Science.gov

Sample records for protein 3 regulatory

  1. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein.

    PubMed

    Choi, Il-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  2. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  3. Governing effect of regulatory proteins for Cl(-)/HCO3(-) exchanger 2 activity.

    PubMed

    Jeong, Yon Soo; Hong, Jeong Hee

    2016-01-01

    Anion exchanger 2 (AE2) has a critical role in epithelial cells and is involved in the ionic homeostasis such as Cl(-) uptake and HCO3(-) secretion. However, little is known about the regulatory mechanism of AE2. The main goal of the present study was to investigate potential regulators, such as spinophilin (SPL), inositol-1,4,5-trisphosphate [IP3] receptors binding protein released with IP3 (IRBIT), STE20/SPS1-related proline/alanine-rich kinase (SPAK) kinase, and carbonic anhydrase XII (CA XII). We found that SPL binds to AE2 and markedly increased the Cl(-)/HCO3(-) exchange activity of AE2. Especially SPL 1-480 domain is required for enhancing AE2 activity. For other regulatory components that affect the fidelity of fluid and HCO3(-) secretion, IRBIT and SPAK had no effect on the activity of AE2 and no protein-protein interaction with AE2. It has been proposed that CA activity is closely associated with AE activity. In this study, we provide evidence that the basolateral membrane-associated CA isoform CA XII significantly increased the activity of AE2 and co-localized with AE2 to the plasma membrane. Collectively, SPL and CA XII enhanced the Cl(-)/HCO3(-) exchange activity of AE2. The modulating action of these regulatory proteins could serve as potential therapeutic targets for secretory diseases mediated by AE2.

  4. Viral complement regulatory proteins.

    PubMed

    Rosengard, A M; Ahearn, J M

    1999-05-01

    The inactivation of complement provides cells and tissues critical protection from complement-mediated attack and decreases the associated recruitment of other inflammatory mediators. In an attempt to evade the host immune response, viruses have evolved two mechanisms to acquire complement regulatory proteins. They can directly seize the host cell complement regulators onto their outer envelope and/or they can produce their own proteins which are either secreted into the neighboring intercellular space or expressed as membrane-bound proteins on the infected host cell. The following review will concentrate on the viral homologues of the mammalian complement regulatory proteins, specifically those containing complement control protein (CCP) repeats. PMID:10408371

  5. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  6. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein.

    PubMed

    Talon, J; Horvath, C M; Polley, R; Basler, C F; Muster, T; Palese, P; García-Sastre, A

    2000-09-01

    We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.

  7. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1.

    PubMed

    Jeong, S M; Lee, J; Finley, L W S; Schmidt, P J; Fleming, M D; Haigis, M C

    2015-04-16

    Iron metabolism is essential for many cellular processes, including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor-suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism. PMID:24909164

  8. Optimization and Corroboration of the Regulatory Pathway of p42.3 Protein in the Pathogenesis of Gastric Carcinoma

    PubMed Central

    Hao, Yibin; Fan, Tianli; Nan, Kejun

    2015-01-01

    Aims. To optimize and verify the regulatory pathway of p42.3 in the pathogenesis of gastric carcinoma (GC) by intelligent algorithm. Methods. Bioinformatics methods were used to analyze the features of structural domain in p42.3 protein. Proteins with the same domains and similar functions to p42.3 were screened out for reference. The possible regulatory pathway of p42.3 was established by integrating the acting pathways of these proteins. Then, the similarity between the reference proteins and p42.3 protein was figured out by multiparameter weighted summation method. The calculation result was taken as the prior probability of the initial node in Bayesian network. Besides, the probability of occurrence in different pathways was calculated by conditional probability formula, and the one with the maximum probability was regarded as the most possible pathway of p42.3. Finally, molecular biological experiments were conducted to prove it. Results. In Bayesian network of p42.3, probability of the acting pathway “S100A11→RAGE→P38→MAPK→Microtubule-associated protein→Spindle protein→Centromere protein→Cell proliferation” was the biggest, and it was also validated by biological experiments. Conclusions. The possibly important role of p42.3 in the occurrence of gastric carcinoma was verified by theoretical analysis and preliminary test, helping in studying the relationship between p42.3 and gastric carcinoma. PMID:26106439

  9. Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler's virus leader protein.

    PubMed

    Ricour, Céline; Delhaye, Sophie; Hato, Stanleyson V; Olenyik, Tamara D; Michel, Bénédicte; van Kuppeveld, Frank J M; Gustin, Kurt E; Michiels, Thomas

    2009-01-01

    Theiler's murine encephalomyelitis virus (TMEV or Theiler's virus) is a neurotropic picornavirus that can persist lifelong in the central nervous system of infected mice, causing a chronic inflammatory demyelinating disease. The leader (L) protein of the virus is an important determinant of viral persistence and has been shown to inhibit transcription of type I interferon (IFN) genes and to cause nucleocytoplasmic redistribution of host proteins. In this study, it was shown that expression of the L protein shuts off synthesis of the reporter proteins green fluorescent protein and firefly luciferase, suggesting that it induces a global shut-off of host protein expression. The L protein did not inhibit transcription or translation of the reporter genes, but blocked cellular mRNA export from the nucleus. This activity correlated with the phosphorylation of nucleoporin 98 (Nup98), an essential component of the nuclear pore complex. In contrast, the data confirmed that the L protein inhibited IFN expression at the transcriptional level, and showed that transcription of other chemokine or cytokine genes was affected by the L protein. This transcriptional inhibition correlated with inhibition of interferon regulatory factor 3 (IRF-3) dimerization. Whether inhibition of IRF-3 dimerization and dysfunction of the nuclear pore complex are related phenomena remains an open question. In vivo, IFN antagonism appears to be an important role of the L protein early in infection, as a virus bearing a mutation in the zinc finger of the L protein replicated as efficiently as the wild-type virus in type I IFN receptor-deficient mice, but had impaired fitness in IFN-competent mice.

  10. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation.

    PubMed

    Deng, Guoping; Nagai, Yasuhiro; Xiao, Yan; Li, Zhiyuan; Dai, Shujia; Ohtani, Takuya; Banham, Alison; Li, Bin; Wu, Shiaw-Lin; Hancock, Wayne; Samanta, Arabinda; Zhang, Hongtao; Greene, Mark I

    2015-08-14

    Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses. PMID:25987564

  11. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    PubMed

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy. PMID:25809415

  12. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    PubMed

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy.

  13. Dynamic changes in binding of immunoglobulin heavy chain 3' regulatory region to protein factors during class switching.

    PubMed

    Chatterjee, Sanjukta; Ju, Zhongliang; Hassan, Rabih; Volpi, Sabrina A; Emelyanov, Alexander V; Birshtein, Barbara K

    2011-08-19

    The 3' regulatory region (3' RR) of the Igh locus works at long distances on variable region (V(H)) and switch region (I) region promoters to initiate germ line (non-coding) transcription (GT) and promote class switch recombination (CSR). The 3' RR contains multiple elements, including enhancers (hs3a, hs1.2, hs3b, and hs4) and a proposed insulator region containing CTCF (CCCTC-binding factor) binding sites, i.e. hs5/6/7 and the downstream region ("38"). Notably, deletion of each individual enhancer (hs3a-hs4) has no significant phenotypic consequence, suggesting that the 3' RR has considerable structural flexibility in its function. To better understand how the 3' RR functions, we identified transcription factor binding sites and used chromatin immunoprecipitation (ChIP) assays to monitor their occupancy in splenic B cells that initiate GT and undergo CSR (LPS±IL4), are deficient in GT and CSR (p50(-/-)), or do not undergo CSR despite efficient GT (anti-IgM+IL4). Like 3' RR enhancers, hs5-7 and the 38 region were observed to contain multiple Pax5 binding sites (in addition to multiple CTCF sites). We found that the Pax5 binding profile to the 3' RR dynamically changed during CSR independent of the specific isotype to which switching was induced, and binding focused on hs1.2, hs4, and hs7. CTCF-associated and CTCF-independent cohesin interactions were also identified. Our observations are consistent with a scaffold model in which a platform of active protein complexes capable of facilitating GT and CSR can be formed by varying constellations of 3' RR elements.

  14. Known Turnover and Translation Regulatory RNA-Binding Proteins Interact with the 3’ UTR of SECIS-Binding Protein 2

    PubMed Central

    Bubenik, Jodi; Ladd, Andrea; Gerber, Carri A.; Budiman, Michael; Driscoll, Donna

    2008-01-01

    The human selenoproteome is composed of ~25 selenoproteins, which cotranslationally incorporate selenocysteine, the 21st amino acid. Selenoprotein expression requires an unusual translation mechanism, as selenocysteine is encoded by the UGA stop codon. SECIS-binding protein 2 (SBP2) is an essential component of the selenocysteine insertion machinery. SBP2 is also the only factor known to differentiate among selenoprotein mRNAs, thereby modulating the relative expression of the individual selenoproteins. Here, we show that expression of SBP2 protein varies widely across tissues and cell types examined, despite previous observations of only modest variation in SBP2 mRNA levels. This discrepancy between SBP2 mRNA and protein levels implies translational regulation, which is often mediated via untranslated regions (UTRs) in regulated transcripts. We have identified multiple sequences in the SBP2 3’ UTR that are highly conserved. The proximal short conserved region is GU rich and was subsequently shown to be a binding site for CUG-BP1. The distal half of the 3’ UTR is largely conserved, and multiple proteins interact with this region. One of these proteins was identified as HuR. Both CUG-BP1 and HuR are members of the Turnover and Translation Regulatory RNA-Binding Protein family (TTR-RBP). Members of this protein family are linked by the common ability to rapidly effect gene expression through alterations in the stability and translatability of target mRNAs. The identification of CUG-BP1 and HuR as factors that bind to the SBP2 3’ UTR suggests that TTR-RBPs play a role in the regulation of SBP2, which then dictates the expression of the selenoproteome. PMID:19106619

  15. 3 CFR - Regulatory Review

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... been learned since that time. Far more is now known about regulation—not only about when it is... interests of future generations; identify methods of ensuring that regulatory review does not produce...

  16. Light-Regulated Hypocotyl Elongation Involves Proteasome-Dependent Degradation of the Microtubule Regulatory Protein WDL3 in Arabidopsis[C][W][OA

    PubMed Central

    Liu, Xiaomin; Qin, Tao; Ma, Qianqian; Sun, Jingbo; Liu, Ziqiang; Yuan, Ming; Mao, Tonglin

    2013-01-01

    Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation. PMID:23653471

  17. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    PubMed

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system. PMID:24719864

  18. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    PubMed

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.

  19. α-Actinin TvACTN3 of Trichomonas vaginalis Is an RNA-Binding Protein That Could Participate in Its Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system. PMID:24719864

  20. Prediction and integration of regulatory and protein-protein interactions

    SciTech Connect

    Wichadakul, Duangdao; McDermott, Jason E.; Samudrala, Ram

    2009-04-20

    Knowledge of transcriptional regulatory interactions (TRIs) is essential for exploring functional genomics and systems biology in any organism. While several results from genome-wide analysis of transcriptional regulatory networks are available, they are limited to model organisms such as yeast [1] and worm [2]. Beyond these networks, experiments on TRIs study only individual genes and proteins of specific interest. In this chapter, we present a method for the integration of various data sets to predict TRIs for 54 organisms in the Bioverse [3]. We describe how to compile and handle various formats and identifiers of data sets from different sources, and how to predict the TRIs using a homology-based approach, utilizing the compiled data sets. Integrated data sets include experimentally verified TRIs, binding sites of transcription factors, promoter sequences, protein sub-cellular localization, and protein families. Predicted TRIs expand the networks of gene regulation for a large number of organisms. The integration of experimentally verified and predicted TRIs with other known protein-protein interactions (PPIs) gives insight into specific pathways, network motifs, and the topological dynamics of an integrated network with gene expression under different conditions, essential for exploring functional genomics and systems biology.

  1. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.

    PubMed

    Stewart, Emerson V; Lloyd, S Julie-Ann; Burg, John S; Nwosu, Christine C; Lintner, Robert E; Daza, Riza; Russ, Carsten; Ponchner, Karen; Nusbaum, Chad; Espenshade, Peter J

    2012-01-01

    Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.

  2. Disparate Regulatory Mechanisms Control Fat3 and P75NTR Protein Transport through a Conserved Kif5-Interaction Domain

    PubMed Central

    Birkness, Jacqueline E.; Trinidad, Jonathan C.

    2016-01-01

    Directed transport delivers proteins to specific cellular locations and is one mechanism by which cells establish and maintain polarized cellular architectures. The atypical cadherin Fat3 directs the polarized extension of dendrites in retinal amacrine cells by influencing the distribution of cytoskeletal regulators during retinal development, however the mechanisms regulating the distribution of Fat3 remain unclear. We report a novel Kinesin/Kif5 Interaction domain (Kif5-ID) in Fat3 that facilitates Kif5B binding, and determines the distribution of Fat3 cytosolic domain constructs in neurons and MDCK cells. The Kif5-ID sequence is conserved in the neurotrophin receptor P75NTR, which also binds Kif5B, and Kif5-ID mutations similarly result in P75NTR mislocalization. Despite these similarities, Kif5B-mediated protein transport is differentially regulated by these two cargos. For Fat3, the Kif5-ID is regulated by alternative splicing, and the timecourse of splicing suggests that the distribution of Fat3 may switch between early and later stages of retinal development. In contrast, P75NTR binding to Kif5B is enhanced by tyrosine phosphorylation and thus has the potential to be dynamically regulated on a more rapid time scale. PMID:27788242

  3. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation.

    PubMed

    Lee, Jin-Gu; Ye, Yihong

    2013-04-01

    Upon emerging from the ribosome exiting tunnel, polypeptide folding occurs immediately with the assistance of both ribosome-associated and free chaperones. While many chaperones known to date are dedicated folding catalysts, recent studies have revealed a novel chaperoning system that functions at the interface of protein biogenesis and quality control by using a special "holdase" activity in order to sort and channel client proteins to distinct destinations. The key component, Bag6/Bat3/Scythe, can effectively shield long hydrophobic segments exposed on the surface of a polypeptide, preventing aggregation or inappropriate interactions before a triaging decision is made. The biological consequences of Bag6-mediated chaperoning are divergent for different substrates, ranging from membrane integration to proteasome targeting and destruction. Accordingly, Bag6 can act in various cellular contexts in order to execute many essential cellular functions, while dysfunctions in the Bag6 system can cause severe cellular abnormalities that may be associated with some pathological conditions. PMID:23417671

  4. PTD-hFOXP3 protein acts as an immune regulator to convert human CD4(+)CD25(-) T cells to regulatory T-like cells.

    PubMed

    Liu, Xia; Xu, Xun; Lin, Xin; Tian, Yuxiang; Ji, Baoju; Xia, Sheng; Xu, Sanrong; Yin, Qing; Zhang, Miaomiao; Jiao, Zhijun; Wang, Shengjun; Xu, Huaxi; Shao, Qixiang

    2012-12-01

    Regulatory T cells (Tregs) are critical for maintaining self-tolerance and homeostasis, and have potential application in clinical disease therapy, such as autoimmune diseases and transplant rejection, but their numbers are limited. FOXP3 is a key transcription factor controlling Tregs development and function. Although transfection of CD4(+)CD25(-) lymphocytes with the FOXP3 gene can convert them to Treg-like cells, there is the risk of insertional mutagenesis and thus an alternative to genetic intervention is sought. The protein transduction domain (PTD) from the HIV transactivator of transcription is a useful tool to deliver protein to the cytoplasm and nucleus. In this study, we generated a fusion protein linking the human FOXP3 to PTD (PTD-hFOXP3), and explored its function in T cells. The results showed that the PTD rapidly and effectively delivered the hFOXP3 protein into cells where it localized not only in the cytoplasm, but also to the nucleus. PTD-hFOXP3-transduced Jurkat cells (human T lymphoma cell line) and CD4(+)CD25(-) T cells failed to proliferate and produce IL-2 and IFN-γ, but produced large amounts of the cytokines IL-4, IL-10, and TGF-β, in response to TCR stimulation in vitro. PTD-hFOXP3-transduced CD4(+)CD25(-) T cells also expressed high levels of CTLA-4 and low levels of CD25 after stimulation. Most importantly, PTD-hFOXP3-transduced T cells inhibited the proliferation of activated CD4(+)CD25(-) T cells. Furthermore, chromatin immunoprecipitation assays demonstrated that PTD-hFOXP3 can bind with the IL-2 gene promoter and repress the expression of IL-2. These results indicate that PTD-hFOXP3 has the capability to convert conventional T cells to Treg-like cells.

  5. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    PubMed

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  6. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    PubMed

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  7. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  8. Redox control of iron regulatory proteins.

    PubMed

    Fillebeen, Carine; Pantopoulos, Kostas

    2002-01-01

    Iron regulatory proteins, IRP1 and IRP2, are cytoplasmic proteins of the iron-sulfur cluster isomerase family and serve as major post-transcriptional regulators of cellular iron metabolism. They bind to 'iron responsive elements' (IREs) of several mRNAs and thereby control their translation or stability. IRP1 and IRP2 respond to alterations in intracellular iron levels, but also to other signals such as nitric oxide (NO) and reactive oxygen species (ROS). The redox regulation of IRP1 and IRP2 provides direct links between the control of iron homeostasis and oxidative stress.

  9. Multiple, conserved iron-responsive elements in the 3'-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2.

    PubMed

    Erlitzki, Ronit; Long, Joanne C; Theil, Elizabeth C

    2002-11-01

    Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. A C-bulge in the stem of each TfR-IRE folds into an IRE that has low IRP2 binding, whereas a loop/bulge in the stem of the ferritin-IRE allows equivalent IRP1 and IRP2 binding. Effects of multiple IRE interactions with IRP1 and IRP2 were compared between the native TfR-3'-UTR sequence (5xIRE) and RNA with only 3 or 2 IREs. We show 1) equivalent IRP1 and IRP2 binding to multiple TfR-IRE RNAs; 2) increased IRP-dependent nuclease resistance of 5xIRE compared with lower IRE copy-number RNAs; 3) distorted TfR-IRE helix structure within the context of 5xIRE, detected by Cu-(phen)(2) binding/cleavage, that coincides with ferritin-IRE conformation and enhanced IRP2 binding; and 4) variable IRP1 and IRP2 expression in human cells and during development (IRP2-mRNA predominated). Changes in TfR-IRE structure conferred by the full length TfR-3'-UTR mRNA explain in part evolutionary conservation of multiple IRE-RNA, which allows TfR mRNA stabilization and receptor synthesis when IRP activity varies, and ensures iron uptake for cell growth.

  10. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    SciTech Connect

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun; Xiao, Shaobo

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  11. Synovial Regulatory T Cells Occupy a Discrete TCR Niche in Human Arthritis and Require Local Signals To Stabilize FOXP3 Protein Expression

    PubMed Central

    Giannakopoulou, Eirini; Lom, Hannah; Wedderburn, Lucy R.

    2015-01-01

    Although there is great interest in harnessing the immunosuppressive potential of FOXP3+ regulatory T cells (Tregs) for treating autoimmunity, a sizeable knowledge gap exists regarding Treg fate in human disease. In juvenile idiopathic arthritis (JIA) patients, we have previously reported that atypical CD25+FOXP3− Treg-like cells uniquely populate the inflamed site. Intriguingly, their proportions relative to CD25+FOXP3+ Tregs associate with arthritis course, suggesting a role in disease. The ontogeny of these FOXP3− Treg-like cells is, however, unknown. In this study, we interrogated clonal relationships between CD4+ T cell subsets in JIA, using high-throughput TCR repertoire analysis. We reveal that FOXP3+ Tregs possess highly exclusive TCRβ usage from conventional T cells, in blood, and also at the inflamed site, where they are clonally expanded. Intriguingly, the repertoires of FOXP3+ Tregs in synovial fluid are highly overlapping with CD25+FOXP3− Treg-like cells, indicating fluctuations in FOXP3 expression in the inflamed joint. Furthermore, cultured synovial Tregs rapidly downregulated FOXP3 protein (but not mRNA), and this process was prevented by addition of synovial fluid from JIA patients, through an IL-6–independent mechanism. Our findings suggest that most Tregs arise from a separate lineage from conventional T cells, and that this repertoire divergence is largely maintained under chronic inflammatory conditions. We propose that subsequent Treg expansions at the inflamed site creates an environment that leads to competition for limited resources within the synovium, resulting in the destabilization of FOXP3 expression in some Tregs. PMID:26561546

  12. Synovial Regulatory T Cells Occupy a Discrete TCR Niche in Human Arthritis and Require Local Signals To Stabilize FOXP3 Protein Expression.

    PubMed

    Bending, David; Giannakopoulou, Eirini; Lom, Hannah; Wedderburn, Lucy R

    2015-12-15

    Although there is great interest in harnessing the immunosuppressive potential of FOXP3(+) regulatory T cells (Tregs) for treating autoimmunity, a sizeable knowledge gap exists regarding Treg fate in human disease. In juvenile idiopathic arthritis (JIA) patients, we have previously reported that atypical CD25(+)FOXP3(-) Treg-like cells uniquely populate the inflamed site. Intriguingly, their proportions relative to CD25(+)FOXP3(+) Tregs associate with arthritis course, suggesting a role in disease. The ontogeny of these FOXP3(-) Treg-like cells is, however, unknown. In this study, we interrogated clonal relationships between CD4(+) T cell subsets in JIA, using high-throughput TCR repertoire analysis. We reveal that FOXP3(+) Tregs possess highly exclusive TCRβ usage from conventional T cells, in blood, and also at the inflamed site, where they are clonally expanded. Intriguingly, the repertoires of FOXP3(+) Tregs in synovial fluid are highly overlapping with CD25(+)FOXP3(-) Treg-like cells, indicating fluctuations in FOXP3 expression in the inflamed joint. Furthermore, cultured synovial Tregs rapidly downregulated FOXP3 protein (but not mRNA), and this process was prevented by addition of synovial fluid from JIA patients, through an IL-6-independent mechanism. Our findings suggest that most Tregs arise from a separate lineage from conventional T cells, and that this repertoire divergence is largely maintained under chronic inflammatory conditions. We propose that subsequent Treg expansions at the inflamed site creates an environment that leads to competition for limited resources within the synovium, resulting in the destabilization of FOXP3 expression in some Tregs.

  13. Overexpression of Epstein-Barr virus-induced gene 3 protein (EBI3) in MRL/lpr mice suppresses their lupus nephritis by activating regulatory T cells.

    PubMed

    Shinsuke, Nishimura; Hiroshi, Inoue

    2013-11-01

    To identify the effect of an imbalance of Th1/Th2 cytokines on the development of autoimmune glomerulonephritis (lupus nephritis), we studied the modification of pathological changes in diffuse proliferative glomerulonephritis (DPGN) and membranous glomerulonephritis (MGN) in MRL/lpr mice, which are animal models of systemic lupus erythematosus (SLE). Transgenic MRL/lpr mice (Tg) that overexpressed Epstein--Barr virus-induced gene 3 (EBI3) showed almost normal renal function, which was demonstrated by healing of glomerulonephritis upon renal histology, as compared to the wild-type MRL/lpr (Wt) mice. The levels of anti-dsDNA antibodies and IgE decreased in the Tg mice compared to Wt mice. Quantitative real-time PCR indicated an increase in the mRNA levels of FoxP3, and a decrease in that of IFNγ in the splenocytes of Tg mice as compared to Wt mice. In addition, flow cytometric analysis showed an increase in CD4(+)CD25(+)FoxP3(+)-T cells in the former, as compared to the latter. Our findings suggest that EBI3-overexpression in MRL/lpr mice induces generation of regulatory T cells, which causes suppression of autoimmune and inflammatory reactions by affecting the Th1/Th2 cytokine balance. PMID:23845089

  14. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein.

    PubMed Central

    Svennelid, F; Olsson, A; Piotrowski, M; Rosenquist, M; Ottman, C; Larsson, C; Oecking, C; Sommarin, M

    1999-01-01

    The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth. PMID:10590165

  15. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro.

    PubMed

    Sahmi, M; Nicola, E S; Silva, J M; Price, C A

    2004-08-31

    Granulosa cells of small follicles differentiate in vitro in serum-free medium, resulting in increased estradiol secretion and abundance of mRNA encoding cytochrome P450aromatase (P450arom). We tested the hypothesis that differentiation in vitro also involves increased expression of 3beta- and 17beta-hydroxysteroid dehydrogenases (HSD) in the absence of steroidogenic acute regulatory protein (StAR) expression, as has been observed in vivo. Granulosa cells from small (<6 mm diameter) follicles were cultured for up to 6 days, and mRNA levels quantified by Northern hybridization or RT-PCR. Estradiol and progesterone concentrations in medium increased with time in culture, as did mRNA encoding P450arom, 3beta- and 17beta-HSD but not P450scc. Both P450arom and 17beta-HSD were significantly correlated with estradiol accumulation in culture medium. Progesterone secretion was correlated with 3beta-HSD but not P450scc mRNA levels. StAR mRNA was detectable by RT-PCR, did not change with duration of culture and was not correlated with progesterone secretion. FSH significantly stimulated P450arom and 17beta-HSD mRNA levels. Cell origin (from the antral or the basal layer of the membrana granulosa) did not affect steroidogenesis. We conclude that under the present cell culture system granulosa cells do not luteinize, and show expression of key steroidogenic enzymes in patterns similar to those occurring in differentiating follicles in vivo. Further, the data suggest that 17beta-HSD may be as important as P450arom in regulating estradiol secretion, and that 3beta-HSD is more important than P450scc as a regulator of progesterone secretion in non-luteinizing granulosa cells. PMID:15279910

  16. Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins.

    PubMed

    Schöppner, Patricia; Csaba, Gergely; Braun, Tatjana; Daake, Marina; Richter, Bettina; Lange, Oliver F; Zacharias, Martin; Zimmer, Ralf; Haslbeck, Martin

    2016-04-24

    Alternative splicing often affects structured and highly conserved regions of proteins, generating so called non-trivial splicing variants of unknown structure and cellular function. The human small G-protein Rab1A is involved in the regulation of the vesicle transfer from the ER to Golgi. A conserved non-trivial splice variant lacks nearly 40% of the sequence of the native Rab1A, including most of the regulatory interaction sites. We show that this variant of Rab1A represents a stable and folded protein, which is still able to bind nucleotides and co-localizes with membranes. Nevertheless, it should be mentioned that compared to other wild-typeRabGTPases, the measured nucleotide binding affinities are dramatically reduced in the variant studied. Furthermore, the Rab1A variant forms hetero-dimers with wild-type Rab1A and its presence in the cell enhances the efficiency of alkaline phosphatase secretion. However, this variant shows no specificity for GXP nucleotides, a constantly enhanced GTP hydrolysis activity and is no longer controlled by GEF or GAP proteins, indicating a new regulatory mechanism for the Rab1A cycle via alternative non-trivial splicing. PMID:26953259

  17. Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8.

    PubMed

    Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon K; Ornstein, Paul L; Spinazze, Patrick; Stevens, F Craig; Hahn, Patric; Hollinshead, Sean P; Mayhugh, Daniel; Schkeryantz, Jeff; Khilevich, Albert; De Frutos, Oscar; Gleason, Scott D; Kato, Akihiko S; Luffer-Atlas, Debra; Desai, Prashant V; Swanson, Steven; Burris, Kevin D; Ding, Chunjin; Heinz, Beverly A; Need, Anne B; Barth, Vanessa N; Stephenson, Gregory A; Diseroad, Benjamin A; Woods, Tim A; Yu, Hong; Bredt, David; Witkin, Jeffrey M

    2016-05-26

    Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients. PMID:27067148

  18. Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation

    PubMed Central

    Frazer, Corey; Joshi, Monika; Delorme, Caroline; Davis, Darlene; Bennett, Richard J.

    2015-01-01

    Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development. PMID:26024903

  19. Redox control of iron regulatory protein 2 stability.

    PubMed

    Hausmann, Anja; Lee, Julie; Pantopoulos, Kostas

    2011-02-18

    Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations.

  20. Special regulatory T-cell review: FOXP3 biochemistry in regulatory T cells – how diverse signals regulate suppression

    PubMed Central

    Li, Bin; Greene, Mark I

    2008-01-01

    FOXP3 is an acetylated and phosphorylated protein active in human regulatory T cells and forms oligomers which then associate with an even larger molecular complex. FOXP3 actively regulates transcription by recruiting enzymatic co-repressors and/or co-activators. FOXP3 complex ensembles are dynamically regulated by physiological stimuli such as T-cell receptor, IL-2 and proinflammation cytokine signals. Understanding the post-translational modifications of FOXP3 regulated by diverse signals and the biochemistry and structural chemistry of enzymatic proteins in the FOXP3 complex is critical for therapeutically modulating regulatory T cell function. PMID:18154614

  1. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  2. Regulatory role of PI3K-protein kinase B on the release of interleukin-1β in peritoneal macrophages from the ascites of cirrhotic patients.

    PubMed

    Tapia-Abellán, A; Ruiz-Alcaraz, A J; Antón, G; Miras-López, M; Francés, R; Such, J; Martínez-Esparza, M; García-Peñarrubia, P

    2014-12-01

    Great effort has been paid to identify novel targets for pharmaceutical intervention to control inflammation associated with different diseases. We have studied the effect of signalling inhibitors in the secretion of the proinflammatory and profibrogenic cytokine interleukin (IL)-1β in monocyte-derived macrophages (M-DM) obtained from the ascites of cirrhotic patients and compared with those obtained from the blood of healthy donors. Peritoneal M-DM were isolated from non-infected ascites of cirrhotic patients and stimulated in vitro with lipopolysaccharide (LPS) and heat-killed Candida albicans in the presence or absence of inhibitors for c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 1 (MEK1), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). The IL1B and CASP1 gene expression were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of IL-1β and caspase-1 were determined by Western blot. IL-1β was also assayed by enzyme-linked immunosorbent assay (ELISA) in cell culture supernatants. Results revealed that MEK1 and JNK inhibition significantly reduced the basal and stimulated IL-1β secretion, while the p38 MAPK inhibitor had no effect on IL-1β levels. On the contrary, inhibition of PI3K increased the secretion of IL-1β from stimulated M-DM. The activating effect of PI3K inhibitor on IL-1β release was mediated mainly by the enhancement of the intracellular IL-1β and caspase-1 content release to the extracellular medium and not by increasing the corresponding mRNA and protein expression levels. These data point towards the role of MEK1 and JNK inhibitors, in contrast to the PI3K-protein kinase B inhibitors, as potential therapeutic tools for pharmaceutical intervention to diminish hepatic damage by reducing the inflammatory response mediated by IL-1β associated with liver failure.

  3. Lyoniresinol 3α-O-β-D-glucopyranoside-mediated hypoglycaemia and its influence on apoptosis-regulatory protein expression in the injured kidneys of streptozotocin-induced mice.

    PubMed

    Wen, Qingwei; Liang, Tao; Qin, Feizhang; Wei, Jinbin; He, Qiaoling; Luo, Xiu; Chen, Xiaoyu; Zheng, Ni; Huang, Renbin

    2013-01-01

    Averrhoa carambola L. (Oxalidaceae) root (ACLR) has a long history of use in traditional Chinese medicine for treating diabetes and diabetic nephropathy (DN). (±)-Lyoniresinol 3α-O-β-D-glucopyranoside (LGP1, LGP2) were two chiral lignan glucosides that were isolated from the ACLR. The purpose of this study was to investigate the effect of LGP1 and LGP2-mediated hypoglycaemia on renal injury in streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were administrated LGP1 and LGP2 orally (20, 40, 80 mg/kg body weight/d) for 14 days. Hyperglycaemia and the expression of related proteins such as nuclear factor-κB (NF-κB), caspase-3, -8, -9, and Bcl-associated X protein (Bax) were markedly decreased by LGP1 treatment. However, LGP2 treatment had no hypoglycaemic activity. Diabetes-dependent alterations in the kidney such as glomerular hypertrophy, excessive extracellular matrix amassing, and glomerular and tubular basement membrane thickening were improved after 14 days of LGP1 treatment. B cell lymphoma Leukaemia-2 (Bcl-2) expression was reduced in the STZ-induced diabetic mouse kidneys but was enhanced by LGP1 treatment. These findings suggest that LGP1 treatment may inhibit diabetic nephropathy progression and may regulate several pharmacological targets for treating or preventing diabetic nephropathy.

  4. Lyoniresinol 3α-O-β-D-Glucopyranoside-Mediated Hypoglycaemia and Its Influence on Apoptosis-Regulatory Protein Expression in the Injured Kidneys of Streptozotocin-Induced Mice

    PubMed Central

    Wen, Qingwei; Liang, Tao; Qin, Feizhang; Wei, Jinbin; He, Qiaoling; Luo, Xiu; Chen, Xiaoyu; Zheng, Ni; Huang, Renbin

    2013-01-01

    Averrhoa carambola L. (Oxalidaceae) root (ACLR) has a long history of use in traditional Chinese medicine for treating diabetes and diabetic nephropathy (DN). (±)-Lyoniresinol 3α-O-β-D-glucopyranoside (LGP1, LGP2) were two chiral lignan glucosides that were isolated from the ACLR. The purpose of this study was to investigate the effect of LGP1 and LGP2-mediated hypoglycaemia on renal injury in streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were administrated LGP1 and LGP2 orally (20, 40, 80 mg/kg body weight/d) for 14 days. Hyperglycaemia and the expression of related proteins such as nuclear factor-κB (NF-κB), caspase-3, -8, -9, and Bcl-associated X protein (Bax) were markedly decreased by LGP1 treatment. However, LGP2 treatment had no hypoglycaemic activity. Diabetes-dependent alterations in the kidney such as glomerular hypertrophy, excessive extracellular matrix amassing, and glomerular and tubular basement membrane thickening were improved after 14 days of LGP1 treatment. B cell lymphoma Leukaemia-2 (Bcl-2) expression was reduced in the STZ-induced diabetic mouse kidneys but was enhanced by LGP1 treatment. These findings suggest that LGP1 treatment may inhibit diabetic nephropathy progression and may regulate several pharmacological targets for treating or preventing diabetic nephropathy. PMID:24312585

  5. CONSTRUCTION AND ANALYSIS OF IPBR/XYLS HYBRID REGULATORY PROTEINS

    EPA Science Inventory

    IpbR and XylS are related regulatory proteins (having 56% identity). IpbR responds to isopropylbenzene as well as to a variety of hydrophobic chemicals to activate expression of the isopropylbenzene catabolic pathway operon of pRE4 from ipbOP. XylS responds to substituted benzoic...

  6. Multiple regulatory domains on the Byr2 protein kinase.

    PubMed Central

    Tu, H; Barr, M; Dong, D L; Wigler, M

    1997-01-01

    Byr2 protein kinase, a homolog of mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK) and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccharomyces pombe. Byr2 functions downstream of Ste4, Ras1, and the membrane-associated receptor-coupled heterotrimeric G-protein alpha subunit, Gpa1. Byr2 has a distinctive N-terminal kinase regulatory domain and a characteristic C-terminal kinase catalytic domain. Ste4 and Ras1 interact with the regulatory domain of Byr2 directly. Here, we define the domains of Byr2 that bind Ste4 and Ras1 and show that the Byr2 regulatory domain binds to the catalytic domain in the two-hybrid system. Using Byr2 mutants, we demonstrate that these direct physical interactions are all required for proper signaling. In particular, the physical association between Byr2 regulatory and catalytic domains appears to result in autoinhibition, the loss of which results in kinase activation. Furthermore, we provide evidence that Shk1, the S. pombe homolog of the STE20 protein kinase, can directly antagonize the Byr2 intramolecular interaction, possibly by phosphorylating Byr2. PMID:9315645

  7. The Arabidopsis pyruvate,orthophosphate dikinase regulatory proteins encode a novel, unprecedented Ser/Thr protein kinase primary structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyruvate,orthophosphate dikinase (PPDK) is a ubiquitous, low abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual, bifuncti...

  8. Regulatory Effects of Macrophage Inflammatory Protein 1α/CCL3 on the Development of Immunity to Cryptococcus neoformans Depend on Expression of Early Inflammatory Cytokines

    PubMed Central

    Olszewski, Michal A.; Huffnagle, Gary B.; Traynor, Timothy R.; McDonald, Roderick A.; Cook, Donald N.; Toews, Galen B.

    2001-01-01

    Macrophage inflammatory protein 1α (MIP-1α)/CCL3 prevents the development of eosinophilic pneumonia (EP) driven by a nonprotective T2-type immunity during infection with a highly virulent strain of Cryptococcus neoformans. The present study evaluated the interaction of MIP-1α with other innate immune system cytokines by comparing the immune responses that followed pulmonary infections with high- (C. neoformans 145A) and low (C. neoformans 52D)-virulence strains. In contrast to what was found for C. neoformans 145A infection, lack of MIP-1α in C. neoformans 52D infection did not cause the development of EP. C. neoformans 52D induced tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and MCP-1 in the lungs of infected wild-type (WT) and MIP-1α knockout (KO) mice by day 7 postinfection. Both WT and MIP-1α KO mice subsequently cleared this infection. Thus, the robust expression of early inflammatory cytokines in C. neoformans 52D-infected mice promoted the development of protective immunity even in the absence of MIP-1α. Alternatively, C. neoformans 145A-infected WT and MIP-1α KO mice had diminished TNF-α, IFN-γ, and macrophage chemoattractant protein 1 (MCP-1) responses, indicating that virulent C. neoformans 145A evaded early innate host defenses. However C. neoformans 145A-infected WT mice had an early induction of MIP-1α and subsequently did not develop EP. In contrast, C. neoformans 145A-infected MIP-1α KO mice developed EP and had increased C. neoformans dissemination into the brain by day 35. We conclude that, in the absence of other innate immune response effector molecules, MIP-1α is crucial to prevent the development of EP and to control C. neoformans dissemination to the brain. PMID:11553568

  9. Mechanism of action of regulatory proteins encoded by complex retroviruses.

    PubMed Central

    Cullen, B R

    1992-01-01

    Complex retroviruses are distinguished by their ability to control the expression of their gene products through the action of virally encoded regulatory proteins. These viral gene products modulate both the quantity and the quality of viral gene expression through regulation at both the transcriptional and posttranscriptional levels. The most intensely studied retroviral regulatory proteins, termed Tat and Rev, are encoded by the prototypic complex retrovirus human immunodeficiency virus type 1. However, considerable information also exists on regulatory proteins encoded by human T-cell leukemia virus type I, as well as several other human and animal complex retroviruses. In general, these data demonstrate that retrovirally encoded transcriptional trans-activators can exert a similar effect by several very different mechanisms. In contrast, posttranscriptional regulation of retroviral gene expression appears to occur via a single pathway that is probably dependent on the recruitment of a highly conserved cellular cofactor. These two shared regulatory pathways are proposed to be critical to the ability of complex retroviruses to establish chronic infections in the face of an ongoing host immune response. Images PMID:1406488

  10. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.

    PubMed

    Holtzendorff, Julia; Reinhardt, Jens; Viollier, Patrick H

    2006-04-01

    Significant strides have been made in recent years towards understanding the molecular basis of cell cycle progression in the model bacterium Caulobacter crescentus. At the heart of cell cycle regulation is a multicomponent transcriptional feedback loop, governing the production of successive regulatory waves or pulses of at least three master regulatory proteins. These oscillating master regulators direct the execution of phase-specific events and, importantly, through intrinsic genetic switches not only determine the length of a given phase, but also provide the driving force that catapults the cell into the next stage of the cell cycle. The genetic switches act as fail safe mechanisms that prevent the cell cycle from relapsing and thus govern the ordered production and the periodicity of these regulatory waves. Here, we detail how the master regulators CtrA, GcrA and DnaA coordinate cell cycle progression and polar development in Caulobacter. PMID:16547950

  11. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.

    PubMed

    Holtzendorff, Julia; Reinhardt, Jens; Viollier, Patrick H

    2006-04-01

    Significant strides have been made in recent years towards understanding the molecular basis of cell cycle progression in the model bacterium Caulobacter crescentus. At the heart of cell cycle regulation is a multicomponent transcriptional feedback loop, governing the production of successive regulatory waves or pulses of at least three master regulatory proteins. These oscillating master regulators direct the execution of phase-specific events and, importantly, through intrinsic genetic switches not only determine the length of a given phase, but also provide the driving force that catapults the cell into the next stage of the cell cycle. The genetic switches act as fail safe mechanisms that prevent the cell cycle from relapsing and thus govern the ordered production and the periodicity of these regulatory waves. Here, we detail how the master regulators CtrA, GcrA and DnaA coordinate cell cycle progression and polar development in Caulobacter.

  12. Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts.

    PubMed

    Pattanaik, Sitakanta; Werkman, Joshua R; Yuan, Ling

    2011-01-01

    Protein-protein interactions are an important aspect of the gene regulation process. The expression of a gene in response to certain stimuli, within a specific cell type or at a particular developmental stage, involves a complex network of interactions between different regulatory proteins and the cis-regulatory elements present in the promoter of the gene. A number of methods have been developed to study protein-protein interactions in vitro and in vivo in plant cells, one of which is bimolecular fluorescence complementation (BiFC). BiFC is a relatively simple technique based upon the reconstitution of a fluorescent protein. The interacting protein complex can be visualized directly in a living plant cell when two non-fluorescent fragments, of an otherwise fluorescent protein, are fused to proteins found within that complex. Interaction of tagged proteins brings the two non-fluorescent fragments into close proximity and reconstitutes the fluorescent protein. In addition, the subcellular location of an interacting protein complex in the cell can be simultaneously determined. Using this approach, we have successfully demonstrated a protein-protein interaction between a R2R3 MYB and a basic helix-loop-helix MYC transcription factor related to flavonoid biosynthetic pathway in tobacco protoplasts.

  13. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  14. The Evolution of the Secreted Regulatory Protein Progranulin

    PubMed Central

    Palfree, Roger G. E.; Bennett, Hugh P. J.; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  15. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF) Family of Adaptor Proteins with the Raft-and the Non-Raft Brush Border Membrane Fractions of NHE3

    PubMed Central

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E.; Donowitz, Mark; Yun, C. Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2014-01-01

    Background/Aims Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Methods Detergent resistant membranes (“lipid rafts”) were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3− mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. PMID:24297041

  16. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  17. Apoptosis regulatory protein-protein interaction demonstrates hierarchical scale-free fractal network.

    PubMed

    Nafis, Shazia; Kalaiarasan, Ponnusamy; Brojen Singh, R K; Husain, Mohammad; Bamezai, Rameshwar N K

    2015-07-01

    Dysregulation or inhibition of apoptosis favors cancer and many other diseases. Understanding of the network interaction of the genes involved in apoptotic pathway, therefore, is essential, to look for targets of therapeutic intervention. Here we used the network theory methods, using experimentally validated 25 apoptosis regulatory proteins and identified important genes for apoptosis regulation, which demonstrated a hierarchical scale-free fractal protein-protein interaction network. TP53, BRCA1, UBIQ and CASP3 were recognized as a four key regulators. BRCA1 and UBIQ were also individually found to control highly clustered modules and play an important role in the stability of the overall network. The connection among the BRCA1, UBIQ and TP53 proteins was found to be important for regulation, which controlled their own respective communities and the overall network topology. The feedback loop regulation motif was identified among NPM1, BRCA1 and TP53, and these crucial motif topologies were also reflected in high frequency. The propagation of the perturbed signal from hubs was found to be active upto some distance, after which propagation started decreasing and TP53 was the most efficient signal propagator. From the functional enrichment analysis, most of the apoptosis regulatory genes associated with cardiovascular diseases and highly expressed in brain tissues were identified. Apart from TP53, BRCA1 was observed to regulate apoptosis by influencing motif, propagation of signals and module regulation, reflecting their biological significance. In future, biochemical investigation of the observed hub-interacting partners could provide further understanding about their role in the pathophysiology of cancer.

  18. Structural Instability Tuning as a Regulatory Mechanism in Protein-Protein Interactions

    PubMed Central

    Chen, Li; Balabanidou, Vassilia; Remeta, David P.; Minetti, Conceição A.S.A.; Portaliou, Athina G.; Economou, Anastassios; Kalodimos, Charalampos G.

    2011-01-01

    SUMMARY Protein-protein interactions mediate a vast number of cellular processes. Here we present a regulatory mechanism in protein-protein interactions mediated by finely-tuned structural instability coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten-globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding whereas correction of these defects results in less labile chaperones that give rise to non-functional biological systems. The protein substrates use structural mimicry to offset the “weak spots” in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionary conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely-tuned structural instability. PMID:22152477

  19. Automated protein-DNA interaction screening of Drosophila regulatory elements.

    PubMed

    Hens, Korneel; Feuz, Jean-Daniel; Isakova, Alina; Iagovitina, Antonina; Massouras, Andreas; Bryois, Julien; Callaerts, Patrick; Celniker, Susan E; Deplancke, Bart

    2011-12-01

    Drosophila melanogaster has one of the best characterized metazoan genomes in terms of functionally annotated regulatory elements. To explore how these elements contribute to gene regulation, we need convenient tools to identify the proteins that bind to them. Here we describe the development and validation of a high-throughput yeast one-hybrid platform, which enables screening of DNA elements versus an array of full-length, sequence-verified clones containing over 85% of predicted Drosophila transcription factors. Using six well-characterized regulatory elements, we identified 33 transcription factor-DNA interactions of which 27 were previously unidentified. To simultaneously validate these interactions and locate the binding sites of involved transcription factors, we implemented a powerful microfluidics-based approach that enabled us to retrieve DNA-occupancy data for each transcription factor throughout the respective target DNA elements. Finally, we biologically validated several interactions and identified two new regulators of sine oculis gene expression and hence eye development.

  20. Caerulomycin A Enhances Transforming Growth Factor-β (TGF-β)-Smad3 Protein Signaling by Suppressing Interferon-γ (IFN-γ)-Signal Transducer and Activator of Transcription 1 (STAT1) Protein Signaling to Expand Regulatory T Cells (Tregs)*

    PubMed Central

    Gurram, Rama Krishna; Kujur, Weshely; Maurya, Sudeep K.; Agrewala, Javed N.

    2014-01-01

    Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. PMID:24811173

  1. Interaction between Major Nitrogen Regulatory Protein NIT2 and Pathway-Specific Regulatory Factor NIT4 Is Required for Their Synergistic Activation of Gene Expression in Neurospora crassa

    PubMed Central

    Feng, Bo; Marzluf, George A.

    1998-01-01

    In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions. PMID:9632783

  2. Molecular control of vertebrate iron homeostasis by iron regulatory proteins

    PubMed Central

    Wallander, Michelle L.; Leibold, Elizabeth A.; Eisenstein, Richard S.

    2008-01-01

    Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system. PMID:16872694

  3. Laboratory tests for disorders of complement and complement regulatory proteins.

    PubMed

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.

  4. Plasmacytoid dendritic cells and type 1 interferon promote peripheral expansion of forkhead box protein 3(+) regulatory T cells specific for the ubiquitous RNA-binding nuclear antigen La/Sjögren's syndrome (SS)-B.

    PubMed

    Pan, Z-J; Horton, C G; Lawrence, C; Farris, A D

    2016-10-01

    RNA-binding nuclear antigens are a major class of self-antigen to which immune tolerance is lost in rheumatic diseases. Serological tolerance to one such antigen, La/Sjögren's syndrome (SS)-B (La), is controlled by CD4(+) T cells. This study investigated peripheral tolerance to human La (hLa) by tracking the fate of hLa-specific CD4(+) T cells expressing the transgenic (Tg) 3B5.8 T cell receptor (TCR) after adoptive transfer into lymphocyte-replete recipient mice expressing hLa as a neo-self-antigen. After initial antigen-specific cell division, hLa-specific donor CD4(+) T cells expressed forkhead box protein 3 (FoxP3). Donor cells retrieved from hLa Tg recipients displayed impaired proliferation and secreted interleukin (IL)-10 in vitro in response to antigenic stimulation. Transfer of highly purified FoxP3-negative donor cells demonstrated that accumulation of hLa-specific regulatory T cells (Treg ) was due primarily to expansion of small numbers of donor Treg . Depletion of recipient plasmacytoid dendritic cells (pDC), but not B cells, severely hampered the accumulation of FoxP3(+) donor Treg in hLa Tg recipients. Recipient pDC expressed tolerogenic markers and higher levels of co-stimulatory and co-inhibitory molecules than B cells. Adoptive transfer of hLa peptide-loaded pDC into mice lacking expression of hLa recapitulated the accumulation of hLa-specific Treg . Blockade of the type 1 interferon (IFN) receptor in hLa Tg recipients of hLa-specific T cells impaired FoxP3(+) donor T cell accumulation. Therefore, peripheral expansion of Treg specific for an RNA-binding nuclear antigen is mediated by antigen-presenting pDC in a type 1 IFN-dependent manner. These results reveal a regulatory function of pDC in controlling autoreactivity to RNA-binding nuclear antigens.

  5. Binding of cellular repressor protein or the IE2 protein to a cis-acting negative regulatory element upstream of a human cytomegalovirus early promoter.

    PubMed Central

    Huang, L; Stinski, M F

    1995-01-01

    We have previously shown that the human cytomegalovirus early UL4 promoter has upstream negative and positive cis-acting regulatory elements. In the absence of the upstream negative regulatory region, the positive element confers strong transcriptional activity. The positive element contains a CCAAT box dyad symmetry and binds the cellular transcription factor NF-Y. The effect of the negative regulatory element is negated by the viral IE2 protein (L. Huang, C.L. Malone, and M.F. Stinski, J. Virol. 68:2108, 1994). We investigated the binding of cellular or viral IE2 protein to the negative regulatory region. The major cis-acting negative regulatory element was located between -168 and -134 bp relative to the transcription start site. This element could be transferred to a heterologous promoter, and it functioned in either orientation. Mutational analysis demonstrated that a core DNA sequence in the cis-acting negative regulatory element, 5'-GTTTGGAATCGTT-3', was required for the binding of either a cellular repressor protein(s) or the viral IE2 protein. The cellular DNA binding activity was present in both nonpermissive HeLa and permissive human fibroblast cells but more abundant in HeLa cells. Binding of the cellular repressor protein to the upstream cis-acting negative regulatory element correlates with repression of transcription from the early UL4 promoter. Binding of the viral IE2 protein correlates with negation of the repressive effect. PMID:7494269

  6. Exploitation of complement regulatory proteins by Borrelia and Francisella.

    PubMed

    Madar, Marian; Bencurova, Elena; Mlynarcik, Patrik; Almeida, André M; Soares, Renata; Bhide, Katarina; Pulzova, Lucia; Kovac, Andrej; Coelho, Ana V; Bhide, Mangesh

    2015-06-01

    Pathogens have developed sophisticated mechanisms of complement evasion such as binding to the host complement regulatory proteins (CRPs) on their surface or expression of CRP mimicking molecules. The ability of pathogens to evade the complement system has been correlated with pathogenesis and host selectivity. Hitherto, little work has been undertaken to determine whether Borrelia and Francisella exploit various CRPs to block complement attack. Seventeen Borrelia (twelve species) and six Francisella (three subspecies) strains were used to assess their ability to bind human, sheep and cattle CRPs or mimic membrane associated complement regulators. A series of experiments including affinity ligand binding experiments, pull-down assays and mass spectrometry based protein identification, revealed an array of CRP binding proteins of Borrelia and Francisella. Unlike Francisella, Borrelia strains were able to bind multiple human CRPs. Three strains of Borrelia (SKT-4, SKT-2 and HO14) showed the presence of a human CD46-homologous motif, indicating their ability to possess putative human CD46 mimicking molecules. Similarly, five strains of Borrelia and two strains of Francisella may have surface proteins with human CD59-homologous motifs. Among ovine and bovine CRPs, the only CRP bound by Francisella (LVS, Tul4 strain) was vitronectin, while ovine C4BP, ovine factor H and bovine factor H were bound to Borrelia strains SKT-2, DN127 and Co53. This study presents an array of proteins of Borrelia and Francisella that bind CRPs or may mimic membrane-CRPs, thus enabling multiphasic complement evasion strategies of these pathogens.

  7. How to systematically evaluate immunogenicity of therapeutic proteins - regulatory considerations.

    PubMed

    Jahn, Eva-Maria; Schneider, Christian K

    2009-06-01

    Antibody formation as an immune reaction to a 'foreign' protein antigen is an expected physiological reaction that is in many cases intentionally triggered, for example in the case of vaccinations. However, an unwanted immune response to a therapeutic protein may lead to a loss of efficacy and/or to severe side effects. The Committee for Medicinal Products for Human Use (CHMP) at the European Medicines Agency (EMEA) issued a multidisciplinary guideline providing general recommendations from a marketing authorisation perspective on how to assess an unwanted immune response following the administration of a biological drug. In this article, we provide an in-depth regulatory discussion on key principles of systematic evaluation of immunogenicity during development of biotechnological medicinal products, including examples.

  8. Investigation of the regulatory function of archaeal ribosomal protein L4.

    PubMed

    Mikhaylina, A O; Kostareva, O S; Sarskikh, A V; Fedorov, R V; Piendl, W; Garber, M B; Tishchenko, S V

    2014-01-01

    Ribosomal protein L4 is a regulator of protein synthesis in the Escherichia coli S10 operon, which contains genes of 11 ribosomal proteins. In this work, we have investigated regulatory functions of ribosomal protein L4 of the thermophilic archaea Methanococcus jannaschii. The S10-like operon from M. jannaschii encodes not 11, but only five ribosomal proteins (L3, L4, L23, L2, S19), and the first protein is L3 instead of S10. We have shown that MjaL4 and its mutant form lacking an elongated loop specifically inhibit expression of the first gene of the S10-like operon from the same organism in a coupled transcription-translation system in vitro. By deletion analysis, an L4-binding regulatory site has been found on MjaL3 mRNA, and a fragment of mRNA with length of 40 nucleotides has been prepared that is necessary and sufficient for the specific interaction with the MjaL4 protein.

  9. Effect of adiponectin on the steroidogenic acute regulatory protein, P450 side chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase gene expression, progesterone and androstenedione production by the porcine uterus during early pregnancy.

    PubMed

    Smolinska, N; Dobrzyn, K; Kiezun, M; Szeszko, K; Maleszka, A; Kaminski, T

    2016-06-01

    Adiponectin and its receptors are expressed in the human and porcine uterus and this endocrine system has important role in the regulation of reproductive processes. The expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (HSD3B1) were observed in the human and porcine uterus during the oestrous cycle and pregnancy. The de novo synthesis of steroids in the uterus might be a crucial factor for effective implantation and maintenance of pregnancy. We hypothesized that adiponectin modulates the expression of key enzymes in the synthesis of the steroids: StAR, P450 side chain cleavage enzyme (CYP11A1) and HSD3B1, as well as progesterone (P4) and androstenedione (A4) secretion by the porcine uterus. Endometrial and myometrial explants harvested from gilts (n = 5) on days 10 to 11, 12 to 13, 15 to 16 and 27 to 28 of pregnancy and on days 10 to 11 of the oestrous cycle were cultured in vitro in the presence of adiponectin (1, 10 μg/ml), adiponectin with insulin (10 ng/ml) and insulin alone (10 ng/ml). Gene expression was examined by real-time PCR, and the secretion of the steroids was determined by radioimmunoassay. The content of StAR, CYP11A1 and HSD3B1 mRNAs and the secretion of P4 and A4 was modulated by adiponectin in endometrial and myometrial tissue explants during early pregnancy and the oestrous cycle. In this action adiponectin interacted with insulin. Insulin itself also regulated the steroidogenic activity of the porcine uterus. ere we reported, for the first time, the expression of CYP11A1 genes in the porcine endometrium and myometrium. Our novel findings indicate that adiponectin affects basal and insulin-stimulated expression of key steroidogenic genes and production of steroid hormones by the porcine uterus during maternal recognition of pregnancy and implantation. PMID:27512005

  10. Differential recruitment of co-regulatory proteins to the human estrogen receptor 1 in response to xenoestrogens.

    PubMed

    Smith, L Cody; Clark, Jessica C; Bisesi, Joseph H; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-09-01

    The diverse biological effects of xenoestrogens may be explained by their ability to differentially recruit co-regulatory proteins to the estrogen receptor (ER). We employed high-throughput receptor affinity binding and co-regulatory protein recruitment screening assays based on fluorescence polarization and time resolved florescence resonance energy transfer (TR-FRET), respectively, to assess xenoestrogen-specific binding and co-regulatory protein recruitment to the ER. Then we used a functional proteomic assay based on co-immunoprecipitation of ER-bound proteins to isolate and identify intact co-regulatory proteins recruited to a ligand-activated ER. Through these approaches, we revealed differential binding affinity of bisphenol-A (BPA) and genistein (GEN) to the human ERα (ESR1) and ligand-dependent recruitment of SRC-1 and SRC-3 peptides. Recruitment profiles were variable for each ligand and in some cases were distinct compared to 17β-estradiol (E2). For example, E2 and GEN recruited both SRC-1 and -3 peptides whereas BPA recruited only SRC-1 peptides. Results of the functional proteomic assay showed differential recruitment between ligands where E2 recruited the greatest number of proteins followed by BPA then GEN. A number of proteins share previously identified relationships with ESR1 as determined by STRING analysis. Although there was limited overlap in proteins identified between treatments, all ligands recruited proteins involved in cell growth as determined by subnetwork enrichment analysis (p<0.05). A comparative, in silico analysis revealed that fewer interactions exist between zebrafish (Danio rerio) esr1 and zebrafish orthologs of proteins identified in our functional proteomic analysis. Taken together these results identify recruitment of known and previously unknown co-regulatory proteins to ESR1 and highlight new methods to assay recruitment of low abundant and intact, endogenous co-regulatory proteins to ESR1 or other nuclear receptors, in

  11. 14-3-3 Proteins are Regulators of Autophagy

    PubMed Central

    Pozuelo-Rubio, Mercedes

    2012-01-01

    14-3-3 proteins are implicated in the regulation of proteins involved in a variety of signaling pathways. 14-3-3-dependent protein regulation occurs through phosphorylation-dependent binding that results, in many cases, in the release of survival signals in cells. Autophagy is a cell digestion process that contributes to overcoming nutrient deprivation and is initiated under stress conditions. However, whether autophagy is a cell survival or cell death mechanism remains under discussion and may depend on context. Nevertheless, autophagy is a cellular process that determines cell fate and is tightly regulated by different signaling pathways, some of which, for example MAPK, PI3K and mTOR, are tightly regulated by 14-3-3 proteins. It is therefore important to understand the role of 14-3-3 protein in modulating the autophagic process. Within this context, direct binding of 14-3-3 to mTOR regulatory proteins, such as TSC2 and PRAS40, connects 14-3-3 with autophagy regulatory processes. In addition, 14-3-3 binding to human vacuolar protein sorting 34 (hVps34), a class III phosphatidylinositol-3-kinase (PI3KC3), indicates the involvement of 14-3-3 proteins in regulating autophagosome formation. hVps34 is involved in vesicle trafficking processes such as autophagy, and its activation is needed for initiation of autophagy. Chromatography and overlay techniques suggest that hVps34 directly interacts with 14-3-3 proteins under physiological conditions, thereby maintaining hVps34 in an inactive state. In contrast, nutrient starvation promotes dissociation of the 14-3-3–hVps34 complex, thereby enhancing hVps34 lipid kinase activity. Thus, 14-3-3 proteins are regulators of autophagy through regulating key components of the autophagic machinery. This review summarizes the role of 14-3-3 protein in the control of target proteins involved in regulating the master switches of autophagy. PMID:24710529

  12. Divisome and segrosome components of Deinococcus radiodurans interact through cell division regulatory proteins.

    PubMed

    Maurya, Ganesh K; Modi, Kruti; Misra, Hari S

    2016-08-01

    The Deinococcus radiodurans genome encodes many of the known components of divisome as well as four sets of genome partitioning proteins, ParA and ParB on its multipartite genome. Interdependent regulation of cell division and genome segregation is not understood. In vivo interactions of D. radiodurans' sdivisome, segrosome and other cell division regulatory proteins expressed on multicopy plasmids were studied in Escherichia coli using a bacterial two-hybrid system and confirmed by co-immunoprecipitation with the proteins made in E. coli. Many of these showed interactions both with the self and with other proteins. For example, DrFtsA, DrFtsZ, DrMinD, DrMinC, DrDivIVA and all four ParB proteins individually formed at least homodimers, while DrFtsA interacted with DrFtsZ, DrFtsW, DrFtsE, DrFtsK and DrMinD. DrMinD also showed interaction with DrFtsW, DrFtsE and DrMinC. Interestingly, septum site determining protein, DrDivIVA showed interactions with secondary genome ParAs as well as ParB1, ParB3 and ParB4 while DrMinC interacted with ParB1 and ParB3. PprA, a pleiotropic protein recently implicated in cell division regulation, neither interacted with divisome proteins nor ParBs but interacted at different levels with all four ParAs. These results suggest the formation of independent multiprotein complexes of 'DrFts' proteins, segrosome proteins and cell division regulatory proteins, and these complexes could interact with each other through DrMinC and DrDivIVA, and PprA in D. radiodurans.

  13. Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection.

    PubMed

    Nairz, Manfred; Ferring-Appel, Dunja; Casarrubea, Daniela; Sonnweber, Thomas; Viatte, Lydie; Schroll, Andrea; Haschka, David; Fang, Ferric C; Hentze, Matthias W; Weiss, Guenter; Galy, Bruno

    2015-08-12

    Macrophages are essential for systemic iron recycling, and also control iron availability to pathogens. Iron metabolism in mammalian cells is orchestrated posttranscriptionally by iron-regulatory proteins (IRP)-1 and -2. Here, we generated mice with selective and combined ablation of both IRPs in macrophages to investigate the role of IRPs in controlling iron availability. These animals are hyperferritinemic but otherwise display normal clinical iron parameters. However, mutant mice rapidly succumb to systemic infection with Salmonella Typhimurium, a pathogenic bacterium that multiplies within macrophages, with increased bacterial burdens in liver and spleen. Ex vivo infection experiments indicate that IRP function restricts bacterial access to iron via the EntC and Feo bacterial iron-acquisition systems. Further, IRPs contain Salmonella by promoting the induction of lipocalin 2, a host antimicrobial factor that inhibits bacterial uptake of iron-laden siderophores, and by suppressing the ferritin iron pool. This work reveals the importance of the IRPs in innate immunity.

  14. 14-3-3 proteins and plant development.

    PubMed

    Fulgosi, Hrvoje; Soll, Jürgen; de Faria Maraschin, Simone; Korthout, Henrie A A J; Wang, Mei; Testerink, Christa

    2002-12-01

    The 14-3-3 proteins are a family of ubiquitous regulatory molecules which have been found in virtually every eukaryotic organism and tissue. Discovered 34 years ago, 14-3-3 proteins have first been studied in mammalian nervous tissues, but in the past decade their indispensable role in various plant regulatory and metabolic pathways has been increasingly established. We now know that 14-3-3 members regulate fundamental processes of nitrogen assimilation and carbon assimilation, play an auxiliary role in regulation of starch synthesis, ATP production, peroxide detoxification, and participate in modulation of several other important biochemical pathways. Plant development and seed germination appear also to be under control of factors whose interaction with 14-3-3 molecules is crucial for their activation. Located within the nucleus, 14-3-3 isoforms are constituents of transcription factor complexes and interact with components of abscisic acid (ABA)-induced gene expression machinery. In addition, in animal cells they participate in nucleo-cytoplasmic trafficking and molecular sequestration. Cytoplasmic 14-3-3 members form a guidance complex with chloroplast destined preproteins and facilitate their import into these photosynthetic organelles. Recently, several 14-3-3s have been identified within chloroplasts where they could be involved in targeting and insertion of thylakoid proteins. The identification of 14-3-3 isoform specificity, and in particular the elucidation of the signal transduction mechanisms connecting 14-3-3 members with physiological responses, are central and developing topics of current research in this field.

  15. Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma

    PubMed Central

    Xie, Jing; Su, Tingwei; Jiang, Lei; Jiang, Yiran; Cao, Yanan; Liu, Jianmin; Ning, Guang; Wang, Weiqing

    2016-01-01

    The association of pathological features of cortisol-producing adrenocortical adenomas (ACAs) with somatic driver mutations and their molecular classification remain unclear. In this study, we explored the association between steroidogenic acute regulatory protein (StAR) expression and the driver mutations activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling to identify the pathological markers of ACAs. Immunohistochemical staining for StAR and mutations in the protein kinase cAMP-activated catalytic subunit alpha (PRKACA), protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A) and guanine nucleotide binding protein, alpha stimulating (GNAS) genes were examined in 97 ACAs. The association of StAR expression with the clinical and mutational features of the ACAs was analyzed. ACAs with mutations in PRKACA, GNAS, and PRKAR1A showed strong immunopositive staining for StAR. The concordance between high StAR expression and mutations activating cAMP/PKA signaling in the ACAs was 99.0%. ACAs with high expression of StAR had significantly smaller tumor volume (P < 0.001) and higher urinary cortisol per tumor volume (P = 0.032) than those with low expression of StAR. Our findings suggest that immunohistochemical staining for StAR is a reliable pathological approach for the diagnosis and classification of ACAs with cAMP/PKA signaling-activating mutations. PMID:27606678

  16. Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma.

    PubMed

    Zhou, Weiwei; Wu, Luming; Xie, Jing; Su, Tingwei; Jiang, Lei; Jiang, Yiran; Cao, Yanan; Liu, Jianmin; Ning, Guang; Wang, Weiqing

    2016-01-01

    The association of pathological features of cortisol-producing adrenocortical adenomas (ACAs) with somatic driver mutations and their molecular classification remain unclear. In this study, we explored the association between steroidogenic acute regulatory protein (StAR) expression and the driver mutations activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling to identify the pathological markers of ACAs. Immunohistochemical staining for StAR and mutations in the protein kinase cAMP-activated catalytic subunit alpha (PRKACA), protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A) and guanine nucleotide binding protein, alpha stimulating (GNAS) genes were examined in 97 ACAs. The association of StAR expression with the clinical and mutational features of the ACAs was analyzed. ACAs with mutations in PRKACA, GNAS, and PRKAR1A showed strong immunopositive staining for StAR. The concordance between high StAR expression and mutations activating cAMP/PKA signaling in the ACAs was 99.0%. ACAs with high expression of StAR had significantly smaller tumor volume (P < 0.001) and higher urinary cortisol per tumor volume (P = 0.032) than those with low expression of StAR. Our findings suggest that immunohistochemical staining for StAR is a reliable pathological approach for the diagnosis and classification of ACAs with cAMP/PKA signaling-activating mutations.

  17. Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma.

    PubMed

    Zhou, Weiwei; Wu, Luming; Xie, Jing; Su, Tingwei; Jiang, Lei; Jiang, Yiran; Cao, Yanan; Liu, Jianmin; Ning, Guang; Wang, Weiqing

    2016-01-01

    The association of pathological features of cortisol-producing adrenocortical adenomas (ACAs) with somatic driver mutations and their molecular classification remain unclear. In this study, we explored the association between steroidogenic acute regulatory protein (StAR) expression and the driver mutations activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling to identify the pathological markers of ACAs. Immunohistochemical staining for StAR and mutations in the protein kinase cAMP-activated catalytic subunit alpha (PRKACA), protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A) and guanine nucleotide binding protein, alpha stimulating (GNAS) genes were examined in 97 ACAs. The association of StAR expression with the clinical and mutational features of the ACAs was analyzed. ACAs with mutations in PRKACA, GNAS, and PRKAR1A showed strong immunopositive staining for StAR. The concordance between high StAR expression and mutations activating cAMP/PKA signaling in the ACAs was 99.0%. ACAs with high expression of StAR had significantly smaller tumor volume (P < 0.001) and higher urinary cortisol per tumor volume (P = 0.032) than those with low expression of StAR. Our findings suggest that immunohistochemical staining for StAR is a reliable pathological approach for the diagnosis and classification of ACAs with cAMP/PKA signaling-activating mutations. PMID:27606678

  18. Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria*

    PubMed Central

    Chung, Jacky; Anderson, Sheila A.; Gwynn, Babette; Deck, Kathryn M.; Chen, Michael J.; Langer, Nathaniel B.; Shaw, George C.; Huston, Nicholas C.; Boyer, Leah F.; Datta, Sumon; Paradkar, Prasad N.; Li, Liangtao; Wei, Zong; Lambert, Amy J.; Sahr, Kenneth; Wittig, Johannes G.; Chen, Wen; Lu, Wange; Galy, Bruno; Schlaeger, Thorsten M.; Hentze, Matthias W.; Ward, Diane M.; Kaplan, Jerry; Eisenstein, Richard S.; Peters, Luanne L.; Paw, Barry H.

    2014-01-01

    Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1+/gt;Irp1−/− erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5′-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1gt/gt cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1gt/gt cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation. PMID:24509859

  19. Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria.

    PubMed

    Chung, Jacky; Anderson, Sheila A; Gwynn, Babette; Deck, Kathryn M; Chen, Michael J; Langer, Nathaniel B; Shaw, George C; Huston, Nicholas C; Boyer, Leah F; Datta, Sumon; Paradkar, Prasad N; Li, Liangtao; Wei, Zong; Lambert, Amy J; Sahr, Kenneth; Wittig, Johannes G; Chen, Wen; Lu, Wange; Galy, Bruno; Schlaeger, Thorsten M; Hentze, Matthias W; Ward, Diane M; Kaplan, Jerry; Eisenstein, Richard S; Peters, Luanne L; Paw, Barry H

    2014-03-14

    Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1(+/gt);Irp1(-/-) erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5'-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1(gt/gt) cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1(gt/gt) cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.

  20. 32 CFR 2.3 - Regulatory relief for participating programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....3 Section 2.3 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE ACQUISITION PILOT PROGRAM POLICY § 2.3 Regulatory relief for participating programs. (a) A program participating in... the Component, or the DoD Component Acquisition Executive. 1 Copies of this Department of...

  1. The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts.

    PubMed Central

    Hahn, S; Pinkham, J; Wei, R; Miller, R; Guarente, L

    1988-01-01

    Activation of the CYC1 upstream activation site, UAS2, and transcription of several other genes encoding respiratory functions requires the product of the regulatory gene HAP2. We report here the isolation and characterization of a second UAS2 regulatory gene, HAP3. Like mutations in HAP2, a mutation in HAP3 abolishes the activity of UAS2 and prevents growth on nonfermentable carbon sources. The HAP3 gene was cloned and, surprisingly, was found to encode two divergently transcribed, overlapping transcripts: a 570-base RNA and a 3-kilobase (kb) RNA. Chromosomal disruption experiments defined the critical region for HAP3 function to a 1.3-kb segment in which the two transcripts overlap. Analysis of the HAP3 DNA sequence showed that the 570-base transcript could encode a protein of 144 amino acids. Synthesis of the 144-amino-acid protein under regulatory control in vivo demonstrated that this protein is essential for activity of UAS2 as well as for growth on nonfermentable carbon sources. The largest open reading frame in the critical region of the 3-kb transcript is only 86 amino acids. Using site-directed mutagenesis, we demonstrated that the 86-amino-acid open reading frame was not involved in UAS2 activity. The possible role of this 3-kb antisense RNA in HAP3 expression or function is discussed. Images PMID:2832732

  2. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    NASA Astrophysics Data System (ADS)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  3. 3 CFR - Regulatory Flexibility, Small Business, and Job Creation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Regulatory Flexibility, Small Business, and Job... Flexibility, Small Business, and Job Creation Memorandum for the Heads of Executive Departments and Agencies..., economic growth, and job creation. More than half of all Americans working in the private sector either...

  4. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein.

    PubMed

    Ostachuk, Agustín

    2016-07-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self. PMID:27038454

  5. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells

    PubMed Central

    Wang, Liqing; de Zoeten, Edwin F.; Greene, Mark I.; Hancock, Wayne W.

    2010-01-01

    Classical zinc-dependent histone deacetylases (HDACs) catalyse the removal of acetyl groups from histone tails and also from many non-histone proteins, including the transcription factor FOXP3, a key regulator of the development and function of regulatory T cells. Many HDAC inhibitors are in cancer clinical trials, but a subset of HDAC inhibitors has important anti-inflammatory or immunosuppressive effects that might be of therapeutic benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of HDAC inhibitors to enhance the production and suppressive functions of FOXP3+ regulatory T cells. Understanding which HDACs contribute to the regulation of the functions of regulatory T cells may further stimulate the development of new class- or subclass-specific HDAC inhibitors with applications beyond oncology. PMID:19855427

  6. Regulatory roles of Oct proteins in the mammary gland.

    PubMed

    Qian, Xi; Zhao, Feng-Qi

    2016-06-01

    The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.

  7. Regulatory roles of Oct proteins in the mammary gland.

    PubMed

    Qian, Xi; Zhao, Feng-Qi

    2016-06-01

    The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin. PMID:27044595

  8. Harnessing FOXP3+ regulatory T cells for transplantation tolerance

    PubMed Central

    Waldmann, Herman; Hilbrands, Robert; Howie, Duncan; Cobbold, Stephen

    2014-01-01

    Early demonstrations that mice could be tolerized to transplanted tissues with short courses of immunosuppressive therapy and that with regard to tolerance to self, CD4+FOXP3+ regulatory T cells (Tregs) appeared to play a critical role, have catalyzed strategies to harness FOXP3-dependent processes to control rejection in human transplantation. This review seeks to examine the scientific underpinning for this new approach to finesse immunosuppression. PMID:24691478

  9. Regulatory effects of matrix protein variations on influenza virus growth.

    PubMed

    Yasuda, J; Toyoda, T; Nakayama, M; Ishihama, A

    1993-01-01

    Influenza virus A/WSN/33 forms large plaques (> 3 mm diameter) on MDCK cells whereas A/Aichi/2/68 forms only small plaques (< 1 mm diameter). Fast growing reassortants (AWM), isolated by mixed infection of MDCK cells with these two virus strains in the presence of anti-WSN antibodies, all carried the M gene from WSN. On MDCK cells, these reassortants produced progeny viruses as rapidly as did WSN, and the virus yield was as high as Aichi. The fast-growing reassortants overcame the growth inhibitory effect of lignins. Pulse-labeling experiments at various times after virus infection showed that the reassortant AWM started to synthesize viral proteins earlier than Aichi. Taken together, we conclude that upon infecting MDCK cells, the reassortant viruses advance rapidly into the growth cycle, thereby leading to an elevated level of progeny viruses in the early period of infection. Possible mechanisms of the M gene involvement in the determination of virus growth rate are discussed, in connection with multiple functions of the M proteins. PMID:8257290

  10. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    SciTech Connect

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M.

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  11. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling.

    PubMed

    Wang, Honglin; Sun, Yue; Chang, Jianhong; Zheng, Fangfang; Pei, Haixia; Yi, Yanjun; Chang, Caren; Dong, Chun-Hai

    2016-07-01

    Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling. PMID:27097903

  12. Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe

    PubMed Central

    Sureban, SM; Ramalingam, S; Natarajan, G; May, R; Subramaniam, D; Bishnupuri, KS; Morrison, AR; Dieckgraefe, BK; Brackett, DJ; Postier, RG; Houchen, CW; Anant, S

    2009-01-01

    RNA-binding proteins play a key role in post-transcriptional regulation of mRNA stability and translation. We have identified that RBM3, a translation regulatory protein, is significantly upregulated in human tumors, including a stage-dependent increase in colorectal tumors. Forced RBM3 overexpression in NIH3T3 mouse fibro-blasts and SW480 human colon epithelial cells increases cell proliferation and development of compact multicellular spheroids in soft agar suggesting the ability to induce anchorage-independent growth. In contrast, down-regulating RBM3 in HCT116 colon cancer cells with specific siRNA decreases cell growth in culture, which was partially overcome when treated with prostaglandin E2, a product of cyclooxygenase (COX)-2 enzyme activity. Knockdown also resulted in the growth arrest of tumor xenografts. We have also identified that RBM3 knockdown increases caspase-mediated apoptosis coupled with nuclear cyclin B1, and phosphorylated Cdc25c, Chk1 and Chk2 kinases, implying that under conditions of RBM3 downregulation, cells undergo mitotic catastrophe. RBM3 enhances COX-2, IL-8 and VEGF mRNA stability and translation. Conversely, RBM3 knockdown results in loss in the translation of these transcripts. These data demonstrate that the RNA stabilizing and translation regulatory protein RBM3 is a novel proto-oncogene that induces transformation when overexpressed and is essential for cells to progress through mitosis. PMID:18427544

  13. DTDP-rhamnosyl transferase RfbF, is a newfound receptor-related regulatory protein for phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3

    PubMed Central

    Liang, Junrong; Li, Xu; Zha, Tao; Chen, Yuhuang; Hao, Huijing; Liu, Chang; Duan, Ran; Xiao, Yuchun; Su, Mingming; Wang, Xin; Jing, Huaiqi

    2016-01-01

    Bacteriophages and their hosts are continuously engaged in evolutionary competition. Here we isolated a lytic phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3. We firstly described the phage receptor was regulated by DTDP-rhamnosyl transferase RfbF, encoded within the rfb cluster that was responsible for the biosynthesis of the O antigens. The deletion of DTDP-rhamnosyl transferase RfbF of wild type O:3 strain caused failure in phiYe-F10 adsorption; however, the mutation strain retained agglutination with O:3 antiserum; and complementation of its mutant converted its sensitivity to phiYe-F10. Therefore, DTDP-rhamnosyl transferase RfbF was responsible for the phage infection but did not affect recognition of Y. enterocolitica O:3 antiserum. Further, the deletions in the putative O-antigen biosynthesis protein precursor and outer membrane protein had no effect on sensitivity to phiYe-F10 infection. However, adsorption of phages onto mutant HNF10-ΔO-antigen took longer time than onto the WT, suggesting that deletion of the putative O-antigen biosynthesis protein precursor reduced the infection efficiency. PMID:26965493

  14. Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.

    PubMed

    Ulges, Alexander; Klein, Matthias; Reuter, Sebastian; Gerlitzki, Bastian; Hoffmann, Markus; Grebe, Nadine; Staudt, Valérie; Stergiou, Natascha; Bohn, Toszka; Brühl, Till-Julius; Muth, Sabine; Yurugi, Hajime; Rajalingam, Krishnaraj; Bellinghausen, Iris; Tuettenberg, Andrea; Hahn, Susanne; Reißig, Sonja; Haben, Irma; Zipp, Frauke; Waisman, Ari; Probst, Hans-Christian; Beilhack, Andreas; Buchou, Thierry; Filhol-Cochet, Odile; Boldyreff, Brigitte; Breloer, Minka; Jonuleit, Helmut; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias

    2015-03-01

    The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.

  15. Calyculin A Reveals Serine/Threonine Phosphatase Protein Phosphatase 1 as a Regulatory Nodal Point in Canonical Signal Transducer and Activator of Transcription 3 Signaling of Human Microvascular Endothelial Cells

    PubMed Central

    Zgheib, Carlos; Zouein, Fouad A.; Chidiac, Rony; Kurdi, Mazen

    2012-01-01

    Vascular inflammation is initiated by stimuli acting on endothelial cells. A clinical feature of vascular inflammation is increased circulating interleukin 6 (IL-6) type cytokines such as leukemia inhibitory factor (LIF), but their role in vascular inflammation is not fully defined. IL-6 type cytokines activate transcription factor signal transducer and activator of transcription 3 (STAT3), which has a key role in inflammation and the innate immune response. Canonical STAT3 gene induction is due to phosphorylation of (1) Y705, leading to STAT3 dimerization and DNA binding and (2) S727, enhancing homodimerization and DNA binding by recruiting p300/CBP. We asked whether enhancing S727 STAT3 phosphorylation using the protein phosphatase 1 (PP1) inhibitor, calyculin A, would enhance LIF-induced gene expression in human microvascular endothelial cells (HMEC-1). Cotreatment with calyculin A and LIF markedly increased STAT3 S727 phosphorylation, without affecting the increase in the nuclear fraction of STAT3 phosphorylated on Y705. PP2A inhibitors, okadaic acid and fostriecin, did not enhance STAT3 S727 phosphorylation. Surprisingly, calyculin A eliminated LIF-induced gene expression: (1) calyculin A reduced binding of nuclear extracts to a STAT3 consensus site, thereby reducing the overall level of binding observed with LIF; and (2) calyculin A caused p300/CBP phosphorylation, thus resulting in reduced acetylation activity and degradation. Together, these findings reveal a pivotal role of a protein serine/threonine phosphatases that is likely PP1 in HMEC in controlling STAT3 transcriptional activity. PMID:22142222

  16. 3D Chromosome Regulatory Landscape of Human Pluripotent Cells.

    PubMed

    Ji, Xiong; Dadon, Daniel B; Powell, Benjamin E; Fan, Zi Peng; Borges-Rivera, Diego; Shachar, Sigal; Weintraub, Abraham S; Hnisz, Denes; Pegoraro, Gianluca; Lee, Tong Ihn; Misteli, Tom; Jaenisch, Rudolf; Young, Richard A

    2016-02-01

    In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease. PMID:26686465

  17. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin

    PubMed Central

    Klamt, Fábio; Zdanov, Stéphanie; Levine, Rodney L.; Pariser, Ashley; Zhang, Yaqin; Zhang, Baolin; Yu, Li-Rong; Veenstra, Timothy D.; Shacter, Emily

    2012-01-01

    Physiological oxidants that are generated by activated phagocytes comprise the main source of oxidative stress during inflammation1,2. Oxidants such as taurine chloramine (TnCl) and hydrogen peroxide (H2O2) can damage proteins and induce apoptosis, but the role of specific protein oxidation in this process has not been defined. We found that the actin-binding protein cofilin is a key target of oxidation. When oxidation of this single regulatory protein is prevented, oxidant-induced apoptosis is inhibited. Oxidation of cofilin causes it to lose its affinity for actin and to translocate to the mitochondria, where it induces swelling and cytochrome c release by mediating opening of the permeability transition pore (PTP). This occurs independently of Bax activation and requires both oxidation of cofilin Cys residues and dephosphorylation at Ser 3. Knockdown of endogenous cofilin using targeted siRNA inhibits oxidant-induced apoptosis, which is restored by re-expression of wild-type cofilin but not by cofilin containing Cys to Ala mutations. Exposure of cofilin to TnCl results in intramolecular disulphide bonding and oxidation of Met residues to Met sulphoxide, but only Cys oxidation causes cofilin to induce mitochondrial damage. PMID:19734890

  18. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  19. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses.

    PubMed

    Lei, Xiaobo; Xiao, Xia; Xue, Qinghua; Jin, Qi; He, Bin; Wang, Jianwei

    2013-02-01

    Enterovirus 71 (EV71) is a positive-stranded RNA virus which is capable of inhibiting innate immunity. Among virus-encoded proteins, the 3C protein compromises the type I interferon (IFN-I) response mediated by retinoid acid-inducible gene-I (RIG-I) or Toll-like receptor 3 that activates interferon regulatory 3 (IRF3) and IRF7. In the present study, we report that enterovirus 71 downregulates IRF7 through the 3C protein, which inhibits the function of IRF7. When expressed in mammalian cells, the 3C protein mediates cleavage of IRF7 rather than that of IRF3. This process is insensitive to inhibitors of caspase, proteasome, lysosome, and autophagy. H40D substitution in the 3C active site abolishes its activity, whereas R84Q or V154S substitution in the RNA binding motif has no effect. Furthermore, 3C-mediated cleavage occurs at the Q189-S190 junction within the constitutive activation domain of IRF7, resulting in two cleaved IRF7 fragments that are incapable of activating IFN expression. Ectopic expression of wild-type IRF7 limits EV71 replication. On the other hand, expression of the amino-terminal domain of IRF7 enhances EV71 infection, which correlates with its ability to interact with and inhibit IRF3. These results suggest that control of IRF7 by the 3C protein may represent a viral mechanism to escape cellular responses. PMID:23175366

  20. Complement regulatory protein genes in channel catfish and their involvement in disease defense response.

    PubMed

    Jiang, Chen; Zhang, Jiaren; Yao, Jun; Liu, Shikai; Li, Yun; Song, Lin; Li, Chao; Wang, Xiaozhu; Liu, Zhanjiang

    2015-11-01

    Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.

  1. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  2. A high-throughput method to examine protein-nucleotide interactions identifies targets of the bacterial transcriptional regulatory protein fur.

    PubMed

    Yu, Chunxiao; Lopez, Carlos A; Hu, Han; Xia, Yu; Freedman, David S; Reddington, Alexander P; Daaboul, George G; Unlü, M Selim; Genco, Caroline Attardo

    2014-01-01

    The Ferric uptake regulatory protein (Fur) is a transcriptional regulatory protein that functions to control gene transcription in response to iron in a number of pathogenic bacteria. In this study, we applied a label-free, quantitative and high-throughput analysis method, Interferometric Reflectance Imaging Sensor (IRIS), to rapidly characterize Fur-DNA interactions in vitro with predicted Fur binding sequences in the genome of Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea. IRIS can easily be applied to examine multiple protein-protein, protein-nucleotide and nucleotide-nucleotide complexes simultaneously and demonstrated here that seventy percent of the predicted Fur boxes in promoter regions of iron-induced genes bound to Fur in vitro with a range of affinities as observed using this microarray screening technology. Combining binding data with mRNA expression levels in a gonococcal fur mutant strain allowed us to identify five new gonococcal genes under Fur-mediated direct regulation.

  3. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  4. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity.

    PubMed

    Farinha, Carlos M; Swiatecka-Urban, Agnieszka; Brautigan, David L; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  5. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  6. Identification and functional analysis of interferon regulatory factor 3 in Lateolabrax maculatus.

    PubMed

    Chen, Xiao-Wu; Wei, Qun; Wang, Zhi-Peng; Wang, Chun-Lei; Bi, Yan-Hui; Gu, Yi-Feng

    2016-10-01

    The interferon (IFN) regulatory factor 3 (IRF3) is a member of the IFN regulatory transcription factor family, which binds to the IFN-stimulated response element (ISRE) within the promoter of IFN genes and IFN-stimulated genes. In this study, the IRF3 cDNA of sea perch Lateolabrax maculatus (SpIRF3) was identified, which contained 1781 bp with an open reading frame of 1398 bp that coded a 465 amino acid protein. The SpIRF3 protein shared conserved characterizations with its homologues and displayed the conserved DNA-binding domain, IRF association domain, serine-rich C-terminal domain, and tryptophan residue cluster. Phylogenetic analysis illustrated that SpIRF3 belonged to the IRF3 subfamily. Subcellular localization analysis showed that SpIRF3 mainly resided in the cytoplasm without stimuli but translocated into nuclei in the presence of poly I:C. Real-time PCR data indicated that SpIRF3 was transcriptionally up-regulated by poly I:C stimulation in various organs. Moreover, reporter assay revealed that SpIRF3 functioned as a modulator in triggering the IFN response by inducing the activity of IFN and ISRE-containing promoter. These data revealed that SpIRF3 was a potential molecule in the IFN immune defense system against viral infection. PMID:27181713

  7. Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein

    SciTech Connect

    Shetty, Nishant D.; Reddy, Manchi C.M.; Palaninathan, Satheesh K.; Owen, Joshua L.; Sacchettini, James C.

    2010-10-11

    PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 {angstrom} resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T-loop of one subunit and the C-loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T-loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T-loop makes direct contact with the {gamma}-phosphate of the ATP molecule replacing the Mg{sup 2+} position seen in the Methanococcus jannaschii GlnK1 structure. The C-loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C-terminal 3{sub 10} helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway.

  8. Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni.

    PubMed

    Hildebrandt, J D; Codina, J; Risinger, R; Birnbaumer, L

    1984-02-25

    The subunit composition of the Ns and Ni, the human erythrocyte stimulatory and inhibitory regulatory proteins of adenylyl cyclase, respectively, were analyzed by a sodium dodecyl sulfate-containing discontinuous urea and polyacrylamide gradient gel electrophoresis system designed for the study of low molecular weight polypeptides. This system disclosed that these proteins, in addition to their known alpha and beta subunits, contain an additional small peptide of apparent molecular weight of 5,000 (5K). This "5K peptide" is also present in preparations of another protein which we termed "40K protein" on the basis of its hydrodynamic behavior and whose primary protein constituent is the Mr 35,000 beta subunit of the above regulatory proteins. Analyzing Ni, the 5K peptide was functionally related to the protein by showing that its apparent Stokes radius changes from 5.9 to 5.1 nm after treatment with guanyl-5'-yl imidodiphosphate and magnesium in parallel with the alpha and beta subunits. These data are interpreted as evidence for the existence of a third subunit associated with the regulatory proteins of adenylyl cyclase. We call this subunit gamma and propose a minimum subunit structure for these proteins of the alpha beta gamma type. PMID:6321456

  9. Glucokinase regulatory proten genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3...

  10. The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome

    PubMed Central

    Liu, Kun; Li, Ting; Huang, Shiyuan; Long, Rui; You, Ya; Liu, Jinping

    2016-01-01

    Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4+CD25+FOXP3+ regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis. PMID:26515143

  11. Regulatory Oversight Program, July 1, 1993--March 3, 1997. Volume 3

    SciTech Connect

    1997-12-31

    On July, 1993, a Regulatory Oversight (RO) organization was established within the US DOE, Oak Ridge Operations (ORO) to provide regulatory oversight of the DOE uranium enrichment facilities leased to the United States Enrichment Corporation (USEC). The purpose of the OR program was to ensure continued plant safety, safeguards and security while the plants were transitioned to regulatory oversight by the Nuclear Regulatory Commission (NRC). Volume 3 contains copies of two reports that document the DOE/ORO regulatory oversight inspection and enforcement history for each gaseous diffusion plant site. Each report provides a formal mechanism by which DOE/ORO could communicate the inspection and enforcement history to NRC. The reports encompass the inspection activities that occurred during July 1, 1993 through March 2, 1997.

  12. Peptides as modulators of enzymes and regulatory proteins.

    PubMed

    Troitskaya, Larisa A; Kodadek, Thomas

    2004-04-01

    There is currently great interest in the development of methods to modulate the function of diverse classes of target proteins with chemicals (agonists or antagonists). These would be valuable reagents for biomedical research and some might serve as potential drug leads. Traditionally, most chemicals that modulate protein function have been enzyme inhibitors isolated in functional screens specific for the enzyme of interest. However, recent efforts from many laboratories have suggested that relatively simple binding assays may provide a more convenient and general route to chemical modulators. We review here this work with a particular emphasis on peptide modulators. PMID:15003603

  13. Different expression of protein kinase A (PKA) regulatory subunits in normal and neoplastic thyroid tissues.

    PubMed

    Ferrero, Stefano; Vaira, Valentina; Del Gobbo, Alessandro; Vicentini, Leonardo; Bosari, Silvano; Beck-Peccoz, Paolo; Mantovani, Giovanna; Spada, Anna; Lania, Andrea G

    2015-04-01

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in both cell growth and cell differentiation control. Mutations of the PRKAR1A gene have been found in patients with Carney complex and in a minority of sporadic anaplastic thyroid carcinomas. The aim of the study was to retrospectively evaluate the expression of different PKA regulatory subunits in benign and non benign human thyroid tumours and to correlate their expression with clinical phenotype. Immunohistochemistry demonstrated a significant increase in PRKAR2B expression in both differentiated and undifferentiated (anaplastic) thyroid tumors in comparison with normal thyroid tissues. Conversely, a significant increase in PRKAR1A expression was only demonstrated in undifferentiated thyroid carcinomas in comparison with normal thyroid tissue and differentiated thyroid tumors. In thyroid cancers without lymph nodal metastases PRKAR1A expression was higher in tumours of more than 2 cm in size (T2 and T3) compared to smaller ones (T1). In conclusion, our data shows that an increased PRKAR1A expression is associated with aggressive and undifferentiated thyroid tumors. PMID:25393625

  14. Subnuclear organization and trafficking of regulatory proteins: implications for biological control and cancer.

    PubMed

    Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A

    2000-01-01

    The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct

  15. The potential function of steroid sulphatase activity in steroid production and steroidogenic acute regulatory protein expression.

    PubMed Central

    Sugawara, Teruo; Fujimoto, Seiichiro

    2004-01-01

    The first step in the biosynthesis of steroid hormones is conversion of cholesterol into pregnenolone. StAR (steroidogenic acute regulatory) protein plays a crucial role in the intra-mitochondrial movement of cholesterol. STS (steroid sulphatase), which is present ubiquitously in mammalian tissues, including the placenta, adrenal gland, testis and ovary, desulphates a number of 3beta-hydroxysteroid sulphates, including cholesterol sulphate. The present study was designed to examine the effect of STS on StAR protein synthesis and steroidogenesis in cells. Steroidogenic activities of COS-1 cells that had been co-transfected with a vector for the cholesterol P450scc (cytochrome P450 side-chain-cleavage enzyme) system, named F2, a StAR expression vector (pStAR), and an STS expression vector (pSTS) were assayed. Whole-cell extracts were subjected to SDS/PAGE and then to Western blot analysis. pSTS co-expressed in COS-1 cells with F2 and pStAR increased pregnenolone synthesis 2-fold compared with that of co-expression with F2 and pStAR. Western blot analysis using COS-1 cells that had been co-transfected with pSTS, F2 and pStAR revealed that StAR protein levels increased, whereas STS and P450scc protein levels did not change. The amount of StAR protein translation products increased when pSTS was added to an in vitro transcription-translation reaction mixture. Pulse-chase experiments demonstrated that the 37 kDa StAR pre-protein disappeared significantly ( P <0.01) more slowly in COS-1 cells that had been transfected with pSTS than in COS-1 cells that had not been transfected with pSTS. The increase in StAR protein level is not a result of an increase in StAR gene expression, but is a result of both an increase in translation and a longer half-life of the 37 kDa pre-StAR protein. In conclusion, STS increases StAR protein expression level and stimulates steroid production. PMID:14969586

  16. Structural Basis for the 14-3-3 Protein-dependent Inhibition of the Regulator of G Protein Signaling 3 (RGS3) Function*

    PubMed Central

    Rezabkova, Lenka; Man, Petr; Novak, Petr; Herman, Petr; Vecer, Jaroslav; Obsilova, Veronika; Obsil, Tomas

    2011-01-01

    Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins. PMID:22027839

  17. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    SciTech Connect

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.

  18. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species

    PubMed Central

    Tan, Aimee; Petty, Nicola K.; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji

    2015-01-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general. PMID:25624355

  19. Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species.

    PubMed

    Tan, Aimee; Petty, Nicola K; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji; Robins-Browne, Roy

    2015-04-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general.

  20. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  1. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival.

    PubMed

    Tan, Peck Yean; Chang, Cheng Wei; Chng, Kern Rei; Wansa, K D Senali Abayratna; Sung, Wing-Kin; Cheung, Edwin

    2012-01-01

    The NKX3-1 gene is a homeobox gene required for prostate tumor progression, but how it functions is unclear. Here, using chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) we showed that NKX3-1 colocalizes with the androgen receptor (AR) across the prostate cancer genome. We uncovered two distinct mechanisms by which NKX3-1 controls the AR transcriptional network in prostate cancer. First, NKX3-1 and AR directly regulate each other in a feed-forward regulatory loop. Second, NKX3-1 collaborates with AR and FoxA1 to mediate genes in advanced and recurrent prostate carcinoma. NKX3-1- and AR-coregulated genes include those found in the "protein trafficking" process, which integrates oncogenic signaling pathways. Moreover, we demonstrate that NKX3-1, AR, and FoxA1 promote prostate cancer cell survival by directly upregulating RAB3B, a member of the RAB GTPase family. Finally, we show that RAB3B is overexpressed in prostate cancer patients, suggesting that RAB3B together with AR, FoxA1, and NKX3-1 are important regulators of prostate cancer progression. Collectively, our work highlights a novel hierarchical transcriptional regulatory network between NKX3-1, AR, and the RAB GTPase signaling pathway that is critical for the genetic-molecular-phenotypic paradigm in androgen-dependent prostate cancer.

  2. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Weng, Julia Tzu-Ya; Lai, K Robert; Lee, Tzong-Yi

    2016-01-01

    Protein ubiquitylation catalyzed by E3 ubiquitin ligases are crucial in the regulation of many cellular processes. Owing to the high throughput of mass spectrometry-based proteomics, a number of methods have been developed for the experimental determination of ubiquitylation sites, leading to a large collection of ubiquitylation data. However, there exist no resources for the exploration of E3-ligase-associated regulatory networks of for ubiquitylated proteins in humans. Therefore, the UbiNet database was developed to provide a full investigation of protein ubiquitylation networks by incorporating experimentally verified E3 ligases, ubiquitylated substrates and protein-protein interactions (PPIs). To date, UbiNet has accumulated 43 948 experimentally verified ubiquitylation sites from 14 692 ubiquitylated proteins of humans. Additionally, we have manually curated 499 E3 ligases as well as two E1 activating and 46 E2 conjugating enzymes. To delineate the regulatory networks among E3 ligases and ubiquitylated proteins, a total of 430 530 PPIs were integrated into UbiNet for the exploration of ubiquitylation networks with an interactive network viewer. A case study demonstrated that UbiNet was able to decipher a scheme for the ubiquitylation of tumor proteins p63 and p73 that is consistent with their functions. Although the essential role of Mdm2 in p53 regulation is well studied, UbiNet revealed that Mdm2 and additional E3 ligases might be implicated in the regulation of other tumor proteins by protein ubiquitylation. Moreover, UbiNet could identify potential substrates for a specific E3 ligase based on PPIs and substrate motifs. With limited knowledge about the mechanisms through which ubiquitylated proteins are regulated by E3 ligases, UbiNet offers users an effective means for conducting preliminary analyses of protein ubiquitylation. The UbiNet database is now freely accessible via http://csb.cse.yzu.edu.tw/UbiNet/ The content is regularly updated with the

  3. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation

    PubMed Central

    Nguyen, Van-Nui; Huang, Kai-Yao; Weng, Julia Tzu-Ya; Lai, K. Robert; Lee, Tzong-Yi

    2016-01-01

    Protein ubiquitylation catalyzed by E3 ubiquitin ligases are crucial in the regulation of many cellular processes. Owing to the high throughput of mass spectrometry-based proteomics, a number of methods have been developed for the experimental determination of ubiquitylation sites, leading to a large collection of ubiquitylation data. However, there exist no resources for the exploration of E3-ligase-associated regulatory networks of for ubiquitylated proteins in humans. Therefore, the UbiNet database was developed to provide a full investigation of protein ubiquitylation networks by incorporating experimentally verified E3 ligases, ubiquitylated substrates and protein–protein interactions (PPIs). To date, UbiNet has accumulated 43 948 experimentally verified ubiquitylation sites from 14 692 ubiquitylated proteins of humans. Additionally, we have manually curated 499 E3 ligases as well as two E1 activating and 46 E2 conjugating enzymes. To delineate the regulatory networks among E3 ligases and ubiquitylated proteins, a total of 430 530 PPIs were integrated into UbiNet for the exploration of ubiquitylation networks with an interactive network viewer. A case study demonstrated that UbiNet was able to decipher a scheme for the ubiquitylation of tumor proteins p63 and p73 that is consistent with their functions. Although the essential role of Mdm2 in p53 regulation is well studied, UbiNet revealed that Mdm2 and additional E3 ligases might be implicated in the regulation of other tumor proteins by protein ubiquitylation. Moreover, UbiNet could identify potential substrates for a specific E3 ligase based on PPIs and substrate motifs. With limited knowledge about the mechanisms through which ubiquitylated proteins are regulated by E3 ligases, UbiNet offers users an effective means for conducting preliminary analyses of protein ubiquitylation. The UbiNet database is now freely accessible via http://csb.cse.yzu.edu.tw/UbiNet/. The content is regularly updated with the

  4. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein

    PubMed Central

    Manna, Pulak R.

    2016-01-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  5. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  6. Identification of RNA-binding surfaces in iron regulatory protein-1.

    PubMed

    Kaldy, P; Menotti, E; Moret, R; Kühn, L C

    1999-11-01

    Post-transcriptional regulation of mRNA translation and stability in iron metabolism involves the interaction between the trans-acting cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) and cis-acting iron-responsive elements (IREs) in mRNA 5'- or 3'-untranslated regions. IRP-1 can adopt two conformations: one with a [4Fe-4S]-cluster, unable to bind IREs, which functions as a cytoplasmic aconitase; one lacking this cluster, which accumulates in iron-deprived cells and binds mRNA firmly. We investigated which surfaces of IRP-1 interact with IREs. Surface areas were predicted on the basis of the crystallized porcine mitochondrial aconitase structure. We selected nine sequences absent or different in mitochondrial and Escherichia coli aconitases, both being devoid of RNA-binding properties. Mutations in two regions of domain 4 of IRP-1 lowered the affinity for a wild-type IRE up to 7-fold in vitro, whereas the aconitase activity, a control for structural integrity, was not affected. Scatchard plot analysis with mutant IREs indicated that domain 4 is involved in the binding specificity. This conclusion was confirmed with hybrid proteins in which IRP-1 surface loops were grafted into IRP-2. The results indicate that arginines 728 and 732 contact the IRE bulge, whereas region 685-689 is necessary for recognition of the IRE loop. PMID:10545118

  7. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    PubMed Central

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  8. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    PubMed Central

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  9. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles.

    PubMed

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  10. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences.

    PubMed

    De Jaeger, Geert; Scheffer, Stanley; Jacobs, Anni; Zambre, Mukund; Zobell, Oliver; Goossens, Alain; Depicker, Ann; Angenon, Geert

    2002-12-01

    Over the past decade, several high value proteins have been produced in different transgenic plant tissues such as leaves, tubers, and seeds. Despite recent advances, many heterologous proteins accumulate to low concentrations, and the optimization of expression cassettes to make in planta production and purification economically feasible remains critical. Here, the regulatory sequences of the seed storage protein gene arcelin 5-I (arc5-I) of common bean (Phaseolus vulgaris) were evaluated for producing heterologous proteins in dicotyledonous seeds. The murine single chain variable fragment (scFv) G4 (ref. 4) was chosen as model protein because of the current industrial interest in producing antibodies and derived fragments in crops. In transgenic Arabidopsis thaliana seed stocks, the scFv under control of the 35S promoter of the cauliflower mosaic virus (CaMV) accumulated to approximately 1% of total soluble protein (TSP). However, a set of seed storage promoter constructs boosted the scFv accumulation to exceptionally high concentrations, reaching no less than 36.5% of TSP in homozygous seeds. Even at these high concentrations, the scFv proteins had antigen-binding activity and affinity similar to those produced in Escherichia coli. The feasibility of heterologous protein production under control of arc5-I regulatory sequences was also demonstrated in Phaseolus acutifolius, a promising crop for large scale production.

  11. Dynamic control of the complement system by modulated expression of regulatory proteins.

    PubMed

    Thurman, Joshua M; Renner, Brandon

    2011-01-01

    The complement system serves many biological functions, including the eradication of invasive pathogens and the removal of damaged cells and immune-complexes. Uncontrolled complement activation causes injury to host cells, however, so adequate regulation of the system is essential. Control of the complement system is maintained by a group of cell surface and circulating proteins referred to as complement regulatory proteins. The expression of the cell surface complement regulatory proteins varies from tissue to tissue. Furthermore, specific cell types can upregulate or downregulate the expression of these proteins in response to a variety of signals or insults. Altered regulation of the complement regulatory proteins can have important effects on local complement activation. In some circumstances this can be beneficial, such as in the setting of certain infections. In other circumstances, however, this can be a cause of complement-mediated injury of the tissue. A full understanding of the mechanisms by which the complement system is modulated at the local level can have important implications for how we diagnose and treat a wide range of inflammatory diseases.

  12. Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element*

    PubMed Central

    Crawford, Rebecca R.; Prescott, Eugenia T.; Sylvester, Charity F.; Higdon, Ashlee N.; Shan, Jixiu; Kilberg, Michael S.; Mungrue, Imran N.

    2015-01-01

    Using an unbiased systems genetics approach, we previously predicted a role for CHAC1 in the endoplasmic reticulum stress pathway, linked functionally to activating transcription factor 4 (ATF4) following treatment with oxidized phospholipids, a model for atherosclerosis. Mouse and yeast CHAC1 homologs have been shown to degrade glutathione in yeast and a cell-free system. In this report, we further defined the ATF4-CHAC1 interaction by cloning the human CHAC1 promoter upstream of a luciferase reporter system for in vitro assays in HEK293 and U2OS cells. Mutation and deletion analyses defined two major cis DNA elements necessary and sufficient for CHAC1 promoter-driven luciferase transcription under conditions of ER stress or ATF4 coexpression: the −267 ATF/cAMP response element (CRE) site and a novel −248 ATF/CRE modifier (ACM) element. We also examined the ability of the CHAC1 ATF/CRE and ACM sequences to bind ATF4 and ATF3 using immunoblot-EMSA and confirmed ATF4, ATF3, and CCAAT/enhancer-binding protein β binding at the human CHAC1 promoter in the proximity of the ATF/CRE and ACM using ChIP. To further validate the function of CHAC1 in a human cell model, we measured glutathione levels in HEK293 cells with enhanced CHAC1 expression. Overexpression of CHAC1 led to a robust depletion of glutathione, which was alleviated in a CHAC1 catalytic mutant. These results suggest an important role for CHAC1 in oxidative stress and apoptosis with implications for human health and disease. PMID:25931127

  13. Epigenetic and transcriptional control of Foxp3+ regulatory T cells.

    PubMed

    Huehn, Jochen; Beyer, Marc

    2015-02-01

    Regulatory T cells (Treg cells) present a unique T-cell lineage that plays a key role for the initiation and maintenance of immunological tolerance. Treg cells are characterized by the expression of the forkhead box transcription factor Foxp3, which acts as a lineage-specifying factor and determines the unique properties of these immunosuppressive cells. Work over the past few years has shown that well-defined and precisely controlled events on transcriptional and epigenetic level are required to ensure stable expression of Foxp3 in Treg cells. More recent work suggested that in addition to stable Foxp3 expression, epigenetic modifications of Treg-cell specific genes contribute to the unique phenotype of Treg cells by imprinting their transcriptional program and stabilizing the expression of molecules being essential for the suppressive properties of Treg cells. In this review, we will highlight how Foxp3 expression itself is epigenetically and transcriptionally controlled, how the Treg-cell specific epigenetic signature is achieved, how Foxp3 as transcription factor influences the gene expression programs in Treg cells and how unique properties of Treg-cell subsets are defined by other transcription factors.

  14. 14-3-3 proteins in plant-pathogen interactions.

    PubMed

    Lozano-Durán, Rosa; Robatzek, Silke

    2015-05-01

    14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.

  15. Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Ko, Kwan Young; Lee, Jea Hwang; Park, Ki Jun; Jang, Jun Ki; Kim, Ick Young

    2016-01-01

    Selenoprotein W (SelW) contains a selenocysteine (Sec, U) in a conserved CXXU motif corresponding to the CXXC redox motif of thioredoxin, suggesting a putative redox function of SelW. We have previously reported that the binding of 14-3-3 protein to its target proteins, including CDC25B, Rictor and TAZ, is inhibited by the interaction of 14-3-3 protein with SelW. However, the binding mechanism is unclear. In this study, we sought to determine the binding site of SelW to understand the regulatory mechanism of the interaction between SelW and 14-3-3 and its biological effects. Phosphorylated Ser(pS) or Thr(pT) residues in RSXpSXP or RXXXp(S/T)XP motifs are well-known common 14-3-3-binding sites, but Thr41, Ser59, and T69 of SelW, which are computationally predicted to serve are phosphorylation sites, were neither phosphorylation sites nor sites involved in the interaction. A mutant SelW in which Sec13 is changed to Ser (U13S) was unable to interact with 14-3-3 protein and thus did not inhibit the interaction of 14-3-3 to other target proteins. However, other Cys mutants of SelW(C10S, C33S and C37S) normally interacted with 14-3-3 protein. The interaction of SelW to 14-3-3 protein was enhanced by diamide or H2O2 and decreased by dithiothreitol (DTT). Taken together, these findings demonstrate that the Sec of SelW is involved in its interaction with 14-3-3 protein and that this interaction is increased under oxidative stress conditions. Thus, SelW may have a regulatory function in redox cell signaling by interacting with 14-3-3 protein. PMID:26474786

  16. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities

    PubMed Central

    Dai, Chao; Li, Wenyuan; Tjong, Harianto; Hao, Shengli; Zhou, Yonggang; Li, Qingjiao; Chen, Lin; Zhu, Bing; Alber, Frank; Jasmine Zhou, Xianghong

    2016-01-01

    Three-dimensional (3D) genome structures vary from cell to cell even in an isogenic sample. Unlike protein structures, genome structures are highly plastic, posing a significant challenge for structure-function mapping. Here we report an approach to comprehensively identify 3D chromatin clusters that each occurs frequently across a population of genome structures, either deconvoluted from ensemble-averaged Hi-C data or from a collection of single-cell Hi-C data. Applying our method to a population of genome structures (at the macrodomain resolution) of lymphoblastoid cells, we identify an atlas of stable inter-chromosomal chromatin clusters. A large number of these clusters are enriched in binding of specific regulatory factors and are therefore defined as ‘Regulatory Communities.' We reveal two major factors, centromere clustering and transcription factor binding, which significantly stabilize such communities. Finally, we show that the regulatory communities differ substantially from cell to cell, indicating that expression variability could be impacted by genome structures. PMID:27240697

  17. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    PubMed

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  18. Novel regulatory action of ribosomal inactivation on epithelial Nod2-linked proinflammatory signals in two convergent ATF3-associated pathways.

    PubMed

    Park, Seong-Hwan; Do, Kee Hun; Choi, Hye Jin; Kim, Juil; Kim, Ki-Hyung; Park, Jiyeon; Oh, Chang Gyu; Moon, Yuseok

    2013-11-15

    In response to excessive nucleotide-binding oligomerization domain-containing protein 2 (Nod2) stimulation caused by mucosal bacterial components, gut epithelia need to activate regulatory machinery to maintain epithelial homeostasis. Activating transcription factor 3 (ATF3) is a representative regulator in the negative feedback loop that modulates TLR-associated inflammatory responses. In the current study, the regulatory effects of ribosomal stress-induced ATF3 on Nod2-stimulated proinflammatory signals were assessed. Ribosomal inactivation caused persistent ATF3 expression that in turn suppressed proinflammatory chemokine production facilitated by Nod2. Decreased chemokine production was due to attenuation of Nod2-activated NF-κB and early growth response protein 1 (EGR-1) signals by ATF3. However, the underlying molecular mechanisms involve two convergent regulatory pathways. Although ATF3 induced by ribosomal inactivation regulated Nod2-induced EGR-1 expression epigenetically through the recruitment of histone deacetylase 1, NF-κB regulation was associated with posttranscriptional regulation by ATF3 rather than epigenetic modification. ATF3 induced by ribosomal inactivation led to the destabilization of p65 mRNA caused by nuclear entrapment of transcript-stabilizing human Ag R protein via direct interaction with ATF3. These findings demonstrate that ribosomal stress-induced ATF3 is a critical regulator in the convergent pathways between EGR-1 and NF-κB, which contributes to the suppression of Nod2-activated proinflammatory gene expression.

  19. Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE.

    PubMed

    Das, Nibhriti; Biswas, Bintili; Khera, Rohan

    2013-01-01

    For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE. PMID:23402019

  20. Activation of protein phosphatase 1 by a small molecule designed to bind to the enzyme's regulatory site.

    PubMed

    Tappan, Erin; Chamberlin, A Richard

    2008-02-01

    The activity of protein phosphatase 1 (PP1), a serine-threonine phosphatase that participates ubiquitously in cellular signaling, is controlled by a wide variety of regulatory proteins that interact with PP1 at an allosteric regulatory site that recognizes a "loose" consensus sequence (usually designated as RVXF) found in all such regulatory proteins. Peptides containing the regulatory consensus sequence have been found to recapitulate the binding and PP1 activity modulation of the regulatory proteins, suggesting that it might be possible to design small-molecule surrogates that activate PP1 rather than inhibiting it. This prospect constitutes a largely unexplored way of controlling signaling pathways that could be functionally complementary to the much more extensively explored stratagem of kinase inhibition. Based on these principles, we have designed a microcystin analog that activates PP1. PMID:18291321

  1. Expression of steroidogenic acute regulatory protein in the human corpus luteum throughout the luteal phase.

    PubMed

    Devoto, L; Kohen, P; Gonzalez, R R; Castro, O; Retamales, I; Vega, M; Carvallo, P; Christenson, L K; Strauss, J F

    2001-11-01

    The expression of the steroidogenic acute regulatory protein (StAR) in the human corpus luteum (CL) was examined throughout the luteal phase. The primary 1.6-kb StAR transcript was in greater abundance in early (3.1-fold) and mid (2.2-fold) luteal phase CL compared with late luteal phase CL. The larger StAR transcript (4.4 kb) was found in early and midluteal phase CL, but was not detected in late luteal phase specimens. Mature StAR protein (30 kDa) was present in lower amounts within late CL compared with early and midluteal phase CL. The StAR preprotein (37 kDa) was also detected in greater abundance in early and midluteal CL. Immunohistochemistry revealed that StAR staining was most prominent in thecal-lutein cells throughout the luteal phase. The intensity of the signal for StAR exhibited significant changes throughout the luteal phase, being most intense during the midluteal phase and least during the late luteal phase. Plasma progesterone concentrations were highly correlated (r = 0.73 and r = 0.79) with luteal expression of the preprotein and mature StAR isoforms, respectively, throughout the luteal phase. To examine the LH dependency of StAR expression, the GnRH antagonist, Cetrorelix, was administered during the midluteal phase. Cetrorelix caused a decline in serum LH levels within 2 h, which, in turn, caused a pronounced decline in plasma progesterone within 6 h. The StAR 4.4-kb transcript was not detectable, and the 1.6-kb transcript was reduced by approximately 50% within 24 h of Cetrorelix treatment. The mature 30-kDa StAR protein level declined approximately 30% after Cetrorelix treatment. We conclude that 1) StAR mRNA and protein are highly expressed in early and midluteal phase CL; 2) StAR protein is present in both thecal-lutein and granulosa-lutein cells throughout the luteal phase; 3) StAR protein levels in the CL are highly correlated with plasma progesterone levels; 4) declining StAR mRNA and protein levels are characteristic of late luteal

  2. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose.

    PubMed

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland

    2012-01-01

    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target. PMID:22808067

  3. Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions.

    PubMed

    Kumaran, Sangaralingam; Yi, Hankuil; Krishnan, Hari B; Jez, Joseph M

    2009-04-10

    Macromolecular assemblies play critical roles in regulating cellular functions. The cysteine synthase complex (CSC), which is formed by association of serine O-acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), acts as a sensor and modulator of thiol metabolism by responding to changes in nutrient conditions. Here we examine the oligomerization and energetics of formation of the soybean CSC. Biophysical examination of the CSC by size exclusion chromatography and sedimentation ultracentrifugation indicates that this assembly (complex M(r) approximately 330,000) consists of a single SAT trimer (trimer M(r) approximately 110,000) and three OASS dimers (dimer M(r) approximately 70,000). Analysis of the SAT-OASS interaction by isothermal titration calorimetry reveals negative cooperativity with three distinct binding events during CSC formation with K(d) values of 0.3, 7.5, and 78 nm. The three binding events are also observed using surface plasmon resonance with comparable affinities. The stability of the CSC derives from rapid association and extremely slow dissociation of OASS with SAT and requires the C terminus of SAT for the interaction. Steady-state kinetic analysis shows that CSC formation enhances SAT activity and releases SAT from substrate inhibition and feedback inhibition by cysteine, the final product of the biosynthesis pathway. Cysteine inhibits SAT and the CSC with K(i) values of 2 and 70 microm, respectively. These results suggest a new model for the architecture of this regulatory complex and additional control mechanisms for biochemically controlling plant cysteine biosynthesis. Based on previous work and our results, we suggest that OASS acts as an enzyme chaperone of SAT in the CSC. PMID:19213732

  4. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation.

    PubMed

    Ng, Ivan H W; Yeap, Yvonne Y C; Ong, Lynette S R; Jans, David A; Bogoyevitch, Marie A

    2014-03-01

    Although cytokine-driven STAT3 phosphorylation and activation are often transient, persistent activation of STAT3 is a hallmark of a range of pathologies and underpins altered transcriptional responses. As triggers in disease frequently include combined increases in inflammatory cytokine and reactive oxygen species levels, we report here how oxidative stress impacts on cytokine-driven STAT3 signal transduction events. In the model system of murine embryonic fibroblasts (MEFs), combined treatment with the interleukin-6 family cytokine Leukemia Inhibitory Factor (LIF) and hydrogen peroxide (H2O2) drove persistent STAT3 phosphorylation whereas STAT3 phosphorylation increased only transiently in response to LIF alone and was not increased by H2O2 alone. Surprisingly, increases in transcript levels of the direct STAT3 gene target SOCS3 were delayed during the combined LIF + H2O2 treatment, leading us to probe the impact of oxidative stress on STAT3 regulatory events. Indeed, LIF + H2O2 prolonged JAK activation, delayed STAT3 nuclear localisation, and caused relocalisation of nuclear STAT3 phosphatase TC-PTP (TC45) to the cytoplasm. In exploring the nuclear import/ export pathways, we observed disruption of nuclear/cytoplasmic distributions of Ran and importin-alpha3 in cells exposed to H2O2 and the resultant reduced nuclear trafficking of Classical importin-alpha/3-dependent protein cargoes. CRM1-mediated nuclear export persisted despite the oxidative stress insult, with sustained STAT3 Y705 phosphorylation enhancing STAT3 nuclear residency. Our studies thus reveal for the first time the striking impact of oxidative stress to sustain STAT3 phosphorylation and nuclear retention following disruption of multiple regulatory events, with significant implications for STAT3 function.

  5. A High-Throughput Method to Examine Protein-Nucleotide Interactions Identifies Targets of the Bacterial Transcriptional Regulatory Protein Fur

    PubMed Central

    Hu, Han; Xia, Yu; Freedman, David S.; Reddington, Alexander P.; Daaboul, George G.; Ünlü, M. Selim; Genco, Caroline Attardo

    2014-01-01

    The Ferric uptake regulatory protein (Fur) is a transcriptional regulatory protein that functions to control gene transcription in response to iron in a number of pathogenic bacteria. In this study, we applied a label-free, quantitative and high-throughput analysis method, Interferometric Reflectance Imaging Sensor (IRIS), to rapidly characterize Fur-DNA interactions in vitro with predicted Fur binding sequences in the genome of Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea. IRIS can easily be applied to examine multiple protein-protein, protein-nucleotide and nucleotide-nucleotide complexes simultaneously and demonstrated here that seventy percent of the predicted Fur boxes in promoter regions of iron-induced genes bound to Fur in vitro with a range of affinities as observed using this microarray screening technology. Combining binding data with mRNA expression levels in a gonococcal fur mutant strain allowed us to identify five new gonococcal genes under Fur-mediated direct regulation. PMID:24811061

  6. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma.

    PubMed

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-09-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  7. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma

    PubMed Central

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-01-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  8. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    SciTech Connect

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  9. [The effect of extremely low doses of the novel regulatory plant proteins ].

    PubMed

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially. PMID:12881977

  10. [The effect of extremely low doses of the novel regulatory plant proteins ].

    PubMed

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially.

  11. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  12. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease.

    PubMed

    Shen, M R; Chou, C Y; Browning, J A; Wilkins, R J; Ellory, J C

    2001-12-01

    1. This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. 2. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. 3. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl- channel. 4. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl- channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. 5. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. 6. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells. PMID:11731569

  13. Collapsin Response Mediator Protein-2 (Crmp2) Regulates Trafficking by Linking Endocytic Regulatory Proteins to Dynein Motors*

    PubMed Central

    Rahajeng, Juliati; Giridharan, Sai S. P.; Naslavsky, Naava; Caplan, Steve

    2010-01-01

    Endocytosis is a conserved cellular process in which nutrients, lipids, and receptors are internalized and transported to early endosomes, where they are sorted and either channeled to degradative pathways or recycled to the plasma membrane. MICAL-L1 and EHD1 are important regulatory proteins that control key endocytic transport steps. However, the precise mechanisms by which they mediate transport, and particularly the mode by which they connect to motor proteins, have remained enigmatic. Here we have identified the collapsin response mediator protein-2 (Crmp2) as an interaction partner of MICAL-L1 in non-neuronal cells. Crmp2 interacts with tubulin dimers and kinesin and negatively regulates dynein-based transport in neuronal cells, but its expression and function in non-neuronal cells have remained poorly characterized. Upon Crmp2 depletion, we observed dramatic relocalization of internalized transferrin (Tf) from peripheral vesicles to the endocytic recycling compartment (ERC), similar to the effect of depleting either MICAL-L1 or EHD1. Moreover, Tf relocalization to the ERC could be inhibited by interfering with microtubule polymerization, consistent with a role for uncoupled motor protein-based transport upon depletion of Crmp2, MICAL-L1, or EHD1. Finally, transfection of dynamitin, a component of the dynactin complex whose overexpression inhibits dynein activity, prevented the relocalization of internalized Tf to the ERC upon depletion of Crmp2, MICAL-L1, or EHD1. These data provide the first trafficking regulatory role for Crmp2 in non-neuronal cells and support a model in which Crmp2 is an important endocytic regulatory protein that links MICAL-L1·EHD1-based vesicular transport to dynein motors. PMID:20801876

  14. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols

    SciTech Connect

    Wise, A.A.; Kuske, C.R.

    2000-01-01

    The genetic systems of bacteria that have the ability to use organic pollutants as carbon and energy sources can be adapted to create bacterial biosensors for the detection of industrial pollution. The creation of bacterial biosensors is hampered by a lack of information about the genetic systems that control production of bacterial enzymes that metabolize pollutants. The authors have attempted to overcome this problem through modification of DmpR, a regulatory protein for the phenol degradation pathway of Pseudomonas sp. strain CF600. The phenol detection capacity of DmpR was altered by using mutagenic PCR targeted to the DmpR sensor domain. DmpR mutants were identified that both increased sensitivity to the phenolic effectors of wild-type DmpR and increased the range of molecules detected. The phenol detection characteristics of seven DmpR mutants were demonstrated through their ability to activate transcription of a lacZ reporter gene. Effectors of the DmpR derivatives included phenol, 2-chlorophenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-nitrophenol.

  15. Endotoxin regulates the maturation of sterol regulatory element binding protein-1 through the induction of cytokines.

    PubMed

    Diomede, L; Albani, D; Bianchi, M; Salmona, M

    2001-01-01

    Endotoxin (LPS), by raising the levels of cytokines, markedly influences lipid metabolism. To clarify the molecular mechanism of this effect, we examined the action of endotoxin in vitro and in vivo on the regulation of sterol regulatory element binding protein-1 (SREBP-1). In HepG2 cells stimulated with LPS, a dose-dependent increase in the level of the mature form of SREBP-1 was observed. For in vivo studies, endotoxin was administered intraperitoneally to CD1 mice fed with a standard or a cholesterol-enriched diet to increase the basal levels of circulating and liver cholesterol. Endotoxin raised cholesterol levels and stimulated the maturation of hepatic SREBP-1 in both normal and cholesterol-fed mice, indicating that the lipogenic effect of LPS was independent of endogenous sterol levels. To assess whether the lipogenic effect of endotoxin was linked to cytokine production, we administered LPS to C57Bl/6J endotoxin-sensitive and to C3H/HeJ endotoxin-resistant mice, which do not produce tumor necrosis factor in response to LPS. Significant induction of cholesterol levels and SREBP-1 activation was observed only in C57Bl/6J mice, indicating that cytokine production is crucial for the regulation of SREBP-1, and that the transcriptional activation of cholesterol biosynthesis may be part of the acute-phase response.

  16. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt.

    PubMed Central

    Fleischmann, M; Iynedjian, P B

    2000-01-01

    Insulin stimulates the transcription of the sterol regulatory- element binding protein (SREBP) 1/ADD1 gene in liver. Hepatocytes in primary culture were used to delineate the insulin signalling pathway for induction of SREBP1 gene expression. The inhibitors of phosphoinositide 3-kinase (PI 3-kinase), wortmannin and LY 294002, abolished the insulin-dependent increase in SREBP1 mRNA, whereas the inhibitor of the mitogen- activated protein kinase cascade, PD 98059, was without effect. To investigate the role of protein kinase B (PKB)/cAkt downstream of PI 3-kinase, hepatocytes were transduced with an adenovirus encoding a PKB--oestrogen receptor fusion protein. The PKB activity of this recombinant protein was rapidly activated in hepatocytes challenged with 4-hydroxytamoxifen (OHT), as was endogenous PKB in hepatocytes challenged with insulin. The addition of OHT to transduced hepatocytes resulted in accumulation of SREBP1 mRNA, with a time-course and magnitude similar to the effect of insulin in non-transduced cells. The level of SREBP1 mRNA was not increased by OHT in hepatocytes expressing a mutant form of the recombinant protein whose PKB activity was not activated by OHT. Thus acute activation of PKB is sufficient to induce SREBP1 mRNA accumulation in primary hepatocytes, and might be the major signalling event by which insulin induces SREBP1 gene expression in the liver. PMID:10861205

  17. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques.

    PubMed

    Dhore, C R; Cleutjens, J P; Lutgens, E; Cleutjens, K B; Geusens, P P; Kitslaar, P J; Tordoir, J H; Spronk, H M; Vermeer, C; Daemen, M J

    2001-12-01

    In the present study, we examined the expression of regulators of bone formation and osteoclastogenesis in human atherosclerosis because accumulating evidence suggests that atherosclerotic calcification shares features with bone calcification. The most striking finding of this study was the constitutive immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein in nondiseased aortas and the absence of bone morphogenetic protein (BMP)-2, BMP-4, osteopontin, and osteonectin in nondiseased aortas and early atherosclerotic lesions. When atherosclerotic plaques demonstrated calcification or bone formation, BMP-2, BMP-4, osteopontin, and osteonectin were upregulated. Interestingly, this upregulation was associated with a sustained immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein. The 2 modulators of osteoclastogenesis (osteoprotegerin [OPG] and its ligand, OPGL) were present in the nondiseased vessel wall and in early atherosclerotic lesions. In advanced calcified lesions, OPG was present in bone structures, whereas OPGL was only present in the extracellular matrix surrounding calcium deposits. The observed expression patterns suggest a tight regulation of the expression of bone matrix regulatory proteins during human atherogenesis. The expression pattern of both OPG and OPGL during atherogenesis might suggest a regulatory role of these proteins not only in osteoclastogenesis but also in atherosclerotic calcification. PMID:11742876

  18. Systematic identification of transcriptional regulatory modules from protein–protein interaction networks

    PubMed Central

    Diez, Diego; Hutchins, Andrew Paul; Miranda-Saavedra, Diego

    2014-01-01

    Transcription factors (TFs) combine with co-factors to form transcriptional regulatory modules (TRMs) that regulate gene expression programs with spatiotemporal specificity. Here we present a novel and generic method (rTRM) for the reconstruction of TRMs that integrates genomic information from TF binding, cell type-specific gene expression and protein–protein interactions. rTRM was applied to reconstruct the TRMs specific for embryonic stem cells (ESC) and hematopoietic stem cells (HSC), neural progenitor cells, trophoblast stem cells and distinct types of terminally differentiated CD4+ T cells. The ESC and HSC TRM predictions were highly precise, yielding 77 and 96 proteins, of which ∼75% have been independently shown to be involved in the regulation of these cell types. Furthermore, rTRM successfully identified a large number of bridging proteins with known roles in ESCs and HSCs, which could not have been identified using genomic approaches alone, as they lack the ability to bind specific DNA sequences. This highlights the advantage of rTRM over other methods that ignore PPI information, as proteins need to interact with other proteins to form complexes and perform specific functions. The prediction and experimental validation of the co-factors that endow master regulatory TFs with the capacity to select specific genomic sites, modulate the local epigenetic profile and integrate multiple signals will provide important mechanistic insights not only into how such TFs operate, but also into abnormal transcriptional states leading to disease. PMID:24137002

  19. Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection.

    PubMed

    Heard, William; Sklenář, Jan; Tomé, Daniel F A; Robatzek, Silke; Jones, Alexandra M E

    2015-07-01

    The cell's endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein

  20. Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection*

    PubMed Central

    Heard, William; Sklenář, Jan; Tomé, Daniel F. A.; Robatzek, Silke; Jones, Alexandra M. E.

    2015-01-01

    The cell's endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein

  1. Insights into the inhibitory mechanisms of the regulatory protein IIA(Glc) on melibiose permease activity.

    PubMed

    Hariharan, Parameswaran; Guan, Lan

    2014-11-21

    The phosphotransfer protein IIA(Glc) of the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system plays a key role in the regulation of carbohydrate metabolism. Melibiose permease (MelB) is one among several permeases subject to IIA(Glc) regulation. The regulatory mechanisms are poorly understood; in addition, thermodynamic features of IIA(Glc) binding to other proteins are also unknown. Applying isothermal titration calorimetry and amine-specific cross-linking, we show that IIA(Glc) directly binds to MelB of Salmonella typhimurium (MelB(St)) and Escherichia coli MelB (MelB(Ec)) at a stoichiometry of unity in the absence or presence of melibiose. The dissociation constant values are 3-10 μM for MelB(St) and 25 μM for MelB(Ec). All of the binding is solely driven by favorable enthalpy forces. IIA(Glc) binding to MelB(St) in the absence or presence of melibiose yields a large negative heat capacity change; in addition, the conformational entropy is constrained upon the binding. We further found that the IIA(Glc)-bound MelB(St) exhibits a decreased binding affinity for melibiose or nitrophenyl-α-galactoside. It is believed that sugar binding to the permease is involved in an induced fit mechanism, and the transport process requires conformational cycling between different states. Thus, the thermodynamic data are consistent with the interpretation that IIA(Glc) inhibits the induced fit process and restricts the conformational dynamics of MelB(St). PMID:25296751

  2. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis.

    PubMed

    Jones, Danielle M; Murray, Christian M; Ketelaar, KassaDee J; Thomas, Joseph J; Villalobos, Jose A; Wallace, Ian S

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  3. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    PubMed Central

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  4. Identification of a regulatory loop for the synthesis of neurosteroids: a steroidogenic acute regulatory protein-dependent mechanism involving hypothalamic-pituitary-gonadal axis receptors.

    PubMed

    Meethal, Sivan Vadakkadath; Liu, Tianbing; Chan, Hsien W; Ginsburg, Erika; Wilson, Andrea C; Gray, Danielle N; Bowen, Richard L; Vonderhaar, Barbara K; Atwood, Craig S

    2009-08-01

    Brain sex steroids are derived from both peripheral (primarily gonadal) and local (neurosteroids) sources and are crucial for neurogenesis, neural differentiation and neural function. The mechanism(s) regulating the production of neurosteroids is not understood. To determine whether hypothalamic-pituitary-gonadal axis components previously detected in the extra-hypothalamic brain comprise a feedback loop to regulate neuro-sex steroid (NSS) production, we assessed dynamic changes in expression patterns of steroidogenic acute regulatory (StAR) protein, a key regulator of steroidogenesis, and key hypothalamic-pituitary-gonadal endocrine receptors, by modulating peripheral sex hormone levels in female mice. Ovariectomy (OVX; high serum gonadotropins, low serum sex steroids) had a differential effect on StAR protein levels in the extrahypothalamic brain; increasing the 30- and 32-kDa variants but decreasing the 37-kDa variant and is indicative of cholesterol transport into mitochondria for steroidogenesis. Treatment of OVX animals with E(2), P(4), or E(2) + P(4) for 3 days, which decreases OVX-induced increases in GnRH/gonadotropin production, reversed this pattern. Suppression of gonadotropin levels in OVX mice using the GnRH agonist leuprolide acetate inhibited the processing of the 37-kDa StAR protein into the 30-kDa StAR protein, confirming that the differential processing of brain StAR protein is regulated by gonadotropins. OVX dramatically suppressed extra-hypothalamic brain gonadotropin-releasing hormone 1 receptor expression, and was further suppressed in E(2)- or P(4)-treated OVX mice. Together, these data indicate the existence of endocrine and autocrine/paracrine feedback loops that regulate NSS synthesis. Further delineation of these feedback loops that regulate NSS production will aid in developing therapies to maintain brain sex steroid levels and cognition.

  5. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE PAGES

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  6. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    SciTech Connect

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.

  7. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    PubMed Central

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-01-01

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks. PMID:26364903

  8. Construction of hormonally responsive intact cell hybrids by cell fusion: transfer of. beta. -adrenergic receptor and nucleotide regulatory protein(s) in normal and desensitized cells

    SciTech Connect

    Schulster, D.; Salmon, D.M.

    1985-01-01

    Fusion of normal, untreated human erythrocytes with desensitized turkey erythrocytes increases isoproterenol stimulation of cyclic (/sup 3/H)AMP accumulation over basal rates. Moreover, pretreatment of the human erythrocytes with cholera toxin before they are fused with desensitized turkey erthythrocytes leads to a large stimulation with isoproterenol. This is even greater and far more rapid than the response obtained if turkey erythrocytes are treated directly with cholera toxin. It is concluded that the stimulation in the fused system is due to the transfer of an ADP-ribosylated subunit of nucleotide regulatory protein.

  9. Effects of regulatory subunits on the kinetics of protein phosphatase 2A.

    PubMed

    Price, N E; Mumby, M C

    2000-09-19

    Both the scaffold (A) and the regulatory (R) subunits of protein phosphatase 2A regulate enzyme activity and specificity. Heterotrimeric enzymes containing different R-subunits differ in their specific activities for substrates. Kinetic parameters for the dephosphorylation of a phosphopeptide by different oligomeric forms of PP2A were determined to begin to elucidate the molecular basis of regulatory subunit effects on phosphatase activity. Using steady state kinetics and the pH dependence of kinetic parameters, we have explored the effect of the A- and R-subunits on the kinetic and chemical mechanism of PP2A. The regulatory subunits affected a broad range of kinetic parameters. The C-subunit and AC dimer were qualitatively similar with respect to the product inhibition patterns and the pH dependence of kinetic parameters. However, a 22-fold decrease in rate and a 4.7-fold decrease in K(m) can be attributed to the presence of the A-subunit. The presence of the R2alpha (Balpha or PR55alpha) subunit caused an additional decrease in K(m) and changed the kinetic mechanism of peptide dephosphorylation. The R2alpha-subunit also caused significant changes in the pH dependence of kinetic parameters as compared to the free C subunit or AC heterodimer. The data support an important role for the regulatory subunits in determining both the affinity of PP2A heterotrimers for peptide substrates and the mechanism by which they are dephosphorylated.

  10. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    SciTech Connect

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  11. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting

    PubMed Central

    Whitfield, Shawn T.; Burston, Helen E.; Bean, Björn D. M.; Raghuram, Nandini; Maldonado-Báez, Lymarie; Davey, Michael; Wendland, Beverly; Conibear, Elizabeth

    2016-01-01

    Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes. PMID:26658609

  12. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders.

    PubMed

    Jaarsma, Dick; Hoogenraad, Casper C

    2015-01-01

    The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has an important role in Golgi apparatus positioning and function. Together, with dynactin and other regulatory factors it drives microtubule minus-end directed motility of Golgi membranes. Inhibition of dynein results in fragmentation and dispersion of the Golgi ribbon in the neuronal cell body, resembling the Golgi abnormalities observed in some neurodegenerative disorders, in particular motor neuron diseases. Mutations in dynein and its regulatory factors, including the dynactin subunit p150Glued, BICD2 and Lis-1, are associated with several human nervous system disorders, including cortical malformation and motor neuropathy. Here we review the role of dynein and its regulatory factors in Golgi function and positioning, and the potential role of dynein malfunction in causing Golgi apparatus abnormalities in nervous system disorders. PMID:26578860

  13. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    SciTech Connect

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director`s Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director`s Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant.

  14. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  15. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis. PMID:15347806

  16. Contribution of Ser386 and Ser396 to activation of interferon regulatory factor 3.

    PubMed

    Chen, Weijun; Srinath, Hema; Lam, Suvana S; Schiffer, Celia A; Royer, William E; Lin, Kai

    2008-05-30

    IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues: (385)SSLENTVDLHISNSHPLSLTS(405). This phosphoactivation triggers IRF-3 to react with the coactivators, CREB-binding protein (CBP)/p300, to form a complex that activates target genes in the nucleus. However, the role of each phosphorylation site for IRF-3 phosphoactivation remains unresolved. To address this issue, all seven Ser/Thr potential phosphorylation sites were screened by mutational studies, size-exclusion chromatography, and isothermal titration calorimetry. Using purified proteins, we show that CBP (amino acid residues 2067-2112) interacts directly with IRF-3 (173-427) and six of its single-site mutants to form heterodimers, but when CBP interacts with IRF-3 S396D, oligomerization is evident. CBP also interacts in vitro with IRF-3 double-site mutants to form different levels of oligomerization. Among all the single-site mutants, IRF-3 S396D showed the strongest binding to CBP. Although IRF-3 S386D alone did not interact as strongly with CBP as did other mutants, it strengthened the interaction and oligomerization of IRF-3 S396D with CBP. In contrast, IRF-3 S385D weakened the interaction and oligomerization of IRF-3 S396D and S386/396D with CBP. Thus, it appears that Ser385 and Ser386 serve antagonistic functions in regulating IRF-3 phosphoactivation. These results indicate that Ser386 and Ser396 are critical for IRF-3 activation, and support a phosphorylation-oligomerization model for IRF-3 activation.

  17. Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans

    PubMed Central

    2012-01-01

    Background Non-coding DNA in and around the human Amyloid Precursor Protein (APP) gene that is central to Alzheimer’s disease (AD) shares little sequence similarity with that of appb in zebrafish. Identifying DNA domains regulating expression of the gene in such situations becomes a challenge. Taking advantage of the zebrafish system that allows rapid functional analyses of gene regulatory sequences, we previously showed that two discontinuous DNA domains in zebrafish appb are important for expression of the gene in neurons: an enhancer in intron 1 and sequences 28–31 kb upstream of the gene. Here we identify the putative transcription factor binding sites responsible for this distal cis-acting regulation, and use that information to identify a regulatory region of the human APP gene. Results Functional analyses of intron 1 enhancer mutations in enhancer-trap BACs expressed as transgenes in zebrafish identified putative binding sites of two known transcription factor proteins, E4BP4/ NFIL3 and Forkhead, to be required for expression of appb. A cluster of three E4BP4 sites at −31 kb is also shown to be essential for neuron-specific expression, suggesting that the dependence of expression on upstream sequences is mediated by these E4BP4 sites. E4BP4/ NFIL3 and XFD1 sites in the intron enhancer and E4BP4/ NFIL3 sites at −31 kb specifically and efficiently bind the corresponding zebrafish proteins in vitro. These sites are statistically over-represented in both the zebrafish appb and the human APP genes, although their locations are different. Remarkably, a cluster of four E4BP4 sites in intron 4 of human APP exists in actively transcribing chromatin in a human neuroblastoma cell-line, SHSY5Y, expressing APP as shown using chromatin immunoprecipitation (ChIP) experiments. Thus although the two genes share little sequence conservation, they appear to share the same regulatory logic and are regulated by a similar set of transcription factors. Conclusion The

  18. Mys protein regulates protein kinase A activity by interacting with regulatory type Ialpha subunit during vertebrate development.

    PubMed

    Kotani, Tomoya; Iemura, Shun-ichiro; Natsume, Tohru; Kawakami, Koichi; Yamashita, Masakane

    2010-02-12

    During embryonic development, protein kinase A (PKA) plays a key role in cell fate specification by antagonizing the Hedgehog (Hh) signaling pathway. However, the mechanism by which PKA activity is regulated remains unknown. Here we show that the Misty somites (Mys) protein regulates the level of PKA activity during embryonic development in zebrafish. We isolate PKA regulatory type Ialpha subunit (Prkar1a) as a protein interacting with Mys by pulldown assay in HEK293 cells followed by mass spectrometry analysis. We show an interaction between endogenous Mys and Prkar1a in the zebrafish embryo. Mys binds to Prkar1a in its C terminus region, termed PRB domain, and activates PKA in vitro. Conversely, knockdown of Mys in zebrafish embryos results in reduction in PKA activity. We also show that knockdown of Mys induces ectopic activation of Hh target genes in the eyes, neural tube, and somites downstream of Smoothened, a protein essential for transduction of Hh signaling activity. The altered patterning of gene expression is rescued by activation of PKA. Together, our results reveal a molecular mechanism of regulation of PKA activity that is dependent on a protein-protein interaction and demonstrate that PKA activity regulated by Mys is indispensable for negative regulation of the Hh signaling pathway in Hh-responsive cells. PMID:20018846

  19. Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.

    PubMed

    Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana

    2016-08-01

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis.

  20. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles†

    PubMed Central

    Teriete, Peter; Franzin, Carla M.; Choi, Jungyuen; Marassi, Francesca M.

    2008-01-01

    FXYD1 is a major regulatory subunit of the Na,K-ATPase, and the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinases A and C in heart and skeletal muscle sarcolemma. It is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the enzyme complex in a tissue-specific and physiological-state-specific manner. Here we present the three-dimensional structure of FXYD1 determined in micelles by NMR spectroscopy. Structure determination was made possible by measuring residual dipolar couplings in weakly oriented micelle samples of the protein. This allowed us to obtain the relative orientations of the helical segments of the protein, and also provided information about the protein dynamics. The structural analysis was further facilitated by the inclusion of distance restraints, obtained from paramagnetic spin label relaxation enhancements, and by refinement with a micelle depth restraint, derived from paramagnetic Mn line broadening effects. The structure of FXYD1 provides the foundation for understanding its intra-membrane association with the Na,K-ATPase α subunit, and suggests a mechanism whereby the phosphorylation of conserved Ser residues, by protein kinases A and C, could induce a conformational change in the cytoplasmic domain of the protein, to modulate its interaction with the α subunit. PMID:17511473

  1. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila.

    PubMed

    Bone, J R; Kuroda, M I

    1996-10-01

    In the fruitfly Drosophila melanogaster, the four male specific lethal (msl) genes are required to achieve dosage compensation of the male X chromosome. The MSL proteins are thought to interact with cis-acting sites that confer dosage compensation to nearby genes, as they are detected at hundreds of discrete sites along the length of the polytene X chromosome in males but not in females. The histone H4 acetylated isoform, H4Ac16, colocalizes with the MSL proteins at a majority of sites on the D. melanogaster X chromosome. Using polytene chromosome immunostaining of other species from the genus Drosophila, we found that X chromosome association of MSL proteins and H4Ac16 is conserved despite differences in the sex chromosome karyotype between species. Our results support a model in which cis-acting regulatory sites for dosage compensation evolve on a neo-X chromosome arm in response to the degeneration of its former homologue.

  2. Photoaffinity labeling of regulatory subunits of protein kinase A in cardiac cell fractions of rats

    NASA Technical Reports Server (NTRS)

    Mednieks, M. I.; Popova, I.; Grindeland, R. E.

    1992-01-01

    Photoaffinity labeling in heart tissue of rats flown on Cosmos 2044 was used to measure the regulatory (R) subunits of adenosine monophosphate-dependent protein kinase. A significant decrease of RII subunits in the particulate cell fraction extract (S2; P less than 0.05 in all cases) was observed when extracts of tissue samples from vivarium controls were compared with those from flight animals. Photoaffinity labeling of the soluble fraction (S1) was observed to be unaffected by spaceflight or any of the simulation conditions. Proteins of the S2 fraction constitute a minor (less than 10 percent) component of the total, whereas the S1 fraction contained most of the cell proteins. Changes in a relatively minor aspect of adenosine monophosphate-mediated reactions are considered to be representative of a metabolic effect.

  3. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA

    SciTech Connect

    Walden, William E.; Selezneva, Anna I.; Dupuy, Jérôme; Volbeda, Anne; Fontecilla-Camps, Juan C.; Theil, Elizabeth C.; Volz1, Karl

    2011-07-27

    Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by {approx}30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.

  4. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment.

  5. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment. PMID:25549848

  6. Identification of tribbles-1 as a novel binding partner of Foxp3 in regulatory T cells.

    PubMed

    Dugast, Emilie; Kiss-Toth, Endre; Docherty, Louise; Danger, Richard; Chesneau, Mélanie; Pichard, Virginie; Judor, Jean-Paul; Pettré, Ségolène; Conchon, Sophie; Soulillou, Jean-Paul; Brouard, Sophie; Ashton-Chess, Joanna

    2013-04-01

    In a previous study, we identified TRIB1, a serine-threonine kinase-like molecule, as a biomarker of chronic antibody-mediated rejection of human kidneys when measured in peripheral blood mononuclear cells. Here, we focused our analysis on a specific subset of peripheral blood mononuclear cells that play a dominant role in regulating immune responses in health and disease, so-called CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). We isolated both human and murine Treg and non-Treg counterparts and analyzed TRIB1 and Foxp3 mRNA expression by quantitative PCR on the freshly isolated cells or following 24 h of activation. Physical interaction between the human TRIB1 and Foxp3 proteins was analyzed in live cell lines by protein complementation assay using both flow cytometry and microscopy and confirmed in primary freshly isolated human CD4(+)CD25(hi)CD127(-) Tregs by co-immunoprecipitation. Both TRIB1 and Foxp3 were expressed at significantly higher levels in Tregs than in their CD4(+)CD25(-) counterparts (p < 0.001). Moreover, TRIB1 and Foxp3 mRNA levels correlated tightly in Tregs (Spearman r = 1.0; p < 0.001, n = 7), but not in CD4(+)CD25(-) T cells. The protein complementation assay revealed a direct physical interaction between TRIB1 and Foxp3 in live cells. This interaction was impaired upon deletion of the TRIB1 N-terminal but not the C-terminal domain, suggesting an interaction in the nucleus. This direct interaction within the nucleus was confirmed in primary human Tregs by co-immunoprecipitation. These data show a direct relationship between TRIB1 and Foxp3 in terms of their expression and physical interaction and highlight Tribbles-1 as a novel binding partner of Foxp3 in Tregs. PMID:23417677

  7. Role of Complement and Complement Regulatory Proteins in the Complications of Diabetes

    PubMed Central

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael

    2015-01-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications. PMID:25859860

  8. Role of complement and complement regulatory proteins in the complications of diabetes.

    PubMed

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael; Halperin, Jose A

    2015-06-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.

  9. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  10. The complement regulatory protein CD59: insights into attenuation of choroidal neovascularization.

    PubMed

    Schnabolk, Gloriane; Tomlinson, Stephen; Rohrer, Bärbel

    2014-01-01

    Complement activation is associated with age-related macular degeneration (AMD), with the retinal pigment epithelium (RPE) being one of the main target tissues. In AMD, disease severity is correlated with the formation of the membrane attack complex (MAC), the terminal step in the complement cascade, as well as diminished RPE expression of CD59, a membrane-bound regulatory protein of MAC formation. This has prompted the search for therapeutic strategies based on MAC inhibition, and soluble forms of CD59 (sCD59) have been investigated in mouse laser-induced choroidal neovascularization, a model for "wet" AMD. Unlike membrane-bound CD59, sCD59 provides relatively poor cell protection from complement, and different strategies to increase sCD59 activity at the cell membrane level have been investigated. These include increasing the circulatory half-life of sCD59 by the addition of an Fc moiety; increasing the half-life of sCD59 in target tissues by modifying CD59 with a (non-specific) membrane-targeting domain; and by locally overexpressing sCD59 via adenoviral vectors. Finally, a different strategy currently under investigation employs complement receptor (CR)2-mediated targeting of CD59 exclusively to membranes under complement attack. CR2 recognizes long-lasting membrane-bound breakdown activation fragments of complement C3. CR2-CD59 may have greater therapeutic potential than other complement inhibitory approaches, since it can be administered either systemically or locally, it will bind specifically to membranes containing activated complement activation fragments, and dosing can be regulated. Hence, this strategy might offer opportunities for site-specific inhibition of complement in diseases with restricted sites of inflammation such as AMD.

  11. A large family of anti‐activators accompanying XylS/AraC family regulatory proteins

    PubMed Central

    Yan, Michael B.; Tran, Minh; Wright, Nathan; Luzader, Deborah H.; Kendall, Melissa M.; Ruiz‐Perez, Fernando; Nataro, James P.

    2016-01-01

    Summary AraC Negative Regulators (ANR) suppress virulence genes by directly down‐regulating AraC/XylS members in Gram‐negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR‐activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC‐like member AggR. ANR‐AggR binding disrupted AggR dimerization and prevented AggR‐DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α‐helices. Site‐directed mutagenesis studies suggest that at least predicted α‐helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners. PMID:27038276

  12. The complement regulatory protein CD59: insights into attenuation of choroidal neovascularization.

    PubMed

    Schnabolk, Gloriane; Tomlinson, Stephen; Rohrer, Bärbel

    2014-01-01

    Complement activation is associated with age-related macular degeneration (AMD), with the retinal pigment epithelium (RPE) being one of the main target tissues. In AMD, disease severity is correlated with the formation of the membrane attack complex (MAC), the terminal step in the complement cascade, as well as diminished RPE expression of CD59, a membrane-bound regulatory protein of MAC formation. This has prompted the search for therapeutic strategies based on MAC inhibition, and soluble forms of CD59 (sCD59) have been investigated in mouse laser-induced choroidal neovascularization, a model for "wet" AMD. Unlike membrane-bound CD59, sCD59 provides relatively poor cell protection from complement, and different strategies to increase sCD59 activity at the cell membrane level have been investigated. These include increasing the circulatory half-life of sCD59 by the addition of an Fc moiety; increasing the half-life of sCD59 in target tissues by modifying CD59 with a (non-specific) membrane-targeting domain; and by locally overexpressing sCD59 via adenoviral vectors. Finally, a different strategy currently under investigation employs complement receptor (CR)2-mediated targeting of CD59 exclusively to membranes under complement attack. CR2 recognizes long-lasting membrane-bound breakdown activation fragments of complement C3. CR2-CD59 may have greater therapeutic potential than other complement inhibitory approaches, since it can be administered either systemically or locally, it will bind specifically to membranes containing activated complement activation fragments, and dosing can be regulated. Hence, this strategy might offer opportunities for site-specific inhibition of complement in diseases with restricted sites of inflammation such as AMD. PMID:24664728

  13. DNA sequence and translational product of a new nodulation-regulatory locus: syrM has sequence similarity to NodD proteins.

    PubMed Central

    Barnett, M J; Long, S R

    1990-01-01

    Rhizobium meliloti nodulation (nod) genes are expressed when activated by trans-acting proteins in the NodD family. The nodD1 and nodD2 gene products activate nod promoters when cells are exposed to plant-synthesized signal molecules. Alternatively, the same nod promoters are activated by the nodD3 gene when nodD3 is carried in trans along with a closely linked global regulatory locus, syrM (symbiotic regulator) (J. T. Mulligan and S. R. Long, Genetics 122:7-18, 1989). In this article we report the nucleotide sequence of a 2.6-kilobase SphI fragment from R. meliloti SU47 containing syrM. Expression from this locus was confirmed by using in vitro transcription-translation assays. The open reading frame encoded a protein of either 33 or 36 kilodaltons whose sequence shows similarity to NodD regulatory proteins. Images PMID:2361944

  14. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  15. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.

    PubMed

    Tapia, Julio C; Bolanos-Garcia, Victor M; Sayed, Muhammed; Allende, Catherine C; Allende, Jorge E

    2004-04-01

    The protein kinase CK2 is constituted by two catalytic (alpha and/or alpha') and two regulatory (beta) subunits. CK2 phosphorylates more than 300 proteins with important functions in the cell cycle. This study has looked at the relation between CK2 and p27(KIP1), which is a regulator of the cell cycle and a known inhibitor of cyclin-dependent kinases (Cdk). We demonstrated that in vitro recombinant Xenopus laevis CK2 can phosphorylate recombinant human p27(KIP1), but this phosphorylation occurs only in the presence of the regulatory beta subunit. The principal site of phosphorylation is serine-83. Analysis using pull down and surface plasmon resonance (SPR) techniques showed that p27(KIP1) interacts with the beta subunit through two domains present in the amino and carboxyl ends, while CD spectra showed that p27(KIP1) phosphorylation by CK2 affects its secondary structure. Altogether, these results suggest that p27(KIP1) phosphorylation by CK2 probably involves a docking event mediated by the CK2beta subunit. The phosphorylation of p27(KIP1) by CK2 may affect its biological activity.

  16. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins

    PubMed Central

    Wilson, Rashaun S.; Swatek, Kirby N.; Thelen, Jay J.

    2016-01-01

    14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants. PMID:27242818

  17. Identification and Analysis of Regulatory Elements in Porcine Bone Morphogenetic Protein 15 Gene Promoter.

    PubMed

    Wan, Qianhui; Wang, Yaxian; Wang, Huayan

    2015-10-27

    Bone morphogenetic protein 15 (BMP15) is secreted by the mammalian oocytes and is indispensable for ovarian follicular development, ovulation, and fertility. To determine the regulation mechanism of BMP15 gene, the regulatory sequence of porcine BMP15 was investigated in this study. The cloned BMP15 promoter retains the cell-type specificity, and is activated in cells derived from ovarian tissue. The luciferase assays in combination with a series of deletion of BMP15 promoter sequence show that the -427 to -376 bp region of BMP15 promoter is the primary regulatory element, in which there are a number of transcription factor binding sites, including LIM homeobox 8 (LHX8), newborn ovary homeobox gene (NOBOX), and paired-like homeodomain transcription factor 1 (PITX1). Determination of tissue-specific expression reveals that LHX8, but not PITX1 and NOBOX, is exclusively expressed in pig ovary tissue and is translocated into the cell nuclei. Overexpression of LHX8 in Chinese hamster ovary (CHO) cells could significantly promote BMP15 promoter activation. This study confirms a key regulatory element that is located in the proximal region of BMP15 promoter and is regulated by the LHX8 factor.

  18. Identification and Analysis of Regulatory Elements in Porcine Bone Morphogenetic Protein 15 Gene Promoter

    PubMed Central

    Wan, Qianhui; Wang, Yaxian; Wang, Huayan

    2015-01-01

    Bone morphogenetic protein 15 (BMP15) is secreted by the mammalian oocytes and is indispensable for ovarian follicular development, ovulation, and fertility. To determine the regulation mechanism of BMP15 gene, the regulatory sequence of porcine BMP15 was investigated in this study. The cloned BMP15 promoter retains the cell-type specificity, and is activated in cells derived from ovarian tissue. The luciferase assays in combination with a series of deletion of BMP15 promoter sequence show that the −427 to −376 bp region of BMP15 promoter is the primary regulatory element, in which there are a number of transcription factor binding sites, including LIM homeobox 8 (LHX8), newborn ovary homeobox gene (NOBOX), and paired-like homeodomain transcription factor 1 (PITX1). Determination of tissue-specific expression reveals that LHX8, but not PITX1 and NOBOX, is exclusively expressed in pig ovary tissue and is translocated into the cell nuclei. Overexpression of LHX8 in Chinese hamster ovary (CHO) cells could significantly promote BMP15 promoter activation. This study confirms a key regulatory element that is located in the proximal region of BMP15 promoter and is regulated by the LHX8 factor. PMID:26516845

  19. Multiple signaling pathways leading to the activation of interferon regulatory factor 3.

    PubMed

    Servant, Marc J; Grandvaux, Nathalie; Hiscott, John

    2002-09-01

    Virus infection of susceptible cells activates multiple signaling pathways that orchestrate the activation of genes, such as cytokines, involved in the antiviral and innate immune response. Among the kinases induced are the mitogen-activated protein (MAP) kinases, Jun-amino terminal kinases (JNK) and p38, the IkappaB kinase (IKK) and DNA-PK. In addition, virus infection also activates an uncharacterized VAK responsible for the C-terminal phosphorylation and subsequent activation of interferon regulatory factor 3 (IRF-3). Virus-mediated activation of IRF-3 through VAK is dependent on viral entry and transcription, since replication deficient virus failed to induce IRF-3 activity. The pathways leading to VAK activation are not well characterized, but IRF-3 appears to represent a novel cellular detection pathway that recognizes viral nucleocapsid (N) structure. Recently, the range of inducers responsible for IRF-3 activation has increased. In addition to virus infection, recognition of bacterial infection mediated through lipopolysaccharide by Toll-like receptor 4 has also been reported. Furthermore, MAP kinase kinase kinase (MAP KKK)-related pathways and DNA-PK induce N-terminal phosphorylation of IRF-3. This review summarizes recent observations in the identification of novel signaling pathways leading to IRF-3 activation.

  20. Individual interferon regulatory factor-3 thiol residues are not critical for its activation following virus infection.

    PubMed

    Zucchini, Nicolas; Williams, Virginie; Grandvaux, Nathalie

    2012-09-01

    The interferon regulatory factor (IRF)-3 transcription factor plays a central role in the capacity of the host to mount an efficient innate antiviral immune defense, mainly through the regulation of type I Interferon genes. A tight regulation of IRF-3 is crucial for an adapted intensity and duration of the response. Redox-dependent processes are now well known to regulate signaling cascades. Recent reports have revealed that signaling molecules upstream of IRF-3, including the mitochondrial antiviral-signalling protein (MAVS) and the TNF receptor associated factors (TRAFs) adaptors, are sensitive to redox regulation. In the present study, we assessed whether redox regulation of thiol residues contained in IRF-3, which are priviledged redox sensors, play a role in its regulation following Sendai virus infection, using a combination of mutation of Cysteine (Cys) residues into Alanine and thiols alkylation using N-ethyl maleimide. Alkylation of IRF-3 on Cys289 appears to destabilize IRF-3 dimer in vitro. However, a detailed analysis of IRF-3 phosphorylation, dimerization, nuclear accumulation, and induction of target gene promoter in vivo led us to conclude that IRF-3 specific, individual Cys residues redox status does not play an essential role in its activation in vivo.

  1. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    PubMed

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  2. Epitopes of human immunodeficiency virus regulatory proteins tat, nef, and rev are expressed in normal human tissue.

    PubMed Central

    Parmentier, H. K.; van Wichen, D. F.; Meyling, F. H.; Goudsmit, J.; Schuurman, H. J.

    1992-01-01

    The expression of regulatory proteins tat, rev, and nef of human immunodeficiency virus type-1 (HIV-1) and tat of HIV-2 was studied in frozen sections of lymph nodes from HIV-1-infected individuals, and various tissues from uninfected persons. In HIV-1-positive lymph nodes, monoclonal antibodies to HIV-1-tat stained solitary cells in the germinal centers and interfollicular zones, and vascular endothelium. Staining by an anti-nef monoclonal antibody was restricted to follicular dendritic cells, whereas anti-rev antibody bound to fibriohistiocytes and high endothelial venules. The antibodies used labeled several cell types in tissues from uninfected individuals. Anti-HIV-1-tat antibodies labeled blood vessels and Hassall's corpuscles in skin and thymus; goblet cells in intestinal tissue and trachea; neural cells in brain and spinal cord; and zymogen-producing cells in pancreas. Anti-rev antibody stained high endothelial venules, Hassall's corpuscles and histiocytes. One anti-nef antibody solely stained follicular dendritic cells in spleen, tonsil, lymph node and Peyer's patches, whereas two other anti-nef antibodies bound to astrocytes, solitary cells in the interfollicular zones of lymph nodes, and skin cells. The current results hamper the immunohistochemical study for pathogenetic and diagnostic use of HIV regulatory protein expression in infected tissue specimens or cells. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1279980

  3. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    PubMed

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  4. 3 CFR 13579 - Executive Order 13579 of July 11, 2011. Regulation and Independent Regulatory Agencies

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Executive Order 13579 of July 11, 2011. Regulation and Independent Regulatory Agencies 13579 Order 13579 Presidential Documents Executive Orders Executive Order 13579 of July 11, 2011 EO 13579 Regulation and Independent Regulatory Agencies By the authority vested in me as President by the...

  5. Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites

    PubMed Central

    Moses, Alan M.; Liku, Muluye E.; Li, Joachim J.; Durbin, Richard

    2007-01-01

    Evolutionary change in gene regulation is a key mechanism underlying the genetic component of organismal diversity. Here, we study evolution of regulation at the posttranslational level by examining the evolution of cyclin-dependent kinase (CDK) consensus phosphorylation sites in the protein subunits of the pre-replicative complex (RC). The pre-RC, an assembly of proteins formed during an early stage of DNA replication, is believed to be regulated by CDKs throughout the animals and fungi. Interestingly, although orthologous pre-RC components often contain clusters of CDK consensus sites, the positions and numbers of sites do not seem conserved. By analyzing protein sequences from both distantly and closely related species, we confirm that consensus sites can turn over rapidly even when the local cluster of sites is preserved, consistent with the notion that precise positioning of phosphorylation events is not required for regulation. We also identify evolutionary changes in the clusters of sites and further examine one replication protein, Mcm3, where a cluster of consensus sites near a nucleocytoplasmic transport signal is confined to a specific lineage. We show that the presence or absence of the cluster of sites in different species is associated with differential regulation of the transport signal. These findings suggest that the CDK regulation of MCM nuclear localization was acquired in the lineage leading to Saccharomyces cerevisiae after the divergence with Candida albicans. Our results begin to explore the dynamics of regulatory evolution at the posttranslational level and show interesting similarities to recent observations of regulatory evolution at the level of transcription. PMID:17978194

  6. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  7. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  8. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  9. ClpB N-terminal domain plays a regulatory role in protein disaggregation

    PubMed Central

    Rosenzweig, Rina; Farber, Patrick; Velyvis, Algirdas; Rennella, Enrico; Latham, Michael P.; Kay, Lewis E.

    2015-01-01

    ClpB/Hsp100 is an ATP-dependent disaggregase that solubilizes and reactivates protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. The ClpB–substrate interaction is mediated by conserved tyrosine residues located in flexible loops in nucleotide-binding domain-1 that extend into the ClpB central pore. In addition to the tyrosines, the ClpB N-terminal domain (NTD) was suggested to provide a second substrate-binding site; however, the manner in which the NTD recognizes and binds substrate proteins has remained elusive. Herein, we present an NMR spectroscopy study to structurally characterize the NTD–substrate interaction. We show that the NTD includes a substrate-binding groove that specifically recognizes exposed hydrophobic stretches in unfolded or aggregated client proteins. Using an optimized segmental labeling technique in combination with methyl-transverse relaxation optimized spectroscopy (TROSY) NMR, the interaction of client proteins with both the NTD and the pore-loop tyrosines in the 580-kDa ClpB hexamer has been characterized. Unlike contacts with the tyrosines, the NTD–substrate interaction is independent of the ClpB nucleotide state and protein conformational changes that result from ATP hydrolysis. The NTD interaction destabilizes client proteins, priming them for subsequent unfolding and translocation. Mutations in the NTD substrate-binding groove are shown to have a dramatic effect on protein translocation through the ClpB central pore, suggesting that, before their interaction with substrates, the NTDs block the translocation channel. Together, our findings provide both a detailed characterization of the NTD–substrate complex and insight into the functional regulatory role of the ClpB NTD in protein disaggregation. PMID:26621746

  10. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    PubMed

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis.

  11. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  12. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart

    PubMed Central

    Little, Sean C.; Curran, Jerry; Makara, Michael A.; Kline, Crystal F.; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M.; Carnes, Cynthia A.; Biesiadecki, Brandon J.; Davis, Jonathan P.; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H.; Hund, Thomas J.; Mohler, Peter J.

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α+/− myocytes resulted in reduced Ca2+ waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca2+ regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  13. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  14. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.

    PubMed

    Liu, Qing; Zhang, Shaohong; Liu, Bin

    2016-08-12

    14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. PMID:27233603

  15. Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins

    PubMed Central

    1994-01-01

    We show by immunohistology that distinct expression patterns of the four muscle regulatory factor (MRF) proteins identify subdomains of mouse somites. Myf-5 and MyoD are, at specific stages, each expressed in both myotome and dermatome cells. Myf-5 expression is initially restricted to dorsal cells in all somites, as is MyoD expression in neck somites. In trunk somites, however, MyoD is initially expressed in ventral cells. Myogenin and MRF4 are restricted to myotome cells, though the MRF4-expressing cells are initially less widely distributed than the myogenin-expressing cells, which are at all stages found throughout the myotome. All somitic myocytes express one or more MRFs. The transiently distinct expression patterns of the four MRF proteins identify dorsal and ventral subdomains of somites, and suggest that skeletal muscle cells in somites originate at multiple sites and via multiple molecular pathways. PMID:7929574

  16. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  17. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  18. Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins

    PubMed Central

    Ghosh, Manik C.; Zhang, De-Liang; Rouault, Tracey A.

    2015-01-01

    Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by binding to RNA stem loops known as iron responsive elements (IREs) that are found in the untranslated regions of target mRNAs that encode proteins involved in iron metabolism. IRPs modify expression of iron metabolism genes, and global and tissue-specific knockout mice have been made to evaluate the physiological significance of these iron regulatory proteins (Irps). Here, we will discuss the results of the studies that have been performed with mice engineered to lack expression of one or both Irps, and made in different strains using different methodologies. Both Irp1 and Irp2 knockout mice are viable, but the double knockout (Irp1−/−Irp2−/−) mice die before birth, indicating that these Irps play a crucial role in maintaining iron homeostasis. Irp1−/− mice develop polycythemia and pulmonary hypertension, and when these mice are challenged with a low iron diet, they die early of abdominal hemorrhages, suggesting that Irp1 plays an essential role in erythropoiesis and in the pulmonary and cardiovascular systems. Irp2−/− mice develop microcytic anemia, erythropoietic protoporphyria and a progressive neurological disorder, indicating that Irp2 has important functions in the nervous system and erythropoietic homeostasis. Several excellent review articles have recently been published on Irp knockout mice that mainly focus on Irp1−/− mice (referenced in the introduction). In this review, we will briefly describe the phenotypes and physiological implications of Irp1−/− mice, and will discuss the phenotypes observed for Irp2−/− mice in detail with a particular emphasis on the neurological problems of these mice. PMID:25771171

  19. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    SciTech Connect

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.

  20. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    DOE PAGES

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore » mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less

  1. Theoretical investigations on the interactions of glucokinase regulatory protein with fructose phosphates.

    PubMed

    Ling, Baoping; Yan, Xueyuan; Sun, Min; Bi, Siwei

    2016-02-01

    Glucokinase (GK) plays a critical role in maintaining glucose homeostasis in the human liver and pancreas. In the liver, the activity of GK is modulated by the glucokinase regulatory protein (GKRP) which functions as a competitive inhibitor of glucose to bind to GK. Moreover, the inhibitory intensity of GKRP-GK is suppressed by fructose 1-phosphate (F1P), and reinforced by fructose 6-phosphate (F6P). Here, we employed a series of computational techniques to explore the interactions of fructose phosphates with GKRP. Calculation results reveal that F1P and F6P can bind to the same active site of GKRP with different binding modes, and electrostatic interaction provides a major driving force for the ligand binding. The presence of fructose phosphate severely influences the motions of protein and the conformational space, and the structural change of sugar phosphate influences its interactions with GKRP, leading to a large conformational rearrangement of loop2 in the SIS2 domain. In particular, the binding of F6P to GKRP facilitates the protruding loop2 contacting with GK to form the stable GK-GKRP complex. The conserved residues 179-184 of GKRP play a major role in the binding of phosphate group and maintaining the stability of GKRP. These results may provide deep insight into the regulatory mechanism of GKRP to the activity of GK. PMID:26629747

  2. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    SciTech Connect

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  3. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    SciTech Connect

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  4. Hormone-dependent expression of a steroidogenic acute regulatory protein natural antisense transcript in MA-10 mouse tumor Leydig cells.

    PubMed

    Castillo, Ana Fernanda; Fan, Jinjiang; Papadopoulos, Vassilios; Podestá, Ernesto J

    2011-01-01

    Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3'-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5' and 3' RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis.

  5. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase.

    PubMed Central

    L'Allemain, G; Her, J H; Wu, J; Sturgill, T W; Weber, M J

    1992-01-01

    p42/microtubule-associated protein kinase (p42mapk) is activated by tyrosine and threonine phosphorylation, and its regulatory phosphorylation is likely to be important in signalling pathways involved in growth control, secretion, and differentiation. Here we show that treatment of quiescent 3T3 cells with diverse agonists results in the appearance of an activity capable of causing the in vitro phosphorylation of p42mapk on the regulatory tyrosine and to a lesser extent on the regulatory threonine, resulting in enzymatic activation of the p42mapk. This p42mapk-activating activity is capable of phosphorylating a kinase-defective p42mapk mutant, thus confirming its activity as a kinase. Images PMID:1314951

  6. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    PubMed

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  7. The life cycle of the steroidogenic acute regulatory (StAR) protein: from transcription through proteolysis.

    PubMed

    Granot, Zvi; Silverman, Eran; Friedlander, Ruth; Melamed-Book, Naomi; Eimerl, Sarah; Timberg, Rina; Hales, Karen H; Hales, Dale B; Stocco, Douglas M; Orly, Joseph

    2002-11-01

    The Steroidogenic Acute Regulatory (StAR) protein is a mitochondrial protein required for the transport of cholesterol substrate to the P450scc enzyme located in the inner mitochondrial membranes of steroid producing cells. This study suggests that the acute regulation of the rodent StAR gene in the ovary is mediated by two factors, C/EBPbeta and GATA-4. Once translated, the StAR precursor protein is either imported into the mitochondria, or it is rapidly degraded in the cytosol. We predicted that in order to perpetuate StAR activity cycles, imported StAR should turn over rapidly to avoid a potentially harmful accumulation of the protein in sub-mitochondrial compartments. Pulse-chase experiments in metabolically labeled cells showed that: (a) the turnover rate of mature mitochondrial StAR protein (30 kDa) is much faster (t(1/2) = 4-5 h) than that of other mitochondrial proteins; (b) dissipation of the inner membrane potential (-delta psi) by carbonyl cyanide m-chlorophenylhydrazone (mCCCP) accelerates the mitochondrial degradation of StAR; (c) unexpectedly, the mitochondrial degradation of StAR is inhibited by MG132 and lactacystin, but not by epoxomicin. Furthermore, StAR degradation becomes inhibitor-resistant two hours after import. Therefore, these studies suggest a bi-phasic route of StAR turnover in the mitochondria. Shortly after import, StAR is degraded by inhibitor-sensitive protease(s) (phase I), whereas at later times, StAR turnover proceeds to completion through an MG132-resistant proteolytic activity (phase II). Collectively, this study defines StAR as a unique protein that can authentically be used to probe multiple proteolytic activities in mammalian mitochondria.

  8. The life cycle of the steroidogenic acute regulatory (StAR) protein: from transcription through proteolysis.

    PubMed

    Granot, Zvi; Silverman, Eran; Friedlander, Ruth; Melamed-Book, Naomi; Eimerl, Sarah; Timberg, Rina; Hales, Karen H; Hales, Dale B; Stocco, Douglas M; Orly, Joseph

    2002-11-01

    The Steroidogenic Acute Regulatory (StAR) protein is a mitochondrial protein required for the transport of cholesterol substrate to the P450scc enzyme located in the inner mitochondrial membranes of steroid producing cells. This study suggests that the acute regulation of the rodent StAR gene in the ovary is mediated by two factors, C/EBPbeta and GATA-4. Once translated, the StAR precursor protein is either imported into the mitochondria, or it is rapidly degraded in the cytosol. We predicted that in order to perpetuate StAR activity cycles, imported StAR should turn over rapidly to avoid a potentially harmful accumulation of the protein in sub-mitochondrial compartments. Pulse-chase experiments in metabolically labeled cells showed that: (a) the turnover rate of mature mitochondrial StAR protein (30 kDa) is much faster (t(1/2) = 4-5 h) than that of other mitochondrial proteins; (b) dissipation of the inner membrane potential (-delta psi) by carbonyl cyanide m-chlorophenylhydrazone (mCCCP) accelerates the mitochondrial degradation of StAR; (c) unexpectedly, the mitochondrial degradation of StAR is inhibited by MG132 and lactacystin, but not by epoxomicin. Furthermore, StAR degradation becomes inhibitor-resistant two hours after import. Therefore, these studies suggest a bi-phasic route of StAR turnover in the mitochondria. Shortly after import, StAR is degraded by inhibitor-sensitive protease(s) (phase I), whereas at later times, StAR turnover proceeds to completion through an MG132-resistant proteolytic activity (phase II). Collectively, this study defines StAR as a unique protein that can authentically be used to probe multiple proteolytic activities in mammalian mitochondria. PMID:12530639

  9. Constitutive nuclear localization of NFAT in Foxp3+ regulatory T cells independent of calcineurin activity.

    PubMed

    Li, Qiuxia; Shakya, Arvind; Guo, Xiaohua; Zhang, Hongbo; Tantin, Dean; Jensen, Peter E; Chen, Xinjian

    2012-05-01

    Foxp3 plays an essential role in conferring suppressive functionality to CD4(+)/Foxp3(+) regulatory T cells (Tregs). Although studies showed that Foxp3 has to form cooperative complexes with NFAT to bind to target genes, it remains unclear whether NFAT is available in the nucleus of primary Tregs for Foxp3 access. It is generally believed that NFAT in resting cells resides in the cytoplasm, and its nuclear translocation depends on calcineurin (CN) activation. We report that a fraction of NFAT protein constitutively localizes in the nucleus of primary Tregs, where it selectively binds to Foxp3 target genes. Treating Tregs with CN inhibitor does not induce export of NFAT from the nucleus, indicating that its nuclear translocation is independent of CN activity. Consistently, Tregs are resistant to CN inhibitors in the presence of IL-2 and continue to proliferate in response to anti-CD3 stimulation, whereas proliferation of non-Tregs is abrogated by CN inhibitors. In addition, PMA, which activates other transcription factors required for T cell activation but not NFAT, selectively induces Treg proliferation in the absence of ionomycin. TCR interaction with self-MHC class II is not required for PMA-induced Treg proliferation. Tregs expanded by PMA or in the presence of CN inhibitors maintain Treg phenotype and functionality. These findings shed light on Treg biology, paving the way for strategies to selectively activate Tregs.

  10. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    PubMed

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.

  11. Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?

    PubMed

    Hayes, Beth M; Dulebohn, Daniel P; Sarkar, Amit; Tilly, Kit; Bestor, Aaron; Ambroggio, Xavier; Rosa, Patricia A

    2014-04-01

    The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks. IMPORTANCE Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms

  12. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  13. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes.

    PubMed

    Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J

    2015-01-01

    Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.

  14. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes.

    PubMed

    Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J

    2015-01-01

    Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products. PMID:26565684

  15. Muscle regulatory factors regulate T1R3 taste receptor expression.

    PubMed

    Kokabu, Shoichiro; Lowery, Jonathan W; Toyono, Takashi; Seta, Yuji; Hitomi, Suzuro; Sato, Tsuyoshi; Enoki, Yuichiro; Okubo, Masahiko; Fukushima, Yosuke; Yoda, Tetsuya

    2015-12-25

    T1R3 is a T1R class of G protein-coupled receptors, composing subunit of the umami taste receptor when complexed with T1R1. T1R3 was originally discovered in gustatory tissue but is now known to be expressed in a wide variety of tissues and cell types such the intestine, pancreatic β-cells, skeletal muscle, and heart. In addition to taste recognition, the T1R1/T1R3 complex functions as an amino acid sensor and has been proposed to be a control mechanism for the secretion of hormones, such as cholecystokinin, insulin, and duodenal HCO3(-) and activates the mammalian rapamycin complex 1 (MTORC1) to inhibit autophagy. T1R3 knockout mice have increased rate of autophagy in the heart, skeletal muscle and liver. Thus, T1R3 has multiple physiological functions and is widely expressed in vivo. However, the exact mechanisms regulating T1R3 expression are largely unknown. Here, we used comparative genomics and functional analyses to characterize the genomic region upstream of the annotated transcriptional start of human T1R3. This revealed that the T1R3 promoter in human and mouse resides in an evolutionary conserved region (ECR). We also identified a repressive element located upstream of the human T1R3 promoter that has relatively high degree of conservation with rhesus macaque. Additionally, the muscle regulatory factors MyoD and Myogenin regulate T1R3 expression and T1R3 expression increases with skeletal muscle differentiation of murine myoblast C2C12 cells. Taken together, our study raises the possibility that MyoD and Myogenin might control skeletal muscle metabolism and homeostasis through the regulation of T1R3 promoter activity. PMID:26545778

  16. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues

    PubMed Central

    Suzuki, Takashi; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  17. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    PubMed

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  18. 14-3-3 proteins: a historic overview.

    PubMed

    Aitken, Alastair

    2006-06-01

    This chapter includes a historic overview of 14-3-3 proteins with an emphasis on the differences between potentially cancer-relevant isoforms on the genomic, protein and functional level. The focus will therefore be on mammalian 14-3-3s although many important developments in the field have involved Drosophila 14-3-3 proteins for example and the cross-fertilisation from parallel studies on plant 14-3-3 should not be underestimated. In the major part of this review I will attempt to focus on some novel data and aspects of 14-3-3 structure and function, in particular regulation of 14-3-3 isoforms by oncogene-related protein kinase phosphorylation and aspects of 14-3-3 research with which newcomers to the field may be less familiar.

  19. Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway

    SciTech Connect

    Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.; Feeney, Lee Ann; Dorsch, Marion; Coyle, Anthony J.; Garofalo, Roberto P.; Brasier, Allan R.; Casola, Antonella . E-mail: ancasola@utmb.edu

    2006-09-15

    Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or with NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.

  20. Expression of complement regulatory proteins on human natural killer cell subsets.

    PubMed

    Wang, Lin; Halliday, Deborah; Johnson, Peter M; Christmas, Stephen E

    2007-10-15

    The cell surface complement regulatory (CReg) proteins CD46, CD55 and CD59 are widely distributed on human leucocytes and protect against complement-mediated damage. To investigate heterogeneity in CReg protein expression by human natural killer (NK) cells, levels were assessed on resting and activated NK cell subsets identified phenotypically on the basis of expression of CD56 and CD158 markers. Levels of all three CReg proteins on CD56+ cells were lower than on T cells (p<0.05). Freshly isolated CD56(bright) cells expressed higher levels of CD55 than CD56dim cells (p<0.05). CD158a+ cells expressed significantly lower levels of both CD46 and CD59, and CD158e+ cells expressed significantly lower levels of CD46, than CD158a(-) CD158e(-) cells, respectively (both p<0.05). Stimulation with PHA did not significantly alter NK cell surface CReg protein levels whereas, following culture with IL-2, CD46 and CD59 were decreased on both CD56bright and CD56dim subsets (p<0.05). In the case of CD59, this was independent of T cells. Only CD46 was significantly downregulated on CD158b+ (GL183+) and CD158e (NKB1+) subsets (p<0.05). However, culture in IL-15 significantly increased levels of all three CReg proteins. These observations that CReg proteins are downregulated on certain NK cell subsets following activation with IL-2 are opposite to previous findings for other leucocyte subpopulations. Activated NK cells may instead use other strategies for protection against complement-mediated damage in a local inflammatory response.

  1. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing.

    PubMed

    Tang, Jianwei; Kobayashi, Keiko; Suzuki, Masashi; Matsumoto, Shogo; Muranaka, Toshiya

    2010-02-01

    Unlike animals, plants synthesize isoprenoids via two pathways, the cytosolic mevalonate (MVA) pathway and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. Little information is known about the mechanisms that regulate these complex biosynthetic networks over multiple organelles. To understand such regulatory mechanisms of the biosynthesis of isoprenoids in plants, we previously characterized the Arabidopsis mutant, lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, specific inhibitors of the MVA and MEP pathways, respectively. LOI1 encodes a pentatricopeptide repeat (PPR) protein localized in mitochondria that is thought to have RNA binding ability and function in post-transcriptional regulation of mitochondrial gene expression. LOI1 belongs to the DYW subclass of PPR proteins, which is hypothesized to be correlated with RNA editing. As a result of analysis of RNA editing of mitochondrial genes in loi1, a defect in RNA editing of three genes, nad4, ccb203 and cox3, was identified in loi1. These genes are related to the respiratory chain. Wild type (WT) treated with some respiration inhibitors mimicked the loi1 phenotype. Interestingly, HMG-CoA reductase activity of WT treated with lovastatin combined with antimycin A, an inhibitor of complex III in the respiratory chain, was higher than that of WT treated with only lovastatin, despite the lack of alteration of transcript or protein levels of HMGR. These results suggest that HMGR enzyme activity is regulated through the respiratory cytochrome pathway. Although various mechanisms exist for isoprenoid biosynthesis, our studies demonstrate the novel possibility that mitochondrial respiration plays potentially regulatory roles in isoprenoid biosynthesis.

  2. Reversible oxidation of vicinal-thiols motif in sarcoplasmic reticulum calcium regulatory proteins is involved in muscle fatigue mechanism.

    PubMed

    Vázquez, Pável; Tirado-Cortés, Aldo; Álvarez, Rocío; Ronjat, Michel; Amaya, Araceli; Ortega, Alicia

    2016-10-01

    The mechanism underlying fatigue in skeletal muscle (SM) related to the redox-potential hypothesis, ranges from a direct effect of oxygen reactive species, to a number of other free radical intermediates targeting specific amino acids in the Ca(2+)-regulatory proteins of the sarcoplasmic reticulum (SR). In the present study, we investigate the selective oxidation/reduction of the protein motif Cys-(Xn=2-6)-Cys, known as a vicinal thiol group (VTG), present in the SR Ca(2+)-ATPase (SERCA) and in the Ca(2+)-channel ryanodine receptor (RyR) which are modified during muscle fatigue in SM. Selective oxidation of VTG with phenyl arsine oxide (PAO) increases fatigue in rat isolated SM and fatigue is prevented when muscle is previously incubated with a VTG selective reducing agent, 2,3-dimercaptopropanol (British anti-Lewisite (BAL)). In isolated SR membranes, PAO [<0.1mM] modifies SERCA conformation and inhibits ATPase activity but does not affect Ca(2+)-release. However, PAO at [>0.1mM] inhibits SERCA and RyR activities in a reversible manner by selectively reducing them. Interestingly, as observed by differential scanning calorimetry, the conformation of SERCA from fatigued muscle changed in a similar manner as when SERCA VTG where oxidized. The addition of BAL to fatigued muscle restored the structural conformation and activity of SERCA with full recovery of muscle force production after fatigue. We conclude that VTG reversible oxidation of SR Ca(2+) regulatory proteins are involved in muscle contraction/relaxation and are a molecular mechanism to be considered for muscle fatigue.

  3. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein

    SciTech Connect

    Zhu, Zhenqi; He, Xin; Johnson, Carla; Stoops, John; Eaker, Amanda E.; Stoffer, David S.; Bell, Aaron; Zarnegar, Reza; DeFrances, Marie C. . E-mail: defrancesmc@upmc.edu

    2007-06-22

    Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.

  4. Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase.

    PubMed Central

    Monsalve, M; Mencia, M; Rojo, F; Salas, M

    1996-01-01

    Phage phi29 regulatory protein p4 activates transcription from the late A3 promoter and represses the main early promoters, named A2b and A2c. Activation involves stabilization of RNA polymerase (RNAP) at the A3 promoter as a closed complex and is mediated by interaction between RNAP and a small domain of protein p4 in which residue Arg120 plays an essential role. We show that protein p4 represses the A2c promoter by binding to DNA immediately upstream from RNAP in a way that does not hinder RNAP binding; rather, the two proteins bind cooperatively to DNA. In the presence of protein p4, RNAP can form an initiated complex at the A2c promoter that generates short abortive transcripts, but cannot leave the promoter. Mutation of protein p4 residue Arg120, which relieves the contact between the two proteins, leads to a loss of repression. Therefore, the contact between protein p4 and RNAP through the protein p4 domain containing Arg120 can activate or repress transcription, depending on the promoter. The relative position of protein p4 and RNAP, which is different at each promoter, together with the distinct characteristics of the two promoters, may determine whether protein p4 activates or represses transcription. Images PMID:8617213

  5. Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad.

    PubMed

    Gibson, Toby J; Dinkel, Holger; Van Roey, Kim; Diella, Francesca

    2015-01-01

    It has become clear in outline though not yet in detail how cellular regulatory and signalling systems are constructed. The essential machines are protein complexes that effect regulatory decisions by undergoing internal changes of state. Subcomponents of these cellular complexes are assembled into molecular switches. Many of these switches employ one or more short peptide motifs as toggles that can move between one or more sites within the switch system, the simplest being on-off switches. Paradoxically, these motif modules (termed short linear motifs or SLiMs) are both hugely abundant but difficult to research. So despite the many successes in identifying short regulatory protein motifs, it is thought that only the "tip of the iceberg" has been exposed. Experimental and bioinformatic motif discovery remain challenging and error prone. The advice presented in this article is aimed at helping researchers to uncover genuine protein motifs, whilst avoiding the pitfalls that lead to reports of false discovery. PMID:26581338

  6. Arthritis protective regulatory potential of self–heat shock protein cross-reactive T cells

    PubMed Central

    van Eden, Willem; Wendling, Uwe; Paul, Liesbeth; Prakken, Berent; van Kooten, Peter; van der Zee, Ruurd

    2000-01-01

    Immunization with heat shock proteins has protective effects in models of induced arthritis. Analysis has shown a reduced synovial inflammation in such protected animals. Adoptive transfer and immunization with selected T cell epitopes (synthetic peptides) have indicated the protection to be mediated by T cells directed to conserved hsp epitopes. This was shown first for mycobacterial hsp60 and later for mycobacterial hsp70. Fine specificity analysis showed that such T cells were cross-reactive with the homologous self hsp. Therefore protection by microbial hsp reactive T cells can be by cross-recognition of self hsp overexpressed in the inflamed tissue. Preimmunization with hsp leads to a relative expansion of such self hsp cross-responsive T cells. The regulatory nature of such T cells may originate from mucosal tolerance maintained by commensal flora derived hsp or from partial activation through recognition of self hsp as a partial agonist (Altered Peptide Ligand) or in the absence of proper costimulation. Recently, we reported the selective upregulation of B7.2 on microbial hsp60 specific T cells in response to self hsp60. Through a preferred interaction with CTLA-4 on proinflammatory T cells this may constitute an effector mechanism of regulation. Also, regulatory T cells produced IL10. PMID:11189451

  7. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.

    PubMed

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  8. Insights on regulation and function of the iron regulatory protein 1 (IRP1).

    PubMed

    Wang, Jian; Chen, Guohua; Filebeen, Carine; Pantopoulos, Kostas

    2008-01-01

    Iron regulatory protein 1 (IRP1) controls the translation or stability of several mRNAs by binding to iron responsive elements (IREs) within their untranslated regions. Its activity is regulated by an unusual iron-sulfur cluster (ICS) switch. Thus, in iron-replete cells, IRP1 assembles a cubane [4Fe-4S] cluster that prevents RNA-binding activity and renders the protein to cytosolic aconitase. We show that wild type or mutant forms of IRP1 that fail to assemble a [4Fe-4S] cluster are sensitized for iron-dependent degradation by the ubiquitin-proteasome pathway. The regulation of IRP1 abundance poses an alternative mechanism to prevent accumulation of inappropriately high IRE-binding activity when the ICS assembly pathway is impaired. To study functional aspects of IRP1, we overexpressed wild type or mutant forms of the protein in human H1299 lung cancer cells in a tetracycline-inducible fashion, and analyzed how this affects cell growth. While the induction of IRP1 did not affect cell proliferation in culture, it dramatically reduced the capacity of the cells to form solid tumor xenografts in nude mice. These data provide a first link between IRP1 and cancer.

  9. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  10. Leishmania donovani engages in regulatory interference by targeting macrophage protein tyrosine phosphatase SHP-1.

    PubMed

    Nandan, Devki; Reiner, Neil E

    2005-03-01

    Protozoan parasites of the genus leishmania are obligate intracellular parasites of monocytes and macrophages. These pathogens have evolved to invade the mammalian immune system and typically survive for long periods of time. Leishmania have developed a variety of remarkable strategies to prevent their elimination by both innate and acquired immune effector mechanisms. One particular strategy of interest involves manipulation of host cell regulatory pathways so as to prevent macrophage activation required for efficient microbicidal activity. These interference mechanisms are the main focus of this review. Several lines of evidence have been developed to show that the Src homology-2 domain containing tyrosine phosphatase-1 (SHP-1) becomes activated in leishmania-infected cells and that this contributes to disease pathogenesis. Recent studies aimed at understanding the mechanism responsible for the change in activation state of SHP-1 led to the identification of leishmania EF-1alpha as an SHP-1 binding protein and SHP-1 activator. This was a surprising finding given that this ubiquitous and highly conserved protein plays an essential role in protein translation in both prokaryotic and eukaryotic cells. The role of leishmania EF-1alpha as an SHP-1 activator and its contribution to pathogenesis are reviewed with particular attention to the properties that distinguish it from host EF-1alpha. PMID:15721837

  11. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47.

    PubMed

    Hatherley, Deborah; Graham, Stephen C; Turner, Jessie; Harlos, Karl; Stuart, David I; Barclay, A Neil

    2008-07-25

    CD47 is a widely distributed cell-surface protein that acts a marker of self through interactions of myeloid and neural cells. We describe the high-resolution X-ray crystallographic structures of the immunoglobulin superfamily domain of CD47 alone and in complex with the N-terminal ligand-binding domain of signal regulatory protein alpha (SIRPalpha). The unusual and convoluted interacting face of CD47, comprising the N terminus and loops at the end of the domain, intercalates with the corresponding regions in SIRPalpha. We have also determined structures of the N-terminal domains of SIRPbeta, SIRPbeta(2), and SIRPgamma; proteins that are closely related to SIRPalpha but bind CD47 with negligible or reduced affinity. These results explain the specificity of CD47 for the SIRP family of paired receptors in atomic detail. Analysis of SIRPalpha polymorphisms suggests that these, as well as the activating SIRPs, may have evolved to counteract pathogen binding to the inhibitory SIRPalpha receptor.

  12. Structure of the Yeast Polarity Protein Sro7 Reveals a SNARE Regulatory Mechanism

    SciTech Connect

    Hattendorf, D.A.; Andreeva, A.; Gangar, A.; Brennwald, P.J.; Weis, W.I.; /Stanford U., Med. School /North Carolina U.

    2007-07-09

    Polarized exocytosis requires coordination between the actin cytoskeleton and the exocytic machinery responsible for fusion of secretory vesicles at specific sites on the plasma membrane. Fusion requires formation of a complex between a vesicle-bound R-SNARE and plasma membrane Qa, Qb and Qc SNARE proteins. Proteins in the lethal giant larvae protein family, including lethal giant larvae and tomosyn in metazoans and Sro7 in yeast, interact with Q-SNAREs and are emerging as key regulators of polarized exocytosis. The crystal structure of Sro7 reveals two seven-bladed WD40 {beta}-propellers followed by a 60-residue-long 'tail', which is bound to the surface of the amino-terminal propeller. Deletion of the Sro7 tail enables binding to the Qbc SNARE region of Sec9 and this interaction inhibits SNARE complex assembly. The N-terminal domain of Sec9 provides a second, high-affinity Sro7 interaction that is unaffected by the tail. The results suggest that Sro7 acts as an allosteric regulator of exocytosis through interactions with factors that control the tail. Sequence alignments indicate that lethal giant larvae and tomosyn have a two-{beta}-propeller fold similar to that of Sro7, but only tomosyn appears to retain the regulatory tail.

  13. Ca2+-regulatory muscle proteins in the alcohol-fed rat.

    PubMed

    Ohlendieck, Kay; Harmon, Shona; Koll, Michael; Paice, Alistair G; Preedy, Victor R

    2003-09-01

    Alcoholic myopathy is characterized by muscle weakness and difficulties in gait and locomotion. It is one of the most prevalent skeletal muscle disorders in the Western hemisphere, affecting between 40% and 60% of all chronic alcohol misusers. However, the pathogenic mechanisms are unknown, although recent studies have suggested that membrane defects occur as a consequence of chronic alcohol exposure. It was our hypothesis that alcohol ingestion perturbs membrane-located proteins associated with intracellular signalling and contractility, in particular those relating to calcium homeostasis. To test this, we fed male Wistar rats nutritionally complete liquid diets containing ethanol as 35% of total dietary energy. Controls were pair-fed identical amounts of the same diet in which ethanol was replaced by isocaloric glucose. At the end of 6 weeks, rats were killed and skeletal muscles dissected. These were used to determine important ion-regulatory skeletal muscle proteins including sarcalumenin (SAR), sarcoplasmic-endoplasmic reticulum Ca(2+)-adenosine triphosphatase (ATPase) (SERCA1), the junctional face protein of 90 kd (90-JFP), alpha(1)- and alpha(2)-dihydropyridine receptor (alpha(1)-DHPR and alpha(2)-DHPR), and calsequestrin (CSQ) by immunoblotting. The relative abundance of microsomal proteins was determined by immunoblotting using the enhanced chemiluminescence (ECL) technique. The data showed that alcohol-feeding significantly reduced gastrocnemius and hind limb muscle weights (P <.05 in both instances). Concomitant changes included increases in the relative amounts of SERCA1 (P <.05) and Ca(2+)-ATPase activity (P <.025). However, there were no statistically significant changes in either SAR, 90-JFP, alpha(1)-DHPR or alpha(2)-DHPR (P >.2 in all instances). Reductions in CSQ were of marginal significance (P =.0950). We conclude that upregulation of SERCA1 protein and Ca(2+)-ATPase activity may be an adaptive mechanism and/or a contributory process in the

  14. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis.

    PubMed

    Wang, Kewei; Lin, Bingliang

    2013-10-01

    IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.

  15. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  16. Protein phosphatase 2A is requisite for the function of regulatory T cells

    PubMed Central

    Apostolidis, Sokratis A.; Rodríguez-Rodríguez, Noé; Suárez-Fueyo, Abel; Dioufa, Nikolina; Ozcan, Esra; Crispín, José C.; Tsokos, Maria G.; Tsokos, George C.

    2015-01-01

    Immune homeostasis depends on the proper function of regulatory T (Treg) cells. Compromised Treg cell suppressive activity leads to autoimmune disease, graft rejection and promotes anti-tumor immunity. Here we report the previously unrecognized requirement of the serine/threonine phosphatase Protein Phosphatase 2A (PP2A) for the function of Treg cells. Treg cells exhibited high PP2A activity and Treg cell-specific ablation of the PP2A complex resulted in a severe, multi-organ, lymphoproliferative autoimmune disorder. Mass spectrometric analysis revealed that PP2A associates with components of the mTOR pathway and suppresses mTORC1 activity. In the absence of PP2A, Treg cells altered their metabolic and cytokine profile and were unable to suppress effector immune responses. Therefore, PP2A is requisite for the function of Treg cells and the prevention of autoimmunity. PMID:26974206

  17. High-yield soluble expression, purification and characterization of human steroidogenic acute regulatory protein (StAR) fused to a cleavable Maltose-Binding Protein (MBP).

    PubMed

    Sluchanko, Nikolai N; Tugaeva, Kristina V; Faletrov, Yaroslav V; Levitsky, Dmitrii I

    2016-03-01

    Steroidogenic acute regulatory protein (StAR) is responsible for the rapid delivery of cholesterol to mitochondria where the lipid serves as a source for steroid hormones biosynthesis in adrenals and gonads. Despite many successful investigations, current understanding of the mechanism of StAR action is far from being completely clear. StAR was mostly obtained using denaturation/renaturation or in minor quantities in a soluble form at decreased temperatures that, presumably, limited the possibilities for its consequent detailed exploration. In our hands, existing StAR expression constructs could be bacterially expressed almost exclusively as insoluble forms, even upon decreased expression temperatures and in specific strains of Escherichia coli, and isolated protein tended to aggregate and was difficult to handle. To maximize the yield of soluble protein, optimized StAR sequence encompassing functional domain STARD1 (residues 66-285) was fused to the C-terminus of His-tagged Maltose-Binding Protein (MBP) with the possibility to cleave off the whole tag by 3C protease. The developed protocol of expression and purification comprising of a combination of subtractive immobilized metal affinity chromatography (IMAC) and size-exclusion chromatography allowed us to obtain up to 25 mg/1 L culture of completely soluble StAR protein, which was (i) homogenous according to SDS-PAGE, (ii) gave a single symmetrical peak on a gel-filtration, (iii) showed the characteristic CD spectrum and (iv) pH-dependent ability to bind a fluorescently-labeled cholesterol analogue. We conclude that our strategy provides fully soluble and native StAR protein which in future could be efficiently used for biotechnology and drug discovery aimed at modulation of steroids production.

  18. Definition of regulatory sequence elements in the promoter region and the first intron of the myotonic dystrophy protein kinase gene.

    PubMed

    Storbeck, C J; Sabourin, L A; Waring, J D; Korneluk, R G

    1998-04-10

    Myotonic dystrophy is the most common inherited adult neuromuscular disorder with a global frequency of 1/8000. The genetic defect is an expanding CTG trinucleotide repeat in the 3'-untranslated region of the myotonic dystrophy protein kinase gene. We present the in vitro characterization of cis regulatory elements controlling transcription of the myotonic dystrophy protein kinase gene in myoblasts and fibroblasts. The region 5' to the initiating ATG contains no consensus TATA or CCAAT box. We have mapped two transcriptional start sites by primer extension. Deletion constructs from this region fused to the bacterial chloramphenicol acetyltransferase reporter gene revealed only subtle muscle specific cis elements. The strongest promoter activity mapped to a 189-base pair fragment. This sequence contains a conserved GC box to which the transcription factor Sp1 binds. Reporter gene constructs containing a 2-kilobase pair first intron fragment of the myotonic dystrophy protein kinase gene enhances reporter activity up to 6-fold in the human rhabdomyosarcoma myoblast cell line TE32 but not in NIH 3T3 fibroblasts. Co-transfection of a MyoD expression vector with reporter constructs containing the first intron into 10 T1/2 fibroblasts resulted in a 10-20-fold enhancement of expression. Deletion analysis of four E-box elements within the first intron reveal that these elements contribute to enhancer activity similarly in TE32 myoblasts and 10 T1/2 fibroblasts. These data suggest that E-boxes within the myotonic dystrophy protein kinase first intron mediate interactions with upstream promoter elements to up-regulate transcription of this gene in myoblasts.

  19. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops.

    PubMed

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed.

  20. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops.

    PubMed

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed. PMID:25523175

  1. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: Implications for regulatory study designs and ecological risk assessments for GM crops

    PubMed Central

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed. PMID:25523175

  2. The role of CTCF binding sites in the 3' immunoglobulin heavy chain regulatory region.

    PubMed

    Birshtein, Barbara K

    2012-01-01

    The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination (CSR). Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ∼1 kb intronic enhancer, Eμ, located between the V region segments and the most 5' constant region gene, Cμ; and an ∼40 kb 3' regulatory region (3' RR) that is located downstream of the most 3' C(H) gene, Cα. The 3' RR is a candidate for an "end" of B cell-specific regulation of the Igh locus. The 3' RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1-4), which are essential for CSR and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3' RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3' RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation, and genetic approaches, we have found that the 3' RR with its CTCF-binding region interacts with target sequences in the V(H), Eμ, and C(H) regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh processes at different stages of B cell

  3. Heat shock protein 27 and its regulatory molecules express differentially in SLE patients with distinct autoantibody profiles.

    PubMed

    Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta

    2015-03-01

    Generation of autoantigens of nuclear origin, like dsDNA and extractable nuclear antigens (ENA) have largely been associated with dysregulated apoptosis and defective clearance of apoptotic debris in SLE. Heat shock protein (HSP) 27 has been reported to have anti-apoptotic properties hence it was of interest to study the expression of HSP27 and its regulatory molecule Brn3a and hsa-miR-939 in SLE patients with distinct autoantibodies specificities. SLE patients were categorized into three subsets based on their distinct sero-positivity for either anti-dsDNA antibody alone (anti-dsDNA(+) group) or anti-ENA antibody alone (anti-ENA(+) group) or both (anti-dsDNA(+) ENA(+) group). We investigated the mRNA and protein expression of HSP27 and Brn3a in peripheral blood leukocytes (PBLs) by real-time reverse transcriptase PCR and Western blotting. Expression of apoptosis markers caspase 3 and poly (ADP-ribose) polymerase (PARP) was determined by Western blotting. Hsa-miR-939 expression was determined using TaqMan(®) miRNA assay. In this study, we report significant downregulation of HSP27 in anti-ENA(+) patients and increased expression of caspase 3 and PARP in both anti-ENA(+) and anti-dsDNA(+) SLE subsets. A negative correlation was observed between the expression of HSP27 and apoptosis markers caspase 3 and PARP. Decreased Brn3a expression was observed in anti-ENA(+) SLE patients, which correlated positively with HSP27 expression. Expression of hsa-miR-939, which has a potential target site for Brn3a 3' UTR, was also elevated specifically in anti-ENA(+) patients. The decreased expressions of HSP27, Brn3a along with elevated levels of hsa-miR-939 are selectively associated with anti-ENA(+) patients and HSP27 was observed to be inversely associated with apoptosis. These findings are suggestive of distinct regulatory processes operative in SLE patient subsets with different autoantibody specificities.

  4. Comparative Analysis of mRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the miRNA Regulatory System

    PubMed Central

    Galgano, Alessia; Forrer, Michael; Jaskiewicz, Lukasz; Kanitz, Alexander; Zavolan, Mihaela; Gerber, André P.

    2008-01-01

    Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3′-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3′-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs. PMID:18776931

  5. Thogoto virus ML protein suppresses IRF3 function

    SciTech Connect

    Jennings, Stephanie . E-mail: stephanie.jennings@uniklinik-freiburg.de; Martinez-Sobrido, Luis . E-mail: Luis.Martinez@mssm.edu; Garcia-Sastre, Adolfo . E-mail: adolfo.garcia-sastre@mssm.edu; Weber, Friedemann . E-mail: friedemann.weber@uniklinik-freiburg.de; Kochs, Georg . E-mail: georg.kochs@uniklinik-freiburg.de

    2005-01-05

    The Thogoto virus (THOV) is a member of the family Orthomyxoviridae. It prevents induction of alpha/beta interferons (IFN) in cell culture and in vivo via the action of the viral ML protein. Phenotypically, the effect of THOV ML resembles that of the NS1 protein of influenza A virus (FLUAV) in that it blocks the expression of IFN genes. IFN expression depends on IFN regulatory factor 3 (IRF3). Upon activation, IRF3 forms homodimers and accumulates in the nucleus where it binds the transcriptional coactivator CREB-binding protein (CBP). Here, we show that expression of ML blocked the transcriptional activity of IRF3 after stimulation by virus infection. Further biochemical analysis revealed that ML acts by blocking IRF3 dimerization and association with CBP. Surprisingly, however, ML did not interfere with the nuclear transport of IRF3. Thus, the action of ML differs strikingly from that of FLUAV NS1 that prevents IFN induction by retaining IRF3 in the cytoplasm.

  6. Coexpression of TIGIT and FCRL3 identifies Helios+ human memory regulatory T cells.

    PubMed

    Bin Dhuban, Khalid; d'Hennezel, Eva; Nashi, Emil; Bar-Or, Amit; Rieder, Sadiye; Shevach, Ethan M; Nagata, Satoshi; Piccirillo, Ciriaco A

    2015-04-15

    Two distinct subsets of CD4(+)Foxp3(+) regulatory T (Treg) cells have been described based on the differential expression of Helios, a transcription factor of the Ikaros family. Efforts to understand the origin and biological roles of these Treg populations in regulating immune responses have, however, been hindered by the lack of reliable surface markers to distinguish and isolate them for subsequent functional studies. Using a single-cell cloning strategy coupled with microarray analysis of different Treg functional subsets in humans, we identify the mRNA and protein expression of TIGIT and FCRL3 as a novel surface marker combination that distinguishes Helios(+)FOXP3(+) from Helios(-)FOXP3(+) memory cells. Unlike conventional markers that are modulated on conventional T cells upon activation, we show that the TIGIT/FCRL3 combination allows reliable identification of Helios(+) Treg cells even in highly activated conditions in vitro as well as in PBMCs of autoimmune patients. We also demonstrate that the Helios(-)FOXP3(+) Treg subpopulation harbors a larger proportion of nonsuppressive clones compared with the Helios(+)FOXP3(+) cell subset, which is highly enriched for suppressive clones. Moreover, we find that Helios(-) cells are exclusively responsible for the productions of the inflammatory cytokines IFN-γ, IL-2, and IL-17 in FOXP3(+) cells ex vivo, highlighting important functional differences between Helios(+) and Helios(-) Treg cells. Thus, we identify novel surface markers for the consistent identification and isolation of Helios(+) and Helios(-) memory Treg cells in health and disease, and we further reveal functional differences between these two populations. These new markers should facilitate further elucidation of the functional roles of Helios-based Treg heterogeneity.

  7. Coexpression of TIGIT and FCRL3 Identifies Helios+ Human Memory Regulatory T Cells

    PubMed Central

    Dhuban, Khalid Bin; d’Hennezel, Eva; Nashi, Emil; Bar-Or, Amit; Rieder, Sadiye; Shevach, Ethan M.; Nagata, Satoshi; Piccirillo, Ciriaco A.

    2015-01-01

    Two distinct subsets of CD4+Foxp3+ regulatory T (Treg) cells have been described based on the differential expression of Helios, a transcription factor of the Ikaros family. Efforts to understand the origin and biological roles of these Treg populations in regulating immune responses have, however, been hindered by the lack of reliable surface markers to distinguish and isolate them for subsequent functional studies. Using a single-cell cloning strategy coupled with microarray analysis of different Treg functional subsets in humans, we identify the mRNA and protein expression of TIGIT and FCRL3 as a novel surface marker combination that distinguishes Helios+FOXP3+ from Helios−FOXP3+ memory cells. Unlike conventional markers that are modulated on conventional T cells upon activation, we show that the TIGIT/FCRL3 combination allows reliable identification of Helios+ Treg cells even in highly activated conditions in vitro as well as in PBMCs of autoimmune patients. We also demonstrate that the Helios−FOXP3+ Treg subpopulation harbors a larger proportion of nonsuppressive clones compared with the Helios+ FOXP3+ cell subset, which is highly enriched for suppressive clones. Moreover, we find that Helios− cells are exclusively responsible for the productions of the inflammatory cytokines IFN-γ, IL-2, and IL-17 in FOXP3+ cells ex vivo, highlighting important functional differences between Helios+ and Helios− Treg cells. Thus, we identify novel surface markers for the consistent identification and isolation of Helios+ and Helios− memory Treg cells in health and disease, and we further reveal functional differences between these two populations. These new markers should facilitate further elucidation of the functional roles of Helios-based Treg heterogeneity. PMID:25762785

  8. PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells.

    PubMed

    Liu, Chunchun; Zhang, Yuxue; Hou, Yongfan; Shen, Liqiang; Li, Yinlong; Guo, Weiwei; Xu, Daqian; Liu, Gaigai; Zhao, Zilong; Man, Kaiyang; Pan, Yi; Wang, Zhenzhen; Chen, Yan

    2015-05-01

    Histone modification plays important roles in many biological processes such as development and carcinogenesis. Methylation of histone H3 lysine 4 (H3K4) is commonly associated with transcriptional activation of genes. H3K4 methylation in mammalian cells is carried out by COMPASS (complex of proteins associated with Set1)-like complexes that are composed of catalytic subunits such as MLL1 (mixed-lineage leukaemia 1) and multiple regulatory subunits in which WDR5 (WD40 repeat-containing protein 5), RBBP5 (retinoblastoma-binding protein 5), ASH2 (absent, small or homoeotic discs 2) and DPY30 [constituting the WRAD sub-complex (WDR5-ASH2-RBBP5-DPY30 complex)] are the major ones shared from yeast to metazoans. We report, in the present paper, a new mode of spatial regulation of H3K4 methyltransferase complexes. PAQR3 (progestin and adipoQ receptors member 3), a tumour suppressor specifically localized in the Golgi apparatus, negatively regulates H3K4 trimethylation (H3K4me3) in mammalian cells. Consistently, HOXC8 and HOXA9 gene expression was negatively regulated by PAQR3 expression levels. Hypoxia-induced H3K4me3 was augmented by PAQR3 knockdown and suppressed by PAQR3 overexpression in AGS gastric cancer cells. PAQR3 was able to interact directly or indirectly with the four members of the WRAD sub-complex and tether them to the Golgi apparatus, accompanied by reduction in histone methyltransferase activity in the nucleus. PAQR3 also interfered with the interaction of WDR5 with the C-terminus of MLL1 (C-ter). Collectively, our study indicates that PAQR3 negatively modulates H3K4 methylation via altering the subcellular compartmentalization of the core regulatory subunits of the COMPASS-like complexes in mammalian cells. PMID:25706881

  9. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors.

    PubMed Central

    Böhm, S K; Grady, E F; Bunnett, N W

    1997-01-01

    The large and functionally diverse group of G-protein-coupled receptors includes receptors for many different signalling molecules, including peptide and non-peptide hormones and neuro-transmitters, chemokines, prostanoids and proteinases. Their principal function is to transmit information about the extracellular environment to the interior of the cell by interacting with the heterotrimeric G-proteins, and they thereby participate in many aspects of regulation. Cellular responses to agonists of these receptors are usually rapidly attenuated. Mechanisms of signal attenuation include removal of agonists from the extracellular fluid, receptor desensitization, endocytosis and down-regulation. Agonists are removed by dilution, uptake by transporters and enzymic degradation. Receptor desensitization is mediated by receptor phosphorylation by G-protein receptor kinases and second-messenger kinases, interaction of phosphorylated receptors with arrestins and receptor uncoupling from G-proteins. Agonist-induced receptor endocytosis also contributes to desensitization by depleting the cell surface of high-affinity receptors, and recycling of internalized receptors contributes to resensitization of cellular responses. Receptor down-regulation is a form of desensitization that occurs during continuous, long-term exposure of cells to receptor agonists. Down-regulation, which may occur during the development of drug tolerance, is characterized by depletion of the cellular receptor content, and is probably mediated by alterations in the rates of receptor degradation and synthesis. These regulatory mechanisms are important, as they govern the ability of cells to respond to agonists. A greater understanding of the mechanisms that modulate signalling may lead to the development of new therapies and may help to explain the mechanism of drug tolerance. PMID:9078236

  10. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle

    PubMed Central

    Di Martino, Maria Letizia; Falconi, Maurizio; Micheli, Gioacchino; Colonna, Bianca; Prosseda, Gianni

    2016-01-01

    Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis. PMID:27747215

  11. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  12. Regulatory Advances in 11 Sub-Saharan Countries in Year 3 of the African Health Profession Regulatory Collaborative for Nurses and Midwives (ARC)

    PubMed Central

    Dynes, Michelle; Tison, Laura; Johnson, Carla; Verani, Andre; Zuber, Alexandra; Riley, Patricia L.

    2016-01-01

    Sub-Saharan Africa carries the greatest burden of the HIV pandemic. Enhancing the supply and use of human resources through policy and regulatory reform is a key action needed to improve the quality of HIV services in this region. In year 3 of the African Health Profession Regulatory Collaborative for Nurses and Midwives (ARC), a President’s Emergency Plan for AIDS Relief initiative, 11 country teams of nursing and midwifery leaders (“Quads”) received small grants to carry out regulatory improvement projects. Four countries advanced a full stage on the Regulatory Function Framework (RFF), a staged capability maturity model used to evaluate progress in key regulatory functions. While the remaining countries did not advance a full stage on the RFF, important gains were noted. The year-3 evaluation highlighted limitations of the ARC evaluation strategy to capture nuanced progress and provided insight into how the RFF might be adapted for future use. PMID:27086189

  13. Autoregulation of the Kluyveromyces lactis pyruvate decarboxylase gene KlPDC1 involves the regulatory gene RAG3.

    PubMed

    Ottaviano, Daniela; Micolonghi, Chiara; Tizzani, Lorenza; Lemaire, Marc; Wésolowski-Louvel, Micheline; De Stefano, Maria Egle; Ranieri, Danilo; Bianchi, Michele M

    2014-07-01

    In the yeast Kluyveromyces lactis, the pyruvate decarboxylase gene KlPDC1 is strongly regulated at the transcription level by different environmental factors. Sugars and hypoxia act as inducers of transcription, while ethanol acts as a repressor. Their effects are mediated by gene products, some of which have been characterized. KlPDC1 transcription is also strongly repressed by its product--KlPdc1--through a mechanism called autoregulation. We performed a genetic screen that allowed us to select and identify the regulatory gene RAG3 as a major factor in the transcriptional activity of the KlPDC1 promoter in the absence of the KlPdc1 protein, i.e. in the autoregulatory mechanism. We also showed that the two proteins Rag3 and KlPdc1 interact, co-localize in the cell and that KlPdc1 may control Rag3 nuclear localization.

  14. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells

    PubMed Central

    Kwon, Hye-Sook; Lim, Hyung W.; Wu, Jessica; Schnoelzer, Martina; Verdin, Eric; Ott, Melanie

    2012-01-01

    The Foxp3 transcription factor is the master regulator of regulatory T cell (Treg) differentiation and function. Its activity is regulated by reversible acetylation. Using mass spectrometry of immunoprecipitated proteins, we identify three novel acetylation sites in murine Foxp3 (K31, K262, and K267) and the corresponding sites in human FoxP3 proteins. Newly raised modification-specific antibodies against acetylated K31 and K267 confirm acetylation of these residues in murine Tregs. Mutant Foxp3 proteins carrying arginine substitutions at the three acetylation sites (3KR) accumulate in T cells to higher levels than wildtype Foxp3 and exert better suppressive activity in co-culture experiments. Acetylation and stability of wildtype, but not mutant, Foxp3 is enhanced when cells are treated with Ex-527, an inhibitor of the NAD+-dependent deacetylase SIRT1. Treatment with Ex-527 promotes Foxp3 expression during induced Treg differentiation, enhances Foxp3 levels in natural Tregs, and prevents loss of Foxp3 expression in adoptively transferred Tregs in mice. Our data identify SIRT1 as a negative regulator of Treg function via deacetylation of three novel target sites in Foxp3. SIRT1 inhibitors strengthen the suppressive activity of Tregs and may be useful in enhancing Treg-based therapeutic approaches to autoimmune diseases or graft rejections. PMID:22312127

  15. Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis.

    PubMed

    Kobayashi, Keiko; Suzuki, Masashi; Tang, Jianwei; Nagata, Noriko; Ohyama, Kiyoshi; Seki, Hikaru; Kiuchi, Reiko; Kaneko, Yasuko; Nakazawa, Miki; Matsui, Minami; Matsumoto, Shogo; Yoshida, Shigeo; Muranaka, Toshiya

    2007-02-01

    Higher plants have two metabolic pathways for isoprenoid biosynthesis: the cytosolic mevalonate (MVA) pathway and the plastidal non-mevalonate (MEP) pathway. Despite the compartmentalization of these two pathways, metabolic flow occurs between them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cross-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA insertion mutant lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, inhibitors of the MVA and MEP pathways, respectively. The accumulation of the major products of these pathways, i.e. sterols and chlorophyll, was less affected by lovastatin and clomazone, respectively, in loi1 than in the wild type. Furthermore, the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity analysis showed higher activity of HMGR in loi1-1 treated with lovastatin than that in the WT. We consider that the lovastatin-resistant phenotype of loi1-1 was derived from this post-transcriptional up-regulation of HMGR. The LOI1 gene encodes a novel pentatricopeptide repeat (PPR) protein. PPR proteins are thought to regulate the expression of genes encoded in organelle genomes by post-transcriptional regulation in mitochondria or plastids. Our results demonstrate that LOI1 is predicted to localize in mitochondria and has the ability to bind single-stranded nucleic acids. Our investigation revealed that the post-transcriptional regulation of mitochondrial RNA may be involved in isoprenoid biosynthesis in both the MVA and MEP pathways.

  16. Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis.

    PubMed

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Sayadi, Ahmed; Crescenzi, Marco; Pozio, Edoardo

    2012-05-01

    14-3-3s are phosphoserine/phosphotreonine binding proteins that play pivotal roles as regulators of multiple cellular processes in eukaryotes. The flagellated protozoan parasite Giardia duodenalis, the causing agent of giardiasis, is a valuable simplified eukaryotic model. A single 14-3-3 isoform (g14-3-3) is expressed in Giardia, and it is directly involved in the differentiation of the parasite into cyst. To define the overall functions of g14-3-3, the protein interactome has been investigated. A transgenic G. duodenalis strain was engineered to express a FLAG-tagged g14-3-3 under its own promoter. Affinity chromatography coupled with tandem mass spectrometry analysis have been used to purify and identify FLAG-g14-3-3-associated proteins from trophozoites and encysting parasites. A total of 314 putative g14-3-3 interaction partners were identified, including proteins involved in several pathways. Some interactions seemed to be peculiar of one specific stage, while others were shared among the different stages. Furthermore, the interaction of g14-3-3 with the giardial homologue of the CDC7 protein kinase (gCDC7) was characterized, leading to the identification of a multiprotein complex containing not only g14-3-3 and gCDC7 but also a newly identified and highly divergent homologue of DBF4, the putative regulatory subunit of gCDC7. The relevance of g14-3-3 interactions in G. duodenalis biology was discussed.

  17. Dynamic Localization of Glucokinase and Its Regulatory Protein in Hypothalamic Tanycytes

    PubMed Central

    Ordenes, Patricio; Millán, Carola; Yañez, María José; Llanos, Paula; Villagra, Marcos; Elizondo-Vega, Roberto; Martínez, Fernando; Nualart, Francisco; Uribe, Elena; de los Angeles García-Robles, María

    2014-01-01

    Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose. PMID:24739934

  18. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    PubMed Central

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F1 β-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CFoF1 activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply. PMID:11274449

  19. 14-3-3 Proteins in Guard Cell Signaling.

    PubMed

    Cotelle, Valérie; Leonhardt, Nathalie

    2015-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  20. Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts.

    PubMed

    Chen, Guohua; Fillebeen, Carine; Wang, Jian; Pantopoulos, Kostas

    2007-04-01

    Iron is essential for proliferation of normal and neoplastic cells. Cellular iron uptake, utilization and storage are regulated by transcriptional and post-transcriptional mechanisms. We hypothesized that the disruption of iron homeostasis may modulate the growth properties of cancer cells. To address this, we employed H1299 lung cancer cells engineered for tetracycline-inducible overexpression of the post-transcriptional regulator iron regulatory protein 1 (IRP1). The induction of IRP1 (wild-type or the constitutive IRP1(C437S) mutant) did not affect the proliferation of the cells in culture, and only modestly reduced their efficiency to form colonies in soft agar. However, IRP1 dramatically impaired the capacity of the cells to form solid tumor xenografts in nude mice. Tumors derived from IRP1-transfectants were <20% in size compared to those from parent cells. IRP1 coordinately controls the expression of transferrin receptor 1 (TfR1) and ferritin by binding to iron-responsive elements (IREs) within their mRNAs. Biochemical analysis revealed high expression of epitope-tagged IRP1 in tumor tissue, which was associated with a profound increase in IRE-binding activity. As expected, this response misregulated iron metabolism by increasing TfR1 levels. Surprisingly, IRP1 failed to suppress ferritin expression and did not affect the levels of the iron transporter ferroportin. Our results show that the overexpression of IRP1 is associated with an apparent tumor suppressor phenotype and provide a direct regulatory link between the IRE/IRP system and cancer.

  1. A new method to specifically label thiophosphorylatable proteins with extrinsic probes. Labeling of serine-19 of the regulatory light chain of smooth muscle myosin.

    PubMed

    Facemyer, K C; Cremo, C R

    1992-01-01

    We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.

  2. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria.

    PubMed

    Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia

    2015-02-01

    sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo.

  3. Stimulatory effects of propylthiouracil on pregnenolone production through upregulation of steroidogenic acute regulatory protein expression in rat granulosa cells.

    PubMed

    Chen, Mei-Chih; Wang, Shyi-Wu; Kan, Shu-Fen; Tsai, Shiow-Chwen; Wu, Yu-Ching; Wang, Paulus S

    2010-12-01

    Propylthiouracil (PTU) is a common and effective clinical medicine for the treatment of hyperthyroidism. Our previous study demonstrated that short-term treatment with PTU inhibits progesterone production in rat granulosa cells. However, our present results indicate that a 16-h treatment with PTU was able to stimulate pregnenolone production in rat granulosa cells, although progesterone production was diminished by PTU through inhibition of 3β-hydroxysteroid dehydrogenase. Notably, we found that PTU treatment enhanced the conversion of cholesterol into pregnenolone, whereas the protein level of the cytochrome P450 side-chain cleavage enzyme (P450scc, which is the enzyme responding to this conversion) was not affected. Interestingly, the levels of steroidogenic acute regulatory protein (StAR) in both total cell lysate and the mitochondrial fraction were significantly increased by PTU treatment. Furthermore, the binding of steroidogenic factor-1 (SF-1) to the StAR promoter region was also enhanced by PTU treatment, which suggests that PTU could upregulate StAR gene expression. In addition to SF-1 regulation, we found that mitogen-activated protein (MAP) kinase kinase activation is an important regulator of PTU-stimulated StAR protein expression, based on the effects of the MEK inhibitor PD98059. In conclusion, these results indicate that PTU plays opposite roles in the production of progesterone and its precursor, pregnenolone. The regulation of negative feedback on speeding the cholesterol transportation and pregnenolone conversion after a 16-h PTU treatment may be the mechanism explaining PTU's inhibition of progesterone production in rat granulosa cells.

  4. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors.

    PubMed

    Granot, Zvi; Kobiler, Oren; Melamed-Book, Naomi; Eimerl, Sarah; Bahat, Assaf; Lu, Bin; Braun, Sergei; Maurizi, Michael R; Suzuki, Carolyn K; Oppenheim, Amos B; Orly, Joseph

    2007-09-01

    Steroidogenic acute regulatory protein (StAR) is a vital mitochondrial protein promoting transfer of cholesterol into steroid making mitochondria in specialized cells of the adrenal cortex and gonads. Our previous work has demonstrated that StAR is rapidly degraded upon import into the mitochondrial matrix. To identify the protease(s) responsible for this rapid turnover, murine StAR was expressed in wild-type Escherichia coli or in mutant strains lacking one of the four ATP-dependent proteolytic systems, three of which are conserved in mammalian mitochondria-ClpP, FtsH, and Lon. StAR was rapidly degraded in wild-type bacteria and stabilized only in lon (-)mutants; in such cells, StAR turnover was fully restored upon coexpression of human mitochondrial Lon. In mammalian cells, the rate of StAR turnover was proportional to the cell content of Lon protease after expression of a Lon-targeted small interfering RNA, or overexpression of the protein. In vitro assays using purified proteins showed that Lon-mediated degradation of StAR was ATP-dependent and blocked by the proteasome inhibitors MG132 (IC(50) = 20 microm) and clasto-lactacystin beta-lactone (cLbetaL, IC(50) = 3 microm); by contrast, epoxomicin, representing a different class of proteasome inhibitors, had no effect. Such inhibition is consistent with results in cultured rat ovarian granulosa cells demonstrating that degradation of StAR in the mitochondrial matrix is blocked by MG132 and cLbetaL but not by epoxomicin. Both inhibitors also blocked Lon-mediated cleavage of the model substrate fluorescein isothiocyanate-casein. Taken together, our former studies and the present results suggest that Lon is the primary ATP-dependent protease responsible for StAR turnover in mitochondria of steroidogenic cells.

  5. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  6. Regulated tissue-specific alternative splicing of enhanced green fluorescent protein transgenes conferred by alpha-tropomyosin regulatory elements in transgenic mice.

    PubMed

    Ellis, Peter D; Smith, Christopher W J; Kemp, Paul

    2004-08-27

    The mutually exclusive exons 2 and 3 of alpha-tropomyosin (alphaTM) have been used as a model system for strictly regulated alternative splicing. Exon 2 inclusion is only observed at high levels in smooth muscle (SM) tissues, whereas striated muscle and non-muscle cells use predominantly exon 3. Experiments in cell culture have shown that exon 2 selection results from repression of exon 3 and that this repression is mediated by regulatory elements flanking exon 3. We have now tested the cell culture-derived model in transgenic mice. We show that by harnessing the intronic splicing regulatory elements, expression of an enhanced green fluorescent protein transgene with a constitutively active promoter can be restricted to SM cells. Splicing of both endogenous alphaTM and a series of transgenes carrying regulatory element mutations was analyzed by reverse transcriptasePCR. These studies indicated that although SM-rich tissues are equipped to regulate splicing of high levels of endogenous or transgene alphaTM RNA, other non-SM tissues such as spleen, which express lower amounts of alphaTM, also splice significant proportions of exon 2, and this splicing pattern can be recapitulated by transgenes expressed at low levels. We confirm the importance in vivo of the negatively acting regulatory elements for regulated skipping of exon 3. Moreover, we provide evidence that some of the regulatory factors responsible for exon 3 skipping appear to be titratable, with loss of regulated splicing sometimes being associated with high transgene expression levels. PMID:15194683

  7. Tissue expression analysis, cloning and characterization of the 5'-regulatory region of the bovine FABP3 gene.

    PubMed

    Li, Anning; Wu, Lijuan; Wang, Xiaoyu; Xin, Yaping; Zan, Linsen

    2016-09-01

    Fatty acid binding protein 3 (FABP3) is a member of the FABP family which bind fatty acids and have an important role in fatty acid metabolism. A large number of studies have shown that the genetic polymorphisms of FABP3 are positively correlated with intramuscular fat (IMF) content in domestic animals, however, the function and transcriptional characteristics of FABP3 in cattle remain unclear. Real-time PCR analysis revealed that bovine FABP3 was highly expressed in cardiac tissue. The 5'-regulatory region of bovine FABP3 was cloned and its transcription initiation sites were identified. Sequence analysis showed that many transcriptional factor binding sites including TATA-box and CCAAT-box were present on the 5'-flanking region of bovine FABP3, and four CpG islands were found on nucleotides from -891 to +118. Seven serial deletion constructs of the 5'-regulatory region evaluated in dual-luciferase reporter assay indicated that its core promoter was 384 base pairs upstream from the transcription initiation site. The transcriptional factor binding sites RXRα, KLF15, CREB and Sp1 were conserved in the core promoter of cattle, sheep, pigs and dogs. These results provide further understanding of the function and regulation mechanism of bovine FABP3. PMID:27270359

  8. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    SciTech Connect

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..S binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.

  9. A Common Missense Variant in the Glucokinase Regulatory Protein Gene (GCKR) Is Associated with Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE-Using the genome-wide-association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metaboli...

  10. Identification of novel regulatory cholesterol metabolite, 5-cholesten, 3β,25-diol, disulfate.

    PubMed

    Ren, Shunlin; Kim, Jin Koung; Kakiyama, Genta; Rodriguez-Agudo, Daniel; Pandak, William M; Min, Hae-Ki; Ning, Yanxia

    2014-01-01

    Oxysterol sulfation plays an important role in regulation of lipid metabolism and inflammatory responses. In the present study, we report the discovery of a novel regulatory sulfated oxysterol in nuclei of primary rat hepatocytes after overexpression of the gene encoding mitochondrial cholesterol delivery protein (StarD1). Forty-eight hours after infection of the hepatocytes with recombinant StarD1 adenovirus, a water-soluble oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC. Tandem mass spectrometry analysis identified the oxysterol as 5-cholesten-3β, 25-diol, disulfate (25HCDS), and confirmed the structure by comparing with a chemically synthesized compound. Administration of 25HCDS to human THP-1-derived macrophages or HepG2 cells significantly inhibited cholesterol synthesis and markedly decreased lipid levels in vivo in NAFLD mouse models. RT-PCR showed that 25HCDS significantly decreased SREBP-1/2 activities by suppressing expression of their responding genes, including ACC, FAS, and HMG-CoA reductase. Analysis of lipid profiles in the liver tissues showed that administration of 25HCDS significantly decreased cholesterol, free fatty acids, and triglycerides by 30, 25, and 20%, respectively. The results suggest that 25HCDS inhibits lipid biosynthesis via blocking SREBP signaling. We conclude that 25HCDS is a potent regulator of lipid metabolism and propose its biosynthetic pathway. PMID:25072708

  11. Modulation of interferon regulatory factor 5 activities by the Kaposi sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3 contributes to immune evasion and lytic induction.

    PubMed

    Bi, Xiaohui; Yang, Lisong; Mancl, Margo E; Barnes, Betsy J

    2011-04-01

    Multiple Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded proteins with potential roles in KSHV-associated neoplasms have been identified. KSHV encodes 4 genes with homology to transcription factors of the interferon (IFN) regulatory factor (IRF) family. Viral IRF3 (vIRF3) is expressed in latently KSHV-infected primary effusion lymphoma (PEL) cells and was recently shown to be essential for the survival of PEL cells. The focus of this study was to determine the mechanism(s) of vIRF3 oncogenic activity contributing to KSHV-associated lymphoma. We report that vIRF3 interacts with the amino-terminal DNA binding domain of human IRF5, leading to a complex manipulation of IRF5 function. vIRF3 associated with both exogenous and endogenous IRF5, thereby inhibiting IRF5-mediated IFN promoter activation and the synthesis of biologically active type I IFNs by blocking its binding to endogenous IFNA promoters. The function of this interaction was not limited to the IFN system as IRF5-mediated cell growth regulation was significantly altered by overexpression of vIRF3 in B cells. vIRF3 prevented IRF5-mediated growth inhibition and G2/M cell cycle arrest. Important, IRF5 was upregulated by the protein kinase C agonist 12-O-tetradecanoyl-phorbol-13-acetate in BCBL1 PEL cells and interaction with vIRF3 was observed at the endogenous p21 promoter in response to 12-O-tetradecanoyl-phorbol-13-acetate, suggesting that these 2 proteins cooperate in the regulation of lytic cycle-induced G1 arrest, which is an important early step for the reactivation of KSHV. In conclusion, cellular IRF5 and vIRF3 interact, leading to the functional modulation of IRF5-mediated type I IFN expression and cell cycle regulation. These findings support an important role for vIRF3 in immune evasion and cell proliferation that likely contribute to the survival of PEL cells.

  12. An ALS-associated mutation in the FUS 3'-UTR disrupts a microRNA-FUS regulatory circuitry.

    PubMed

    Dini Modigliani, Stefano; Morlando, Mariangela; Errichelli, Lorenzo; Sabatelli, Mario; Bozzoni, Irene

    2014-01-01

    While the physiologic functions of the RNA-binding protein FUS still await thorough characterization, the pathonegetic role of FUS mutations in amyotrophic lateral sclerosis (ALS) is clearly established. Here we find that a human FUS mutation that leads to increased protein expression, and was identified in two ALS patients with severe outcome, maps to the seed sequence recognized by miR-141 and miR-200a in the 3'-UTR of FUS. We demonstrate that FUS and these microRNAs are linked by a feed-forward regulatory loop where FUS upregulates miR-141/200a, which in turn impact FUS protein synthesis. We also show that Zeb1, a target of miR-141/200a and transcriptional repressor of these two microRNAs, is part of the circuitry and reinforces it. Our results reveal a possible correlation between deregulation of this regulatory circuit and ALS pathogenesis, and open interesting perspectives in the treatment of these mutations through ad hoc-modified microRNAs.

  13. PSG9 Stimulates Increase in FoxP3+ Regulatory T-Cells through the TGF-β1 Pathway

    PubMed Central

    Mentink-Kane, Margaret; Warren, James; Rattila, Shemona; Malech, Harry; Kang, Elizabeth; Dveksler, Gabriela

    2016-01-01

    The pregnancy-specific glycoproteins (PSGs) are a family of proteins secreted by the syncytiotrophoblast of the placenta and are the most abundant trophoblastic proteins in maternal blood during the third trimester. The human PSG family consists of 10 protein-coding genes, some of which have a possible role in maintaining maternal immune tolerance to the fetus. PSG9 was reported as a potential predictive biomarker of pre-eclampsia, a serious complication of pregnancy that has been related to immunological dysfunction at the fetal-maternal interface. Therefore, we hypothesized that PSG9 may have an immunoregulatory role during pregnancy. We found that PSG9 binds to LAP and activates the latent form of TGF-β1. In addition, PSG9 induces the secretion of TGF-β1 from macrophages but not from CD4+ T-cells. TGF-β1 is required for the ex vivo differentiation of regulatory T-cells and, consistent with the ability of PSG9 to activate this cytokine, we observed that PSG9 induces the differentiation of FoxP3+ regulatory T-cells from naïve murine and human T-cells. Cytokines that are associated with inflammatory responses were also reduced in the supernatants of T-cells treated with PSG9, suggesting that PSG9, through its activation of TGFβ-1, could be a potent inducer of immune tolerance. PMID:27389696

  14. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family.

    PubMed Central

    Barnes, T M; Hodgkin, J

    1996-01-01

    The Caenorhabditis elegans sex determination gene tra-3 is required for the correct sexual development of the soma and germ line in hermaphrodites, while being fully dispensable in males. Genetic analysis of tra-3 has suggested that its product may act as a potentiator of another sex determination gene, tra-2. Molecular analysis reported here reveals that the predicted tra-3 gene product is a member of the calpain family of calcium-regulated cytosolic proteases, though it lacks the calcium binding regulatory domain. Calpains are regulatory processing proteases, exhibiting marked substrate specificity, and mutations in the p94 isoform underlie the human hereditary condition limb-girdle muscular dystrophy type 2A. The molecular identity of TRA-3 is consistent with previous genetic analysis which suggested that tra-3 plays a very selective modulatory role and is required in very small amounts. Based on these observations and new genetic data, we suggest a refinement of the position of tra-3 within the sex determination cascade and discuss possible mechanisms of action for the TRA-3 protein. PMID:8887539

  15. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    SciTech Connect

    Nery, Flavia C.; Rui, Edmilson; Kuniyoshi, Tais M.; Kobarg, Joerg . E-mail: jkobarg@lnls.br

    2006-03-17

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro.

  16. Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3)

    PubMed Central

    Kelkar, Nyaya; Delmotte, Marie-Helene; Weston, Claire R.; Barrett, Tamera; Sheppard, Barbara J.; Flavell, Richard A.; Davis, Roger J.

    2003-01-01

    The murine JNK-interacting protein 3 (JIP3) protein (also known as JSAP1) is expressed exclusively in neurons and has been identified as a scaffold protein for the c-Jun NH2-terminal kinase (JNK) signaling pathway and as an adapter protein for cargo transport by the microtubule motor protein kinesin. To investigate the physiological function of JIP3, we examined the effect of Jip3 gene disruption in mice. The Jip3–/– mice were unable to breathe and died shortly after birth. Microscopic analysis demonstrated that Jip3 gene disruption causes severe defects in the morphogenesis of the telencephalon. Jip3–/– mice lack the telencephalic commissure, a major connection between the left and right hemispheres of the brain. The central nervous system abnormalities of Jip3–/– mice may be accounted for in part by a reduction in signal transduction by RhoA and its effector ROCK. PMID:12897243

  17. Sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells.

    PubMed

    Wen, Gaiping; Eder, Klaus; Ringseis, Robert

    2016-08-01

    The genes encoding sodium/iodide symporter (NIS) and thyroid peroxidase (TPO), both of which are essential for thyroid hormone (TH) synthesis, were shown to be regulated by sterol regulatory element-binding proteins (SREBP)-1c and -2. In the present study we tested the hypothesis that transcription of a further gene essential for TH synthesis, the thyroglobulin (TG) gene, is under the control of SREBP. To test this hypothesis, we studied the influence of inhibition of SREBP maturation and SREBP knockdown on TG expression in FRTL-5 thyrocytes and explored transcriptional regulation of the TG promoter by reporter gene experiments in FRTL-5 and HepG2 cells, gel shift assays and chromatin immunoprecipitation. Inhibition of SREBP maturation by 25-hydroxycholesterol and siRNA-mediated knockdown of either SREBP-1c or SREBP-2 decreased mRNA and protein levels of TG in FRTL-5 thyrocytes. Reporter gene assays with wild-type and mutated TG promoter reporter truncation constructs revealed that the rat TG promoter is transcriptionally activated by nSREBP-1c and nSREBP-2. DNA-binding assays and chromatin immunoprecipitation assays showed that both nSREBP-1c and nSREBP-2 bind to a SREBP binding motif with characteristics of an E-box SRE at position -63 in the rat TG promoter. In connection with recent findings that NIS and TPO are regulated by SREBP in thyrocytes the present findings support the view that SREBP are regulators of essential steps of TH synthesis in the thyroid gland such as iodide uptake, iodide oxidation and iodination of tyrosyl residues of TG. This moreover suggests that SREBP may be molecular targets for pharmacological modulation of TH synthesis. PMID:27321819

  18. REGULATORY AUTOPHOSPHORYLATION SITES ON PROTEIN KINASE C-δ AT Thr141 AND Thr295

    PubMed Central

    Rybin, Vitalyi O.; Guo, Jianfen; Harleton, Erin; Feinmark, Steven J.; Steinberg, Susan F.

    2009-01-01

    Protein kinase C-δ (PKCδ) is a Ser/Thr kinase that regulates a wide range of cellular responses. This study identifies novel in vitro PKCδ autophosphorylation sites at Thr141 adjacent to the pseudosubstrate domain, Thr218 in the C1A–C1B interdomain, Ser295, Ser302, and Ser304 in the hinge region, and Ser503 adjacent to Thr505 in the activation loop. Cell-based studies show that Thr141 and Thr295 also are phosphorylated in vivo and that Thr141 phosphorylation regulates the kinetics of PKCδ downregulation in COS7 cells. In vitro studies implicate Thr141 and Thr295 autophosphorylation as modifications that regulate PKCδ activity. A T141D substitution markedly increases basal lipid-independent PKCδ activity; the PKCδ-T141D mutant is only slightly further stimulated in vitro by PMA treatment, suggesting that Thr141 phosphorylation relieves autoinhibitory constraints that limit PKCδ activity. Mutagenesis studies also indicate that a phosphorylation at Thr295 contributes to the control of PKCδ substrate specificity. We previously demonstrated that PKCδ phosphorylates the myofilament protein cardiac troponin I (cTnI) at Ser23/Ser24 when it is allosterically activated by lipid cofactors and that the Thr505/Tyr311-phosphorylated form of PKCδ (that is present in assays with Src) acquires as additional activity toward cTnI-Thr144. Studies reported herein show that a T505A substitution reduces PKCδ-Thr295 autophosphorylation and that a T295A substitution leads to a defect in Src-dependent PKCδ-Tyr311 phosphorylation and PKCδ-dependent cTnI-Thr144 phosphorylation. These results implicate PKCδ-Thr295 autophosphorylation as a lipid-dependent modification that links PKCδ-Thr505 phosphorylation to Src-dependent regulation of PKCδ catalytic function. Collectively, these studies identify novel regulatory autophosphorylations on PKCδ that serve as markers and regulators of PKCδ activity. PMID:19366211

  19. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles.

    PubMed

    Mandel-Gutfreund, Y; Schueler, O; Margalit, H

    1995-10-20

    A systematic analysis of hydrogen bonds between regulatory proteins and their DNA targets is presented, based on 28 crystallographically solved complexes. All possible hydrogen bonds were screened and classified into different types: those that involve the amino acid side-chains and DNA base edges and those that involve the backbone atoms of the molecules. For each interaction type, all bonds were characterized and a statistical analysis was performed to reveal significant amino acid-base interdependence. The interactions between the amino acid side-chains and DNA backbone constitute about half of the interactions, but did not show any amino acid-base correlation. Interactions via the protein backbone were also observed, predominantly with the DNA backbone. As expected, the most significant pairing preference was demonstrated for interactions between the amino acid side-chains and the DNA base edges. The statistically significant relationships could mostly be explained by the chemical nature of the participants. However, correlations that could not be trivially predicted from the hydrogen bonding potential of the residues were also identified, like the preference of lysine for guanine over adenine, or the preference of glutamic acid for cystosine over adenine. While Lys x G interactions were very frequent and spread over various families, the Glu x C interactions were found mainly in the basic helix-loop-helix family. Further examination of the side-chain-base edge contacts at the atomic level revealed a trend of the amino acids to contact the DNA by their donor atoms, preferably at position W2 in the major groove. In most cases it seems that the interactions are not guided simply by the presence of a required atom in a specific position in the groove, but that the identity of the base possessing this atom is crucial. This may have important implications in molecular design experiments.

  20. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis.

    PubMed Central

    Wang, X; Zelenski, N G; Yang, J; Sakai, J; Brown, M S; Goldstein, J L

    1996-01-01

    Cellular cholesterol homeostasis is controlled by sterol-regulated proteolysis of membrane-bound transcription factors called sterol-regulatory element binding proteins (SREBPs). CPP32, a cysteine protease, was shown previously to cleave SREBP-1 and SREBP-2 in vitro at an aspartic acid between the basic helix-loop-helix leucine zipper domain and the first trans-membrane domain, liberating a transcriptionally active fragment. Here, we show that CPP32 exists in an inactive 32 kDa form in Chinese hamster ovary (CHO) cells. When apoptosis was induced with the protein kinase inhibitor staurosporine, CPP32 was cleaved to subunits of 20 and 10 kDa to form the active protease. Under these conditions membrane-bound SREBP-1 and SREBP-2 were both cleaved, and the transcriptionally active N-terminal fragments were found in nuclear extracts. Similar results were obtained in human U937 cells induced to undergo apoptosis by anti-Fas and etoposide. The apoptosis-induced cleavage of SREBPs was not suppressed by sterols, indicating that apoptosis-induced cleavage and sterol-regulated cleavage are mediated by different proteases. CHO cells expressing a mutant SREBP-2 with an Asp--> Ala mutation at the CPP32 cleavage site showed sterol-regulated cleavage but no apoptosis-induced cleavage. These data are consistent with the emerging concept that CPP32 is a central mediator in apoptosis. They also indicate that SREBPs, like poly (ADP) ribose polymerase, are cleaved by CPP32 during programmed cell death. Images PMID:8605870

  1. cIRF-3, a new member of the interferon regulatory factor (IRF) family that is rapidly and transiently induced by dsRNA.

    PubMed Central

    Grant, C E; Vasa, M Z; Deeley, R G

    1995-01-01

    In mammals, some of the effects of interferon (IFN) on gene transcription are known to be mediated by a family of IFN-inducible DNA-binding proteins, the IFN regulatory factor (IRF) family, which includes both activators and repressors of transcription. Although IFN activities have been described in many vertebrates, little is known about regulation of IFN- or IFN-stimulated genes in species other than human and mouse. Here, we report the cloning of a chicken cDNA, cIRF-3, encoding a protein with a DNA-binding domain similar to that found in the mammalian IRF family of proteins. Similarity between cIRF-3 and the mammalian IRFs is comparable with that between known members of the family. It is most similar to the IRF proteins ICSBP and ISGF3 gamma but is equally divergent from both. Gel mobility shift assays indicate that cIRF-3 is capable of binding a known IFN-stimulated response element that is conserved between the mammalian and chicken Mx genes. Expression of the cIRF-3 gene can be induced to high levels by poly(I).poly(C). Induction is rapid and transient with no requirement for protein synthesis. Co-treatment of cells with cycloheximide results in superinduction of cIRF-3 mRNA. The structural and regulatory characteristics of cIRF-3 indicate that it is the first example of a non-mammalian IRF protein. Images PMID:7541908

  2. Regulatory roles of RNA binding proteins in the nervous system of C. elegans

    PubMed Central

    Sharifnia, Panid; Jin, Yishi

    2015-01-01

    Neurons have evolved to employ many factors involved in the regulation of RNA processing due to their complex cellular compartments. RNA binding proteins (RBPs) are key regulators in transcription, translation, and RNA degradation. Increasing studies have shown that regulatory RNA processing is critical for the establishment, functionality, and maintenance of neural circuits. Recent advances in high-throughput transcriptomics have rapidly expanded our knowledge of the landscape of RNA regulation, but also raised the challenge for mechanistic dissection of the specific roles of RBPs in complex tissues such as the nervous system. The C. elegans genome encodes many RBPs conserved throughout evolution. The rich analytic tools in molecular genetics and simple neural anatomy of C. elegans offer advantages to define functions of genes in vivo at the level of a single cell. Notably, the discovery of microRNAs has had transformative effects to the understanding of neuronal development, circuit plasticity, and neurological diseases. Here we review recent studies unraveling diverse roles of RBPs in the development, function, and plasticity of C. elegans nervous system. We first summarize the general technologies for studying RBPs in C. elegans. We then focus on the roles of several RBPs that control gene- and cell-type specific production of neuronal transcripts. PMID:25628531

  3. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ravikumar, Vaishnavi; Dobrinic, Paula; Macek, Boris; Franjevic, Damjan; Noirot-Gros, Marie-Francoise; Mijakovic, Ivan

    2014-01-01

    Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD, and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells. PMID:25278935

  4. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  5. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    PubMed Central

    Park, Joo-Man; Kim, Tae-Hyun; Jo, Seong-Ho; Kim, Mi-Young; Ahn, Yong-Ho

    2015-01-01

    Glucokinase (GK), mainly expressed in the liver and pancreatic β-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD+-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies. PMID:26620281

  6. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation.

    PubMed

    Maclean, David M; Bowie, Derek

    2011-11-15

    Synaptic AMPA receptors are greatly influenced by a family of transmembrane AMPA receptor regulatory proteins (TARPs) which control trafficking, channel gating and pharmacology. The prototypical TARP, stargazin (or γ2), shifts the blocking ability of several AMPAR-selective compounds including the commonly used quinoxalinedione antagonists, CNQX and NBQX. Stargazin's effect on CNQX is particularly intriguing as it not only apparently lowers the potency of block, as with NBQX, but also renders it a partial agonist. Given this, agonist behaviour by CNQX has been speculated to account for its weaker blocking effect on AMPAR-TARP complexes. Here we show that this is not the case. The apparent effect of stargazin on CNQX antagonism can be almost entirely explained by an increase in the apparent affinity for l-glutamate (l-Glu), a full agonist and neurotransmitter at AMPAR synapses. Partial agonism at best plays a minor role but not through channel gating per se but rather because CNQX elicits AMPAR desensitization. Our study reveals that CNQX is best thought of as a non-competitive antagonist at glutamatergic synapses due to the predominance of non-equilibrium conditions. Consequently, CNQX primarily reports the proportion of AMPARs available for activation but may also impose additional block by receptor desensitization.

  7. Fas/CD95 regulatory protein Faim2 is neuroprotective after transient brain ischemia.

    PubMed

    Reich, Arno; Spering, Christopher; Gertz, Karen; Harms, Christoph; Gerhardt, Ellen; Kronenberg, Golo; Nave, Klaus A; Schwab, Markus; Tauber, Simone C; Drinkut, Anja; Harms, Kristian; Beier, Chrstioph P; Voigt, Aaron; Göbbels, Sandra; Endres, Matthias; Schulz, Jörg B

    2011-01-01

    Death receptor (DR) signaling has a major impact on the outcome of numerous neurological diseases, including ischemic stroke. DRs mediate not only cell death signals, but also proinflammatory responses and cell proliferation. Identification of regulatory proteins that control the switch between apoptotic and alternative DR signaling opens new therapeutic opportunities. Fas apoptotic inhibitory molecule 2 (Faim2) is an evolutionary conserved, neuron-specific inhibitor of Fas/CD95-mediated apoptosis. To investigate its role during development and in disease models, we generated Faim2-deficient mice. The ubiquitous null mutation displayed a viable and fertile phenotype without overt deficiencies. However, lack of Faim2 caused an increase in susceptibility to combined oxygen-glucose deprivation in primary neurons in vitro as well as in caspase-associated cell death, stroke volume, and neurological impairment after cerebral ischemia in vivo. These processes were rescued by lentiviral Faim2 gene transfer. In summary, we provide evidence that Faim2 is a novel neuroprotective molecule in the context of cerebral ischemia.

  8. Regulatory effect of porcine plasma protein hydrolysates on pasting and gelatinization action of corn starch.

    PubMed

    Kong, Baohua; Niu, Haili; Sun, Fangda; Han, Jianchun; Liu, Qian

    2016-01-01

    The objective of this study was to investigate the regulatory effect of porcine plasma protein hydrolysates (PPPH) on the physicochemical, pasting, and gelatinization properties of corn starch (CS). The results showed that the solubility of CS markedly increased, whereas swelling power and gel penetration force decreased with increased PPPH concentration (P<0.05). Compared with native CS, PPPH significantly lowered peak viscosity, minimum viscosity, final viscosity, and total setback, whereas it increased breakdown and pasting temperature in rapid visco analyzer (RVA) measurement (P<0.05) and obviously enhanced the gelatinization temperature as determined in differential scanning calorimetry (DSC) (P<0.05). Confocal laser scanning microscopy (CLSM) showed that PPPH surrounded the starch granules at room temperature (25°C) and then formed a network with swollen starch granules during gelatinization. Atomic force microscopy (AFM) images indicated that the blocklet sizes of gelatinized CS-PPPH mixtures were smaller and more uniform than native CS. The results proved that pasting and gelatinization abilities of CS can be effectively influenced by adding PPPH.

  9. BTat, a trans-acting regulatory protein, contributes to bovine immunodeficiency virus-induced apoptosis.

    PubMed

    Xuan, Chenghao; Qiao, Wentao; Li, Jian; Peng, Guoyuan; Liu, Min; Chen, Qimin; Zhou, Jun; Geng, Yunqi

    2008-01-01

    Bovine immunodeficiency virus (BIV) is a member of the lentivirus subfamily of retroviruses highly related to human immunodeficiency virus in morphologic, antigenic and genomic features. BIV is known to induce chronic pathological changes in infected hosts, which are often associated with the development of immune-mediated lesions. However, the molecular events underlying the cytopathic effect of BIV remain poorly understood. In this study, BIV was found to induce apoptotic cell death, and a small trans-acting regulatory protein encoded by BIV, BTat, was found to participate in the pro-apoptotic action of BIV. Introduction of exogenous BTat to cells triggered apoptosis dramatically, as revealed by assays such as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling, nuclear morphology analysis, flow cytometry, and cleavages of caspases and poly(ADP-ribose)polymerase. Interestingly, the pro-apoptotic effect of BTat was found to be mediated through its interaction with cellular microtubules and its interference with microtubule dynamics. These results provide the first evidence that induction of apoptosis may contribute to the cytopathic effect of BIV. In addition, these results uncover a novel role for BTat in regulating microtubule dynamics in addition to its conventional role in regulating gene transcription.

  10. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction. PMID:24532171

  11. Specific cis-acting sequence for PHO8 expression interacts with PHO4 protein, a positive regulatory factor, in Saccharomyces cerevisiae.

    PubMed Central

    Hayashi, N; Oshima, Y

    1991-01-01

    The PHO8 gene of Saccharomyces cerevisiae encodes repressible alkaline phosphatase (rALPase; EC 3.1.3.1). The rALPase activity of the cells is two to three times higher in medium containing a low concentration of Pi than in high-Pi medium due to transcription of PHO8. The Pi signals are conveyed to PHO8 by binding of PHO4 protein, a positive regulatory factor, to a promoter region of PHO8 (PHO8p) under the influence of the PHO regulatory circuit. Deletion analysis of PHO8p DNA revealed two separate regulatory regions required for derepression of rALPase located at nucleotide positions -704 to -661 (distal region) and -548 to -502 (proximal region) and an inhibitory region located at -421 to -289 relative to the translation initiation codon. Gel retardation experiments showed that a beta-galactosidase-PHO4 fusion protein binds to a 132-bp PHO8p fragment bearing the proximal region but not to a 226-bp PHO8 DNA bearing the distal region. The fusion protein also binds to a synthetic oligonucleotide having the same 12-bp nucleotide sequence as the PHO8p DNA from positions -536 to -525. The 132-bp PHO8p fragment, connected at position -281 of the 5' upstream region of a HIS5'-'lacZ fused gene, could sense Pi signals in vivo, but a 20-bp synthetic oligonucleotide having the same sequence from -544 to -525 of the PHO8p DNA could not. Linker insertions in the PHO8p DNA indicated that the 5-bp sequence 5'-CACGT-3' from positions -535 to -531 is essential for binding the beta-galactosidase-PHO4 fusion protein and for derepression of rALPase. Images PMID:1990283

  12. Transmembrane AMPAR regulatory protein γ-2 is required for the modulation of GABA release by presynaptic AMPARs.

    PubMed

    Rigby, Mark; Cull-Candy, Stuart G; Farrant, Mark

    2015-03-11

    Presynaptic ionotropic glutamate receptors (iGluRs) play important roles in the control of synaptogenesis and neurotransmitter release, yet their regulation is poorly understood. In particular, the contribution of transmembrane auxiliary proteins, which profoundly shape the trafficking and gating of somatodendritic iGluRs, is unknown. Here we examined the influence of transmembrane AMPAR regulatory proteins (TARPs) on presynaptic AMPARs in cerebellar molecular layer interneurons (MLIs). 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a partial agonist at TARP-associated AMPARs, enhanced spontaneous GABA release in wild-type mice but not in stargazer mice that lack the prototypical TARP stargazin (γ-2). These findings were replicated in mechanically dissociated Purkinje cells with functional adherent synaptic boutons, demonstrating the presynaptic locus of modulation. In dissociated Purkinje cells from stargazer mice, AMPA was able to enhance mIPSC frequency, but only in the presence of the positive allosteric modulator cyclothiazide. Thus, ordinarily, presynaptic AMPARs are unable to enhance spontaneous release without γ-2, which is required predominantly for its effects on channel gating. Presynaptic AMPARs are known to reduce action potential-driven GABA release from MLIs. Although a G-protein-dependent non-ionotropic mechanism has been suggested to underlie this inhibition, paradoxically we found that γ-2, and thus AMPAR gating, was required. Following glutamate spillover from climbing fibers or application of CNQX, evoked GABA release was reduced; in stargazer mice such effects were markedly attenuated in acute slices and abolished in the dissociated Purkinje cell-nerve bouton preparation. We suggest that γ-2 association, by increasing charge transfer, allows presynaptic AMPARs to depolarize the bouton membrane sufficiently to modulate both phasic and spontaneous release. PMID:25762667

  13. Transmembrane AMPAR Regulatory Protein γ-2 Is Required for the Modulation of GABA Release by Presynaptic AMPARs

    PubMed Central

    Cull-Candy, Stuart G.

    2015-01-01

    Presynaptic ionotropic glutamate receptors (iGluRs) play important roles in the control of synaptogenesis and neurotransmitter release, yet their regulation is poorly understood. In particular, the contribution of transmembrane auxiliary proteins, which profoundly shape the trafficking and gating of somatodendritic iGluRs, is unknown. Here we examined the influence of transmembrane AMPAR regulatory proteins (TARPs) on presynaptic AMPARs in cerebellar molecular layer interneurons (MLIs). 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a partial agonist at TARP-associated AMPARs, enhanced spontaneous GABA release in wild-type mice but not in stargazer mice that lack the prototypical TARP stargazin (γ-2). These findings were replicated in mechanically dissociated Purkinje cells with functional adherent synaptic boutons, demonstrating the presynaptic locus of modulation. In dissociated Purkinje cells from stargazer mice, AMPA was able to enhance mIPSC frequency, but only in the presence of the positive allosteric modulator cyclothiazide. Thus, ordinarily, presynaptic AMPARs are unable to enhance spontaneous release without γ-2, which is required predominantly for its effects on channel gating. Presynaptic AMPARs are known to reduce action potential-driven GABA release from MLIs. Although a G-protein-dependent non-ionotropic mechanism has been suggested to underlie this inhibition, paradoxically we found that γ-2, and thus AMPAR gating, was required. Following glutamate spillover from climbing fibers or application of CNQX, evoked GABA release was reduced; in stargazer mice such effects were markedly attenuated in acute slices and abolished in the dissociated Purkinje cell-nerve bouton preparation. We suggest that γ-2 association, by increasing charge transfer, allows presynaptic AMPARs to depolarize the bouton membrane sufficiently to modulate both phasic and spontaneous release. PMID:25762667

  14. Transmembrane AMPAR regulatory protein γ-2 is required for the modulation of GABA release by presynaptic AMPARs.

    PubMed

    Rigby, Mark; Cull-Candy, Stuart G; Farrant, Mark

    2015-03-11

    Presynaptic ionotropic glutamate receptors (iGluRs) play important roles in the control of synaptogenesis and neurotransmitter release, yet their regulation is poorly understood. In particular, the contribution of transmembrane auxiliary proteins, which profoundly shape the trafficking and gating of somatodendritic iGluRs, is unknown. Here we examined the influence of transmembrane AMPAR regulatory proteins (TARPs) on presynaptic AMPARs in cerebellar molecular layer interneurons (MLIs). 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a partial agonist at TARP-associated AMPARs, enhanced spontaneous GABA release in wild-type mice but not in stargazer mice that lack the prototypical TARP stargazin (γ-2). These findings were replicated in mechanically dissociated Purkinje cells with functional adherent synaptic boutons, demonstrating the presynaptic locus of modulation. In dissociated Purkinje cells from stargazer mice, AMPA was able to enhance mIPSC frequency, but only in the presence of the positive allosteric modulator cyclothiazide. Thus, ordinarily, presynaptic AMPARs are unable to enhance spontaneous release without γ-2, which is required predominantly for its effects on channel gating. Presynaptic AMPARs are known to reduce action potential-driven GABA release from MLIs. Although a G-protein-dependent non-ionotropic mechanism has been suggested to underlie this inhibition, paradoxically we found that γ-2, and thus AMPAR gating, was required. Following glutamate spillover from climbing fibers or application of CNQX, evoked GABA release was reduced; in stargazer mice such effects were markedly attenuated in acute slices and abolished in the dissociated Purkinje cell-nerve bouton preparation. We suggest that γ-2 association, by increasing charge transfer, allows presynaptic AMPARs to depolarize the bouton membrane sufficiently to modulate both phasic and spontaneous release.

  15. Eimeria tenella: 14-3-3 protein interacts with telomerase.

    PubMed

    Zhao, Na; Gong, Pengtao; Cheng, Baiqi; Li, Jianhua; Yang, Zhengtao; Li, He; Yang, Ju; Zhang, Guocai; Zhang, Xichen

    2014-10-01

    Telomerase, consisting of telomerase RNA and telomerase reverse transcriptase (TERT), is responsible for the maintenance of the end of linear chromosomes. TERT, as the catalytic subunit of telomerase, plays a critical role in telomerase activity. Researches indicate TERT-associated proteins participate in the regulation of telomerase assembly, posttranslational modification, localization, and enzymatic function. Here, the telomerase RNA-binding domain of Eimeria tenella TERT (EtTRBD) was cloned into pGBKT7 and performed as the bait. α-Galactosidase assay showed that the bait plasmid did not activate Gal4 reporter gene. Further, we isolated an EtTRBD-associated protein, 14-3-3, by yeast two-hybrid screening using the constructed bait plasmid. To confirm the interaction, EtTRBD and 14-3-3 were expressed by prokaryotic and eukaryotic expression systems. Pull-down assays by purified proteins demonstrated a direct bind between EtTRBD and 14-3-3. Co-immunoprecipitation techniques successfully validated that 14-3-3 interacted with EtTRBD in 293T cells. The protein-protein interaction provides a starting point for more in-depth studies on telomerase and telomere regulation in E. tenella.

  16. The IgH locus 3' regulatory region: pulling the strings from behind.

    PubMed

    Pinaud, Eric; Marquet, Marie; Fiancette, Rémi; Péron, Sophie; Vincent-Fabert, Christelle; Denizot, Yves; Cogné, Michel

    2011-01-01

    Antigen receptor gene loci are among the most complex in mammals. The IgH locus, encoding the immunoglobulin heavy chain (IgH) in B-lineage cells, undergoes major transcription-dependent DNA remodeling events, namely V(D)J recombination, Ig class-switch recombination (CSR), and somatic hypermutation (SHM). Various cis-regulatory elements (encompassing promoters, enhancers, and chromatin insulators) recruit multiple nuclear factors in order to ensure IgH locus regulation by tightly orchestrated physical and/or functional interactions. Among major IgH cis-acting regions, the large 3' regulatory region (3'RR) located at the 3' boundary of the locus includes several enhancers and harbors an intriguing quasi-palindromic structure. In this review, we report progress insights made over the past decade in order to describe in more details the structure and functions of IgH 3'RRs in mouse and human. Generation of multiple cellular, transgenic and knock-out models helped out to decipher the function of the IgH 3' regulatory elements in the context of normal and pathologic B cells. Beside its interest in physiology, the challenge of elucidating the locus-wide cross talk between distant cis-regulatory elements might provide useful insights into the mechanisms that mediate oncogene deregulation after chromosomal translocations onto the IgH locus.

  17. Construction of proteins with molecular recognition capabilities using α3β3 de novo protein scaffolds.

    PubMed

    Okura, Hiromichi; Mihara, Hisakazu; Takahashi, Tsuyoshi

    2013-10-01

    The molecular recognition ability of proteins is essential in biological systems, and therefore a considerable amount of effort has been devoted to constructing desired target-binding proteins using a variety of naturally occurring proteins as scaffolds. However, since generating a binding site in a native protein can often affect its structural properties, highly stable de novo protein scaffolds may be more amenable than the native proteins. We previously reported the generation of de novo proteins comprising three α-helices and three β-strands (α3β3) from a genetic library coding simplified amino acid sets. Two α3β3 de novo proteins, vTAJ13 and vTAJ36, fold into a native-like stable and molten globule-like structures, respectively, even though the proteins have similar amino acid compositions. Here, we attempted to create binding sites for the vTAJ13 and vTAJ36 proteins to prove the utility of de novo designed artificial proteins as a molecular recognition tool. Randomization of six amino acids at two linker sites of vTAJ13 and vTAJ36 followed by biopanning generated binding proteins that recognize the target molecules, fluorescein and green fluorescent protein, with affinities of 10(-7)-10(-8) M. Of note, the selected proteins from the vTAJ13-based library tended to recognize the target molecules with high specificity, probably due to the native-like stable structure of vTAJ13. Our studies provide an example of the potential of de novo protein scaffolds, which are composed of a simplified amino acid set, to recognize a variety of target compounds.

  18. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    SciTech Connect

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max . E-mail: costam@env.med.nyu.edu

    2005-08-15

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1{alpha}). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  19. 3 CFR - Proposed Revised Habitat for the Spotted Owl: Minimizing Regulatory Burdens

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 3 The President 1 2013-01-01 2013-01-01 false Proposed Revised Habitat for the Spotted Owl..., 2012 Proposed Revised Habitat for the Spotted Owl: Minimizing Regulatory Burdens Memorandum for the...) proposed critical habitat for the northern spotted owl. The proposal is an initial step in...

  20. Role of the inhibitory guanine nucleotide regulatory protein in high affinity. cap alpha. /sub 2/ adrenergic agonist binding

    SciTech Connect

    Kim, M.H.

    1987-01-01

    The purpose of this study was to determine whether regulatory protein, N/sub i/ was required for high affinity agonist binding to the a/sub 2/ adrenergic receptor in human platelet membranes. Human platelet membranes treated under alkaline conditions (pH 11.5) exhibited a selective and complete loss of high affinity agonist binding as measured by the parital agonist (/sup 3/H)-p-aminoclonidine and full agonist (/sup 3/H)UK 14,304 in direct binding studies. The binding parameters for (/sup 3/H)UK 14,304 are as follows: for control platelet membranes, the K/sub d/ was 0.88 +/- 0.17 and nM and the B/sub max/ was 280 +/- 20 fmol/mg compared to 1.89 +/- 0.34 nM and 75 fmol/mg for pH 11.5 treated membranes. For (/sup 3/H)p-aminoclonidine, the data for pH 11.5 treated membranes is as follows: B/sub max/ = 100 +/- 20 fmol/mg, K/sub d/ = 3.4 +/- 0.1 nM, compared to control membranes: (best fit with a two site fit) K/sub d1/ = 0.7 nM, K/sub d2/ = 8 nM, B/sub max1/ = 76 fmol/mg, B/sub max2/ = 198 fmol/mg. The ..cap alpha../sub 2/ antagonists, (/sup 3/H)yohimbine, was used to assess the presence of the receptor.

  1. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2).

    PubMed

    Floriano, B; Bibb, M

    1996-07-01

    The N-terminal region of AfsR, a putative pleiotropic regulatory protein for antibiotic production in Streptomyces coelicolor A3(2), is homologous to RedD and Actil-ORF4, pathway-specific regulatory proteins required for the production of the antibiotics undecylprodigiosin (Red) and actinorhodin (Act), respectively. The recent identification of afsS, which lies immediately 3' of afsR and which stimulates antibiotic production when cloned at high copy number, questioned whether afsR was a pleiotropic regulatory gene. In this study we demonstrate that multiple copies of afsR can stimulate both Act and Red production and that, despite its homology, it cannot substitute for the pathway-specific regulatory genes. Moreover, an in-frame deletion that removed most of the afsR coding sequence resulted in loss of Act and Red production, and a marked reduction in the synthesis of the calcium-dependent antibiotic (CDA), but only under some (non-permissive) nutritional conditions. Although additional copies of afsR resulted in elevated levels of the actII-ORF4 and redD transcripts, transcription of the pathway-specific regulatory genes under non-permissive conditions was unaffected by deletion of afsR. While afsR may operate independently of the pathway-specific regulatory proteins to influence antibiotic production, the activity of ActII-ORF4 and of RedD under non-permissive conditions could depend on interaction with, or modification by, AfsR.

  2. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    SciTech Connect

    Lee, A L

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the {delta}-Al-{var_epsilon} activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a {beta}{alpha}{beta}-{beta}{alpha}{beta} pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel {beta}-sheet. In addition {sup 15}N T{sub 1}, T{sub 2}, and {sup 15}N/{sup 1}H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone {sup 1}H, {sup 13}C, and {sup 15}N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and {sup 15}N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  3. Epirubicin, Identified Using a Novel Luciferase Reporter Assay for Foxp3 Inhibitors, Inhibits Regulatory T Cell Activity

    PubMed Central

    Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira

    2016-01-01

    Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors. PMID:27284967

  4. Opposing Growth Regulatory Roles of Protein Kinase D Isoforms in Human Keratinocytes*

    PubMed Central

    Ryvkin, Vladislav; Rashel, Mohammad; Gaddapara, Trivikram; Ghazizadeh, Soosan

    2015-01-01

    PKD is a family of three serine/threonine kinases (PKD-1, -2, and -3) involved in the regulation of diverse biological processes including proliferation, migration, secretion, and cell survival. We have previously shown that despite expression of all three isoforms in mouse epidermis, PKD1 plays a unique and critical role in wound healing, phorbol ester-induced hyperplasia, and tumor development. In translating our findings to the human, we discovered that PKD1 is not expressed in human keratinocytes (KCs) and there is a divergence in the expression and function of other PKD isoforms. Contrary to mouse KCs, treatment of cultured human KCs with pharmacological inhibitors of PKDs resulted in growth arrest. We found that PKD2 and PKD3 are expressed differentially in proliferating and differentiating human KCs, with the former uniformly present in both compartments whereas the latter is predominantly expressed in the proliferating compartment. Knockdown of individual PKD isoforms in human KCs revealed contrasting growth regulatory roles for PKD2 and PKD3. Loss of PKD2 enhanced KC proliferative potential while loss of PKD3 resulted in a progressive proliferation defect, loss of clonogenicity and diminished tissue regenerative ability. This proliferation defect was correlated with up-regulation of CDK4/6 inhibitor p15INK4B and induction of a p53-independent G1 cell cycle arrest. Simultaneous silencing of PKD isoforms resulted in a more pronounced proliferation defect consistent with a predominant role for PKD3 in proliferating KCs. These data underline the importance and complexity of PKD signaling in human epidermis and suggest a central role for PKD3 signaling in maintaining human epidermal homeostasis. PMID:25802335

  5. Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D

    PubMed Central

    Yamahashi, Yukie; Cavnar, Peter J.; Hind, Laurel E.; Berthier, Erwin; Bennin, David A.; Beebe, David

    2015-01-01

    Directed neutrophil migration in blood vessels and tissues is critical for proper immune function; however, the mechanisms that regulate three-dimensional neutrophil chemotaxis remain unclear. It has been shown that integrins are dispensable for interstitial three-dimensional (3D) leukocyte migration; however, the role of integrin regulatory proteins during directed neutrophil migration is not known. Using a novel microfluidic gradient generator amenable to 2D and 3D analysis, we found that the integrin regulatory proteins Kindlin-3, RIAM, and talin-1 differentially regulate neutrophil polarization and directed migration to gradients of chemoattractant in 2D versus 3D. Both talin-1-deficient and RIAM-deficient neutrophil-like cells had impaired adhesion, polarization, and migration on 2D surfaces whereas in 3D the cells polarized but had impaired 3D chemotactic velocity. Kindlin-3 deficient cells were able to polarize and migrate on 2D surfaces but had impaired directionality. In a 3D environment, Kindlin-3 deficient cells displayed efficient chemotaxis. These findings demonstrate that the role of integrin regulatory proteins in cell polarity and directed migration can be different in 2D and 3D. PMID:26354879

  6. Emotional regulatory function of receptor interacting protein 140 revealed in the ventromedial hypothalamus.

    PubMed

    Flaisher-Grinberg, S; Tsai, H C; Feng, X; Wei, L N

    2014-08-01

    Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A transgenic mouse line with macrophage-specific knockdown of RIP140 was generated (MΦRIPKD mice) and brain-region specific RIP140 knockdown efficiency evaluated. Mice were subjected to a battery of tests, designed to evaluate multiple behavioral domains at naïve or following site-specific RIP140 re-expression. Gene expression analysis assessed TNF-α, IL-1β, TGF-1β, IL1-RA and neuropeptide Y (NPY) expression, and in vitro studies examined the effects of macrophage's RIP140 on astrocytes' NPY production. We found that RIP140 expression was dramatically reduced in macrophages within the ventromedial hypothalamus (VMH) and the cingulate cortex of MΦRIPKD mice. These animals exhibited increased anxiety- and depressive-like behaviors. VMH-targeted RIP140 re-expression in MΦRIPKD mice reversed its depressive- but not its anxiety-like phenotype. Analysis of specific neurochemical changes revealed reduced astrocytic-NPY expression within the hypothalamus of MΦRIPKD mice, and in vitro analysis confirmed that conditioned medium of RIP140-silnenced macrophage culture could no longer stimulate NPY production from astrocytes. The current study revealed an emotional regulatory function of macrophage-derived RIP140 in the VMH, and secondary dysregulation of NPY within hypothalamic astrocyte population, which might be associated with the observed behavioral phenotype of MΦRIPKD mice. This study highlights RIP140 as a novel target for the development of potential therapeutic and intervention strategies for emotional regulation disorders.

  7. Suppression of death-associated protein kinase 2 by interaction with 14-3-3 proteins.

    PubMed

    Yuasa, Keizo; Ota, Reina; Matsuda, Shinya; Isshiki, Kinuka; Inoue, Masahiro; Tsuji, Akihiko

    2015-08-14

    Death-associated protein kinase 2 (DAPK2), a Ca(2+)/calmodulin-regulated serine/threonine kinase, induces apoptosis. However, the signaling mechanisms involved in this process are unknown. Using a proteomic approach, we identified 14-3-3 proteins as novel DAPK2-interacting proteins. The 14-3-3 family has the ability to bind to phosphorylated proteins via recognition of three conserved amino acid motifs (mode 1-3 motifs), and DAPK2 contains the mode 3 motif ((pS/pT)X1-2-COOH). The interaction of 14-3-3 proteins with DAPK2 was dependent on the phosphorylation of Thr(369), and effectively suppressed DAPK2 kinase activity and DAPK2-induced apoptosis. Furthermore, we revealed that the 14-3-3 binding site Thr(369) of DAPK2 was phosphorylated by the survival kinase Akt. Our findings suggest that DAPK2-induced apoptosis is negatively regulated by Akt and 14-3-3 proteins.

  8. Identification and characterization of the minimal 5′-regulatory region of the human riboflavin transporter-3 (SLC52A3) in intestinal epithelial cells

    PubMed Central

    Ghosal, Abhisek; Sabui, Subrata

    2014-01-01

    The human riboflavin (RF) transporter-3 (product of the SLC52A3 gene) plays an important role in intestinal RF absorption. Our aims in this study were to identify the minimal 5′-regulatory region of the SLC52A3 gene and the regulatory element(s) involved in its activity in intestinal epithelial cells, as well as to confirm promoter activity and establish physiological relevance in vivo in transgenic mice. With the use of transiently transfected human intestinal epithelial HuTu 80 cells and 5′-deletion analysis, the minimal SLC52A3 promoter was found to be encoded between −199 and +8 bp (using the start of the transcription start site as position 1). Although several putative cis-regulatory elements were predicted in this region, only the stimulating protein-1 (Sp1) binding site (at position −74/−71 bp) was found to play a role in promoter activity, as indicated by mutational analysis. Binding of Sp1 to the minimal SLC52A3 promoter was demonstrated by means of EMSA and supershift assays and by chromatin immunoprecipitation analysis. Studies with Drosophila SL2 cells (which lack Sp activity) confirmed the importance of Sp1 in driving the activity of the SLC52A3 minimal promoter; they further showed that Sp3 can also do the activation. Finally, with the use of luciferase gene fusions, the activity of the cloned SLC52A3 promoter was confirmed in vivo in transgenic mice. These studies report, for the first time, on the identification and characterization of the SLC52A3 promoter and also demonstrate the importance of Sp1 in regulating its activity in intestinal epithelial cells. PMID:25394472

  9. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane

    SciTech Connect

    Bruce, Lesley J.; Beckmann, Roland; Ribeiro, M. Leticia; Peters, Luanne L.; Chasis, Joel A.; Delaunay, Jean; Mohandas, Narla; Anstee, David J.; Tanner, Michael J.A.

    2003-06-18

    We have studied the membrane proteins of band 3 anion exchanger (AE1)-deficient mouse and human red blood cells. It has been shown previously that proteins of the band 3 complex are reduced or absent in these cells. In this study we show that proteins of the Rh complex are also greatly reduced (Rh-associated glycoprotein, Rh polypeptides, CD47, glycophorin B) or absent (LW). These observations suggest that the Rh complex is associated with the band 3 complex in healthy RBCs. Mouse band 3 RBCs differed from the human band 3-deficient RBCs in that they retained CD47. Aquaporin 1 was reduced, and its glycosylation was altered in mouse and human band 3-deficient RBCs. Proteins of the glycophorin complex, and other proteins with independent cytoskeletal interactions, were present in normal or increased amounts. To obtain direct evidence for the association of the band 3 and the Rh protein complexes in the RBC, we examined whether Rh complex proteins were coimmunoprecipitated with band 3 from membranes. RhAG and Rh were found to be efficiently coimmunoprecipitated with band 3 from deoxycholate-solubilized membranes. Results suggest that band 3 forms the core of a macrocomplex of integral and peripheral RBC membrane proteins. The presence of these proteins in a single structural Macrocomplex makes it likely that they have linked functional or regulatory roles. We speculate that this macrocomplex may function as an integrated CO2/O2 gas exchange unit (metabolon) in the erythrocyte.

  10. Interaction of the CCAAT displacement protein with shared regulatory elements required for transcription of paired histone genes.

    PubMed Central

    el-Hodiri, H M; Perry, M

    1995-01-01

    The H2A and H2B genes of the Xenopus xlh3 histone gene cluster are transcribed in opposite directions from initiation points located approximately 235 bp apart. The close proximity of these genes to one another suggests that their expression may be controlled by either a single bidirectional promoter or by separate promoters. Our analysis of the transcription of histone gene pairs containing deletions and site-specific mutations of intergenic DNA revealed that both promoters are distinct but that they overlap physically and share multiple regulatory elements, providing a possible basis for the coordinate regulation of their in vivo activities. Using the intergenic DNA fragment as a probe and extracts from mammalian and amphibian cells, we observed the formation of a specific complex containing the CCAAT displacement protein (CDP). The formation of the CDP-containing complex was not strictly dependent on any single element in the intergenic region but instead required the presence of at least two of the three CCAAT motifs. Interestingly, similar CDP-containing complexes were formed on the promoters from the three other histone genes. The binding of CDP to histone gene promoters may contribute to the coordination of their activities during the cell cycle and early development. PMID:7791766

  11. Modulation of Hippocampal Neuroplasticity by Fas/CD95 Regulatory Protein 2 (Faim2) in the Course of Bacterial Meningitis

    PubMed Central

    Harms, Kristian; Falkenburger, Björn; Weis, Joachim; Sellhaus, Bernd; Nau, Roland; Schulz, Jörg B.; Reich, Arno

    2014-01-01

    Abstract Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis. PMID:24335530

  12. Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory protein 2 (Faim2) in the course of bacterial meningitis.

    PubMed

    Tauber, Simone C; Harms, Kristian; Falkenburger, Björn; Weis, Joachim; Sellhaus, Bernd; Nau, Roland; Schulz, Jörg B; Reich, Arno

    2014-01-01

    Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis.

  13. Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase.

    PubMed

    Liu, X; Guy, H I; Evans, D R

    1994-11-01

    Carbamyl-phosphate synthetases from different organisms have similar catalytic mechanisms and amino acid sequences, but their structural organization, sub-unit structure, and mode of regulation can be very different. Escherichia coli carbamyl-phosphate synthetase (CPSase), a monofunctional protein consisting of amido-transferase and synthetase subunits, is allosterically inhibited by UMP and activated by NH3, IMP, and ornithine. In contrast, mammalian CPSase II, part of the large multifunctional polypeptide, CAD, is inhibited by UTP and activated by 5-phosphoribosyl-1-pyrophosphate (PRPP). Previous photoaffinity labeling studies of E. coli CPSase showed that allosteric effectors bind near the carboxyl-terminal end of the synthetase subunit. This region of the molecule may be a regulatory subdomain common to all CPSases. An E. coli mammalian hybrid CPSase gene has been constructed and expressed in E. coli. The hybrid consists of the E. coli CPSase synthetase catalytic subdomains, residues 1-900 of the 1073 residue polypeptide, fused to the amino-terminal end of the putative 190-residue regulatory subdomain of the mammalian protein. The hybrid CPSase had normal activity, but was no longer regulated by the prokaryotic allosteric effectors. Instead, the glutamine- and ammonia-dependent CPSase activities and both ATP-dependent partial reactions were activated by PRPP and inhibited by UTP, indicating that the binding sites of both of these ligands are located in a regulatory region at the carboxyl-terminal end of the CPSase domain of CAD. The apparent ligand dissociation constants and extent of inhibition by UTP are similar in the hybrid and the wild type mammalian protein, but PRPP binds 4-fold more weakly to the hybrid. The allosteric ligands affected the steady state kinetic parameters of the hybrid differently, suggesting that while the linkage between the catalytic and regulatory subdomains has been preserved, there may be qualitative differences in interdomain

  14. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna

    2006-07-21

    Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.

  15. Control of transferrin receptor expression via nitric oxide-mediated modulation of iron-regulatory protein 2.

    PubMed

    Kim, S; Ponka, P

    1999-11-12

    Cellular iron storage and uptake are coordinately regulated post-transcriptionally by cytoplasmic factors, iron-regulatory proteins 1 and 2 (IRP-1 and IRP-2). When iron in the intracellular transit pool is scarce, IRPs bind to iron-responsive elements (IREs) in the 5'-untranslated region of the ferritin mRNA and 3'-untranslated region of the transferrin receptor (TfR) mRNA. Such binding inhibits translation of ferritin mRNA and stabilizes the mRNA for TfR, whereas the opposite scenario develops when iron in the transit pool is plentiful. However, we (Richardson, D. R., Neumannova, V., Nagy, E., and Ponka, P. (1995) Blood 86, 3211-3219) and others reported that the binding of IRPs to IREs can also be modulated by nitric oxide (NO). In this study, we showed that a short exposure of RAW 264.7 cells (a murine macrophage cell line) to the NO(+) donor, sodium nitroprusside (SNP), caused a significant decrease in IRP-2 binding to the IREs followed by IRP-2 degradation and that these changes occurred without affecting IRP-1 binding. The SNP-mediated degradation of IRP-2 in RAW 264.7 cells could be prevented by MG-132 or lactacystin, known inhibitors of proteasome-dependent protein degradation. A SNP-mediated decrease in IRP-2 binding and levels was associated with a dramatic decrease in TfR mRNA levels and an increase in ferritin synthesis. Importantly, the proteasome inhibitor MG-132 prevented the SNP-mediated decrease in TfR mRNA levels. These observations suggest that IRP-2 can play an important role in controlling transferrin receptor expression.

  16. Protein Kinase A Regulatory Subunit Isoforms Regulate Growth and Differentiation in Mucor circinelloides: Essential Role of PKAR4

    PubMed Central

    Ocampo, J.; McCormack, B.; Navarro, E.; Moreno, S.; Garre, V.

    2012-01-01

    The protein kinase A (PKA) signaling pathway plays a role in regulating growth and differentiation in the dimorphic fungus Mucor circinelloides. PKA holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits. In M. circinelloides, four genes encode the PKAR1, PKAR2, PKAR3, and PKAR4 isoforms of R subunits. We have constructed null mutants and demonstrate that each isoform has a different role in growth and differentiation. The most striking finding is that pkaR4 is an essential gene, because only heterokaryons were obtained in knockout experiments. Heterokaryons with low levels of wild-type nuclei showed an impediment in the emission of the germ tube, suggesting a pivotal role of this gene in germ tube emergence. The remaining null strains showed different alterations in germ tube emergence, sporulation, and volume of the mother cell. The pkaR2 null mutant showed an accelerated germ tube emission and was the only mutant that germinated under anaerobic conditions when glycine was used as a nitrogen source, suggesting that pkaR2 participates in germ tube emergence by repressing it. From the measurement of the mRNA and protein levels of each isoform in the wild-type and knockout strains, it can be concluded that the expression of each subunit has its own mechanism of differential regulation. The PKAR1 and PKAR2 isoforms are posttranslationally modified by ubiquitylation, suggesting another regulation point in the specificity of the signal transduction. The results indicate that each R isoform has a different role in M. circinelloides physiology, controlling the dimorphism and contributing to the specificity of cyclic AMP (cAMP)-PKA pathway. PMID:22635921

  17. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices.

    PubMed

    Morrison, Robert J; Kashlan, Khaled N; Flanangan, Colleen L; Wright, Jeanne K; Green, Glenn E; Hollister, Scott J; Weatherwax, Kevin J

    2015-10-01

    Three-dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D-printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D-printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D-printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D-printed bioresorbable implantable device. PMID:26243449

  18. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices

    PubMed Central

    Morrison, Robert J.; Kashlan, Khaled N.; Flanangan, Colleen L.; Wright, Jeanne K.; Green, Glenn E.; Hollister, Scott J.; Weatherwax, Kevin J.

    2015-01-01

    Three-dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D-printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D-printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Post-printing considerations unique to 3D-printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group’s 3D-printed bioresorbable implantable device. PMID:26243449

  19. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices.

    PubMed

    Morrison, Robert J; Kashlan, Khaled N; Flanangan, Colleen L; Wright, Jeanne K; Green, Glenn E; Hollister, Scott J; Weatherwax, Kevin J

    2015-10-01

    Three-dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D-printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D-printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D-printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D-printed bioresorbable implantable device.

  20. Complexity of cis-regulatory organization of six3a during forebrain and eye development in zebrafish

    PubMed Central

    2010-01-01

    Background Six3a belongs to the SIX family of homeodomain proteins and is expressed in the most anterior neural plate at the beginning of neurogenesis in various species. Though the function of Six3a as a crucial regulator of eye and forebrain development has been thoroughly investigated, the transcriptional regulation of six3a is not well understood. Results To elucidate the transcriptional regulation of six3a, we performed an in vivo reporter assay. Alignment of the 21-kb region surrounding the zebrafish six3a gene with the analogous region from different species identified several conserved non-coding modules. Transgenesis in zebrafish identified two enhancer elements and one suppressor. The D module drives the GFP reporter in the forebrain and eyes at an early stage, while the A module is responsible for the later expression. The A module also works as a repressor suppressing ectopic expression from the D module. Mutational analysis further minimized the A module to four highly conserved elements and the D module to three elements. Using electrophoresis mobility shift assays, we also provided evidence for the presence of DNA-binding proteins in embryonic nuclear extracts. The transcription factors that may occupy those highly conserved elements were also predicted. Conclusion This study provides a comprehensive view of six3a transcription regulation during brain and eye development and offers an opportunity to establish the gene regulatory networks underlying neurogenesis in zebrafish. PMID:20346166

  1. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors.

    PubMed

    Hanke-Gogokhia, Christin; Wu, Zhijian; Gerstner, Cecilia D; Frederick, Jeanne M; Zhang, Houbin; Baehr, Wolfgang

    2016-03-25

    Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology. PMID:26814127

  2. Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide

    PubMed Central

    Roy, Sophie; Bayly, Christopher I.; Gareau, Yves; Houtzager, Vicky M.; Kargman, Stacia; Keen, Sabina L. C.; Rowland, Kathleen; Seiden, Isolde M.; Thornberry, Nancy A.; Nicholson, Donald W.

    2001-01-01

    Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation. PMID:11353841

  3. Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube.

    PubMed

    Moore, Steven; Ribes, Vanessa; Terriente, Javier; Wilkinson, David; Relaix, Frédéric; Briscoe, James

    2013-01-01

    Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation.

  4. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea

    PubMed Central

    2013-01-01

    Background Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. Results We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. Conclusions SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence

  5. The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains.

    PubMed

    Shuen, Michael; Avvakumov, Nikita; Walfish, Paul G; Brandl, Chris J; Mymryk, Joe S

    2002-08-23

    Expression of the adenovirus E1A protein in the simple eukaryote Saccharomyces cerevisiae inhibits growth. We tested four regions of E1A that alter growth and transcription in mammalian cells for their effects in yeast when expressed as fusions to the Gal4p DNA binding domain. Expression of the N-terminal/conserved region (CR) 1 or CR3, but not of the CR2 or the C-terminal portion of E1A, inhibited yeast growth. Growth inhibition was relieved by deletion of the genes encoding the yGcn5p, Ngg1p, or Spt7p components of the SAGA transcriptional regulatory complex, but not the Ahc1p component of the related ADA complex, indicating that the N-terminal/CR1 and CR3 regions of E1A target the SAGA complex independently. Expression of the pCAF acetyltransferase, a mammalian homologue of yGcn5p, also suppressed growth inhibition by either portion of E1A. Furthermore, the N-terminal 29 residues and the CR3 portion of E1A interacted independently with yGcn5p and pCAF in vitro. Thus, two separate regions of E1A target the yGcn5p component of the SAGA transcriptional activation complex. A subregion of the N-terminal/CR1 fragment spanning residues 30-69 within CR1 also inhibited yeast growth in a SAGA-dependent fashion. However, this region did not interact with yGcn5p or pCAF, suggesting that it makes a third contact with another SAGA component. Our results provide a new model system to elucidate mechanisms by which E1A and the SAGA complex regulate transcription and growth. PMID:12070146

  6. Dentin sialophosphoprotein: a regulatory protein for dental pulp stem cell identity and fate.

    PubMed

    Guo, Shiliang; Lim, Dandrich; Dong, Zhihong; Saunders, Thomas L; Ma, Peter X; Marcelo, Cynthia L; Ritchie, Helena H

    2014-12-01

    The dentin sialophosphoprotein (dspp) transcript is expressed during tooth development as a DSPP precursor protein, which then undergoes cleavage to form mature dentin sialoprotein (DSP) and phosphophoryn (PP) proteins. Previous studies using DSPP-knockout (KO) mice have reported that these animals have hypomineralized teeth, thin dentin, and a large dental pulp chamber, similar to those from patients with dentinogenesis imperfecta III. However, there is no information about factors that regulate dental pulp stem cell lineage fate, a critical early event in the odontoblast-dentin mineralization scheme. To reveal the role of DSPP in odontoblast lineage differentiation during tooth development, we systematically examined teeth from wild-type (wt) and DSPP-KO C57BL/6 mice between the ages of postnatal day 1 and 3 months. We found developmental abnormalities not previously reported, such as circular dentin formation within dental pulp cells and altered odontoblast differentiation in DSPP-KO mice, even as early as 1 day after birth. Surprisingly, we also identified chondrocyte-like cells in the dental pulp from KO-mice teeth. Thus, these studies that compare wt and DSPP-KO mice suggest that the expression of DSPP precursor protein is required for normal odontoblast lineage differentiation and that the absence of DSPP allows dental pulp cells to differentiate into chondrocyte-like cells, which could negatively impact pulpal wound healing and tissue regeneration.

  7. Recycling of a regulatory protein by degradation of the RNA to which it binds.

    PubMed

    Deikus, Gintaras; Babitzke, Paul; Bechhofer, David H

    2004-03-01

    When Bacillus subtilis is grown in the presence of excess tryptophan, transcription of the trp operon is regulated by binding of tryptophan-activated TRAP to trp leader RNA, which promotes transcription termination in the trp leader region. Transcriptome analysis of a B. subtilis strain lacking polynucleotide phosphorylase (PNPase; a 3'-to-5' exoribonuclease) revealed a striking overexpression of trp operon structural genes when the strain was grown in the presence of abundant tryptophan. Analysis of trp leader RNA in the PNPase(-) strain showed accumulation of a stable, TRAP-protected fragment of trp leader RNA. Loss of trp operon transcriptional regulation in the PNPase(-) strain was due to the inability of ribonucleases other than PNPase to degrade TRAP-bound leader RNA, resulting in the sequestration of limiting TRAP. Thus, in the case of the B. subtilis trp operon, specific ribonuclease degradation of RNA in an RNA-protein complex is required for recycling of an RNA-binding protein. Such a mechanism may be relevant to other systems in which limiting concentrations of an RNA-binding protein must keep pace with ongoing transcription. PMID:14976255

  8. Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K

    PubMed Central

    Malik, Poonam; Clements, J. Barklie

    2004-01-01

    ORF57 protein of Kaposi's sarcoma-associated herpesvirus has a counterpart in all herpesvirus of mammals and birds and regulates gene expression at transcriptional and post-transcriptional levels. ORF57 was capable of self-interaction and bound a rapidly migrating form of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional cellular protein involved in gene expression. In virus infected cell extracts, ORF57 was present in a complex with hnRNP K that had protein kinase CK2 activity, and was phosphorylated by CK2. Different regions of ORF57 bound both catalytic α/α′ and regulatory β subunits of CK2. CK2 modification enhanced the ORF57–hnRNP K interaction, and may regulate the presence and activities of components in the complex. We suggest that ORF57 and hnRNP K interaction may modulate ORF57-mediated regulation of viral gene expression. Herpesviral ORF57 (Rhadinovirus) and ICP27 (Simplexvirus) proteins both interact with hnRNP K and CK2 implying that adaptation of the ancestral hnRNP K and CK2 to associate with viral regulatory ancestor protein likely pre-dates divergence of these Herpesviridae genera that occurred 200 million years ago. PMID:15486205

  9. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis.

    PubMed

    Ho, Lois H M; Giraud, Estelle; Uggalla, Vindya; Lister, Ryan; Clifton, Rachel; Glen, Angela; Thirkettle-Watts, Dave; Van Aken, Olivier; Whelan, James

    2008-08-01

    In this study we analyzed transcript abundance and promoters of genes encoding mitochondrial proteins to identify signaling pathways that regulate stress-induced gene expression. We used Arabidopsis (Arabidopsis thaliana) alternative oxidase AOX1a, external NADP H-dehydrogenase NDB2, and two additional highly stress-responsive genes, At2g21640 and BCS1. As a starting point, the promoter region of AOX1a was analyzed and functional analysis identified 10 cis-acting regulatory elements (CAREs), which played a role in response to treatment with H(2)O(2), rotenone, or both. Six of these elements were also functional in the NDB2 promoter. The promoter region of At2g21640, previously defined as a hallmark of oxidative stress, shared two functional CAREs with AOX1a and was responsive to treatment with H(2)O(2) but not rotenone. Microarray analysis further supported that signaling pathways induced by H(2)O(2) and rotenone are not identical. The promoter of BCS1 was not responsive to H(2)O(2) or rotenone, but highly responsive to salicylic acid (SA), whereas the promoters of AOX1a and NDB2 were unresponsive to SA. Analysis of transcript abundance of these genes in a variety of defense signaling mutants confirmed that BCS1 expression is regulated in a different manner compared to AOX1a, NDB2, and At2g21640. These mutants also revealed a pathway associated with programmed cell death that regulated AOX1a in a manner distinct from the other genes. Thus, at least three distinctive pathways regulate mitochondrial stress response at a transcriptional level, an SA-dependent pathway represented by BCS1, a second pathway that represents a convergence point for signals generated by H(2)O(2) and rotenone on multiple CAREs, some of which are shared between responsive genes, and a third pathway that acts via EDS1 and PAD4 regulating only AOX1a. Furthermore, posttranscriptional regulation accounts for changes in transcript abundance by SA treatment for some genes.

  10. X-ray Structure of a Hydroxylase–Regulatory Protein Complex from a Hydrocarbon-Oxidizing Multicomponent Monooxygenase, Pseudomonas sp. OX1 Phenol Hydroxylase†,‡

    PubMed Central

    Sazinsky, Matthew H.; Dunten, Pete W.; McCormick, Michael S.; DiDonato, Alberto; Lippard, Stephen J.

    2007-01-01

    Phenol hydroxylase (PH) belongs to a family of bacterial multicomponent monooxygenases (BMMs) with carboxylate-bridged diiron active sites. Included are toluene/o-xylene (ToMO) and soluble methane (sMMO) monooxygenase. PH hydroxylates aromatic compounds, but unlike sMMO, it cannot oxidize alkanes despite having a similar dinuclear iron active site. Important for activity is formation of a complex between the hydroxylase and a regulatory protein component. To address how structural features of BMM hydroxylases and their component complexes may facilitate the catalytic mechanism and choice of substrate, we determined X-ray structures of native and SeMet forms of the PH hydroxylase (PHH) in complex with its regulatory protein (PHM) to 2.3 Å resolution. PHM binds in a canyon on one side of the (αβγ)2 PHH dimer, contacting α-subunit helices A, E, and F ∼12 Å above the diiron core. The structure of the dinuclear iron center in PHH resembles that of mixed-valent MMOH, suggesting an Fe(II)Fe(III) oxidation state. Helix E, which comprises part of the iron-coordinating four-helix bundle, has more π-helical character than analogous E helices in MMOH and ToMOH lacking a bound regulatory protein. Consequently, conserved active site Thr and Asn residues translocate to the protein surface, and an ∼6 Å pore opens through the four-helix bundle. Of likely functional significance is a specific hydrogen bond formed between this Asn residue and a conserved Ser side chain on PHM. The PHM protein covers a putative docking site on PHH for the PH reductase, which transfers electrons to the PHH diiron center prior to O2 activation, suggesting that the regulatory component may function to block undesired reduction of oxygenated intermediates during the catalytic cycle. A series of hydrophobic cavities through the PHH α-subunit, analogous to those in MMOH, may facilitate movement of the substrate to and/or product from the active site pocket. Comparisons between the ToMOH and PHH

  11. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    PubMed

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics. PMID:9148788

  12. APOBEC3 Proteins in Viral Immunity.

    PubMed

    Stavrou, Spyridon; Ross, Susan R

    2015-11-15

    Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated. PMID:26546688

  13. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    PubMed

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  14. The regulatory T cell effector soluble fibrinogen-like protein 2 induces tubular epithelial cell apoptosis in renal transplantation.

    PubMed

    Zhao, Zitong; Yang, Cheng; Wang, Lingyan; Li, Long; Zhao, Tian; Hu, Linkun; Rong, Ruiming; Xu, Ming; Zhu, Tongyu

    2014-02-01

    Acute rejection (AR) hinders renal allograft survival. Tubular epithelial cell (TEC) apoptosis contributes to premature graft loss in AR, while the mechanism remains unclear. Soluble fibrinogen-like protein 2 (sFGL2), a novel effector of regulatory T cells (Treg), induces apoptosis to mediate tissue injury. We previously found that serum sFGL2 significantly increased in renal allograft rejection patients. In this study, the role of sFGL2 in AR was further investigated both in vivo and in vitro. The serum level of sFGL2 and the percentage of CD4(+)CD25(+)Foxp3(+) Treg in the peripheral blood were measured in renal allograft recipients with AR or stable renal function (n = 30 per group). The human TEC was stimulated with sFGL2, tumor necrosis factor (TNF)-α, or phosphate buffered saline and investigated for apoptosis in vitro. Apoptosis-associated genes expression in TEC was further assessed. Approval for this study was obtained from the Ethics Committee of Fudan University. Our results showed that the serum level of sFGL2, correlated with Treg in the peripheral blood, was significantly increased in the AR patients. In vitro, sFGL2 remarkably induced TEC apoptosis, with a significant up-regulation of proapoptotic genes, including CASP-3, CASP-8, CASP-9, CASP-10, TRADD, TNFSF10, FADD, FAS, FASLG, BAK1, BAD, BAX, and NF-KB1. However, no significant changes were observed in the expression of antiapoptotic genes, including CARD-18, NAIP, BCL2, IKBKB, and TBK1. Therefore, sFGL2, an effector of Treg, induces TEC apoptosis. Our study suggests that sFGL2 is a potential mediator in the pathogenesis of allograft rejection and provides novel insights into the role of Treg in AR. PMID:24414480

  15. Availability of 25-hydroxyvitamin D3 to antigen presenting cells controls the balance between regulatory and inflammatory T cell responses

    PubMed Central

    Jeffery, Louisa E.; Wood, Alice M.; Qureshi, Omar S; Hou, Tie Zheng; Gardner, David; Briggs, Zoe; Kaur, Satdip; Raza, Karim; Sansom, David M.

    2012-01-01

    1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, exerts potent effects on several tissues including cells of the immune system, where it affects T cell activation, differentiation and migration. The circulating, inactive form of vitamin D, 25(OH)D3, is generally used as an indication of “vitamin D status”. However, utilization of this precursor depends on its uptake by cells and subsequent conversion by the enzyme 25(OH)D3-1α-hydroxylase (CYP27B1) into active 1,25(OH)2D3. Using human T cells, we now show that addition of inactive 25(OH)D3 is sufficient to alter T cell responses only when dendritic cells (DCs) are present. Mechanistically, CYP27B1 is induced in DCs upon maturation with LPS or upon T cell contact resulting in the generation and release of 1,25(OH)2D3 which subsequently affects T cell responses. In most tissues, vitamin D binding protein (DBP) acts as a carrier to enhance the utilization of vitamin D. However, we show that DBP modulates T cell responses by restricting the availability of inactive 25(OH)D3 to DC. These data indicate that the level of “free” 25(OH)D3 available to DCs determines the inflammatory/regulatory balance of ensuing T cell responses. PMID:23087405

  16. Cyclic-AMP-dependent protein kinase A regulates apoptosis by stabilizing the BH3-only protein Bim.

    PubMed

    Moujalled, Diane; Weston, Ross; Anderton, Holly; Ninnis, Robert; Goel, Pranay; Coley, Andrew; Huang, David C S; Wu, Li; Strasser, Andreas; Puthalakath, Hamsa

    2011-01-01

    The proapoptotic Bcl2 homology domain 3(BH3)-only protein Bim is controlled by stringent post-translational regulation, predominantly through alterations in phosphorylation status. To identify new kinases involved in its regulation, we carried out a yeast two-hybrid screen using a non-spliceable variant of the predominant isoform--Bim(EL)--as the bait and identified the regulatory subunit of cyclic-AMP-dependent protein kinase A--PRKAR1A--as an interacting partner. We also show that protein kinase A (PKA) is a Bim(EL) isoform-specific kinase that promotes its stabilization. Inhibition of PKA or mutation of the PKA phosphorylation site within Bim(EL) resulted in its accelerated proteasome-dependent degradation. These results might have implications for human diseases that are characterized by abnormally increased PKA activity, such as the Carney complex and dilated cardiomyopathy. PMID:21151042

  17. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates

    PubMed Central

    Tinti, Michele; Johnson, Catherine; Toth, Rachel; Ferrier, David E. K.; MacKintosh, Carol

    2012-01-01

    14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a ‘lynchpin’, defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1–4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the –2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1–4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders. PMID:22870394

  18. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms.

  19. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms. PMID:24389346

  20. Class-Switch Recombination in the Absence of the IgH 3' Regulatory Region.

    PubMed

    Kim, Ahrom; Han, Li; Santiago, Gabriel E; Verdun, Ramiro E; Yu, Kefei

    2016-10-01

    The ∼28-kb 3' regulatory region (3'RR), which is located at the most distal 3' region of the Ig H chain locus, has multiple regulatory functions that control IgH expression, class-switch recombination (CSR), and somatic hypermutation. In this article, we report that deletion of the entire 3'RR in a mouse B cell line that is capable of robust cytokine-dependent CSR to IgA results in reduced, but not abolished, CSR. These data suggest that 3'RR is not absolutely required for CSR and, thus, is not essential for targeting activation-induced cytidine deaminase to S regions, as was suggested. Moreover, replacing 3'RR with a DNA fragment including only its four DNase I hypersensitive sites (lacking the large spacer regions) restores CSR to a level equivalent to or even higher than in wild-type cells, suggesting that the four hypersensitive sites contain most of the CSR-promoting functions of 3'RR. Stimulated cells express abundant germline transcripts, with the presence or absence of 3'RR, providing evidence that 3'RR has a role in promoting CSR that is unique from enhancing S region transcription.

  1. Preservation of Gene Duplication Increases the Regulatory Spectrum of Ribosomal Protein Genes and Enhances Growth under Stress.

    PubMed

    Parenteau, Julie; Lavoie, Mathieu; Catala, Mathieu; Malik-Ghulam, Mustafa; Gagnon, Jules; Abou Elela, Sherif

    2015-12-22

    In baker's yeast, the majority of ribosomal protein genes (RPGs) are duplicated, and it was recently proposed that such duplications are preserved via the functional specialization of the duplicated genes. However, the origin and nature of duplicated RPGs' (dRPGs) functional specificity remain unclear. In this study, we show that differences in dRPG functions are generated by variations in the modality of gene expression and, to a lesser extent, by protein sequence. Analysis of the sequence and expression patterns of non-intron-containing RPGs indicates that each dRPG is controlled by specific regulatory sequences modulating its expression levels in response to changing growth conditions. Homogenization of dRPG sequences reduces cell tolerance to growth under stress without changing the number of expressed genes. Together, the data reveal a model where duplicated genes provide a means for modulating the expression of ribosomal proteins in response to stress. PMID:26686636

  2. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases.

    PubMed

    Hari, Sanjay B; Merritt, Ethan A; Maly, Dustin J

    2014-05-22

    Most potent protein kinase inhibitors act by competing with ATP to block the phosphotransferase activity of their targets. However, emerging evidence demonstrates that ATP-competitive inhibitors can affect kinase interactions and functions in ways beyond blocking catalytic activity. Here, we show that stabilizing alternative ATP-binding site conformations of the mitogen-activated protein kinases (MAPKs) p38α and Erk2 with ATP-competitive inhibitors differentially, and in some cases divergently, modulates the abilities of these kinases to interact with upstream activators and deactivating phosphatases. Conformation-selective ligands are also able to modulate Erk2's ability to allosterically activate the MAPK phosphatase DUSP6, highlighting how ATP-competitive ligands can control noncatalytic kinase functions. Overall, these studies underscore the relationship between the ATP-binding and regulatory sites of MAPKs and provide insight into how ATP-competitive ligands can be designed to confer graded control over protein kinase function.

  3. LGP2 Downregulates Interferon Production during Infection with Seasonal Human Influenza A Viruses That Activate Interferon Regulatory Factor 3

    PubMed Central

    Malur, Meghana; Gale, Michael

    2012-01-01

    LGP2, a member of the RIG-I-like receptor family, lacks the amino-terminal caspase activation recruitment domains (CARDs) required for initiating the activation of interferon regulatory factor 3 (IRF3) and interferon (IFN) transcription. The role of LGP2 in virus infection is controversial, and the only LGP2 experiments previously carried out with mammalian influenza A viruses employed an attenuated, mouse-adapted H1N1 A/PR/8/34 (PR8) virus that does not encode the NS1 protein. Here we determine whether LGP2 has a role during infection with wild-type, nonattenuated influenza A viruses that have circulated in the human population, specifically two types of seasonal influenza A viruses: (i) H3N2 and H1N1 viruses that activate IRF3 and IFN transcription and (ii) recent H1N1 viruses that block these two activations. In human cells infected with an H3N2 virus that activates IRF3, overexpression of LGP2 or its repressor domain decreased STAT1 activation and IFN-β transcription approximately 10-fold. Overexpression of LGP2 also caused a 10-fold decrease of STAT1 activation during infection with other seasonal influenza A viruses that activate IRF3. Using LGP2+/+ and LGP2−/− mouse cells, we show that endogenous LGP2 decreased IFN production during H3N2 virus infection 3- to 4-fold. In contrast, in both mouse and human cells infected with H1N1 viruses that do not activate IRF3, LGP2 had no detectable role. These results demonstrate that LGP2 downregulates IFN production during infection by seasonal influenza A viruses that activate IRF3 and IFN transcription. It is intriguing that LGP2, a host protein induced during influenza A virus infection, downregulates the host antiviral IFN response. PMID:22837208

  4. LGP2 downregulates interferon production during infection with seasonal human influenza A viruses that activate interferon regulatory factor 3.

    PubMed

    Malur, Meghana; Gale, Michael; Krug, Robert M

    2012-10-01

    LGP2, a member of the RIG-I-like receptor family, lacks the amino-terminal caspase activation recruitment domains (CARDs) required for initiating the activation of interferon regulatory factor 3 (IRF3) and interferon (IFN) transcription. The role of LGP2 in virus infection is controversial, and the only LGP2 experiments previously carried out with mammalian influenza A viruses employed an attenuated, mouse-adapted H1N1 A/PR/8/34 (PR8) virus that does not encode the NS1 protein. Here we determine whether LGP2 has a role during infection with wild-type, nonattenuated influenza A viruses that have circulated in the human population, specifically two types of seasonal influenza A viruses: (i) H3N2 and H1N1 viruses that activate IRF3 and IFN transcription and (ii) recent H1N1 viruses that block these two activations. In human cells infected with an H3N2 virus that activates IRF3, overexpression of LGP2 or its repressor domain decreased STAT1 activation and IFN-β transcription approximately 10-fold. Overexpression of LGP2 also caused a 10-fold decrease of STAT1 activation during infection with other seasonal influenza A viruses that activate IRF3. Using LGP2(+/+) and LGP2(-/-) mouse cells, we show that endogenous LGP2 decreased IFN production during H3N2 virus infection 3- to 4-fold. In contrast, in both mouse and human cells infected with H1N1 viruses that do not activate IRF3, LGP2 had no detectable role. These results demonstrate that LGP2 downregulates IFN production during infection by seasonal influenza A viruses that activate IRF3 and IFN transcription. It is intriguing that LGP2, a host protein induced during influenza A virus infection, downregulates the host antiviral IFN response.

  5. Prolonged Fasting Identifies Heat Shock Protein 10 as a Sirtuin 3 Substrate

    PubMed Central

    Lu, Zhongping; Chen, Yong; Aponte, Angel M.; Battaglia, Valentina; Gucek, Marjan; Sack, Michael N.

    2015-01-01

    Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function. PMID:25505263

  6. Leucine-responsive regulatory protein Lrp and PapI homologues influence phase variation of CS31A fimbriae.

    PubMed

    Graveline, Richard; Garneau, Philippe; Martin, Christine; Mourez, Michaël; Hancock, Mark A; Lavoie, Rémi; Harel, Josée

    2014-08-15

    CS31A, a K88-related surface antigen specified by the clp operon, is a member of the type P family of adhesive factors and plays a key role in the establishment of disease caused by septicemic and enterotoxigenic Escherichia coli strains. Its expression is under the control of methylation-dependent transcriptional regulation, for which the leucine-responsive regulatory protein (Lrp) is essential. CS31A is preferentially in the OFF state and exhibits distinct regulatory features compared to the regulation of other P family members. In the present study, surface plasmon resonance and DNase I protection assays showed that Lrp binds to the distal moiety of the clp regulatory region with low micromolar affinity compared to its binding to the proximal moiety, which exhibits stronger, nanomolar affinity. The complex formation was also influenced by the addition of PapI or FooI, which increased the affinity of Lrp for the clp distal and proximal regions and was required to induce phase variation. The influence of PapI or FooI, however, was predominantly associated with a more complete shutdown of clp expression, in contrast to what has previously been observed with AfaF (a PapI ortholog). Taken together, these results suggest that the preferential OFF state observed in CS31A cells is mainly due to the weak interaction of the leucine-responsive regulatory protein with the clp distal region and that the PapI homolog favors the OFF phase. Within the large repertoire of fimbrial variants in the P family, our study illustrates that having a fimbrial operon that lacks its own PapI ortholog allows it to be more flexibly regulated by other orthologs in the cell. PMID:24914179

  7. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells.

    PubMed

    Chen, Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D; Costa, Max

    2005-08-15

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1alpha). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  8. Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism

    PubMed Central

    Doehle, Brian P.; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M. Juliana

    2012-01-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV. PMID:22593165

  9. Vpu mediates depletion of interferon regulatory factor 3 during HIV infection by a lysosome-dependent mechanism.

    PubMed

    Doehle, Brian P; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M Juliana; Gale, Michael

    2012-08-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.

  10. Drug-drug interactions related to altered absorption and plasma protein binding: theoretical and regulatory considerations, and an industry perspective.

    PubMed

    Hochman, Jerome; Tang, Cuyue; Prueksaritanont, Thomayant

    2015-03-01

    Drug-drug interactions (DDIs) related to altered drug absorption and plasma protein binding have received much less attention from regulatory agencies relative to DDIs mediated via drug metabolizing enzymes and transporters. In this review, a number of theoretical bases and regulatory framework are presented for these DDI aspects. Also presented is an industry perspective on how to approach these issues in support of drug development. Overall, with the exception of highly permeable and highly soluble (BCS 1) drugs, DDIs related to drug-induced changes in gastrointestinal (GI) physiology can be substantial, thus warranting more attentions. For a better understanding of absorption-associated DDI potential in a clinical setting, mechanistic studies should be conducted based on holistic integration of the pharmaceutical profiles (e.g., pH-dependent solubility) and pharmacological properties (e.g., GI physiology and therapeutic margin) of drug candidates. Although majority of DDI events related to altered plasma protein binding are not expected to be of clinical significance, exceptions exist for a subset of compounds with certain pharmacokinetic and pharmacological properties. Knowledge of the identity of binding proteins and the binding extent in various clinical setting (including disease states) can be valuable in aiding clinical DDI data interpretations, and ensuring safe and effective use of new drugs.

  11. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications

    PubMed Central

    Niklas, Karl J.; Bondos, Sarah E.; Dunker, A. Keith; Newman, Stuart A.

    2015-01-01

    Models for genetic regulation and cell fate specification characteristically assume that gene regulatory networks (GRNs) are essentially deterministic and exhibit multiple stable states specifying alternative, but pre-figured cell fates. Mounting evidence shows, however, that most eukaryotic precursor RNAs undergo alternative splicing (AS) and that the majority of transcription factors contain intrinsically disordered protein (IDP) domains whose functionalities are context dependent as well as subject to post-translational modification (PTM). Consequently, many transcription factors do not have fixed cis-acting regulatory targets, and developmental determination by GRNs alone is untenable. Modeling these phenomena requires a multi-scale approach to explain how GRNs operationally interact with the intra- and intercellular environments. Evidence shows that AS, IDP, and PTM complicate gene expression and act synergistically to facilitate and promote time- and cell-specific protein modifications involved in cell signaling and cell fate specification and thereby disrupt a strict deterministic GRN-phenotype mapping. The combined effects of AS, IDP, and PTM give proteomes physiological plasticity, adaptive responsiveness, and developmental versatility without inefficiently expanding genome size. They also help us understand how protein functionalities can undergo major evolutionary changes by buffering mutational consequences. PMID:25767796

  12. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    PubMed Central

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  13. Protein kinase A type II-α regulatory subunit regulates the response of prostate cancer cells to taxane treatment

    PubMed Central

    Zynda, Evan R; Matveev, Vitaliy; Makhanov, Michael; Chenchik, Alexander; Kandel, Eugene S

    2014-01-01

    In the last decade taxane-based therapy has emerged as a standard of care for hormone-refractory prostate cancer. Nevertheless, a significant fraction of tumors show no appreciable response to the treatment, while the others develop resistance and recur. Despite years of intense research, the mechanisms of taxane resistance in prostate cancer and other malignancies are poorly understood and remain a topic of intense investigation. We have used improved mutagenesis via random insertion of a strong promoter to search for events, which enable survival of prostate cancer cells after Taxol exposure. High-throughput mapping of the integration sites pointed to the PRKAR2A gene, which codes for a type II-α regulatory subunit of protein kinase A, as a candidate modulator of drug response. Both full-length and N-terminally truncated forms of the PRKAR2A gene product markedly increased survival of prostate cancer cells lines treated with Taxol and Taxotere. Suppression of protein kinase A enzymatic activity is the likely mechanism of action of the overexpressed proteins. Accordingly, protein kinase A inhibitor PKI (6–22) amide reduced toxicity of Taxol to prostate cancer cells. Our findings support the role of protein kinase A and its constituent proteins in cell response to chemotherapy. PMID:25485509

  14. The Intrinsically Disordered N-terminal Region of AtREM1.3 Remorin Protein Mediates Protein-Protein Interactions*

    PubMed Central

    Marín, Macarena; Thallmair, Veronika; Ott, Thomas

    2012-01-01

    The longstanding structure-function paradigm, which states that a protein only serves a biological function in a structured state, had to be substantially revised with the description of intrinsic disorder in proteins. Intrinsically disordered regions that undergo a stimulus-dependent disorder-to-order transition are common to a large number of signaling proteins. However, little is known about the functionality of intrinsically disordered regions in plant proteins. Here we investigated intrinsic disorder in a plant-specific remorin protein that has been described as a signaling component in plant-microbe interactions. Using bioinformatic, biochemical, and biophysical approaches, we characterized the highly abundant remorin AtREM1.3, showing that its N-terminal region is intrinsically disordered. Although only the AtREM1.3 C-terminal domain is essential for stable homo-oligomerization, the N-terminal region facilitates this interaction. Furthermore, we confirmed the stable interaction between AtREM1.3 and four isoforms of the importin α protein family in a yeast two-hybrid system and by an in planta bimolecular fluorescent complementation assay. Phosphorylation of Ser-66 in the intrinsically disordered N-terminal region decreases the interaction strength with the importin α proteins. Hence, the N-terminal region may constitute a regulatory domain, stabilizing these interactions. PMID:23027878

  15. Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide

    PubMed Central

    Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil

    2016-01-01

    The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body’s internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP. PMID:27022966

  16. Expression of protein kinase A regulatory subunits in benign and malignant human thyroid tissues: A systematic review.

    PubMed

    Del Gobbo, Alessandro; Peverelli, Erika; Treppiedi, Donatella; Lania, Andrea; Mantovani, Giovanna; Ferrero, Stefano

    2016-08-01

    In this review, we discuss the molecular mechanisms and prognostic implications of the protein kinase A (PKA) signaling pathway in human tumors, with special emphasis on the malignant thyroid. The PKA signaling pathway is differentially activated by the expression of regulatory subunits 1 (R1) and 2 (R2), whose levels change during development, differentiation, and neoplastic transformation. Following the identification of gene mutations within the PKA regulatory subunit R1A (PRKAR1A) that cause Carney complex-associated neoplasms, several investigators have studied PRKAR1A expression in sporadic thyroid tumors. The PKA regulatory subunit R2B (PRKAR2B) is highly expressed in benign, as well as in malignant differentiated and undifferentiated lesions. PRKAR1A is highly expressed in follicular adenomas and malignant lesions with a statistically significant gradient between benign and malignant tumors; however, it is not expressed in hyperplastic nodules. Although the importance of PKA in human malignancy outcomes is not completely understood, PRKAR1A expression correlates with tumor dimension in malignant lesions. Additional studies are needed to determine whether a relationship exists between PKA subunit expression and clinical outcomes, particularly in undifferentiated tumors. In conclusion, the R1A subunit might be a good molecular candidate for the targeted treatment of malignant thyroid tumors. PMID:27321957

  17. Unique N-terminal Arm of Mycobacterium tuberculosis PhoP Protein Plays an Unusual Role in Its Regulatory Function*

    PubMed Central

    Das, Arijit Kumar; Kumar, Vijjamarri Anil; Sevalkar, Ritesh Rajesh; Bansal, Roohi; Sarkar, Dibyendu

    2013-01-01

    Mycobacterium tuberculosis PhoP, a master regulator involved in complex lipid biosynthesis and expression of unknown virulence determinants, is composed of an N-terminal receiver domain and a C-terminal effector domain. The two experimentally characterized PhoP orthologs, from Escherichia coli and Salmonella enterica, display vastly different regulatory capabilities. Here, we demonstrate that the 20-residue-long N-terminal arm unique to M. tuberculosis PhoP plays an essential role in the expanded regulatory capabilities of this important regulator. Although the arm is not required for overall structural stability and/or phosphorylation of the PhoP N-domain, strikingly it is essential for phosphorylation-coupled transcription regulation of target genes. Consistent with this view, arm truncation of PhoP is accompanied by a conformational change of the effector domain, presenting a block in activation subsequent to phosphorylation. These results suggest that presence of the arm, unique to this regulator that shares an otherwise highly conserved domain structure with members of the protein family, contributes to the mechanism of inter-domain interactions. Thus, we propose that the N-terminal arm is an adaptable structural feature of M. tuberculosis PhoP, which evolved to fine-tune regulatory capabilities of the transcription factor in response to the changing physiology of the bacilli within its host. PMID:23963455

  18. Basolateral Na+/HCO3– cotransport activity is regulated by the dissociable Na+/H+ exchanger regulatory factor

    PubMed Central

    Bernardo, Angelito A.; Kear, Felicidad T.; Santos, Anna V.P.; Ma, Jianfei; Steplock, Debra; Robey, R. Brooks; Weinman, Edward J.

    1999-01-01

    In the renal proximal tubule, the activities of the basolateral Na+/HCO3– cotransporter (NBC) and the apical Na+/H+ exchanger (NHE3) uniformly vary in parallel, suggesting that they are coordinately regulated. PKA-mediated inhibition of NHE3 is mediated by a PDZ motif–containing protein, the Na+/H+ exchanger regulatory factor (NHE-RF). Given the common inhibition of these transporters after protein kinase A (PKA) activation, we sought to determine whether NHE-RF also plays a role in PKA-regulated NBC activity. Renal cortex immunoblot analysis using anti-peptide antibodies directed against rabbit NHE-RF demonstrated the presence of this regulatory factor in both brush-border membranes (BBMs) and basolateral membranes (BLMs). Using a reconstitution assay, we found that limited trypsin digestion of detergent solubilized rabbit renal BLM preparations resulted in NBC activity that was unaffected by PKA activation. Co-reconstitution of these trypsinized preparations with a recombinant protein corresponding to wild-type rabbit NHE-RF restored the inhibitory effect of PKA on NBC activity in a concentration-dependent manner. NBC activity was inhibited 60% by 10–8M NHE-RF; this effect was not observed in the absence of PKA. Reconstitution with heat-denatured NHE-RF also failed to attenuate NBC activity. To establish further a physiologic role for NHE-RF in NBC regulation, the renal epithelial cell line B-SC-1, which lacks detectable endogenous NHE-RF expression, was engineered to express stably an NHE-RF transgene. NHE-RF–expressing B-SC-1 cells (B-SC-RF) exhibited markedly lower basal levels of NBC activity than did wild-type controls. Inhibition of NBC activity in B-SC-RF cells was enhanced after 10 μM of forskolin treatment, consistent with a postulated role for NHE-RF in mediating the inhibition of NBC activity by PKA. These findings not only suggest NHE-RF involvement in PKA-regulated NBC activity, but also provide a unique molecular mechanism whereby

  19. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    SciTech Connect

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L.

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  20. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  1. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cells.

    PubMed

    Nishimoto, Arata; Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2013-08-30

    Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cell line COLO205.

  2. Ubiquitin-associated Domain-containing Ubiquitin Regulatory X (UBX) Protein UBXN1 Is a Negative Regulator of Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Wang, Yu-Bo; Tan, Bo; Mu, Rui; Chang, Yan; Wu, Min; Tu, Hai-Qing; Zhang, Yu-Cheng; Guo, Sai-Sai; Qin, Xuan-He; Li, Tao; Li, Wei-Hua; Li, Ai-Ling; Zhang, Xue-Min; Li, Hui-Yan

    2015-01-01

    Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97. PMID:25681446

  3. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas.

    PubMed

    Díaz-Troya, Sandra; Pérez-Pérez, María Esther; Pérez-Martín, Marta; Moes, Suzette; Jeno, Paul; Florencio, Francisco J; Crespo, José L

    2011-10-01

    The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORC1 and TORC2. Inactivation of TORC1 by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.

  4. Expression and purification of the cynR regulatory gene product: CynR is a DNA-binding protein.

    PubMed Central

    Lamblin, A F; Fuchs, J A

    1993-01-01

    The CynR protein, a member of the LysR family, positively regulates the Escherichia coli cyn operon and negatively autoregulates its own transcription. By S1 mapping analysis, the in vivo cynR transcription start site was located 63 bp upstream of the cynTSX operon transcription start site. Topologically, the cynR and cynTSX promoters overlap and direct transcription in opposite directions. The CynR translation initiation codon was identified by oligonucleotide-directed mutagenesis, and the CynR coding sequence was cloned under the control of a T7 phage promoter. The CynR protein was stably expressed at a high level with a T7 RNA polymerase-T7 phage promoter system. Purification by ion-exchange chromatography, affinity chromatography, and ammonium sulfate fractionation yielded pure CynR protein. Gel shift assays confirmed that CynR is a DNA-binding protein like the other members of the LysR family. The CynR regulatory protein binds specifically to a 136-bp DNA fragment encompassing both the cynR and the cynTSX promoters. Images PMID:8253686

  5. Membrane orientation of the Na,K-ATPase regulatory membrane protein CHIF determined by solid-state NMR

    PubMed Central

    Franzin, Carla M.; Teriete, Peter; Marassi, Francesca M.

    2010-01-01

    Corticosteroid hormone-induced factor (CHIF) is a major regulatory subunit of the Na,K-ATPase, and a member of an evolutionarily conserved family of membrane proteins that regulate the function of the enzyme complex in a tissue-specific and physiological-state-specific manner. Here we present the structure of CHIF oriented in the membrane, determined by solid-state NMR orientation-dependent restraints. Because CHIF adopts a similar structure in lipid micelles and bilayers, it is possible to assign the solid-state NMR spectrum measured for 15N-labeled CHIF in oriented bilayers from the structure determined in micelles, to obtain the global orientation of the protein in the membrane. PMID:18098352

  6. Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus

    PubMed Central

    Fu, Sherleen; Jiang, Wendy; Zheng, Wei

    2015-01-01

    Our recent data suggest a high accumulation of copper (Cu) in the subventricular zone (SVZ) along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF), which is secreted by a neighboring tissue choroid plexus (CP). Changes in Cu regulatory gene expressions in the SVZ and CP as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate the associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and CP were dissected from brains of 3-week, 10-week, or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significantly positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p < 0.01), respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein metallothioneins (MTs), while the CP expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p < 0.05), but inversely associated with type A proliferating neuroblast marker Dcx (p < 0.05) and type C transit amplifying progenitor marker Nestin (p < 0.01). Dmt1 had significant positive correlations with age and Cu levels in the plexus (p < 0.01). These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the CP. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region. PMID:26106293

  7. ORegAnno 3.0: a community-driven resource for curated regulatory annotation.

    PubMed

    Lesurf, Robert; Cotto, Kelsy C; Wang, Grace; Griffith, Malachi; Kasaian, Katayoon; Jones, Steven J M; Montgomery, Stephen B; Griffith, Obi L

    2016-01-01

    The Open Regulatory Annotation database (ORegAnno) is a resource for curated regulatory annotation. It contains information about regulatory regions, transcription factor binding sites, RNA binding sites, regulatory variants, haplotypes, and other regulatory elements. ORegAnno differentiates itself from other regulatory resources by facilitating crowd-sourced interpretation and annotation of regulatory observations from the literature and highly curated resources. It contains a comprehensive annotation scheme that aims to describe both the elements and outcomes of regulatory events. Moreover, ORegAnno assembles these disparate data sources and annotations into a single, high quality catalogue of curated regulatory information. The current release is an update of the database previously featured in the NAR Database Issue, and now contains 1 948 307 records, across 18 species, with a combined coverage of 334 215 080 bp. Complete records, annotation, and other associated data are available for browsing and download at http://www.oreganno.org/.

  8. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1.

    PubMed

    Langelier, Marie-France; Riccio, Amanda A; Pascal, John M

    2014-07-01

    PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains-Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5' phosphate (5'P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation through a local destabilization of the CAT. Collectively, our study provides new insights into the specialization of the DNA-dependent PARPs and their specific roles in DNA repair pathways.

  9. Proximal tubular epithelial cells possess a novel 42-kilodalton guanine nucleotide-binding regulatory protein.

    PubMed Central

    Zhou, J; Sims, C; Chang, C H; Berti-Mattera, L; Hopfer, U; Douglas, J

    1990-01-01

    The proximal tubule of the kidney represents an important location where adenylate cyclase regulates salt and water transport; yet a detailed characterization of the distribution and classification of guanine nucleotide-binding protein (G protein) and adenylate cyclase is lacking. We used purified brush border (20-fold) and basolateral membranes (14-fold) to characterize parathyroid hormone- and G protein-regulated adenylate cyclase and G-protein distribution. Adenylate cyclase was predominantly localized to basolateral membranes, while the 46-kDa alpha subunit of the stimulatory G protein (Gs) was 2-fold higher in brush border membranes than in basolateral membranes. The alpha subunit of the inhibitory G protein (Gi; 41 kDa) was equally distributed on immunoblotting but was 2-fold higher in brush border membranes than in basolateral membranes on radiolabeling with pertussis toxin. A 42-kDa cholera toxin substrate that cross-reacted with antisera to the common alpha subunit of G proteins and to Gs on immunoblotting and that was not immunoprecipitated with two Gi antisera was the most abundant alpha subunit and comprised approximately 1% of the total membrane proteins. These observations suggest that G proteins are important regulators of proximal tubular transport independent of adenylate cyclase. Images PMID:2120702

  10. Evidence for the existence of an Ns-type regulatory protein in Trypanosoma cruzi membranes.

    PubMed Central

    Eisenschlos, C D; Paladini, A A; Molina y Vedia, L; Torres, H N; Flawiá, M M

    1986-01-01

    The existence of a GTP-binding protein of the Ns type in Trypanosoma cruzi was explored. Epimastigote membranes were labelled by cholera toxin in the presence of [adenine-14C]NAD+. After SDS/polyacrylamide-gel electrophoresis of extracted membrane proteins, a single labelled polypeptide band of apparent Mr approx. 45,000 was detected. Epimastigote cells were treated with N-ethylmaleimide and electrofused to lymphoma S49 cells lacking the Ns protein. Evidence indicates that in such electrofusion-generated cell hybrids a heterologous adenylate cyclase system was reconstituted with the Ns protein provided by T. cruzi epimastigotes. Images Fig. 2. PMID:3099761

  11. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum

    PubMed Central

    DuBois, Juwen C.; Smulian, A. George

    2016-01-01

    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  12. A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus

    PubMed Central

    Beccari, Leonardo; Yakushiji-Kaminatsui, Nayuta; Woltering, Joost M.; Necsulea, Anamaria; Lonfat, Nicolas; Rodríguez-Carballo, Eddie; Mascrez, Benedicte; Yamamoto, Shiori; Kuroiwa, Atsushi

    2016-01-01

    During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition. PMID:27198226

  13. A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus.

    PubMed

    Beccari, Leonardo; Yakushiji-Kaminatsui, Nayuta; Woltering, Joost M; Necsulea, Anamaria; Lonfat, Nicolas; Rodríguez-Carballo, Eddie; Mascrez, Benedicte; Yamamoto, Shiori; Kuroiwa, Atsushi; Duboule, Denis

    2016-05-15

    During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition. PMID:27198226

  14. [Seasonal changes in phosphorylation of myosin regulatory light chains and C-protein in myocardium of hibernating ground squirrel Citellus undulatus].

    PubMed

    Malyshev, S L; Osipova, D A; Vikhliantsev, I M; Podlubnaia, Z A

    2006-01-01

    A comparative study concerning the extent of phosphorylation of myosin regulatory light chains and C-protein from the left ventricle of hibernating ground squirrel Citellus undulatus during the periods of hibernation and activity was carried out. During hibernation, regulatory light chains of ground squirrel were found to be completely dephosphorylated. In active animals, the share of phosphorylated light chains averages 40-45% of their total amount. The extent of phosphorylation of the cardiac C-protein during hibernation is about two times higher than that in the active state. Seasonal differences in phosphorylation of the two proteins of ground squirrel myocardium are discussed in the context of adaptation to hibernation.

  15. Foxp3+ T-Regulatory Cells in Sjögren’s Syndrome

    PubMed Central

    Christodoulou, Maria I.; Kapsogeorgou, Efstathia K.; Moutsopoulos, Niki M.; Moutsopoulos, Haralampos M.

    2008-01-01

    Sjögren’s syndrome (SS) is a chronic autoimmune exocrinopathy associated with variable lymphocytic infiltration of the affected organs (primarily salivary and lacrimal glands) and broad clinical manifestations, including lymphoma development. To investigate the potential implication of Foxp3+ T-regulatory cells in the regulation of SS inflammatory responses, we studied their incidence in the minor salivary glands (MSGs) and their relationship with histopathological and clinical disease parameters. Similar percentages of infiltrating Foxp3+ cells were observed in the MSG lesions of all SS patients (n = 30) and non-SS sialadenitis controls (n = 7). Foxp3+ cells were not detected in sicca-complaining controls with negative biopsy (n = 6). In SS patients, Foxp3+ cell frequency varied according to lesion severity, with the highest and lowest frequencies obtained in intermediate and mild MSG lesions, respectively. In the peripheral blood of these patients, reverse distribution of Foxp3+ cells was observed. Furthermore, the frequency of Foxp3+ cells in the MSG lesions and peripheral blood was negatively associated (r = −0.6679, P = 0.0065). MSG-infiltrating Foxp3+ cells were found to positively correlate with biopsy focus score (P = 0.05), infiltrating mononuclear cells, dendritic cells, and macrophages (P ≤ 0.024 each), and serum C4 levels (P = 0.0328), whereas lower Foxp3+ cell incidence correlated with adverse predictors for lymphoma development, such as the presence of C4 hypocomplementemia (P = 0.012) and SG enlargement (tendency, P = 0.067). Our findings suggest that the Foxp3+ T-regulatory cell frequency in the MSG lesions of SS patients correlates with inflammation grade and certain risk factors for lymphoma development. PMID:18818377

  16. Inhibition of protein kinase C catalytic activity by additional regions within the human protein kinase Calpha-regulatory domain lying outside of the pseudosubstrate sequence.

    PubMed Central

    Kirwan, Angie F; Bibby, Ashley C; Mvilongo, Thierry; Riedel, Heimo; Burke, Thomas; Millis, Sherri Z; Parissenti, Amadeo M

    2003-01-01

    The N-terminal pseudosubstrate site within the protein kinase Calpha (PKCalpha)-regulatory domain has long been regarded as the major determinant for autoinhibition of catalytic domain activity. Previously, we observed that the PKC-inhibitory capacity of the human PKCalpha-regulatory domain was only reduced partially on removal of the pseudosubstrate sequence [Parissenti, Kirwan, Kim, Colantonio and Schimmer (1998) J. Biol. Chem. 273, 8940-8945]. This finding suggested that one or more additional region(s) contributes to the inhibition of catalytic domain activity. To assess this hypothesis, we first examined the PKC-inhibitory capacity of a smaller fragment of the PKCalpha-regulatory domain consisting of the C1a, C1b and V2 regions [GST-Ralpha(39-177): this protein contained the full regulatory domain of human PKCalpha fused to glutathione S-transferase (GST), but lacked amino acids 1-38 (including the pseudosubstrate sequence) and amino acids 178-270 (including the C2 region)]. GST-Ralpha(39-177) significantly inhibited PKC in a phorbol-independent manner and could not bind the peptide substrate used in our assays. These results suggested that a region within C1/V2 directly inhibits catalytic domain activity. Providing further in vivo support for this hypothesis, we found that expression of N-terminally truncated pseudosubstrate-less bovine PKCalpha holoenzymes in yeast was capable of inhibiting cell growth in a phorbol-dependent manner. This suggested that additional autoinhibitory force(s) remained within the truncated holoenzymes that could be relieved by phorbol ester. Using tandem PCR-mediated mutagenesis, we observed that mutation of amino acids 33-86 within GST-Ralpha(39-177) dramatically reduced its PKC-inhibitory capacity when protamine was used as substrate. Mutagenesis of a broad range of sequences within C2 (amino acids 159-242) also significantly reduced PKC-inhibitory capacity. Taken together, these observations support strongly the existence of

  17. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism.

    PubMed

    Okuyama, Ryuhei; Nguyen, Bach-Cuc; Talora, Claudio; Ogawa, Eisaku; Tommasi di Vignano, Alice; Lioumi, Maria; Chiorino, Giovanna; Tagami, Hachiro; Woo, Minna; Dotto, G Paolo

    2004-04-01

    Embryonic cells are expected to possess high growth/differentiation potential, required for organ morphogenesis and expansion during development. However, little is known about the intrinsic properties of embryonic epithelial cells due to difficulties in their isolation and cultivation. We report here that pure keratinocyte populations from E15.5 mouse embryos commit irreversibly to differentiation much earlier than newborn cells. Notch signaling, which promotes keratinocyte differentiation, is upregulated in embryonic keratinocyte and epidermis, and elevated caspase 3 expression, which we identify as a transcriptional Notch1 target, accounts in part for the high commitment of embryonic keratinocytes to terminal differentiation. In vivo, lack of caspase 3 results in increased proliferation and decreased differentiation of interfollicular embryonic keratinocytes, together with decreased activation of PKC-delta, a caspase 3 substrate which functions as a positive regulator of keratinocyte differentiation. Thus, a Notch1-caspase 3 regulatory mechanism underlies the intrinsically high commitment of embryonic keratinocytes to terminal differentiation.

  18. IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid:polycytodylic acid.

    PubMed

    Pang, Xiaoli; Wang, Zhaoxia; Zhai, Naicui; Zhang, Qianqian; Song, Hongxiao; Zhang, Yujiao; Li, Tianyang; Li, Haijun; Su, Lishan; Niu, Junqi; Tu, Zhengkun

    2016-09-01

    Hepatitis C virus (HCV) can cause persistent infection and chronic liver disease, and viral factors are involved in HCV persistence. HCV core protein, a highly conserved viral protein, not only elicits an immunoresponse, but it also regulates it. In addition, HCV core protein interacts with toll-like receptors (TLRs) on monocytes, inducing them to produce cytokines. Polyinosinic acid:polycytodylic acid (polyI:C) is a synthetic analogue of double-stranded RNA that binds to TLR3 and can induce secretion of type I IFN from monocytes. Cytokine response against HCV is likely to affect the natural course of infection as well as HCV persistence. However, possible effects of cytokines induced by HCV core protein and polyI:C remain to be investigated. In this study, we isolated CD14(+) monocytes from healthy donors, cultured them in the presence of HCV core protein and/or polyI:C, and characterized the induced cytokines, phenotypes and mechanisms. We demonstrated that HCV core protein- and polyI:C-stimulated CD14(+) monocytes secreted tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-10, and type I interferon (IFN). Importantly, TNF-α and IL-1β regulated the secretion of IL-10, which then influenced the expression of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) and subsequently the production of type I IFN. Interestingly, type I IFN also regulated the production of IL-10, which in turn inhibited the nuclear factor (NF)-κB subunit, reducing TNF-α and IL-1β levels. Therefore, IL-10 appears to play a central role in regulating the production of cytokines induced by HCV core protein and polyI:C. PMID:27337528

  19. Serum and Antibodies of Glaucoma Patients Lead to Changes in the Proteome, Especially Cell Regulatory Proteins, in Retinal Cells

    PubMed Central

    Bell, Katharina; Funke, Sebastian; Pfeiffer, Norbert; Grus, Franz H.

    2012-01-01

    Purpose Previous studies show significantly specifically changed autoantibody reactions against retinal antigens in the serum of glaucoma and ocular hypertension (OHT) patients in comparison to healthy people. As pathogenesis of glaucoma still is unknown the aim of this study was to analyze if the serum and antibodies of glaucoma patients interact with neuroretinal cells. Methods R28 cells were incubated with serum of patients suffering from primary open angle glaucoma (POAG), normal tension glaucoma (NTG) or OHT, POAG serum after antibody removal and serum from healthy people for 48 h under a normal or an elevated pressure of 15000 Pa (112 mmHg). RGC5 cells were additionally incubated with POAG antibodies under a normal pressure. Protein profiles of the R28 cells were measured with Seldi-Tof-MS, protein identification was performed with Maldi-TofTof-MS. Protein analysis of the RGC5 cells was performed with ESI-Orbitrap MS. Statistical analysis including multivariate statistics, variance component analysis as well as calculating Mahalanobis distances was performed. Results Highly significant changes of the complex protein profiles after incubation with glaucoma and OHT serum in comparison to healthy serum were detected, showing specific changes in the cells (e.g. Protein at 9192 Da (p<0.001)). The variance component analysis showed an effect of the serum of 59% on the cells. The pressure had an effect of 11% on the cells. Antibody removal led to significantly changed cell reactions (p<0.03). Furthermore, the incubation with POAG serum and its antibodies led to pro-apoptotic changes of proteins in the cells. Conclusions These studies show that the serum and the antibodies of glaucoma patients significantly change protein expressions involved in cell regulatory processes in neuroretinal cells. These could lead to a higher vulnerability of retinal cells towards stress factors such as an elevated IOP and eventually could lead to an increased apoptosis of the cells as

  20. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins

    PubMed Central

    Walsh, Dustin R.; Nolin, Thomas D.

    2015-01-01

    Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975

  1. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods.

    PubMed

    Hu, Guodong; Cao, Zanxia; Xu, Shicai; Wang, Wei; Wang, Jihua

    2015-01-01

    The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins. PMID:26568041

  2. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation.

    PubMed

    Ke, Xing; Zhang, Shuping; Xu, Jian; Liu, Genyan; Zhang, Lixia; Xie, Erfu; Gao, Li; Li, Daqian; Sun, Ruihong; Wang, Fang; Pan, Shiyang

    2016-05-01

    Patients with non-small-cell lung cancer (NSCLC) have immune defects that are poorly understood. Forkhead box protein P3 (Foxp3) is crucial for immunosuppression by CD4(+) regulatory T cells (Tregs). It is not well known how NSCLC induces Foxp3 expression and causes immunosuppression in tumor-bearing patients. Our study found a higher percentage of CD4(+) Tregs in the peripheral blood of NSCLC compared with healthy donors. NSCLC patients showed demethylation of eight CpG sites within the Foxp3 promoter with methylation ratios negatively correlated with CD4(+)CD25(+)Foxp3(+) T levels. Foxp3 expression in CD4(+) Tregs was directly regulated by Foxp3 promoter demethylation and was involved in immunosuppression by NSCLC. To verify the effect of tumor cells on the phenotype and function of CD4(+) Tregs, we established a coculture system using NSCLC cell line and healthy CD4(+) T cells and showed that SPC-A1 induced IL-10 and TGF-β1 secretion by affecting the function of CD4(+) Tregs. The activity of DNA methyltransferases from CD4(+) T was decreased during this process. Furthermore, eight CpG sites within the Foxp3 promoter also appeared to have undergone demethylation. Foxp3 is highly expressed in CD4(+) T cells, and this may be caused by gene promoter demethylation. These induced Tregs are highly immunosuppressive and dramatically inhibit the proliferative activity of naïve CD4(+) T cells. Our study provides one possible mechanism describing Foxp3 promoter demethylation changes by which NSCLC down-regulates immune responses and contributes to tumor progression. Foxp3 represents an important target for NSCLC anti-tumor immunotherapy.

  3. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    planned to move to Avecia's larger facility with a capacity of 10 000 litres. Somatomedin-1 binding protein-3 was originally licenced to Welfide for Japan. On October 1 2001, Welfide Corporation merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. In April 2003 Insmed initiated a named patient programme in Europe, that will make available somatomedin-1 binding protein-3 for the treatment of growth hormone insensitivity syndrome (GHIS)--Laron syndrome. The treatment of patients was initiated in Scandinavia, with authorisation pending in several other European countries. Somatomedin-1 binding protein-3 will be made available to those GHIS patients who, in the opinion of their doctor, may benefit from IGF-1 therapy. At precommercial scale quantities, the drug will be available on a limited basis. Safety data generated from the named patient programme will be used to support marketing applications in 2004. A phase II dose-ranging study in children with GHIS was completed at Saint Bartholomew's and the Royal London School of Medicine, London, UK. A single dose of somatomedin-1 binding protein-3 delivered the same amount of IGF-1 as two daily injections of unbound IGF-1. There were no adverse events reported. GHIS is a genetic condition in which patients do not produce adequate quantities of IGF because of a failure to respond to the growth hormone signal. This results in a slower growth rate and short stature. Insmed has acquired an exclusive licence to Pharmacia's regulatory filings concerning yeast-derived IGF-1. These filings were used by Pharmacia to receive marketing approvals in several European countries and also in the investigational New Drug Application with the US FDA. This licence will facilitate the development of SomatoKine for the treatment of children with GHIS. In January 2003, Insmed announced positive results from a double-blind, placebo-controlled, dose-ranging study of

  4. The Role of Metal Regulatory Proteins in Brain Oxidative Stress: A Tutorial

    PubMed Central

    2012-01-01

    The proteins that regulate the metabolism of a metal must also play a role in regulating the redox activity of the metal. Metals are intrinsic to a substantial number of biological processes and the proteins that regulate those activities are also considerable in number. The role these proteins play in a wide range of physiological processes involves them directly and indirectly in a variety of disease processes. Similarly, it may be therapeutically advantageous to pharmacologically alter the activity of these metal containing proteins to influence disease processes. This paper will introduce the reader to a number of important proteins in both metal metabolism and oxidative stress, with an emphasis on the brain. Potential pharmacological targets will be considered. PMID:23304261

  5. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle

    PubMed Central

    2012-01-01

    The retinoblastoma (RB) family of proteins are found in organisms as distantly related as humans, plants, and insects. These proteins play a key role in regulating advancement of the cell division cycle from the G1 to S-phases. This is achieved through negative regulation of two important positive regulators of cell cycle entry, E2F transcription factors and cyclin dependent kinases. In growth arrested cells transcriptional activity by E2Fs is repressed by RB proteins. Stimulation of cell cycle entry by growth factor signaling leads to activation of cyclin dependent kinases. They in turn phosphorylate and inactivate the RB family proteins, leading to E2F activation and additional cyclin dependent kinase activity. This propels the cell cycle irreversibly forward leading to DNA synthesis. This review will focus on the basic biochemistry and cell biology governing the regulation and activity of mammalian RB family proteins in cell cycle control. PMID:22417103

  6. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    PubMed Central

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  7. A Regulatory Gene SCO2140 is Involved in Antibiotic Production and Morphological Differentiation of Streptomyces coelicolor A3(2).

    PubMed

    Yu, Lingjun; Pan, Yuanyuan; Liu, Gang

    2016-08-01

    Streptomyces coelicolor is the soil-dwelling bacterium with a complex life cycle and a strong ability to produce plenty of secondary metabolites which are strictly regulated by a variety of regulators. Amino acid alignment shows that the deduced protein of SCO2140 belongs to the family of Leucine-responsive regulatory proteins (Lrps). Disruption of SCO2140 significantly decreased the yields of actinorhodin and calcium-dependent antibiotics, and the complemented strain restored the antibiotic productions to the wild-type level. In contrast, overexpression of SCO2140 increased the actinorhodin production. In agreement with it, the transcriptions of actII-ORF4 and cdaR remarkably reduced in the SCO2140 disruption mutant. The aerial mycelium formation of the SCO2140 disruption mutant was clearly delayed in R2YE medium due to the decrease of ramS expression while its complemented strain could restore the normal formation of aerial mycelia. These results indicated that SCO2140 was involved in antibiotic biosynthesis and morphological differentiation of Streptomyces coelicolor A3(2). PMID:27113590

  8. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.

    PubMed

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L; Herr, Andrew B; Ji, Jun-Yuan; Li, Pingwei

    2016-06-14

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  9. Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations

    PubMed Central

    De Simone, Alfonso; Mote, Kaustubh R.; Veglia, Gianluigi

    2014-01-01

    Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restrained molecular dynamics simulations to probe the structural dynamics, topology and conformational transitions of regulatory membrane proteins of the calcium ATPase SERCA, namely sarcolipin and phospholamban, in explicit lipid bilayers. Specifically, we employed oriented solid-state NMR data, such as dipolar couplings and chemical shift anisotropy measured in lipid bicelles, to refine the conformational ensemble of these proteins in lipid membranes. The samplings accurately reproduced the orientations of transmembrane helices and showed a significant degree of convergence with all of the NMR parameters. Unlike the unrestrained simulations, the resulting sarcolipin structures are in agreement with distances and angles for hydrogen bonds in ideal helices. In the case of phospholamban, the restrained ensemble sampled the conformational interconversion between T (helical) and R (unfolded) states for the cytoplasmic region that could not be observed using standard structural refinements with the same experimental data set. This study underscores the importance of implementing NMR data in molecular dynamics protocols to better describe the conformational landscapes of membrane proteins embedded in realistic lipid membranes. PMID:24940774

  10. Drosophila Valosin-Containing Protein is required for dendrite pruning through a regulatory role in mRNA metabolism

    PubMed Central

    Rumpf, Sebastian; Bagley, Joshua A.; Thompson-Peer, Katherine L.; Zhu, Sijun; Gorczyca, David; Beckstead, Robert B.; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    The dendritic arbors of the larval Drosophila peripheral class IV dendritic arborization neurons degenerate during metamorphosis in an ecdysone-dependent manner. This process—also known as dendrite pruning—depends on the ubiquitin–proteasome system (UPS), but the specific processes regulated by the UPS during pruning have been largely elusive. Here, we show that mutation or inhibition of Valosin-Containing Protein (VCP), a ubiquitin-dependent ATPase whose human homolog is linked to neurodegenerative disease, leads to specific defects in mRNA metabolism and that this role of VCP is linked to dendrite pruning. Specifically, we find that VCP inhibition causes an altered splicing pattern of the large pruning gene molecule interacting with CasL and mislocalization of the Drosophila homolog of the human RNA-binding protein TAR–DNA-binding protein of 43 kilo-Dalton (TDP-43). Our data suggest that VCP inactivation might lead to specific gain-of-function of TDP-43 and other RNA-binding proteins. A similar combination of defects is also seen in a mutant in the ubiquitin-conjugating enzyme ubcD1 and a mutant in the 19S regulatory particle of the proteasome, but not in a 20S proteasome mutant. Thus, our results highlight a proteolysis-independent function of the UPS during class IV dendritic arborization neuron dendrite pruning and link the UPS to the control of mRNA metabolism. PMID:24799714

  11. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.

    PubMed

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  12. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes

    PubMed Central

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  13. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.

    PubMed

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-03-31

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction.

  14. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis

    PubMed Central

    Sánchez-Barrena, María José; Moreno-Pérez, Sandra; Angulo, Iván; Martínez-Ripoll, Martín; Albert, Armando

    2007-01-01

    The salt-tolerance genes SOS3 (salt overly sensitive 3) and SOS2 (salt overly sensitive 2) regulatory domain of Arabidopsis thaliana were cloned into a polycistronic plasmid and the protein complex was expressed in Escherichia coli, allowing purification to homogeneity in three chromatographic steps. Crystals were grown using vapour-diffusion techniques. The crystals belonged to space group P212121, with unit-cell parameters a = 44.14, b = 57.39, c = 141.90 Å. PMID:17620712

  15. Regulatory analysis of Regulatory Guide 1. 35 (Revision 3, Draft 2): In-service inspection of ungrouted tendons in prestressed concrete containments

    SciTech Connect

    Naus, D.J.

    1987-02-01

    The objectives of this study were to review all the changes in the latest version (Rev. 3, Draft 2) of Regulatory Guide 1.35 and to provide a regulatory analysis for all positions in the guide to determine if it is cost-effective to backfit the guide to the containments of existing plants. To meet these objectives, three tasks were undertaken. The first task outlined containment design criteria, traced the evolution of prestressed concrete containment configurations and prestressing systems, reviewed the history of the development of the guide, and summarized the applicability of the particular versions of the regulatory guide to the 43 nuclear plants that utilize a prestressed concrete containment. Under the second task a comparative regulatory analysis of Rev. 3 (Draft 2) of the guide was developed in which major decision factors affected by the proposed change were identified, and differential risk and cost factors were addressed in relation to the current version of the guide which is in effect (Rev. 2). Finally, under the third task a backfit analysis was conducted in accordance with the requirements of the ''Backfitting'' Rule, Section 50.109 for each of the revised or added positions contained in Rev. 3 (Draft 2). Application of the revision to operating plants will provide consistency in review and a uniform standard for assessing the in-service condition of the ungrouted tendons in prestressed concrete containments. It is concluded that the revisions will have a positive impact on safety and thus lower public risk. Backfitting of the revised guide is possible for most plants licensed since 1974.

  16. The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr.

    PubMed

    de Rocquigny, H; Petitjean, P; Tanchou, V; Decimo, D; Drouot, L; Delaunay, T; Darlix, J L; Roques, B P

    1997-12-01

    The 96-amino acid protein Vpr functions as a regulator of cellular processes involved in human immunodeficiency virus, type 1 (HIV-1) life cycle, in particular by interrupting cells division in the G2 phase. Incorporation of Vpr in the virion was reported to be mediated by the C-terminal domain of the Pr55(Gag) polyprotein precursor, which includes NCp7, a protein involved in the genomic RNA encapsidation and p6, a protein required for particle budding. To precisely define the Gag and Vpr sequences involved in this protein-protein interaction, NCp7, p6, and Vpr as well as a series of derived peptides were synthesized using Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry. Binding assays were carried out by Far Western experiments and by competition studies using (52-96)Vpr immobilized onto agarose beads. The results show that interaction between NCp7 and Vpr occurs in vitro by a recognition mechanism requiring the zinc fingers of NCp7 and the last 16 amino acids of Vpr. Moreover, NCp10, the equivalent of NCp7 in Moloney murine leukemia virus but not polysine inhibits Vpr-NCp7 complexation. Interestingly enough, Vpr was found to interact with Gag, NCp15, and NCp7 but not with mature p6 in vitro. In vivo mutations in NCp7 zinc fingers in an HIV-1 molecular clone led to viruses with important defects in Vpr encapsidation. Together, these results suggest that NCp7 cooperates with p6 to induce Vpr encapsidation in HIV-1 mature particles. The NCp7-Vpr complex could also be important for interaction of Vpr with cellular proteins involved in cell division.

  17. Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross-sector approach.

    PubMed

    Burden, Natalie; Benstead, Rachel; Clook, Mark; Doyle, Ian; Edwards, Peter; Maynard, Samuel K; Ryder, Kathryn; Sheahan, Dave; Whale, Graham; van Egmond, Roger; Wheeler, James R; Hutchinson, Thomas H

    2016-07-01

    The ecotoxicity testing of chemicals for prospective environmental safety assessment is an area in which a high number of vertebrates are used across a variety of industry sectors. Refining, reducing, and replacing the use of animals such as fish, birds, and amphibians for this purpose addresses the ethical concerns and the increasing legislative requirements to consider alternative test methods. Members of the UK-based National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) Ecotoxicology Working Group, consisting of representatives from academia, government organizations, and industry, have worked together over the past 6 y to provide evidence bases to support and advance the application of the 3Rs in regulatory ecotoxicity testing. The group recently held a workshop to identify the areas of testing, demands, and drivers that will have an impact on the future of animal use in regulatory ecotoxicology. As a result of these discussions, we have developed a pragmatic approach to prioritize and realistically address key opportunity areas, to enable progress toward the vision of a reduced reliance on the use of animals in this area of testing. This paper summarizes the findings of this exercise and proposes a pragmatic strategy toward our key long-term goals-the incorporation of reliable alternatives to whole-organism testing into regulations and guidance, and a culture shift toward reduced reliance on vertebrate toxicity testing in routine environmental safety assessment. Integr Environ Assess Manag 2016;12:417-421. © 2015 SETAC.

  18. Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell Subpopulations

    PubMed Central

    Fujii, Hiroko; Josse, Julie; Tanioka, Miki; Miyachi, Yoshiki; Husson, François

    2016-01-01

    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Tregs). FOXP3+ T cells are reported to be increased in tumor-bearing patients or animals and are considered to suppress antitumor immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumor immunity, but the arbitrariness and complexity of manual gating have complicated the issue. In this article, we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analyzing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally identified FOXP3+ subpopulation included not only classical FOXP3high Tregs, but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analyzed an independent data set, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Tregs. PMID:26864030

  19. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region.

    PubMed

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-01-01

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a 'palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance. PMID:26883548

  20. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region.

    PubMed

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-02-17

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a 'palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance.

  1. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region

    PubMed Central

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-01-01

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a ‘palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance. PMID:26883548

  2. Identification of host proteins, Spata3 and Dkk2, interacting with Toxoplasma gondii micronemal protein MIC3.

    PubMed

    Wang, Yifan; Fang, Rui; Yuan, Yuan; Pan, Ming; Hu, Min; Zhou, Yanqin; Shen, Bang; Zhao, Junlong

    2016-07-01

    As an obligate intracellular protozoan, Toxoplasma gondii is a successful pathogen infecting a variety of animals, including humans. As an adhesin involving in host invasion, the micronemal protein MIC3 plays important roles in host cell attachment, as well as modulation of host EGFR signaling cascade. However, the specific host proteins that interact with MIC3 are unknown and the identification of such proteins will increase our understanding of how MIC3 exerts its functions. This study was designed to identify host proteins interacting with MIC3 by yeast two-hybrid screens. Using MIC3 as bait, a library expressing mouse proteins was screened, uncovering eight mouse proteins that showed positive interactions with MIC3. Two of which, spermatogenesis-associated protein 3 (Spata3) and dickkopf-related protein 2 (Dkk2), were further confirmed to interact with MIC3 by additional protein-protein interaction tests. The results also revealed that the tandem repeat EGF domains of MIC3 were critical in mediating the interactions with the identified host proteins. This is the first study to show that MIC3 interacts with host proteins that are involved in reproduction, growth, and development. The results will provide a clearer understanding of the functions of adhesion-associated micronemal proteins in T. gondii.

  3. Temperature inducible β-sheet structure in the transactivation domains of retroviral regulatory proteins of the Rev family

    NASA Astrophysics Data System (ADS)

    Thumb, Werner; Graf, Christine; Parslow, Tristram; Schneider, Rainer; Auer, Manfred

    1999-11-01

    The interaction of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev with cellular cofactors is crucial for the viral life cycle. The HIV-1 Rev transactivation domain is functionally interchangeable with analog regions of Rev proteins of other retroviruses suggesting common folding patterns. In order to obtain experimental evidence for similar structural features mediating protein-protein contacts we investigated activation domain peptides from HIV-1, HIV-2, VISNA virus, feline immunodeficiency virus (FIV) and equine infectious anemia virus (EIAV) by CD spectroscopy, secondary structure prediction and sequence analysis. Although different in polarity and hydrophobicity, all peptides showed a similar behavior with respect to solution conformation, concentration dependence and variations in ionic strength and pH. Temperature studies revealed an unusual induction of β-structure with rising temperatures in all activation domain peptides. The high stability of β-structure in this region was demonstrated in three different peptides of the activation domain of HIV-1 Rev in solutions containing 40% hexafluoropropanol, a reagent usually known to induce α-helix into amino acid sequences. Sequence alignments revealed similarities between the polar effector domains from FIV and EIAV and the leucine rich (hydrophobic) effector domains found in HIV-1, HIV-2 and VISNA. Studies on activation domain peptides of two dominant negative HIV-1 Rev mutants, M10 and M32, pointed towards different reasons for the biological behavior. Whereas the peptide containing the M10 mutation (L 78E 79→D 78L 79) showed wild-type structure, the M32 mutant peptide (L 78L 81L 83→A 78A 81A 83) revealed a different protein fold to be the reason for the disturbed binding to cellular cofactors. From our data, we conclude, that the activation domain of Rev proteins from different viral origins adopt a similar fold and that a β-structural element is involved in binding to a

  4. Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice.

    PubMed

    Sheehan, Michael J; Lee, Victoria; Corbett-Detig, Russell; Bi, Ke; Beynon, Robert J; Hurst, Jane L; Nachman, Michael W

    2016-03-01

    Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones.

  5. Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice

    PubMed Central

    Sheehan, Michael J.; Lee, Victoria; Corbett-Detig, Russell; Bi, Ke; Beynon, Robert J.; Hurst, Jane L.; Nachman, Michael W.

    2016-01-01

    Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones. PMID:26938775

  6. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    PubMed Central

    Lavín, José L; Kiil, Kristoffer; Resano, Ohiana; Ussery, David W; Oguiza, José A

    2007-01-01

    Background Pseudomonas syringae is a widespread bacterial plant pathogen, and strains of P. syringae may be assigned to different pathovars based on host specificity among different plant species. The genomes of P. syringae pv. syringae (Psy) B728a, pv. tomato (Pto) DC3000 and pv. phaseolicola (Pph) 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS), which typically consists of a sensor histidine kinase (HK) and a response regulator (RR). P. syringae requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions. Results Based on the genomic data, pattern searches with Hidden Markov Model (HMM) profiles have been used to identify putative HKs and RRs. The genomes of Psy B728a, Pto DC3000 and Pph 1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed important differences in TCS proteins among the three P. syringae pathovars. Conclusion In this article we present a thorough analysis of the identification and distribution of TCS proteins among the sequenced genomes of P. syringae. We have identified differences in TCS proteins among the three P. syringae pathovars that may contribute to their diverse host ranges and association with plant hosts. The identification and analysis of the repertoire of TCS proteins in the genomes of P. syringae pathovars constitute a basis for future functional genomic studies of the signal transduction pathways in this important bacterial phytopathogen. PMID:17971244

  7. Improving the safety of viral DNA vaccines: development of vectors containing both 5' and 3' homologous regulatory sequences from non-viral origin.

    PubMed

    Martinez-Lopez, A; Encinas, P; García-Valtanen, P; Gomez-Casado, E; Coll, J M; Estepa, A

    2013-04-01

    Although some DNA vaccines have proved to be very efficient in field trials, their authorisation still remains limited to a few countries. This is in part due to safety issues because most of them contain viral regulatory sequences to driving the expression of the encoded antigen. This is the case of the only DNA vaccine against a fish rhabdovirus (a negative ssRNA virus), authorised in Canada, despite the important economic losses that these viruses cause to aquaculture all over the world. In an attempt to solve this problem and using as a model a non-authorised, but efficient DNA vaccine against the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV), we developed a plasmid construction containing regulatory sequences exclusively from fish origin. The result was an "all-fish vector", named pJAC-G, containing 5' and 3' regulatory sequences of β-acting genes from carp and zebrafish, respectively. In vitro and in vivo, pJAC-G drove a successful expression of the VHSV glycoprotein G (G), the only antigen of the virus conferring in vivo protection. Furthermore, and by means of in vitro fusion assays, it was confirmed that G protein expressed from pJAC-G was fully functional. Altogether, these results suggest that DNA vaccines containing host-homologous gene regulatory sequences might be useful for developing safer DNA vaccines, while they also might be useful for basic studies.

  8. Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3Regulatory Region

    PubMed Central

    Birshtein, Barbara K.

    2014-01-01

    The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V), diversity (D), and joining (J) segments (VDJ joining). B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM) focused on the variable region, and class switch recombination (CSR), which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR) that is located downstream of Cα, the most 3′ of the Igh constant region genes. The ~40 kb 3′ RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region comprising four enhancers, and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3′ RR enhancer region is essential for SHM and CSR (but not for VDJ joining) and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3′ RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications, and DNA methylation, in association with transcription factor binding. I propose that these changes provide a foundation by which regulatory elements in modules of the 3′ RR function by interacting with each other and with target sequences of the Igh locus. PMID:24795714

  9. Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3' Regulatory Region.

    PubMed

    Birshtein, Barbara K

    2014-01-01

    The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V), diversity (D), and joining (J) segments (VDJ joining). B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM) focused on the variable region, and class switch recombination (CSR), which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR) that is located downstream of Cα, the most 3' of the Igh constant region genes. The ~40 kb 3' RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region comprising four enhancers, and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3' RR enhancer region is essential for SHM and CSR (but not for VDJ joining) and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3' RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications, and DNA methylation, in association with transcription factor binding. I propose that these changes provide a foundation by which regulatory elements in modules of the 3' RR function by interacting with each other and with target sequences of the Igh locus.

  10. Natural Disruption of Two Regulatory Networks in Serotype M3 Group A Streptococcus Isolates Contributes to the Virulence Factor Profile of This Hypervirulent Serotype

    PubMed Central

    Cao, Tram N.; Liu, Zhuyun; Cao, Tran H.; Pflughoeft, Kathryn J.; Treviño, Jeanette; Danger, Jessica L.; Beres, Stephen B.; Musser, James M.

    2014-01-01

    Despite the public health challenges associated with the emergence of new pathogenic bacterial strains and/or serotypes, there is a dearth of information regarding the molecular mechanisms that drive this variation. Here, we began to address the mechanisms behind serotype-specific variation between serotype M1 and M3 strains of the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]). Spatially diverse contemporary clinical serotype M3 isolates were discovered to contain identical inactivating mutations within genes encoding two regulatory systems that control the expression of important virulence factors, including the thrombolytic agent streptokinase, the protease inhibitor-binding protein-G-related α2-macroglobulin-binding (GRAB) protein, and the antiphagocytic hyaluronic acid capsule. Subsequent analysis of a larger collection of isolates determined that M3 GAS, since at least the 1920s, has harbored a 4-bp deletion in the fasC gene of the fasBCAX regulatory system and an inactivating polymorphism in the rivR regulator-encoding gene. The fasC and rivR mutations in M3 isolates directly affect the virulence factor profile of M3 GAS, as evident by a reduction in streptokinase expression and an enhancement of GRAB expression. Complementation of the fasC mutation in M3 GAS significantly enhanced levels of the small regulatory RNA FasX, which in turn enhanced streptokinase expression. Complementation of the rivR mutation in M3 GAS restored the regulation of grab mRNA abundance but did not alter capsule mRNA levels. While important, the fasC and rivR mutations do not provide a full explanation for why serotype M3 strains are associated with unusually severe invasive infections; thus, further investigation is warranted. PMID:24516115

  11. Regulatory Oversight Program, July 1, 1993--March 3, 1997. Volume 2: Appendices

    SciTech Connect

    1997-12-31

    On July, 1993, a Regulatory Oversight (RO) organization was established within the US DOE, Oak Ridge Operations to provide regulatory oversight of the DOE uranium enrichment facilities leased to the United States Enrichment Corporation (USEC). The purpose of the OR program was to ensure continued plant safety, safeguards and security while the plants were transitioned to regulatory oversight by the Nuclear Regulatory Commission (NRC). Volume 2 contains copies of the documents which established the relationship between NRC, DOE, USEC, and DOL (Dept of Labor) required to facilitate regulatory oversight transition.

  12. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    PubMed Central

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  13. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway.

    PubMed

    Shi, Tujin; Niepel, Mario; McDermott, Jason E; Gao, Yuqian; Nicora, Carrie D; Chrisler, William B; Markillie, Lye M; Petyuk, Vladislav A; Smith, Richard D; Rodland, Karin D; Sorger, Peter K; Qian, Wei-Jun; Wiley, H Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  14. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A

    PubMed Central

    Zayas, Margarita; Long, Gang; Madan, Vanesa; Bartenschlager, Ralf

    2016-01-01

    Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles. PMID:26727512

  15. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35.

    PubMed

    Bardel, Emilie; Larousserie, Frédérique; Charlot-Rabiega, Pascaline; Coulomb-L'Herminé, Aurore; Devergne, Odile

    2008-11-15

    EBV-induced gene 3 (EBI3) can associate with p28 to form the heterodimeric cytokine IL-27, or with the p35 subunit of IL-12 to form the EBI3/p35 heterodimer, recently named IL-35. In mice, IL-35 has been shown to be constitutively expressed by CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) and suggested to contribute to their suppressive activity. In this study, we investigated whether human Treg cells express IL-35. Double-staining analysis of human thymuses showed that neither Foxp3(+) nor CD25(+) cells coexpressed EBI3. Similarly, Foxp3(+) cells present in human lymph nodes, tonsils, spleens, and intestines did not express EBI3. Consistent with these in situ observations, Treg cells purified from blood or tonsils were negative for EBI3 by immunoblotting. Other human T cell subsets, including effector T cells, naive and memory CD4(+) T cells, CD8(+) and gammadelta T cells also did not constitutively express EBI3, which contrasts with IL-35 expression observed in murine CD8(+) and gammadelta T cells. Furthermore, although CD3/CD28 stimulation consistently induced low levels of EBI3 in various CD4(+) T cell subsets, no EBI3 could be detected in CD3/CD28-stimulated Treg cells. RT-PCR analysis showed that, whereas p35 transcripts were detected in both Teff and Treg cells, EBI3 transcripts were detected only in activated Teff cells, but not in resting or activated Treg cells. Thus, in contrast to their murine counterpart, human Treg cells do not express detectable amounts of IL-35.

  16. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense.

    PubMed

    Passaglia, L M; Van Soom, C; Schrank, A; Schrank, I S

    1998-11-01

    NifA protein activates transcription of nitrogen fixation operons by the alternative sigma 54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS) located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST)-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  17. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy.

    PubMed

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.

  18. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapi