Thermos, Kyriaki

    2012-04-01

    The aim of the present study was to investigate the neuroprotective properties of the endogenous neurosteroid dehydroepiandrosterone (DHEA) in an in vivo model of retinal excitotoxicity, and the involvement of Nerve Growth Factor (NGF) in its actions. Adult Sprague-Dawley rats (250-300 g) received intravitreally (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA; 42 nmol/eye) alone or in combination with DHEA (10(-8), 10(-7), 10(-6) M), or PBS (50 mM, control group). To examine the involvement of NGF and its TrkA receptor in the pharmacological effects of DHEA, animals received AMPA and NGF (60 pg/eye) in the absence or presence of a TrkA receptor inhibitor (Calbiochem 648450, 10(-6) M) or AMPA, DHEA (10(-6) M) and TrkA receptor inhibitor (10(-6), 10(-5) M). Immunohistochemistry studies [choline acetyltransferase (ChAT), brain nitric oxide synthetase (bNOS), calbindin, and TUNEL] and fluorescence-activated cell sorting (FACS) were used to examine retinal cell loss and protection. TrkA receptor immunoreactivity (-IR) and colocalization studies with relevant markers were also performed. AMPA (42 nmol) treatment resulted in a loss of bNOS, ChAT and calbindin immunoreactivities 24 h after its administration. DHEA, administered intravitreally, protected the retina from excitotoxicity in a dose-dependent manner. This effect was mimicked by NGF, and reversed by the NGF TrkA receptor inhibitor. The TrkA receptor is expressed in ganglion cells of rat retina. TUNEL staining and FACS analysis substantiated the neuroprotective actions of DHEA. These results demonstrate for the first time that the neurosteroid DHEA, administered intravitreally, protects the retina from AMPA excitotoxicity. An NGF TrkA receptor mechanism appears to be involved in this neuroprotection.

  15. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration.

    PubMed

    Li, Yiqing; Andereggen, Lukas; Yuki, Kenya; Omura, Kumiko; Yin, Yuqin; Gilbert, Hui-Ya; Erdogan, Burcu; Asdourian, Maria S; Shrock, Christine; de Lima, Silmara; Apfel, Ulf-Peter; Zhuo, Yehong; Hershfinkel, Michal; Lippard, Stephen J; Rosenberg, Paul A; Benowitz, Larry

    2017-01-10

    Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn(2+)) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn(2+) increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn(2+) accumulation in amacrine cell processes involves the Zn(2+) transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn(2+) chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn(2+) chelation extends for several days after nerve injury. These results show that retinal Zn(2+) dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn(2+) chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.

  16. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    PubMed

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance.

  17. Glutamate stimulation of retinal ganglion cells in normal and s334ter-4 rat retinas: a candidate for a neurotransmitter-based retinal prosthesis.

    PubMed

    Finlayson, Paul G; Iezzi, Raymond

    2010-07-01

    PURPOSE. To investigate the suitability of glutamate as a potential agent for a neurotransmitter-based retinal prosthesis. METHODS. Retinal ganglion cells (RGCs) from P35-70 albino Sprague-Dawley (normal) and P60-254 S334ter-4 (photoreceptor degeneration) rats were recorded extracellularly in flattened eye cup preparations, to assess their responses to glutamate, applied locally via micropipettes. RESULTS. Brief local application of glutamate effectively excited RGCs in both normal and degenerated retinas. Epiretinal surface application of glutamate was less likely to excite RGCs than was subsurface application (20 microm below the epiretinal surface). Glutamate evoked RGC firing rates, and the response patterns were similar for epiretinal surface and subsurface applications. Subsurface application of 2 mM glutamate effectively excited cells within 130 microm of the ejection sites. Response latencies averaged 281 ms and were significantly longer for OFF RGCs than for ON RGCs in normal retinas (P = 0.025). Suppression of activity was observed at shorter latencies ( approximately 100 ms) after glutamate application in most of the spontaneously active RGCs. Responses to each glutamate application were similar, and the duration of activity was directly dependent on the duration of application. RGC responses varied from recurrent high-frequency bursts to sustained firing at rates above 40 spikes/s, in normal and degenerated retinas. Paired, sequential applications of glutamate evoked two distinguishable responses, with interstimulus intervals as low as 200 ms. Overall, RGC response sensitivity to glutamate was similar in normal and degenerated retinas. CONCLUSIONS. Glutamate is an excellent candidate for a neurotransmitter-based retinal prosthesis, as its local application effectively stimulates RGCs with high spatial and temporal resolution.

  18. Effects of Dopamine D2-Like Receptor Antagonists on Light Responses of Ganglion Cells in Wild-Type and P23H Rat Retinas

    PubMed Central

    Jensen, Ralph

    2015-01-01

    In animal models of retinitis pigmentosa the dopaminergic system in the retina appears to be dysfunctional, which may contribute to the debilitated sight experienced by retinitis pigmentosa patients. Since dopamine D2-like receptors are known to modulate the activity of dopaminergic neurons, I examined the effects of dopamine D2-like receptor antagonists on the light responses of retinal ganglion cells (RGCs) in the P23H rat model of retinitis pigmentosa. Extracellular electrical recordings were made from RGCs in isolated transgenic P23H rat retinas and wild-type Sprague-Dawley rat retinas. Intensity-response curves to flashes of light were evaluated prior to and during bath application of a dopamine D2-like receptor antagonist. The dopamine D2/D3 receptor antagonists sulpiride and eticlopride and the D4 receptor antagonist L-745,870 increased light sensitivity of P23H rat RGCs but decreased light sensitivity in Sprague-Dawley rat RGCs. In addition, L-745,870, but not sulpiride or eticlopride, reduced the maximum peak responses of Sprague-Dawley rat RGCs. I describe for the first time ON-center RGCs in P23H rats that exhibit an abnormally long-latency (>200 ms) response to the onset of a small spot of light. Both sulpiride and eticlopride, but not L-745,870, reduced this ON response and brought out a short-latency OFF response, suggesting that these cells are in actuality OFF-center cells. Overall, the results show that the altered dopaminergic system in degenerate retinas contributes to the deteriorated light responses of RGCs. PMID:26717015

  19. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    SciTech Connect

    Kim, Yeoun-Hee; Chang, Yongmin; Jung, Jae-Chang

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. Black-Right-Pointing-Pointer Staurosporine mediates uPA activation during RGC differentiation in vitro. Black-Right-Pointing-Pointer Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. Black-Right-Pointing-Pointer Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that

  20. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  1. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina.

    PubMed

    Halder, Sebok Kumar; Matsunaga, Hayato; Ishii, Ken J; Ueda, Hiroshi

    2015-12-01

    Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: Pro

  2. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  3. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma

    NASA Astrophysics Data System (ADS)

    Schori, Hadas; Kipnis, Jonathan; Yoles, Eti; Woldemussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Schwartz, Michal

    2001-03-01

    Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ± 101 compared with 1,414 ± 36; P <0.05), but not when they were immunized 48h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8%±6.8% to 4.3%±1.6%, without affecting the intraocular pressure

  4. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  5. Research on ganglion cell responses after laser exposure of the retina. Final report Jan 77-Dec 78

    SciTech Connect

    Wolbarsht, M.L.

    1980-05-01

    Electrophysiological recordings were made from retinal ganglion cells in the macula (including fovea) of several species of Macaque monkeys. After exposure to high-intensity argon or HeNe lasers both above and below the lesion level, the receptive fields lacked a peripheral portion. This was accompanied by a slight increase in the central portion of the receptive field. Some quite large receptive fields were found around the fovea, often extending through it. The large receptive fields could also extend through the site of a laser lesion. No unsymmetrical changes in the receptive field were seen, even in receptive fields adjacent to, or partially within, a laser lesion site. Histological examination did not show any changes in the retinal organization adjacent to laser lesion even where the ganglion cells had center-only receptive fields.

  6. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    PubMed Central

    Yang, Fan; Wang, Dongmei; Wu, Lingling; Li, Ying

    2015-01-01

    Purpose To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs) in a rat model of chronic glaucoma. Methods Eighty Wistar rats were randomly divided into triptolide group (n=40) and normal saline (NS) group (n=40). Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP), anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF)-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed. Results Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05), with no statistical difference between the two groups (P>0.05). RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05). Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90) than the NS group (35.06±7.59) (P<0.05). TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01). The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia. Conclusion Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. PMID:26604697

  7. The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina.

    PubMed Central

    Kaiser, P K; Lee, B B; Martin, P R; Valberg, A

    1990-01-01

    1. The minimally distinct border method involves setting the relative radiances of two adjacent, differently coloured fields until the border between them is minimally distinct. At these radiance settings, the two fields are found to be of equal luminance. The task shares with flicker photometry all the requirements of a photometric method. 2. We have recorded responses of macaque ganglion cells to such borders moved back and forth across the receptive field; the size of the luminance step across the border was systematically varied. 3. Phasic ganglion cells gave transient responses to such borders, consisting of an increase or decrease in firing rate depending on direction of luminance contrast and cell type (on- or off-centre). Tonic ganglion cells gave sustained responses dependent on chromatic contrast across the border. 4. An analysis of phasic cell responses showed a minimum near equal luminance, suggesting their signal could readily support the minimally distinct border task. We could not devise a scheme whereby tonic cells could support the task. 5. Spectral sensitivity of phasic cells, determined from their minima, closely resembled the 10 deg luminous efficiency function, as required of a mechanism underlying the psychophysical performance. 6. For phasic cells, the minimum was independent of movement speed, and hence of eye movement velocity under natural viewing conditions. 7. Proportionality, additivity and transitivity are found psychophysically with the minimally distinct border method. All these properties were also exhibited by phasic cell responses. 8. Residual responses were present in individual phasic cells to equal-luminance borders, probably due to a non-linearity of M- and L-cone summation. The amplitude of residual response depended on the wavelengths on either side of the border, and was zero for pairs of lights lying along a tritanopic confusion line. These residual responses could be correlated with residual border distinctness at equal

  8. P2X7 receptor antagonists protect against N-methyl-D-aspartic acid-induced neuronal injury in the rat retina.

    PubMed

    Sakamoto, Kenji; Endo, Kanako; Suzuki, Taishi; Fujimura, Kyosuke; Kurauchi, Yuki; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2015-06-05

    Activation of N-methyl-d-aspartic acid (NMDA) receptors followed by a large Ca(2+) influx is thought to be a mechanism of glaucoma-induced neuronal cell death. It is possible that damage-associated molecular patterns leak from injured cells, such as adenosine triphosphate, causing retinal ganglion cell death in glaucoma. In the present study, we histologically investigated whether antagonists of the P2X7 receptor protected against NMDA-induced retinal injury in the rat in vivo. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal injection of NMDA. We used A438079 (3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine) and brilliant blue G as P2X7 receptor antagonists. Upon morphometric evaluation 7 days after an intravitreal injection (200 nmol/eye), NMDA-induced cell loss was apparent in the ganglion cell layer. Intravitreal A438079 (50 pmol/eye) simultaneously injected with NMDA and intraperitoneal brilliant blue G (50 mg/kg) administered just before the NMDA injection as well as 24 and 48h after significantly reduced cell loss. In addition, A438079 decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells 12h after NMDA injection. P2X7 receptors were immunolocalized in the ganglion cell layer and the inner and outer plexiform layers, whereas the immunopositive P2X7 receptor signal was not detected on the Iba1-positive microglial cells that infiltrated the retina 12h after NMDA injection. The present study shows that stimulation of the P2X7 receptor is involved in NMDA-induced histological damage in the rat retina in vivo. P2X7 receptor antagonists may be effective in preventing retinal diseases caused by glutamate excitotoxicity, such as glaucoma and retinal artery occlusion.

  9. Pharmacological Protection of the Retina against Damaging Laser Exposures: A Feasibility Study

    DTIC Science & Technology

    1988-09-01

    because of its gelatinous nature in the rabbit, it could be gently removed without tearing the retina. Four or five radial cuts, each about 1-2 mm...Component mq/L uM L-glutamine 73 500 taurine 0.75 6 choline Cl 0.6 4.3 myo-inositol 27 150 Na pyruvate 22 200 ascorbate 18 100 glucose 1800 10,000...32,36,37). This difference could be due to a protective effect conferred by melanosomes in the retina, since the other natural anti-oxidant

  10. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  11. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    PubMed Central

    Mesentier-Louro, Louise A.; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A.; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F.; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-01

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration. PMID:28067793

  12. Epibatidine application in vitro blocks retinal waves without silencing all retinal ganglion cell action potentials in developing retina of the mouse and ferret.

    PubMed

    Sun, Chao; Speer, Colenso M; Wang, Guo-Yong; Chapman, Barbara; Chalupa, Leo M

    2008-12-01

    Epibatidine (EPI), a potent cholinergic agonist, disrupts acetylcholine-dependent spontaneous retinal activity. Early patch-clamp recordings in juvenile ferrets suggested that EPI blocks all retinal ganglion cell (RGC) action potentials when applied to the retina. In contrast, recent experiments on the developing mouse that relied on multielectrode array (MEA) recordings reported that EPI application decorrelates the activity of neighboring RGCs and eliminates retinal waves while preserving the spiking activity of many neurons. The different techniques used in previous studies raise the question of whether EPI has different effects on RGC activity in mouse compared with that in ferret. A resolution of this issue is essential for interpreting the results of developmental studies that relied on EPI to manipulate retinal activity. Our goal was to compare the effects of EPI on the spontaneous discharges of RGCs in mouse and ferret using 60-electrode MEA as well as patch-clamp recordings during the developmental stage when retinal waves are driven by acetylcholine in both species. We found that in both mouse and ferret EPI decorrelates RGC activity and eliminates retinal waves. However, EPI does not block all spontaneous activity in either species. Instead, our whole cell recordings reveal that EPI silences more than half of all RGCs while significantly increasing the activity of the remainder. These results have important implications for interpreting the results of previous studies that relied on this cholinergic agonist to perturb retinal activity.

  13. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells.

    PubMed

    Mesentier-Louro, Louise A; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-05

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75(NTR), TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75(NTR) enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75(NTR) contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  14. Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery

    PubMed Central

    Schmidt, K.-G; Bergert, H; Funk, R.H.W

    2008-01-01

    Recent advances in our understanding of the mechanisms in the cascade of events resulting in retinal cell death in ocular pathologies like glaucoma, diabetic retinopathy and age-related macular degeneration led to the common descriptive term of neurodegenerative diseases of the retina. The final common pathophysiologic pathway of these diseases includes a particular form of metabolic stress, resulting in an insufficient supply of nutrients to the respective target structures (optic nerve head, retina). During metabolic stress, glutamate is released initiating the death of neurones containing ionotropic glutamate (N-methyl-D-aspartat, NMDA) receptors present on ganglion cells and a specific type of amacrine cells. Experimental studies demonstrate that several drugs reduce or prevent the death of retinal neurones deficient of nutrients. These agents generally block NMDA receptors to prevent the action of glutamate or halt the subsequent pathophysiologic cycle resulting in cell death. The major causes for cell death following activation of NMDA receptors are the influx of calcium and sodium into cells, the generation of free radicals linked to the formation of advanced glycation endproducts (AGEs) and/or advanced lipoxidation endproducts (ALEs) as well as defects in the mitochondrial respiratory chain. Substances preventing these cytotoxic events are considered to be potentially neuroprotective. PMID:19305795

  15. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  16. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride.

    PubMed

    del Olmo-Aguado, Susana; Núñez-Álvarez, Claudia; Ji, Dan; Manso, Alberto García; Osborne, Neville N

    2013-09-01

    RTP801, a stress-related protein, is activated by adverse environmental conditions and inhibits the activity of mammalian target of rapamycin (mTOR) in promoting oxidative stress-dependent cell death. RTP801 exists both in the mammalian retina and the lens of the eye. Here, we observed RTP801 immunoreactivity in some retinal ganglion cells. Intravitreal injection of cobalt chloride (CoCl2) to mimick hypoxia influenced retinal GFAP (glial fibrillary acidic protein) and heme oxygenase-1 (HO-1) levels, but did not affect RTP801 immunoreactivity or mRNA content relative to GAPDH. However, RTP801 mRNA was elevated when compared with Brn3a mRNA, suggesting that RTP801 is activated in stressed Brn3a retinal ganglion cells. In cultures of RGC-5 cells, RTP801 immunoreactivity was located in the cytoplasm and partly present in the mitochondria. An insult of blue light or CoCl2 increased RTP801 expression, which was accompanied by cell death. However, in cultures where RTP801 mRNA was down-regulated, the negative influence of blue light and CoCl2 was blunted. Rapamycin nullified the CoCl2-induced up-regulation of RTP801 and attenuated cell death. Moreover, rapamycin was non-toxic to RGC-5 cells, even at a high concentration (10μM). The protective effect of rapamycin on RGC-5 cells caused by the inhibition of RTP801 suggests that rapamycin might attenuate retinal ganglion cell death in situ, as in glaucoma.

  17. Protective Effect of ALA in Crushed Optic Nerve Cat Retinal Ganglion Cells Using a New Marker RBPMS

    PubMed Central

    Wang, Yanling; Wang, Wenyao; Liu, Jessica; Huang, Xin; Liu, Ruixing; Xia, Huika; Brecha, Nicholas C.; Pu, Mingliang; Gao, Jie

    2016-01-01

    In this study we first sought to determine whether RNA-binding protein with multiple splicing (RBPMS) can serve as a specific marker for cat retina ganglion cells (RGCs) using retrograde labeling and immunohistochemistry staining. RBPM was then used as an RGC marker to study RGC survival after optic nerve crush (ONC) and alpha-lipoic acid (ALA) treatment in cats. ALA treatment yielded a peak density of RBPMS-alpha cells within the peak isodensity zone (>60/mm2) which did not differ from ONC retinas. The area within the zone was significantly enlarged (control: 2.3%, ONC: 0.06%, ONC+ALA: 0.1%). As for the 10-21/mm2 zone, ALA treatment resulted in a significant increase in area (control: 34.5%, ONC: 12.1%, ONC+ALA: 35.9%). ALA can alleviate crush-induced RGC injury. PMID:27504635

  18. Long-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular Hypertension

    PubMed Central

    Feng, Liang; Chen, Hui; Yi, Ji; Troy, John B.; Zhang, Hao F.; Liu, Xiaorong

    2016-01-01

    Purpose Glaucoma, frequently associated with elevated intraocular pressure (IOP), is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Brain-derived neurotrophic factor (BDNF) has been studied as a candidate for neuroprotection in rodent models of experimental glaucoma, yet it remains to be determined whether BDNF exerts long-term protection for subtype RGCs and vision against chronic IOP elevation. Methods We induced modest and sustained IOP elevation by laser illumination and microbead injection in mice. Using a tamoxifen-induced Cre recombinase system, BDNF was upregulated in the mouse retina when sustained IOP elevation was induced. We then examined whether overexpression of BDNF protected RGCs and vision during the period of ocular hypertension. Given that BDNF modulates axon growth and dendritic formation in a subtype-dependent manner, we tested whether BDNF protects RGC dendritic structure against the hypertensive insult also in a subtype-dependent manner. Results Sustained IOP elevation was induced and lasted up to 6 months. Overexpression of BDNF delayed progressive RGC and axon loss in hypertensive eyes. Brain-derived neurotrophic factor overexpression also helped to preserve acuity against the chronic hypertensive insult. We classified RGCs into ON and ON–OFF subtypes based on their dendritic lamination pattern in the inner plexiform layer and found that BDNF prevented ON–RGC dendritic degeneration in mice with sustained ocular hypertension. Conclusions Our data demonstrated that BDNF can protect the dendritic fields of ON RGCs and reduce RGC and vision loss in mice with sustained ocular hypertension. PMID:27421068

  19. The protective role of tacrine and donepezil in the retina of acetylcholinesterase knockout mice

    PubMed Central

    Yi, Yun-Min; Cai, Li; Shao, Yi; Xu, Man; Yi, Jing-Lin

    2015-01-01

    AIM To determine the effect of different concentrations of the acetylcholinesterase (AChE) inhibitors tacrine and donepezil on retinal protection in AChE+/− mice (AChE knockout mice) of various ages. METHODS Cultured ARPE-19 cells were treated with hydrogen peroxide (H2O2) at concentrations of 0, 250, 500, 1000 and 2000 µmol/L and protein levels were measured using Western blot. Intraperitoneal injections of tacrine and donepezil (0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL) were respectively given to AChE+/− mice aged 2mo and 4mo and wild-type S129 mice for 7d; phosphate buffered saline (PBS) was administered to the control group. The mice were sacrificed after 30d by in vitro cardiac perfusion and retinal samples were taken. AChE-deficient mice were identified by polymerase chain reaction (PCR) analysis using specific genotyping protocols obtained from the Jackson Laboratory website. H&E staining, immunofluorescence and Western blot were performed to observe AChE protein expression changes in the retinal pigment epithelial (RPE) cell layer. RESULTS Different concentrations of H2O2 induced AChE expression during RPE cell apoptosis. AChE+/− mice retina were thinner than those in wild-type mice (P<0.05); the retinal structure was still intact at 2mo but became thinner with increasing age (P<0.05); furthermore, AChE+/− mice developed more slowly than wild-type mice (P<0.05). Increased concentrations of tacrine and donepezil did not significantly improve the protection of the retina function and morphology (P>0.05). CONCLUSION In vivo, tacrine and donepezil can inhibit the expression of AChE; the decrease of AChE expression in the retina is beneficial for the development of the retina. PMID:26558196

  20. Immune responses in mice against herpes simplex virus: mechanisms of protection against facial and ganglionic infections.

    PubMed Central

    Zweerink, H J; Martinez, D; Lynch, R J; Stanton, L W

    1981-01-01

    We performed experiments with mice to determine the nature of the immune response(s) that prevents primary infections of the skin and the trigeminal ganglia with herpes simplex virus. Immunization with infectious herpes simplex virus, inactivated virus, or material enriched for viral glycoproteins protected hairless mice against primary facial and ganglionic infections. Live and inactivated viruses induced neutralizing antibodies, whereas glycoprotein material did not. Instead, glycoprotein material induced antibodies that were largely directed against two glycopolypeptides with molecular weights of 120,000 to 130,000. Hairless mice immunized with glycoprotein material responded faster than control mice in the synthesis of neutralizing antibodies after challenge with infectious virus. Congenital athymic BALB/c (nu/nu) mice were protected against primary facial infections after immunization with glycoprotein material, but glycoprotein-specific antibodies were not induced. Images PMID:6260662

  1. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    PubMed Central

    Yan, Pan-shi; Tang, Shu; Zhang, Hai-feng; Guo, Yuan-yuan; Zeng, Zhi-wen; Wen, Qiang

    2016-01-01

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of diabetes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF significantly attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 signaling pathways. PMID:28123432

  2. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina

    PubMed Central

    Meyer, Arndt; Tetenborg, Stephan; Greb, Helena; Segelken, Jasmin; Dorgau, Birthe; Weiler, Reto; Hormuzdi, Sheriar G.; Janssen-Bienhold, Ulrike; Dedek, Karin

    2016-01-01

    Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36—both expressed in AII amacrine cells—are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners. PMID:27303262

  3. A novel AhR ligand, 2AI, protects the retina from environmental stress

    PubMed Central

    Gutierrez, Mark A.; Davis, Sonnet S.; Rosko, Andrew; Nguyen, Steven M.; Mitchell, Kylie P.; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y.; Mooney, Shaun; Perdew, Gary H.; Hubbard, Troy D.; Lamba, Deepak A.; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  4. Fish E587 glycoprotein, a member of the L1 family of cell adhesion molecules, participates in axonal fasciculation and the age-related order of ganglion cell axons in the goldfish retina

    PubMed Central

    1995-01-01

    Axons derived from young ganglion cells in the periphery of the retinae of larval and adult goldfish are known to fasciculate with one another and their immediate forerunners, creating the typical age-related order in the retinotectal pathway. Young axons express the E587 antigen, a member of the L1 family of cell adhesion molecules. Repeated injections of Fab fragments from a polyclonal E587 antiserum (E587 Fabs) into the eye of 3.4 cm goldfish disrupted the orderly fascicle pattern of RGC axons in the retina which was preserved in controls. Instead of bundling tightly, RGC axons crossed one another, grew between fascicles and arrived at the optic disk in a broadened front. When added to RGC axons growing in vitro, E587 Fabs neutralized the preference of growth cones to elongate on lanes of E587 protein, caused defasciculation of axons which normally prefer to grow along each other when explanted on polylysine, and prevented clustering of E587 antigen at axon-axon contact sites. Monoclonal E587 antibody disturbed axonal fasciculation moderately but led to a 30% reduction in growth velocities when axons tracked other axons. Therefore we conclude that E587 antigen mediates axonal recognition, selective fasciculation and the creation of the age- related order in the fish retina. PMID:7642712

  5. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina.

    PubMed

    Aparicio, J G; Hopp, H; Choi, A; Mandayam Comar, J; Liao, V C; Harutyunyan, N; Lee, T C

    2016-11-17

    Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.

  6. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway

    PubMed Central

    Han, Ming-lei; Liu, Guo-hua; Guo, Jin; Yu, Shu-juan; Huang, Jing

    2016-01-01

    Retinal ganglion cell (RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB)-associated signaling pathways have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect hydrogen peroxide (H2O2)-induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H2O2. Western blot assay showed that in H2O2 -damaged RGC-5 cells, imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay also demonstrated that imipramine ameliorated H2O2 -induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse the protective effect of imipramine on H2O2 -induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the TrkB signaling pathway. PMID:27127489

  7. Serum Response Factor Protects Retinal Ganglion Cells Against High-Glucose Damage.

    PubMed

    Cao, Yan; Wang, Liang; Zhao, Junhong; Zhang, Hongbing; Tian, Ying; Liang, Houcheng; Ma, Qiang

    2016-06-01

    Serum response factor (SRF), which encodes the MADS-box family of related proteins, is a common transcription factor related to the expression of genes associated with cell survival. However, SRF's role in retinal ganglion cells (RGCs) after high-glucose injury remains unclear. In this study, we investigate the protective role of SRF after high-glucose injury and its underlying mechanism. The in vitro RGC model subjected to high glucose was established by employing a 50 mmol/L glucose culture environment. As detected by real-time quantitative PCR and Western blot, SRF was significantly upregulated in RGCs treated with high glucose. Overexpression of SRF significantly promoted survival among RGCs exposed to high glucose and inhibited RGC apoptosis. Knockdown of SRF exerted an inverse effect. Moreover, SRF upregulation enhanced expression of an antioxidant protein, nuclear factor erythroid 2-related factor (Nrf2), via control of the Fos-related antigen 1 (Fra-1). SRF upregulation also affected RGC survival after high-glucose treatment. Our findings showed that overexpression of SRF promoted survival of RGCs after high-glucose injury by regulating Fra-1 and Nrf2.

  8. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    PubMed Central

    Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian

    2016-01-01

    Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345

  9. ADAM10 mediates N-cadherin ectodomain shedding during retinal ganglion cell differentiation in primary cultured retinal cells from the developing chick retina.

    PubMed

    Paudel, Sharada; Kim, Yeoun-Hee; Huh, Man-Il; Kim, Song-Ja; Chang, Yongmin; Park, Young Jeung; Lee, Kyoo Won; Jung, Jae-Chang

    2013-04-01

    Here, we examined the role of ADAM10 during retinal cell differentiation in retinal sections and in vitro cultures of developing chick retinal cells from embryonic day 6 (ED6). Immunohistochemistry showed that ADAM10 is abundantly expressed in the inner zone of neuroblastic layer at ED5, and it becomes more highly expressed in the ganglion cell layer at ED7 and ED9. Western blotting confirmed that ADAM10 was expressed as an inactive pro-form that was processed to a shorter, active form in control cultured cells, but in cultures treated with an ADAM10 inhibitor (GI254023X) and ADAM10-specific siRNA, the level of mature ADAM10 decreased. Phase-contrast microscopy showed that long neurite extensions were present in untreated cultures 24 h after plating, whereas cultures treated with GI254023X showed significant decreases in neurite extension. Immunofluorescence staining revealed that there were far fewer differentiated ganglion cells in ADAM10 siRNA and GI254023X-treated cultures compared to controls, whereas the photoreceptor cells were unaltered. The Pax6 protein was more strongly detected in the differentiated ganglion cells of control cultures compared to ADAM10 siRNA and GI254023X-treated cultures. N-cadherin ectodomain shedding was apparent in control cultures after 24 h, when ganglion cell differentiation was observed, but ADAM10 siRNA and GI254023X treatment inhibited these processes. In contrast, N-cadherin staining was strongly detected in photoreceptor cells regardless of ADAM10 siRNA and GI254023X treatment. Taken together, these data indicate that the inhibition of ADAM10 can inhibit Pax6 expression and N-cadherin ectodomain shedding in retinal cells, possibly affecting neurite outgrowth and ganglion cell differentiation.

  10. Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration[S

    PubMed Central

    Chen, Hui; Tran, Julie-Thu A.; Eckerd, Annette; Huynh, Tuan-Phat; Elliott, Michael H.; Brush, Richard S.; Mandal, Nawajes A.

    2013-01-01

    Light-induced retinal degeneration (LIRD) in albino rats causes apoptotic photoreceptor cell death. Ceramide is a second messenger for apoptosis. We tested whether increases in ceramide mediate photoreceptor apoptosis in LIRD and if inhibition of ceramide synthesis protects the retina. Sprague-Dawley rats were exposed to 2,700 lux white light for 6 h, and the retinal levels of ceramide and its intermediary metabolites were measured by GC-MS or electrospray ionization tandem mass spectrometry. Enzymes of the de novo biosynthetic and sphingomyelinase pathways of ceramide generation were assayed, and gene expression was measured. The dosage and temporal effect of the ceramide synthase inhibitor FTY720 on the LIRD retina were measured by histological and functional analyses. Retinal ceramide levels increased coincident with the increase of dihydroceramide at various time points after light stress. Light stress in retina induces ceramide generation predominantly through the de novo pathway, which was prevented by systemic administration of FTY720 (10 mg/kg) leading to the protection of retinal structure and function. The neuroprotection of FTY720 was independent of its immunosuppressive action. We conclude that ceramide increase by de novo biosynthesis mediates photoreceptor apoptosis in the LIRD model and that inhibition of ceramide production protects the retina against light stress. PMID:23468130

  11. The Retina of Ansorge's Cusimanse (Crossarchus ansorgei): Number, Topography and Convergence of Photoreceptors and Ganglion Cells in Relation to Ecology and Behavior.

    PubMed

    Coimbra, João Paulo; Kaswera-Kyamakya, Consolate; Gilissen, Emmanuel; Manger, Paul R; Collin, Shaun P

    2015-01-01

    The family Herpestidae (cusimanses and mongooses) is a monophyletic radiation of carnivores with remarkable variation in microhabitat occupation and diel activity, but virtually nothing is known about how they use vision in the context of their behavioral ecology. In this paper, we measured the number and topographic distribution of neurons (rods, cones and retinal ganglion cells) and estimated the spatial resolving power of the eye of the diurnal, forest-dwelling Ansorge's cusimanse (Crossarchus ansorgei). Using retinal wholemounts and stereology, we found that rods are more numerous (42,500,000; 92%) than cones (3,900,000; 8%). Rod densities form a concentric and dorsotemporally asymmetric plateau that matches the location and shape of a bright yellow tapetum lucidum located within the dorsal aspect of the eye. Maximum rod density (340,300 cells/mm(2)) occurs within an elongated plateau below the optic disc that corresponds to a transitional region between the tapetum lucidum and the pigmented choroid. Cone densities form a temporal area with a peak density of 44,500 cells/mm(2) embedded in a weak horizontal streak that matches the topographic distribution of retinal ganglion cells. Convergence ratios of cones to retinal ganglion cells vary from 50:1 in the far periphery to 3:1 in the temporal area. With a ganglion cell peak density of 13,400 cells/mm(2) and an eye size of 11 mm in axial length, we estimated upper limits of spatial resolution of 7.5-8 cycles/degree, which is comparable to other carnivores such as hyenas. In conclusion, we suggest that the topographic retinal traits described for Ansorge's cusimanse conform to a presumed carnivore retinal blueprint but also show variations that reflect its specific ecological needs.

  12. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma

    PubMed Central

    Pitha, Ian F.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary Ellen; Oglesby, Ericka N.; Berlinicke, Cynthia A.; Mitchell, Katherine L.; Kim, Jessica; Jefferys, Joan J.

    2015-01-01

    Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes

  13. Tetramethylpyrazine nitrone protects retinal ganglion cells against N-methyl-d-aspartate-induced excitotoxicity.

    PubMed

    Luo, Xiaopeng; Yu, Yankun; Xiang, Zongqin; Wu, Huisu; Ramakrishna, Seeram; Wang, Yuqiang; So, Kwok-Fai; Zhang, Zaijun; Xu, Ying

    2017-02-03

    Adding a free radical-scavenging nitrone moiety on tetramethylpyrazine, we have previously synthesized a chemical named 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (tetramethylpyrazine nitrone, or TBN) and proved its neuroprotective effect but with limited understanding of its mechanism. Here we ask if TBN protects retinal ganglion cells (RGCs) against excitotoxicity induced by NMDA and explore the underlying mechanism. NMDA was intravitreally injected to induce RGC injury in rats, followed by daily intraperitoneal administrations of TBN. Measurements of TBN concentration at different times after intraperitoneal administration showed that more than 200 μM TBN reached the aqueous humor quickly. Then RGCs' survival was evaluated by quantifying Brn3-positive cells, and retinal functions were examined by electroretinogram and visual behaviors. TBN significantly increased the survival of RGCs after NMDA insult, recovered the amplitude of photopic negative responses to flash, and restored the visual behavior. Furthermore, TBN inhibited the apoptotic process, as indicated by the elevated ratios of cleaved caspase-3/caspase-3 and of Bax/Bcl-2, and decreased the level of reactive oxygen species. Moreover, TBN reduced RGC's calcium overload induced by NMDA or by KCl. Whole-cell patch recording from RGCs further showed that TBN slightly but significantly inhibited L-type calcium channels, but had little effect on T-type calcium channel or NMDA-, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA)-induced current. Thus our data indicate that TBN alleviates NMDA-elicited injury of rat RGCs both morphologically and functionally, possibly by inhibiting the L-type calcium channel thus reducing Ca(2+) overload and by directly scavenging free radicals. Therefore, TBN may be a novel candidate for treating excitotoxicity-related visual disorders such as glaucoma.

  14. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection.

    PubMed

    Wise, Andrew K; Tu, Tian; Atkinson, Patrick J; Flynn, Brianna O; Sgro, Beatrice E; Hume, Cliff; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2011-08-01

    A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the

  15. Ganglion Cysts

    MedlinePlus

    ... Popup Figures Figure 1 - Ganglion on the top side of the wrist Figure 2 - A ganglion cyst at the end joint of the finger, also known as a mucous cyst Figure 3 - Cross-section of wrist showing the root of a ganglion cyst PDF Ganglion Cysts Related Conditions Trigger Finger Hand Tumors ...

  16. 24(S)-Hydroxycholesterol protects the ex vivo rat retina from injury by elevated hydrostatic pressure

    PubMed Central

    Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2016-01-01

    In the central nervous system, 24(S)-hydroxycholesterol (24(S)-HC) is an oxysterol synthesized from cholesterol by cholesterol 24-hydroxylase (CYP46A1) encoded by the cyp46a1 gene. In the present study using a rat ex vivo glaucoma model, we found that retinal 24(S)-HC synthesis is facilitated by pressure elevation. Moreover, we found that 24(S)-HC is neuroprotective against pressure mediated retinal degeneration. Quantitative real-time RT-PCR, ELISA, and immunohistochemistry revealed that elevated pressure facilitated the expression of cyp46a1 and CYP46A1. Immunohistochemically, the enhanced expression of CYP46A1 was mainly observed in retinal ganglion cells (RGC). LC-MS/MS revealed that 24(S)-HC levels increased in a pressure-dependent manner. Axonal injury and apoptotic RGC death induced by 75 mmHg high pressure was ameliorated by exogenously administered 1 μM 24(S)-HC. In contrast, voriconazole, a CYP46A1 inhibitor, was severely toxic even at normobaric pressure. Under normobaric conditions, 30 μM 24(S)-HC was required to prevent the voriconazole-mediated retinal damage. Taken together, our findings indicate that 24(S)-HC is facilitated by elevated pressure and plays a neuroprotective role under glaucomatous conditions, while voriconazole, an antifungal drug, is retinotoxic. 24(S)-HC and related compounds may serve as potential therapeutic targets for protecting glaucomatous eyes from pressure-induced injuries. PMID:27653972

  17. Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice

    PubMed Central

    Chen, Hui; Liang, Peiji; Troy, John B.

    2017-01-01

    Abstract Brain-derived neurotrophic factor (BDNF), a neurotrophin essential for neuron survival and function, plays an important role in neuroprotection during neurodegenerative diseases. In this study, we examined whether a modest increase of retinal BDNF promotes retinal ganglion cell (RGC) survival after acute injury of the optic nerve in mice. We adopted an inducible Cre-recombinase transgenic system to up-regulate BDNF in the mouse retina and then examined RGC survival after optic nerve crush by in vivo imaging. We focused on one subtype of RGC with large soma expressing yellow fluorescent protein transgene that accounts for ∼11% of the total SMI-32–positive RGCs. The median survival time of this subgroup of SMI-32 cells was 1 week after nerve injury in control mice but 2 weeks when BDNF was up-regulated. Interestingly, we found that the survival time for RGCs taken as a whole was 2 weeks, suggesting that these large-soma RGCs are especially vulnerable to optic nerve crush injury. We also studied changes in axon number using confocal imaging, confirming first the progressive loss reported previously for wild-type mice and demonstrating that BDNF up-regulation extended axon survival. Together, our results demonstrate that the time course of RGC loss induced by optic nerve injury is type specific and that overexpression of BDNF prolongs the survival of one subgroup of SMI-32–positive RGCs. PMID:28101532

  18. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    PubMed Central

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent

  19. The Functional Architecture of the Retina.

    ERIC Educational Resources Information Center

    Masland, Richard H.

    1986-01-01

    Examines research related to the retina's coding of visual input with emphasis on the organization of two kinds of ganglion cell receptive fields. Reviews current techniques for examining the shapes and arrangement in the retina of entire populations of nerve cells. (ML)

  20. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection

    PubMed Central

    Munemasa, Yasunari; Kitaoka, Yasushi

    2013-01-01

    Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON). PMID:23316132

  1. Identification of a novel nicotinic acetylcholine receptor structural subunit expressed in goldfish retina

    PubMed Central

    1989-01-01

    A new non-alpha (n alpha) member of the nicotinic acetylcholine receptor (nAChR) gene family designated GFn alpha-2 has been identified in goldfish retina by cDNA cloning. This cDNA clone encodes a protein with structural features common to all nAChR subunits sequenced to date; however, unlike all known alpha-subunits of the receptor, it lacks the cysteine residues believed to be involved in acetylcholine binding. Northern blot analysis shows multiple transcripts hybridizing to the GFn alpha-2 cDNA in goldfish retina but undetectable levels of hybridizable RNA in brain, muscle, or liver. S1 nuclease protection experiments indicate that multiple mRNAs are expressed in retina with regions identical or very similar to the GFn alpha-2 sequence. In situ hybridization shows that the gene encoding GFn alpha-2 is expressed predominantly in the ganglion cell layer of the retina. PMID:2465296

  2. Systemic administration of the iron chelator deferiprone protects against light-induced photoreceptor degeneration in the mouse retina

    PubMed Central

    Song, Delu; Song, Ying; Hadziahmetovic, Majda; Zhong, Yong; Dunaief, Joshua L.

    2012-01-01

    Oxidative stress plays a key role in the light damage (LD) model of retinal degeneration as well as in age-related macular degeneration (AMD). Since iron can promote oxidative stress, the iron chelator Deferiprone (DFP) was tested for protection against light-induced retinal degeneration. To accomplish this, A/J mice were treated with or without DFP in drinking water, and then were placed in constant bright white fluorescent light (10,000 lux) for 20 hours. Retinas were evaluated at several time points after light exposure. Photoreceptor apoptosis was assessed using the TUNEL assay. Retinal degeneration was assessed by histology 10 days after exposure to damaging white light. Two genes upregulated by oxidative stress, heme oxygenase 1 (Hmox1) and ceruloplasmin (Cp), as well as complement component 3 (C3) were quantified by RT-qPCR. Cryosections were immunolabeled for oxidative stress marker (nitrotyrosine), a microglial marker (Iba1) as well as both heavy (H) and light (L) ferritin. Light exposure resulted in substantial photoreceptor-specific cell death. Dosing with DFP protected photoreceptors, decreasing the numbers of TUNEL-positive photoreceptors and increasing the number of surviving photoreceptors. The retinal mRNA levels of oxidative stress related genes and C3 were upregulated following light exposure and diminished by DFP treatment. Immunostaining for nitrotyrosine indicated that DFP reduced the nitrative stress caused by light exposure. Robust H/L-ferritin-containing microglial activation and migration to the outer retina occurred after light exposure and DFP treatment reduced microglial invasion. DFP is protective against light-induced retinal degeneration and has the potential to diminish oxidative stress in the retina. PMID:22579919

  3. Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu-Zn superoxide dismutase.

    PubMed

    Lin, Hui-Ju; Lai, Chien-Chen; Lee Chao, Pei-Dawn; Fan, Seng-Sheen; Tsai, Yuhsin; Huang, Shiuan-Yi; Wan, Lei; Tsai, Fuu-Jen

    2007-04-01

    A high concentration of glutamate in the eyes not only activates N-methyl-D-aspartate (NMDA) receptors, but also is toxic to the retina ganglion cells (RGCs) in glaucomatous patients. Our previous study had found that aloe-emodin sulfates/glucuronides metabolites, an anthraquinone polyphenol, exerted a neuroprotective activity upon RGCs. In order to understand the mechanisms involved in this neuroprotective effect, this study aimed to determine the expressions of RNAs and proteins in various treatments. The proteins expressed in the control group, NMDA-treated group, and aloe-emodin metabolites-cotreated group were separated by two-dimensional gel electrophoresis (2-DE). Protein spots were excised from 2-DE and analyzed by nano-LC-MS/MS (nano-liquid chromatography with mass spectrometry; tandem MS). Quantitative polymerase chain reaction (Q-PCR) was used to investigate the RNA related to these proteins. There were 84 spots with significant differences in various treatments. Among the 84 spots, we identified 9 spots whose functions were closely related to regulate the apoptosis of cells. The results of Q-PCR were not completely unanimous with those of 2-DE. Our results suggested that aloe-emodin metabolites decreased NMDA-induced apoptosis of RGCs by preserving, and inducing, some proteins related to the antioxidation and regulation of cells' energy. Both the level of RNA and protein of superoxide dismutase (Cu-Zn) were significantly elevated after aloe-emodin metabolites were added. The mechanisms of neuroprotection are complicated, and involve not only the transcription and stability of mRNA, but also post-translation protein modifications, degradation, and protein-protein interaction.

  4. 7, 8, 3'-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons.

    PubMed

    Shi, Haohong; Luo, Xingjing

    2016-07-02

    BACKGROUND 7, 8, 3'-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. MATERIAL AND METHODS Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. RESULTS THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. CONCLUSIONS THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation.

  5. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina.

    PubMed

    Vuong, Helen E; Hardi, Claudia N; Barnes, Steven; Brecha, Nicholas C

    2015-12-02

    An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain.

  6. AAV gene transfer to the retina does not protect retrovirally transduced hepatocytes from the immune response.

    PubMed

    Bellodi-Privato, Marta; Le Meur, Guylène; Aubert, Dominique; Mendes-Madera, Alexandra; Pichard, Virginie; Rolling, Fabienne; Ferry, Nicolas

    2004-06-01

    Gene therapy of inherited hepatic disease relies on sustained expression of the therapeutic transgene. In many instances, such expression will require immune tolerization to the non-self therapeutic transgene product. We previously demonstrated that a cytotoxic immune response eliminated hepatocytes after in vivo transduction using recombinant retroviral vectors. In the present study we investigated whether prior gene transfer to the retina, which is suspected to induce immune tolerance, could alleviate the immune response occurring after retrovirus mediated gene transfer to the liver. Retinal cells were transduced using adeno-associated viral vectors harbouring a beta-galactosidase transgene. Sixty days later, regenerating hepatocytes were transduced after partial hepatectomy using a recombinant retrovirus carrying the transgene. Three weeks later, anti beta-galactosidase antibodies were present in all animals. Elimination of the transduced hepatocytes eventually occurred in all animals by 2 months after liver gene transfer, although sustained beta-galactosidase expression was still present in the retina in 66% of the animals. We conclude that although the retina behaves as an immunoprivileged site, gene expression in the subretinal space is not sufficient to induce immune tolerance to a transgene product expressed in the liver.

  7. MEMS technologies for artificial retinas

    NASA Astrophysics Data System (ADS)

    Mokwa, Wilfried

    2010-02-01

    The mostly cause of blindness in the developed countries is a degeneration of the retina. For restoring this loss of vision one possible approach is the substitution of the lost functions by means of an electronic implant. This approach is based on MEMS technologies. It has been shown that electrical stimulation of retinal ganglion cells yield visual sensations1. Therefore, an artificial retina for blind humans based on this concept seems to be feasible. Besides electrical stimulation of retinal ganglion cells also the direct electrical stimulation of the optic nerve2 and the visual cortex3 have been under investigation. This paper wants to give an overview about the activities on the retinal ganglion cell stimulation.

  8. Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats

    NASA Technical Reports Server (NTRS)

    Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.

    2012-01-01

    It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water

  9. Ginsenoside Rb1 protects rat retinal ganglion cells against hypoxia and oxidative stress.

    PubMed

    Liu, Zhaochun; Chen, Juying; Huang, Wendong; Zeng, Zhi; Yang, Yongfei; Zhu, Banghao

    2013-11-01

    The current study was designed to investigate the effect of ginsenoside Rb1 (Rb1) on apoptosis induced by hypoxia and oxidative stress in a retinal ganglion cell line (RGC-5). The underlying mechanism was also investigated. RGC-5 cells were pretreated with 10 µmol/l Rb1 for 24 h and exposed to 400 µmol/l cobalt chloride (CoCl2) for 48 h or 600 µmol/l H2O2 for 24 h. The percentage of cells actively undergoing apoptosis was determined by flow cytometry with Annexin V/propidium iodide (PI) double staining. The expression of caspases was determined using western blot analysis. CoCl2 and H2O2 treatments significantly increased the apoptotic percentages to 24.5 and 21.63%, respectively. Pretreatment of Rb1 reduced the total apoptotic percentages to 15.12 and 12.03%, respectively. The expression of cleaved caspase-3, -9 and -8 was increased in the CoCl2-treated group, however, caspase-3 was not increased in the H2O2-treated group. Pretreatment of Rb1 reduced the expression of cleaved caspase-3 and -9 in the CoCl2-treated group, but reduced only cleaved caspase-9 in the H2O2-treated group. These results suggest that Rb1 may prevent RGC-5 cells from apoptosis against hypoxia and oxidative stress via the mitochondrial pathway.

  10. Davunetide (NAP) protects the retina against early diabetic injury by reducing apoptotic death.

    PubMed

    Scuderi, Soraya; D'Amico, Agata Grazia; Castorina, Alessandro; Federico, Concetta; Marrazzo, Giuseppina; Drago, Filippo; Bucolo, Claudio; D'Agata, Velia

    2014-11-01

    Davunetide (NAP) is an eight amino acid peptide that has been shown to provide potent neuroprotection. In the present study, we investigated the neuroprotective effect of NAP in diabetic retinopathy using an in vivo streptozotocin (STZ)-induced diabetic model. A single intraocular injection of NAP (100 μg/mL) or vehicle was administered 1 week after STZ injection. Three weeks after diabetes induction, we assessed the retinal expression and distribution of apoptosis markers, cleaved caspase-3, and Bcl2, by Western blot and immunofluorescent analysis. Furthermore, we evaluated the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) and/or phosphatidylinositol-3 kinase/Akt pathways by measuring the protein levels of p-ERK and p-AKT with or without NAP treatment. Results demonstrated that NAP treatment reduced apoptotic event in diabetic retina, and it restored cleaved caspase-3 expression levels in the retina of STZ-injected rats as well as the decreased Bcl2. NAP treatment improved cellular survival through the activation of the MAPK/ERK pathway. Taken together, these findings suggested that NAP might be useful to treat retinal degenerative diseases.

  11. Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator

    PubMed Central

    Gu, R. P.; Fu, L. L.; Jiang, C. H.; Xu, Y. F.; Wang, X.; Yu, J.

    2015-01-01

    The purpose of the present study was to investigate the potential neuroprotective effect of neuroserpin (NSP) on acute retinal ischemic/reperfusion-induced (IR) injury. An IR injury model was established by elevating intraocular pressure (IOP) for 60 minutes in wild type and tPA-deficient (tPA-/-) mice. Prior to IR injury, 1 μL of 20 μmol/L NSP or an equal volume of bovine serum albumin (BSA) was intravitreally administered. Retinal function was evaluated by electroretinograph (ERG) and the number of apoptotic neurons was determined via TUNEL labeling. Caspase-3, -8, -9,poly (ADP-ribose) polymerase (PARP)and their cleaved forms were subsequently analyzed. It was found that IR injury significantly damaged retinal function, inducing apoptosis in the retina, while NSP attenuated the loss of retinal function and significantly reduced the number of apoptotic neurons in both wild type and tPA-/- mice. The levels of cleaved caspase-3, cleaved PARP (the substrate of caspase-3) and caspase-9 (the modulator of the caspase-3), which had increased following IR injury, were significantly inhibited by NSP in both wild type and tPA-/- mice. NSP increased ischemic tolerance in the retina at least partially by inhibiting the intrinsic cell death signaling pathway of caspase-3. It was therefore concluded that the protective effect of neuroserpin maybe independent from its canonical interaction with a tissue-type plasminogen activator. PMID:26176694

  12. PhTx3-4, a Spider Toxin Calcium Channel Blocker, Reduces NMDA-Induced Injury of the Retina

    PubMed Central

    Binda, Nancy Scardua; Porto Petruceli Carayon, Charles; Agostini, Rafael Mourão; do Nascimento Pinheiro, Ana Cristina; Nascimento Cordeiro, Marta; Romano Silva, Marco Aurélio; Figueira Silva, Juliana; Rita Pereira, Elizete Maria; da Silva Junior, Claudio Antonio; de Castro Junior, Célio José; Sena Guimarães, Andre Luiz; Gomez, Marcus Vinicius

    2016-01-01

    The in vivo neuroprotective effect of PhTx3-4, a spider toxin N-P/Q calcium channel blocker, was studied in a rat model of NMDA-induced injury of the retina. NMDA (N-Methyl-d-Aspartate)-induced retinal injury in rats reduced the b-wave amplitude by 62% ± 3.6%, indicating the severity of the insult. PhTx3-4 treatment increased the amplitude of the b-wave, which was almost equivalent to the control retinas that were not submitted to injury. The PhTx3-4 functional protection of the retinas recorded on the ERG also was observed in the neuroprotection of retinal cells. NMDA-induced injury reduced live cells in the retina layers and the highest reduction, 84%, was in the ganglion cell layer. Notably, PhTx3-4 treatment caused a remarkable reduction of dead cells in the retina layers, and the highest neuroprotective effect was in the ganglion cells layer. NMDA-induced cytotoxicity of the retina increased the release of glutamate, reactive oxygen species (ROS) production and oxidative stress. PhTx3-4 treatment reduced glutamate release, ROS production and oxidative stress measured by malondialdehyde. Thus, we presented for the first time evidence of in vivo neuroprotection from NMDA-induced retinal injury by PhTx3-4 (-ctenitoxin-Pn3a), a spider toxin that blocks N-P/Q calcium channels. PMID:26978403

  13. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.

  14. Triamcinolone acetonide protects the rat retina from STZ-induced acute inflammation and early vascular leakage.

    PubMed

    Kim, Y H; Choi, M Y; Kim, Y S; Park, C H; Lee, J H; Chung, I Y; Yoo, J M; Choi, W S; Cho, G J; Kang, S S

    2007-09-15

    Streptozotocin (STZ) has been commonly used to induce in vivo and in vitro hyperglycemic diabetes and its toxicity leads to inflammation and vascular injury. Triamcinolone acetonide (TA), as an anti-angiogenic/anti-inflammatory drug, is clinically used to improve the visual acuity in neovascular and edematous ocular diseases. The aim of this study was to investigate the effect of TA on early inflammation and vascular leakage in the retina of STZ-induced hyperglycemic rats. Hyperglycemia was induced in 8-week-old male Sprague-Dawley (SD) rats by a single intraperitoneal injection of STZ (65 mg/kg); only rats with blood glucose levels >13.9 mmol/l 1 day after STZ injection were included in STZ-hyperglycemic group. Sex- and age-matched SD rats injected with buffer were used as the control group. One day before STZ and buffer injection, 2 microl TA (4 mg/ml in saline) and 2 microl saline were intravitreal-injected into the right and the left eyes of rats, respectively. Retinal vascular leakage was measured using the Evans-blue method. Changes in pro-inflammatory target genes, such as tumor necrotic factor (TNF)-alpha, intracellular adhesion molecule (ICAM)-1, and vascular endothelial growth factor (VEGF) were assessed by immunoblottings, immunostaining, and ELISA analyses. Vascular hyperleakage and up-regulation of most pro-inflammatory genes peaked within a few days after STZ injection and had recovered. However, these changes were blocked by TA pretreatment. Our data suggest that TA controls STZ-induced early vascular leakage and temporary pro-inflammatory signals in the rat retina.

  15. Zinc might protect oxidative changes in the retina and pancreas at the early stage of diabetic rats

    SciTech Connect

    Moustafa, Sohair A. . E-mail: Sohabdulla@hotmail.com

    2004-12-01

    It is well documented that oxidative stress is a basic mechanism behind the development of diabetic retinopathy (DR). The current study was undertaken to elucidate the possible role of zinc as an antioxidant and a biological membrane stabilizer in the protection against (DR). Male Wistar rats weighing 250 {+-} 50 g were made diabetic by injection with a single ip dose of alloxan (100 mg/kg). Another group of rats was simultaneously treated with alloxan (100 mg/kg) and a single ip dose of zinc chloride (ZnCl{sub 2}) (5 mg/kg). Blood and tissue samples were collected at 24, 48, and 72 h post-treatment in both groups. Diabetic state was confirmed by the determination of plasma glucose levels (significantly elevated at any time of the experiment when compared with controls receiving vehicle). Plasma insulin was significantly increased 24 h after treatment in both alloxan and alloxan plus ZnCl{sub 2}-treated groups, and then decreased markedly 48 and 72 h post treatment in both groups. Alloxan treatment depleted both retinal and liver glutathione contents. The decrease in retinal and liver GSH in alloxan-treated rats was accompanied with a sustained increase in their thiobarbituric acid (TBA) content. Simultaneous treatment of rats with alloxan and ZnCl{sub 2} blunted the sustained increment in plasma glucose induced by alloxan. The combined administration of alloxan and zinc reversed the depleting effect on retinal and hepatic GSH in alloxan-treated rats and reduced the elevations in TBA content of both retinas and livers. At variance with many other antioxidants the current results clearly indicate the beneficial effects of Zn in both controlling hyperglycemia and the protection of the retina against oxidative stress in diabetes which may help set a new direction toward the development of effective treatments of DR.

  16. Dissociation of Retinal Ganglion Cells Without Enzymes

    PubMed Central

    Hayashida, Yuki; Partida, Gloria J.; Ishida, Andrew T.

    2011-01-01

    We describe here methods for dissociating retinal ganglion cells from adult goldfish and rat without proteolytic enzymes, and show responses of ganglion cells isolated this way to step-wise voltage changes and fluctuating current injections. Taking advantage of the laminar organization of vertebrate retinas, photoreceptors and other cells were lifted away from the distal side of freshly isolated goldfish retinas, after contact with pieces of membrane filter. Likewise, cells were sliced away from the distal side of freshly isolated rat retinas, after these adhered to a membrane filter. The remaining portions of retina were incubated in an enzyme-free, low Ca2+ solution, and triturated. After aliquots of the resulting cell suspension were plated, ganglion cells could be identified by dye retrogradely transported via the optic nerve. These cells showed no obvious morphological degeneration for several days of culture. Perforated-patch whole-cell recordings showed that the goldfish ganglion cells spike tonically in response to depolarizing constant current injections, that these spikes are temporally precise in response to fluctuating current injections, and that the largest voltage-gated Na+ currents of these cells were larger than those of ganglion cells isolated with a neutral protease. PMID:15196824

  17. Baclofen Protects Primary Rat Retinal Ganglion Cells from Chemical Hypoxia-Induced Apoptosis Through the Akt and PERK Pathways

    PubMed Central

    Fu, Pingping; Wu, Qiang; Hu, Jianyan; Li, Tingting; Gao, Fengjuan

    2016-01-01

    Retinal ganglion cells (RGCs) consume large quantities of energy to convert light information into a neuronal signal, which makes them highly susceptible to hypoxic injury. This study aimed to investigate the potential protection by baclofen, a GABAB receptor agonist of RGCs against hypoxia-induced apoptosis. Cobalt chloride (CoCl2) was applied to mimic hypoxia. Primary rat RGCs were subjected to CoCl2 with or without baclofen treatment, and RNA interference techniques were used to knock down the GABAB2 gene in the primary RGCs. The viability and apoptosis of RGCs were assessed using cell viability and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, Hoechst staining, and flow cytometry. The expression of cleaved caspase-3, bcl-2, bax, Akt, phospho-Akt, protein kinase RNA (PKR)-like ER kinase (PERK), phospho-PERK, eIF2α, phospho-eIF2α, ATF-4 and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured using western blotting. GABAB2 mRNA expression was determined using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Our study revealed that CoCl2 significantly induced RGC apoptosis and that baclofen reversed these effects. CoCl2-induced reduction of Akt activity was also reversed by baclofen. Baclofen prevented the activation of the PERK pathway and the increase in CHOP expression induced by CoCl2. Knockdown of GABAB2 and the inactivation of the Akt pathway by inhibitors reduced the protective effect of baclofen on CoCl2-treated RGCs. Taken together, these results demonstrate that baclofen protects RGCs from CoCl2-induced apoptosis by increasing Akt activity and by suppressing the PERK pathway and CHOP activation. PMID:27867349

  18. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye

    PubMed Central

    Zhou, Chengxin; Robert, Marie-Claude; Kapoulea, Vassiliki; Lei, Fengyang; Stagner, Anna M.; Jakobiec, Frederick A.; Dohlman, Claes H.; Paschalis, Eleftherios I.

    2017-01-01

    Purpose Tumor necrosis factor (TNF)-α is upregulated in eyes following corneal alkali injury and contributes to corneal and also retinal damage. Prompt TNF-α inhibition by systemic infliximab ameliorates retinal damage and improves corneal wound healing. However, systemic administration of TNF-α inhibitors carries risk of significant complications, whereas topical eye-drop delivery is hindered by poor ocular bioavailability and the need for patient adherence. This study investigates the efficacy of subconjunctival delivery of TNF-α antibodies using a polymer-based drug delivery system (DDS). Methods The drug delivery system was prepared using porous polydimethylsiloxane/polyvinyl alcohol composite fabrication and loaded with 85 μg of infliximab. Six Dutch-belted pigmented rabbits received ocular alkali burn with NaOH. Immediately after the burn, subconjunctival implantation of anti-TNF-α DDS was performed in three rabbits while another three received sham DDS (without antibody). Rabbits were followed with photography for 3 months. Results After 3 months, the device was found to be well tolerated by the host and the eyes exhibited less corneal damage as compared to eyes implanted with a sham DDS without drug. The low dose treatment suppressed CD45 and TNF-α expression in the burned cornea and inhibited retinal ganglion cell apoptosis and optic nerve degeneration, as compared to the sham DDS treated eyes. Immunolocalization revealed drug penetration in the conjunctiva, cornea, iris, and choroid, with residual infliximab in the DDS 3 months after implantation. Conclusions This reduced-risk biologic DDS improves corneal wound healing and provides retinal neuroprotection, and may be applicable not only to alkali burns but also to other inflammatory surgical procedures such as penetrating keratoplasty and keratoprosthesis implantation. PMID:28114570

  19. Learning retina implants with epiretinal contacts.

    PubMed

    Eckmiller, R

    1997-01-01

    Retina implants are currently being developed by several interdisciplinary research consortia worldwide for blind humans with various retinal degenerative diseases. It is the aim of our retina implant project to develop a novel type of visual prosthesis to regain a moderate amount of vision such as perception of location and shape of large objects in the first stage and to approach reading quality in a subsequent stage. In our planned retina implant, a retina encoder (RE) outside the eye has to replace the information processing of the retina. A retina stimulator (RS), implanted adjacently to the retinal ganglion cell layer, has to contact a sufficient number of retinal ganglion cells/fibers for electrical elicitation of spikes. A wireless signal and energy transmission system has to provide the communication between the RE and RS. This paper outlines the retina implant project of our consortium of 14 expert groups and describes first results of the learning RE. The RE approximates the typical receptive field (RF) properties of primate retinal ganglion cells by means of individually tunable spatiotemporal RF filters. The RE as a cluster of RF filters maps visual patterns onto spike trains for a number of contacted ganglion cells. A concept is presented to train the individual RF filters in an unsupervised learning process, which employs neural networks in a dialog with the individual human subject. The desired aim of this dialog is an optimization of the visual perception by matching the various RF filter properties with those 'expected' by the central visual system for each contacted ganglion cell.

  20. Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells.

    PubMed

    Koriyama, Yoshiki; Kamiya, Marie; Takadera, Tsuneo; Arai, Kunizo; Sugitani, Kayo; Ogai, Kazuhiro; Kato, Satoru

    2012-12-01

    Nipradilol (Nip), which has α1- and β-adrenoceptor antagonist and nitric oxide (NO)-donating properties, has clinically been used as an anti-glaucomatous agent in Japan. NO mediates cellular signaling pathways that regulate physiological functions. The major signaling mechanisms mediated by NO are cGMP-dependent signaling and protein S-nitrosylation-dependent signalings. Nip has been described as having neuroprotective effects through cGMP-dependent pathway in retinal ganglion cells (RGCs). However, the effect seems to be partial. On the other hand, whether Nip can prevent cell death through S-nitrosylation is not yet clarified. In this study, we therefore focused on the neuroprotective mechanism of Nip through S-nitrosylation. Nip showed a dramatic neuroprotective effect against oxidative stress-induced death of RGC-5 cells. However, denitro-nipradilol, which does not have NO-donating properties, was not protective against oxidative stress. Furthermore, an NO scavenger significantly reversed the protective action of Nip against oxidative stress. In addition, we demonstrated that α1- or β-adrenoceptor antagonists (prazosin or timolol) did not show any neuroprotective effect against oxidative stress in RGC-5 cells. We also demonstrated that Nip induced the expression of the NO-dependent antioxidant enzyme, heme oxygenase-1 (HO-1). S-nitrosylation of Kelch-like ECH-associated protein by Nip was shown to contribute to the translocation of NF-E2-related factor 2 to the nucleus, and triggered transcriptional activation of HO-1. Furthermore, RGC death and levels of 4-hydroxy-2-nonenal (4HNE) were increased after optic nerve injury in vivo. Pretreatment with Nip significantly suppressed RGC death and accumulation of 4HNE after injury through an HO-1 activity-dependent mechanism. These data demonstrate a novel neuroprotective action of Nip against oxidative stress-induced RGC death in vitro and in vivo.

  1. Erythropoietin (EPO) protects against high glucose-induced apoptosis in retinal ganglional cells.

    PubMed

    Wang, Yunxiao; Zhang, Hui; Liu, Yanping; Li, Ping; Cao, Zhihong; Cao, Yu

    2015-03-01

    The aim of this study was to investigate the protective effect and mechanism of EPO on the apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). High glucose-induced apoptosis model was established in RGCs isolated from SD rats (1-3 days old) and identified with Thy1.1 mAb and MAP-2 pAb. The apoptosis was determined by Hochest assay. The levels of ROS were quantitated by staining the cells with dichloro-dihydro-fluorescein diacetate (DCFH-DA) and measure by flow cytometry. The SOD, GSH-Px, CAT activities, and levels of T-AOC and MDA were determined by ELISA. Change in mitochondrial membrane potential (Δψm) was also assessed by flow cytometry, and expressions of Bcl-2, Bax, caspase-3, caspase-9, and cytochrome C were assessed by western blotting. The RGCs treated with high glucose levels exhibited significantly increased apoptotic rate and concentrations of ROS and MDA. Pretreatment of the cells with EPO caused a significant blockade of the high glucose-induced increase in ROS and MDA levels and apoptotic rate. EPO also increased the activities of SOD, GSH-Px, and CAT, and recovered the levels of T-AOC levels. As a consequence, the mitochondrial membrane potential was improved and Cyt c release into the cytoplasm was prevented which led to significantly suppressed up-regulation of Bax reducing the Bax/Bcl-2 ratio. The expressions of caspase-3 and caspase-9 induced by high glucose exposure were also ameliorated in the RGCs treated with EPO. The protective effect of EPO against apoptosis was mediated through its antioxidant action. Thus, it blocked the generation of pro-apoptotic proteins and apoptotic degeneration of the RGCs by preventing the mitochondrial damage.

  2. A hierarchical artificial retina architecture

    NASA Astrophysics Data System (ADS)

    Parker, Alice C.; Azar, Adi N.

    2009-05-01

    Connectivity in the human retina is complex. Over one hundred million photoreceptors transduce light into electrical signals. These electrical signals are sent to the ganglion cells through amacrine and bipolar cells. Lateral connections involving horizontal and amacrine cells span throughout the outer plexiform layer and inner plexiform layer respectively. Horizontal cells are important for photoreceptor regulation by depolarizing them after an illumination occurs. Horizontal cells themselves form an electrical network that communicates by gap junctions, and these cells exhibit plasticity (change in behavior and structure) with respect to glycine receptors. The bipolar and amacrine cells transfer electrical signals from photoreceptors to the ganglion cells. Furthermore, amacrine cells are responsible for further processing the retinal image. Finally, the ganglion cells receive electrical signals from the bipolar and amacrine cells and will spike at a faster rate if there is a change in the overall intensity for a group of photoreceptors, sending a signal to the brain. Dramatic progress is being made with respect to retinal prostheses, raising hope for an entire synthetic retina in the future. We propose a bio-inspired 3D hierarchical pyramidal architecture for a synthetic retina that mimics the overall structure of the human retina. We chose to use a 3D architecture to facilitate connectivity among retinal cells, maintaining a hierarchical structure similar to that of the biological retina. The first layer of the architecture contains electronic circuits that model photoreceptors and horizontal cells. The second layer contains amacrine and bipolar electronic cells, and the third layer contains ganglion cells. Layer I has the highest number of cells, and layer III has the lowest number of cells, resulting in a pyramidal architecture. In our proposed architecture we intend to use photodetectors to transduce light into electrical signals. We propose to employ

  3. Downregulation of miR-210 protected bupivacaine-induced neurotoxicity in dorsal root ganglion.

    PubMed

    Wang, Yiheng; Ni, Hongxia; Zhang, Wenrui; Wang, Xiu; Zhang, Haishan

    2016-04-01

    Local anesthetic may cause neurotoxicity in developing neurons. In this study, we examined the molecular mechanisms of microRNA-210 (miR-210) in regulating bupivacaine-induced dorsal root ganglia (DRG) neurotoxicity in vitro. Young mouse (P30) DRG explants were cultured in vitro and treated with 5 mM bupivacaine to induce neurotoxicity. QRT-PCR was used to evaluate the expression profiles of miRNAs within 24 h after bupivacaine treatment. MiR-210 was downregulated in DRG, and its effects on bupivacaine-induced neurotoxicity were evaluated by apoptosis and neurite growth assays, respectively. Putative downstream target of miR-210 in DRG, BDNF, was evaluated by dual-luciferase assay, qRT-PCR, and western blot, respectively. BDNF was then knocked down by siRNA to assess its associated effects in regulating DRG neurotoxicity. Within the initial 24 h after bupivacaine treatment, various patterns of miRNA expression were observed, whereas miR-210 was constantly upregulated. Application of miR-210 inhibitor efficiently downregulated endogenous miR-210, protected apoptosis and neurite retraction in bupivacaine damaged DRG neurons. Using dual-luciferase assay, qRT-PCR, and western blot, BDNF was confirmed to the downstream target of miR-210 in DRG. SiRNA-mediated BDNF downregulation reversed the effect of miR-210 downregulation in DRG neurotoxicity. MiR-210, through the regulation of BDNF, plays important role in anesthetics-induced DRG neurotoxicity.

  4. Tunable retina encoders for retina implants: why and how

    NASA Astrophysics Data System (ADS)

    Eckmiller, Rolf; Neumann, Dirk; Baruth, Oliver

    2005-03-01

    Current research towards retina implants for partial restoration of vision in blind humans with retinal degenerative dysfunctions focuses on implant and stimulation experiments and technologies. In contrast, our approach takes the availability of an epiretinal multi-electrode neural interface for granted and studies the conditions for successful joint information processing of both retinal prosthesis and brain. Our proposed learning retina encoder (RE) includes information processing modules to simulate the complex mapping operation of parts of the 5-layered neural retina and to provide an iterative, perception-based dialog between RE and human subject. Alternative information processing technologies in the learning RE are being described, which allow an individual optimization of the RE mapping operation by means of iterative tuning with learning algorithms in a dialog between implant wearing subject and RE. The primate visual system is modeled by a retina module (RM) composed of spatio-temporal (ST) filters and a central visual system module (VM). RM performs a mapping 1 of an optical pattern P1 in the physical domain onto a retinal output vector R1(t) in a neural domain, whereas VM performs a mapping 2 of R1(t) in a neural domain onto a visual percept P2 in the perceptual domain. Retinal ganglion cell properties represent non-invertible ST filters in RE, which generate ambiguous output signals. VM generates visual percepts only if the corresponding R1(t) is properly encoded, contains sufficient information, and can be disambiguated. Based on the learning RE and the proposed visual system model, a novel retina encoder (RE*) is proposed, which considers both ambiguity removal and miniature eye movements during fixation. Our simulation results suggest that VM requires miniature eye movements under control of the visual system to retrieve unambiguous patterns P2 corresponding to P1. For retina implant applications, RE* can be tuned to generate optimal ganglion cell

  5. Using the Electroretinogram to Assess Function in the Rodent Retina and the Protective Effects of Remote Limb Ischemic Preconditioning.

    PubMed

    Brandli, Alice; Stone, Jonathan

    2015-06-09

    The ERG is the sum of all retinal activity. The ERG is usually recorded from the cornea, which acts as an antenna that collects and sums signals from the retina. The ERG is a sensitive measure of changes in retinal function that are pan-retinal, but is less effective for detecting damage confined to a small area of retina. In the present work we describe how to record the 'flash' ERG, which is the potential generated when the retina is exposed to a brief light flash. We describe methods of anaesthesia, mydriasis and corneal management during recording; how to keep the retina dark adapted; electrode materials and placement; the range and calibration of stimulus energy; recording parameters and the extraction of data. We also describe a method of inducing ischemia in one limb, and how to use the ERG to assess the effects of this remote-from-the-retina ischemia on retinal function after light damage. A two-flash protocol is described which allows isolation of the cone-driven component of the dark-adapted ERG, and thereby the separation of the rod and cone components. Because it can be recorded with techniques that are minimally invasive, the ERG has been widely used in studies of the physiology, pharmacology and toxicology of the retina. We describe one example of this usefulness, in which the ERG is used to assess the function of the light-damaged retina, with and without a neuroprotective intervention; preconditioning by remote ischemia.

  6. Effect of alpha lipoic acid on retinal ganglion cell survival in an optic nerve crush model

    PubMed Central

    Liu, Ruixing; Wang, Yanling; Pu, Mingliang

    2016-01-01

    Purpose This study was conducted to determine whether alpha lipoic acid (ALA) promotes the survival of retinal ganglion cells (RGCs) in a rat model of optic nerve crush (ONC) injury and to investigate the neuroprotective mechanisms of ALA in the retina in this ONC injury model. Methods Adult male Sprague-Dawley rats (180–220 g) were subjected to ONC injury surgery. ALA (63 mg/kg) was injected intravenously 1 day before or after the ONC injury. Animals were euthanized after 10 days, and the number of ganglion cells positive for RNA-binding protein with multiple splicing (Rbpms), which is an RGC marker, were counted on the whole mount retinas. In addition, immunofluorescence and immunoblotting were performed to examine the localization and levels of erythropoietin receptor (EPOR) and neurotrophin-4/5 (NT4/5) in the retinas in all experimental groups. To determine whether the EPO/EPOR signaling pathway was involved in the ALA antioxidant pathway, the rats were subjected to ruxolitinib (INCB018424, 0.25 mg/kg, bid, intraperitoneal, i.p.) treatment after the animals were injected intravenously with ALA 1 day before ONC injury. Results The average number of Rbpms-positive cells/mm2 in the control group (sham-operated group), the ONC group, the ALA-ONC group, and the ONC-ALA group retinas was 2219±28, 418±8, 848±22, and 613±18/mm2, respectively. The ALA-ONC and ONC-ALA groups showed a statistically significantly increased RGC survival rate compared to the ONC group. There were statistical differences in the RGC survival rates between the ALA-ONC (39%) and ONC-ALA groups (28%; p<0.05). Immunofluorescent labeling showed that EPOR and NT4/5 expression was significant in the retinal ganglion cell layer (GCL). At the same time, western blot analysis revealed that ALA induced upregulation of EPOR protein and NT4/5 protein expression in the retina after ONC injury. However, INCB018424 reversed the protective effects of ALA on the ONC retinas. Conclusions ALA has

  7. Protection of Retina by αB Crystallin in Sodium Iodate Induced Retinal Degeneration

    PubMed Central

    Zhou, Peng; Kannan, Ram; Spee, Christine; Sreekumar, Parameswaran G.; Dou, Guorui; Hinton, David R.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD and αB crystallin expression is increased in RPE and associated drusen in AMD. The purpose of this study was to investigate the role of αB crystallin in sodium iodate (NaIO3)-induced retinal degeneration, a model of AMD in which the primary site of pathology is the RPE. Dose dependent effects of intravenous NaIO3 (20-70 mg/kg) on development of retinal degeneration (fundus photography) and RPE and retinal neuronal loss (histology) were determined in wild type and αB crystallin knockout mice. Absence of αB crystallin augmented retinal degeneration in low dose (20 mg/kg) NaIO3-treated mice and increased retinal cell apoptosis which was mainly localized to the RPE layer. Generation of reactive oxygen species (ROS) was observed with NaIO3 in mouse and human RPE which increased further after αB crystallin knockout or siRNA knockdown, respectively. NaIO3 upregulated AKT phosphorylation and peroxisome proliferator–activator receptor–γ (PPARγ) which was suppressed after αB crystallin siRNA knockdown. Further, PPARγ ligand inhibited NaIO3-induced ROS generation. Our data suggest that αB crystallin plays a critical role in protection of NaIO3-induced oxidative stress and retinal degeneration in part through upregulation of AKT phosphorylation and PPARγ expression. PMID:24874187

  8. A Computational Framework for Realistic Retina Modeling.

    PubMed

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  9. Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats.

    PubMed

    Guan, Y; Cui, L; Qu, Z; Lu, L; Wang, F; Wu, Y; Zhang, J; Gao, F; Tian, H; Xu, L; Xu, G; Li, W; Jin, Y; Xu, G-T

    2013-11-01

    For degenerative retinal diseases, like the acquired form exemplified by age-related macular degeneration (AMD), there is currently no cure. This study was to explore a stem cell therapy and a stem cell based gene therapy for sodium iodate (SI)-induced retinal degeneration in rats. Three cell types, i.e., rat mesenchymal stem cells (rMSCs) alone, erythropoietin (EPO) gene modified rMSCs (EPO-rMSCs) or doxycycline (DOX) inducible EPO expression rMSCs (Tet-on EPO-rMSCs), were transplanted into the subretinal spaces of SI-treated rats. The rMSCs were prepared for transplantation after 3 to 5 passages or modified with EPO gene. During the 8 weeks after the transplantation, the rats treated with rMSCs alone or with two types of EPO-rMSCs were all monitored with fundus examination, fundus fluorescein angiography (FFA) and electroretinogram. The transplantation efficiency of donor cells was examined for their survival, integration and differentiation. Following the transplantation, labeled donor cells were observed in subretinal space and adopted RPE morphology. EPO concentration in vitreous and retina of SI-treated rats which were transplanted with EPO-rMSCs or Tet-on EPO-rMSCs was markedly increased, in parallel with the improvement of retinal morphology and function. These findings suggest that rMSCs transplantation could be a new therapy for degenerative retinal diseases since it can protect and rescue RPE and retinal neurons, while EPO gene modification to rMSCs could be an even better option.

  10. A morphological study of the retinal ganglion cells of the Afghan pika (Ochotona rufescens).

    PubMed

    Akaishi, Y; Uchiyama, H; Ito, H; Shimizu, Y

    1995-03-01

    The distribution and morphology of the retinal ganglion cells was studied in a relative of the rabbit, the Afghan pika. The total number of retinal ganglion cells was approximately 170,000. The total number of optic nerve fibers was between 160,000 and 190,000, corresponding to the total number of retinal ganglion cells. Retinal ganglion cells were found to have a horizontal region of high-density. The maximum density was 5250 cells/mm2. This region was located in the central retina below the optic disc. This area contained numerous closely packed small ganglion cells, while the peripheral retina (especially in the dorsal periphery) contained large ganglion cells more loosely dispersed. The retinal ganglion cells labeled by horseradish peroxidase (HRP) were morphologically classified into three types based on dendritic length and ramification pattern.

  11. Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress.

    PubMed

    Biswal, Manas R; Ahmed, Chulbul M; Ildefonso, Cristhian J; Han, Pingyang; Li, Hong; Jivanji, Hiral; Mao, Haoyu; Lewin, Alfred S

    2015-11-01

    Chronic oxidative stress contributes to age related diseases including age related macular degeneration (AMD). Earlier work showed that the 5-hydroxy-tryptamine 1a (5HT1a) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) protects retinal pigment epithelium (RPE) cells from hydrogen peroxide treatment and mouse retinas from oxidative insults including light injury. In our current experiments, RPE derived cells subjected to mitochondrial oxidative stress were protected from cell death by the up-regulation of anti-oxidant enzymes and of the metal ion chaperone metallothionein. Differentiated RPE cells were resistant to oxidative stress, and the expression of genes for protective proteins was highly increased by oxidative stress plus drug treatment. In mice treated with 8-OH-DPAT, the same genes (MT1, HO1, NqO1, Cat, Sod1) were induced in the neural retina, but the drug did not affect the expression of Sod2, the gene for manganese superoxide dismutase. We used a mouse strain deleted for Sod2 in the RPE to accelerate age-related oxidative stress in the retina and to test the impact of 8-OH-DPAT on the photoreceptor and RPE degeneration developed in these mice. Treatment of mice with daily injections of the drug led to increased electroretinogram (ERG) amplitudes in dark-adapted mice and to a slight improvement in visual acuity. Most strikingly, in mice treated with a high dose of the drug (5 mg/kg) the structure of the RPE and Bruch's membrane and the normal architecture of photoreceptor outer segments were preserved. These results suggest that systemic treatment with this class of drugs may be useful in preventing geographic atrophy, the advanced form of dry AMD, which is characterized by RPE degeneration.

  12. Ultraviolet colour opponency in the turtle retina.

    PubMed

    Ventura, D F; Zana, Y; de Souza, J M; DeVoe, R D

    2001-07-01

    We have examined the functional architecture of the turtle Pseudemys scripta elegans retina with respect to colour processing, extending spectral stimulation into the ultraviolet, which has not been studied previously in the inner retina. We addressed two questions. (i) Is it possible to deduce the ultraviolet cone spectral sensitivity function through horizontal cell responses? (ii) Is there evidence for tetrachromatic neural mechanisms, i.e. UV/S response opponency? Using a constant response methodology we have isolated the ultraviolet cone input into the S/LM horizontal cell type and described it in fine detail. Monophasic (luminosity), biphasic L/M (red-green) and triphasic S/LM (yellow-blue) horizontal cells responded strongly to ultraviolet light. The blue-adapted spectral sensitivity function of a S/LM cell peaked in the ultraviolet and could be fitted to a porphyropsin cone template with a peak at 372 nm. In the inner retina eight different combinations of spectral opponency were found in the centre of the receptive field of ganglion cells. Among amacrine cells the only types found were UVSM-L+ and its reverse. One amacrine and four ganglion cells were also opponent in the receptive field surround. UV/S opponency, seen in three different types of ganglion cell, provides a neural basis for discrimination of ultraviolet colours. In conclusion, the results strongly suggest that there is an ultraviolet channel and a neural basis for tetrachromacy in the turtle retina.

  13. TRPM3 expression in mouse retina.

    PubMed

    Brown, R Lane; Xiong, Wei-Hong; Peters, James H; Tekmen-Clark, Merve; Strycharska-Orczyk, Iwona; Reed, Brian T; Morgans, Catherine W; Duvoisin, Robert M

    2015-01-01

    Transient receptor potential (TRP) channels constitute a large family of cation permeable ion channels that serve crucial functions in sensory systems by transducing environmental changes into cellular voltage and calcium signals. Within the retina, two closely related members of the melastatin TRP family, TRPM1 and TRPM3, are highly expressed. TRPM1 has been shown to be required for the depolarizing response to light of ON-bipolar cells, but the role of TRPM3 in the retina is unknown. Immunohistochemical staining of mouse retina with an antibody directed against the C-terminus of TRPM3 labeled the inner plexiform layer (IPL) and a subset of cells in the ganglion cell layer. Within the IPL, TRPM3 immunofluorescence was markedly stronger in the OFF sublamina than in the ON sublamina. Electroretinogram recordings showed that the scotopic and photopic a- and b-waves of TRPM3(-/-) mice are normal indicating that TRPM3 does not play a major role in visual processing in the outer retina. TRPM3 activity was measured by calcium imaging and patch-clamp recording of immunopurified retinal ganglion cells. Application of the TRPM3 agonist, pregnenolone sulfate (PS), stimulated increases in intracellular calcium in ~40% of cells from wild type and TRPM1(‑/‑) mice, and the PS-stimulated increases in calcium were blocked by co-application of mefenamic acid, a TRPM3 antagonist. No PS-stimulated changes in fluorescence were observed in ganglion cells from TRPM3(-/-) mice. Similarly, PS-stimulated currents that could be blocked by mefenamic acid were recorded from wild type retinal ganglion cells but were absent in ganglion cells from TRPM3-/- mice.

  14. Directional Summation in Non-direction Selective Retinal Ganglion Cells

    PubMed Central

    Abbas, Syed Y.; Hamade, Khaldoun C.; Yang, Ellen J.; Nawy, Scott; Smith, Robert G.; Pettit, Diana L.

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  15. Immunohistochemical and calcium imaging methods in wholemount rat retina.

    PubMed

    Sargoy, Allison; Barnes, Steven; Brecha, Nicholas C; Pérez De Sevilla Müller, Luis

    2014-10-13

    In this paper we describe the tools, reagents, and the practical steps that are needed for: 1) successful preparation of wholemount retinas for immunohistochemistry and, 2) calcium imaging for the study of voltage gated calcium channel (VGCC) mediated calcium signaling in retinal ganglion cells. The calcium imaging method we describe circumvents issues concerning non-specific loading of displaced amacrine cells in the ganglion cell layer.

  16. Expression and functions of ASIC1 in the zebrafish retina.

    PubMed

    Liu, Sha; Wang, Mei-Xia; Mao, Cheng-Jie; Cheng, Xiao-Yu; Wang, Chen-Tao; Huang, Jian; Zhong, Zhao-Min; Hu, Wei-Dong; Wang, Fen; Hu, Li-Fang; Wang, Han; Liu, Chun-Feng

    2014-12-12

    It has been demonstrated that acid sensing ionic channels (ASICs) are present in the central and peripheral nervous system of mammals, including the retina. However, it remains unclear whether the zebrafish retina also expresses ASICs. In the present study, the expression and distribution of zasic1 were examined in the retina of zebrafish. Both zasic1 mRNA and protein expressions were detected in the adult zebrafish retina. A wide distribution of ASIC1 in zebrafish retina was confirmed using whole mount in situ hybridization and immunohistochemistry study. Acidosis-induced currents in the isolated retinal ganglion cells (RGCs) were also recorded using whole cell patch clamping. Moreover, blockade of ASICs channel significantly reduced the locomotion of larval zebrafish in response to light exposure. In sum, our data demonstrate the presence of ASIC1 and its possible functional relevance in the retina of zebrafish.

  17. Early functional neural networks in the developing retina

    NASA Astrophysics Data System (ADS)

    Wong, R. O. L.; Chernjavsky, A.; Smith, S. J.; Shatz, C. J.

    1995-04-01

    IN the adult mammalian retina, the principal direction of information flow is along a vertical pathway from photoreceptors to retinal interneurons to ganglion cells, the output neurons of the retina. We report here, however, that initially in development, at a time when the photoreceptors are not yet even present, there are already functionally defined networks within the retina. These networks are spontaneously active rather than visually driven, and they involve horizontal rather than vertical pathways. By means of optical recording using the calcium-sensitive dye Fura-2, we have found that sets of retinal ganglion cells and amacrine cells, a type of retinal interneuron, undergo synchronized oscillations in intracellular calcium concentration. These oscillations are highly correlated among subgroups of neighbouring cells, and spread in a wave-like fashion tangentially across the retina. Thus, in development of retinal circuitry, the initial patterning of neuronal function occurs in the horizontal domain before the adult pattern of vertical information transfer emerges.

  18. E2F1-CDK1 pathway activation in kanamycin-induced spiral ganglion cell apoptosis and the protective effect of CR8.

    PubMed

    Liu, Yu-ying; Wang, Guo-peng; Peng, Zhe; Guo, Jing-ying; Wu, Qian; Xie, Jing; Gong, Shu-sheng

    2016-03-23

    Cochlear hair cell loss results in the secondary loss of spiral ganglion cells (SGCs). The death of these SGCs is due to apoptosis. The E2F1-cyclin dependent kinase 1 (CDK1) pathway is believed to represent an important mechanism of neuronal cell death. However, the role of this pathway in spiral ganglion neuronal apoptosis has not yet been reported. In this study, we deafened guinea pigs with a subcutaneous injection of kanamycin followed by an intravenous infusion of furosemide and then assayed the expression levels of cleaved caspase-3, E2F1, CDK1 and cleaved caspase-9 during the induced SGC apoptosis. Our results revealed that co-administration of kanamycin and furosemide rapidly induced hair cell loss in the guinea pigs and then resulted in a progressive loss of SGCs. Expression levels of E2F1 and CDK1 were obviously up-regulated at 1 and 3 days after deafening. Cleaved caspase-9 also increased robustly 1 or 2 weeks after the deafening procedure. The up-regulation of E2F1, CDK1 and cleaved caspase-9 was significantly attenuated by the systemic injection of CR8 (1mg/kg/day, intraperitoneally) starting at 5min after deafening. These findings indicate that the activation of the E2F1-CDK1 pathway and cell cycle re-entry contributes to the apoptosis of SGCs and that the selective inhibition of this signaling cascade may represent an attractive therapeutic strategy. CR8 has the potential to protect SGCs from apoptosis.

  19. Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network

    PubMed Central

    MILLS, STEPHEN L.; XIA, XIAO-BO; HOSHI, HIDEO; FIRTH, SALLY I.; RICE, MARGARET E.; FRISHMAN, LAURA J.; MARSHAK, DAVID W.

    2008-01-01

    Many retinal ganglion cells are coupled via gap junctions with neighboring amacrine cells and ganglion cells. We investigated the extent and dynamics of coupling in one such network, the OFF α ganglion cell of rabbit retina and its associated amacrine cells. We also observed the relative spread of Neurobiotin injected into a ganglion cell in the presence of modulators of gap junctional permeability. We found that gap junctions between amacrine cells were closed via stimulation of a D1 dopamine receptor, while the gap junctions between ganglion cells were closed via stimulation of a D2 dopamine receptor. The pairs of hemichannels making up the heterologous gap junctions between the ganglion and amacrine cells were modulated independently, so that elevations of cAMP in the ganglion cell open the ganglion cell hemichannels, while elevations of cAMP in the amacrine cell close its hemichannels. We also measured endogenous dopamine release from an eyecup preparation and found a basal release from the dark-adapted retina of approximately 2 pmol/min during the day. Maximal stimulation with light increased the rate of dopamine release from rabbit retina by 66%. The results suggest that coupling between members of the OFF α ganglion cell/amacrine cell network is differentially modulated with changing levels of dopamine. PMID:17711603

  20. Infrared retina

    DOEpatents

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  1. Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats

    PubMed Central

    Wu, Ming-Mei; Zhu, Ting-Ting; Wang, Peng; Kuang, Fang; Hao, Ding-Jun; You, Si-Wei; Li, Yao-Yu

    2014-01-01

    Neuroprotection of lithium for axotomized retinal ganglion cells (RGCs) is attributed to upregulated intraretinal Bcl-2. As lithium also upregulates brain-derived neurotrophic factor (BDNF) which can rescue axotomized RGCs, it is hypothesized that lithium could protect RGCs through BDNF. This study investigated this hypothesis and a possible relationship between the dose and protection of lithium. All adult experimental rats received daily intraperitoneal injections of lithium chloride (LiCl) at 30, 60 or 85 mg/kg·bw until they were euthanized 2, 7 or 14 days after left intraorbital optic nerve (ON) transection. Our results revealed that RGC densities promoted and declined with increased dose of LiCl and the highest RGC densities were always in the 60 mg/kg·bw LiCl group at both 7 and 14 day points. Similar promotion and decline in the mRNA and protein levels of intraretinal BDNF were also found at the 14 day point, while such BDNF levels increased in the 30 mg/kg·bw LiCl group but peaked in the 60 and 85 mg/kg·bw LiCl groups at the 7 day point. These findings suggested that lithium can delay the death of axotomized RGCs in a dose-dependent manner within a certain period after ON injury and such beneficial effect is interrelated with an upregulated level of intraretinal BDNF. PMID:25100168

  2. Pathogenesis of ganglion "cell death" in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria.

    PubMed

    Osborne, Neville N

    2008-01-01

    Retinal ganglion cell axons within the globe are functionally specialized being richly provided with many mitochondria. The mitochondria produce the high energy requirement for nerve conduction in the unmyelinated part of the ganglion cell axons. We have proposed that in the initiation of glaucoma, an alteration in the quality of blood flow dynamics in the optic nerve head causes a compromise in the retinal ganglion cell axon energy requirement, rendering the ganglion cells susceptible to additional insults. One secondary insult might be light entering the eye to further affect ganglion cell axon mitochondrial function. Other insults to the ganglion cells might be substances (e.g., glutamate, nitric oxide, TNF-alpha) released from astrocytes. These effects ultimately cause ganglion cell death because of the inability of mitochondria to maintain normal function. We therefore suggest that ganglion cell apoptosis in glaucoma is both receptor and mitochondrial mediated. Agents targeted specifically at enhancing ganglion cell mitochondrial energy production should therefore be beneficial in a disease like glaucoma. Ganglion cell death in glaucoma might therefore, in principle, not be unlike the pathophysiology of numerous neurological disorders involving energy dysregulation and oxidative stress. The trigger(s) for ganglion cell apoptosis in glaucoma is/are likely to be multifactorial, and the rationale for targeting impaired energy production as a possibility of improving a patient's quality of life is based on logic derived from laboratory studies where neuronal apoptosis is shown to occur via different mechanisms. Light-induced neuronal apoptosis is likely to be more relevant to ganglion cell death in glaucoma than, for example, neuronal apoptosis associated with Parkinson's disease. Logic suggests that enhancing mitochondrial function generally will slow down ganglion cell apoptosis and therefore benefit glaucoma patients. On the basis of our laboratory studies, we

  3. Morphological properties of mouse retinal ganglion cells.

    PubMed

    Coombs, J; van der List, D; Wang, G-Y; Chalupa, L M

    2006-06-19

    The mouse retina offers an increasingly valuable model for vision research given the possibilities for genetic manipulation. Here we assess how the structural properties of mouse retinal ganglion cells relate to the stratification pattern of the dendrites of these neurons within the inner plexiform layer. For this purpose, we used 14 morphological measures to classify mouse retinal ganglion cells parametrically into different clusters. Retinal ganglion cells were labeled in one of three ways: Lucifer Yellow injection, 'DiOlistics' or transgenic expression of yellow fluorescent protein. The resulting analysis of 182 cells revealed 10 clusters of monostratified cells, with dendrites confined to either On or Off sublaminae of the inner plexiform layer, and four clusters of bistratified cells, dendrites spanning the On and Off sublaminae. We also sought to establish how these parametrically identified retinal ganglion cell clusters relate to cell types identified previously on the basis of immunocytochemical staining and the expression of yellow fluorescent protein. Cells labeled with an antibody against melanopsin were found to be located within a single cluster, while those labeled with the SMI-32 antibody were in four different clusters. Yellow fluorescent protein expressing cells were distributed within 13 of the 14 clusters identified here, which demonstrates that yellow fluorescent protein expression is a useful method for labeling virtually the entire population of mouse retinal ganglion cells. Collectively, these findings provide a valuable baseline for future studies dealing with the effects of genetic mutations on the morphological development of these neurons.

  4. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2015-06-01

    The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript

  5. Ectopic photoreceptors and cone bipolar cells in the developing and mature retina.

    PubMed

    Günhan, Emine; van der List, Deborah; Chalupa, Leo M

    2003-02-15

    An antibody against recoverin, the calcium-binding protein, labels photoreceptors, cone bipolar cells, and a subpopulation of cells in the ganglion cell layer. In the present study, we sought to establish the origin and identity of the cells expressing recoverin in the ganglion cell layer of the rat retina. By double labeling with rhodopsin, we demonstrate that early in development some of the recoverin-positive cells in the ganglion cell layer are photoreceptors. During the first postnatal week, these rhodopsin-positive cells are eliminated from the ganglion cell layer, but such neurons remain in the inner nuclear layer well into the first postnatal month. Another contingent of recoverin-positive cells, with morphological features equivalent to those of bipolar cells, is present in the postnatal retina, and approximately 50% of these neurons survive to maturity. The incidence of such cells in the ganglion cell layer was not affected by early transection of the optic nerve, a manipulation that causes rapid loss of retinal ganglion cells. These recoverin-positive cells were not double-labeled by cell-specific markers expressed by photoreceptors, rod bipolar cells, or horizontal and amacrine cells. Based on their staining with recoverin and salient morphological features, these ectopic profiles in the ganglion cell layer are most likely cone bipolar cells. Collectively, the results provide evidence for photoreceptors in the ganglion cell and inner nuclear layers of the developing retina, and a more permanent subpopulation of cone bipolar cells displaced to the ganglion cell layer.

  6. PBN (Phenyl-N-Tert-Butylnitrone)-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage.

    PubMed

    Stiles, Megan; Moiseyev, Gennadiy P; Budda, Madeline L; Linens, Annette; Brush, Richard S; Qi, Hui; White, Gary L; Wolf, Roman F; Ma, Jian-Xing; Floyd, Robert; Anderson, Robert E; Mandal, Nawajes A

    2015-01-01

    A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from

  7. PBN (Phenyl-N-Tert-Butylnitrone)-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage

    PubMed Central

    Stiles, Megan; Moiseyev, Gennadiy P.; Budda, Madeline L.; Linens, Annette; Brush, Richard S.; Qi, Hui; White, Gary L.; Wolf, Roman F.; Ma, Jian-xing; Floyd, Robert; Anderson, Robert E.; Mandal, Nawajes A.

    2015-01-01

    A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt’s disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75–80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina

  8. Fgf19 is required for zebrafish lens and retina development.

    PubMed

    Nakayama, Yoshiaki; Miyake, Ayumi; Nakagawa, Yu; Mido, Tomotaka; Yoshikawa, Maya; Konishi, Morichika; Itoh, Nobuyuki

    2008-01-15

    Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.

  9. Role of Myo/Nog Cells in Neuroprotection: Evidence from the Light Damaged Retina

    PubMed Central

    Brandli, Alice; Gerhart, Jacquelyn; Sutera, Christopher K.; Purushothuman, Sivaraman; George-Weinstein, Mindy; Stone, Jonathan; Bravo-Nuevo, Arturo

    2017-01-01

    Purpose To identify Myo/Nog cells in the adult retina and test their role in protecting retinal photoreceptors from light damage. Methods Light damage was induced by exposing albino rats raised in dim cyclic light to 1000 lux light for 24 hours. In one group of rats, Myo/Nog cells were purified from rat brain tissue by magnetic cell sorting following binding of the G8 monoclonal antibody (mAb). These cells were injected into the vitreous humour of the eye within 2 hours following bright light exposure. Retinal function was assessed using full-field, flash electroretinogram (ERG) before and after treatment. The numbers of Myo/Nog cells, apoptotic photoreceptors, and the expression of glial fibrillary acidic protein (GFAP) in Muller cells were assessed by immunohistochemistry. Results Myo/Nog cells were present in the undamaged retina in low numbers. Light induced damage increased their numbers, particularly in the choroid, ganglion cell layer and outer plexiform layer. Intravitreal injection of G8-positive (G8+) cells harvested from brain mitigated all the effects of light damage examined, i.e. loss of retinal function (ERG), death of photoreceptors and the stress-induced expression of GFAP in Muller cells. Some of the transplanted G8+ cells were integrated into the retina from the vitreous. Conclusions Myo/Nog cells are a subpopulation of cells that are present in the adult retina. They increase in number in response to light induced stress. Intravitreal injection of Myo/Nog cells was protective to the retina, in part, by reducing retinal stress as measured by the Muller cell response. These results suggest that Myo/Nog cells, or the factors they produce, are neuroprotective and may be therapeutic in neurodegenerative retinal diseases. PMID:28099524

  10. DNA repair synthesis in the rat retina following in vivo exposure to 300-nm radiation

    SciTech Connect

    Rapp, L.M.; Jose, J.G.; Pitts, D.G.

    1985-03-01

    Quantitative autoradiography was used to study the incorporation of /sup 3/H-thymidine into the retina of albino rats following in vivo exposure to 300-nm radiation. Relative to background labeling in unexposed eyes, there was 8-20 times as much label per unit area in the outer nuclear layer, inner nuclear layer, and ganglion cells of 300-nm exposed retinas. The photoreceptor inner segments also showed thymidine labeling in both control and exposed retinas.

  11. Drugs and the retina.

    PubMed

    Constable, Simon; Pirmohamed, Munir

    2004-05-01

    The retina is relatively protected from systemic drug administration because of the blood-retinal barrier, a highly selective mechanism adapted to providing a regulated homeostatic environment for this highly specialised tissue. However, a number of drugs have been associated with retinal toxicity. Vigabatrin, as an adjunctive therapy for the management of partial epilepsy, is associated with visual field defects in approximately 40% of patients. Hydroxychloroquine, used in the treatment of rheumatoid arthritis and systemic lupus erythematosus, is also associated with a retinopathy. In view of this, ophthalmological screening and monitoring is recommended during prescription of both of these drugs. In these cases, the retina is the site for an adverse drug reaction and the dose of therapy may be important in determining the likelihood of retinal toxicity. However, in the case of cytomegalovirus retinitis, the retina is the intended site for pharmacological action. The treatment of this condition with the antiviral agents ganciclovir, valganciclovir, foscarnet and cidofovir, can also be associated with significant systemic toxicity.

  12. Transformation of stimulus correlations by the retina

    NASA Astrophysics Data System (ADS)

    Prentice, Jason; Simmons, Kristina; Tkacik, Gasper; Homann, Jan; Yee, Heather; Palmer, Stephanie; Nelson, Phillip; Balasubramanian, Vijay

    2014-03-01

    Correlations in the responses of sensory neurons seem to waste neural resources, but can carry cues about structured stimuli and help the brain correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from many retinal ganglion cells presented with natural and artificial stimuli that varied in correlation structure. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were more correlated than in response to white noise checkerboards, but were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio- temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of correlations across stimuli.

  13. α2-adrenergic receptors in spiral ganglion neurons may mediate protective effects of brimonidine and yohimbine against glutamate and hydrogen peroxide toxicity.

    PubMed

    Cai, J; Li, J; Liu, W; Han, Y; Wang, H

    2013-01-03

    Brimonidine, an alpha2-adrenergic receptor (α(2)-AR) agonist, is thought to be neuroprotective in some types of neurons via the activation of α(2)-AR. However, it is still unknown whether the α(2)-ARs exist in cochlear spiral ganglion neurons (SGNs). The authors aimed to demonstrate the presence and localization of α(2)-ARs in rat-cultured SGNs and to investigate the effect of brimonidine on glutamate- and hydrogen peroxide (H(2)O(2))-induced damage in the primary-cultured rat SGNs. The expression of α(2)-ARs was determined by reverse transcription-polymerase chain reaction, Western blot analysis and immunofluorescence. Then SGNs were exposed to glutamate or H(2)O(2) respectively with or without brimonidine. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Apoptosis was determined by acridine orange and Hoechst 33342/propidium iodide double staining. The protein expressions of α(2)-ARs, Bax, Bcl-2, Caspase-9, Caspase-3, p-ERK1/2, iNOS, and artemin were determined by Western blot respectively. The cell viability was markedly reduced after exposure of glutamate (1mM) or H(2)O(2) (300 μM) to SGNs. Treatment with brimonidine protected SGNs against glutamate- or H(2)O(2)-induced cell damage, enhanced SGNs survival, decreased the elevation of Bax, Caspase-9, Caspase-3, p-ERK1/2, and artemin triggered by glutamate or H(2)O(2), and altered the expressions of Bcl-2 and iNOS. These protective effects of brimonidine can be reversed by yohimbine. Overall, the study describes the localization of α(2)-ARs in rat-cultured SGNs and indicates that brimonidine, which may work directly via interaction with α(2)-ARs, attenuates glutamate- and H(2)O(2)-induced damage in SGNs by Caspase-dependent modes as well as Caspase-independent modes.

  14. Insulin-like growth factor-1 attenuates apoptosis and protects neurochemical phenotypes of dorsal root ganglion neurons with paclitaxel-induced neurotoxicity in vitro.

    PubMed

    Chen, Cheng; Bai, Xue; Bi, Yanwen; Liu, Guixiang; Li, Hao; Liu, Zhen; Liu, Huaxiang

    2017-02-01

    Paclitaxel (PT)-induced neurotoxicity is a significant problem associated with successful treatment of cancers. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 has protective effects on neurite growth, cell viability, neuronal apoptosis and neuronal phenotypes in DRG neurons with PT-induced neurotoxicity is still unclear. In this study, primary cultured rat DRG neurons were used to assess the effects of IGF-1 on DRG neurons with PT-induced neurotoxicity. The results showed that PT exposure caused neurite retraction in a dose-dependent manner. PT exposure caused a decrease of cell viability and an increase in the ratio of apoptotic cells which could be reversed by IGF-1. The percentage of calcitonin gene-related peptide immunoreactive (CGRP-IR) neurons and neurofilament (NF)-200-IR neurons, mRNA, and protein levels of CGRP and NF-200 decreased significantly after treatment with PT. IGF-1 administration had protective effects on CGRP-IR neurons, but not on NF-200-IR neurons. Either extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 or phosphatidylinositol 3-kinase (PI3 K) inhibitor LY294002 blocked the effect of IGF-1. The results imply that IGF-1 may attenuate apoptosis to improve neuronal cell viability and promote neurite growth of DRG neurons with PT-induced neurotoxicity. Moreover, these results support an important neuroprotective role of exogenous IGF-1 on distinct subpopulations of DRG neurons which is responsible for skin sensation. The effects of IGF-1 might be through ERK1/2 or PI3 K/Akt signaling pathways. These findings provide experimental evidence for IGF-1 administration to alleviate neurotoxicity of distinct subpopulations of DRG neurons induced by PT.

  15. Toward a theory of the functional organization of the retina

    NASA Astrophysics Data System (ADS)

    Ratliff, Charles P.

    2007-12-01

    The retina streams visual information to the brain through parallel channels with highly stereotyped patterns of organization and connection. Much progress has been made toward identifying the types of neurons present, and their connectivity. A key problem is inferring the function of a neural system based on its known anatomy and physiology, and identifying the advantages conferred by its particular design. Often, characterizing its architecture reveals some strange features of its organization, and the utility of these features is not always explained easily. Here evidence is presented that several intriguing 'design features' of the retina can be explained by careful application of a single hypothesis: that the retina is organized to maximize the information transmitted about natural visual stimuli, subject to a set of biophysical constraints. Specifically, the input neurons to the retina (photoreceptors) and the output neurons (ganglion cells) exhibit the following interesting features: (1) In trichromats, cone photoreceptors with peak sensitivity to long (L), medium (M) and short (S) wavelengths of light are asymmetrically distributed, so that the ratio of L/M (red/green) cones is highly variable, and S (blue) cones are relatively scarce. (2) Ganglion cell receptive fields are organized so that 3-4 cells of the same type represent each point in a visual image. (3) The retina devotes more resources to ganglion cells selective for negative contrasts (OFF cells) than those selective for positive contrasts (ON cells). (4) The shape of ganglion cell center/surround receptive fields depends on their spatial scale, so that the ratio of surround size to center size decreases with the visual angle subtended by the receptive field. In each case, statistical properties of natural visual stimuli could be coupled with realistic biophysical constraints to account for the features described. The analyses here constitute progress toward long-standing questions concerning the

  16. Concerted Signaling by Retinal Ganglion Cells

    NASA Astrophysics Data System (ADS)

    Meister, Markus; Lagnado, Leon; Baylor, Denis A.

    1995-11-01

    To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.

  17. Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2.

    PubMed

    Mueller, Brett H; Park, Yong; Ma, Hai-Ying; Dibas, Adnan; Ellis, Dorette Z; Clark, Abbot F; Yorio, Thomas

    2014-11-01

    Sigma-1 receptor (σ-1) activation and mitogen-activated protein kinases (MAPKs) have been shown to protect retinal ganglion cells (RGCs) from cell death. The purpose of this study was to determine if σ-1 receptor stimulation with pentazocine could promote neuroprotection under conditions of an ischemia-like insult (oxygen glucose deprivation (OGD)) through the phosphorylation of extracellular signal regulated kinase (pERK)1/2. Primary RGCs were isolated from P3-P7 Sprague-Dawley rats and purified by sequential immunopanning using Thy1.1 antibodies. RGCs were cultured for 7 days before subjecting the cells to an OGD insult (0.5% oxygen in glucose-free medium) for 6 h. During the OGD, RGCs were treated with pentazocine (σ-1 receptor agonist) with or without BD 1047 (σ-1 receptor antagonist). In other experiments, primary RGCs were treated with pentazocine in the presence or absence of an MEK1/2 inhibitor, PD098059. Cell survival/death was assessed by staining with the calcein-AM/ethidium homodimer reagent. Levels of pERK1/2, total ERK1/2, and beta tubulin expression were determined by immunoblotting and immunofluorescence staining. RGCs subjected to OGD for 6 h induced 50% cell death in primary RGCs (p < 0.001) and inhibited pERK1/2 expression by 65% (p < 0.001). Cell death was attenuated when RGCs were treated with pentazocine under OGD (p < 0.001) and pERK1/2 expression was increased by 1.6 fold (p < 0.05) compared to OGD treated RGCs without pentazocine treatment. The co-treatment of PD098059 (MEK1/2 inhibitor) with pentazocine significantly abolished the protective effects of pentazocine on the RGCs during this OGD insult. Activation of the σ-1 receptor is a neuroprotective target that can protect RGCs from an ischemia-like insult. These results also established a direct relationship between σ-1 receptor stimulation and the neuroprotective effects of the ERK1/2 pathway in purified RGCs subjected to OGD. These findings suggest that activation of

  18. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius).

    PubMed

    Coimbra, João Paulo; Bertelsen, Mads F; Manger, Paul R

    2017-01-31

    The river hippopotamus (Hippopotamus amphibius), one of the closest extant relatives to cetaceans, is a large African even-toed ungulate (Artiodactyla) that grazes and has a semiaquatic lifestyle. Given its unusual phenotype, ecology and evolutionary history, we sought to measure the topographic distribution of retinal ganglion cell density using stereology and retinal wholemounts. We estimated a total of 243,000 ganglion cells of which 3.4% (8,300) comprise alpha cells. The topographic distribution of both total and alpha cells reveal a dual topographic organization of a temporal and nasal area embedded within a well-defined horizontal streak. Using maximum density of total ganglion cells and eye size (35 mm, axial length), we estimated upper limits of spatial resolving power of 8 cycles/deg (temporal area, 1,800 cells/mm(2) ), 7.7 cycles/deg (nasal area, 1,700 cells/mm(2) ) and 4.2 cycles/deg (horizontal streak, 250 cells/mm(2) ). Enhanced resolution of the temporal area towards the frontal visual field may facilitate grazing, whereas resolution of the horizontal streak and nasal area may help the discrimination of objects (predators, conspecifics) in the lateral and posterior visual fields, respectively. Given the presumed role of alpha cells to detect brisk transient stimuli, their similar distribution to the total ganglion cell population may facilitate the detection of approaching objects in equivalent portions of the visual field. Our finding of a nasal area in the river hippopotamus retina supports the notion that this specialization may enhance visual sampling in the posterior visual field to compensate for limited neck mobility as suggested for rhinoceroses and cetaceans. This article is protected by copyright. All rights reserved.

  19. Regional distribution of nitrergic neurons in the inner retina of the chicken.

    PubMed

    Wilson, Martin; Nacsa, Nick; Hart, Nathan S; Weller, Cynthia; Vaney, David I

    2011-05-01

    Using both NADPH diaphorase and anti-nNOS antibodies, we have identified-from retinal flatmounts-neuronal types in the inner retina of the chicken that are likely to be nitrergic. The two methods gave similar results and yielded a total of 15 types of neurons, comprising 9 amacrine cells, 5 ganglion cells, and 1 centrifugal midbrain neuron. Six of these 15 cell types are ubiquitously distributed, comprising 3 amacrine cells, 2 displaced ganglion cells, and a presumed orthotopic ganglion cell. The remaining nine cell types are regionally restricted within the retina. As previously reported, efferent fibers of midbrain neurons and their postsynaptic partners, the unusual axon-bearing target amacrine cells, are entirely confined to the ventral retina. Also confined to the ventral retina, though with somewhat different distributions, are the "bullwhip" amacrine cells thought to be involved in eye growth, an orthotopic ganglion cell, and two types of large axon-bearing amacrine cells whose dendrites and axons lie in stratum 1 of the inner plexiform layer (IPL). Intracellular fills of these two cell types showed that only a minority of otherwise morphologically indistinguishable neurons are nitrergic. Two amacrine cells that branch throughout the IPL are confined to an equatorial band, and one small-field orthotopic ganglion cell that branches in the proximal IPL is entirely dorsal. These findings suggest that the retina uses different processing on different regions of the visual image, though the benefit of this is presently obscure.

  20. Enkephalin in the goldfish retina

    SciTech Connect

    Su, Y.Y.; Fry, K.R.; Lam, D.M.; Watt, C.B.

    1986-12-01

    Enkephalin-like immunoreactive amacrine cells were visualized using the highly sensitive avidin-biotin method. The somas of these cells were situated in the inner nuclear and ganglion cell layers. Enkephalin-stained processes were observed in layers 1, 3, and 5 of the inner plexiform layer. The biosynthesis of sulfur-containing compounds in the goldfish retina was studied by means of a pulse-chase incubation with /sup 35/S-methionine. A /sup 35/S-labeled compound, which comigrated with authentic Met5-enkephalin on high-performance liquid chromatography (HPLC), was synthesized and was bound competitively by antibodies to enkephalin and by opiate receptors. This compound was tentatively identified as Met5-enkephalin. The newly synthesized /sup 35/S-Met5-enkephalin was released upon depolarization of the retina with a high K+ concentration. This K+-stimulated release was greatly suppressed by 5 mM Co/sup 2 +/, suggesting that the release was Ca/sup 2 +/ dependent. Using a double-label technique, enkephalin immunoreactivity and gamma-aminobutyric acid (GABA) uptake were colocalized to some amacrine cells, whereas others labeled only for enkephalin or GABA. The possible significance of enkephalin-GABA interactions is also discussed.

  1. Cancers Affecting the Retina

    MedlinePlus

    ... or ARMD) Epiretinal Membrane Detachment of the Retina Retinitis Pigmentosa Blockage of Central Retinal Veins and Branch Retinal ... or ARMD) Epiretinal Membrane Detachment of the Retina Retinitis Pigmentosa Blockage of Central Retinal Veins and Branch Retinal ...

  2. Pharmacological study of direction selectivity in the archer fish retina.

    PubMed

    Pinsky, Ehud; Donchin, Opher; Segev, Ronen

    2015-09-18

    Direction selective cells have been found in the retina, the first level of the visual system, in mammals and recently also in the archer fish. These cells are involved in a variety of fast neural computation processes, from the control of eye movements to the detection of prey by the archer fish. The standard model for this mechanism in mammalian retina is well understood and is based on the asymmetry of inhibitory and excitatory inputs to the retinal ganglion cells. However, it remains unclear whether the mechanism that underlies direction selectivity is similar across animal classes. This study reports a pharmacological investigation designed to elucidate the mechanism that underlies motion detection in the archer fish retina. Direction selectivity in the retina was characterized under the influence of specific channel blockers that are known to be present in the different types of neurons of the retina. The results show that the direction-selective mechanism in the archer fish retina is modified only when the inhibitory channels of GABA and Glycine are manipulated. This suggests that the mechanism of direction selectivity in the archer fish retina is fundamentally different from the mechanism of direction selectivity in the mammalian retina.

  3. Retinal ganglion cell topography and spatial resolving power in penguins.

    PubMed

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  4. Transplanted neurons integrate into adult retinas and respond to light.

    PubMed

    Venugopalan, Praseeda; Wang, Yan; Nguyen, Tu; Huang, Abigail; Muller, Kenneth J; Goldberg, Jeffrey L

    2016-02-04

    Retinal ganglion cells (RGCs) degenerate in diseases like glaucoma and are not replaced in adult mammals. Here we investigate whether transplanted RGCs can integrate into the mature retina. We have transplanted GFP-labelled RGCs into uninjured rat retinas in vivo by intravitreal injection. Transplanted RGCs acquire the general morphology of endogenous RGCs, with axons orienting towards the optic nerve head of the host retina and dendrites growing into the inner plexiform layer. Preliminary data show in some cases GFP(+) axons extending within the host optic nerves and optic tract, reaching usual synaptic targets in the brain, including the lateral geniculate nucleus and superior colliculus. Electrophysiological recordings from transplanted RGCs demonstrate the cells' electrical excitability and light responses similar to host ON, ON-OFF and OFF RGCs, although less rapid and with greater adaptation. These data present a promising approach to develop cell replacement strategies in diseased retinas with degenerating RGCs.

  5. Pharmacology of the GABAB receptor in amphibian retina.

    PubMed

    Tian, N; Slaughter, M M

    1994-10-17

    Amacrine and ganglion cells in the amphibian retina contain GABAB, as well as GABAA, receptors. Baclofen, a GABAB agonist, hyperpolarizes the dark membrane potential of these third order neurons and makes their light responses more transient. GABAB receptors in the retina have a similar agonist profile to GABAB receptors described at other sites in the brain. Namely, preferential activation by the R-enantiomer of baclofen, and agonist sensitivity in the order 3-aminopropylphosphinic acid > baclofen > 3-aminopropylphosphonic acid. The GABAB receptor was not activated by 4-aminobutylphosphonic acid. Several antagonists, such as phaclofen, saclofen, and 2-hydroxysaclofen, were ineffective in the amphibian retina. However, CGP35348 blocked the action of applied baclofen and produced effects on the light response that were opposite to those of baclofen. Applied agonists and antagonists support the hypothesis that GABAB receptors serve to regulate the balance of sustained and transient signals to the inner retina.

  6. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina

    PubMed Central

    Zhu, Yuan; Valter, Krisztina; Bisti, Silvia; Eells, Janis; Stone, Jonathan

    2010-01-01

    Purpose To identify the genes and noncoding RNAs (ncRNAs) involved in the neuroprotective actions of a dietary antioxidant (saffron) and of photobiomodulation (PBM). Methods We used a previously published assay of photoreceptor damage, in which albino Sprague Dawley rats raised in dim cyclic illumination (12 h 5 lux, 12 h darkness) were challenged by 24 h exposure to bright (1,000 lux) light. Experimental groups were protected against light damage by pretreatment with dietary saffron (1 mg/kg/day for 21 days) or PBM (9 J/cm2 at the eye, daily for 5 days). RNA from one eye of four animals in each of the six experimental groups (control, light damage [LD], saffron, PBM, saffronLD, and PBMLD) was hybridized to Affymetrix rat genome ST arrays. Quantitative real-time PCR analysis of 14 selected genes was used to validate the microarray results. Results LD caused the regulation of 175 entities (genes and ncRNAs) beyond criterion levels (p<0.05 in comparison with controls, fold-change >2). PBM pretreatment reduced the expression of 126 of these 175 LD-regulated entities below criterion; saffron pretreatment reduced the expression of 53 entities (50 in common with PBM). In addition, PBM pretreatment regulated the expression of 67 entities not regulated by LD, while saffron pretreatment regulated 122 entities not regulated by LD (48 in common with PBM). PBM and saffron, given without LD, regulated genes and ncRNAs beyond criterion levels, but in lesser numbers than during their protective action. A high proportion of the entities regulated by LD (>90%) were known genes. By contrast, ncRNAs were prominent among the entities regulated by PBM and saffron in their neuroprotective roles (73% and 62%, respectively). Conclusions Given alone, saffron and (more prominently) PBM both regulated significant numbers of genes and ncRNAs. Given before retinal exposure to damaging light, thus while exerting their neuroprotective action, they regulated much larger numbers of entities

  7. Thyroid Hormone Signaling in the Mouse Retina

    PubMed Central

    Arbogast, Patrick; Flamant, Frédéric; Godement, Pierre; Glösmann, Martin

    2016-01-01

    Thyroid hormone is a crucial regulator of gene expression in the developing and adult retina. Here we sought to map sites of thyroid hormone signaling at the cellular level using the transgenic FINDT3 reporter mouse model in which neurons express β-galactosidase (β-gal) under the control of a hybrid Gal4-TRα receptor when triiodothyronine (T3) and cofactors of thyroid receptor signaling are present. In the adult retina, nearly all neurons of the ganglion cell layer (GCL, ganglion cells and displaced amacrine cells) showed strong β-gal labeling. In the inner nuclear layer (INL), a minority of glycineric and GABAergic amacrine cells showed β-gal labeling, whereas the majority of amacrine cells were unlabeled. At the level of amacrine types, β-gal labeling was found in a large proportion of the glycinergic AII amacrines, but only in a small proportion of the cholinergic/GABAergic ‘starburst’ amacrines. At postnatal day 10, there also was a high density of strongly β-gal-labeled neurons in the GCL, but only few amacrine cells were labeled in the INL. There was no labeling of bipolar cells, horizontal cells and Müller glia cells at both stages. Most surprisingly, the photoreceptor somata in the outer nuclear layer also showed no β-gal label, although thyroid hormone is known to control cone opsin expression. This is the first record of thyroid hormone signaling in the inner retina of an adult mammal. We hypothesize that T3 levels in photoreceptors are below the detection threshold of the reporter system. The topographical distribution of β-gal-positive cells in the GCL follows the overall neuron distribution in that layer, with more T3-signaling cells in the ventral than the dorsal half-retina. PMID:27942035

  8. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  9. Morphology of retinal ganglion cells in the flying fox (Pteropus scapulatus): a lucifer yellow investigation.

    PubMed

    Dann, J F; Buhl, E H

    1990-11-15

    The morphology of retinal ganglion cells was determined in megachiroptera, commonly known as flying foxes. Retinal ganglion cells were intracellularly injected with the fluorescent dye Lucifer yellow in fixed retinae from adult little red flying foxes (Pteropus scapulatus) captured in their natural habitat. Ganglion cells closely resembled the three main classes of cat retinal ganglion cells, and therefore were classified into alpha-, beta-, and gamma-type cells. The size of the alpha- and beta-type somas and dendritic fields increased with increasing distance from the area centralis. However, this eccentricity dependence was not as pronounced as in the cat. The gamma-type cells were sub-divided into mono-, bi-, and diffusely stratified, in accordance with the ramification of their dendrites within the inner plexiform layer. The alpha- and beta-type cells were uni-stratified in either the sublamina of the inner plexiform layer closest to the ganglion cell layer or in that closest to the inner nuclear layer. These laminae correspond to those in the cat retina which contain the dendritic ramifications of ganglion cells whose central receptive fields respond best to onset of light (the "on-centre" cells), or to ganglion cells whose centres respond optimally to light being extinguished (the "off-centre" cells). Thus the flying fox retina contains a morphological correlate of the "on"/"off" dichotomy of alpha and beta cells in the cat retina. In general the flying fox retinal ganglion cells exhibit a degree of morphological complexity reminiscent of cat retinal cells and this may reflect similar functional properties.

  10. The neurotoxic effect of monosodium glutamate (MSG) on the retinal ganglion cells of the albino rat.

    PubMed

    van Rijn, C M; Marani, E; Rietveld, W J

    1986-07-01

    Monosodium glutamate (MSG) administered postnatally to the albino rat causes extensive destruction of the retina. This MSG effect does not result in complete blindness. Ganglion cells surviving the MSG treatment are healthy and functional. Using retrogradely transported HRP and Nissl staining in whole mounted retinas, it was found that the ganglion cells left after MSG treatment are not smaller than those in controls, that these cells do not belong to one cell size group, and that no cells size group is selectively missed. The results explain why photic entrainment of MSG treated animals is still possible.

  11. Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Mass, Alla M; Ketten, Darlene R; Odell, Daniel K; Supin, Alexander Ya

    2012-01-01

    The topographic organization of retinal ganglion cells was examined in the Florida manatee (Trichechus manatus latirostris) to assess ganglion cell size and distribution and to estimate retinal resolution. The ganglion cell layer of the manatee's retina was comprised primarily of large neurons with broad intercellular spaces. Cell sizes varied from 10 to 60 μm in diameter (mean 24.3 μm). The retinal wholemounts from adult animals measured 446-501 mm(2) in area with total ganglion cell counts of 62,000-81,800 (mean 70,200). The cell density changed across the retina, with the maximum in the area below the optic disc and decreasing toward the retinal edges and in the immediate vicinity of the optic disc. The maximum cell density ranged from 235 to 337 cells per millimeter square in the adult retinae. Two wholemounts obtained from juvenile animals were 271 and 282 mm(2) in area with total cell numbers of 70,900 and 68,700, respectively (mean 69,800), that is, nearly equivalent to those of adults, but juvenile retinae consequently had maximum cell densities that were higher than those of adults: 478 and 491 cells per millimeter square. Calculations indicate a retinal resolution of ∼19' (1.6 cycles per degree) in both adult and juvenile retinae.

  12. Ih without Kir in Adult Rat Retinal Ganglion Cells

    PubMed Central

    Lee, Sherwin C.; Ishida, Andrew T.

    2011-01-01

    Antisera directed against hyperpolarization-activated mixed-cation (“Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization due to activation of Ih. However, patch-clamp studies have reported that rat ganglion cells lack inward rectification, or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that while we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells, and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings. PMID:17488978

  13. Distribution and morphology of retinal ganglion cells in the Japanese quail.

    PubMed

    Ikushima, M; Watanabe, M; Ito, H

    1986-06-25

    A ganglion cell density map was produced from the Nissl-stained retinal whole mount of the Japanese quail. Ganglion cell density diminished nearly concentrically from the central area toward the retinal periphery. The mean soma area of ganglion cells in isodensity zones increased as the cell density decreased. The histograms of soma areas in each zone indicated that a population of small-sized ganglion cells persists into the peripheral retina. The total number of ganglion cells was estimated at about 2.0 million. Electron microscopic examination of the optic nerve revealed thin unmyelinated axons to comprise 69% of the total fiber count (about 2.0 million). Since there was no discrepancy between both the total numbers of neurons in the ganglion cell layer and optic nerve fibers, it is inferred that displaced amacrine cells are few, if any. The spectrum in optic nerve fiber diameter showed a unimodal skewed distribution quite similar to the histogram of soma areas of ganglion cells in the whole retina. This suggests a close correlation between soma areas and axon diameters. Retinal ganglion cells filled from the optic nerve with horseradish peroxidase were classified into 7 types according to such morphological characteristics as size, shape and location of the soma, as well as dendritic arborization pattern. Taking into account areal ranges of somata of each cell type, it can be assumed that most of the ganglion cells in the whole retinal ganglion cell layer are composed of type I, II and III cells, and that the population of uniformly small-sized ganglion cells corresponds to type I cells and is an origin of unmyelinated axons in the optic nerve.

  14. Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal

    PubMed Central

    Schwartz, Greg; Taylor, Sam; Fisher, Clark; Harris, Rob; Berry, Michael J.

    2011-01-01

    SUMMARY We show that when a moving object suddenly reverses direction, there is a brief, synchronous burst of firing within a population of retinal ganglion cells. This burst can be driven by either the leading or trailing edge of the object. The latency is constant for movement at different speeds, objects of different size, and bright versus dark contrasts. The same ganglion cells that signal a motion reversal also respond to smooth motion. We show that the brain can build a pure reversal detector using only a linear filter that reads out synchrony from a group of ganglion cells. These results indicate that not only can the retina anticipate the location of a smoothly moving object, but that it can also signal violations in its own prediction. We show that the reversal response cannot be explained by models of the classical receptive field and suggest that nonlinear receptive field subunits may be responsible. PMID:17880898

  15. Pea3 expression is regulated by FGF signaling in developing retina

    PubMed Central

    McCabe, Kathryn Leigh; McGuire, Chris; Reh, Thomas A.

    2008-01-01

    FGF signaling has been implicated as an important regulator of retinal development. As a first step in characterizing potential downstream targets of FGF signaling in the retina, we have analyzed expression of Pea3, a member of the Pea3 class of Ets-domain transcription factors, in the developing eye. We find that Pea3 is expressed in the developing retina, and its transcription is regulated by FGF receptor activation. In addition, FGF signaling activates Cath5, a gene necessary for retinal ganglion cell differentiation. These results suggest that FGF signaling via MAPK up-regulates transcription factors that in turn control retinal ganglion cell differentiation. PMID:16273524

  16. Starburst amacrine cells express parvalbumin but not calbindin and calretinin in rabbit retina.

    PubMed

    Lee, Eun-Shil; Jeon, Chang-Jin

    2013-11-13

    Calcium-binding proteins (CBPs) are important components in calcium-mediated cellular signal transduction. Among the many CBPs, at least three EF-hand CBPs, calbindin-D28K (CB), calretinin (CR), and parvalbumin (PV), have been extensively studied in the retina. In the present study, we investigated the expression patterns of these three CBPs in cholinergic starburst amacrine cells (SACs), which are the most important element for direction selectivity in the rabbit retina. Double-label immunocytochemical analysis of vibratome sections and single-cell injection after immunocytochemical analysis on whole mounts were carried out in rabbit retinas. We found that all SACs in the inner nuclear layer and the ganglion cell layer contained PV. However, none of the SACs in the inner nuclear layer or ganglion cell layer contained either CB or CR. These results suggest that PV, but not CR or CB, may act as a calcium-buffering protein in the SACs of the rabbit retina.

  17. Glycogen metabolism in the rat retina.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.

  18. GABAergic and glycinergic pathways to goldfish retinal ganglion cells: an ultrastructural double label study

    SciTech Connect

    Muller, J.F.

    1987-01-01

    An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.

  19. Segregation of object and background motion in the retina

    NASA Astrophysics Data System (ADS)

    Ölveczky, Bence P.; Baccus, Stephen A.; Meister, Markus

    2003-05-01

    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects.

  20. Imaging individual neurons in the retinal ganglion cell layer of the living eye

    PubMed Central

    Rossi, Ethan A.; Granger, Charles E.; Yang, Qiang; Saito, Kenichi; Schwarz, Christina; Walters, Sarah; Nozato, Koji; Zhang, Jie; Kawakami, Tomoaki; Fischer, William; Latchney, Lisa R.; Hunter, Jennifer J.; Chung, Mina M.; Williams, David R.

    2017-01-01

    Although imaging of the living retina with adaptive optics scanning light ophthalmoscopy (AOSLO) provides microscopic access to individual cells, such as photoreceptors, retinal pigment epithelial cells, and blood cells in the retinal vasculature, other important cell classes, such as retinal ganglion cells, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. Here we show that the individual somas of neurons within the retinal ganglion cell (RGC) layer can be imaged with a modification of confocal AOSLO, in both monkeys and humans. Human images of RGC layer neurons did not match the quality of monkey images for several reasons, including safety concerns that limited the light levels permissible for human imaging. We also show that the same technique applied to the photoreceptor layer can resolve ambiguity about cone survival in age-related macular degeneration. The capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases, such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain. PMID:28049835

  1. Complex computation in the retina

    NASA Astrophysics Data System (ADS)

    Deshmukh, Nikhil Rajiv

    Elucidating the general principles of computation in neural circuits is a difficult problem requiring both a tractable model circuit as well as sophisticated measurement tools. This thesis advances our understanding of complex computation in the salamander retina and its underlying circuitry and furthers the development of advanced tools to enable detailed study of neural circuits. The retina provides an ideal model system for neural circuits in general because it is capable of producing complex representations of the visual scene, and both its inputs and outputs are accessible to the experimenter. Chapter 2 describes the biophysical mechanisms that give rise to the omitted stimulus response in retinal ganglion cells described in Schwartz et al., (2007) and Schwartz and Berry, (2008). The extra response to omitted flashes is generated at the input to bipolar cells, and is separable from the characteristic latency shift of the OSR apparent in ganglion cells, which must occur downstream in the circuit. Chapter 3 characterizes the nonlinearities at the first synapse of the ON pathway in response to high contrast flashes and develops a phenomenological model that captures the effect of synaptic activation and intracellular signaling dynamics on flash responses. This work is the first attempt to model the dynamics of the poorly characterized mGluR6 transduction cascade unique to ON bipolar cells, and explains the second lobe of the biphasic flash response. Complementary to the study of neural circuits, recent advances in wafer-scale photolithography have made possible new devices to measure the electrical and mechanical properties of neurons. Chapter 4 reports a novel piezoelectric sensor that facilitates the simultaneous measurement of electrical and mechanical signals in neural tissue. This technology could reveal the relationship between the electrical activity of neurons and their local mechanical environment, which is critical to the study of mechanoreceptors

  2. Cytogenesis in the monkey retina

    SciTech Connect

    La Vail, M.M.; Rapaport, D.H.; Rakic, P. )

    1991-07-01

    Time of cell origin in the retina of the rhesus monkey (Macaca mulatta) was studied by plotting the number of heavily radiolabeled nuclei in autoradiograms prepared from 2- to 6-month-old animals, each of which was exposed to a pulse of 3H-thymidine (3H-TdR) on a single embryonic (E) or postnatal (P) day. Cell birth in the monkey retina begins just after E27, and approximately 96% of cells are generated by E120. The remaining cells are produced during the last (approximately 45) prenatal days and into the first several weeks after birth. Cell genesis begins near the fovea, and proceeds towards the periphery. Cell division largely ceases in the foveal and perifoveal regions by E56. Despite extensive overlap, a class-specific sequence of cell birth was observed. Ganglion and horizontal cells, which are born first, have largely congruent periods of cell genesis with the peak between E38 and E43, and termination around E70. The first labeled cones were apparent by E33, and their highest density was achieved between E43 and E56, tapering to low values at E70, although some cones are generated in the far periphery as late as E110. Amacrine cells are next in the cell birth sequence and begin genesis at E43, reach a peak production between E56 and E85, and cease by E110. Bipolar cell birth begins at the same time as amacrines, but appears to be separate from them temporally since their production reaches a peak between E56 and E102, and persists beyond the day of birth. Mueller cells and rod photoreceptors, which begin to be generated at E45, achieve a peak, and decrease in density at the same time as bipolar cells, but continue genesis at low density on the day of birth. Thus, bipolar, Mueller, and rod cells have a similar time of origin.

  3. Imaging the response of the retina to electrical stimulation with genetically encoded calcium indicators.

    PubMed

    Weitz, Andrew C; Behrend, Matthew R; Lee, Nan Sook; Klein, Ronald L; Chiodo, Vince A; Hauswirth, William W; Humayun, Mark S; Weiland, James D; Chow, Robert H

    2013-04-01

    Epiretinal implants for the blind are designed to stimulate surviving retinal neurons, thus bypassing the diseased photoreceptor layer. Single-unit or multielectrode recordings from isolated animal retina are commonly used to inform the design of these implants. However, such electrical recordings provide limited information about the spatial patterns of retinal activation. Calcium imaging overcomes this limitation, as imaging enables high spatial resolution mapping of retinal ganglion cell (RGC) activity as well as simultaneous recording from hundreds of RGCs. Prior experiments in amphibian retina have demonstrated proof of principle, yet experiments in mammalian retina have been hindered by the inability to load calcium indicators into mature mammalian RGCs. Here, we report a method for labeling the majority of ganglion cells in adult rat retina with genetically encoded calcium indicators, specifically GCaMP3 and GCaMP5G. Intravitreal injection of an adeno-associated viral vector targets ∼85% of ganglion cells with high specificity. Because of the large fluorescence signals provided by the GCaMP sensors, we can now for the first time visualize the response of the retina to electrical stimulation in real-time. Imaging transduced retinas mounted on multielectrode arrays reveals how stimulus pulse shape can dramatically affect the spatial extent of RGC activation, which has clear implications in prosthetic applications. Our method can be easily adapted to work with other fluorescent indicator proteins in both wild-type and transgenic mammals.

  4. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress.

    PubMed

    Bazan, Nicolas G

    2005-04-01

    The biosynthesis of oxygenated arachidonic acid messengers triggered by cerebral ischemia-reperfusion is preceded by an early and rapid phospholipase A2 activation reflected in free arachidonic and docosahexaenoic acid (DHA) accumulation. These fatty acids are released from membrane phospholipids. Both fatty acids are derived from dietary essential fatty acids; however, only DHA, the omega-3 polyunsaturated fatty acyl chain, is concentrated in phospholipids of various cells of brain and retina. Synaptic membranes and photoreceptors share the highest content of DHA of all cell membranes. DHA is involved in memory formation, excitable membrane function, photoreceptor cell biogenesis and function, and neuronal signaling, and has been implicated in neuroprotection. In addition, this fatty acid is required for retinal pigment epithelium cell (RPE) functional integrity. Here we provide an overview of the recent elucidation of a specific mediator generated from DHA that contributes at least in part to its biological significance. In oxidative stress-challenged human RPE cells and rat brain undergoing ischemia-reperfusion, 10,17S-docosatriene (neuroprotectin D1, NPD1) synthesis evolves. In addition, calcium ionophore A23187, IL-1beta, or the supply of DHA enhances NPD1 synthesis. A time-dependent release of endogenous free DHA followed by NPD1 formation occurs, suggesting that a phospholipase A2 releases the mediator's precursor. When NPD1 is infused during ischemia-reperfusion or added to RPE cells during oxidative stress, apoptotic DNA damage is down-regulated. NPD1 also up-regulates the anti-apoptotic Bcl-2 proteins Bcl-2 and BclxL and decreases pro-apoptotic Bax and Bad expression. Moreover, NPD1 inhibits oxidative stress-induced caspase-3 activation. NPD1 also inhibits IL-1beta-stimulated expression of COX-2. Overall, NPD1 protects cells from oxidative stress-induced apoptosis. Because photoreceptors are progressively impaired after RPE cell damage in retinal

  5. Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro.

    PubMed

    Behrend, Matthew R; Ahuja, Ashish K; Humayun, Mark S; Weiland, James D; Chow, Robert H

    2009-05-15

    Here we present a retrograde loading technique that makes it possible for the first time to rapidly load a calcium indicator in the majority of retinal ganglion cells (RGCs) in salamander retina, and then to observe physiological activity of these dye-loaded cells. Dextran-conjugated calcium indicator, dissolved in water, was applied to the optic nerve stump. Following dye loading, the isolated retina was mounted on a microelectrode array to demonstrate that electrical activity and calcium activity were preserved, as the retina responded to electrical stimuli.

  6. Connecting the Retina to the Brain

    PubMed Central

    Herrera, Eloisa

    2014-01-01

    The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed. PMID:25504540

  7. Three-dimensional printing of the retina

    PubMed Central

    Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.

    2016-01-01

    Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545

  8. Cholecystokinin-like immunoreactive amacrine cells in the rat retina

    PubMed Central

    Firth, Sally I.; Varela, Carolina; De La Villa, Pedro; Marshak, David W.

    2012-01-01

    High levels of endogenous cholecystokinin (CCK) are present in the rat retina (Eskay & Beinfeld, 1982), but the cellular localization and physiological actions of CCK in the rat retina are uncertain. The goals of this study were to characterize the cells containing CCK, identify cell types that interact with CCK cells, and investigate the effects of CCK on rod bipolar cells. Rat retinas were labeled with antibody to gastrin-CCK (gCCK) using standard immunofluorescence techniques. Patch-clamp methods were used to record from dissociated rod bipolar cells from rats and mice. Gastrin-CCK immunoreactive (-IR) axons were evenly distributed throughout the retina in stratum 5 of the inner plexiform layer of the rat retina. However, the gCCK-IR somata were only detected in the ganglion cell layer in the peripheral retina. The gCCK-IR cells contained glutamate decarboxylase, and some of them also contained immunoreactive substance P. Labeled axons contacted PKC-IR rod bipolar cells, and recoverin-IR ON-cone bipolar cells. CCK-octapeptide inhibits GABAC but not GABAA mediated currents in dissociated rod bipolar cells. PMID:12511085

  9. A silicon retina that reproduces signals in the optic nerve

    NASA Astrophysics Data System (ADS)

    Zaghloul, Kareem A.; Boahen, Kwabena

    2006-12-01

    Prosthetic devices may someday be used to treat lesions of the central nervous system. Similar to neural circuits, these prosthetic devices should adapt their properties over time, independent of external control. Here we describe an artificial retina, constructed in silicon using single-transistor synaptic primitives, with two forms of locally controlled adaptation: luminance adaptation and contrast gain control. Both forms of adaptation rely on local modulation of synaptic strength, thus meeting the criteria of internal control. Our device is the first to reproduce the responses of the four major ganglion cell types that drive visual cortex, producing 3600 spiking outputs in total. We demonstrate how the responses of our device's ganglion cells compare to those measured from the mammalian retina. Replicating the retina's synaptic organization in our chip made it possible to perform these computations using a hundred times less energy than a microprocessor—and to match the mammalian retina in size and weight. With this level of efficiency and autonomy, it is now possible to develop fully implantable intraocular prostheses.

  10. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival

    PubMed Central

    Guo, Caiwei; Sun, Yu; Liao, Tiffany; Beattie, Ursula; López, Francisco J.; Chen, Dong Feng; Lashkari, Kameran

    2015-01-01

    We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma. PMID:25923430

  11. Real time simulation of the retina allowing visualization of each processing stage

    SciTech Connect

    Teeters, J.L.; Werblin, F.

    1990-03-01

    Our retina computes to let us see, but can we see our retina compute? Until now, the answer has been `no` because the unconscious nature of the processing hides it from our view. Here we overcome the barrier of our closeness and describe what (to our knowledge) is the first method of seeing computations performed throughout the retina. This is achieved by using neurophysical data to construct a model of the retina, and using a special purpose image processing computer (PIPE) to implement the model in real time. Processing in the model is organized into stages corresponding to computations performed by each retinal cell type. The final stage is the formation of the transient (change detecting) ganglion cell response. A CCD camera forms the input image and the activity of any retinal cell type layer is the output which is displayed on a TV monitor. By changing the retina cell type driving the monitor, the progressive transformations of the image occurring in each stage of retina processing can be observed. The simulations demonstrate several phenomena including the slight blurring of the image caused by coupling between receptors, the relatively slow response to change and further blurring of the image by horizontal cells, the enhancement of moving edges by the bipolar cells, the separation of information flow into On and Off components, change detection in amacrine cells and the lateral inhibition to ganglion cells. Because the retina is the first stage of all biological vision systems, this processing may be useful for machine vision.

  12. Real time simulation of the retina allowing visualization of each processing stage

    SciTech Connect

    Teeters, J.L. ); Werblin, F. )

    1990-03-01

    Our retina computes to let us see, but can we see our retina compute Until now, the answer has been no' because the unconscious nature of the processing hides it from our view. Here we overcome the barrier of our closeness and describe what (to our knowledge) is the first method of seeing computations performed throughout the retina. This is achieved by using neurophysical data to construct a model of the retina, and using a special purpose image processing computer (PIPE) to implement the model in real time. Processing in the model is organized into stages corresponding to computations performed by each retinal cell type. The final stage is the formation of the transient (change detecting) ganglion cell response. A CCD camera forms the input image and the activity of any retinal cell type layer is the output which is displayed on a TV monitor. By changing the retina cell type driving the monitor, the progressive transformations of the image occurring in each stage of retina processing can be observed. The simulations demonstrate several phenomena including the slight blurring of the image caused by coupling between receptors, the relatively slow response to change and further blurring of the image by horizontal cells, the enhancement of moving edges by the bipolar cells, the separation of information flow into On and Off components, change detection in amacrine cells and the lateral inhibition to ganglion cells. Because the retina is the first stage of all biological vision systems, this processing may be useful for machine vision.

  13. Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry

    NASA Astrophysics Data System (ADS)

    Curcio, Christine A.; Sloan, Kenneth R.; Packer, Orin; Hendrickson, Anita E.; Kalina, Robert E.

    1987-05-01

    The distribution of photoreceptors is known for only one complete human retina and for the cardinal meridians only in the macaque monkey retina. Cones can be mapped in computer-reconstructed whole mounts of human and monkey retina. A 2.9-fold range in maximum cone density in the foveas of young adult human eyes may contribute to individual differences in acuity. Cone distribution is radially asymmetrical about the fovea in both species, as previously described for the distribution of retinal ganglion cells and for lines of visual isosensitivity. Cone density was greater in the nasal than in the temporal peripheral retina, and this nasotemporal asymmetry was more pronounced in monkey than in human retina.

  14. Long Noncoding RNA-Sox2OT Knockdown Alleviates Diabetes Mellitus-Induced Retinal Ganglion Cell (RGC) injury.

    PubMed

    Li, Chao-Peng; Wang, Shu-Hong; Wang, Wen-Qi; Song, Shu-Guang; Liu, Xiu-Ming

    2017-03-01

    Retinal ganglion cell (RGC) injury is one of the important pathological features of diabetes-induced retinal neurodegeneration. Increasing attention has been paid to find strategies for protecting against RGC injury. Long noncoding RNAs (lncRNAs) have emerged as the key regulators of many cell functions. Here, we show that Sox2OT expression is significantly down-regulated in the retinas of STZ-induced diabetic mice and in the RGCs upon high glucose or oxidative stress. SOX2OT knockdown protects RGCs against high glucose-induced injury in vitro. Moreover, Sox2OT knockdown plays a neuroprotective role in diabetes-related retinal neurodegeneration in vivo. Sox2OT knockdown could regulate oxidative stress response in RGCs and diabetic mouse retinas. Sox2OT knockdown plays an anti-oxidative role via regulating NRF2/HO-1 signaling activity. Taken together, Sox2OT knockdown may be a therapeutic strategy for the prevention and treatment of diabetes-induced retinal neurodegeneration.

  15. Lumbar intraspinal extradural ganglion cysts.

    PubMed

    Cho, Sung Min; Rhee, Woo Tack; Choi, Soo Jung; Eom, Dae Woon

    2009-07-01

    The lumbar intraspinal epidural ganglion cyst has been a rare cause of the low back pain or leg pain. Ganglion cysts and synovial cysts compose the juxtafacet cysts. Extensive studies have been performed about the synovial cysts, however, very little has been known about the ganglion cyst. Current report is about two ganglion cysts associated with implicative findings in young male patients. We discuss about the underlying pathology of the ganglion cyst based on intraoperative evidences, associated disc herniation at the same location or severe degeneration of the ligament flavum that the cyst originated from in young patients.

  16. Helping the Retina Regenerate

    MedlinePlus

    ... for RGC reprogramming is understanding the cues that direct their maturation and integration with other cells. The ... the retina. The report appears in Translational Vision Science and Technology. Learn more about the NEI AGI ...

  17. Litsea japonica extract inhibits neuronal apoptosis and the accumulation of advanced glycation end products in the diabetic mouse retina.

    PubMed

    Kim, Junghyun; Kim, Chan-Sik; Lee, Yun Mi; Sohn, Eunjin; Jo, Kyuhyung; Kim, Jin Sook

    2015-07-01

    The retinal accumulation of advanced glycation end products (AGEs) is a condition, which is found in diabetic retinopathy. The purpose of the present study was to investigate the protective effect of Litsea japonica extract (LJE) and to elucidate its underlying protective mechanism in model diabetic db/db mice. Male, 7 -week-old db/db mice were treated with LJE (100 or 250 mg/kg body weight) once a day orally for 12 weeks. The expression levels of AGEs and their receptor (RAGE) were subsequently assessed by immunohistochemistry. An electrophoretic mobility shift assay and southwestern histochemistry were used to detect activated nuclear factor κB (NF-κB). The immunohistochemical analysis demonstrated that LJE significantly reduced the expression levels of the AGEs and RAGE in the neural retinas of the db/db mice. LJE markedly inhibited the apoptosis of retinal ganglion cells. In addition, LJE suppressed the activation of NF-κB. These results suggested that LJE may be beneficial for the treatment of diabetes-induced retinal neurodegeneration, and the ability of LJE to attenuate retinal ganglion cell loss may be mediated by inhibition of the accumulation of AGEs.

  18. Polymodal Sensory Integration in Retinal Ganglion Cells.

    PubMed

    Križaj, David

    2016-01-01

    An animal's ability to perceive the external world is conditioned by its capacity to extract and encode specific features of the visual image. The output of the vertebrate retina is not a simple representation of the 2D visual map generated by photon absorptions in the photoreceptor layer. Rather, spatial, temporal, direction selectivity and color "dimensions" of the original image are distributed in the form of parallel output channels mediated by distinct retinal ganglion cell (RGC) populations. We propose that visual information transmitted to the brain includes additional, light-independent, inputs that reflect the functional states of the retina, anterior eye and the body. These may include the local ion microenvironment, glial metabolism and systemic parameters such as intraocular pressure, temperature and immune activation which act on ion channels that are intrinsic to RGCs. We particularly focus on light-independent mechanical inputs that are associated with physical impact, cell swelling and intraocular pressure as excessive mechanical stimuli lead to the counterintuitive experience of "pressure phosphenes" and/or debilitating blinding disease such as glaucoma and diabetic retinopathy. We point at recently discovered retinal mechanosensitive ion channels as examples through which molecular physiology brings together Greek phenomenology, modern neuroscience and medicine. Thus, RGC output represents a unified picture of the embodied context within which vision takes place.

  19. Electrophysiological assessment of retinal ganglion cell function

    PubMed Central

    Porciatti, Vittorio

    2015-01-01

    The function of retinal ganglion cells (RGCs) can be non-invasively assessed in experimental and genetic models of glaucoma by means of variants of the ERG technique that emphasize the activity of inner retina neurons. The best understood technique is the Pattern Electroretinogram (PERG) in response to contrast-reversing gratings or checkerboards, which selectively depends on the presence of functional RGCs. In glaucoma models, the PERG can be altered before histological loss of RGCs; PERG alterations may be either reversed with moderate IOP lowering or exacerbated with moderate IOP elevation. Under particular luminance-stimulus conditions, the Flash-ERG displays components that may reflect electrical activity originating in the proximal retina and be altered in some experimental glaucoma models (positive Scotopic Threshold response, pSTR; negative Scotopic Threshold Response, nSTR; Photopic Negative Response, PhNR; Oscillatory Potentials, OPs; multifocal ERG, mfERG). It is not yet known which of these components is most sensitive to glaucomatous damage. Electrophysiological assessment of RGC function appears to be a necessary outcome measure in experimental glaucoma models, which complements structural assessment and may even predict it. Neuroprotective strategies could be tested based on enhancement of baseline electrophysiological function that results in improved RGC survival. The use of electrophysiology in glaucoma models may be facilitated by specifically designed instruments that allow high throughput, robust assessment of electrophysiological function. PMID:25998495

  20. Gain-of-function nature of Cav1.4 L-type calcium channels alters firing properties of mouse retinal ganglion cells

    PubMed Central

    Knoflach, Dagmar; Schicker, Klaus; Glösmann, Martin; Koschak, Alexandra

    2015-01-01

    Proper function of Cav1.4 L-type calcium channels is crucial for neurotransmitter release in the retina. Our understanding about how different levels of Cav1.4 channel activity affect retinal function is still limited. In the gain-of-function mouse model Cav1.4-IT we expected a reduction in the photoreceptor dynamic range but still transmission toward retinal ganglion cells. A fraction of Cav1.4-IT ganglion cells responded to light stimulation in multielectrode array recordings from whole-mounted retinas, but showed a significantly delayed response onset. Another significant number of cells showed higher activity in darkness. In addition to structural remodeling observed at the first retinal synapse of Cav1.4-IT mice the functional data suggested a loss of contrast enhancement, a fundamental feature of our visual system. In fact, Cav1.4-IT mouse retinas showed a decline in spatial response and changes in their contrast sensitivity profile. Photoreceptor degeneration was obvious from the nodular structure of cone axons and enlarged pedicles which partly moved toward the outer nuclear layer. Loss of photoreceptors was also expressed as reduced expression of proteins involved in chemical and electrical transmission, as such metabotropic glutamate receptor mGluR6 and the gap junction protein Connexin 36. Such gross changes in retinal structure and function could also explain the diminished visual performance of CSNB2 patients. The expression pattern of the plasma-membrane calcium ATPase 1 which participates in the maintenance of the intracellular calcium homeostasis in photoreceptors was changed in Cav1.4-IT mice. This might be part of a protection mechanism against increased calcium influx, as this is suggested for Cav1.4-IT channels. PMID:26274509

  1. Nicotinic Antagonists Enhance Process Outgrowth by Rat Retinal Ganglion Cells in Culture

    NASA Astrophysics Data System (ADS)

    Lipton, Stuart A.; Frosch, Matthew P.; Phillips, Micheal D.; Tauck, David L.; Aizenman, Elias

    1988-03-01

    Functional nicotinic cholinergic receptors are found on mammalian retinal ganglion cell neurons in culture. The neurotransmitter acetylcholine (ACh) can be detected in the medium of many of these retinal cultures, after release presumably from the choline acetyltransferase-positive amacrine cells. The postsynaptic effect of endogenous or applied ACh on the ganglion cells can be blocked with specific nicotinic antagonists. Here it is shown that within 24 hours of producing such a pharmacologic blockade, the retinal ganglion cells begin to sprout or regenerate neuronal processes. Thus, the growth-enhancing effect of nicotinic antagonists may be due to the removal of inhibition to growth by tonic levels of ACh present in the culture medium. Since there is a spontaneous leak of ACh in the intact retina, the effects of nicotinic cholinergic drugs on process outgrowth in culture may reflect a normal control mechanism for growth or regeneration of retinal ganglion cell processes that is exerted by ACh in vivo.

  2. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  3. Expression and function of the LIM-homeodomain transcription factor Islet-1 in the developing and mature vertebrate retina.

    PubMed

    Bejarano-Escobar, Ruth; Álvarez-Hernán, Guadalupe; Morona, Ruth; González, Agustín; Martín-Partido, Gervasio; Francisco-Morcillo, Javier

    2015-09-01

    The LIM-homeodomain transcription factor Islet-1 (Isl1) has been widely used as a marker of different subtypes of neurons in the developing and mature retina of vertebrates. During retinal neurogenesis, early Isl1 expression is detected in the nuclei of neuroblasts that give rise to ganglion, amacrine, bipolar, and horizontal cells. In the mature retina, Isl1 expression is restricted to the nuclei of ganglion cells, cholinergic amacrine cells, ON-bipolar cells, and subpopulations of horizontal cells. Recent studies have explored the functional mechanisms of Isl1 during specification and differentiation of these retinal cell types. Thus, conditional inactivation of Isl1 in the developing mouse retina disrupts retinal function, and also results in optic nerve hypoplasia, marked reductions in mature ganglion, amacrine, and bipolar cells, and a substantial increase in horizontal cells. Furthermore, conditional knockout shows delayed ganglion cell axon growth, ganglion cell axon guidance error, and ganglion cell nerve fiber defasciculation. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different vertebrate retinal cell types. This review examines whether the expression pattern of Isl1 during vertebrate retinal development is conserved across vertebrate species, and discusses current understanding of the developmental functions of Isl1 in retinogenesis.

  4. Treatment of ganglion cysts.

    PubMed

    Suen, Matthew; Fung, B; Lung, C P

    2013-01-01

    Ganglion cysts are soft tissue swellings occurring most commonly in the hand or wrist. Apart from swelling, most cysts are asymptomatic. Other symptoms include pain, weakness, or paraesthesia. The two main concerns patients have are the cosmetic appearance of the cysts and the fear of future malignant growth. It has been shown that 58% of cysts will resolve spontaneously over time. Treatment can be either conservative or through surgical excision. This review concluded that nonsurgical treatment is largely ineffective in treating ganglion cysts. However, it advised to patients who do not surgical treatment but would like symptomatic relief. Compared to surgery, which has a lower recurrence rate but have a higher complication rate with longer recovery period. It has been shown that surgical interventions do not provide better symptomatic relief compared to conservative treatment. If symptomatic relief is the patient's primary concern, a conservative approach is preferred, whilst surgical intervention will decrease the likelihood of recurrence.

  5. Amino acid neurotransmitters in the retina: a functional overview.

    PubMed

    Wu, S M; Maple, B R

    1998-05-01

    Physiological and pharmacological mechanisms of glutamatergic, GABAergic and glycinergic synapses in the tiger salamander retina were studied. We used immunocytochemical and autoradiographic methods to study localizations of these neurotransmitters and their uptake transporters; and electrophysiological methods (intracellular, extracellular and whole cell patch electrode recordings) to study the light responses, miniature postsynaptic currents and neurotransmitter-induced postsynaptic currents in various retinal neurons. Our results are consistent with the following scheme: Glutamate is used by the photoreceptor and bipolar cell output synapses and the release of glutamate is largely mediated by calcium-dependent vesicular processes. The postsynaptic glutamate receptors in DBCs are L-AP4 receptors, in HBCs, HCs and ganglion cells are the kainate/AMPA and NMDA receptors. Subpopulations of HCs make GABAergic synapses on cones and gate chloride condunctance through GABAA receptors. GABAergic HCs do not make feedforward synapses on bipolar cell dendrites and the neurotransmitter identity of the HCs making feedforward synapses is unknown. Subpopulations of amacrine cells make GABAergic synapses on bipolar cell synaptic terminals, other amacrine cells and ganglion cells and GABA gates chloride conductances in theses cells. Glycinergic amacrine cells make synapses on bipolar cell synaptic terminals, other amacrine cells and ganglion cells and glycine opens postsynaptic chloride channels. Glycinergic interplexiform cells make synapses on bipolar cells in the outer retina and glycine released from these cells open chloride channels in bipolar cell dendrites.

  6. Function and Circuitry of VIP+ Interneurons in the Mouse Retina

    PubMed Central

    Park, Silvia J.H.; Borghuis, Bart G.; Rahmani, Pouyan; Zeng, Qiang

    2015-01-01

    Visual processing in the retina depends on coordinated signaling by interneurons. Photoreceptor signals are relayed to ∼20 ganglion cell types through a dozen excitatory bipolar interneurons, each responsive to light increments (ON) or decrements (OFF). ON and OFF bipolar cell pathways become tuned through specific connections with inhibitory interneurons: horizontal and amacrine cells. A major obstacle for understanding retinal circuitry is the unknown function of most of the ∼30–40 amacrine cell types, each of which synapses onto a subset of bipolar cell terminals, ganglion cell dendrites, and other amacrine cells. Here, we used a transgenic mouse line in which vasoactive intestinal polypeptide-expressing (VIP+) GABAergic interneurons express Cre recombinase. Targeted whole-cell recordings of fluorescently labeled VIP+ cells revealed three predominant types: wide-field bistratified and narrow-field monostratified cells with somas in the inner nuclear layer (INL) and medium-field monostratified cells with somas in the ganglion cell layer (GCL). Bistratified INL cells integrated excitation and inhibition driven by both ON and OFF pathways with little spatial tuning. Narrow-field INL cells integrated excitation driven by the ON pathway and inhibition driven by both pathways, with pronounced hyperpolarizations at light offset. Monostratified GCL cells integrated excitation and inhibition driven by the ON pathway and showed center-surround spatial tuning. Optogenetic experiments showed that, collectively, VIP+ cells made strong connections with OFF δ, ON-OFF direction-selective, and W3 ganglion cells but weak, inconsistent connections with ON and OFF α cells. Revealing VIP+ cell morphologies, receptive fields and synaptic connections advances our understanding of their role in visual processing. SIGNIFICANCE STATEMENT The retina is a model system for understanding nervous system function. At the first stage, rod and cone photoreceptors encode light and

  7. A Possible Role of Neuroglobin in the Retina After Optic Nerve Injury: A Comparative Study of Zebrafish and Mouse Retina.

    PubMed

    Sugitani, Kayo; Koriyama, Yoshiki; Ogai, Kazuhiro; Wakasugi, Keisuke; Kato, Satoru

    2016-01-01

    Neuroglobin (Ngb) is a new member of the family of heme proteins and is specifically expressed in neurons of the central and peripheral nervous systems in all vertebrates. In particular, the retina has a 100-fold higher concentration of Ngb than do other nervous tissues. The role of Ngb in the retina is yet to be clarified. Therefore, to understand the functional role of Ngb in the retina after optic nerve injury (ONI), we used two types of retina, from zebrafish and mice, which have permissible and non-permissible capacity for nerve regeneration after ONI, respectively. After ONI, the Ngb protein in zebrafish was upregulated in the amacrine cells within 3 days, whereas in the mouse retina, Ngb was downregulated in the retinal ganglion cells (RGCs) within 3 days. Zebrafish Ngb (z-Ngb) significantly enhanced neurite outgrowth in retinal explant culture. According to these results, we designed an overexpression experiment with the mouse Ngb (m-Ngb) gene in RGC-5 cells (retinal precursor cells). The excess of m-Ngb actually rescued RGC-5 cells under hypoxic conditions and significantly enhanced neurite outgrowth in cell culture. These data suggest that mammalian Ngb has positive neuroprotective and neuritogenic effects that induce nerve regeneration after ONI.

  8. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  9. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  10. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration.

    PubMed

    Gómez-Vicente, Violeta; Lax, Pedro; Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

  11. Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina

    NASA Technical Reports Server (NTRS)

    Rachel, Rivka A.; Dolen, Gul; Hayes, Nancy L.; Lu, Alice; Erskine, Lynda; Nowakowski, Richard S.; Mason, Carol A.

    2002-01-01

    In albino mammals, lack of pigment in the retinal pigment epithelium is associated with retinal defects, including poor visual acuity from a photoreceptor deficit in the central retina and poor depth perception from a decrease in ipsilaterally projecting retinal fibers. Possible contributors to these abnormalities are reported delays in neuronogenesis (Ilia and Jeffery, 1996) and retinal maturation (Webster and Rowe, 1991). To further determine possible perturbations in neuronogenesis and/or differentiation, we used cell-specific markers and refined birth dating methods to examine these events during retinal ganglion cell (RGC) genesis in albino and pigmented mice from embryonic day 11 (E11) to E18. Our data indicate that relative to pigmented mice, more ganglion cells are born in the early stages of neuronogenesis in the albino retina, although the initiation of RGC genesis in the albino is unchanged. The cellular organization of the albino retina is perturbed as early as E12. In addition, cell cycle kinetics and output along the nasotemporal axis differ in retinas of albino and pigmented mice, both absolutely, with the temporal aspect of the retina expanded in albino, and relative to the position of the optic nerve head. Finally, blocking melanin synthesis in pigmented eyecups in culture leads to an increase in RGC differentiation, consistent with a role for melanin formation in regulating RGC neuronogenesis. These results point to spatiotemporal defects in neuronal production in the albino retina, which could perturb expression of genes that specify cell fate, number, and/or projection phenotype.

  12. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  13. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    SciTech Connect

    Maguire, G.W.; Smith, E.L. III

    1985-06-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by (/sup 3/H)dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced (/sup 3/H)dopamine uptake compared with that of their matched controls. Normal appearing (/sup 3/H)GABA and (/sup 3/H)-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry.

  14. Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development.

    PubMed

    Nakamoto, Chizu; Kuan, Soh-Leh; Findlay, Amy S; Durward, Elaine; Ouyang, Zhufeng; Zakrzewska, Ewa D; Endo, Takuma; Nakamoto, Masaru

    2014-01-01

    For correct functioning of the nervous system, the appropriate number and complement of neuronal cell types must be produced during development. However, the molecular mechanisms that regulate the production of individual classes of neurons are poorly understood. In this study, we investigate the function of the thrombospondin-1-like glycoprotein, Nel (neural epidermal growth factor [EGF]-like), in the generation of retinal ganglion cells (RGCs) in chicks. During eye development, Nel is strongly expressed in the presumptive retinal pigment epithelium and RGCs. Nel overexpression in the developing retina by in ovo electroporation increases the number of RGCs, whereas the number of displaced amacrine cells decreases. Conversely, knockdown of Nel expression by transposon-mediated introduction of RNA interference constructs results in decrease in RGC number and increase in the number of displaced amacrine cells. Modifications of Nel expression levels do not appear to affect proliferation of retinal progenitor cells, but they significantly alter the progression rate of RGC differentiation from the central retina to the periphery. Furthermore, Nel protects RGCs from apoptosis during retinal development. These results indicate that Nel positively regulates RGC production by promoting their differentiation and survival during development.

  15. Pigment Deposition in the Rat Retina.

    PubMed

    Hojman, Anne S; Otzen, Louise W D; Schrøder-Hansen, Lise Maj; Wegener, Karen M

    2015-08-01

    Incidental findings in the rat eye are not uncommon in acute and long-term toxicological studies. These findings can be associated with a number of causes unrelated to treatment with the test article, including congenital malformation, trauma, infection, metabolic disease, genetic predisposition, and age-related changes. The occurrence of pigment deposition in the retina of Wistar Hannover (Crl:WI (Han)) rats in a 4-week toxicity study is reported in this communication. The microscopic examination of the eyes in the 4-week toxicity study revealed focal yellow-brown pigment deposits in the retina, mainly located in the ganglion cell layer. The retinal pigment deposits were randomly distributed in the control and treated groups and were considered incidental. The deposits were clearly positive for ferric iron in the Perls' stain but not for lipofuscin by the Schmorl's and Long Ziehl-Neelsen methods. The iron-containing pigment is likely to represent hemosiderin accumulation after retinal micro-hemorrhage or could be indicative of the normal intraretinal iron transport and turnover.

  16. The microglia in healthy and diseased retina.

    PubMed

    Li, Lu; Eter, Nicole; Heiduschka, Peter

    2015-07-01

    The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.

  17. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion.

    PubMed

    Liu, Li; Jiang, Youde; Steinle, Jena J

    2016-01-01

    We have recently reported that Compound 49b, a novel β-adrenergic receptor agonist, can significantly reduce VEGF levels in retinal endothelial cells (REC) grown in diabetic-like conditions. In this study, we investigated whether Compound 49b could protect the retina under hypoxic conditions using the ischemia-reperfusion (I/R)-induced model in rats, as well REC cultured in hypoxic conditions. Some rats received 1mM topical Compound 49b for the 2 (5 rats each group) or 10 (4 rats in each group) days post-I/R. Analyses for retinal thickness and cell loss in the ganglion cell layer was done at 2 days post-I/R, while numbers of degenerate capillaries and pericyte ghosts were measured at 10 days post-I/R. Additionally, REC were cultured in normal oxygen or hypoxia (5% O2) only or treated with 50 nM Compound 49b for 12 hours. Twelve hours after Compound 49b exposure, cells were collected and analyzed for protein levels of insulin-like growth factor binding protein 3 (IGFBP-3), vascular endothelial cell growth factor (VEGF) and its receptor (KDR), angiopoietin 1 and its receptor Tie2 for Western blotting. Data indicate that exposure to I/R significantly decreased retinal thickness, with increasing numbers of degenerate capillaries and pericyte ghosts. Compound 49b treatment inhibited these retinal changes. In REC cultured in hypoxia, levels of IGFBP-3 were reduced, which were significantly increased by Compound 49b. Hypoxia significantly increased protein levels of VEGF, KDR, Angiopoiein 1, and Tie2, which were reduced following Compound 49b treatment. These data strongly suggested that Compound 49b protected the retina against I/R-induced injury. This provides additional support for a role of β-adrenergic receptor actions in the retina.

  18. Real-time simulation of the retina allowing visualization of each processing stage

    NASA Astrophysics Data System (ADS)

    Teeters, Jeffrey L.; Werblin, Frank S.

    1991-08-01

    The retina computes to let us see, but can we see the retina compute? Until now, the answer has been no, because the unconscious nature of the processing hides it from our view. Here the authors describe a method of seeing computations performed throughout the retina. This is achieved by using neurophysiological data to construct a model of the retina, and using a special-purpose image processing computer (PIPE) to implement the model in real time. Processing in the model is organized into stages corresponding to computations performed by each retinal cell type. The final stage is the transient (change detecting) ganglion cell. A CCD camera forms the input image, and the activity of a selected retinal cell type is the output which is displayed on a TV monitor. By changing the retina cell driving the monitor, the progressive transformations of the image by the retina can be observed. These simulations demonstrate the ubiquitous presence of temporal and spatial variations in the patterns of activity generated by the retina which are fed into the brain. The dynamical aspects make these patterns very different from those generated by the common DOG (Difference of Gaussian) model of receptive field. Because the retina is so successful in biological vision systems, the processing described here may be useful in machine vision.

  19. Exercise reverses age-related vulnerability of the retina to injury by preventing complement-mediated synapse elimination via a BDNF-dependent pathway.

    PubMed

    Chrysostomou, Vicki; Galic, Sandra; van Wijngaarden, Peter; Trounce, Ian A; Steinberg, Gregory R; Crowston, Jonathan G

    2016-09-09

    Retinal ganglion cells (RGCs) become increasingly vulnerable to injury with advancing age. We recently showed that this vulnerability can be strongly modified in mice by exercise. However, the characteristics and underlying mechanisms of retinal protection with exercise remain unknown. Hence, the aim of this study was to investigate cellular changes associated with exercise-induced protection of aging retinal cells and the role of local and peripheral trophic signalling in mediating these effects. We focussed on two molecules that are thought to play key roles in mediating beneficial effects of exercise: brain-derived neurotrophic factor (BDNF) and AMP-activated protein kinase (AMPK). In middle-aged (12 months old) C57BL/6J mice, we found that exercise protected RGCs against dysfunction and cell loss after an acute injury induced by elevation of intra-ocular pressure. This was associated with preservation of inner retinal synapses and reduced synaptic complement deposition. Retinal expression of BDNF was not upregulated in response to exercise alone. Rather, exercise maintained BDNF levels in the retina, which were decreased postinjury in nonexercised animals. Confirming a critical role for BDNF, we found that blocking BDNF signalling during exercise by pharmacological means or genetic knock-down suppressed the functional protection of RGCs afforded by exercise. Protection of RGCs with exercise was independent of activation of AMPK in either retina or skeletal muscle. Our data support a previously unidentified mechanism in which exercise prevents loss of BDNF in the retina after injury and preserves neuronal function and survival by preventing complement-mediated elimination of synapses.

  20. Correlation in the Discharges of Neighboring Rat Retinal Ganglion Cells During Prenatal Life

    NASA Astrophysics Data System (ADS)

    Maffei, Lamberto; Galli-Resta, Lucia

    1990-04-01

    The spontaneous discharges of neighboring retinal ganglion cells were recorded simultaneously in anesthetized prenatal rats between embryonic days 18 and 21. We report here that in the majority of cases the firings of neighboring retinal ganglion cells are strongly correlated during prenatal life. Correlation in the discharges of neighboring cells during development has long been suggested as a way to consolidate synaptic connections with a target cell onto which they converge, a model first proposed by Hebb. Correlation in the activities of neighboring neurons in the retina could be the basis of developmental processes such as refinement of retinotopic maps in the brain and segregation of the inputs from the two eyes.

  1. Cholinergic neurotransmission in the mammalian retina. Annual report (Summary), 30 September 1983-29 September 1984

    SciTech Connect

    Pourcho, R.G.

    1984-11-30

    This study is directed toward the cytochemical localization of cholinergic markers in a mammalian (cat) retina and biochemical characterization of the interactions of cholinergic neurons with other neurotransmitters in the retina. Particular attention is paid to localization of acetylcholinesterase and the effects of anticholinesterase organophosphates on normal retinal function. Studies to date have shown the presence of newly synthesized acetylcholine in amacrine and displaced amacrine cells. Acetylcholinesterase was localized in both amacrine and ganglion cells. The presumed cholinotoxin, AF64A, causes severe destruction in the cat retina, involving both amacrine and ganglion cells. Although the evidence to date indicates that only amacrine cells are cholinergic, ganglion cells appear to play a major role in cholinergic or related pathways and may be particularly susceptible to organophosphate poisoning. The biochemical component of the study has centered on the development of a superfusion system in which to monitor the release of various amino acid transmitters in response to application of acetylcholine. Preliminary experiments suggest that cholinergic amacrine cells are presynaptic to glycinergic cells in the cat retina. After the normal pattern has been established, it should be possible to investigate the effects of changes in the level of acetylcholinesterase on these responses.

  2. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells.

    PubMed

    Lee, Seunghoon; Chen, Lujing; Chen, Minggang; Ye, Meijun; Seal, Rebecca P; Zhou, Z Jimmy

    2014-11-19

    In the vertebrate retina, glutamate is traditionally thought to be released only by photoreceptors and bipolar cells to transmit visual signals radially along parallel ON and OFF channels. Lateral interactions in the inner retina are mediated by amacrine cells, which are thought to be inhibitory neurons. Here, we report calcium-dependent glutamate release from vGluT3-expressing amacrine cells (GACs) in the mouse retina. GACs provide an excitatory glutamatergic input to ON-OFF and ON direction-selective ganglion cells (DSGCs) and a subpopulation of W3 ganglion cells, but not to starburst amacrine cells. GACs receive excitatory inputs from both ON and OFF channels, generate ON-OFF light responses with a medium-center, wide-surround receptive field structure, and directly regulate ganglion cell activity. The results reveal a functional glutamatergic circuit that mediates noncanonical excitatory interactions in the retina and probably plays a role in generating ON-OFF responses, crossover excitation, and lateral excitation.

  3. Functional Organization of the Retina of the Lemon Shark (Negaprion Brevirostris, Poey): An Anatomical and Electrophysiological Approach.

    DTIC Science & Technology

    1980-05-01

    the type found in Mustelus (Stell and Witkovsky, 1973) were also found in the retina of the hammerhead shark , Sphyrna lewini (Anctil and Ali, 1974...York. Anctil, M. and M.A. Ali. 1974. Giant ganglion cells in the retina of the hammerhead shark (Sphyrna lewini). Vision Res., 14: 903-904. Barlow...FUNCTIONAL ORGANIZATION OF THE RETINA OF THE LEMON SHARK 4NEGAP-ETCMU 𔃽 MAY So J L C OHEN NOOO14-75-C-0173 UNCLASSIFIED UM-RSMAS-80002 ML 7A-u817

  4. Retinal ganglion cell adaptation to small luminance fluctuations.

    PubMed

    Freeman, Daniel K; Graña, Gilberto; Passaglia, Christopher L

    2010-08-01

    To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has involved logarithmic changes in light level. We report that luminance gain controls are recruited for remarkably small fluctuations in luminance as well. Using spike recordings from the rat optic tract, we show that ganglion cell responses to a brief flash of light are modulated in amplitude by local background fluctuations as little as 15% contrast. The time scale of the gain control is rapid (<125 ms), at least for on cells. The retinal locus of adaptation precedes the ganglion cell spike generator because response gain changes of on cells were uncorrelated with firing rate. The mechanism seems to reside within the inner retinal network and not in the photoreceptors, because the adaptation profiles of on and off cells differed markedly. The response gain changes follow Weber's law, suggesting that network mechanisms of luminance adaptation described in previous work modulates retinal ganglion cell sensitivity, not just when we move between different lighting environments, but also as our eyes scan a visual scene. Finally, we show that response amplitude is uniformly reduced for flashes on a modulated background that has spatial contrast, indicating that another gain control that integrates luminance signals nonlinearly over space operates within the receptive field center of rat ganglion cells.

  5. C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment.

    PubMed

    Marín-Prida, Javier; Pentón-Rol, Giselle; Rodrigues, Fernando Postalli; Alberici, Luciane Carla; Stringhetta, Karina; Leopoldino, Andréia Machado; Naal, Zeki; Polizello, Ana Cristina Morseli; Llópiz-Arzuaga, Alexey; Rosa, Marcela Nunes; Liberato, José Luiz; Santos, Wagner Ferreira Dos; Uyemura, Sergio Akira; Pentón-Arias, Eduardo; Curti, Carlos; Pardo-Andreu, Gilberto L

    2012-12-01

    Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120mmHg for 45min, which was followed by 15min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15min. In the RBM exposed to 3mM phosphate and/or 100μM Ca(2+), C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment.

  6. Analysis of bipolar and amacrine populations in marmoset retina.

    PubMed

    Weltzien, Felix; Percival, Kumiko A; Martin, Paul R; Grünert, Ulrike

    2015-02-01

    About 15 parallel ganglion cell pathways transmit visual signals to the brain, but the interneuron (bipolar and amacrine) populations providing input to ganglion cells remain poorly understood in primate retina. We carried out a quantitative analysis of the inner nuclear layer in the retina of the marmoset (Callithrix jacchus). Vertical Vibratome sections along the horizontal meridian were processed with immunohistochemical markers. Image stacks were taken with a confocal microscope, and densities of cell populations were determined. The density of flat midget bipolar cells fell from 15,746 cells/mm(2) at 1 mm (8 deg) to 7,827 cells/mm(2) at 3 mm (25 deg). The rod bipolar cell density fell from 8,640 cells/mm(2) at 1 mm to 4,278 cells/mm(2) at 3 mm, but the ratio of the two bipolar cell types did not change with eccentricity. The amacrine cell density ranged from 30,000 cells/mm(2) at 8 deg to less than 15,000 cells/mm(2) at 25 deg, but throughout the retina, the ratio of glycinergic to γ-aminobutyric acid (GABA)ergic to amacrine cells remained relatively constant. The fractions of rod bipolar, cone bipolar, amacrine, Müller, and horizontal cells of all cells in the inner nuclear layer were comparable in central and peripheral retina. Marmosets had lower proportions of midget bipolar and rod bipolar in comparison with macaque. These differences were correlated with differences in rod and cone densities between the two species and did not reflect fundamental differences in the wiring between the two species.

  7. Glaucoma related Proteomic Alterations in Human Retina Samples

    PubMed Central

    Funke, Sebastian; Perumal, Natarajan; Beck, Sabine; Gabel-Scheurich, Silke; Schmelter, Carsten; Teister, Julia; Gerbig, Claudia; Gramlich, Oliver W.; Pfeiffer, Norbert; Grus, Franz H.

    2016-01-01

    Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma. PMID:27425789

  8. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina.

    PubMed

    Matsuoka, Ryota L; Nguyen-Ba-Charvet, Kim T; Parray, Aijaz; Badea, Tudor C; Chédotal, Alain; Kolodkin, Alex L

    2011-02-10

    In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL), a laminar region that is conventionally divided into five major parallel sublaminae. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs) and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo for the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes.

  9. Transmembrane semaphorin signaling controls laminar stratification in the mammalian retina

    PubMed Central

    Matsuoka, Ryota L.; Nguyen-Ba-Charvet, Kim T.; Parray, Aijaz; Badea, Tudor C.; Chédotal, Alain; Kolodkin, Alex L.

    2010-01-01

    In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells, and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL)1–3: a laminar region that is conventionally divided into five major parallel sublaminae1,2. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here, we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs), and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo with respect to the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes. PMID:21270798

  10. Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina.

    PubMed

    Dvoriantchikova, Galina; Perea-Martinez, Isabel; Pappas, Steve; Barry, Ariel Faye; Danek, Dagmara; Dvoriantchikova, Xenia; Pelaez, Daniel; Ivanov, Dmitry

    2015-01-01

    The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3) to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+) progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14) and postnatal day 0 (P0). To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO) animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5) and activators (Dll3, Atoh7, Otx2) of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05) more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors--since they heavily express both pro-ganglion cell (Atoh7) and pro

  11. A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array

    PubMed Central

    Jones, Ian L.; Russell, Thomas L.; Farrow, Karl; Fiscella, Michele; Franke, Felix; Müller, Jan; Jäckel, David; Hierlemann, Andreas

    2015-01-01

    Knowledge of neuronal cell types in the mammalian retina is important for the understanding of human retinal disease and the advancement of sight-restoring technology, such as retinal prosthetic devices. A somewhat less utilized animal model for retinal research is the hamster, which has a visual system that is characterized by an area centralis and a wide visual field with a broad binocular component. The hamster retina is optimally suited for recording on the microelectrode array (MEA), because it intrinsically lies flat on the MEA surface and yields robust, large-amplitude signals. However, information in the literature about hamster retinal ganglion cell functional types is scarce. The goal of our work is to develop a method featuring a high-density (HD) complementary metal-oxide-semiconductor (CMOS) MEA technology along with a sequence of standardized visual stimuli in order to categorize ganglion cells in isolated Syrian Hamster (Mesocricetus auratus) retina. Since the HD-MEA is capable of recording at a higher spatial resolution than most MEA systems (17.5 μm electrode pitch), we were able to record from a large proportion of RGCs within a selected region. Secondly, we chose our stimuli so that they could be run during the experiment without intervention or computation steps. The visual stimulus set was designed to activate the receptive fields of most ganglion cells in parallel and to incorporate various visual features to which different cell types respond uniquely. Based on the ganglion cell responses, basic cell properties were determined: direction selectivity, speed tuning, width tuning, transience, and latency. These properties were clustered to identify ganglion cell types in the hamster retina. Ultimately, we recorded up to a cell density of 2780 cells/mm2 at 2 mm (42°) from the optic nerve head. Using five parameters extracted from the responses to visual stimuli, we obtained seven ganglion cell types. PMID:26528115

  12. A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array.

    PubMed

    Jones, Ian L; Russell, Thomas L; Farrow, Karl; Fiscella, Michele; Franke, Felix; Müller, Jan; Jäckel, David; Hierlemann, Andreas

    2015-01-01

    Knowledge of neuronal cell types in the mammalian retina is important for the understanding of human retinal disease and the advancement of sight-restoring technology, such as retinal prosthetic devices. A somewhat less utilized animal model for retinal research is the hamster, which has a visual system that is characterized by an area centralis and a wide visual field with a broad binocular component. The hamster retina is optimally suited for recording on the microelectrode array (MEA), because it intrinsically lies flat on the MEA surface and yields robust, large-amplitude signals. However, information in the literature about hamster retinal ganglion cell functional types is scarce. The goal of our work is to develop a method featuring a high-density (HD) complementary metal-oxide-semiconductor (CMOS) MEA technology along with a sequence of standardized visual stimuli in order to categorize ganglion cells in isolated Syrian Hamster (Mesocricetus auratus) retina. Since the HD-MEA is capable of recording at a higher spatial resolution than most MEA systems (17.5 μm electrode pitch), we were able to record from a large proportion of RGCs within a selected region. Secondly, we chose our stimuli so that they could be run during the experiment without intervention or computation steps. The visual stimulus set was designed to activate the receptive fields of most ganglion cells in parallel and to incorporate various visual features to which different cell types respond uniquely. Based on the ganglion cell responses, basic cell properties were determined: direction selectivity, speed tuning, width tuning, transience, and latency. These properties were clustered to identify ganglion cell types in the hamster retina. Ultimately, we recorded up to a cell density of 2780 cells/mm(2) at 2 mm (42°) from the optic nerve head. Using five parameters extracted from the responses to visual stimuli, we obtained seven ganglion cell types.

  13. Retinal ganglion cell layer of the Caspian seal Pusa caspica: topography and localization of the high-resolution area.

    PubMed

    Mass, Alla M; Supin, A Y

    2010-01-01

    Retinal topography, cell density and sizes of ganglion cells in the Caspian seal (Pusa caspica) were analyzed in retinal whole mounts stained with cresyl-violet. The topographic distribution of ganglion cells displayed an area of high cell density located in the temporal quadrant of the retina and was similar to the area centralis of terrestrial carnivores. It extended nasally, above the optic disk, as a streak of increased cell density. In different whole mounts, the peak cell density in the high-density area ranged from 1,684 to 1,844 cells/mm² (mean 1,773 cells/mm²). The cell density data predict a retinal resolution of around 8.5 cycles/degree in water. A distinctive feature of the Caspian seal's retina is the large size of ganglion cells and the low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 10 to 58 μm. Cell size histograms featured bimodal patterns with groups of small and large ganglion cells. The large cells appeared similar to α-cells of terrestrial mammals and constituted 7% of the total ganglion cell population.

  14. Expression of calcium transporters in the retina of the tiger salamander (Ambystoma tigrinum).

    PubMed

    Krizaj, David; Liu, Xiaorong; Copenhagen, David R

    2004-08-02

    Changes in intracellular calcium concentration, [Ca2+]i, modulate the flow of visual signals across all stages of processing in the retina, yet the identities of Ca2+ transporters responsible for these changes are still largely unknown. In the current study, the distribution of plasma membrane and intracellular Ca2+ transporters in the retina of tiger salamander, a model system for physiological studies of retinal function, was determined. Plasma membrane calcium ATPases (PMCAs), responsible for high-affinity Ca2+ extrusion, were highly expressed in the salamander retina. PMCA isoforms 1, 2, and 4 were localized to photoreceptors, whereas the inner retina expressed all four isoforms. PMCA3 was expressed in a sparse population of amacrine and ganglion neurons, whereas PMCA2 was expressed in most amacrine and ganglion cells. Na+/Ca2+ exchangers, a high-capacity Ca2+ extrusion system, were expressed in the outer plexiform layer and in a subset of inner nuclear and ganglion layer cells. Intracellular Ca2+ store transporters were also represented prominently. SERCA2a, a splice variant of the sarcoplasmic-endoplasmic Ca2+ ATPase, was found mostly in photoreceptors, whereas SERCA2b was found in the majority of retinal neurons and in glial cells. The predominant endoplasmic reticulum (ER) Ca2+ channels in the salamander retina are represented by the isoform 2 of the IP3 receptor family and the isoform 2 of the ryanodine receptor family. These results indicate that Ca2+ transporters in the salamander retina are expressed in a cell type-specific manner.

  15. Phenotypic map of porcine retinal ganglion cells

    PubMed Central

    Veiga-Crespo, Patricia; del Río, Patricia; Blindert, Marcel; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Purpose Porcine retina is an excellent model for studying diverse retinal processes and diseases. The morphologies of porcine retinal ganglion cells (RGCs) have, however, not yet been described comprehensively. The aim of the present study was to créate a classification of the RGCs using the 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) tracing method. Methods About 170 RGCs were retrogradely labeled by injecting DiI into the optic nerve of postmortem eyes and statistically analyzed by two different clustering methods: Ward’s algorithm and the K-means clustering. Major axis length of the soma, soma area size, and dendritic field area size were selected as main parameters for cluster classification. Results RGC distribution in clusters was achieved according to their morphological parameters. It was feasible to combine both statistical methods, thereby obtaining a robust clustering distribution. Morphological analysis resulted in a classification of RGCs in three groups according to the soma size and dendritic field: A (large somas and large dendritic fields), B (medium to large somas and medium to large dendritic fields), C (medium to small somas and medium to small dendritic fields). Within groups, fine clustering defined several subgroups according to dendritic arborization and level of stratification. Additionally, cells stratifying in two different levels of the inner plexiform layer were observed within the clusters. Conclusions This comprehensive study of RGC morphologies in the porcine retina provides fundamental knowledge about RGC cell types and provides a basis for functional studies toward selective RGC cell degeneration in retinal disorders. PMID:23687427

  16. Ectopic Expression of Transcription Factor AP-2δ in Developing Retina: Effect on PSA-NCAM and Axon Routing

    PubMed Central

    Li, Xiaodong; Monckton, Elizabeth A.; Godbout, Roseline

    2015-01-01

    Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the AP-2δ (TFAP2D) transcription factor is expressed in one-third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as GAP43 and PSA-NCAM demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with Endo-N, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina. PMID:24188130

  17. Ectopic expression of transcription factor AP-2δ in developing retina: effect on PSA-NCAM and axon routing.

    PubMed

    Li, Xiaodong; Monckton, Elizabeth A; Godbout, Roseline

    2014-04-01

    Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the activator protein 2 (AP-2)δ (TFAP2D) transcription factor is expressed in one third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as growth-associated protein 43 and polysialic acid-neural cell adhesion molecule (PSA-NCAM) demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with endoneuraminidase, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina.

  18. Retinal ganglion cell density of the black rhinoceros (Diceros bicornis): calculating visual resolution.

    PubMed

    Pettigrew, John D; Manger, Paul R

    2008-01-01

    A single right retina from a black rhinoceros was whole mounted, stained and analyzed to determine the visual resolution of the rhinoceros, an animal with reputedly poor eyesight. A range of small (15-microm diameter) to large (100-microm diameter) ganglion cell types was seen across the retina. We observed two regions of high density of retinal ganglion cells at either end of a long, but thin, horizontal streak. The temporal specialization, which receives light from the anterior visual field, exhibited a ganglion cell density of approximately 2000/mm2, while the nasal specialization exhibited a density of approximately 1500/mm2. The retina exhibited a ganglion cell density bias toward the upper half, especially so, the upper temporal quadrant, indicating that the rhinoceros would be processing visual information from the visual field below the anterior horizon for the most part. Our calculations indicate that the rhinoceros has a visual resolution of 6 cycles/degree. While this resolution is one-tenth that of humans (60 cycles/deg) and less than that of the domestic cat (9 cycles/deg), it is comparable to that of the rabbit (6 cycles/deg), and exceeds that seen in a variety of other mammals including seals, dolphins, microbats, and rats. Thus, the reputation of the rhinoceros as a myopic, weakly visual animal is not supported by our observations of the retina. We calculate that the black rhinoceros could readily distinguish a 30 cm wide human at a distance of around 200 m given the appropriate visual background.

  19. A flattened retina-eyecup preparation suitable for electrophysiological studies of neurons visualized with trans-scleral infrared illumination.

    PubMed

    Hu, E H; Dacheux, R F; Bloomfield, S A

    2000-11-30

    We present an in vitro flattened retinal-scleral preparation suitable for electrophysiological studies from visually targeted amacrine and ganglion cells of the rabbit retina. In a newly designed superfusion chamber, the retinal-scleral tissue is stained with Azure B allowing for imaging of neurons in the ganglion cell layer with an infrared (IR)-sensitive CCD camera via trans-scleral IR illumination. Neurons can be visually identified and targeted for both extracellular and intracellular recordings made singly or in simultaneous pairs. The quality and stability of the recordings are excellent and the tissue remains viable for up to 10 h. This relatively simple preparation avoids the extensive surgical manipulations inherent to those based on isolated retinas or retinal slices. Moreover, the use of trans-scleral IR illumination rather than fluorescent dyes to visualize and target neurons allows for electrophysiological studies of the retina under controlled adaptational states including dark-adapted conditions.

  20. Monte Carlo methods for localization of cones given multielectrode retinal ganglion cell recordings.

    PubMed

    Sadeghi, K; Gauthier, J L; Field, G D; Greschner, M; Agne, M; Chichilnisky, E J; Paninski, L

    2013-01-01

    It has recently become possible to identify cone photoreceptors in primate retina from multi-electrode recordings of ganglion cell spiking driven by visual stimuli of sufficiently high spatial resolution. In this paper we present a statistical approach to the problem of identifying the number, locations, and color types of the cones observed in this type of experiment. We develop an adaptive Markov Chain Monte Carlo (MCMC) method that explores the space of cone configurations, using a Linear-Nonlinear-Poisson (LNP) encoding model of ganglion cell spiking output, while analytically integrating out the functional weights between cones and ganglion cells. This method provides information about our posterior certainty about the inferred cone properties, and additionally leads to improvements in both the speed and quality of the inferred cone maps, compared to earlier "greedy" computational approaches.

  1. Expression of the Na+-K+-2Cl--Cotransporter 2 in the Normal and Pressure-Induced Ischemic Rat Retina

    PubMed Central

    Kim, Do Hyun

    2012-01-01

    Purpose To evaluate the expression of the Na+-K+-2Cl--cotransporter 2 (NKCC2) in the ischemic rat retina. Methods Retinal ischemia was induced by pressures 90 to 120 mmHg, above systemic systolic pressure. Immunohistochemistry and western blot analysis were performed. Results NKCC2 is expressed in the normal retina and its expression is increased by ischemia caused by intraocular pressure elevation. NKCC2 immunoreactivity was observed mainly in axon bundles of ganglion cells and horizontal cell processes in the retina. NKCC2 expression continuously increased with a peak value 3 days (to 415% of normal levels) after ischemic injury, and then gradually decreased to 314% of controls until 2 weeks post injury. The mean density of NKCC2-labeled ganglion cells per mm2 changed from 1,255 ± 109 in normal retinas to 391 ± 49 and 185 ± 37 at 3 days and 2 weeks after ischemia, respectively (p < 0.05), implying cell death of ganglion cells labeled with NKCC2. Conclusions Taken together, these results suggest that NKCC2, which is expressed in retinal ganglion and horizontal cells, may contribute to cell death by ischemic injury in the retina, although the molecular mechanisms involved remain to be clarified. PMID:22670078

  2. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water.

  3. Electrical Stimulation of Mammalian Retinal Ganglion Cells Using Dense Arrays of Small-Diameter Electrodes

    NASA Astrophysics Data System (ADS)

    Sekirnjak, Chris; Hottowy, Pawel; Sher, Alexander; Dabrowski, Wladyslaw; Litke, Alan M.; Chichilnisky, E. J.

    Current epiretinal implants contain a small number of electrodes with diameters of a few hundred microns. Smaller electrodes are desirable to increase the spatial resolution of artificial sight. To lay the foundation for the next generation of retinal prostheses, we assessed the stimulation efficacy of micro-fabricated arrays of 61 platinum disk electrodes with diameters 8-12 μm, spaced 60 μm apart. Isolated pieces of rat, guinea pig, and monkey retina were placed on the multi-electrode array ganglion cell side down and stimulated through individual electrodes with biphasic, charge-balanced current pulses. Spike responses from retinal ganglion cells were recorded either from the same or a neighboring electrode. Most pulses evoked only 1-2 spikes with short latencies (0.3-10 ms), and rarely was more than one recorded ganglion cell stimulated. Threshold charge densities for eliciting spikes in ganglion cells were typically below 0.15 mC/cm2 for pulse durations between 50 and 200 μs, corresponding to charge thresholds of ˜ 100 pC. Stimulation remained effective after several hours and at frequencies up to 100 Hz. Application of cadmium chloride did not abolish evoked spikes, implying direct activation. Thus, electrical stimulation of mammalian retina with small-diameter electrodes is achievable, providing high temporal and spatial precision with low charge densities.

  4. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice

    PubMed Central

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B.

    2017-01-01

    Purpose Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/−]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/−]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Methods Retinas isolated from wild-type (WT), Mthfr+/−, and Cbs+/− mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Results Aside from decreased CBS RNA/protein levels in Cbs+/− retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/− and Cbs+/− retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/− and Cbs+/− mice compared with WT. Conclusions Ganglion cell loss and vasculopathy observed in Mthfr+/− and Cbs+/− mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter. PMID:28384716

  5. Evaluating retinal ganglion cell loss and dysfunction.

    PubMed

    Mead, Ben; Tomarev, Stanislav

    2016-10-01

    Retinal ganglion cells (RGC) bear the sole responsibility of propagating visual stimuli to the brain. Their axons, which make up the optic nerve, project from the retina to the brain through the lamina cribrosa and in rodents, decussate almost entirely at the optic chiasm before synapsing at the superior colliculus. For many traumatic and degenerative ocular conditions, the dysfunction and/or loss of RGC is the primary determinant of visual loss and are the measurable endpoints in current research into experimental therapies. To actually measure these endpoints in rodent models, techniques must ascertain both the quantity of surviving RGC and their functional capacity. Quantification techniques include phenotypic markers of RGC, retrogradely transported fluorophores and morphological measurements of retinal thickness whereas functional assessments include electroretinography (flash and pattern) and visual evoked potential. The importance of the accuracy and reliability of these techniques cannot be understated, nor can the relationship between RGC death and dysfunction. The existence of up to 30 types of RGC complicates the measuring process, particularly as these may respond differently to disease and treatment. Since the above techniques may selectively identify and ignore particular subpopulations, their appropriateness as measures of RGC survival and function may be further limited. This review discusses the above techniques in the context of their subtype specificity.

  6. Genetic Networks in Mouse Retinal Ganglion Cells

    PubMed Central

    Struebing, Felix L.; Lee, Richard K.; Williams, Robert W.; Geisert, Eldon E.

    2016-01-01

    Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma. PMID:27733864

  7. Amyloidomas of the Gasserian Ganglion

    PubMed Central

    van Lindert, Erik; Bornemann, Antje; Hey, Otto; Perneczky, Axel; Müller-Forell, Wibke

    1995-01-01

    An amyloidoma is a local deposition of amyloid that becomes a space-occupying lesion. Amyloidomas of the central nervous system are very uncommon lesions and only four amyloidomas of the gasserian ganglion have been reported so far. We present the neuroradiologic and surgical characteristics of three more amyloidomas of the gasserian ganglion seen at one neurosurgical department in 11 years. ImagesFigure 1Figure 2p215-bFigure 3 PMID:17170961

  8. Synaptic inhibition by glycine acting at a metabotropic receptor in tiger salamander retina.

    PubMed

    Hou, Mingli; Duan, Lei; Slaughter, Malcolm M

    2008-06-15

    Glycine is the lone fast neurotransmitter for which a metabotropic pathway has not been identified. In retina, we found a strychnine-insensitive glycine response in bipolar and ganglion cells. This glycine response reduced high voltage-activated calcium current. It was G-protein mediated and protein kinase A dependent. The EC(50) of the metabotropic glycine response is 3 mum, an order of magnitude lower than the ionotropic glycine receptor in the same retina. The bipolar cell glutamatergic input to ganglion cells was suppressed by metabotropic glycine action. The synaptic output of about two-thirds of bipolar cells and calcium current in two-thirds of ganglion cells are sensitive to the action of glycine at metabotropic receptors, suggesting this signal regulates specific synaptic pathways in proximal retina. This study resolves the curious absence of a metabotropic glycine pathway in the nervous system and reveals that the major fast inhibitory neurotransmitters, GABA and glycine, both activate G-protein-coupled pathways as well.

  9. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation.

    PubMed

    Mouritsen, Henrik; Janssen-Bienhold, Ulrike; Liedvogel, Miriam; Feenders, Gesa; Stalleicken, Julia; Dirks, Petra; Weiler, Reto

    2004-09-28

    Migratory birds can use a magnetic compass for orientation during their migratory journeys covering thousands of kilometers. But how do they sense the reference direction provided by the Earth's magnetic field? Behavioral evidence and theoretical considerations have suggested that radical-pair processes in differently oriented, light-sensitive molecules of the retina could enable migratory birds to perceive the magnetic field as visual patterns. The cryptochromes (CRYs) have been suggested as the most likely candidate class of molecules, but do CRYs exist in the retina of migratory birds? Here, we show that at least one CRY1 and one CRY2 exist in the retina of migratory garden warblers and that garden-warbler CRY1 (gwCRY1) is cytosolic. We also show that gwCRY1 is concentrated in specific cells, particularly in ganglion cells and in large displaced ganglion cells, which also showed high levels of neuronal activity at night, when our garden warblers performed magnetic orientation. In addition, there seem to be striking differences in CRY1 expression between migratory and nonmigratory songbirds at night. The difference in CRY1 expression between migrants and nonmigrants is particularly pronounced in the large displaced ganglion cells known to project exclusively to a brain area where magnetically sensitive neurons have been reported. Consequently, cytosolic gwCRY1 is well placed to possibly be the primary magnetic-sensory molecule required for light-mediated magnetoreception.

  10. Morphology and distribution of neurons in the retinal ganglion cell layer of the adult tammar wallaby--Macropus eugenii.

    PubMed

    Wong, R O; Wye-Dvorak, J; Henry, G H

    1986-11-01

    The morphology of the ganglion cell layer of the adult tammar wallaby has been examined from Nissl-stained retinal flatmounts. From this material, neurons have been classed as ganglion cells or displaced amacrine cells according to the disposition of Nissl substance. A further subdivision of ganglion cells into a separate group of alphalike cells was assisted by determining the range of soma sizes in neurofibrillar-stained flatmounts, a method which, in the cat, has revealed the presence of alpha cells. Isodensity contour maps prepared from the Nissl-stained flatmounts show a well-developed visual streak and an area centralis in the total neuronal population. A similar pattern was also found in the ganglion cells, thus confirming Tancred's (J. Comp. Neurol. 196:585-603, '81) finding, and, as well, in the alphalike ganglion cells and the displaced amacrine cells. The relative proportions of ganglion cells to displaced amacrines (GC:DA) were evaluated from isodensity profiles drawn along and vertical to the visual streak for the two cell types and also from maps showing the variation in the GC:DA ratio throughout the retina. A comparison with results published for other species shows that the visual streak development in the tammar wallaby is consistent with the expectations of the "terrain" theory and that, in its relative proportion of displaced amacrines, the tammar closely resembles the rabbit but contrasts sharply with the cat, which has half as many ganglion cells and three times as many displaced amacrines as the other two species.

  11. Topography and morphology of retinal ganglion cells in Falconiforms: a study on predatory and carrion-eating birds.

    PubMed

    Inzunza, O; Bravo, H; Smith, R L; Angel, M

    1991-02-01

    The topographic distribution of retinal ganglion cells and their cell body size have been studied in five Falconiform species, including predatory (chilean eagle Buteo fuscenses australis, and sparrow hawk Falco sparverius) and carrion-eating (chimango caracara Milvago chimango; condor Vultur gryphus, and black vulture Coragyps atratus) birds. All these species had a well defined nasal fovea and a horizontal streak. Instead of a temporal fovea as in eagles and hawks, an afoveate temporal area is present in chimango, condor, and vulture. The highest ganglion cell density was found in the nasal fovea of Falco and Buteo with 65,000 and 62,000 cells/mm2, respectively. A negative correlation between ganglion cell density and cell body size was found in all the species studied. The specializations of the temporal retina showed a rather homogenous population of medium sized neurons, while the nasal foveas showed a homogeneous population of smaller ganglion cells. Finally, the peripheral retina showed a heterogeneous population of large, medium, and small ganglion cells. Predatory behavior appears to be closely related to foveal specializations, and is best exemplified in the eagle and hawk and to a lesser extent in the chimango.

  12. Parallel information processing channels created in the retina

    PubMed Central

    Schiller, Peter H.

    2010-01-01

    In the retina, several parallel channels originate that extract different attributes from the visual scene. This review describes how these channels arise and what their functions are. Following the introduction four sections deal with these channels. The first discusses the “ON” and “OFF” channels that have arisen for the purpose of rapidly processing images in the visual scene that become visible by virtue of either light increment or light decrement; the ON channel processes images that become visible by virtue of light increment and the OFF channel processes images that become visible by virtue of light decrement. The second section examines the midget and parasol channels. The midget channel processes fine detail, wavelength information, and stereoscopic depth cues; the parasol channel plays a central role in processing motion and flicker as well as motion parallax cues for depth perception. Both these channels have ON and OFF subdivisions. The third section describes the accessory optic system that receives input from the retinal ganglion cells of Dogiel; these cells play a central role, in concert with the vestibular system, in stabilizing images on the retina to prevent the blurring of images that would otherwise occur when an organism is in motion. The last section provides a brief overview of several additional channels that originate in the retina. PMID:20876118

  13. Optical Recording of Retinal and Visual Cortical Responses Evoked by Electrical Stimulation on the Retina

    NASA Astrophysics Data System (ADS)

    Osanai, Makoto; Sakaehara, Haruko; Sawai, Hajime; Song, Wen-Jie; Yagi, Tetsuya

    To develop a retinal prosthesis for blind patients using an implanted multielectrode array, it is important to study the response properties of retinal ganglion cells and of the visual cortex to localized retinal electrical stimulation. Optical imaging can reveal the spatio-temporal properties of neuronal activity. Therefore, we conducted a calcium imaging study to investigate response properties to local current stimulation in frog retinas, and a membrane potential imaging study to explore the visual cortical responses to retinal stimulation in guinea pigs. In the retina, local current stimuli evoked transient responses in the ganglion cells located near the stimulus electrode. The spatial pattern of the responding area was altered by changing the location of the stimulation. Local electrical stimulation to the retina also caused transient responses in the visual cortex. The responding cortical areas in the primary visual cortex were localized. A spatially different cortical response was observed to stimulation of a different position on the retina. These results suggest that the imaging study has great potential in revealing the spatio-temporal properties of the neuronal response for the retinal prosthesis.

  14. Experimental retinal detachment causes widespread and multilayered degeneration in rabbit retina.

    PubMed

    Faude, F; Francke, M; Makarov, F; Schuck, J; Gärtner, U; Reichelt, W; Wiedemann, P; Wolburg, H; Reichenbach, A

    2001-05-01

    Retinal detachment remains one of the most frequent causes of visual impairment in humans, even after ophthalmoscopically successful retinal reattachment. This study was aimed at monitoring (ultra-) structural alterations of retinae of rabbits after experimental detachment. A surgical procedure was used to produce local retinal detachments in rabbit eyes similar to the typical lesions in human patients. At various periods after detachment, the detached retinal area as well as neighbouring attached regions were studied by light and electron microscopy. In addition to the well-known degeneration of photoreceptor cells in the detached retina, the following progressive alterations were observed, (i) in both the detached and the attached regions, an incomplete but severe loss of ganglion cell axons occurs; (ii) there is considerable ganglion cell death, particularly in the detached area; (iii) even in the attached retina distant from the detachment, small adherent groups of photoreceptor cells degenerate; (iv) these photoreceptor cells degenerate in an atypical sequence, with severely destructed somata and inner segments but well-maintained outer segments; and (v) the severe loss of retinal neurons is not accompanied by any significant loss of Müller (glial) cells. It is noteworthy that the described progressive (and probably irreparable) retinal destructions occur also in the attached retina, and may account for visual impairment in strikingly large areas of the visual field, even after retinal reattachment.

  15. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  16. Nitric oxide signaling in the retina: what have we learned in two decades?

    PubMed

    Vielma, Alex H; Retamal, Mauricio A; Schmachtenberg, Oliver

    2012-01-09

    Two decades after its first detection in the retina, nitric oxide (NO) continues to puzzle visual neuroscientists. While its liberation by photoreceptors remains controversial, recent evidence supports three subtypes of amacrine cells as main sources of NO in the inner retina. NO synthesis was shown to depend on light stimulation, and mounting evidence suggests that NO is a regulator of visual adaptation at different signal processing levels. NO modulates light responses in all retinal neuron classes, and specific ion conductances are activated by NO in rods, cones, bipolar and ganglion cells. Light-dependent gap junction coupling in the inner and outer plexiform layers is also affected by NO. The vast majority of these effects were shown to be mediated by activation of the NO receptor soluble guanylate cyclase and resultant cGMP elevation. This review analyzes the current state of knowledge on physiological NO signaling in the retina.

  17. The sarcoglycan-sarcospan complex localization in mouse retina is independent from dystrophins

    PubMed Central

    Fort, Patrice; Estrada, Francisco-Javier; Bordais, Agnès; Mornet, Dominique; Sahel, José-Alain; Picaud, Serge; Vargas, Haydeé Rosas; Coral-Vázquez, Ramón M.; Rendon, Alvaro

    2005-01-01

    The sarcoglycan–sarcospan (SG–SSPN) complex is part of the dystrophin-glycoprotein complex that has been extensively characterized in muscle. To establish the framework for functional studies of sarcoglycans in retina here, we quantified sarcoglycans mRNA levels with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and performed immunohistochemistry to determine their cellular and subcellular distribution. We showed that the β-, δ-, γ-, ε-sarcoglycans and sarcospan are expressed in mouse retina. They are localized predominantly in the outer and the inner limiting membranes, probably in the Müller cells and also in the ganglion cells axons where the expression of dystrophins have never been reported. We also investigated the status of the sarcoglycans in the retina of mdx3cv mutant mice for all Duchene Muscular Dystrophy (DMD) gene products. The absence of dystrophin did not produce any change in the sarcoglycan–sarcospan components expression and distribution. PMID:15993965

  18. Identification of Mesencephalic Astrocyte-Derived Neurotrophic Factor as a Novel Neuroprotective Factor for Retinal Ganglion Cells

    PubMed Central

    Gao, Feng-Juan; Wu, Ji-Hong; Li, Ting-Ting; Du, Shan-Shan; Wu, Qiang

    2017-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly discovered secreted neurotrophic factor, has been proven to not only protect dopaminergic neurons and other cell types but also regulate neuroinflammation and the immune response to promote tissue repair and regeneration. However, to date, there is no information regarding the relationship between MANF and retinal ganglion cells (RGCs) in the eye. In the current study, we first determined the expression of MANF in the retina and vitreous. Then, we examined the effect of MANF on RGCs using both in vivo and in vitro models and simultaneously explored the underlying neuroprotective mechanisms of MANF. Finally, we measured the concentrations of MANF in the vitreous of patients with different retinopathies. We demonstrated that MANF was highly expressed in RGCs and that exogenous MANF could protect RGCs from hypoxia-induced cell injury and apoptosis both in vitro and in vivo by preventing endoplasmic reticulum stress-mediated apoptosis. Furthermore, MANF can be detected in the vitreous humor, and the concentration changed under pathological conditions. Our results provide important evidence that MANF may be a potential therapeutic protein for a range of retinal pathologies in either the preclinical stage or after diagnosis to promote the survival of RGCs. Vitreous MANF may be a promising protein biomarker for the indirect assessment of retinal disorders, which could provide indirect evidence of retinal pathology. PMID:28367115

  19. Imaging retina to study dementia and stroke.

    PubMed

    Cheung, Carol Yim-Lui; Ikram, M Kamran; Chen, Christopher; Wong, Tien Yin

    2017-03-01

    With increase in life expectancy, the number of persons suffering from common age-related brain diseases, including neurodegenerative (e.g., dementia) and cerebrovascular (e.g., stroke) disease is expected to rise substantially. As current neuro-imaging modalities such as magnetic resonance imaging may not be able to detect subtle subclinical changes (resolution <100-500 μm) in dementia and stroke, there is an urgent need for other complementary techniques to probe the pathophysiology of these diseases. The retina - due to its anatomical, embryological and physiological similarities with the brain - offers a unique and accessible "window" to study correlates and consequences of subclinical pathology in the brain. Retinal components such as the microvasculature and retinal ganglion cell axons can now be visualized non-invasively using different retinal imaging techniques e.g., ocular fundus photography and optical coherence tomography. Advances in retinal imaging may provide new and potentially important insights into cerebrovascular neurodegenerative processes in addition to what is currently possible with neuro-imaging. In this review, we present an overview of the current literature on the application of retinal imaging in the study of dementia and stroke. We discuss clinical implications of these studies, novel state-of-the-art retinal imaging techniques and future directions aimed at evaluating whether retinal imaging can be an additional investigation tool in the study of dementia and stroke.

  20. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells

    PubMed Central

    Cui, Yuwei; Wang, Yanbin V; Park, Silvia J H; Demb, Jonathan B; Butts, Daniel A

    2016-01-01

    Visual processing depends on specific computations implemented by complex neural circuits. Here, we present a circuit-inspired model of retinal ganglion cell computation, targeted to explain their temporal dynamics and adaptation to contrast. To localize the sources of such processing, we used recordings at the levels of synaptic input and spiking output in the in vitro mouse retina. We found that an ON-Alpha ganglion cell's excitatory synaptic inputs were described by a divisive interaction between excitation and delayed suppression, which explained nonlinear processing that was already present in ganglion cell inputs. Ganglion cell output was further shaped by spike generation mechanisms. The full model accurately predicted spike responses with unprecedented millisecond precision, and accurately described contrast adaptation of the spike train. These results demonstrate how circuit and cell-intrinsic mechanisms interact for ganglion cell function and, more generally, illustrate the power of circuit-inspired modeling of sensory processing. DOI: http://dx.doi.org/10.7554/eLife.19460.001 PMID:27841746

  1. Vascular Leiomyoma and Geniculate Ganglion

    PubMed Central

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio

    2013-01-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721

  2. Vascular leiomyoma and geniculate ganglion.

    PubMed

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Ciniglio Appiani, Mario

    2013-06-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve.

  3. Ganglion Cyst of the Wrist and Hand

    MedlinePlus

    ... frequently fails to eliminate the ganglion because the “root” or connection to the joint or tendon sheath ... a weed which will grow back if the root is not removed. In many cases, the ganglion ...

  4. Morphometric changes in C57BL/6 mice retina infected by Toxoplasma gondii ME 49 strain.

    PubMed

    Rocha, Ana Cristina Higino; Calabrese, Kátia da Silva; Tedesco, Roberto Carlos; Campos, Wesley Ribeiro; Neto, Miguel Houri; Vasconcelos, Anilton Cezar; Oréfice, Fernando

    2014-01-01

    This study evaluated the morphometric implications in C57BL/6 mouse retina infected by Toxoplasma gondii, ME 49 strain. Twenty C57BL/6 female mice were divided into group 1 (n=8, intraperitoneally infected with 30 cysts of T. gondii ME 49 strain) and group 2 (n=12 non-infected controls). The eyes were enucleated on the 60th day after infection, fixed and processed for light microscopy. Changes in retinal thickness and in the perimeter/area ratio (P/A) of the retinal layers were analyzed by digital morphometry. We considered that P/A was the measurement of retinal architecture distortion induced by toxoplasmosis. This study considered the ganglion cells and nerve fiber layers as a monolayer, thus six layers of retina were evaluated: photoreceptors (PRL), outer nuclear (ONL), outer plexiform (OPL), inner nuclear (INL), inner plexiform (IPL) and ganglion cells/nerve fiber monolayer (GNL). Histological analysis of infected mouse retina showed inflammatory infiltrate, necrosis, glial reaction and distortion of the retina architecture. It also presented increased thickness (167.8±24.9μm versus 121.1±15.4μm, in controls) and increased retinal thickness within the retinitis foci (187.7±16.6μm versus 147.9±12.2μm out of the retinitis foci). A statistically significant difference in P/A was observed between infected and uninfected mouse retinas. The same was observed in PRL, OPL, INL and GNL. Retinal morphometry may be used to demonstrate differences between infected and uninfected mouse retinas.

  5. Expression and Distribution of Mesencephalic Astrocyte-Derived Neurotrophic Factor in the Retina and Optic Nerve

    PubMed Central

    Gao, Feng-Juan; Zhang, Sheng-Hai; Li, Ting-Ting; Wu, Ji-Hong; Wu, Qiang

    2017-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF), otherwise named Arginine-Rich, Mutated in Early-stage Tumors (ARMET), is a secretory endoplasmic reticulum stress (ERS) protein that is widely expressed in mammalian tissues. To date, little is known about the distribution and expression of MANF in the retina and optic nerve (ON). Therefore, we studied the expression and distribution of MANF in the ON and retina by real-time PCR, immunofluorescence staining and western blotting. Results from rat and mouse were highly consistent in the retina. MANF was detected in both tissues in rat, wherein it was principally localized to the ganglion cell layer (GCL), followed by the inner nuclear layer (INL). The MANF protein levels in the rat retina were 3.33-fold higher than in the rat ON. Additionally, MANF was robustly expressed by retinal ganglion cells (RGCs) in the human retina. In human ON, MANF was partially co-localized with glial fibrillary acidic protein (GFAP), suggesting that it was not restricted to astrocytes. In vitro studies confirmed that MANF could be robustly expressed in RGCs and was found principally within the cytoplasm. Hypoxia can stimulate up-regulation by of MANF expression over time, suggesting that MANF may play a vital role in the functional regulation of RGCs both in health and disease. We believe that the present study improves our understanding of the distribution and expression of MANF in the retina and ON and could help in further analysis of its interact and correlate with the relevant ophthalmic diseases. PMID:28154531

  6. Gene expression and protein distribution of orexins and orexin receptors in rat retina.

    PubMed

    Liu, F; Xu, G Z; Wang, L; Jiang, S X; Yang, X L; Zhong, Y M

    2011-08-25

    Orexins, composed of orexin A and orexin B, are identified as endogenous ligands of two orphan G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). Orexins are implicated in regulating wake/sleep states, feeding behaviors, etc. Using reverse transcription-polymerase chain reactive (RT-PCR) analysis and immunofluorescence double labeling, we investigated the distributions of orexin A, orexin B, OX1R and OX2R in rat retina. RT-PCR analysis revealed the presence of mRNAs of prepro-orexin, OX1R and OX2R in rat retina. Immunostaining for orexin A and orexin B was observed in many cells in the inner nuclear layer and the ganglion cell layer. In the outer retina, horizontal cells, labeled by calbindin, and bipolar cells, labeled by homeobox protein Chx10, were orexin A- and orexin B-positive. In the inner retina, two orexins were both found in GABAergic amacrine cells (ACs), including dopaminergic and cholinergic ones, stained by tyrosine hydroxylase and choline acetyltransferase respectively. Glycinergic ACs, including AII ACs, also expressed orexins. Weak to moderate labeling for orexin A and orexin B was diffusely distributed in the inner plexiform layer. Additionally, orexins were expressed in almost all ganglion cells (GCs) retrogradely labeled by cholera toxin B subunit. Specifically, double-labeling experiments demonstrated that melanopsin-positive GCs (intrinsically photosensitive retinal GCs, ipRGCs) were labeled by two orexins. Morever, OX1R immunoreactivity was observed in most of GCs and all dopaminergic ACs, as well as in both outer and inner plexiform layers. In contrast, no obvious OX2R immunostaining was detectable in the rat retina. These results suggest that orexins may modulate the function of neurons, especially in the inner retina. We further hypothesize that the orexin signaling via ipRGCs may be involved in setting the suprachiasmatic nucleus (SCN) circadian clock.

  7. Effects of ganglion blocking agents on nicotine extensor convulsions and lethality in mice

    PubMed Central

    Aceto, M. D.; Bentley, H. C.; Dembinski, J. R.

    1969-01-01

    1. The ganglion blocking agents, chlorisondamine, pentamethonium, mecamylamine, decamethonium and hexamethonium all block nicotine extensor convulsions when administered intraventricularly in mice. Tetraethylammonium was inactive. 2. For the intraventricular route, there is a relationship between ganglionic blocking potency and blocking of nicotine extensor convulsions. Indirect evidence suggests that the site(s) of action of nicotine extensor convulsions and lethality is central in origin and associated with brain areas near the ventricles. 3. When ganglion blocking agents are given orally, subcutaneously or intravenously varying degrees of protection can be observed probably depending on factors such as whether or not the drugs cross the blood-brain barrier, absorption, etc., and the effectiveness in protecting mice from nicotine is not related to ganglionic blocking potency. 4. Atropine and morphine given intraventricularly or subcutaneously did not protect mice from the LD95 of nicotine. Chlorpromazine gave very erratic results and phenobarbitone was effective subcutaneously and to a lesser extent intraventricularly. PMID:4390479

  8. The proteome of human retina.

    PubMed

    Zhang, Pingbo; Dufresne, Craig; Turner, Randi; Ferri, Sara; Venkatraman, Vidya; Karani, Rabia; Lutty, Gerard A; Van Eyk, Jennifer E; Semba, Richard D

    2015-02-01

    The retina is a delicate tissue that detects light, converts photochemical energy into neural signals, and transmits the signals to the visual cortex of the brain. A detailed protein inventory of the proteome of the normal human eye may provide a foundation for new investigations into both the physiology of the retina and the pathophysiology of retinal diseases. To provide an inventory, proteins were extracted from five retinas of normal eyes and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed in duplicate using LC-MS/MS on an Orbitrap Elite mass spectrometer. A total of 3436 nonredundant proteins were identified in the human retina, including 20 unambiguous protein isoforms, of which eight have not previously been demonstrated to exist at the protein level. The proteins identified in the retina included most of the enzymes involved in the visual cycle and retinoid metabolism. One hundred and fifty-eight proteins that have been associated with age-related macular degeneration were identified in the retina. The MS proteome database of the human retina may serve as a valuable resource for future investigations of retinal biology and disease. All MS data have been deposited in the ProteomeXchange with identifier PXD001242 (http://proteomecentral.proteomexchange.org/dataset/PXD001242).

  9. Brain derived neurotrophic factor in the retina of the teleost N. furzeri.

    PubMed

    Gatta, Claudia; Castaldo, Luciana; Cellerino, Alessandro; de Girolamo, Paolo; Lucini, Carla; D'Angelo, Livia

    2014-07-01

    BDNF plays an important role in the development and maintenance of visual circuitries in the retina and brain visual centers. In adulthood, BDNF signaling is involved in neural protection and regeneration of retina. In this survey, we investigated the expression of BDNF in the retina of adult Nothobranchius furzeri, a teleost fish employed for age research. After describing the retina of N. furzeri and confirming that the structure is organized in layers as in all vertebrates, we have studied the localization of BDNF mRNA and protein throughout the retinal layers. BDNF mRNA is detectable in all layers, whereas the protein is lacking in the photoreceptors. The occurrence of BDNF provides new insights on its role in the retina, particularly in view of age-related disease of retina.

  10. Arthroscopic excision of ganglion cysts.

    PubMed

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit.

  11. Postconditioning with inhaled hydrogen promotes survival of retinal ganglion cells in a rat model of retinal ischemia/reperfusion injury.

    PubMed

    Wang, Ruobing; Wu, Jiangchun; Chen, Zeli; Xia, Fangzhou; Sun, Qinglei; Liu, Lin

    2016-02-01

    Retinal ischemia/reperfusion (I/R) injury plays a crucial role in the pathophysiology of various ocular diseases. Intraperitoneal injection or ocular instillation with hydrogen (H2)-rich saline was recently shown to be neuroprotective in the retina due to its anti-oxidative and anti-inflammatory effects. Our study aims to explore whether postconditioning with inhaled H2 can protect retinal ganglion cells (RGCs) in a rat model of retinal I/R injury. Retinal I/R injury was performed on the right eyes of rats and was followed by inhalation of 67% H2 mixed with 33% oxygen immediately after ischemia for 1h daily for one week. RGC density was counted using haematoxylin and eosin (HE) staining and retrograde labeling with cholera toxin beta (CTB). Visual function was assessed using flash visual evoked potentials (FVEP) and pupillary light reflex (PLR). Potential biomarkers of retinal oxidative stress and inflammatory responses were measured, including the expression of 4-Hydroxynonenalv (4-HNE), interleukin-1 beta (IL1-β) and tumor necrosis factor alpha (TNF-α). HE and CTB tracing showed that the survival rate of RGCs in the H2-treated group was significantly higher than the rate in the I/R group. Rats with H2 inhalation showed better visual function in assessments of FVEP and PLR. Moreover, H2 treatment significantly decreased the number of 4-HNE-stained cells in the ganglion cell layer and inhibited the retinal overexpression of IL1-β and TNF-α that was induced by retinal I/R injury. Our results demonstrate that postconditioning with inhaled high-dose H2 appears to confer neuroprotection against retinal I/R injury via anti-oxidative, anti-inflammatory and anti-apoptosis pathways.

  12. Gene therapy for retinal ganglion cell neuroprotection in glaucoma.

    PubMed

    Wilson, A M; Di Polo, A

    2012-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. The primary cause of glaucoma is not known, but several risk factors have been identified, including elevated intraocular pressure and age. Loss of vision in glaucoma is caused by the death of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. Therapeutic strategies aimed at delaying or halting RGC loss, known as neuroprotection, would be valuable to save vision in glaucoma. In this review, we discuss the significant progress that has been made in the use of gene therapy to understand mechanisms underlying RGC degeneration and to promote the survival of these neurons in experimental models of optic nerve injury.

  13. Interphase gap decreases electrical stimulation threshold of retinal ganglion cells.

    PubMed

    Weitz, A C; Behrend, M R; Humayun, M S; Chow, R H; Weiland, J D

    2011-01-01

    The most common electrical stimulation pulse used in retinal implants is a symmetric biphasic current pulse. Prior electrophysiological studies in peripheral nerve have shown that adding an interphase gap (IPG) between the two phases makes stimulation more efficient. We investigated the effect of IPG duration on retinal ganglion cell (RGC) electrical threshold. We used calcium imaging to measure the activity of RGCs in isolated retina in response to electrical stimulation. By varying IPG duration, we were able to examine the effect of duration on threshold. We further studied this effect by simulating RGC behavior with a Hodgkin-Huxley-type model. Our results indicate that the threshold for electrical activation of RGCs can be reduced by increasing the length of the IPG.

  14. Photon capture and signalling by melanopsin retinal ganglion cells.

    PubMed

    Do, Michael Tri H; Kang, Shin H; Xue, Tian; Zhong, Haining; Liao, Hsi-Wen; Bergles, Dwight E; Yau, King-Wai

    2009-01-15

    A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centres for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behaviour remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 10(4)-fold lower than that of rod and cone pigments, resulting in a very low photon catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Notably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.

  15. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma

    PubMed Central

    Kim, K-Y; Perkins, G A; Shim, M S; Bushong, E; Alcasid, N; Ju, S; Ellisman, M H; Weinreb, R N; Ju, W-K

    2015-01-01

    Glaucoma is the leading cause of irreversible blindness and is characterized by slow and progressive degeneration of the optic nerve head axons and retinal ganglion cell (RGC), leading to loss of visual function. Although oxidative stress and/or alteration of mitochondrial (mt) dynamics induced by elevated intraocular pressure (IOP) are associated with this neurodegenerative disease, the mechanisms that regulate mt dysfunction-mediated glaucomatous neurodegeneration are poorly understood. Using a mouse model of glaucoma, DBA/2J (D2), which spontaneously develops elevated IOP, as well as an in vitro RGC culture system, we show here that oxidative stress, as evidenced by increasing superoxide dismutase 2 (SOD2) and mt transcription factor A (Tfam) protein expression, triggers mt fission and loss by increasing dynamin-related protein 1 (DRP1) in the retina of glaucomatous D2 mice as well as in cultured RGCs exposed to elevated hydrostatic pressure in vitro. DRP1 inhibition by overexpressing DRP1 K38A mutant blocks mt fission and triggers a subsequent reduction of oxidative stress, as evidenced by decreasing SOD2 and Tfam protein expression. DRP1 inhibition promotes RGC survival by increasing phosphorylation of Bad at serine 112 in the retina and preserves RGC axons by maintaining mt integrity in the glial lamina of glaucomatous D2 mice. These findings demonstrate an important vicious cycle involved in glaucomatous neurodegeneration that starts with elevated IOP producing oxidative stress; the oxidative stress then leads to mt fission and a specific form of mt dysfunction that generates further oxidative stress, thus perpetuating the cycle. Our findings suggest that DRP1 is a potential therapeutic target for ameliorating oxidative stress-mediated mt fission and dysfunction in RGC and its axons during glaucomatous neurodegeneration. Thus, DRP1 inhibition may provide a new therapeutic strategy for protecting both RGCs and their axons in glaucoma and other optic

  16. Correlation of spatial intensity distribution of light reaching the retina and restoration of vision by optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Shivalingaiah, Shivaranjani; Gu, Ling; Mohanty, Samarendra K.

    2011-03-01

    Stimulation of retinal neuronal cells using optogenetics via use of chanelrhodopsin-2 (ChR2) and blue light has opened up a new direction for restoration of vision with respect to treatment of Retinitis pigmentosa (RP). In addition to delivery of ChR2 to specific retinal layer using genetic engineering, threshold level of blue light needs to be delivered onto the retina for generating action potential and successful behavioral outcome. We report measurement of intensity distribution of light reaching the retina of Retinitis pigmentosa (RP) mouse models and compared those results with theoretical simulations of light propagation in eye. The parameters for the stimulating source positioning in front of eye was determined for optimal light delivery to the retina. In contrast to earlier viral method based delivery of ChR2 onto retinal ganglion cells, in-vivo electroporation method was employed for retina-transfection of RP mice. The behavioral improvement in mice with Thy1-ChR2-YFP transfected retina, expressing ChR2 in retinal ganglion cells, was found to correlate with stimulation intensity.

  17. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion

    PubMed Central

    Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F.; Brown, Robert A.; McLellan, Gillian J.; Charteris, David G.; Khaw, Peng T.

    2016-01-01

    Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for

  18. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion.

    PubMed

    Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F; Brown, Robert A; McLellan, Gillian J; Charteris, David G; Khaw, Peng T; Limb, G Astrid

    2016-02-01

    Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance: Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for

  19. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    PubMed Central

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF. PMID:27935942

  20. Amyloidoma of the gasserian ganglion.

    PubMed

    DeCastro, S; Sparks, J R; Lapey, J D; Freidberg, S R

    1976-12-01

    A case report, the third in the literature, is presented of a patient whose progressive numbness in the second and third divisions of the trigeminal nerve led to the discovery of an isolated amyloidoma of the gasserian ganglion. The clinical impression of tumor was confirmed by surgical and pathologic findings.

  1. Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice

    PubMed Central

    2014-01-01

    Background Proper binocular vision depends on the routing at the optic chiasm of the correct proportion of retinal ganglion cell (RGC) axons that project to the same (ipsilateral) and opposite (contralateral) side of the brain. The ipsilateral RGC projection is reduced in mammals with albinism, a congenital disorder characterized by deficient pigmentation in the skin, hair, and eyes. Compared to the pigmented embryonic mouse retina, the albino embryonic mouse retina has fewer RGCs that express the zinc-finger transcription factor, Zic2, which is transiently expressed by RGCs fated to project ipsilaterally. Here, using Zic2 as a marker of ipsilateral RGCs, Islet2 as a marker of contralateral RGCs, and birthdating, we investigate spatiotemporal dynamics of RGC production as they relate to the phenotype of diminished ipsilateral RGC number in the albino retina. Results At embryonic day (E)15.5, fewer Zic2-positive (Zic2+) RGCs are found in the albino ventrotemporal (VT) retina compared with the pigmented VT retina, as we previously reported. However, the reduction in Zic2+ RGCs in the albino is not accompanied by a compensatory increase in Zic2-negative (Zic2−) RGCs, resulting in fewer RGCs in the VT retina at this time point. At E17.5, however, the number of RGCs in the VT region is similar in pigmented and albino retinae, implicating a shift in the timing of RGC production in the albino. Short-term birthdating assays reveal a delay in RGC production in the albino VT retina between E13 and E15. Specifically, fewer Zic2+ RGCs are born at E13 and more Zic2− RGCs are born at E15. Consistent with an increase in the production of Zic2− RGCs born at later ages, more RGCs at E17.5 express the contralateral marker, Islet2, in the albino VT retina compared with the pigmented retina. Conclusions A delay in neurogenesis in the albino retina is linked to the alteration of RGC subtype specification and consequently leads to the reduced ipsilateral projection that

  2. Expression of ionotropic glutamate receptors, AMPA, kainite and NMDA, in the pigeon retina.

    PubMed

    Atoji, Yasuro

    2015-07-01

    Glutamate is an excitatory neurotransmitter in the vertebrate retina. A previous study found vesicular glutamate transporter 2 (vGluT2) mRNA in the pigeon retina, suggesting that bipolar and ganglion cells are glutamatergic. The present study examined the localization of ionotropic glutamate receptors to identify receptor cells in the pigeon retina using in situ hybridization histochemistry. Nine subunits of AMPA receptor (GluA1, GluA2, GluA3, and GluA4), kainate receptor (GluK1, GluK2, and GluK4), and NMDA receptor (GluN1 and GluN2A) were found to be expressed in the inner nuclear layer (INL) and ganglion cell layers. GluA1, GluA2, GluA3, and GluA4 were primarily expressed in the inner half of INL, and the signal intensity was strong for GluA2, GluA3, and GluA4. GluK1 was intensely expressed in the outer half of INL, whereas GluK2 and GluK4 were mainly localized in the inner half of INL. GluN1 and GluN2A were moderately expressed in the inner half of INL. Horizontal cells expressed GluA3 and GluA4, and ganglion cells expressed all subunits examined. These results suggest that the glutamatergic neurotransmission in the pigeon retina is similar to that in mammals.

  3. Retinal Ganglion Cell Topography of Five Species of Ground-Foraging Birds

    PubMed Central

    Dolan, Tracy; Fernández-Juricic, Esteban

    2010-01-01

    Birds that forage on the ground have been studied extensively in relation to behavioral trade-offs between foraging and scanning for predators; however, we know little about the topography of their retinas, which can influence how they gather visual information. We characterized the density of retinal ganglion cells across the retina and estimated visual acuity of four Passeriformes (European starling Sturnus vulgaris, brown-headed cowbird Molothrus ater, house sparrow Passer domesticus, house finch Carpodacus mexicanus) and one Columbiforme (mourning dove Zenaida macroura) that forage on the ground. We used cresyl violet to stain retinal ganglion cells and estimated visual acuity based on cell density and eye size. All species contained a single area centralis, where cell densities were >20,000 cells/mm2. The proportion of the retina that fell in each of five cell density ranges varied between species. European starlings and house finches had the largest area of high cell density, mourning doves had the smallest. The largest proportion of the retina (>35%) of brown-headed cowbird and house sparrow was in the second-lowest cell density range. Considering the 25th percentile of highest cell densities, house finches and European starlings showed the highest cell densities and mourning doves the lowest. Estimated visual acuity increased from house finch, house sparrow, brown-headed cowbird, European starling to mourning dove, and was associated with both retinal area and cell density. Our findings suggest that these ground foragers do not have highly specialized retinas in relation to other types of foragers (e.g. tree foragers), probably because foraging on seeds and insects from the ground is not as visually demanding; however, the studied species showed variability in retinal topography that may be related to foraging techniques, eye size constraints, and size of the area centralis. PMID:20516656

  4. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  5. All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells

    PubMed Central

    Reifler, Aaron N.; Chervenak, Andrew P.; Dolikian, Michael E.; Benenati, Brian A.; Li, Benjamin Y.; Wachter, Rebecca D.; Lynch, Andrew M.; Demertzis, Zachary D.; Meyers, Benjamin S.; Abufarha, Fady S.; Jaeckel, Elizabeth R.; Flannery, Michael P.; Wong, Kwoon Y.

    2015-01-01

    SUMMARY Retinal neurons exhibit sustained vs. transient light responses, which are thought to encode low- and high-frequency stimuli respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: 1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer; 2) bistratified cells with dendrites in both S1 and S5; and 3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide-field, although some are medium-field. The three classes respond to light differently, suggesting they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain. PMID:26441349

  6. The sensitivity of light-evoked responses of retinal ganglion cells is decreased in nitric oxide synthase gene knockout mice.

    PubMed

    Wang, Guo-Yong; van der List, Deborah A; Nemargut, Joseph P; Coombs, Julie L; Chalupa, Leo M

    2007-11-30

    We have shown previously that increasing the production of nitric oxide (NO) results in a dampening of visual responses of retinal ganglion cells (G. Y. Wang, L. C. Liets, & L. M. Chalupa, 2003). To gain further insights into the role of NO in retinal function, we made whole-cell patch clamp recordings from ganglion cells of neural type nitric oxide synthase (nNOS) gene knockout mice. Here we show that in the dark-adapted state, the sensitivity of retinal ganglion cell to light stimulation is decreased in nNOS knockout animals. The lowest light intensities required to evoke optimal responses and the average intensities that evoked half-maximal responses were significantly higher in nNOS knockouts than in normal mice. Retinal histology and other features of light-evoked responses of ganglion cells in nNOS mice appeared to be indistinguishable from those of normal mice. Collectively, these results, in conjunction with our previous work, provide evidence that increasing levels of NO dampen visual responses of ganglion cells, while a lack of nNOS decreases the sensitivity of these neurons to light. Thus, NO levels in the retina are capable of modulating the information that ganglion cells convey to the visual centers of the brain.

  7. Endoscopic Resection of the Tarsal Tunnel Ganglion.

    PubMed

    Lui, Tun Hing

    2016-10-01

    The tarsal tunnel ganglion is a cause of posterior tarsal tunnel syndrome. Open resection of the ganglion calls for release of the flexor retinaculum and dissection around the tibial neurovascular bundle. This can induce fibrosis around the tibial nerve. We report the technique of endoscopic resection of the tarsal tunnel ganglion. It is indicated for tarsal tunnel ganglia arising from the adjacent joints or tendon sheaths and compressing the tibial nerve from its deep side. It is contraindicated if there is other pathology of the tarsal tunnel that demands open surgery; if the ganglion compresses the tibial nerve from its superficial side, which calls for a different endoscopic approach using the ganglion portal; or if an intraneural ganglion of the tibial nerve is present. The purpose of this technical note is to describe a minimally invasive approach for endoscopic resection of the tarsal tunnel ganglion.

  8. Resveratrol Inhibits Neuronal Apoptosis and Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Mouse Retina

    PubMed Central

    Kim, Young-Hee; Kim, Yoon-Sook; Kang, Sang-Soo; Cho, Gyeong-Jae; Choi, Wan-Sung

    2010-01-01

    OBJECTIVE This study investigated the effects of resveratrol, a natural polyphenol with neuroprotective properties, on retinal neuronal cell death mediated by diabetes-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). RESEARCH DESIGN AND METHODS Diabetes was induced in C57BL/6 mice by five consecutive intraperitoneal injections of 55 mg/kg streptozotocin (STZ). Control mice received buffer. All mice were killed 2 months after the injections, and the extent of neuronal cell death, CaMKII, and phospho-CaMKII protein expression levels and CaMKII kinase activity were examined in the retinas. To assess the role of CaMKII in the death of retinal neurons, a small-interfering RNA (siRNA) or specific inhibitor of CaMKII was injected into the right vitreous humor, and vehicle only was injected into the left vitreous humor, 2 days before death. Resveratrol (20 mg/kg) was administered by oral gavage daily for 4 weeks, beginning 1 month after the fifth injection of either STZ or buffer. RESULTS The death of retinal ganglion cells (RGCs), CaMKII, phospho-CaMKII protein levels, and CaMKII activity were all greatly increased in the retinas of diabetic mice compared with controls, 2 months after induction of diabetes. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)-positive signals co-localized with CaMKII- and phospho-CaMKII immunoreactive RGCs. However, in addition to CaMKII knockdown and inhibition by siRNA or a specific inhibitor, respectively, resveratrol provided complete protection from diabetes-induced retinal cell death. CONCLUSIONS In the present study, resveratrol prevented diabetes-induced RGC death via CaMKII downregulation, implying that resveratrol may have potential therapeutic applications for prevention of diabetes-induced visual dysfunction. PMID:20424226

  9. Chapter XX: POLYMODAL SENSORY INTEGRATION IN RETINAL GANGLION CELLS

    PubMed Central

    Križaj, David

    2016-01-01

    An animal's ability to perceive the external world is conditioned by its capacity to extract and encode specific features of the visual image. The output of the vertebrate retina is not a simple representation of the 2D visual map generated by photon absorptions in the photoreceptor layer. Rather, spatial, temporal, direction selectivity and color “dimensions” of the original image are distributed in the form of parallel output channels mediated by distinct retinal ganglion cell (RGC) populations. We propose that visual information transmitted to the brain includes additional, light-independent, inputs that reflect the functional states of the retina, anterior eye and the body. These may include the local ion microenvironment, glial metabolism and systemic parameters such as intraocular pressure, temperature and immune activation which act on ion channels that are intrinsic to RGCs. We particularly focus on light-independent mechanical inputs that are associated with physical impact, cell swelling and intraocular pressure as excessive mechanical stimuli lead to the counterintuitive experience of “pressure phosphenes” and/or debilitating blinding disease such as glaucoma and diabetic retinopathy. We point at recently discovered retinal mechanosensitive ion channels as examples through which molecular physiology brings together Greek phenomenology, modern neuroscience and medicine. Thus, RGC output represents a unified picture of the embodied context within which vision takes place. PMID:26427477

  10. Diverse Central Projection Patterns of Retinal Ganglion Cells.

    PubMed

    Martersteck, Emily M; Hirokawa, Karla E; Evarts, Mariah; Bernard, Amy; Duan, Xin; Li, Yang; Ng, Lydia; Oh, Seung W; Ouellette, Benjamin; Royall, Joshua J; Stoecklin, Michelle; Wang, Quanxin; Zeng, Hongkui; Sanes, Joshua R; Harris, Julie A

    2017-02-21

    Understanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.

  11. Expression of thromboxane synthase and the thromboxane-prostanoid receptor in the mouse and rat retina

    PubMed Central

    Wright, William S.; McElhatten, Robert M.; Harris, Norman R.

    2009-01-01

    Experimental models of the diabetic retina have suggested a pathological role for thromboxane. To date however, little information is available as to the cellular locations of retinal thromboxane synthase (TxS), or its receptor, even in non-diabetic controls. In this study, C57BL/6 mice and Wistar rats were injected with streptozotocin to induce diabetes, or with buffer for non-diabetic controls. Four weeks following the injection, eyes were enucleated and labeled for TxS and the thromboxane-prostanoid (TP) receptor. Immunofluorescent intensity was quantified in the ganglion cell plus inner plexiform layers, inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor inner segment. Even in control mice and rats, all layers of the retina showed immunoreactivity for TxS and the TP receptor: however, the pattern of expression demonstrated an inverse relationship, with the highest TxS staining in the inner retina, and the highest TP receptor staining in the outer retina (more specifically, in the photoreceptor inner segment). Four weeks of hyperglycemia did not increase the retinal levels of TxS or TP receptor; however, TP receptor intensities in the outer retina of diabetic rats were highly variable (mostly high but some low), with no values from the photoreceptor inner segment in the same range as obtained from controls. PMID:19523949

  12. Identification of Novel Regulators of atonal Expression in the Developing Drosophila Retina

    PubMed Central

    Melicharek, David; Shah, Arpit; DiStefano, Ginnene; Gangemi, Andrew J.; Orapallo, Andrew; Vrailas-Mortimer, Alysia D.; Marenda, Daniel R.

    2008-01-01

    Atonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina. Thus, identifying factors that are involved in regulating the expression of Atonal during development are important to fully understand how retinal neurogenesis is accomplished. We have performed a chemical mutagenesis screen for autosomal dominant enhancers of a loss-of-function atonal eye phenotype. We report here the identification of five genes required for proper Atonal expression, three of which are novel regulators of Atonal expression in the Drosophila retina. We characterize the role of the daughterless, kismet, and roughened eye genes on atonal transcriptional regulation in the developing retina and show that each gene regulates atonal transcription differently within the context of retinal development. Our results provide additional insights into the regulation of Atonal expression in the developing Drosophila retina. PMID:18832354

  13. Testing the biocompatibility of a glutathione-containing intra-ocular irrigation solution by using an isolated perfused bovine retina organ culture model - an alternative to animal testing.

    PubMed

    Januschowski, Kai; Zhour, Ahmad; Lee, Albert; Maddani, Ramin; Mueller, Sebastien; Spitzer, Martin S; Schnichels, Sven; Schultheiss, Maximilian; Doycheva, Deshka; Bartz-Schmidt, Karl-Ulrich; Szurman, Peter

    2012-03-01

    The effects of a glutathione-containing intra-ocular irrigation solution, BSS Plus©, on retinal function and on the survival of ganglion cells in whole-mount retinal explants were studied. Evidence is provided that the perfused ex vivo bovine retina can serve as an alternative to in vivo animal testing. Isolated bovine retinas were prepared and perfused with an oxygen-saturated standard irrigation solution, and an electroretinogram was recorded to assess retinal function. After stable b-waves were detected, the isolated retinas were perfused with BSS Plus for 45 minutes. To investigate the effects of BSS Plus on photoreceptor function, 1mM aspartate was added to the irrigation solution in order to obtain a-waves, and the ERG trace was monitored for 75 minutes. For histological analysis, isolated whole retinal mounts were stored for 24 hours at 4°C, in the dark. The percentages of cell death in the retinal ganglion cell layer and in the outer and inner nuclear layers were estimated by using an ethidium homodimer-1 stain and the TUNEL assay. General swelling of the retina was examined with high-resolution optical coherence tomography. During perfusion with BSS Plus, no significant changes in a-wave and b-wave amplitudes were recorded. Retinas stored for 24 hours in BSS Plus showed a statistically significant smaller percentage (52.6%, standard deviation [SD] = 16.1%) of cell death in the retinal ganglion cell layer compared to the control group (69.6%, SD = 3.9, p = 0.0031). BSS Plus did not seem to affect short-term retinal function, and had a beneficial effect on the survival of retinal ganglion cells. This method for analysing the isolated perfused retina represents a valuable alternative for testing substances for their retinal biocompatibility and toxicity.

  14. Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells.

    PubMed

    Middleton, T P; Protti, D A

    2011-09-01

    The endocannabinoid (ECB) system has been found throughout the central nervous system and modulates cell excitability in various forms of short-term plasticity. ECBs and their receptors have also been localized to all retinal cells, and cannabinoid receptor activation has been shown to alter voltage-dependent conductances in several different retinal cell types, suggesting a possible role for cannabinoids in retinal processing. Their effects on synaptic transmission in the mammalian retina, however, have not been previously investigated. Here, we show that exogenous cannabinoids alter spontaneous synaptic transmission onto retinal ganglion cells (RGCs). Using whole-cell voltage-clamp recordings in whole-mount retinas, we measured spontaneous postsynaptic currents (SPSCs) in RGCs in adult and young (P14-P21) mice. We found that the addition of an exogenous cannabinoid agonist, WIN55212-2 (5 μM), caused a significant reversible reduction in the frequency of SPSCs. This change, however, did not alter the kinetics of the SPSCs, indicating a presynaptic locus of action. Using blockers to isolate inhibitory or excitatory currents, we found that cannabinoids significantly reduced the release probability of both GABA and glutamate, respectively. While the addition of cannabinoids reduced the frequency of both GABAergic and glutamatergic SPSCs in both young and adult mice, we found that the largest effect was on GABA-mediated currents in young mice. These results suggest that the ECB system may potentially be involved in the modulation of signal transmission in the retina. Furthermore, they suggest that it might play a role in the developmental maturation of synaptic circuits, and that exogenous cannabinoids are likely able to disrupt retinal processing and consequently alter vision.

  15. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina

    PubMed Central

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S.; Sabottke, Carl F.; Markowitz, Alexander L.; Butts, Daniel A.; Kath, William L.; Singer, Joshua H.

    2014-01-01

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. PMID:25008417

  16. Adaptation to changes in higher-order stimulus statistics in the salamander retina.

    PubMed

    Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen

    2014-01-01

    Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.

  17. Regenerative amacrine cell depolarization and formation of on-off ganglion cell response.

    PubMed Central

    Werblin, F S

    1977-01-01

    1. Recordings from amacrine and ganglion cells in the mudpuppy retina suggest mechanisms whereby the relatively slow, sustained light responses measured in bipolar cells are converted to rapid, brief, transient activity in the on-off ganglion cells. 2. Double-barrel electrodes were used to control the membrane potential under voltage clamp. The clamp revealed synaptic currents, but eliminated the otherwise obvious spike activity elicited by steps of illumination in both amacrine and ganglion cells, suggesting that the spikes are initiated near the somata. 3. The synaptic current in the on-off ganglion cells was biphasic: a brief inward (depolarizing) membrane current preceded a transient outward (hyperpolarizing) membrane current by about 20 msec. Each component could be isolated by polarizing the membrane to a level near the reversal potential for the other. Each was apparently due to a transient conductance increase of sawtooth shape with a 40 msec time to peak and a decay longer than 400 msec. 4. Synaptic membrane current in amacrine cells was monophasic and inward (depolarizing) of similar sawtooth shape at all potential levels. It was apparently mediated by a conductance increase to ions with a reversal potential more positive than the dark level. 5. When amacrine cells were depolarized in the dark under voltage clamp, a large transient inward membrane current with threshold within 4 mV of the dark level was generated. This regenerative event is capable of boosting a small, 4 mV e.p.s.p. to more than 30 mV in a few milliseconds, thereby generating the leading edge of a rapid sawtooth response. 6. The results suggest that the rapid transient on-off activity in ganglion cells is mediated by opposing sawtooth shaped synaptic currents with different latencies. It is inferred that each of these antagonistic imputs is generated by a regenerative depolarization in amacrine cells which then form synaptic inputs to the ganglion cells. PMID:845823

  18. [Radiation preconditioning of mouse retina results in tolerance to MNU-induced degeneration and stimulates retinal recovery].

    PubMed

    Tronov, V A; Vinogradova, Yu V; Poplinskaya, V A; Nekrasova, E I; Ostrovsky, M A

    2015-01-01

    Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous studies have revealed a non-linear dose-response relationship for cytotoxic effect of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non-cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In the present study we used the mouse model for MNU-induced retinal degeneration to evaluate the adaptive response of the retina to proton irradiation and implication of glial Muller cells in this response. In this paper, we have shown that the recovery of the retina after exposure to genotoxic agents is associated with an increased efficiency of DNA damage repair and lowered death of retinal photoreceptors.

  19. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures

    PubMed Central

    Contartese, Daniela S.; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B.; Loidl, Cesar F.; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina. PMID:27556928

  20. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina.

    PubMed

    Ho, T; Vessey, K A; Fletcher, E L

    2014-09-26

    Extracellular adenosine 5'-triphosphate (eATP) acts as a neurotransmitter within the retina and brain, activating a range of ionotropic P2X and metabotropic P2Y receptors. In this study, the specific localization of the P2X4 receptor (P2X4-R) subunit was evaluated in the retina using fluorescence immunohistochemistry and pre-embedding immuno-electron microscopy. Punctate P2X4-R labeling was largely localized to the inner and outer plexiform layers of mouse, rat and cat retinae. In the mouse outer retina, double-labeling of P2X4-R with the horizontal cell marker, calbindin, revealed P2X4-R immunoreactivity (P2X4-R-IR) on horizontal cell somata and processes. In the inner retina, P2X4-R expression was found closely associated with rod and cone bipolar cell terminals, and the punctate labeling was observed on calretinin-positive amacrine cells. Using immuno-electron microscopy, P2X4-Rs were observed on processes post-synaptic to photoreceptor and bipolar cell terminals, likely representing horizontal, amacrine and ganglion cells, respectively. Furthermore, P2X4-R expression was also observed on Müller cells, astrocytes and microglia. These data suggest a role for P2X4-Rs in the lateral inhibitory pathways of the retina, modulating neuronal function of photoreceptors and bipolar cells. The expression on macro- and microglial cells implicates a role for P2X4-Rs in glial signaling, tissue homeostasis and immunosurveillance within the mammalian retina.

  1. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    PubMed

    Larrayoz, Ignacio M; Rey-Funes, Manuel; Contartese, Daniela S; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B; Loidl, Cesar F; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina.

  2. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  3. Development and plasticity of the retina in the opossum Monodelphis domestica.

    PubMed

    Djavadian, Rouzanna; Bisti, Silvia; Maccarone, Rita; Bartkowska, Katarzyna; Turlejski, Krzysztof

    2006-01-01

    We investigated the rate of cell proliferation and death in the retina of the Monodelphis opossum during its postnatal development and the influence of early monocular enucleation on these processes. Our results show that in the opossum, as in other marsupials, the peak of the retinal cells divisions occurs postnatally and that generation of retinal cells continues till the time of eye opening (P34), except of the marginal rim, where it continued till P60. Ganglion and amacrine cells are generated between postnatal days (P) P4 and P9, while bipolar cells and photoreceptors are generated simultaneously between P14 and P25. The peak of ganglion cell death as detected by the TUNEL method occurs around P14-19 in the center of retina. The second peak of apoptosis appears in the inner nuclear layer (INL) at P19-25. Gliogenesis takes place between P25 and P34. We also found that monocular enucleation performed during the early period of retinal development (P0-P7) did not influence proliferation, developmental apoptosis or other developmental processes in the retina of the remaining eye.

  4. Distinct patterns of expression of the RB gene family in mouse and human retina.

    PubMed

    Spencer, Clarellen; Pajovic, Sanja; Devlin, Hollie; Dinh, Quynh-Dao; Corson, Timothy W; Gallie, Brenda L

    2005-06-01

    Although RB1 function is disrupted in the majority of human cancers, an undefined cell of developing human retina is uniquely sensitive to cancer induction when the RB1 tumor suppressor gene is lost. Murine retinoblastoma is initiated only when two of the RB family of genes, RB1 and p107 or p130, are inactivated. Although whole embryonic retina shows RB family gene expression by several techniques, when E14 developing retina was depleted of the earliest differentiating cells, ganglion cells, the remaining proliferating murine embryonic retinal progenitor cells clearly did not express RB1 or p130, while the longer splice form of p107 was expressed. Each retinal cell type expressed some member of the RB family at some stage of differentiation. Rod photoreceptors stained for the RB1 protein product, pRB, and p107 in only a brief window of postnatal murine development, with no detectable staining for any of the RB family proteins in adult human and mouse rod photoreceptors. Adult mouse and human Muller glia, ganglion and rare horizontal cells, and adult human, but not adult mouse, cone photoreceptors stained for pRB. The RB gene family is dynamically and variably expressed through retinal development in specific retinal cells.

  5. Activity of retinal ganglion cells following intense, nanosecond laser flashes. Final report, 1983-1986

    SciTech Connect

    Glickman, R.D.

    1989-01-01

    The effects of intense, but nonlesion-producing, laser exposures of 20-ns duration were determined on the light responses and spontaneous activity of retinal ganglion cells recorded in situ from the rhesus monkey. (Following a single, 20-ns exposure centered on its receptive field, a ganglion cell produced an 'afterdischarge' of maintained action potentials). The duration of the afterdischarge depended on the diameter of the laser beam on the retina and on the beam's intensity. Laser exposures subtending 0.5 to 2.0 deg, and delivering 45 to 60% of the maximum permissible exposure, elicited afterdischarges that lasted up to 80 s. When the beam diameter was decreased to 0.25 deg, the afterdischarge was reduced to 30 s, and to less than 5 s with the 0.12-deg beam. Light sensitivity after the laser exposure recovered rapidly during the first 10 s and then more slowly, but exponentially, until it reached the preflash level. Color-opponent ganglion cells exhibited a phenomenon called 'response-reversal' after the laser exposure, presumably due to selective adaptation of a mid-wavelength cone-input. Because a 20-ns exposure, regardless of intensity, is likely to photoregenerate more than half of the available visual pigment, the effects of ganglion cell response described here are not likely to be due solely to pigment bleaching.

  6. Uniformity detector retinal ganglion cells fire complex spikes and receive only light-evoked inhibition.

    PubMed

    Sivyer, Benjamin; Taylor, W Rowland; Vaney, David I

    2010-03-23

    Retinal ganglion cells convey information by increasing their firing in response to an optimal visual stimulus or "trigger feature." However, one class of ganglion cell responds to changes in the visual scene by decreasing its firing. These cells, termed uniformity detectors in the rabbit retina, are encountered only rarely and the synaptic mechanisms underlying their unusual responses have not been investigated. In this study, patch-clamp recordings of uniformity detectors show that the action potentials underlying the maintained firing arise within "complex spikes." Both ON and OFF visual stimuli elicit only inhibitory synaptic input, the immediate effect of which is to suppress the maintained firing. However, this inhibition also alters the properties of the "renascent" spiking by increasing the amplitude of the spikes within each burst, suggesting that the effect may increase the efficacy of spike propagation and transmission.

  7. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  8. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines

    PubMed Central

    Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.

    2015-01-01

    Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381

  9. Patch clamp recordings of retinal bipolar cells in response to extracellular electrical stimulation in wholemount mouse retina.

    PubMed

    Walston, Steven T; Chow, Robert H; Weiland, James D

    2015-01-01

    Retinitis pigmentosa is a family of inherited retinal diseases identified by the degeneration of photoreceptors, which leads to blindness. In efforts to restore vision lost to retinitis pigmentosa, retinal prostheses have been developed to generate visual percepts by electrically stimulating the surviving retinal bipolar and ganglion cells. The response of retinal ganglion cells to electrical stimulation has been characterized through direct measurement. However, the response of bipolar cells has only been inferred by measuring retinal ganglion cell activity. This investigation reports on a novel tissue preparation technique facilitating bipolar cell patch clamp recordings in wholemount retina. We find that bipolar cells respond to extracellular electrical stimuli with time-locked voltage spike depolarizations, which are likely mediated by voltage-gated calcium channels.

  10. A Retina Inspired Model for Enhancing Visibility of Hazy Images

    PubMed Central

    Zhang, Xian-Shi; Gao, Shao-Bing; Li, Chao-Yi; Li, Yong-Jie

    2015-01-01

    The mammalian retina seems far smarter than scientists have believed so far. Inspired by the visual processing mechanisms in the retina, from the layer of photoreceptors to the layer of retinal ganglion cells (RGCs), we propose a computational model for haze removal from a single input image, which is an important issue in the field of image enhancement. In particular, the bipolar cells serve to roughly remove the low-frequency of haze, and the amacrine cells modulate the output of cone bipolar cells to compensate the loss of details by increasing the image contrast. Then the RGCs with disinhibitory receptive field surround refine the local haze removal as well as the image detail enhancement. Results on a variety of real-world and synthetic hazy images show that the proposed model yields results comparative to or even better than the state-of-the-art methods, having the advantage of simultaneous dehazing and enhancing of single hazy image with simple and straightforward implementation. PMID:26733857

  11. Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina.

    PubMed

    Singhal, Shweta; Lawrence, Jean M; Bhatia, Bhairavi; Ellis, James S; Kwan, Anthony S; Macneil, Angus; Luthert, Philip J; Fawcett, James W; Perez, Maria-Thereza; Khaw, Peng T; Limb, G Astrid

    2008-04-01

    At present, there are severe limitations to the successful migration and integration of stem cells transplanted into the degenerated retina to restore visual function. This study investigated the potential role of chondroitin sulfate proteoglycans (CSPGs) and microglia in the migration of human Müller glia with neural stem cell characteristics following subretinal injection into the Lister hooded (LH) and Royal College of Surgeons (RCS) rat retinae. Neonate LH rat retina showed minimal baseline microglial accumulation (CD68-positive cells) that increased significantly 2 weeks after transplantation (p < .001), particularly in the ganglion cell layer (GCL) and inner plexiform layer. In contrast, nontransplanted 5-week-old RCS rat retina showed considerable baseline microglial accumulation in the outer nuclear layer (ONL) and photoreceptor outer segment debris zone (DZ) that further increased (p < .05) throughout the retina 2 weeks after transplantation. Marked deposition of the N-terminal fragment of CSPGs, as well as neurocan and versican, was observed in the DZ of 5-week-old RCS rat retinae, which contrasted with the limited expression of these proteins in the GCL of the adult and neonate LH rat retinae. Staining for CSPGs and CD68 revealed colocalization of these two molecules in cells infiltrating the ONL and DZ of the degenerating RCS rat retina. Enhanced immune suppression with oral prednisolone and intraperitoneal injections of indomethacin caused a reduction in the number of microglia but did not facilitate Müller stem cell migration. However, injection of cells with chondroitinase ABC combined with enhanced immune suppression caused a dramatic increase in the migration of Müller stem cells into all the retinal cell layers. These observations suggest that both microglia and CSPGs constitute a barrier for stem cell migration following transplantation into experimental models of retinal degeneration and that control of matrix deposition and the innate

  12. Neuronal Transcriptional Repressor REST Suppresses an Atoh7-Independent Program for Initiating Retinal Ganglion Cell Development

    PubMed Central

    Mao, Chai-An; Tsai, Wen-Wei; Cho, Jang-Hyeon; Pan, Ping; Barton, Michelle Craig; Klein, William H.

    2010-01-01

    As neuronal progenitors differentiate into neurons, they acquire a unique set of transcription factors. The transcriptional repressor REST prevents progenitors from undergoing differentiation. Notably, REST binding sites are often associated with retinal ganglion cell (RGC) genes whose expression in the retina is positively controlled by Atoh7, a factor essential for RGC formation. The key regulators that enable a retinal progenitor cell (RPC) to commit to an RGC fate have not been identified. We show here that REST suppresses RGC gene expression in RPCs. REST inactivation causes aberrant expression of RGC transcription factors in proliferating RPCs, independent of Atoh7, resulting in increased RGC formation. Strikingly, inactivating REST in Atoh7-null retinas restores transcription factor expression, which partially activates downstream RGC genes but is insufficient to prevent RGC loss. Our results demonstrate an Atoh7-independent program for initial activation of RGC genes and suggest a novel role for REST in preventing premature expression in RPCs. PMID:20969844

  13. Transient Expression of Fez Family Zinc Finger 2 Protein Regulates the Brn3b Gene in Developing Retinal Ganglion Cells.

    PubMed

    Qu, Chunsheng; Bian, Dandan; Li, Xue; Xiao, Jian; Wu, Chunping; Li, Yue; Jiang, Tian; Zhou, Xiangtian; Qu, Jia; Chen, Jie-Guang

    2016-04-01

    Retinal ganglion cells (RGCs) are projection neurons in the neural retina that relay visual information from the environment to the central nervous system. The early expression of MATH5 endows the post-mitotic precursors with RGC competence and leads to the activation ofBrn3bthat marks committed RGCs. Nevertheless, this fate commitment process and, specifically, regulation ofBrn3bremain elusive. To explore the molecular mechanisms underlying RGC generation in the mouse retina, we analyzed the expression and function of Fez family zinc finger 2 (FEZF2), a transcription factor critical for the development of projection neurons in the cerebral cortex.Fezf2mRNA and protein were transiently expressed at embryonic day 16.5 in the inner neuroblast layer and the prospective ganglion cell layer of the retina, respectively. Knockout ofFezf2in the developing retina reduced BRN3B+ cells and increased apoptotic cell markers.Fezf2knockdown by retinalin uteroelectroporation diminished BRN3B but not the coexpressed ISLET1 and BRN3A, indicating that the BRN3B decrease was the cause, not the result, of the overall reduction of BRN3B+ RGCs in theFezf2knockout retina. Moreover, the mRNA and promoter activity ofBrn3bwere increasedin vitroby FEZF2, which bound to a 5' regulatory fragment in theBrn3bgenomic locus. These results indicate that transient expression ofFezf2in the retina modulates the transcription ofBrn3band the survival of RGCs. This study improves our understanding of the transcriptional cascade required for the specification of RGCs and provides novel insights into the molecular basis of retinal development.

  14. Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina

    PubMed Central

    Liu, Jian K.; Gollisch, Tim

    2015-01-01

    When visual contrast changes, retinal ganglion cells adapt by adjusting their sensitivity as well as their temporal filtering characteristics. The latter has classically been described by contrast-induced gain changes that depend on temporal frequency. Here, we explored a new perspective on contrast-induced changes in temporal filtering by using spike-triggered covariance analysis to extract multiple parallel temporal filters for individual ganglion cells. Based on multielectrode-array recordings from ganglion cells in the isolated salamander retina, we found that contrast adaptation of temporal filtering can largely be captured by contrast-invariant sets of filters with contrast-dependent weights. Moreover, differences among the ganglion cells in the filter sets and their contrast-dependent contributions allowed us to phenomenologically distinguish three types of filter changes. The first type is characterized by newly emerging features at higher contrast, which can be reproduced by computational models that contain response-triggered gain-control mechanisms. The second type follows from stronger adaptation in the Off pathway as compared to the On pathway in On-Off-type ganglion cells. Finally, we found that, in a subset of neurons, contrast-induced filter changes are governed by particularly strong spike-timing dynamics, in particular by pronounced stimulus-dependent latency shifts that can be observed in these cells. Together, our results show that the contrast dependence of temporal filtering in retinal ganglion cells has a multifaceted phenomenology and that a multi-filter analysis can provide a useful basis for capturing the underlying signal-processing dynamics. PMID:26230927

  15. α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension

    PubMed Central

    Wang, Xiaolei; Su, Jier; Ding, Jingwen; Han, Song; Ma, Wei; Luo, Hong; Hughes, Guy; Meng, Zhaoyang; Yin, Yi; Wang, Yanling; Li, Junfa

    2016-01-01

    Objective Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms. Materials and methods In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot. Results In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH. Conclusion In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma. PMID:27799744

  16. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    PubMed Central

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  17. Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat.

    PubMed

    Galindo-Romero, C; Jiménez-López, M; García-Ayuso, D; Salinas-Navarro, M; Nadal-Nicolás, F M; Agudo-Barriuso, M; Villegas-Pérez, M P; Avilés-Trigueros, M; Vidal-Sanz, M

    2013-03-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light and are responsible of the synchronization of the circadian rhythm with the photic stimulus and for the pupillary light reflex. To quantify the total population of rat-ipRGCs and to assess their spatial distribution we have developed an automated routine and used neighbour maps. Moreover, in all analysed retinas we have studied the general population of RGCs - identified by their Brn3a expression - and the population of ipRGCs - identified by melanopsin immunodetection - thus allowing the co-analysis of their topography. Our results show that the total mean number ± standard deviation of ipRGCs in the albino rat is 2047 ± 309. Their distribution in the retina seems to be complementary to that of Brn3a(+)RGCs, being denser in the periphery, especially in the superior retina where their highest densities are found in the temporal quadrant, above the visual streak. In addition, by tracing the retinas from both superior colliculi, we have also determined that 90.62% of the ipRGC project to these central targets.

  18. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina.

    PubMed

    Pérez de Sevilla Müller, Luis; Sargoy, Allison; Fernández-Sánchez, Laura; Rodriguez, Allen; Liu, Janelle; Cuenca, Nicolás; Brecha, Nicholas

    2015-07-01

    High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.

  19. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina

    PubMed Central

    Müller, Luis Pérez de Sevilla; Sargoy, Allison; Fernández-Sánchez, Laura; Rodriguez, Allen; Liu, Janelle; Cuenca, Nicolás; Brecha, Nicholas

    2015-01-01

    High voltage activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes including the influx of extracellular Ca2+, neurotransmitter release, gene transcription and synaptic plasticity. These channels consist of a primary α1 pore-forming subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study, using RT-PCR a single band at ~305 bp corresponding to the predicted size of the α2δ3 subunit fragment was in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123 kDa band. Immunohistochemistry using an affinity purified antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer (GCL) and inner nuclear layer (INL), and immunoreactive processes in the inner plexiform layer (IPL) and the outer plexiform layer (OPL). α2δ3 immunoreactivity was localized to multiple cell types, including ganglion, amacrine and bipolar cells, and photoreceptors, but not by horizontal cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests this subunit participates widely in Ca channel-mediated signaling in the retina. PMID:25631988

  20. Neuroprotective effects of lutein in the retina.

    PubMed

    Ozawa, Yoko; Sasaki, Mariko; Takahashi, Noriko; Kamoshita, Mamoru; Miyake, Seiji; Tsubota, Kazuo

    2012-01-01

    Although a large variety of pharmaceutical therapies for treating disease have been developed in recent years, there has been little progress in disease prevention. In particular, the protection of neural tissue is essential, because it is hardly regenerated. The use of nutraceuticals for maintaining the health has been supported by several clinical studies, including cross-sectional and interventional studies for age-related macular disease. However, mechanistic evidence for their effects at the molecular level has been very limited. In this review, we focus on lutein, which is a xanthophyll type of carotenoid. Lutein is not synthesized in mammals, and must be obtained from the diet. It is delivered to the retina, and in humans, it is concentrated in the macula. Here, we describe the neuroprotective effects of lutein and their underlying molecular mechanisms in animal models of vision-threatening diseases, such as innate retinal inflammation, diabetic retinopathy, and light-induced retinal degeneration. In lutein-treated mouse ocular disease models, oxidative stress in the retina is reduced, and its downstream pathological signals are inhibited. Furthermore, degradation of the functional proteins, rhodopsin (a visual substance) and synaptophysin (a synaptic vesicle protein also influenced in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease), the depletion of brain-derived neurotrophic factor (BDNF), and DNA damage are prevented by lutein, which preserves visual function. We discuss the possibility of using lutein, an antioxidant, as a neuroprotective treatment for humans.

  1. Neuroprotective Effects of Lutein in the Retina

    PubMed Central

    Ozawa, Yoko; Sasaki, Mariko; Takahashi, Noriko; Kamoshita, Mamoru; Miyake, Seiji; Tsubota, Kazuo

    2012-01-01

    Although a large variety of pharmaceutical therapies for treating disease have been developed in recent years, there has been little progress in disease prevention. In particular, the protection of neural tissue is essential, because it is hardly regenerated. The use of nutraceuticals for maintaining the health has been supported by several clinical studies, including cross-sectional and interventional studies for age-related macular disease. However, mechanistic evidence for their effects at the molecular level has been very limited. In this review, we focus on lutein, which is a xanthophyll type of carotenoid. Lutein is not synthesized in mammals, and must be obtained from the diet. It is delivered to the retina, and in humans, it is concentrated in the macula. Here, we describe the neuroprotective effects of lutein and their underlying molecular mechanisms in animal models of vision-threatening diseases, such as innate retinal inflammation, diabetic retinopathy, and light-induced retinal degeneration. In lutein-treated mouse ocular disease models, oxidative stress in the retina is reduced, and its downstream pathological signals are inhibited. Furthermore, degradation of the functional proteins, rhodopsin (a visual substance) and synaptophysin (a synaptic vesicle protein also influenced in other neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease), the depletion of brain-derived neurotrophic factor (BDNF), and DNA damage are prevented by lutein, which preserves visual function. We discuss the possibility of using lutein, an antioxidant, as a neuroprotective treatment for humans. PMID:22211688

  2. Mapping nonlinear receptive field structure in primate retina at single cone resolution.

    PubMed

    Freeman, Jeremy; Field, Greg D; Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam; Simoncelli, Eero P; Chichilnisky, E J

    2015-10-30

    The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits.

  3. An amacrine cell circuit for signaling steady illumination in the retina

    PubMed Central

    Jacoby, Jason; Zhu, Yongling; DeVries, Steven H.; Schwartz, Gregory

    2015-01-01

    Summary Decades of research have focused on the circuit connectivity between retinal neurons, yet only a handful of amacrine cells have been described functionally and placed in the context of a specific retinal circuit. Here we identify a circuit where inhibition from a specific amacrine cell plays a vital role in shaping the feature selectivity of a postsynaptic ganglion cell. We record from transgenically labeled CRH-1 amacrine cells and identify a postsynaptic target for CRH-1 amacrine cell inhibition in an atypical retinal ganglion cell (RGC) in mouse retina, the Suppressed-by-Contrast (SbC) RGC. Unlike other RGC types, SbC RGCs spike tonically in steady illumination and are suppressed by both increases and decreases in illumination. Inhibition from GABAergic CRH-1 amacrine cells shapes this unique contrast response profile to positive contrast. We show the existence and impact of this circuit with both paired recordings and cell-type specific ablation. PMID:26711334

  4. Improved spike sorting for multi-electrode array data from mammalian retina

    NASA Astrophysics Data System (ADS)

    Prentice, Jason; Homann, Jan; Simmons, Kristy; Tkacik, Gasper; Balasubramanian, Vijay; Nelson, Philip

    2010-03-01

    Multi-electrode array technology provides an efficient means of simultaneously recording from many neurons. However, as arrays become larger, a greater computational burden falls on the spike-sorting algorithm. We have developed a new method for sorting multi-electrode signals and applied it to retinal ganglion cells. Our method is explicitly designed to scale well with increasing array size. It can dissect temporally overlapping spikes and accommodate the amplitude variation seen in spike bursts. The broad outline of our method is to (1) identify spikes in the raw data, cluster a subset, generate template waveforms, then (2) fit the templates to all the data using an iterative Bayesian algorithm. Each of these two steps makes use of the 2D spatial arrangement of the ganglion cells and electrodes, and the locality of signals from each individual cell. We demonstrate the method on data recorded from guinea pig retina on a 30-electrode array.

  5. Patch clamp recording of starburst amacrine cells in a flat-mount preparation of deafferentated mouse retina

    PubMed Central

    Tu, Hung-Ya; Hsu, Chih-Chun; Chen, Yu-Jiun

    2016-01-01

    SHORT ABSTRACT This protocol demonstrates how to perform whole-cell patch clamp recording on retinal neurons from a flat-mount preparation. LONG ABSTRACT The mammalian retina is a layered tissue composed of multiple neuronal types. To understand how visual signals are processed within its intricate synaptic network, electrophysiological recordings are frequently used to study connections among individual neurons. We have optimized a flat-mount preparation for patch clamp recording of genetically marked neurons in both GCL (ganglion cell layer) and INL (inner nuclear layer) of mouse retinas. Recording INL neurons in flat-mounts is favored over slices because both vertical and lateral connections are preserved in the former configuration, allowing retinal circuits with large lateral components to be studied. We have used this procedure to compare responses of mirror-partnered neurons in retinas such as the cholinergic starburst amacrine cells (SACs). PMID:27768050

  6. Distribution of mammalian-like melanopsin in cyclostome retinas exhibiting a different extent of visual functions.

    PubMed

    Sun, Lanfang; Kawano-Yamashita, Emi; Nagata, Takashi; Tsukamoto, Hisao; Furutani, Yuji; Koyanagi, Mitsumasa; Terakita, Akihisa

    2014-01-01

    Mammals contain 1 melanopsin (Opn4) gene that is expressed in a subset of retinal ganglion cells to serve as a photopigment involved in non-image-forming vision such as photoentrainment of circadian rhythms. In contrast, most nonmammalian vertebrates possess multiple melanopsins that are distributed in various types of retinal cells; however, their functions remain unclear. We previously found that the lamprey has only 1 type of mammalian-like melanopsin gene, which is similar to that observed in mammals. Here we investigated the molecular properties and localization of melanopsin in the lamprey and other cyclostome hagfish retinas, which contribute to visual functions including image-forming vision and mainly to non-image-forming vision, respectively. We isolated 1 type of mammalian-like melanopsin cDNA from the eyes of each species. We showed that the recombinant lamprey melanopsin was a blue light-sensitive pigment and that both the lamprey and hagfish melanopsins caused light-dependent increases in calcium ion concentration in cultured cells in a manner that was similar to that observed for mammalian melanopsins. We observed that melanopsin was distributed in several types of retinal cells, including horizontal cells and ganglion cells, in the lamprey retina, despite the existence of only 1 melanopsin gene in the lamprey. In contrast, melanopsin was almost specifically distributed to retinal ganglion cells in the hagfish retina. Furthermore, we found that the melanopsin-expressing horizontal cells connected to the rhodopsin-containing short photoreceptor cells in the lamprey. Taken together, our findings suggest that in cyclostomes, the global distribution of melanopsin in retinal cells might not be related to the melanopsin gene number but to the extent of retinal contribution to visual function.

  7. Distribution of Mammalian-Like Melanopsin in Cyclostome Retinas Exhibiting a Different Extent of Visual Functions

    PubMed Central

    Sun, Lanfang; Kawano-Yamashita, Emi; Nagata, Takashi; Tsukamoto, Hisao; Furutani, Yuji; Koyanagi, Mitsumasa; Terakita, Akihisa

    2014-01-01

    Mammals contain 1 melanopsin (Opn4) gene that is expressed in a subset of retinal ganglion cells to serve as a photopigment involved in non-image-forming vision such as photoentrainment of circadian rhythms. In contrast, most nonmammalian vertebrates possess multiple melanopsins that are distributed in various types of retinal cells; however, their functions remain unclear. We previously found that the lamprey has only 1 type of mammalian-like melanopsin gene, which is similar to that observed in mammals. Here we investigated the molecular properties and localization of melanopsin in the lamprey and other cyclostome hagfish retinas, which contribute to visual functions including image-forming vision and mainly to non-image-forming vision, respectively. We isolated 1 type of mammalian-like melanopsin cDNA from the eyes of each species. We showed that the recombinant lamprey melanopsin was a blue light-sensitive pigment and that both the lamprey and hagfish melanopsins caused light-dependent increases in calcium ion concentration in cultured cells in a manner that was similar to that observed for mammalian melanopsins. We observed that melanopsin was distributed in several types of retinal cells, including horizontal cells and ganglion cells, in the lamprey retina, despite the existence of only 1 melanopsin gene in the lamprey. In contrast, melanopsin was almost specifically distributed to retinal ganglion cells in the hagfish retina. Furthermore, we found that the melanopsin-expressing horizontal cells connected to the rhodopsin-containing short photoreceptor cells in the lamprey. Taken together, our findings suggest that in cyclostomes, the global distribution of melanopsin in retinal cells might not be related to the melanopsin gene number but to the extent of retinal contribution to visual function. PMID:25251771

  8. Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina

    PubMed Central

    Lee, Sammy C.S.; Meyer, Arndt; Schubert, Timm; Hüser, Laura; Dedek, Karin; Haverkamp, Silke

    2015-01-01

    Amacrine cells comprise ~30 morphological types in the mammalian retina. The synaptic connectivity and function of a few GABAergic wide-field amacrine cells have recently been studied, however, with the exception of the rod pathway-specific AII amacrine cell the connectivity of glycinergic small-field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small-field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A-type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. Taken together, the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway-specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A-type ganglion cells. PMID:25630271

  9. Optical properties of retinal tissue and the potential of adaptive optics to visualize retinal ganglion cells in vivo.

    PubMed

    Prasse, Martina; Rauscher, Franziska Georgia; Wiedemann, Peter; Reichenbach, Andreas; Francke, Mike

    2013-08-01

    Many efforts have been made to improve the diagnostic tools used to identify and to estimate the progress of ganglion cell and nerve fibre degeneration in glaucoma. Imaging by optical coherence tomography and measurements of the dimensions of the optic nerve head and the nerve fibre layer in central retinal areas is currently used to estimate the grade of pathological changes. The visualization and quantification of ganglion cells and nerve fibres directly in patients would dramatically improve glaucoma diagnostics. We have investigated the optical properties of cellular structures of retinal tissue in order to establish a means of visualizing and quantifying ganglion cells in the living retina without staining. We have characterized the optical properties of retinal tissue in several species including humans. Nerve fibres, blood vessels, ganglion cells and their cell processes have been visualized at high image resolution by means of the reflection mode of a confocal laser scanning microscope. The potential of adaptive optics in current imaging systems and the possibilities of imaging single ganglion cells non-invasively in patients are discussed.

  10. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  11. Neuronal and macrophagic nitric oxide synthase isoforms distribution in normal rat retina.

    PubMed

    López-Costa, J J; Goldstein, J; Saavedra, J P

    1997-09-05

    A detailed study about the distribution of nitric oxide synthase (NOS) isoforms, neuronal NOS (nNOS) and macrophagic NOS (mNOS), in normal rat retina was performed using immunocytochemistry by employing specific antibodies. The nNOS immunocytochemistry showed immunoreactive amacrine cells, fibres in inner and outer plexiform layers (IPL and OPL) and an immunostained band corresponding to inner photoreceptor segments (IPS). This was in agreement with NADPH-d histochemical results. mNOS immunoreactivity was found in cell somas localized in both, inner nuclear layer (INL) and ganglion cell layer (GCL), in slender Müller cell processes along IPL and GCL and also in the band corresponding to IPS. A different distribution of nNOS and mNOS was found in rat retina although both isoforms of NOS are co-localized in IPS.

  12. Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency

    NASA Astrophysics Data System (ADS)

    Dacey, Dennis M.; Lee, Barry B.; Stafford, Donna K.; Pokorny, Joel; Smith, Vivianne C.

    1996-02-01

    The chromatic dimensions of human color vision have a neural basis in the retina. Ganglion cells, the output neurons of the retina, exhibit spectral opponency; they are excited by some wavelengths and inhibited by others. The hypothesis that the opponent circuitry emerges from selective connections between horizontal cell interneurons and cone photoreceptors sensitive to long, middle, and short wavelengths (L-, M-, and S-cones) was tested by physiologically and anatomically characterizing cone connections of horizontal cell mosaics in macaque monkeys. H1 horizontal cells received input only from L- and M-cones, whereas H2 horizontal cells received a strong input from S-cones and a weaker input from L- and M-cones. All cone inputs were the same sign, and both horizontal cell types lacked opponency. Despite cone type selectivity, the horizontal cell cannot be the locus of an opponent transformation in primates, including humans.

  13. Modeling laser damage to the retina

    NASA Astrophysics Data System (ADS)

    Clark, Clifton D.

    significantly for wavelengths in the near infrared due to an increase in the absorption coefficient for these long wavelengths. This means that less energy actually reaches the retina, but it also means that more energy is absorbed by the vitreous which can lead to significant temperature rises. The refractive index of water is known to depend on temperature, and the vitreous has very similar optical properties to water, so temperature gradients in the vitreous lead to refractive index gradients that act as a lens. Since the refractive index of water decreases with an increase in temperature, the overall effect is to establish a negative lens that defocuses a beam inside the eye during a laser exposure. This effect is a potential protection mechanism for the retina, as it would limit the time for which a laser can be sharply focused on the retina. Our model agrees well with thermal lensing measurements that have been conducted in water and we have used it to predict the retinal damage threshold as a function of exposure duration for 1318 nm exposures at various beam diameters. The model predicts that the damage threshold remains constant after some exposure time, which depends on the beam diameter. This is due mainly to the fact the retinal temperature rise is limited by the thermal lens and reaches a peak value in a relatively short time (on the order of 10 ms), which limits the amount of time that a laser exposure can cause damage. Finally, in Chapter 6 we describe the first steps we have taken in building a comprehensive short pulse retina damage model. Currently, no model capable of predicting retinal damage outcome based on the exposure parameters at the cornea exists. Models of possible damage mechanisms do exist (the damage mechanism for pulses less than about 1 mus are non-thermal), but these models assume that the exposure parameters are known at the absorption site (the retina). We have constructed a configurable, linear short pulse propagation model, that is capable

  14. Ontogenetic changes in retinal ganglion cell distribution and spatial resolving power in the brown-banded bamboo shark Chiloscyllium punctatum (Elasmobranchii).

    PubMed

    Harahush, Blake K; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    The development of the visual system in anamniotic vertebrates is a continual process, allowing for ontogenetic changes in retinal topography and spatial resolving power. We examined the number and distribution of retinal ganglion cells in wholemounted retinae throughout the protracted embryonic development (∼5 months) of a chondrichthyan, i.e. the brown-banded bamboo shark Chiloscyllium punctatum, from the beginning of retinal cell differentiation (approximately halfway through embryogenesis) to adulthood. We also identified and quantified the number of apoptosed cells within the ganglion cell layer to evaluate the contribution of apoptosis to changes in retinal topography. C. punctatum undergoes rapid changes in ganglion cell distribution during embryogenesis, where high levels of apoptosis, especially around the retinal periphery, result in relative increases in ganglion cell density in the central retina which progressively extend nasally and temporally to form a meridional band at hatching. After hatching, C. punctatum forms and maintains a horizontal streak, showing only minor changes in topography during growth, with basal levels of apoptosis. The total number of retinal ganglion cells reaches 547,881 in adult sharks, but the mean (3,228 cells·mm(-2)) and peak (4,983 cells·mm(-2)) retinal ganglion cell densities are highest around the time of hatching. Calculated estimates of spatial resolving power, based on ganglion cell spacing (assuming a hexagonal mosaic) and assessment of the focal length from cryosections of the eye, increase from 1.47 cycles·degree(-1) during embryogenesis to 4.29 cycles·degree(-1) in adults. The increase in spatial resolving power across the retinal meridian would allow this species to hunt and track faster, more mobile prey as it reaches maturity.

  15. Hazardous effects of fried potato chips on the development of retina in albino rats

    PubMed Central

    El-Sayyad, Hassan I; Sakr, Saber A; Badawy, Gamal M; Afify, Hanaa S

    2011-01-01

    Objective To evaluate the hazardous effects of fried potato chips upon the retina of two developmental stages of the albino rats aged 7 and 14 days from parturition. Methods Pregnant rats were arranged into two groups: control pregnant rats and consequently their delivered newborns until reaching 7 and 14 days old from parturition and fried potato chips group in which pregnant rats at the 6th day of gestation maintained on diet formed of fried potato chips supplied from the market mixed with standard diet at a concentration of 50% per each till 7 and 14 post-partum. Three fold integrated approaches were adopted, namely, histological, ultrastructural and proteomic analysis. Results Histological examination of the retina of the experimental offsprings revealed many histopathological changes, including massive degeneration, vacuolization and cell loss in the ganglion cell layer, as well as general reduction in retinal size. At the ultrastructural level, the retina of experimental offsprings exhibited number of deformities, including ill differentiated and degenerated nuclear layer, malformed and vacuolated pigment epithelium with vesiculated and fragmented rough endoplasmic reticulum, degenerated outer segment of photoreceptors, as well as swollen choriocapillaris and loss of neuronal cells. Proteomic analysis of retina of the two experimental developmental stages showed variations in the expressed proteins as a result of intoxication which illustrated the adverse toxic effects of fried potato chips upon the retina. Conclusions It can be concluded that the effect of fried potato chips on the development of retina in rats may be due to the presence of acrylamide or its metabolite. PMID:23569770

  16. High-resolution electrical stimulation of primate retina for epiretinal implant design

    PubMed Central

    Sekirnjak, Chris; Hottowy, Pawel; Sher, Alexander; Dabrowski, Wladyslaw; Litke, A. M.; Chichilnisky, E. J.

    2009-01-01

    The development of retinal implants for the blind depends crucially on understanding how neurons in the retina respond to electrical stimulation. This study used multi-electrode arrays to stimulate ganglion cells in the peripheral macaque retina, which is very similar to the human retina. Analysis was restricted to parasol cells, which form one of the major high-resolution visual pathways in primates. Individual cells were characterized using visual stimuli, and subsequently targeted for electrical stimulation using electrodes 9-15 microns in diameter. Results were accumulated across 16 ON and 9 OFF parasol cells. At threshold, all cells responded to biphasic electrical pulses 0.05-0.1 ms in duration by firing a single spike with latency lower than 0.35 ms. The average threshold charge density was 0.050 ± 0.005 mC/cm2, significantly below established safety limits for platinum electrodes. ON and OFF ganglion cells were stimulated with similar efficacy. Repetitive stimulation elicited spikes within a 0.1 ms time window, indicating that the high temporal precision necessary for spike-by-spike stimulation can be achieved in primate retina. Spatial analysis of observed thresholds suggests that electrical activation occurred near the axon hillock, and that dendrites contributed little. Finally, stimulation of a single parasol cell produced little or no activation of other cells in the ON and OFF parasol cell mosaics. The low-threshold, temporally precise, and spatially specific responses hold promise for the application of high density arrays of small electrodes in epiretinal implants. PMID:18434523

  17. Morphologic maturation of tachykinin peptide-expressing cells in the postnatal rabbit retina.

    PubMed

    Casini, G; Trasarti, L; Andolfi, L; Bagnoli, P

    1997-04-18

    Tachykinin (TK) peptides, which include substance P, neurokinin A, two neurokinin A-related peptides and neurokinin B, are widely present in the nervous system, including the retina, where they act as neurotransmitters/modulators as well as growth factors. In the present study, we investigated the maturation of TK-immunoreactive (IR) cells in the rabbit retina with the aim of further contributing to the knowledge of the development of transmitter-identified retinal cell populations. In the adult retina, the pattern of TK immunostaining is consistent with the presence of TK peptides in amacrine, displaced amacrine, interplexiform and ganglion cells. In the newborn retina, intensely immunostained TK-IR somata are located in the ganglion cell layer (GCL) and in the inner nuclear layer (INL) adjacent to the inner plexiform layer (IPL). They are characterized by an oval-shaped cell body originating a single process without ramifications. TK-IR processes are occasionally observed in the IPL and in the outer plexiform layer (OPL). Long TK-IR fiber bundles are observed in the ganglion cell axon layer. TK-IR profiles resembling small somata are rarely observed in the INL adjacent to the OPL. At postnatal day (PND) 2, some TK-IR cells display more complex morphologic features, including processes with secondary ramifications. Long TK-IR processes in the IPL are often seen to terminate with growth cones. Between PND 6 and PND 11 (eye opening), there is a dramatic increase in the number of immunolabeled processes with growth cones both in the IPL and in the OPL and the mature lamination of TK-IR fibers in laminae 1, 3 and 5 of the IPL is established. TK-IR cells attain mature morphological characteristics and the rare, putative TK-IR somata in the distal INL are no longer observed. After eye opening, growth cones are not present and the pattern typical of the adult is reached. These observations indicate that the development of TK-IR cells can be divided into an early phase

  18. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species

    PubMed Central

    Amann, Barbara; Kleinwort, Kristina J. H.; Hirmer, Sieglinde; Sekundo, Walter; Kremmer, Elisabeth; Hauck, Stefanie M.; Deeg, Cornelia A.

    2016-01-01

    Aquaporins (AQPs) are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11. PMID:27438827

  19. Onecut1 and Onecut2 Play Critical Roles in the Development of the Mouse Retina

    PubMed Central

    Chowdhury, Rebecca; Trimarchi, Jeffrey M.

    2014-01-01

    The entire repertoire of intrinsic factors that control the cell fate determination process of specific retinal neurons has yet to be fully identified. Single cell transcriptome profiling experiments of retinal progenitor cells revealed considerable gene expression heterogeneity between individual cells, especially among different classes of transcription factors. In this study, we show that two of those factors, Onecut1 and Onecut2, are expressed during mouse retinal development. Using mice that are deficient for each of these transcription factors, we further demonstrate a significant loss (∼70–80%) of horizontal cells in the absence of either of these proteins, while the other retinal cells appear at normal numbers. Microarray profiling experiments performed on knockout retinas revealed defects in horizontal cell genes as early as E14.5. Additional profiling assays showed an upregulation of several stress response genes in the adult Onecut2 knockout, suggesting that the integrity of the retina is compromised in the absence of normal numbers of horizontal cells. Interestingly, melanopsin, the gene coding for the photopigment found in photosensitive ganglion cells, was observed to be upregulated in Onecut1 deficient retinas, pointing to a possible regulatory role for Onecut1. Taken together, our data show that similar to Onecut1, Onecut2 is also necessary for the formation of normal numbers of horizontal cells in the developing retina. PMID:25313862

  20. Experimental and theoretical investigations concerning a frequency filter behavior of the human retina regarding electric pulse currents. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Meier-Koll, A.

    1979-01-01

    Investigation involving patients with injuries in the visual nervous system are discussed. This led to the identification of the epithelial ganglion of the retina as a frequency filter. Threshold curves of the injured visual organs were compared with threshold curves obtained with a control group as a basis for identification. A model which considers the epithelial ganglion as a homogeneous cell layer in which adjacent neurons interact is discussed. It is shown the behavior of the cells against alternating exciting currents can be explained.

  1. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder

    PubMed Central

    Roecklein, Kathryn A.; Wong, Patricia M.; Miller, Megan A.; Donofry, Shannon D.; Kamarck, Marissa L.; Brainard, George C.

    2013-01-01

    ROECKLEIN, K.A., WONG, P.M., MILLER, M.A., DONOFRY, S.D., KAMARCK, M.L., BRAINARD, G.C. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder…NEUROSCI BIOBEHAV REV x(x) XXX-XXX, 2012. In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1–2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. PMID:23286902

  2. Morphological properties of mouse retinal ganglion cells during postnatal development.

    PubMed

    Coombs, Julie L; Van Der List, Deborah; Chalupa, Leo M

    2007-08-20

    Quantitative methods were used to assess dendritic stratification and other structural features of developing mouse retinal ganglion cells from birth to after eye opening. Cells were labeled by transgenic expression of yellow fluorescent protein, DiOlistics or diffusion of DiI, and subsequently imaged in three dimensions on a confocal microscope followed by morphometric analysis of 13 different structural properties. At postnatal day 1 (P1), the dendrites of all cells ramified across the vertical extent of the inner plexiform layer (IPL). By P3/4, dendrites were largely confined to different strata of the IPL. The stratification of dendrites initially reflected a retraction of widely ramifying dendritic processes, but for the most part this was due to the subsequent vertical expansion of the IPL. By P8, distinct cell classes could be recognized, although these had not yet attained adult-like properties. The structural features differentiating cell classes were found to follow three different developmental trends. The mean values of one set of morphological parameters were essentially unchanged throughout postnatal development; another set of measures showed a rapid rise with age to adult values; and a third set of measures first increased with age and later decreased, with the regressive events initiated around the time of eye opening. These findings suggest that the morphological development of retinal ganglion cells is regulated by diverse factors operating during different but overlapping time periods. Our results also suggest that dendritic stratification may be more highly specified in the developing mammalian retina than has been previously realized.

  3. Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor

    PubMed Central

    Morillo, Sandra M.; Escoll, Pedro; de la Hera, Antonio; Frade, José M.

    2009-01-01

    A subset of neurons in the normal vertebrate nervous system contains double the normal amount of DNA in their nuclei. These neurons are all thought to derive from aberrant mitoses in neuronal precursor cells. Here we show that endogenous NGF induces DNA replication in a subpopulation of differentiating chick retinal ganglion cells that express both the neurotrophin receptor p75 and the E2F1 transcription factor, but that lack the retinoblastoma protein. Many of these neurons avoid G2/M transition and remain alive in the retina as tetraploid cells with large cell somas and extensive dendritic trees, and most of them express β2 nicotinic acetylcholine receptor subunits, a specific marker of retinal ganglion cells innervating lamina F in the stratum-griseum-et-fibrosum-superficiale of the tectal cortex. Tetraploid neurons were also observed in the adult mouse retina. Thus, a developmental program leading to somatic tetraploidy in specific retinal neurons exists in vertebrates. This program might occur in other vertebrate neurons during normal or pathological situations. PMID:20018664

  4. THE INJURY RESISTANT ABILITY OF MELANOPSIN-EXPRESSING INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION CELLS

    PubMed Central

    Cui, Q.; Ren, C.; Sollars, P. J.; Pickard, G. E.; So, K.-F.

    2015-01-01

    Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions. PMID:25446359

  5. Eye Histology and Ganglion Cell Topography of Northern Elephant Seals (Mirounga angustirostris).

    PubMed

    Smodlaka, Hrvoje; Khamas, Wael A; Palmer, Lauren; Lui, Bryan; Borovac, Josip A; Cohn, Brian A; Schmitz, Lars

    2016-06-01

    Northern elephant seals are one of the deepest diving marine mammals. As northern elephant seals often reach the bathypelagic zone, it is usually assumed that their eyes possess evolutionary adaptations that provide better ability to see in dim or scotopic environments. The purpose of this study was to carefully describe anatomical and histological traits of the eye that may improve light sensitivity. Northern elephant seals have large, somewhat elliptical eyes, with equatorial and anteroposterior diameters of 5.03 and 4.4 cm, respectively. The cornea is large in diameter and the lens is completely spherical. The iris has pronounced constrictor and dilator muscles, whereas the ciliary muscle is notably less developed. The tapetum lucidum is more prominent than in other pinnipeds, making up about 63% of retinal thickness in the posterior aspect of the globe. Within the retina, the pigmented epithelium lacks pigment except for the region close to the ora serrata. Parts of the photoreceptor and outer nuclear layers are folded. Although the photoreceptor layer is composed predominantly of rods, cone photoreceptors were also observed. Cells within the retinal ganglion cell layer are arranged in a single level. Ganglion cells reach their maximum density (∼1,300 cells per mm(2) ) dorsal to the optic disc, whereas the periphery of the retina is sparsely populated (<100 cells per mm(2) ). All above mentioned features are consistent with the predicted evolutionary adaptations to the photic environment of the bathypelagic zone. Anat Rec, 299:798-805, 2016. © 2016 Wiley Periodicals, Inc.

  6. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors.

    PubMed

    Sodhi, Puneet; Hartwick, Andrew T E

    2016-09-01

    Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.

  7. Melanopsin retinal ganglion cell loss in Alzheimer disease

    PubMed Central

    Ross‐Cisneros, Fred N.; Koronyo, Yosef; Hannibal, Jens; Gallassi, Roberto; Cantalupo, Gaetano; Sambati, Luisa; Pan, Billy X.; Tozer, Kevin R.; Barboni, Piero; Provini, Federica; Avanzini, Pietro; Carbonelli, Michele; Pelosi, Annalisa; Chui, Helena; Liguori, Rocco; Baruzzi, Agostino; Koronyo‐Hamaoui, Maya; Sadun, Alfredo A.; Carelli, Valerio

    2015-01-01

    Objective Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer disease (AD). We investigated mRGCs in AD, hypothesizing that they contribute to circadian dysfunction. Methods We assessed retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT) in 21 mild‐moderate AD patients, and in a subgroup of 16 we evaluated rest–activity circadian rhythm by actigraphy. We studied postmortem mRGCs by immunohistochemistry in retinas, and axons in optic nerve cross‐sections of 14 neuropathologically confirmed AD patients. We coimmunostained for retinal amyloid β (Aβ) deposition and melanopsin to locate mRGCs. All AD cohorts were compared with age‐matched controls. Results We demonstrated an age‐related optic neuropathy in AD by OCT, with a significant reduction of RNFL thickness (p = 0.038), more evident in the superior quadrant (p = 0.006). Axonal loss was confirmed in postmortem AD optic nerves. Abnormal circadian function characterized only a subgroup of AD patients. Sleep efficiency was significantly reduced in AD patients (p = 0.001). We also found a significant loss of mRGCs in postmortem AD retinal specimens (p = 0.003) across all ages and abnormal mRGC dendritic morphology and size (p = 0.003). In flat‐mounted AD retinas, Aβ accumulation was remarkably evident inside and around mRGCs. Interpretation We show variable degrees of rest–activity circadian dysfunction in AD patients. We also demonstrate age‐related loss of optic nerve axons and specifically mRGC loss and pathology in postmortem AD retinal specimens, associated with Aβ deposition. These results all support the concept that mRGC degeneration is a contributor to circadian rhythm dysfunction in AD. ANN NEUROL 2016;79:90–109 PMID:26505992

  8. Monoamine pharmacology of the lobster cardiac ganglion.

    PubMed

    Berlind, A

    2001-03-01

    Monoamine agonists and antagonists were applied to the lobster cardiac ganglion in an attempt to clarify the different actions of 5-hydroxytryptamine (5HT) and dopamine (DA) on this rhythmic pattern generator. Experiments were designed to determine whether the similar responses to 5HT and DA applied to the anterior region of the ganglion could be separated by pharmacological approaches, and whether the different responses to 5HT applied to the anterior and posterior regions of the ganglion could be attributed to mediation by different receptors. A small number of the 5HT agonists which were tested mimic the effects of 5HT, in that they increase the frequency of bursting and decrease burst duration when applied to the whole ganglion, but decrease burst frequency and increase burst duration when applied only to the posterior half. Other 5HT agonists decrease frequency and prolong bursts when applied to the whole ganglion. Of the DA agonists tested, none acts as DA itself does. Rather, they mimic the effects of 5HT applied to the posterior ganglion, by slowing bursting and prolonging bursts. The actions of agonists do not correspond in any clear way to the receptor specificities as defined in vertebrates. Most antagonists tested do not show similar specificities to their effects in vertebrates. In particular, most of the DA antagonists tested are more effective in blocking exogenous 5HT than DA. One monoamine agonist directly alters the properties of endogenous burst-organizing potentials (driver potentials) in the motorneurons of the ganglion.

  9. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina

    PubMed Central

    Prigge, Cameron L.; Yeh, Po-Ting; Liou, Nan-Fu; Lee, Chi-Chan; You, Shih-Feng; Liu, Lei-Lei; McNeill, David S.; Chew, Kylie S.; Hattar, Samer

    2016-01-01

    Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1–M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na+ channels; (2) this transmission is partly dependent on N-type Ca2+ channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and

  10. Internalization and synaptogenic effect of GH in retinal ganglion cells (RGCs).

    PubMed

    Fleming, Thomas; Martínez-Moreno, Carlos G; Mora, Janeth; Aizouki, Miray; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    In the chicken embryo, GH gene expression occurs in the neural retina and retinal GH promotes cell survival and induces axonal growth of retinal ganglion cells. Neuroretinal GH is therefore of functional importance before the appearance of somatotrophs and the onset of pituitary GH secretion to the peripheral plasma (at ED15-17). Endocrine actions of pituitary GH in the development and function of the chicken embryo eye are, however, unknown. This possibility has therefore been investigated in ED15 embryos and using the quail neuroretinal derived cell line (QNR/D). During this research, we studied for the first time, the coexistence of exogenous (endocrine) and local GH (autocrine/paracrine) in retinal ganglion cells (RGCs). In ovo systemic injections of Cy3-labeled GH demonstrated that GH in the embryo bloodstream was translocated into the neural retina and internalized into RGC's. Pituitary GH may therefore be functionally involved in retinal development during late embryogenesis. Cy3-labelled GH was similarly internalized into QNR/D cells after its addition into incubation media. The uptake of exogenous GH was by a receptor-mediated mechanism and maximal after 30-60min. The exogenous (endocrine) GH induced STAT5 phosphorylation and increased growth associated protein 43 (GAP43) and SNAP-25 immunoreactivity. Ex ovo intravitreal injections of Cy3-GH in ED12 embryos resulted in GH internalization and STAT5 activation. Interestingly, the CY3-labeled GH accumulated in perinuclear regions of the QNR/D cells, but was not found in the cytoplasm of neurite outgrowths, in which endogenous retinal GH is located. This suggests that exogenous (endocrine) and local (autocrine/paracrine) GH are both involved in retinal function in late embryogenesis but they co-exist in separate intracellular compartments within retinal ganglion cells.

  11. Nitric oxide differentially modulates ON and OFF responses of retinal ganglion cells.

    PubMed

    Wang, Guo-Yong; Liets, Lauren C; Chalupa, Leo M

    2003-08-01

    Several lines of evidence suggest that nitric oxide (NO) can regulate diverse retinal functions, but whether this gas is capable of modulating the visual responses of retinal output neurons has not been established. In the present study the effects of NO on rod-driven responses of retinal ganglion cells were tested by making whole cell patch-clamp recordings from morphologically identified ganglion cells in the isolated ferret retina. Bath application of L-arginine, the substrate of nitric oxide synthase, and S-nitroso-N-acetylpenicillamine, the NO donor, was found to differentially affect on and off discharge patterns. The introduction of these drugs significantly decreased visual responses of retinal ganglion cells, but the effects were more pronounced on off than on on discharges. The peak discharge rates of on responses were usually reduced by about 40%, but not completely blocked. In contrast, off responses were completely blocked in most cells. These differential effects were observed in on-off cells as well as in cells that yielded just on or off discharges. The off responses that were blocked by NO were also blocked by DL-2-amino-phosphonobutyric acid (APB) and strychnine, suggesting the involvement of the APB-sensitive rod pathway.

  12. Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation.

    PubMed

    Cowan, Cameron S; Sabharwal, Jasdeep; Seilheimer, Robert L; Wu, Samuel M

    2017-02-01

    The remarkable dynamic range of vision is facilitated by adaptation of retinal sensitivity to ambient lighting conditions. An important mechanism of sensitivity adaptation is control of the spatial and temporal window over which light is integrated. The retina accomplishes this by switching between parallel synaptic pathways with differing kinetics and degrees of synaptic convergence. However, the relative shifts in spatial and temporal integration are not well understood - particularly in the context of the antagonistic spatial surround. Here, we resolve these issues by characterizing the adaptation-induced changes to spatiotemporal integration in the linear receptive field center and surround of mouse retinal ganglion cells. While most ganglion cells lose their antagonistic spatial surround under scotopic conditions, a strong surround is maintained in a subset. We then applied a novel technique that allowed us to analyze the receptive field as a triphasic temporal filter in the center and a biphasic filter in the surround. The temporal tuning of the surround was relatively maintained across adaptation conditions compared to the center, which greatly increased its temporal integration. Though all phases of the center's triphasic temporal response slowed, some shifted significantly less. Additionally, adaptation differentially shifted ON and OFF pathway temporal tuning, reducing their asymmetry under scotopic conditions. Finally, spatial integration was significantly increased by dark adaptation in some cells while it decreased it in others. These findings provide novel insight into how adaptation adjusts visual information processing by altering fundamental properties of ganglion cell receptive fields, such as center-surround antagonism and space-time integration.

  13. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma.

    PubMed

    Fu, Q-L; Li, X; Yip, H K; Shao, Z; Wu, W; Mi, S; So, K-F

    2009-08-18

    Glaucoma is a progressive neuropathy characterized by loss of vision as a result of retinal ganglion cell (RGC) death. There are no effective neuroprotectants to treat this disorder. Brain-derived neurotrophic factor (BDNF) is well known to transiently delay RGC death in ocular hypertensive eyes. The CNS-specific leucine-rich repeat protein LINGO-1 contributes to the negative regulation to some trophic pathways. We thereby examined whether BDNF combined with LINGO-1 antagonists can promote long-term RGC survival after ocular hypertension. In this study, intraocular pressure was elevated in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. BDNF alone shows slight neuroprotection to RGCs after a long-term progress of 4 weeks following the induction of ocular hypertension. However, combination of BDNF and LINGO-1-Fc prevents RGC death in the same condition. We further identified that (1) LINGO-1 was co-expressed with BDNF receptor, TrkB in the RGCs, and (2) BDNF combined with LINGO-1-Fc activated more TrkB in the injured retina compared to BDNF alone. These results indicate that the combination of BDNF with LINGO-1 antagonist can provide long-term protection for RGCs in a chronic ocular hypertension model. TrkB may be the predominant mediator of this neuroprotection.

  14. Retinal ganglion cell distribution and spatial resolving power in the Japanese catshark Scyliorhinus torazame.

    PubMed

    Muguruma, Kaori; Takei, Shiro; Yamamoto, Naoyuki

    2013-01-01

    Topographic distribution of retinal ganglion cells (GCs) is linked with the visual capabilities and behavioral ecology of vertebrates. Studies on the distribution of different types of GCs, however, have been conducted in only a few species of elasmobranchs. In the present study, the distribution and peak cell density of GCs, and spatial resolving power (SRP) were examined in the Japanese catshark, Scyliorhinus torazame. Distinct populations of GCs were identified in the ganglion cell layer of S. torazame based on soma size: small and large GCs, which showed different spatial distribution patterns. A horizontal streak of high cell density was recognized in the dorsal retina for small GCs. The highest cell density occurred within the streak, and the peak SRPs of the three fish investigated in the present study were 2.32, 2.64, and 3.01 cycles/deg. In contrast, two spots of high cell density, or areae gigantocellulares, were identified for large GCs, one in the temporal and the other in the nasal retina. The highest cell density occurred in the temporal or nasal area gigantocellularis (SRP: 1.36, 1.55 and 1.83 cycles/deg). This is the first study reporting an elasmobranch species with a horizontal visual streak of small GCs and two areae gigantocellulares. The horizontal streak of small GCs in the dorsal retina, which serves for the inferior visual field, is likely important for food search on the bottom, and the areae gigantocellulares may be important to the detection of prey and/or predators approaching from the front or behind the catshark.

  15. A modified chronic ocular hypertension rat model for retinal ganglion cell neuroprotection.

    PubMed

    Zhong, Lichun

    2013-09-01

    This study aimed to modify a chronic ocular hypertension (OHT) rat model to screen for potential compounds to protect retinal ganglion cells (RGCs) from responding to increased intraocular pressure (IOP). A total of 266 rats were prepared and randomly grouped according to different time-points, namely, weeks 3, 8, 16, and 24. Rats were sedated and eye examination was performed to score as the corneal damage on a scale of 1 to 4. The OHT rat model was created via the injection of a hypertonic saline solution into the episcleral veins once weekly for two weeks. OHT was identified when the IOP at week 0 was [Symbol: see text] 6 mmHg than that at week -2 for the same eye. Viable RGCs were labeled by injecting 4% FluoroGold. Rats were sacrificed, and the eyes were enucleated and fixed. The fixed retinas were dissected to prepare flat whole-mounts. The viable RGCs were visualized and imaged. The IOP (mean ± SD) was calculated, and data were analyzed by the paired t-test and one-way ANOVA. The OHT model was created in 234 of 266 rats (87.97%), whereas 32 rats (12.03%) were removed from the study because of the absence of IOP elevation (11.28%) and/or corneal damage scores over 4 (0.75%). IOP was elevated by as much as 81.35% for 24 weeks. The average IOP was (16.68 ± 0.98) mmHg in non-OHT eyes (n = 234), but was (27.95 ± 0.97) mmHg in OHTeyes (n = 234). Viable RGCs in the OHT eyes were significantly decreased in a time-dependent manner by 29.41%, 38.24%, 55.32%, and 59.30% at weeks 3, 8, 16, and 24, respectively, as compared to viable RGCs in the non-OHT eyes (P < 0.05). The OHT model was successfully created in 88% of the rats. The IOP in the OHT eyes was elevated by approximately 81% for 24 weeks. The number of viable RGCs was decreased by 59% of the rats in a time-dependent manner. The modified OHT model may provide an effective and reliable method for screening drugs to protect RGCs from glaucoma.

  16. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons.

    PubMed

    Bolte, Petra; Bleibaum, Florian; Einwich, Angelika; Günther, Anja; Liedvogel, Miriam; Heyers, Dominik; Depping, Anne; Wöhlbrand, Lars; Rabus, Ralf; Janssen-Bienhold, Ulrike; Mouritsen, Henrik

    2016-01-01

    Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.

  17. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons

    PubMed Central

    Bolte, Petra; Bleibaum, Florian; Einwich, Angelika; Günther, Anja; Liedvogel, Miriam; Heyers, Dominik; Depping, Anne; Wöhlbrand, Lars; Rabus, Ralf; Janssen‐Bienhold, Ulrike; Mouritsen, Henrik

    2016-01-01

    Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism. PMID:26953791

  18. The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.

    PubMed

    Blankenship, Aaron G; Hamby, Aaron M; Firl, Alana; Vyas, Shri; Maxeiner, Stephan; Willecke, Klaus; Feller, Marla B

    2011-07-06

    Gap junction coupling synchronizes activity among neurons in adult neural circuits, but its role in coordinating activity during development is less known. The developing retina exhibits retinal waves--spontaneous depolarizations that propagate among retinal interneurons and drive retinal ganglion cells (RGCs) to fire correlated bursts of action potentials. During development, two connexin isoforms, connexin 36 (Cx36) and Cx45, are expressed in bipolar cells and RGCs, and therefore provide a potential substrate for coordinating network activity. To determine whether gap junctions contribute to retinal waves, we compared spontaneous activity patterns using calcium imaging, whole-cell recording, and multielectrode array recording in control, single-knock-out (ko) mice lacking Cx45 and double-knock-out (dko) mice lacking both isoforms. Wave frequency, propagation speed, and bias in propagation direction were similar in control, Cx36ko, Cx45ko, and Cx36/45dko retinas. However, the spontaneous firing rate of individual retinal ganglion cells was elevated in Cx45ko retinas, similar to Cx36ko retinas (Hansen et al., 2005; Torborg and Feller, 2005), a phenotype that was more pronounced in Cx36/45dko retinas. As a result, spatial correlations, as assayed by nearest-neighbor correlation and functional connectivity maps, were significantly altered. In addition, Cx36/45dko mice had reduced eye-specific segregation of retinogeniculate afferents. Together, these findings suggest that although Cx36 and Cx45 do not play a role in gross spatial and temporal propagation properties of retinal waves, they strongly modulate the firing pattern of individual RGCs, ensuring strongly correlated firing between nearby RGCs and normal patterning of retinogeniculate projections.

  19. Topographical characterization of cone photoreceptors and the area centralis of the canine retina

    PubMed Central

    Mowat, Freya M.; Petersen-Jones, Simon M.; Williamson, Helen; Williams, David L.; Luthert, Philip J.; Ali, Robin R.

    2008-01-01

    Purpose The canine is an important large animal model of human retinal genetic disorders. Studies of ganglion cell distribution in the canine retina have identified a visual streak of high density superior to the optic disc with a temporal area of peak density known as the area centralis. The topography of cone photoreceptors in the canine retina has not been characterized in detail, and in contrast to the macula in humans, the position of the area centralis in dogs is not apparent on clinical funduscopic examination. The purpose of this study was to define the location of the area centralis in the dog and to characterize in detail the topography of rod and cone photoreceptors within the area centralis. This will facilitate the investigation and treatment of retinal disease in the canine. Methods We used peanut agglutinin, which labels cone matrix sheaths and antibodies against long/medium wavelength (L/M)- and short wavelength (S)-cone opsins, to stain retinal cryosections and flatmounts from beagle dogs. Retinas were imaged using differential interference contrast imaging, fluorescence, and confocal microscopy. Within the area centralis, rod and cone size and density were quantified, and the proportion of cones expressing each cone opsin subtype was calculated. Using a grid pattern of sampling in 9 retinal flatmounts, we investigated the distribution of cones throughout the retina to predict the location of the area centralis. Results We identified the area centralis as the site of maximal density of rod and cone photoreceptor cells, which have a smaller inner segment cross-sectional area in this region. L/M opsin was expressed by the majority of cones in the retina, both within the area centralis and in the peripheral retina. Using the mean of cone density distribution from 9 retinas, we calculated that the area centralis is likely to be centered at a point 1.5 mm temporal and 0.6 mm superior to the optic disc. For clinical funduscopic examination, this

  20. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Arroyo, David A.; Kirkby, Lowry A.

    2016-01-01

    Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light

  1. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.

  2. Vasoproliferative tumours of the retina

    PubMed Central

    Heimann, H.; Bornfeld, N.; Vij, O.; Coupland, S.; Bechrakis, N.; Kellner, U.; Foerster, M.

    2000-01-01

    BACKGROUND—Vasoproliferative tumours of the retina (VPTR) are benign tumours of unknown origin, occurring mostly in otherwise healthy patients. VPTR may be associated with other chorioretinal diseases, such as uveitis. The tumours, which histologically represent reactive gliovascular proliferations, are characterised by a pink to yellow appearance on funduscopy and are accompanied by exudative and haemorrhagic changes of the retina.
METHODS—22 cases of VPTR in 21 patients were examined with a follow up period between 1 month and 6 years. Ophthalmological changes associated with VPTR were intraretinal and subretinal exudations (n=18), exudative detachments of the surrounding sensory retina (n=13), intraretinal and subretinal haemorrhages (n=10), exudative changes within the macula (n=10), hyperpigmentation of the retinal pigment epithelium at the border of the exudative retinal changes (n=9), and vitreous haemorrhages (n=4). Tumour biopsy was performed in two cases. Treatment consisted of plaque radiotherapy (n=14), plaque radiotherapy and cryotherapy (two), cryotherapy only (two), observation (three), and enucleation in one case of a blind and painful eye.
RESULTS—Regression of the tumour and the associated exudative changes could be observed in all treated cases. Visual acuity at last follow up improved two lines or more in two cases, remained within two lines of the initial visual acuity in 15 cases, and worsened in the remaining five. Histopathological examination of the biopsy specimens and the tumour of the enucleated eye showed massive capillary proliferation with perivascular spindle-shaped glial cells of retinal origin.
CONCLUSION—The correct diagnosis of VPTR is of importance as these lesions may lead to visual loss. Further, VPTR must be differentiated from angiomas associated with von Hippel-Lindau disease as well as from ocular and systemic malignancies. Regression of tumour thickness and associated retinal changes can be achieved with

  3. Alzheimer’s Disease-Related Protein Expression in the Retina of Octodon degus

    PubMed Central

    Du, Lucia Y.; Chang, Lily Y-L.; Ardiles, Alvaro O.; Tapia-Rojas, Cheril; Araya, Joaquin; Inestrosa, Nibaldo C.

    2015-01-01

    New studies show that the retina also undergoes pathological changes during the development of Alzheimer’s disease (AD). While transgenic mouse models used in these previous studies have offered insight into this phenomenon, they do not model human sporadic AD, which is the most common form. Recently, the Octodon degus has been established as a sporadic model of AD. Degus display age-related cognitive impairment associated with Aβ aggregates and phosphorylated tau in the brain. Our aim for this study was to examine the expression of AD-related proteins in young, adult and old degus retina using enzyme-linked or fluorescence immunohistochemistry and to quantify the expression using slot blot and western blot assays. Aβ4G8 and Aβ6E10 detected Aβ peptides in some of the young animals but the expression was higher in the adults. Aβ peptides were observed in the inner and outer segment of the photoreceptors, the nerve fiber layer (NFL) and ganglion cell layer (GCL). Expression was higher in the central retinal region than in the retinal periphery. Using an anti-oligomer antibody we detected Aβ oligomer expression in the young, adult and old retina. Immunohistochemical labeling showed small discrete labeling of oligomers in the GCL that did not resemble plaques. Congo red staining did not result in green birefringence in any of the animals analyzed except for one old (84 months) animal. We also investigated expression of tau and phosphorylated tau. Expression was seen at all ages studied and in adults it was more consistently observed in the NFL-GCL. Hyperphosphorylated tau detected with AT8 antibody was significantly higher in the adult retina and it was localized to the GCL. We confirm for the first time that Aβ peptides and phosphorylated tau are expressed in the retina of degus. This is consistent with the proposal that AD biomarkers are present in the eye. PMID:26267479

  4. Adenosine and dopamine receptors co-regulate photoreceptor coupling via gap junction phosphorylation in mouse retina

    PubMed Central

    Li, Hongyan; Zhang, Zhijing; Blackburn, Michael R.; Wang, Steven W.; Ribelayga, Christophe P.; O’Brien, John

    2013-01-01

    Gap junctions in retinal photoreceptors suppress voltage noise and facilitate input of rod signals into the cone pathway during mesopic vision. These synapses are highly plastic and regulated by light and circadian clocks. Recent studies have revealed an important role for connexin36 (Cx36) phosphorylation by protein kinase A (PKA) in regulating cell-cell coupling. Dopamine is a light-adaptive signal in the retina, causing uncoupling of photoreceptors via D4 receptors (D4R), which inhibits adenylyl cyclase (AC) and reduces PKA activity. We hypothesized that adenosine, with its extracellular levels increasing in darkness, may serve as a dark signal to co-regulate photoreceptor coupling through modulation of gap junction phosphorylation. Both D4R and A2a receptor (A2aR) mRNAs were present in photoreceptors, inner nuclear layer neurons, and ganglion cells in C57BL/6 mouse retina, and showed cyclic expression with partially overlapping rhythms. Pharmacologically activating A2aR or inhibiting D4R in light-adapted daytime retina increased photoreceptor coupling. Cx36 among photoreceptor terminals, representing predominantly rod-cone gap junctions but possibly including some rod-rod and cone-cone gap junctions, was phosphorylated in a PKA-dependent manner by the same treatments. Conversely, inhibiting A2aR or activating D4R in daytime dark-adapted retina decreased Cx36 phosphorylation with similar PKA dependence. A2a-deficient mouse retina showed defective regulation of photoreceptor gap junction phosphorylation, fairly regular dopamine release, and moderately down-regulated expression of D4R and AC type I mRNA. We conclude that adenosine and dopamine co-regulate photoreceptor coupling through opposite action on the PKA pathway and Cx36 phosphorylation. In addition, loss of the A2aR hampered D4R gene expression and function. PMID:23407968

  5. Plasmalemmal and Vesicular γ-Aminobutyric Acid Transporter Expression in the Developing Mouse Retina

    PubMed Central

    GUO, CHENYING; STELLA, SALVATORE L.; HIRANO, ARLENE A.; BRECHA, NICHOLAS C.

    2009-01-01

    Plasmalemmal and vesicular γ-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week. PMID:18975268

  6. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye

    PubMed Central

    Sharma, Robin; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. Methods Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. Results All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. Conclusions This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes. PMID:26903224

  7. Automatic Counting of Microglial Cells in Healthy and Glaucomatous Mouse Retinas

    PubMed Central

    Rojas, Blanca; Ramírez, Ana I.; de Hoz, Rosa; Salazar, Juan J.; Triviño, Alberto; Ramírez, José M.

    2015-01-01

    Proliferation of microglial cells has been considered a sign of glial activation and a hallmark of ongoing neurodegenerative diseases. Microglia activation is analyzed in animal models of different eye diseases. Numerous retinal samples are required for each of these studies to obtain relevant data of statistical significance. Because manual quantification of microglial cells is time consuming, the aim of this study was develop an algorithm for automatic identification of retinal microglia. Two groups of adult male Swiss mice were used: age-matched controls (naïve, n = 6) and mice subjected to unilateral laser-induced ocular hypertension (lasered; n = 9). In the latter group, both hypertensive eyes and contralateral untreated retinas were analyzed. Retinal whole mounts were immunostained with anti Iba-1 for detecting microglial cell populations. A new algorithm was developed in MATLAB for microglial quantification; it enabled the quantification of microglial cells in the inner and outer plexiform layers and evaluates the area of the retina occupied by Iba-1+ microglia in the nerve fiber-ganglion cell layer. The automatic method was applied to a set of 6,000 images. To validate the algorithm, mouse retinas were evaluated both manually and computationally; the program correctly assessed the number of cells (Pearson correlation R = 0.94 and R = 0.98 for the inner and outer plexiform layers respectively). Statistically significant differences in glial cell number were found between naïve, lasered eyes and contralateral eyes (P<0.05, naïve versus contralateral eyes; P<0.001, naïve versus lasered eyes and contralateral versus lasered eyes). The algorithm developed is a reliable and fast tool that can evaluate the number of microglial cells in naïve mouse retinas and in retinas exhibiting proliferation. The implementation of this new automatic method can enable faster quantification of microglial cells in retinal pathologies. PMID:26580208

  8. Parvalbumin-immunoreactive amacrine cells of macaque retina

    PubMed Central

    Klump, Kathryn E.; Zhang, Ai-Jun; Wu, Samuel M.; Marshak, David W.

    2012-01-01

    A number of authors have observed amacrine cells containing high levels of immunoreactive parvalbumin in primate retinas. The experiments described here were designed to identify these cells morphologically, to determine their neurotransmitter, to record their light responses, and to describe the other cells that they contact. Macaque retinas were fixed in paraformaldehyde and labeled with antibodies to parvalbumin and one or two other markers, and this double- and triple-labeled material was analyzed by confocal microscopy. In their morphology and dendritic stratification patterns, the parvalbumin-positive cells closely resembled the knotty type 2 amacrine cells described using the Golgi method in macaques. They contained immunoreactive glycine transporter, but not immunoreactive γ-aminobutyric acid, and therefore, they use glycine as their neurotransmitter. Their spatial density was relatively high, roughly half that of AII amacrine cells. They contacted lobular dendrites of AII cells, and they are expected to be presynaptic to AII cells based on earlier ultrastructural studies. They also made extensive contacts with axon terminals of OFF midget bipolar cells whose polarity cannot be predicted with certainty. A macaque amacrine cell of the same morphological type depolarized at the onset of increments in light intensity, and it was well coupled to other amacrine cells. Previously, we described amacrine cells like these that contacted OFF parasol ganglion cells and OFF starburst amacrine cells. Taken together, these findings suggest that one function of these amacrine cells is to inhibit the transmission of signals from rods to OFF bipolar cells via AII amacrine cells. Another function may be inhibition of the OFF pathway following increments in light intensity. PMID:19435546

  9. Membrane currents of spiking cells isolated from turtle retina.

    PubMed

    Lasater, E M; Witkovsky, P

    1990-05-01

    We examined the membrane properties of spiking neurons isolated from the turtle (Pseudemys scripta) retina. The cells were maintained in culture for 1-7 days and were studied with the whole cell patch clamp technique. We utilized cells whose perikaryal diameters were greater than 15 microns since Kolb (1982) reported that ganglion cell perikarya in Pseudemys retina are 13-25 microns, whereas amacrine perikarya are less than 14 microns in diameter. We identified 5 currents in the studied cells: (1) a transient sodium current (INa) blocked by TTX, (2) a sustained calcium current (ICa) blocked by cobalt and enhanced by Bay-K 8644, (3) a calcium-dependent potassium current (IK(Ca)), (4) an A-type transient potassium current (IA) somewhat more sensitive to 4-AP than TEA, (5) a sustained potassium current (IK) more sensitive to TEA than 4-AP. The estimated average input resistance of the cells at -70 mV was 720 +/- 440 M omega. When all active currents were blocked, the membrane resistance between -130 and +20 mV was 2.5 G omega. When examined under current clamp, some cells produced multiple spikes to depolarizing steps of 0.1-0.3 nA, whereas other cells produced only a single spike irrespective of the strength of the current pulse. Most single spikers had an outward current that rose to a peak relatively slowly, whereas multiple spikers tend to have a more rapidly activating outward current. Under current clamp, 4-AP slowed the repolarization phase of the spike thus broadening it, but did not always abolish the ability to produce multiple spikes. TEA induced a depolarized plateau following the initial spike which precluded further spikes. It thus appears that the spiking patterns of the retinal cells are shaped primarily by the kinetics of INa, IK and IA and to a lesser extent by IK(Ca).

  10. Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina

    PubMed Central

    Mamczur, Piotr; Mazurek, Jakub

    2010-01-01

    To shed some light on gluconeogenesis in mammalian retina, we have focused on fructose-1,6-bisphosphatase (FBPase), a regulatory enzyme of the process. The abundance of the enzyme within the layers of the rat retina suggests that, in mammals in contrast to amphibia, gluconeogenesis is not restricted to one specific cell of the retina. We propose that FBPase, in addition to its gluconeogenic role, participates in the protection of the retina against reactive oxygen species. Additionally, the nuclear localization of FBPase and of its binding partner, aldolase, in the retinal cells expressing the proliferation marker Ki-67 indicates that these two gluconeogenic enzymes are involved in non-enzymatic nuclear processes. Electronic supplementary material The online version of this article (doi:10.1007/s00441-010-1008-2) contains supplementary material, which is available to authorized users. PMID:20614135

  11. Studies on the crustacean cardiac ganglion.

    PubMed

    Cooke, I M

    1988-01-01

    1. An overview of studies on the decapod crustacean cardiac ganglion is given emphasizing contributions to questions of general interest in cellular neurophysiology. 2. John Welsh, in 1951, introduced this 9-celled, semi-autonomous ganglion as a preparation offering physiologists unique experimental possibilities. 3. It exhibits remarkable reliability and stability in rhythmic pattern generation. The neurons show endogenous burst-forming capability mediated by "driver potentials". 4. These regenerative, Ca-mediated potentials are restricted to the soma, while impulse-generating membrane is segregated to the distal axon. 5. Thus, voltage-clamp analysis of the ionic currents underlying the burst-forming potentials is possible by isolating the soma with a ligature. 6. The isolated ganglion is spontaneously active, but the normal mechanism of pacemaking remains to be clarified, including the possible contribution of stretch-sensitive dendrites. 7. The activity of the ganglion is subject to modulation by neurohumors. These include the transmitter at intraganglionic synapses, transmitters of the pair of inhibitory and the two pairs of acceleratory fibers, and neurohormones released from the pericardial organs. The transmitters are not established. 8. Effects on the ganglion of substances isolated from the pericardial organs have been described. 9. These include 5-hydroxytryptamine, dopamine, octopamine, and two peptides. 10. One of these, proctolin, produces a long-lasting sequence of effects. 11. The work continues to raise new questions for which the ganglion offers excellent research material.

  12. A high frequency resonance in the responses of retinal ganglion cells to rapidly modulated stimuli: A computer model

    PubMed Central

    MILLER, J.A.; DENNING, K.S.; GEORGE, J.S.; MARSHAK, D.W.; KENYON, G.T.

    2012-01-01

    Brisk Y-type ganglion cells in the cat retina exhibit a high frequency resonance (HFR) in their responses to large, rapidly modulated stimuli. We used a computer model to test whether negative feedback mediated by axon-bearing amacrine cells onto ganglion cells could account for the experimentally observed properties of HFRs. Temporal modulation transfer functions (tMTFs) recorded from model ganglion cells exhibited HFR peaks whose amplitude, width, and locations were qualitatively consistent with experimental data. Moreover, the wide spatial distribution of axon-mediated feedback accounted for the observed increase in HFR amplitude with stimulus size. Model phase plots were qualitatively similar to those recorded from Y ganglion cells, including an anomalous phase advance that in our model coincided with the amplification of low-order harmonics that overlapped the HFR peak. When axon-mediated feedback in the model was directed primarily to bipolar cells, whose synaptic output was graded, or else when the model was replaced with a simple cascade of linear filters, it was possible to produce large HFR peaks but the region of anomalous phase advance was always eliminated, suggesting the critical involvement of strongly non-linear feedback loops. To investigate whether HFRs might contribute to visual processing, we simulated high frequency ocular tremor by rapidly modulating a naturalistic image. Visual signals riding on top of the imposed jitter conveyed an enhanced representation of large objects. We conclude that by amplifying responses to ocular tremor, HFRs may selectively enhance the processing of large image features. PMID:17020633

  13. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina.

    PubMed

    Jeong, Mi-Jin; Jeon, Chang-Jin

    2015-11-01

    Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.

  14. Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage.

    PubMed

    Ahn, Hong Ryul; Lee, Hee Ju; Kim, Kyung-A; Kim, Chul Young; Nho, Chu Won; Jang, Holim; Pan, Cheol-Ho; Lee, Chang Yong; Jung, Sang Hoon

    2014-02-12

    We investigated the effects of an ethanol extract of C. denticulatum (EECD) in a mouse model of glaucoma established by optic nerve crush (ONC), and found that EECD significantly protected against retinal ganglion cell (RGC) death caused by ONC. Furthermore, EECD effectively protected against N-methyl-d-aspartate-induced damage to the rat retinas. In vitro, EECD attenuated transformed retinal ganglion cell (RGC-5) death and significantly blunted the up-regulation of apoptotic proteins and mRNA level induced by 1-buthionine-(S,R)-sulfoximine combined with glutamate, reduced reactive oxygen species production by radical species, and inhibited lipid peroxidation. The major EECD components were found to be chicoric acid and 3,5-dicaffeoylquinic acid (3,5-DCQA) that have shown beneficial effects on retinal degeneration both in vitro and in vivo studies. Thus, EECD could be used as a natural neuroprotective agent for glaucoma, and chicoric acid and 3,5-DCQA as mark compounds for the development of functional food.

  15. Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird

    PubMed Central

    Nießner, Christine; Gross, Julia Christina; Denzau, Susanne; Peichl, Leo; Fleissner, Gerta; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2016-01-01

    Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights. PMID:26953690

  16. Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis).

    PubMed

    Coimbra, João Paulo; Hart, Nathan S; Collin, Shaun P; Manger, Paul R

    2013-06-15

    The giraffe (Giraffa camelopardalis) is a browser that uses its extensible tongue to selectively collect leaves during foraging. As the tallest extant terrestrial mammal, its elevated head height provides panoramic surveillance of the environment. These aspects of the giraffe's ecology and phenotype suggest that vision is of prime importance. Using Nissl-stained retinal wholemounts and stereological methods, we quantitatively assessed the retinal specializations in the ganglion cell layer of the giraffe. The mean total number of retinal ganglion cells was 1,393,779 and their topographic distribution revealed the presence of a horizontal visual streak and a temporal area. With a mean peak of 14,271 cells/mm(2), upper limits of spatial resolving power in the temporal area ranged from 25 to 27 cycles/degree. We also observed a dorsotemporal extension (anakatabatic area) that tapers toward the nasal retina giving rise to a complete dorsal arch. Using neurofilament-200 immunohistochemistry, we also detected a dorsal arch formed by alpha ganglion cells with density peaks in the temporal (14-15 cells/mm(2)) and dorsonasal (10 cells/mm(2)) regions. As with other artiodactyls, the giraffe shares the presence of a horizontal streak and a temporal area which, respectively, improve resolution along the horizon and in the frontal visual field. The dorsal arch is related to the giraffe's head height and affords enhanced resolution in the inferior visual field. The alpha ganglion cell distribution pattern is unique to the giraffe and enhances acquisition of motion information for the control of tongue movement during foraging and the detection of predators.

  17. Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells

    PubMed Central

    Ariel, M.; Daw, N. W.

    1982-01-01

    1. Retinal ganglion cells were recorded extracellularly from the rabbit's eye in situ to study the effects of cholinergic drugs on receptive field properties. Physostigmine, an acetylcholinesterase inhibitor, and nicotine increased the spontaneous activity of nearly all retinal ganglion cell types. The effectiveness of physostigmine was roughly correlated with the neurone's inherent level of spontaneous activity. Brisk cells, having high rates of spontaneous firing, showed large increases in their maintained discharge, whereas sluggish cells, with few or no spontaneous spikes, showed small and sometimes transient increases in spontaneous activity during physostigmine. 2. The sensitivity of ganglion cells to spots of optimal size and position did not change substantially during the infusion of physostigmine. However, the responsiveness to light (number of spikes per stimulus above the spontaneous level) increased. This effect occurred with sluggish and more complex cells, rarely with brisk cells. 3. Another effect of physostigmine on sluggish and more complex cells was to make these cells `on—off'. The additional response to the inappropriate change in contrast had a long latency and lacked an initial transient burst. 4. Complex receptive field properties such as orientation sensitivity, radial grating inhibition, speed tuning and size specificity were also examined. These inhibitory properties were still present during infusion of physostigmine and, in most cases, the trigger feature of each cell type remained. 5. These results are consistent with pharmacological results on ACh release from the retina. There appear to be two types of release of ACh, having their most powerful influences on separate classes of cells. One release (transient), occurs at light onset and offset and acts primarily on sluggish and more complex ganglion cells; the other release (tonic) is not light-modulated and acts primarily on brisk cells. A wiring diagram for the ACh cells is

  18. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  19. Relationship between dorsal ganglion cysts of the wrist and intraosseous ganglion cysts of the carpal bones.

    PubMed

    Van den Dungen, Sophie; Marchesi, Simona; Ezzedine, Rabih; Bindou, David; Lorea, Patrick

    2005-10-01

    Soft tissue ganglion cysts are the most common benign tumours of the wrist; their pathogenesis remains controversial. We prospectively screened the radiographic appearance of the wrists of 51 patients presenting to a single surgeon with dorsal wrist ganglions during a one-year period. Postero-anterior and lateral radiographs were systematically performed looking for possible associated intraosseous ganglion cysts. There were 51 dorsal soft tissue ganglion cysts in 51 patients. We detected 29 associated intraosseous ganglia in 24 patients (47%): 16 ganglia in the lunate bone (55%), 5 in the capitate bone, 7 in the scaphoid and 1 in the trapezoid. Mean size of the intraosseous ganglia was 3 mm (range, 2 to 5 mm). This high prevalence of intraosseous ganglia in association with soft tissue ganglia has to our knowledge never been reported previously. A common aetiology for these two types of ganglion cysts may explain this high association rate.

  20. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    PubMed Central

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-01-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses. PMID:27929043

  1. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  2. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates.

    PubMed

    Díaz, Nicolás M; Morera, Luis P; Guido, Mario E

    2016-01-01

    Melanopsin (Opn4), a member of the G-protein-coupled receptor family, is a vitamin A-based opsin in the vertebrate retina that has been shown to be involved in the synchronization of circadian rhythms, pupillary light reflexes, melatonin suppression and other light-regulated tasks. In nonmammalian vertebrates there are two Opn4 genes, Opn4m and Opn4x, the mammalian and Xenopus orthologs respectively. Opn4x is only expressed in nonmammalian vertebrates including reptiles, fish and birds, while Opn4m is found in a subset of retinal ganglion cells (RGCs), the intrinsically photosensitive (ip) RGCs of the inner retina of both mammals and nonmammalian vertebrates. All opsins described utilize retinaldehyde as chromophore, photoisomerized from 11-cis- to all-trans-retinal upon light exposure. Visual retinal photoreceptor cones and rods, responsible for day and night vision respectively, recycle retinoids through a process called the visual cycle that involves the retinal pigment epithelium or glial Müller cells. Although Opn4 has been characterized as a bistable photopigment, little is known about the mechanism/s involved in its chromophore regeneration. In this review, we will attempt to shed light on the visual cycle taking place in the inner retina and discuss the state of the art in the nonvisual photochemistry of vertebrates.

  3. DAPI diffusion after intravitreal injection of mesenchymal stem cells in the injured retina of rats.

    PubMed

    Castanheira, Paula; Torquetti, Leonardo Torquetti; Magalhãs, Débora Rodrigues Soares; Nehemy, Marcio B; Goes, Alfredo M

    2009-01-01

    To evaluate DAPI (4',6-diamidino-2-phenylindole) as a nuclear tracer of stem cell migration and incorporation it was observed the pattern of retinal integration and differentiation of mesenchymal stem cells (MSCs) injected into the vitreous cavity of rat eyes with retinal injury. For this purpose adult rat retinas were submitted to laser damage followed by transplantation of DAPI-labeled BM-MSCs grafts and double-labeled DAPI and quantum dot-labeled BM-MSCs. To assess a possible DAPI diffusion as well as the integration and differentiation of DAPI-labeled BM-MSCs in laser-injured retina, host retinas were evaluated 8 weeks after injury/transplantation. It was demonstrated that, 8 weeks after the transplant, most of the retinal cells in all neural retinal presented nuclear DAPI labeling, specifically in the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL). Meanwhile, at this point, most of the double-labeled BM-MSCs (DAPI and quantum dot) remained in the vitreous cavity and no retinal cells presented the quantum dot marker. Based on these evidences we concluded that DAPI diffused to adjacent retinal cells while the nanocrystals remained labeling only the transplanted BM-MSCs. Therefore, DAPI is not a useful marker for stem cells in vivo tracing experiments because the DAPI released from dying cells in moment of the transplant are taken up by host cells in the tissue.

  4. Chick neural retina adhesion and survival molecule is a retinol-binding protein

    SciTech Connect

    Schubert, D.; LaCorbiere, M.; Esch, F.

    1986-01-01

    A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells. Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds (/sup 3/H)retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approx.3.000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.

  5. Overexpression of Heme Oxygenase-1 in Mesenchymal Stem Cells Augments Their Protection on Retinal Cells In Vitro and Attenuates Retinal Ischemia/Reperfusion Injury In Vivo against Oxidative Stress

    PubMed Central

    Li, Li; Du, GaiPing; Wang, DaJiang; Zhou, Jin; Jiang, Guomin

    2017-01-01

    Retinal ischemia/reperfusion (I/R) injury, involving several ocular diseases, seriously threatens human ocular health, mainly treated by attenuating I/R-induced oxidative stress. Currently, mesenchymal stem cells (MSCs) could restore I/R-injured retina through paracrine secretion. Additionally, heme oxygenase-1 (HO-1) could ameliorate oxidative stress and thus retinal apoptosis, but the expression of HO-1 in MSC is limited. Here, we hypothesized that overexpression of HO-1 in MSC (MSC-HO-1) may significantly improve their retina-protective potentials. The overexpression of HO-1 in MSC was achieved by lentivirus transduction. Then, MSC or MSC-HO-1 was cocultured with retinal ganglion cells (RGC-5) in H2O2-simulated oxidative condition and their protection on RGC-5 was systemically valuated in vitro. Compared with MSC, MSC-HO-1 significantly attenuated H2O2-induced injury of RGC-5, including decrease in cellular ROS level and apoptosis, activation of antiapoptotic proteins p-Akt and Bcl-2, and blockage of proapoptotic proteins cleaved caspase 3 and Bax. In retinal I/R rats model, compared with control MSC, MSC-HO-1-treated retina significantly retrieved its structural thickness, reduced cell apoptosis, markedly attenuated retinal oxidative stress level, and largely regained the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that overexpression of HO-1 provides a promising strategy to enhance the MSC-based therapy for I/R-related retinal injury. PMID:28255307

  6. Short- and long-wavelength-sensitive opsins are involved in photoreception both in the retina and throughout the central nervous system of crayfish.

    PubMed

    Kingston, Alexandra C N; Cronin, Thomas W

    2015-12-01

    Crayfish have two classes of photoreceptors in the retinas of their reflecting superposition eyes. Long-wavelength-sensitive photoreceptors, comprised of microvilli from R1-7 cells, make up the main rhabdoms. Eighth retinular cells, located distal to the main rhabdoms, house short-wavelength-sensitive photoreceptors. While the opsin involved in long-wavelength sensitivity has long been known, we present the first description of the short-wavelength-sensitive opsin in the retina of the red swamp crayfish, Procambarus clarkii. The expression patterns of these SWS and LWS opsin proteins in the retina are consistent with the previously described locations of SWS and LWS receptors. Crayfish also have a well-characterized extraocular photoreceptor, called the caudal photoreceptor, located in the sixth abdominal ganglion. To search for retinal opsins in the caudal photoreceptor (and elsewhere in the CNS), we used RT-PCR and immunohistochemical labeling. We found both SWS and LWS opsin transcripts not only in the sixth abdominal ganglion, but also in all ganglia of the nerve cord. Immunolabeling shows that both opsins are expressed in nerve fibers that extend from the brain through the entire length of the CNS. Thus, the same two photopigments are used both for vision in the retina and for extraocular functions throughout the CNS of crayfish.

  7. Network Analysis and Visualization of Mouse Retina Connectivity Data

    PubMed Central

    2016-01-01

    The largest available cellular level connectivity map, of a 0.1 mm sample of the mouse retina Inner Plexiform Layer, was analysed using network models and visualized using spectral graph layouts and observed cell coordinates. This allows key nodes in the network to be identified with retinal neurons. Their strongest synaptic links can trace pathways in the network, elucidating possible circuits. Modular decomposition of the network, by sampling signal flows over nodes and links using the InfoMap method, shows discrete modules of cone bipolar cells that form a tiled mosaic in the retinal plane. The highest flow nodes, calculated by InfoMap, proved to be the most useful landmarks for elucidating possible circuits. Their dominant links to high flow amacrine cells reveal possible circuits linking bipolar through to ganglion cells and show an Off-On discrimination between the Left-Right sections of the sample. Circuits suggested by this analysis confirm known roles for some cells and point to roles for others. PMID:27414405

  8. GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage.

    PubMed

    Dijk, Frederike; Bergen, Arthur A B; Kamphuis, Willem

    2007-05-01

    In response to injury, the adult mammalian retina shows signs of structural remodeling, possibly in an attempt to preserve or regain some of its functional neural connections. In order to study the mechanisms involved in injury-induced plasticity, we have studied changes in growth associated protein 43 (GAP-43) after retinal ischemia/reperfusion in the rat. GAP-43 is a marker for neuronal remodeling and is involved in synapse formation. Ischemic injury of the rat retina was induced by 60 min of ischemia followed by reperfusion times varying from 2h up to 4 weeks. GAP-43 mRNA levels were significantly increased between 12h and 72 h reperfusion with a peak around 24h. GAP-43 specific antibodies showed that the total amount of GAP-43 labeling in the inner plexiform layer was diminished after 12h of reperfusion by approximately 35% and remained at this level up to 1 week postischemia despite the reduction in thickness of this layer during this period resulting from the ischemia-induced cell loss. At 2 and 4 weeks reperfusion, the amount of labeling was reduced by 70%, simultaneously with a decrease of GAP-43 transcript level. Between 72 h up to 2 weeks postischemia, the induction of intense GAP-43 labeling was observed in NeuN- and beta-tubulin-positive ganglion cell somata and in horizontally and vertically oriented processes in the inner plexiform layer. Ischemia also induced GAP-43 expression in some GFAP-positive Müller cells. Double-labeling showed that in controls and after ischemia GAP-43 was expressed by some amacrine cells of the glycinergic (glycine transporter 1), calretinin-positive, and dopaminergic (tyrosine hydroxylase) subpopulations. No increase of GAP-43 expression levels was found in these amacrine cells. The results demonstrate that ganglion cells show an elevated expression of GAP-43 after ischemia-inflicted damage. These findings suggest a temporal window during which ganglion cells may remodel their neuronal network in the damaged retina.

  9. A critical analysis of Atoh7 (Math5) mRNA splicing in the developing mouse retina.

    PubMed

    Prasov, Lev; Brown, Nadean L; Glaser, Tom

    2010-08-24

    The Math5 (Atoh7) gene is transiently expressed during retinogenesis by progenitors exiting mitosis, and is essential for ganglion cell (RGC) development. Math5 contains a single exon, and its 1.7 kb mRNA encodes a 149-aa polypeptide. Mouse Math5 mutants have essentially no RGCs or optic nerves. Given the importance of this gene in retinal development, we thoroughly investigated the possibility of Math5 mRNA splicing by Northern blot, 3'RACE, RNase protection assays, and RT-PCR, using RNAs extracted from embryonic eyes and adult cerebellum, or transcribed in vitro from cDNA clones. Because Math5 mRNA contains an elevated G+C content, we used graded concentrations of betaine, an isostabilizing agent that disrupts secondary structure. Although approximately 10% of cerebellar Math5 RNAs are spliced, truncating the polypeptide, our results show few, if any, spliced Math5 transcripts exist in the developing retina (<1%). Rare deleted cDNAs do arise via RT-mediated RNA template switching in vitro, and are selectively amplified during PCR. These data differ starkly from a recent study (Kanadia and Cepko 2010), which concluded that the vast majority of Math5 and other bHLH transcripts are spliced to generate noncoding RNAs. Our findings clarify the architecture of the Math5 gene and its mechanism of action. These results have implications for all members of the bHLH gene family, for any gene that is alternatively spliced, and for the interpretation of all RT-PCR experiments.

  10. Quantum biology of the retina.

    PubMed

    Sia, Paul Ikgan; Luiten, André N; Stace, Thomas M; Wood, John Pm; Casson, Robert J

    2014-08-01

    The emerging field of quantum biology has led to a greater understanding of biological processes at the microscopic level. There is recent evidence to suggest that non-trivial quantum features such as entanglement, tunnelling and coherence have evolved in living systems. These quantum features are particularly evident in supersensitive light-harvesting systems such as in photosynthesis and photoreceptors. A biomimetic strategy utilizing biological quantum phenomena might allow new advances in the field of quantum engineering, particularly in quantum information systems. In addition, a better understanding of quantum biological features may lead to novel medical diagnostic and therapeutic developments. In the present review, we discuss the role of quantum physics in biological systems with an emphasis on the retina.

  11. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus

    PubMed Central

    Cleland, B. G.; Dubin, M. W.; Levick, W. R.

    1971-01-01

    1. Cat retinal ganglion cells may be subdivided into sustained and transient response-types by the application of a battery of simple tests based on responses to standing contrast, fine grating patterns, size and speed of contrasting targets, and on the presence or absence of the periphery effect. The classification is equivalent to the `X'/`Y' (linear/nonlinear) subdivision of Enroth-Cugell & Robson which is thus confirmed and extended. 2. The sustained/transient classification applied to both on-centre and off-centre cells. 3. Lateral geniculate neurones may be similarly classified by the same tests. Occasional concentrically organized cells had a mixture of sustained and transient properties. 4. A technique for simultaneous recording from a geniculate neurone and one or more retinal ganglion cells providing its excitatory input showed that the connexions were specific with respect to the sustained/transient classification as well as the on-centre/off-centre classification. Most geniculate neurones are excitatorily driven only by retinal ganglion cells of the same functional type. In a few cases the inputs were mixed but only with respect to the sustained/transient classification. 5. Sustained retinal ganglion cells had slower-conducting axons than the transient type. The same was true for lateral geniculate neurones but in this case the distributions showed considerable overlap. 6. The sustained/transient classification is the functional correlate for the well-known segregation of optic nerve fibres into two conduction groups. 7. The pathways carrying sustained and transient information remain essentially separate from retina through the lateral geniculate nucleus to the striate cortex. PMID:5097609

  12. Evaluation of Fluoro-Jade C as a marker of degenerating neurons in the rat retina and optic nerve.

    PubMed

    Chidlow, Glyn; Wood, John P M; Sarvestani, Ghafar; Manavis, Jim; Casson, Robert J

    2009-03-01

    Detection of neuronal death is an essential requirement for researchers investigating retinal degeneration. Fluoro-Jade C (FJC) is a novel, fluorescent dye that has been successfully used to label degenerating neurons in the brain, but its effectiveness in the eye has not been ascertained. In the current study, we determined the efficacy of FJC for detection of neuronal degeneration in the retina and optic nerve in various paradigms of injury. N-methyl-D-aspartate (NMDA) and kainic acid-induced excitotoxicity, optic nerve transection, and bilateral occlusion of the common carotid arteries (BCCAO) were performed using standard techniques. Rats were killed at various time points and the retinas with optic nerves attached were removed for tissue processing prior to labelling for FJC, for DNA fragmentation by TUNEL or for immunohistochemical analysis. Retinas from RCS rats of different ages were also analysed. After excitotoxicity-induced injury, cell bodies and dendrites within the ganglion cell and inner plexiform layers were specifically labelled by FJC within 6h, a time point comparable to the appearance of TUNEL-positive nuclei and to reductions in mRNA levels of retinal ganglion cell-specific proteins, but in advance of alterations in some immunohistochemical markers. The number of FJC-labelled cell bodies in the retina declined over time as cell loss proceeded, although dendritic staining remained prominent. Colocalisation of FJC with TUNEL and with immunohistochemical neuronal markers was achieved. FJC was successful at identifying somato-dendritic degeneration following ischemia induced by BCCAO, but surprisingly, not after optic nerve transection. FJC visualised photoreceptor degeneration in the RCS rat, albeit less effectively than with the TUNEL assay, and was also effective for imaging and quantifying degenerating axons in the optic nerve after multiple injuries. In addition to labelling degenerating neurons, however, FJC also bound non-specifically to

  13. Role of dopamine in distal retina.

    PubMed

    Popova, E

    2014-05-01

    Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.

  14. Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush.

    PubMed

    Shibeeb, O'Sam; Wood, John P M; Casson, Robert J; Chidlow, Glyn

    2014-10-01

    Previous research has demonstrated that laser photocoagulation treatment of the monkey retina affords protection against experimental glaucoma-induced retinal ganglion cell (RGC) loss in areas overlying laser spots. The underlying mechanism is unknown, but it is conceivable that the laser acted as a preconditioning stimulus, inducing localised, endogenous production of survival factors. The related purposes of the current study were firstly to examine whether preconditioning pathways are activated by either a conventional photocoagulator (CW) laser or a photoreceptor-sparing, short-pulse duration (2RT) laser in the rat retina, and secondly, to examine whether such preconditioning with either laser improves RGC survival after optic nerve (ON) crush. Pigmented rats were randomly assigned to one of three groups: sham, CW, 2RT. For the preconditioning study, laser spots were applied randomly to each retina in the posterior hemisphere of the eye taking care to avoid major blood vessels. Animals were killed at 6 h, 1d, and 7d after laser treatment, then analysed by qPCR, immunohistochemistry or Western immunoblotting. For the neuroprotection study, laser spots were administered to the mid-central retina of the right eye. The left eye served as a control. In two experiments, rats were lasered either 24 h or 7 days before ON crush, then killed a further 7 days later. Wholemount retinas were prepared and double labelling immunofluorescence performed. Nestin labelling allowed visualization of laser spots. Brn3a labelling identified viable RGCs. Photomicrographs of Brn3a labelling were taken in areas overlying nestin-positive laser spots. Quantification of Brn3a RGCs was then performed. Both the CW and 2RT lasers induced local glial cell activation. Moreover, both lasers induced localized upregulations of a number of well-documented (CNTF, FGF-2 Hsp27, pAKT) or putative (cFOS, ATF-3, IL-6) RGC survival factors. However, neither laser caused sustained increases in other

  15. Age related macular degeneration and drusen: neuroinflammation in the retina.

    PubMed

    Buschini, Elisa; Piras, Antonio; Nuzzi, Raffaele; Vercelli, Alessandro

    2011-09-15

    Inflammation protects from dangerous stimuli, restoring normal tissue homeostasis. Inflammatory response in the nervous system ("neuroinflammation") has distinct features, which are shared in several diseases. The retina is an immune-privileged site, and the tight balance of immune reaction can be disrupted and lead to age-related macular disease (AMD) and to its peculiar sign, the druse. Excessive activation of inflammatory and immunological cascade with subsequent induction of damage, persistent activation of resident immune cells, accumulation of byproducts that exceeds the normal capacity of clearance giving origin to a chronic local inflammation, alterations in the activation of the complement system, infiltration of macrophages, T-lymphocytes and mast-cells from the bloodstream, participate in the mechanisms which originate the drusen. In addition, aging of the retina and AMD involve also para-inflammation, by which immune cells react to persistent stressful stimuli generating low-grade inflammation, aimed at restoring function and maintaining tissue homeostasis by varying the set point in relation to the new altered conditions. This mechanism is also seen in the normal aging retina, but, in the presence of noxious stimuli as in AMD, it can become chronic and have an adverse outcome. Finally, autophagy may provide new insights to understand AMD pathology, due to its contribution in the removal of defective proteins. Therefore, the AMD retina can represent a valuable model to study neuroinflammation, its mechanisms and therapy in a restricted and controllable environment. Targeting these pathways could represent a new way to treat and prevent both exudative and dry forms of AMD.

  16. Intraneural ganglion cyst of the tibial nerve.

    PubMed

    Adn, M; Hamlat, A; Morandi, X; Guegan, Y

    2006-08-01

    Intraneural ganglion cyst of the tibial nerve is very rare. To date, only 5 cases of this entity in the popliteal fossa have been reported. We report a new case and review the previously reported cases. A 40-year-old man experienced a mild vague pain in the medial half of his right foot for 3 years. Magnetic resonance imaging scan demonstrated a soft-tissue mass along the right tibial nerve. At surgery, an intraneural ganglion cyst was evacuated. After 12 months, the patient was pain-free with no signs of recurrence. Trauma might be a contributing factor to the development of intraneural ganglion cysts. Application of microsurgical techniques is encouraged.

  17. Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina.

    PubMed

    Todd, Levi; Fischer, Andy J

    2015-08-01

    Müller glia can be stimulated to de-differentiate and become proliferating progenitor cells that regenerate neurons in the retina. The signaling pathways that regulate the formation of proliferating Müller glia-derived progenitor cells (MGPCs) are beginning to be revealed. The purpose of this study was to investigate whether Hedgehog (Hh) signaling influences the formation of MGPCs in the chick retina. We find that Hh signaling is increased in damaged retinas where MGPCs are known to form. Sonic Hedgehog (Shh) is normally present in the axons of ganglion cells, but becomes associated with Müller glia and MGPCs following retinal damage. Activation of Hh signaling with recombinant human SHH (rhShh) or smoothened agonist (SAG) increased levels of Ptch1, Gli1, Gli2, Gli3, Hes1 and Hes5, and stimulated the formation of proliferating MGPCs in damaged retinas. In undamaged retinas, SAG or rhShh had no apparent effect upon the Müller glia. However, SAG combined with FGF2 potentiated the formation of MGPCs, whereas SAG combined with IGF1 stimulated the nuclear migration of Müller glia, but not the formation of MGPCs. Conversely, inhibition of Hh signaling with KAAD-cyclopamine, Gli antagonists or antibody to Shh reduced numbers of proliferating MGPCs in damaged and FGF2-treated retinas. Hh signaling potentiates Pax6, Klf4 and cFos expression in Müller glia during the formation of MGPCs. We find that FGF2/MAPK signaling recruits Hh signaling into the signaling network that drives the formation of proliferating MGPCs. Our findings implicate Hh signaling as a key component of the network of signaling pathways that promote the de-differentiation of Müller glia and proliferation of MGPCs.

  18. Histochemical localization of zinc in the retina cells of gilthead sea bream (sparus aurata) fed different presentations of zinc.

    PubMed

    Castro, Pedro Luis; Dominguez, David; José Caballero, María; Izquierdo, Marisol

    2017-02-01

    To describe the distribution of zinc in the retina of a representative marine fish species and to determine whether the intracellular deposition amount correlates with the presentation of the zinc included in the practical diets (organic, inorganic, encapsulated, fish meal, and Control diet), we examined the precise localization of endogenous zinc in the gilthead sea bream (Sparus aurata) retina by autometallography. As observed by light microscopy, reaction products were widely distributed throughout the retina, including the outer segments of photoreceptors, except in the nuclear layers. Differing from other species previously studied, zinc depositions were not different between the outer and inner retina, and the retinal ganglion cell layer showed reaction products with a characteristic disposition surrounding the neuronal soma. An additional finding in this species was the rich disposition around photoreceptors, so abundant that it outlines the shape of the rods and cones. With regards to the diet, the zinc organic formulation was able to produce a higher amount of precipitates, followed by fish meal and encapsulated zinc diets. The inorganic and the Control diet produced a basal zinc deposition in the same layers above mentioned although less evident and similar to that determined in other species fed with non-supplemented diets.

  19. Patterns of intraneural ganglion cyst descent.

    PubMed

    Spinner, Robert J; Carmichael, Stephen W; Wang, Huan; Parisi, Thomas J; Skinner, John A; Amrami, Kimberly K

    2008-04-01

    On the basis of the principles of the unifying articular theory, predictable patterns of proximal ascent have been described for fibular (peroneal) and tibial intraneural ganglion cysts in the knee region. The mechanism underlying distal descent into the terminal branches of the fibular and tibial nerves has not been previously elucidated. The purpose of this study was to demonstrate if and when cyst descent distal to the articular branch-joint connection occurs in intraneural ganglion cysts to understand directionality of intraneural cyst propagation. In Part I, the clinical records and MRIs of 20 consecutive patients treated at our institution for intraneural ganglion cysts (18 fibular and two tibial) arising from the superior tibiofibular joint were retrospectively analyzed. These patients underwent cyst decompression and disconnection of the articular branch. Five of these patients developed symptomatic cyst recurrence after cyst decompression without articular branch disconnection which was done elsewhere prior to our intervention. In Part II, five additional patients with intraneural ganglion cysts (three fibular and two tibial) treated at other institutions without disconnection of the articular branch were compared. These patients in Parts I and II demonstrated ascent of intraneural cyst to differing degrees (12 had evidence of sciatic nerve cross-over). In addition, all of these patients demonstrated previously unrecognized MRI evidence of intraneural cyst extending distally below the level of the articular branch to the joint of origin: cyst within the proximal most portions of the deep fibular and superficial fibular branches in fibular intraneural ganglion cysts and descending tibial branches in tibial intraneural ganglion cysts. The patients in Part I had complete resolution of their cysts at follow-up MRI examination 1 year postoperatively. The patients in Part II had intraneural recurrences postoperatively within the articular branch, the parent

  20. [Ganglion cysts of the hand and wrist].

    PubMed

    Sarig, Oren; Hass, Avraham; Oron, Amir

    2013-10-01

    Ganglion cysts are considered the most common tumor of the wrist and hand. They are most common between the second and fourth decades of life. The most common anatomical location is the dorsal wrist. This article includes a general review of these cysts including symptoms, pathology and methods of diagnosis, as well as a review of these cysts in specific anatomic locations. The article also includes an updated review of the literature comparing open surgery vs. arthroscopic treatment. The authors believe that arthroscopic surgery of ganglion cysts will gain an important role in the treatment of these cysts.

  1. Nuclear receptor Rev-erb alpha (Nr1d1) functions in concert with Nr2e3 to regulate transcriptional networks in the retina.

    PubMed

    Mollema, Nissa J; Yuan, Yang; Jelcick, Austin S; Sachs, Andrew J; von Alpen, Désirée; Schorderet, Daniel; Escher, Pascal; Haider, Neena B

    2011-03-08

    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.

  2. Distribution of caveolin isoforms in the lemur retina.

    PubMed

    Berta, Agnes I; Kiss, Anna L; Lukáts, Akos; Szabó, Arnold; Szél, Agoston

    2007-09-01

    The distribution of caveolin isoforms was previously evaluated in the retinas of different species, but has not yet been described in the primate retina. In this study, the distribution of caveolins was assessed via immunochemistry using isoform-specific antibodies in the retina of the black-and-white ruffed lemur. Here, we report the presence of a variety of caveolin isoforms in many layers of the lemur retina. As normal human retinas were not available for research and the retinas of primates are fairly similar to those of humans, the lemur retina can be utilized as a model for caveolin distribution in normal humans.

  3. Retinal ganglion cells in the Pacific redfin, Tribolodon brandtii dybowski, 1872: morphology and diversity.

    PubMed

    Pushchin, Igor; Karetin, Yuriy

    2014-04-15

    We studied the morphology and diversity of retinal ganglion cells in the Pacific redfin, Tribolodon brandtii. These cells were retrogradely labeled with horseradish peroxidase and examined in retinal whole mounts. A sample of 203 cells was drawn with a camera lucida. A total of 19 structural parameters were estimated for each cell, and a variety of clustering algorithms were used to classify the cells. The optimal solution was determined by using silhouette analysis. It was based on three variables associated with dendritic field size and dendrite stratification in the retina. Kruskal-Wallis ANOVA-on-ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in two or more of the original variables. In total, eight cell types were discovered. The advantages and drawbacks of the methodology adopted are discussed. The present classification is compared with classifications proposed for other teleosts.

  4. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

    PubMed Central

    So, Kwok-Fai; Leung, Mason Chin Pang; Cui, Qi

    2014-01-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the first week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These findings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal ganglion cells. PMID:25558230

  5. Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin.

    PubMed

    Berkingali, Nurdanat; Warnecke, Athanasia; Gomes, Priya; Paasche, Gerrit; Tack, Jan; Lenarz, Thomas; Stöver, Timo

    2008-09-01

    The morphological correlate of deafness is the loss of hair cells with subsequent degeneration of spiral ganglion neurons (SGN). Neurotrophic factors have a neuroprotective effect, and especially brain-derived neurotrophic factor (BDNF) has been demonstrated to protect SGN in vitro and after ototoxic trauma in vivo. Erythropoietin (EPO) attenuates hair cell loss in rat cochlea explants that were treated with gentamycin. Recently, it has also been shown that EPO reduces the apoptose rate in hippocampal neurons. Therefore, the aim of the study was to examine the effects of EPO on SGN in vitro. Spiral ganglion cells were isolated from neonatal rats and cultured for 48 h in serum-free medium supplemented with EPO and/or BDNF. Results showed that survival rates of SGN were not significantly improved when cultivated with EPO alone. Also, EPO did not further increase BDNF-induced survival of SGN. However, significant elongation of neurites was determined when SGN were cultivated with EPO alone. Even though a less than additive effect was observed, combined treatment with BDNF and EPO led to a significant elongation of neurites when compared to individual treatment with BDNF or EPO. It can be concluded that EPO induces neurite outgrowth rather than promoting survival. Thus, EPO presents as an interesting candidate to enhance and modulate the regenerative effect of BDNF on SGN.

  6. Imaging Single Cells in the Living Retina

    PubMed Central

    Williams, David R.

    2011-01-01

    A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible. PMID:21596053

  7. Expression of brain-derived neurotrophic factor in cholinergic and dopaminergic amacrine cells in the rat retina and the effects of constant light rearing.

    PubMed

    Fujieda, Hiroki; Sasaki, Hiroshi

    2008-02-01

    Brain-derived neurotrophic factor (BDNF) regulates many aspects of neuronal development, including survival, axonal and dendritic growth and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF in retinal development, the retinal cell types expressing BDNF remains poorly defined. The goal of the present study was to determine the localization of BDNF in the mammalian retina, with special focus on the subtypes of amacrine cells, and to characterize, at the cellular level, the effects of constant light exposure during early postnatal period on retinal expression of BDNF. Retinas from 3-week-old rats reared in a normal light cycle or constant light were subjected to double immunofluorescence staining using antibodies to BDNF and retinal cell markers. BDNF immunoreactivity was localized to ganglion cells, cholinergic amacrine cells and dopaminergic amacrine cells, but not to AII amacrine cells regardless of rearing conditions. Approximately 75% of BDNF-positive cells in the inner nuclear layer were cholinergic amacrine cells in animals reared in a normal lighting condition. While BDNF immunoreactivity in ganglion cells and cholinergic amacrine cells was significantly increased by constant light rearing, which in dopaminergic amacrine cells was apparently unaltered. The overall structure of the retina and the density of ganglion cells, cholinergic amacrine cells and AII amacrine cells were unaffected by rearing conditions, whereas the density of dopaminergic amacrine cells was significantly increased by constant light rearing. The present results indicate that cholinergic amacrine cells are the primary source of BDNF in the inner nuclear layer of the rat retina and provide the first evidence that cholinergic amacrine cells may be involved in the visual activity-dependent regulation of retinal development through the production of BDNF. The present data also suggest that the production or survival of dopaminergic amacrine

  8. Topographic prominence discriminator for the detection of short-latency spikes of retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Choi, Myoung-Hwan; Ahn, Jungryul; Park, Dae Jin; Lee, Sang Min; Kim, Kwangsoo; Cho, Dong-il Dan; Senok, Solomon S.; Koo, Kyo-in; Goo, Yong Sook

    2017-02-01

    Objective. Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. Approach. We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. Main results. We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). Significance. We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm

  9. Retinal ganglion cell neuroprotection induced by activation of alpha7 nicotinic acetylcholine receptors

    PubMed Central

    Mata, David; Linn, David M.

    2015-01-01

    The α7nAChR agonist, PNU-282987, has previously been shown to have a neuroprotective effect against loss of retinal ganglion cells (RGCs) in an in vivo glaucoma model when the agent was injected into the vitreous chamber of adult Long Evans rat eyes. Here, we characterized the neuroprotective effect of PNU-282987 at the nerve fiber and retinal ganglion cell layer, determined that neuroprotection occurred when the agonist was applied as eye drops and verified detection of the agonist in the retina, using LC/MS/MS. To induce glaucoma-like conditions in adult Long Evans rats, hypertonic saline was injected into the episcleral veins to induce scar tissue and increase intraocular pressure. Within one month, this procedure produced significant loss of RGCs compared to untreated conditions. RGCs were quantified after immunostaining with an antibody against Thy 1.1 and imaged using a confocal microscope. In dose-response studies, concentrations of PNU-282987 were applied to the animal’s right eye two times each day, while the left eye acted as an internal control. Eye drops of PNU-282987 resulted in neuroprotection against RGC loss in a dose-dependent manner using concentrations between 100 µM and 2 mM PNU-282987. LC/MS/MS results demonstrated that PNU-282987 was detected in the retina when applied as eye drops, relatively small amounts of PNU-282987 were measured in blood plasma and no PNU-282987 was detected in cardiac tissue. These results support the hypothesis that eye drop application of PNU-282987 can prevent loss of RGCs associated with glaucoma, which can lead to neuroprotective treatments for diseases that involve α7nAChRs. PMID:26239818

  10. Distribution and function of polycystin-2 in mouse retinal ganglion cells

    PubMed Central

    Kaja, Simon; Mafe, Oloruntoyin A.; Parikh, Ruby A.; Kandula, Prasanthi; Reddy, Chanakyaram A.; Gregg, Elaine V.; Xin, Hua; Mitchell, Peter; Grillo, Michael A.; Koulen, Peter

    2011-01-01

    The polycystin family of transient receptor potential (TRP) channels form Ca2+ regulated cation channels with distinct subcellullar localizations and functions. As part of heteromultimeric channels and multi-protein complexes, polycystins control intracellular Ca2+ signals and more generally the translation of extracellular signals and stimuli to intracellular responses. Polycystin-2 channels have been cloned from retina, but their distribution and function in retinal ganglion cells (RGCs) have not yet been established. In the present study, we determined cellular and subcellular localization as well as functional properties of polycystin-2 channels in RGCs. Polycystin-2 expression and distribution in RGCs was assessed by immunohistochemistry on vertical cryostat section of mouse retina as well as primary cultured mouse RGCs, using fluorescence microscopy. Biophysical and pharmacological properties of polycystin-2 channels isolated from primary cultured RGCs were determined using planar lipid bilayer electrophysiology. We detected polycystin-2 immunoreactivity both in the ganglion cell layer as well as in primary cultured RGCs. Subcellular analysis revealed strong cytosolic localization pattern of polycystin-2. Polycystin-2 channel current was Ca2+ activated, had a maximum slope conductance of 114 pS and could be blocked in a dose-dependent manner by increasing concentrations of Mg2+. The cytosolic localization of polycystin-2 in RGCs is in accordance with its function as intracellular Ca2+ release channel. We conclude that polycystin-2 forms functional channels in RGCs, of which biophysical and pharmacological properties are similar to polycystin-2 channels reported for other tissues and organisms. Our data suggest a potential role for polycystin-2 in RGC Ca2+ signaling. PMID:22155264

  11. FGF-2 modulates expression and distribution of GAP-43 in frog retinal ganglion cells after optic nerve injury.

    PubMed

    Soto, Ileana; Marie, Bruno; Baro, Deborah J; Blanco, Rosa E

    2003-08-15

    Basic fibroblast growth factor (bFGF or FGF-2) has been implicated as a trophic factor that promotes survival and neurite outgrowth of neurons. We found previously that application of FGF-2 to the proximal stump of the injured axon increases retinal ganglion cell (RGC) survival. We determine here the effect of FGF-2 on expression of the axonal growth-associated phosphoprotein (GAP)-43 in retinal ganglion cells and tectum of Rana pipiens during regeneration of the optic nerve. In control retinas, GAP-43 protein was found in the optic fiber layer and in optic nerve; mRNA levels were low. After axotomy, mRNA levels increased sevenfold and GAP-43 protein was significantly increased. GAP-43 was localized in retinal axons and in a subset of RGC cell bodies and dendrites. This upregulation of GAP-43 was sustained through the period in which retinal axons reconnect with their target in the tectum. FGF-2 application to the injured nerve, but not to the eyeball, increased GAP-43 mRNA in the retina but decreased GAP-43 protein levels and decreased the number of immunopositive cell bodies. In the tectum, no treatment affected GAP-43 mRNA but FGF-2 application to the axotomized optic nerve increased GAP-43 protein in regenerating retinal projections. We conclude that FGF-2 upregulates the synthesis and alters the distribution of the axonal growth-promoting protein GAP-43, suggesting that it may enhance axonal regrowth.

  12. Lutein Protects RGC-5 Cells Against Hypoxia and Oxidative Stress

    PubMed Central

    Li, Suk-Yee; Lo, Amy C. Y.

    2010-01-01

    Retinal ischemia and oxidative stress lead to neuronal death in many ocular pathologies. Recently, we found that lutein, an oxy-carotenoid, protected the inner retina from ischemia/reperfusion injury. However, it is uncertain whether lutein directly protects retinal ganglion cells (RGCs). Here, an in vitro model of hypoxia and oxidative stress was used to further investigate the neuroprotective role of lutein in RGCs. Cobalt chloride (CoCl2) and hydrogen peroxide (H2O2) were added to a transformed RGC cell line, RGC-5, to induce chemical hypoxia and oxidative stress, respectively. Either lutein or vehicle was added to cultured cells. A higher cell count was observed in the lutein-treated cells compared with the vehicle-treated cells. Our data from this in vitro model revealed that lutein might protect RGC-5 cells from damage when exposed to either CoCl2-induced chemical hypoxia or H2O2-induced oxidative stress. These results suggest that lutein may play a role as a neuroprotectant. PMID:20559505

  13. Stressor-dependent Alterations in Glycoprotein 130: Implications for Glial Cell Reactivity, Cytokine Signaling and Ganglion Cell Health in Glaucoma

    PubMed Central

    Echevarria, FD; Walker, CC; Abella, SK; Won, M; Sappington, RM

    2013-01-01

    Objective: The interleukin-6 (IL-6) family of cytokines is associated with retinal ganglion cell (RGC) survival and glial reactivity in glaucoma. The purpose of this study was to evaluate glaucoma-related changes in glycoprotein-130 (gp130), the common signal transducer of the IL-6 family of cytokines, as they relate to RGC health, glial reactivity and expression of IL-6 cytokine family members. Methods: For all experiments, we examined healthy retina (young C57), aged retina (aged C57), retina predisposed to glaucoma (young DBA/2) and retina with IOP-induced glaucoma (aged DBA/2). We determined retinal gene expression of gp130 and IL-6 family members, using quantitative PCR, and protein expression of gp130, using multiplex ELISA. For protein localization and cell-specific expression, we performed co-immunolabeling for gp130 and cell type-specific markers. We used quantitative microscopy to measure layer-specific expression of gp130 and its relationships to astrocyte and Müller glia reactivity and RGC axonal transport, as determined by uptake and transport of cholera toxin β-subunit (CTB). Results: Gene expression of gp130 was elevated with all glaucoma-related stressors, but only normal aging increased protein levels. In healthy retina, gp130 localized primarily to the inner retina, where it was expressed by astrocytes, Müller cells and RGCs. Layer-specific analysis of gp130 expression revealed increased expression in aging retina and decreased expression in glaucomatous retina that was eccentricity-dependent. These glaucoma-related changes in gp130 expression correlated with the level of GFAP and glutamine synthetase expression, as well as axonal transport in RGCs. The relationships between gp130, glial reactivity and RGC health could impact signaling by many IL-6 family cytokines, which exhibited overall increased expression in a stressor-dependent manner. Conclusions: Glaucoma-related stressors, including normal aging, glaucoma predisposition and IOP

  14. Doublecortin is widely expressed in the developing and adult retina of sharks.

    PubMed

    Sánchez-Farías, Nuria; Candal, Eva

    2015-05-01

    Doublecortin (DCX) is a microtubule-associated protein that has been considered a marker for neuronal precursors and young migrating neurons during the development of the central nervous system and in adult neurogenic niches. The retina of fishes represents an accessible, continuously growing and highly structured (layered) part of the central nervous system and, therefore, offers an exceptional model to extend our knowledge on the possible role of DCX in promoting neurogenesis and migration to appropriate layers. We have analyzed the distribution of DCX in the embryonic and postembryonic retina of a small shark, the lesser spotted dogfish Scyliorhinus canicula, by means of immunohistochemistry. We investigated the relationship between DCX expression and the neurogenic state of DCX-labeled cells by exploring its co-localization with the proliferation marker PCNA (proliferating cell nuclear antigen) and the marker of neuronal differentiation HuC/D. Since radially migrating neurons use radial glial fibers as substrate, we explored the possible correlation between DCX expression and cell migration along radial glia by comparing its expression with that of the glial marker GFAP (glial fibrillary acidic protein). Additionally, we characterized DCX-expressing cells by double immunocytochemistry using antibodies against Calbindin (a marker for mature bipolar and horizontal cells in this species) and Pax6, which has been proposed as a regulator of cell proliferation, cell differentiation, and neuron diversification in the neural retina of sharks. Strong DCX immunoreactivity was observed in immature cells and cell processes, at a time when retinal cells were not yet organized into different laminae. DCX was also found in subsets of mature ganglion, amacrine, bipolar and horizontal cells long after they had exited the cell cycle, a pattern that was maintained in juveniles and adults. Our results on DCX expression in the retina are compatible with a role for DCX in cell

  15. Effects of Dietary Iron and Gamma Radiation on the Rat Retina

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer; Marshall, Grace; Theriot, Corey A.; Chacon, Natalia; Zwart, Sara; Zanello, Susana B.

    2012-01-01

    A health risk of concern for NASA relates to radiation exposure and its synergistic effects with other space environmental factors, includi ng nutritional status of the crew. Astronauts consume almost three times the recommended daily allowance of iron due to the use of fortifie d foods aboard the International Space Station, with iron intake occa sionally exceeding six times the recommended values. Recently, NASA has become concerned with visual changes associated with spaceflight, a nd research is being conducted to elucidate the etiology of eye structure alterations in the spaceflight environment. Terrestrially, iron o verload is also associated with certain optic neuropathies. In additi on, due to its role in Fenton reactions, iron can potentiate oxidative stress, which is a recognized cause of cataract formation. As part o f a study investigating the combined effects of radiation exposure an d iron overload on multiple physiological systems, we focused on defining the effects of both treatments on eye biology. In this study, 12- week-old Sprague-Dawley rats were assigned to one of four experimental groups: normal iron/no radiation (Control/Sham), high iron/no radiat ion (Fe/Sham), normal iron/gamma radiation (3 Gy cumulative dose, fra ctionated at 0.375 Gy/d every other day for 16 d) (Control/Rad), and high iron/gamma radiation (Fe/Rad). Oxidative stress-induced DNA damag e, measured as concentration of the marker 8-hydroxy-2'-deoxyguanosine (8OHdG) in eye retinal tissue by enzyme-immunoanalysis did not show significant changes among treatments. However, there was an overall i ncrease in 8OHdG immunostaining density in retina sections due to radiation exposure (P = 0.05). Increased dietary iron and radiation expos ure had an interactive effect (P = 0.02) on 8OHdG immunostaining of t he retinal ganglion cell layer with iron diet increasing the signal in the group not exposed to radiation (P = 0.05). qPCR gene expression profiling of relevant target genes

  16. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development

    PubMed Central

    Mocko-Strand, Julie A.; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W.; Arnone, Maria Ina; Frishman, Laura J.; Klein, William H.

    2016-01-01

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  17. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    PubMed

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures.

  18. Lack of CaBP1/Caldendrin or CaBP2 Leads to Altered Ganglion Cell Responses

    PubMed Central

    Sinha, Raunak; Lee, Amy

    2016-01-01

    Calcium-binding proteins (CaBPs) form a subfamily of calmodulin-like proteins that were cloned from the retina. CaBP4 and CaBP5 have been shown to be important for normal visual function. Although CaBP1/caldendrin and CaBP2 have been shown to modulate various targets in vitro, it is not known whether they contribute to the transmission of light responses through the retina. Therefore, we generated mice that lack CaBP2 or CaBP1/caldendrin (Cabp2–/– and Cabp1–/–) to test whether these CaBPs are essential for normal retinal function. By immunohistochemistry, the overall morphology of Cabp1–/– and Cabp2–/– retinas and the number of synaptic ribbons appear normal; transmission electron microscopy shows normal tethered ribbon synapses and synaptic vesicles as in wild-type retinas. However, whole-cell patch clamp recordings showed that light responses of retinal ganglion cells of Cabp2–/– and Cabp1–/– mice differ in amplitude and kinetics from those of wild-type mice. We conclude that CaBP1/caldendrin and CaBP2 are not required for normal gross retinal and synapse morphology but are necessary for the proper transmission of light responses through the retina; like other CaBPs, CaBP1/caldendrin and CaBP2 likely act by modulating presynaptic Ca2+-dependent signaling mechanisms. PMID:27822497

  19. Coding Properties of Three Intrinsically Distinct Retinal Ganglion Cells under Periodic Stimuli: A Computational Study

    PubMed Central

    Wang, Lei; Qiu, Yi-Hong; Zeng, Yanjun

    2016-01-01

    As the sole output neurons in the retina, ganglion cells play significant roles in transforming visual information into spike trains, and then transmitting them to the higher visual centers. However, coding strategies that retinal ganglion cells (RGCs) adopt to accomplish these processes are not completely clear yet. To clarify these issues, we investigate the coding properties of three types of RGCs (repetitive spiking, tonic firing, and phasic firing) by two different measures (spike-rate and spike-latency). Model results show that for periodic stimuli, repetitive spiking RGC and tonic RGC exhibit similar spike-rate patterns. Their spike- rates decrease gradually with increased stimulus frequency, moreover, variation of stimulus amplitude would change the two RGCs' spike-rate patterns. For phasic RGC, it activates strongly at medium levels of frequency when the stimulus amplitude is low. While if high stimulus amplitude is applied, phasic RGC switches to respond strongly at low frequencies. These results suggest that stimulus amplitude is a prominent factor in regulating RGCs in encoding periodic signals. Similar conclusions can be drawn when analyzes spike-latency patterns of the three RGCs. More importantly, the above phenomena can be accurately reproduced by Hodgkin's three classes of neurons, indicating that RGCs can perform the typical three classes of firing dynamics, depending on the distinctions of ion channel densities. Consequently, model results from the three RGCs may be not specific, but can also applicable to neurons in other brain regions which exhibit part(s) or all of the Hodgkin's three excitabilities. PMID:27721751

  20. Calpain Inhibition Attenuates Apoptosis of Retinal Ganglion Cells in Acute Optic Neuritis

    PubMed Central

    Smith, Amena W.; Das, Arabinda; Guyton, M. Kelly; Ray, Swapan K.; Rohrer, Baerbel

    2011-01-01

    Purpose. Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with the pathogenesis of multiple sclerosis (MS) and is initiated by the attack of autoreactive T cells against self-myelin antigens, resulting in demyelination, degeneration of retinal ganglion cells (RGCs), and cumulative visual impairment. Methods. Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats on day 0, and animals received daily intraperitoneal injections of calpain inhibitor (calpeptin) or vehicle from day 1 until killed. Retinal cell death was analyzed by DNA fragmentation, and surviving ganglion cells were quantified after double labeling of retinal tissue with TUNEL and Brn3a. The expression of apoptotic and inflammatory proteins was determined by Western blotting. Results. It was demonstrated that calpain inhibition downregulates expression of proapoptotic proteins and the proinflammatory molecule nuclear factor-kappa B (NF-κB) in the retina of Lewis rats with acute EAE. Immunofluorescent labeling revealed that apoptotic cells in the RGC layer of vehicle-treated EAE animals were Brn3a positive, and a moderate dose of calpeptin dramatically reduced the frequency of apoptotic RGCs. Conclusions. These results suggest that calpain inhibition might be a useful supplement to immunomodulatory therapies such as corticosteroids in ON, due to its neuroprotective effect on RGCs. PMID:21613375

  1. Phospholipid flippase ATP8A2 is required for normal visual and auditory function and photoreceptor and spiral ganglion cell survival.

    PubMed

    Coleman, Jonathan A; Zhu, Xianjun; Djajadi, Hidayat R; Molday, Laurie L; Smith, Richard S; Libby, Richard T; John, Simon W M; Molday, Robert S

    2014-03-01

    ATP8A2 is a P4-ATPase that is highly expressed in the retina, brain, spinal cord and testes. In the retina, ATP8A2 is localized in photoreceptors where it uses ATP to transport phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the exoplasmic to the cytoplasmic leaflet of membranes. Although mutations in ATP8A2 have been reported to cause mental retardation in humans and degeneration of spinal motor neurons in mice, the role of ATP8A2 in sensory systems has not been investigated. We have analyzed the retina and cochlea of ATP8A2-deficient mice to determine the role of ATP8A2 in visual and auditory systems. ATP8A2-deficient mice have shortened photoreceptor outer segments, a reduction in photoresponses and decreased photoreceptor viability. The ultrastructure and phagocytosis of the photoreceptor outer segment appeared normal, but the PS and PE compositions were altered and the rhodopsin content was decreased. The auditory brainstem response threshold was significantly higher and degeneration of spiral ganglion cells was apparent. Our studies indicate that ATP8A2 plays a crucial role in photoreceptor and spiral ganglion cell function and survival by maintaining phospholipid composition and contributing to vesicle trafficking.

  2. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    NASA Astrophysics Data System (ADS)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  3. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  4. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats.

    PubMed

    Tomita, Hiroshi; Sugano, Eriko; Isago, Hitomi; Hiroi, Teru; Wang, Zhuo; Ohta, Emi; Tamai, Makoto

    2010-03-01

    To test the hypothesis that transduction of the channelrhodopsin-2 (ChR2) gene, a microbial-type rhodopsin gene, into retinal ganglion cells of genetically blind rats will restore functional vision, we recorded visually evoked potentials and tested the experimental rats for the presence of optomotor responses. The N-terminal fragment of the ChR2 gene was fused to the fluorescent protein Venus and inserted into an adeno-associated virus to make AAV2-ChR2V. AAV2-ChR2V was injected intravitreally into the eyes of 6-month-old dystrophic RCS (rdy/rdy) rats. Visual function was evaluated six weeks after the injection by recording visually evoked potentials (VEPs) and testing optomotor responses. The expression of ChR2V in the retina was investigated histologically. We found that VEPs could not be recorded from 6-month-old dystrophic RCS rats that had not been injected with AAV2-ChR2V. In contrast, VEPs were elicited from RCS rats six weeks after injection with AAV2-ChR2V. The VEPs were recorded at stimulation rates <20Hz, which was the same as that of normal rats. Optomotor responses were also significantly better after the AAV2-ChR2V injection. Expression of ChR2V was observed mainly in the retinal ganglion cells. These findings demonstrate that visual function can be restored in blind rats by transducing the ChR2V gene into retinal ganglion cells.

  5. Separability of stimulus parameter encoding by on-off directionally selective rabbit retinal ganglion cells

    PubMed Central

    Nowak, Przemyslaw; Dobbins, Allan C.; Gawne, Timothy J.; Grzywacz, Norberto M.

    2011-01-01

    The ganglion cell output of the retina constitutes a bottleneck in sensory processing in that ganglion cells must encode multiple stimulus parameters in their responses. Here we investigate encoding strategies of On-Off directionally selective retinal ganglion cells (On-Off DS RGCs) in rabbits, a class of cells dedicated to representing motion. The exquisite axial discrimination of these cells to preferred vs. null direction motion is well documented: it is invariant with respect to speed, contrast, spatial configuration, spatial frequency, and motion extent. However, these cells have broad direction tuning curves and their responses also vary as a function of other parameters such as speed and contrast. In this study, we examined whether the variation in responses across multiple stimulus parameters is systematic, that is the same for all cells, and separable, such that the response to a stimulus is a product of the effects of each stimulus parameter alone. We extracellularly recorded single On-Off DS RGCs in a superfused eyecup preparation while stimulating them with moving bars. We found that spike count responses of these cells scaled as independent functions of direction, speed, and luminance. Moreover, the speed and luminance functions were common across the whole sample of cells. Based on these findings, we developed a model that accurately predicted responses of On-Off DS RGCs as products of separable functions of direction, speed, and luminance (r = 0.98; P < 0.0001). Such a multiplicatively separable encoding strategy may simplify the decoding of these cells' outputs by the higher visual centers. PMID:21325684

  6. Hyperoxia depletes (6R)-5,6,7,8-tetrahydrobiopterin levels in the neonatal retina: implications for nitric oxide synthase function in retinopathy.

    PubMed

    Edgar, Kevin S; Matesanz, Nuria; Gardiner, Tom A; Katusic, Zvonimir S; McDonald, Denise M

    2015-06-01

    Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitro-oxidative insult to the developing retinal vasculature during therapeutic hyperoxia exposure and later ischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerative phase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygen and nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. Crucially, normal NOS function depends on availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4). Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCH-depleted mice [hyperphenylalaninemia strain (hph1)] to investigate the impact of hyperoxia on BH4 bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas, lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activity and, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarly diminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletion of BH4, the hph(+/-) and hph1(-/-) groups did not show exacerbated hyperoxia-induced vessel closure, but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotective effect was independent of enhanced circulating vascular endothelial growth factor (VEGF), which was reduced by hyperoxia, but to local retinal ganglion cell layer-derived VEGF. In conclusion, a constitutively higher level of VEGF expression associated with retinal development protects GTPCH-deficient neonates from oxygen-induced vascular damage.

  7. Effects of histamine on light responses of amacrine cells in tiger salamander retina.

    PubMed

    Yu, Yongchun; Satoh, Hiromasa; Vila, Alejandro; Wu, Samuel M; Marshak, David W

    2011-04-01

    Using immunofluorescence, we showed that histamine receptor 1 is expressed by horizontal cell axons and a subset of amacrine cells in the tiger salamander retina. The effects of histamine on light responses of amacrine cells were studied in slice preparations. Histamine modulated the light responses of many salamander amacrine cells, depending upon the morphological type. The most pronounced effects of histamine were decreases in the light responses of broadly stratified amacrine cells, particularly those having medium-sized dendritic field diameters. To determine whether the effects of histamine were direct, Co(++) was substituted for Ca(++) in the extracellular medium to block synaptic transmission. Histamine still affected broadly stratified amacrine cells, but not narrowly stratified amacrine cells under these conditions. Taken together, these findings suggest that inhibitory interactions between strata of the IPL and within the classical receptive fields of the ganglion cells would be particularly sensitive to histamine released from retinopetal axons.

  8. The effects of triamcinolone crystals on retinal function in a model of isolated perfused vertebrate retina.

    PubMed

    Lüke, Matthias; Januschowski, Kai; Beutel, Julia; Warga, Max; Grisanti, Salvatore; Peters, Swaantje; Schneider, Toni; Lüke, Christoph; Bartz-Schmidt, Karl Ulrich; Szurman, Peter

    2008-07-01

    A good clinical experience of intravitreal triamcinolone acetonide (TA) has been reported in several studies, but there are growing indications that epiretinal crystals of TA exhibit retinal toxicity. To investigate the effects of TA on retinal function we used a model of an electrophysiological in vitro technique for testing retinal toxicity. Isolated bovine retinas were perfused with an oxygen saturated nutrient solution. The electroretinogram (ERG) was recorded as a transretinal potential using Ag/AgCl electrodes. After reaching stable ERG-amplitudes TA at the maximum solubility equilibrium (36 microg/ml) was either applied to the nutrient solution for 45 min or TA was administered epiretinally at concentrations (1 mg/ml, 4 mg/ml, 8 mg/ml, 20 mg/ml and 40 mg/ml) above the maximum solubility equilibrium to assure direct contact of the TA crystals with the isolated perfused retinas. After that the retinas were reperfused for 75 min with the standard nutrient solution. The percentage of a- and b-wave reduction directly after the application and at the washout was calculated. To assess the effects of TA at the level of the ganglion cell layer a Viability/Cytotoxicity Kit for mammalian cells was used. No changes of the ERG-amplitudes were detected during the exposure to 36 microg/ml TA for 45 min (b-wave: 9.6 microV+/-2.1 vs. 8 microV+/-2.1 (p=0.135); a-wave: -11 microV+/-2.7 vs. -10.6 microV+/-2.3 (p=0.889)) and at the washout (b-wave: 8 microV+/-2.1 vs. 8.3 microV+/-2.4 (p=0.18); a-wave: -10.6 microV+/-2.3 vs. -12 microV+/-2.6 (p=0.225)). At concentrations higher than 1mg/ml TA induced a decrease of the a- and b-wave in a concentration dependent manner. These changes were reversible for concentrations of TA up to 20mg/ml (b-wave: 9 microV+/-2.4 vs. 6.6 microV+/-2.5 (p=0.08); a-wave: -11.4 microV+/-2.0 vs. -11.2 microV+/-2.2 (p=0.37)), but irreversible at 40 mg/ml even at the end of the washout (b-wave: 9.8 microV+/-1.9 vs. 3 microV+/-1.7 (p=0.009); a-wave: -9

  9. Growth hormone and cell survival in the neural retina: caspase dependence and independence.

    PubMed

    Harvey, Steve; Baudet, Marie-Laure; Sanders, Esmond J

    2006-11-06

    Growth hormone has recently been shown to be expressed in the retinal ganglion cells of embryonic chicks, in which it induces cell survival during neurogenesis. The mechanism of this action has been examined in neural retina explants from 6-day-old and 8-day-old embryos that were incubated for 48 h in 10 M growth hormone, to reduce the number of spontaneous apoptotic cells. This anti-apoptotic action was accompanied by a reduction in caspase-3 expression and, at embryonic day 8, by reduced expression of apoptosis inducing factor-1, which is caspase independent. These actions were specific, as other genes involved in apoptotic signaling (bcl-2, bcl-x, bid and inhibitor of apoptosis protein-1) were unaffected. These results therefore demonstrate caspase-dependent and caspase-independent pathways in growth hormone-induced retinal cell survival.

  10. Radiation therapy in and about the retina, optic nerve, and anterior visual pathway. Psychophysical assessment

    SciTech Connect

    Fitzgerald, C.R.; Enoch, J.M.; Temme, L.A.

    1981-04-01

    Visual changes may develop in patients receiving radiation therapy for malignant neoplasms in and about the optic nerve and anterior visual pathway. Cases have been studied using a series of psychophysical tests, including kinetic perimetry, increment threshold determinations, Flashing Repeat Static Test, and sustained- and transient-like functions. A characteristic time-dependent reduction in sensitivity has been identified in these patients. This finding, in addition to the presence of nerve fiber bundle defects, appears to place the pathologic changes in the axon of the ganglion cell posterior to the lamina cribrosa. Any change in the sustained- and transient-like functions, the organization of which appears to be in the neural retina, was seen only if a concomitant radiation retinopathy was identified.

  11. Radiation therapy in and about the retina, optic nerve, and anterior visual pathway: psychophysical assessment

    SciTech Connect

    Fitzgerald, C.R.; Enoch, J.M.; Temme, L.A.

    1981-04-01

    Visual changes may develop in patients receiving radiation therapy for malignant neoplasms in and about the optic nerve and anterior visual pathway. Cases have been studied using a series of psychophysical tests, including kinetic perimetry, increment threshold determinations, Flashing Repeat Static Test, and sustained- and transient-like functions. A characteristic time-dependent reduction in sensitivity has been identified in these patients. This finding, in addition to the presence of nerve fiber bundle defects, appears to place the pathologic changes in the axon of the ganglion cell posterior to the lamina cribrosa. Any change in the sustained- and transient-like functions, the organization of which appears to be in the neural retina, was seen only if a concomitant radiation retinopathy was identified.

  12. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats

    PubMed Central

    Wang, Peipei; Zhu, Yanxia; Chen, Zhen; Shi, Tianyan; Lei, Wensheng

    2015-01-01

    Abstract Purpose: To determine whether curcumin offers neuroprotection to minimize the apoptosis of neural cells in the retina of diabetic rats. Methods: Streptozotocin (STZ)-induced diabetic rats and control rats were used in this study. A subgroup of STZ-induced diabetic rats were treated with curcumin for 12 weeks. Retinal histology, apoptosis of neural cells in the retina, electroretinograms, and retinal glutamate content were evaluated after 12 weeks. Retinal levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII), phospho-CaMKII (p-CaMKII), and cleaved caspase-3 were determined by Western blot analysis. Results: The amplitudes a-wave, b-wave, and oscillatory potential were reduced by diabetes, but curcumin treatment suppressed this reduction of amplitudes. Curcumin also prevented cell loss from the outer nuclear, inner nuclear, and ganglion cell layers. Apoptosis of retinal neurons was detected in diabetic rats. The concentration of glutamate in the retina was higher in diabetic rats, but was significantly reduced in the curcumin-treated group. Furthermore, p-CaMKII and cleaved caspase-3 expression were upregulated in the diabetic retina, but reduced in curcumin-treated rats. Conclusions: Curcumin attenuated diabetes-induced apoptosis in retinal neurons by reducing the glutamate level and downregulating CaMKII. Thus, curcumin might be used to prevent neuronal damage in the retina of patients with diabetes mellitus. PMID:26207889

  13. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats.

    PubMed

    Hill, Andrew J; Zwart, Isabel; Tam, Henry H; Chan, Jane; Navarrete, Cristina; Jen, Ling-Sun; Navarrete, Roberto

    2009-04-01

    This study investigated the ability of mesenchymal stem cells (MSCs) derived from full-term human umbilical cord blood to survive, integrate and differentiate after intravitreal grafting to the degenerating neonatal rat retina following intracranial optic tract lesion. MSCs survived for 1 week in the absence of immunosuppression. When host animals were treated with cyclosporin A and dexamethasone to suppress inflammatory and immune responses, donor cells survived for at least 3 weeks, and were able to spread and cover the entire vitreal surface of the host retina. However, MSCs did not significantly integrate into or migrate through the retina. They also maintained their human antigenicity, and no indication of neural differentiation was observed in retinas where retinal ganglion cells either underwent severe degeneration or were lost. These results have provided the first in vivo evidence that MSCs derived from human umbilical cord blood can survive for a significant period of time when the host rat response is suppressed even for a short period. These results, together with the observation of a lack of neuronal differentiation and integration of MSCs after intravitreal grafting, has raised an important question as to the potential use of MSCs for neural repair through the replacement of lost neurons in the mammalian retina and central nervous system.

  14. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with multimodal photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Zhang, Hao F.; Zhou, Lixiang; Jiao, Shuliang

    2012-02-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective vs. exacerbate) in the RPE in the aging process. We successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  15. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis.

    PubMed

    Hadjinicolaou, Alex E; Leung, Ronald T; Garrett, David J; Ganesan, Kumaravelu; Fox, Kate; Nayagam, David A X; Shivdasani, Mohit N; Meffin, Hamish; Ibbotson, Michael R; Prawer, Steven; O'Brien, Brendan J

    2012-08-01

    Electronic retinal implants for the blind are already a market reality. A world wide effort is underway to find the technology that offers the best combination of performance and safety for potential patients. Our approach is to construct an epi-retinally targeted device entirely encapsulated in diamond to maximise longevity and biocompatibility. The stimulating array of our device comprises a monolith of electrically insulating diamond with thousands of hermetic, microscale nitrogen doped ultra-nanocrystalline diamond (N-UNCD) feedthroughs. Here we seek to establish whether the conducting diamond feedthroughs of the array can be used as stimulating electrodes without further modification with a more traditional neural stimulation material. Efficacious stimulation of retinal ganglion cells was established using single N-UNCD microelectrodes in contact with perfused, explanted, rat retina. Evoked rat retinal ganglion cell action potentials were recorded by patch clamp recording from single ganglion cells, adjacent to the N-UNCD stimulating electrode. Separately, excellent electrochemical stability of N-UNCD was established by prolonged pulsing in phosphate buffered saline at increasing charge density up to the measured charge injectio