Science.gov

Sample records for protein bcl-xl negatively

  1. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    PubMed

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.

  2. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl.

    PubMed

    Anto, Ruby John; Mukhopadhyay, Asok; Denning, Kate; Aggarwal, Bharat B

    2002-01-01

    Pharmacologically safe compounds that can inhibit the proliferation of tumor cells have potential as anticancer agents. Curcumin, a diferuloylmethane, is a major active component of the food flavor turmeric (Curcuma longa) that has been shown to inhibit the proliferation of a wide variety of tumor cells. The apoptotic intermediates through which curcumin exhibits its cytotoxic effects against tumor cells are not known, and the participation of antiapoptotic proteins Bcl-2 or Bcl-xl in the curcumin-induced apoptosis pathway is not established. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human acute myelogenous leukemia HL-60 cells and in established stable cell lines expressing Bcl-2 and Bcl-xl. Curcumin inhibited the growth of HL-60 cells (neo) in a dose- and time-dependent manner, whereas Bcl-2 and Bcl-xl-transfected cells were relatively resistant. Curcumin activated caspase-8 and caspase-3 in HL-60 neo cells but not in Bcl-2 and Bcl-xl-transfected cells. Similarly, time-dependent poly(ADP)ribose polymerase (PARP) cleavage by curcumin was observed in neo cells but not in Bcl-2 and Bcl-xl-transfected cells. Curcumin treatment also induced BID cleavage and mitochondrial cytochrome c release in neo cells but not in Bcl-2 and Bcl-xl-transfected cells. In neo HL-60 cells, curcumin also downregulated the expression of cyclooxygenase-2. Because DN-FLICE blocked curcumin-induced apoptosis, caspase-8 must play a critical role. Overall, our results indicate that curcumin induces apoptosis through mitochondrial pathway involving caspase-8, BID cleavage, cytochrome c release, and caspase-3 activation. Our results also suggest that Bcl-2 and Bcl-xl are critical negative regulators of curcumin-induced apoptosis.

  3. Functions of BCL-XL at the Interface between Cell Death and Metabolism

    PubMed Central

    Michels, Judith; Kepp, Oliver; Senovilla, Laura; Lissa, Delphine; Castedo, Maria; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    The BCL-2 homolog BCL-XL, one of the two protein products of BCL2L1, has originally been characterized for its prominent prosurvival functions. Similar to BCL-2, BCL-XL binds to its multidomain proapoptotic counterparts BAX and BAK, hence preventing the formation of lethal pores in the mitochondrial outer membrane, as well as to multiple BH3-only proteins, thus interrupting apical proapoptotic signals. In addition, BCL-XL has been suggested to exert cytoprotective functions by sequestering a cytosolic pool of the pro-apoptotic transcription factor p53 and by binding to the voltage-dependent anion channel 1 (VDAC1), thereby inhibiting the so-called mitochondrial permeability transition (MPT). Thus, BCL-XL appears to play a prominent role in the regulation of multiple distinct types of cell death, including apoptosis and regulated necrosis. More recently, great attention has been given to the cell death-unrelated functions of BCL-2-like proteins. In particular, BCL-XL has been shown to modulate a number of pathophysiological processes, including—but not limited to—mitochondrial ATP synthesis, protein acetylation, autophagy and mitosis. In this short review article, we will discuss the functions of BCL-XL at the interface between cell death and metabolism. PMID:23533418

  4. Apoptosis induces Bcl-XS and cleaved Bcl-XL in chronic lymphocytic leukaemia.

    PubMed

    Willimott, Shaun; Merriam, Thomas; Wagner, Simon D

    2011-02-18

    The Bcl-X gene has both pro-survival, Bcl-XL, and pro-apoptotic, Bcl-XS, gene products, which are produced by alternative splicing. The function of these proteins has previously been characterised in cell lines, often by transfecting expression constructs, and primary cell systems capable of dynamically regulating Bcl-XL and Bcl-XS have not been described. Such a system is potentially important to allow testing of agents that promote apoptosis by increasing the amount of Bcl-XS at the expense of Bcl-XL. In this report we characterise Bcl-X gene products in primary human leukaemic B-cells in culture conditions associated with survival and apoptosis. We found that Bcl-XS was induced in spontaneous and drug-induced apoptosis and that apoptosis induced in cells cultured on mouse fibroblasts expressing CD40 ligand with IL-4 (CD154/IL-4), a condition mimicking the tissue microenvironment, additionally produced expression of cleavage products of Bcl-XL. Both Bcl-XS and Bcl-XL were produced in a caspase dependent manner. We tested emetine, an agent previously reported to increase Bcl-XS but found that it did not have this effect in primary human B-cells. Therefore, there are two mechanisms-cleavage of Bcl-XL and production of Bcl-XS-by which Bcl-X gene products could enhance apoptosis in CLL but neither appeared to have a primary role in inducing leukaemic cell death.

  5. Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression.

    PubMed

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Bulygina, Veta V; Dygalo, Nikolay N

    2010-12-01

    Stress may predispose individuals toward depression through down-regulation of neurogenesis and increase in apoptosis in the brain. However, many subjects show high resistance to stress in relation to psychopathology. In the present study, we assessed the possibility that individual-specific patterns of gene expression associated with cell survival and proliferation may be among the molecular factors underlying stress resilience. Brain-derived neurotrophic factor (BDNF), anti-apoptotic B cell lymphoma like X (Bcl-xl) and pro-apoptotic bcl2-associated X protein (Bax) expression were determined in the hippocampus and frontal cortex of rats naturally differed in despair-like behavior in the forced swim test. In the hippocampus, BDNF messenger RNA (mRNA) level was significantly down-regulated 2h after the forced swim test exposure, and at this time point, Bcl-xl mRNA and protein levels were significantly higher in stressed than in untested animals. The ratios of hippocampal Bcl-xl to Bax mRNA negatively correlated with the total time spent immobile in the test. When animals were divided in two groups according to immobility responses in two consecutive swim sessions and designated as stress resilient if their immobility time did not increase in the second session as it did in stress sensitive rats, it was found that resilient rats had significantly higher Bcl-xl/Bax ratios in the hippocampus than stress sensitive animals. The data suggest that naturally occurring variations in the Bcl-xl/Bax ratio in the hippocampus may contribute to individual differences in vulnerability to stress-induced depression-like behaviors.

  6. PUMA promotes Bax translocation by competitive binding to Bcl-Xl during UV-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Xing, Da; Wu, Yinyuan; Liu, Lei

    2008-02-01

    Ultraviolet (UV) irradiation can induce apoptosis through both the membrane death receptor and the intrinsic apoptotic signaling pathways as DNA-damaging agents. PUMA, a BH3-only Bcl-2 family protein, plays an essential role in DNA damage-induced apoptosis. Bax, also a Bcl-2 family member, translocates from the cytosol to the mitochondrial membrane during UV-induced apoptosis. However, the regulation of Bax activation induced by UV irradiation remains poorly understood. In this study, the FRET (fluorescence resonance energy transfer) technique was used to study the interactions of Bax, Bcl-Xl, and PUMA in ASTC-a-1 cells. The results show that Bax translocated from the cytosol to the mitochondrial membrane at about 7 h after UV irradiation, and the translocation can not be blocked completely when overexpressed Bcl-xl. Moreover, The interaction of Bax and Bcl-Xl weakened markedly. In addition, Co-immunoprecipitation shows that PUMA released Bax by directly binding to Bcl-XL after UV irradiation in ASTC-a-1 cells. Taken together, these results indicated that PUMA can promote Bax translocation by binding to Bcl-Xl during UV-induced apoptosis.

  7. Structural insights into mouse anti-apoptotic Bcl-xl reveal affinity for Beclin 1 and gossypol

    SciTech Connect

    Priyadarshi, Amit; Roy, Ankoor; Kim, Key-Sun; Kim, Eunice EunKyeong; Hwang, Kwang Yeon

    2010-04-09

    This study reports the crystal structures of Bcl-xl wild type and three Bcl-xl mutants (Y101A, F105A, and R139A) with amino acid substitutions in the hydrophobic groove of the Bcl-xl BH3 domain. An additional 12 ordered residues were observed in a highly flexible loop between the {alpha}1 and {alpha}2 helices, and were recognized as an important deamidation site for the regulation of apoptosis. The autophagy-effector protein, Beclin 1, contains a novel BH3 domain (residues 101-125), which binds to the surface cleft of Bcl-xl, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and analytical gel-filtration results. Gossypol, a potent inhibitor of Bcl-xl, had a K{sub d} value of 0.9 {mu}M. In addition, the structural and biochemical analysis of five Bcl-xl substitution mutants will provide structural insights into the design and development of anti-cancer drugs.

  8. Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis.

    PubMed

    Speir, Mary; Lawlor, Kate E; Glaser, Stefan P; Abraham, Gilu; Chow, Seong; Vogrin, Adam; Schulze, Keith E; Schuelein, Ralf; O'Reilly, Lorraine A; Mason, Kylie; Hartland, Elizabeth L; Lithgow, Trevor; Strasser, Andreas; Lessene, Guillaume; Huang, David C S; Vince, James E; Naderer, Thomas

    2016-01-01

    Human pathogenic Legionella replicate in alveolar macrophages and cause a potentially lethal form of pneumonia known as Legionnaires' disease(1). Here, we have identified a host-directed therapeutic approach to eliminate intracellular Legionella infections. We demonstrate that the genetic deletion, or pharmacological inhibition, of the host cell pro-survival protein BCL-XL induces intrinsic apoptosis of macrophages infected with virulent Legionella strains, thereby abrogating Legionella replication. BCL-XL is essential for the survival of Legionella-infected macrophages due to bacterial inhibition of host-cell protein synthesis, resulting in reduced levels of the short-lived, related BCL-2 pro-survival family member, MCL-1. Consequently, a single dose of a BCL-XL-targeted BH3-mimetic therapy, or myeloid cell-restricted deletion of BCL-XL, limits Legionella replication and prevents lethal lung infections in mice. These results indicate that repurposing BH3-mimetic compounds, originally developed to induce cancer cell apoptosis, may have efficacy in treating Legionnaires' and other diseases caused by intracellular microbes. PMID:27572165

  9. Heat-Induced Fibrillation of BclXL Apoptotic Repressor

    PubMed Central

    Bhat, Vikas; Olenick, Max B.; Schuchardt, Brett J.; Mikles, David C.; Deegan, Brian J.; McDonald, Caleb B.; Seldeen, Kenneth L.; Kurouski, Dmitry; Faridi, Mohd Hafeez; Shareef, Mohammed M.; Gupta, Vineet; Lednev, Igor K.; Farooq, Amjad

    2013-01-01

    The BclXL apoptotic repressor bears the propensity to associate into megadalton oligomers in solution, particularly under acidic pH. Herein, using various biophysical methods, we analyze the effect of temperature on the oligomerization of BclXL. Our data show that BclXL undergoes irreversible aggregation and assembles into highly-ordered rope-like homogeneous fibrils with length in the order of mm and a diameter in the μm-range under elevated temperatures. Remarkably, the formation of such fibrils correlates with the decay of a largely α-helical fold into a predominantly β-sheet architecture of BclXL in a manner akin to the formation of amyloid fibrils. Further interrogation reveals that while BclXL fibrils formed under elevated temperatures show no observable affinity toward BH3 ligands, they appear to be optimally primed for insertion into cardiolipin bicelles. This salient observation strongly argues that BclXL fibrils likely represent an on-pathway intermediate for insertion into mitochondrial outer membrane during the onset of apoptosis. Collectively, our study sheds light on the propensity of BclXL to form amyloid-like fibrils with important consequences on its mechanism of action in gauging the apoptotic fate of cells in health and disease. PMID:23714425

  10. Heat-induced fibrillation of BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Olenick, Max B; Schuchardt, Brett J; Mikles, David C; Deegan, Brian J; McDonald, Caleb B; Seldeen, Kenneth L; Kurouski, Dmitry; Faridi, Mohd Hafeez; Shareef, Mohammed M; Gupta, Vineet; Lednev, Igor K; Farooq, Amjad

    2013-09-01

    The BclXL apoptotic repressor bears the propensity to associate into megadalton oligomers in solution, particularly under acidic pH. Herein, using various biophysical methods, we analyze the effect of temperature on the oligomerization of BclXL. Our data show that BclXL undergoes irreversible aggregation and assembles into highly-ordered rope-like homogeneous fibrils with length in the order of mm and a diameter in the μm-range under elevated temperatures. Remarkably, the formation of such fibrils correlates with the decay of a largely α-helical fold into a predominantly β-sheet architecture of BclXL in a manner akin to the formation of amyloid fibrils. Further interrogation reveals that while BclXL fibrils formed under elevated temperatures show no observable affinity toward BH3 ligands, they appear to be optimally primed for insertion into cardiolipin bicelles. This salient observation strongly argues that BclXL fibrils likely represent an on-pathway intermediate for insertion into mitochondrial outer membrane during the onset of apoptosis. Collectively, our study sheds light on the propensity of BclXL to form amyloid-like fibrils with important consequences on its mechanism of action in gauging the apoptotic fate of cells in health and disease. PMID:23714425

  11. Structure-Guided Rescaffolding of Selective Antagonists of BCL-XL

    PubMed Central

    2014-01-01

    Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds. PMID:24944740

  12. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-08-18

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.

  13. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  14. p21Cip1 Protection against Hyperoxia Requires Bcl-XL and Is Uncoupled from Its Ability to Suppress Growth

    PubMed Central

    Vitiello, Peter F.; Staversky, Rhonda J.; Gehen, Sean C.; Johnston, Carl J.; Finkelstein, Jacob N.; Wright, Terry W.; O’Reilly, Michael A.

    2006-01-01

    The cyclin-dependent kinase inhibitor p21Cip1/Waf1/Sdi1 protects the lung against hyperoxia, but the mechanism of protection remains unclear because loss of p21 does not lead to aberrant cell proliferation. Because some members of the Bcl-2 gene family have been implicated in hyperoxia-induced cell death, the current study investigated their expression as well as p21-dependent growth suppression and cytoprotection. Conditional overexpression of full-length p21, its amino-terminal cyclin-binding (p211–82NLS) domain or its carboxy-terminal PCNA-binding (p2176–164) domain inhibited growth of human lung adenocarcinoma H1299 cells, but only the full-length protein was cytoprotective. Low levels of p21 inhibited cell proliferation, whereas higher levels were required for protection. Expression of the anti-apoptotic protein Bcl-XL declined during hyperoxia but was maintained in cells expressing p21. RNA interference (RNAi) knockdown of Bcl-XL enhanced hyperoxic death of cells expressing p21, whereas overexpression of Bcl-XL increased cell survival. Consistent with growth suppression and cytoprotection requiring different levels of p21, hyperoxia inhibited PCNA expression in p21+/+ and p21+/− mice but not in p21−/− mice. In contrast, p21 was haplo-insufficient for maintaining expression of Bcl-XL and protection against hyperoxia. Taken together, these data show that p21-mediated cytoprotection against hyperoxia involves regulation of Bcl-XL and is uncoupled from its ability to inhibit proliferation. PMID:16723699

  15. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL.

    PubMed

    Yosef, Reut; Pilpel, Noam; Tokarsky-Amiel, Ronit; Biran, Anat; Ovadya, Yossi; Cohen, Snir; Vadai, Ezra; Dassa, Liat; Shahar, Elisheva; Condiotti, Reba; Ben-Porath, Ittai; Krizhanovsky, Valery

    2016-01-01

    Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14(ARF). Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies.

  16. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL.

    PubMed

    Yosef, Reut; Pilpel, Noam; Tokarsky-Amiel, Ronit; Biran, Anat; Ovadya, Yossi; Cohen, Snir; Vadai, Ezra; Dassa, Liat; Shahar, Elisheva; Condiotti, Reba; Ben-Porath, Ittai; Krizhanovsky, Valery

    2016-01-01

    Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14(ARF). Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies. PMID:27048913

  17. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL

    PubMed Central

    Yosef, Reut; Pilpel, Noam; Tokarsky-Amiel, Ronit; Biran, Anat; Ovadya, Yossi; Cohen, Snir; Vadai, Ezra; Dassa, Liat; Shahar, Elisheva; Condiotti, Reba; Ben-Porath, Ittai; Krizhanovsky, Valery

    2016-01-01

    Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14ARF. Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies. PMID:27048913

  18. Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1).

    PubMed

    Delbridge, Alex R D; Chappaz, Stephane; Ritchie, Matthew E; Kile, Benjamin T; Strasser, Andreas; Grabow, Stephanie

    2016-09-01

    Apoptosis is required to maintain tissue homeostasis in multicellular organisms. Platelets, the anucleate cells that are essential for blood clotting, are a prime example. Their brief life span in the circulation is regulated by the intrinsic apoptosis pathway. Pro-survival BCL-XL (also termed BCL2L1) is essential for platelet viability. It functions to restrain the pro-apoptotic BCL-2 family members BAK (also termed BAK1) and BAX, the essential mediators of intrinsic apoptosis. Genetic deletion or pharmacological inhibition of BCL-XL results in thrombocytopenia. Conversely, deletion of BAK in platelets doubles their circulating life span. However, what triggers platelet apoptosis in vivo remains unclear. The pro-apoptotic BH3-only proteins are essential for initiating apoptosis in nucleated cells, and there is some evidence to suggest they also play a role in platelet biology. We investigated whether PUMA (also termed BBC3), a potent BH3-only protein that can inhibit all pro-survival BCL-2 family members as well as directly activate BAX, regulates the death of platelets. Surprisingly, loss of PUMA had no impact on the loss of platelets caused by loss of BCL-XL. It therefore remains to be established whether other BH3-only proteins play a critical role in induction of apoptosis in platelets or whether their death is controlled solely by the interactions between BCL-XL with BAK and BAX.

  19. Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1).

    PubMed

    Delbridge, Alex R D; Chappaz, Stephane; Ritchie, Matthew E; Kile, Benjamin T; Strasser, Andreas; Grabow, Stephanie

    2016-09-01

    Apoptosis is required to maintain tissue homeostasis in multicellular organisms. Platelets, the anucleate cells that are essential for blood clotting, are a prime example. Their brief life span in the circulation is regulated by the intrinsic apoptosis pathway. Pro-survival BCL-XL (also termed BCL2L1) is essential for platelet viability. It functions to restrain the pro-apoptotic BCL-2 family members BAK (also termed BAK1) and BAX, the essential mediators of intrinsic apoptosis. Genetic deletion or pharmacological inhibition of BCL-XL results in thrombocytopenia. Conversely, deletion of BAK in platelets doubles their circulating life span. However, what triggers platelet apoptosis in vivo remains unclear. The pro-apoptotic BH3-only proteins are essential for initiating apoptosis in nucleated cells, and there is some evidence to suggest they also play a role in platelet biology. We investigated whether PUMA (also termed BBC3), a potent BH3-only protein that can inhibit all pro-survival BCL-2 family members as well as directly activate BAX, regulates the death of platelets. Surprisingly, loss of PUMA had no impact on the loss of platelets caused by loss of BCL-XL. It therefore remains to be established whether other BH3-only proteins play a critical role in induction of apoptosis in platelets or whether their death is controlled solely by the interactions between BCL-XL with BAK and BAX. PMID:27221652

  20. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Kurouski, Dmitry; Olenick, Max B; McDonald, Caleb B; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2012-12-01

    Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic of a molten globule. Strikingly, our data reveal that pH tightly modulates not only oligomerization but also ligand binding and membrane insertion of BclXL in a highly subtle manner. Thus, while oligomerization and the accompanying molten globular content of BclXL is least favorable at pH 6, both of these structural features become more pronounced under acidic and alkaline conditions. However, membrane insertion of BclXL appears to be predominantly favored under acidic conditions. In a remarkable contrast, while ligand binding to BclXL optimally occurs at pH 6, it is diminished by an order of magnitude at lower and higher pH. This reciprocal relationship between BclXL oligomerization and ligand binding lends new insights into how pH modulates functional versatility of a key apoptotic regulator and strongly argues that the molten globule may serve as an intermediate primed for membrane insertion in response to apoptotic cues. PMID:22960132

  1. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    SciTech Connect

    Dai, Guodong; Peng, Tao; Zhou, Xuhong; Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi; Yuan, Yulin

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  2. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria.

    PubMed

    Monaco, Giovanni; Decrock, Elke; Arbel, Nir; van Vliet, Alexander R; La Rovere, Rita M; De Smedt, Humbert; Parys, Jan B; Agostinis, Patrizia; Leybaert, Luc; Shoshan-Barmatz, Varda; Bultynck, Geert

    2015-04-01

    Excessive Ca(2+) fluxes from the endoplasmic reticulum to the mitochondria result in apoptotic cell death. Bcl-2 and Bcl-XL proteins exert part of their anti-apoptotic function by directly targeting Ca(2+)-transport systems, like the endoplasmic reticulum-localized inositol 1,4,5-trisphosphate receptors (IP3Rs) and the voltage-dependent anion channel 1 (VDAC1) at the outer mitochondrial membranes. We previously demonstrated that the Bcl-2 homology 4 (BH4) domain of Bcl-2 protects against Ca(2+)-dependent apoptosis by binding and inhibiting IP3Rs, although the BH4 domain of Bcl-XL was protective independently of binding IP3Rs. Here, we report that in contrast to the BH4 domain of Bcl-2, the BH4 domain of Bcl-XL binds and inhibits VDAC1. In intact cells, delivery of the BH4-Bcl-XL peptide via electroporation limits agonist-induced mitochondrial Ca(2+) uptake and protects against staurosporine-induced apoptosis, in line with the results obtained with VDAC1(-/-) cells. Moreover, the delivery of the N-terminal domain of VDAC1 as a synthetic peptide (VDAC1-NP) abolishes the ability of BH4-Bcl-XL to suppress mitochondrial Ca(2+) uptake and to protect against apoptosis. Importantly, VDAC1-NP did not affect the ability of BH4-Bcl-2 to suppress agonist-induced Ca(2+) release in the cytosol or to prevent apoptosis, as done instead by an IP3R-derived peptide. In conclusion, our data indicate that the BH4 domain of Bcl-XL, but not that of Bcl-2, selectively targets VDAC1 and inhibits apoptosis by decreasing VDAC1-mediated Ca(2+) uptake into the mitochondria.

  3. C/EBPβ-mediated transcriptional regulation of bcl-xl gene expression in human breast epithelial cells in response to cigarette smoke condensate

    PubMed Central

    Connors, Shahnjayla K.; Balusu, Ramesh; Kundu, Chanakya N.; Jaiswal, Aruna S.; Gairola, C. Gary; Narayan, Satya

    2008-01-01

    In previous studies, we have shown that cigarette smoke condensate (CSC), a surrogate for cigarette smoke, is capable of transforming the spontaneously immortalized human breast epithelial cell line, MCF10A. These transformed cells displayed upregulation of the anti-apoptotic gene, bcl-xl. Upregulation of this gene may impede the apoptotic pathway and allow the accumulation of DNA damage that can lead to cell transformation and carcinogenesis. In the present study, we have determined the mechanism of CSC-mediated transcriptional upregulation of bcl-xl gene expression in MCF10A cells. We cloned the human bcl-xl promoter (pBcl-xLP) and identified putative transcription factor binding sites. Sequential deletion constructs that removed the putative cis-elements were constructed and transfected into MCF10A cells to determine the CSC-responsive cis-element(s) on the pBcl-xLP. Gel-shift, supershift, and chromatin immunoprecipitation (ChIP) analysis confirmed that C/EBPβ specifically bound to a C/EBP-binding site on the pBcl-xLP in vitro and in vivo. Additionally, overexpression of C/EBPβ-LAP2 stimulated pBcl-xLP activity and Bcl-xL protein levels, which mimicked the conditions of CSC treatment. Our results indicate that C/EBPβ regulates bcl-xl gene expression in MCF10A cells in response to CSC treatment, therefore making it a potential target for chemotherapeutic intervention of cigarette smoke-induced breast carcinogenesis. PMID:19043455

  4. Targeting MCL-1/BCL-XL Forestalls the Acquisition of Resistance to ABT-199 in Acute Myeloid Leukemia

    PubMed Central

    Lin, Kevin H.; Winter, Peter S.; Xie, Abigail; Roth, Cullen; Martz, Colin A.; Stein, Elizabeth M.; Anderson, Grace R.; Tingley, Jennifer P.; Wood, Kris C.

    2016-01-01

    ABT-199, a potent and selective small-molecule antagonist of BCL-2, is being clinically vetted as pharmacotherapy for the treatment of acute myeloid leukemia (AML). However, given that prolonged monotherapy tends to beget resistance, we sought to investigate the means by which resistance to ABT-199 might arise in AML and the extent to which those mechanisms might be preempted. Here we used a pathway-activating genetic screen to nominate MCL-1 and BCL-XL as potential nodes of resistance. We then characterized a panel of ABT-199-resistant myeloid leukemia cell lines derived through chronic exposure to ABT-199 and found that acquired drug resistance is indeed driven by the upregulation of MCL-1 and BCL-XL. By targeting MCL-1 and BCL-XL, resistant AML cell lines could be resensitized to ABT-199. Further, preemptively targeting MCL-1 and/or BCL-XL alongside administration of ABT-199 was capable of delaying or forestalling the acquisition of drug resistance. Collectively, these data suggest that in AML, (1) the selection of initial therapy dynamically templates the landscape of acquired resistance via modulation of MCL-1/BCL-XL and (2) appropriate selection of initial therapy may delay or altogether forestall the acquisition of resistance to ABT-199. PMID:27283158

  5. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65

    PubMed Central

    2013-01-01

    Background In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. Results The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. Conclusions The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm

  6. Curcumin prevents haloperidol-induced development of abnormal oro-facial movements: possible implications of Bcl-XL in its mechanism of action.

    PubMed

    Sookram, Christal; Tan, Mattea; Daya, Ritesh; Heffernan, Spencer; Mishra, Ram K

    2011-08-01

    Curcumin (Curcuma Longa Linn), the active component of turmeric, has been shown to be effective in ameliorating several stress and drug-induced disorders in rats and humans. However, it is unclear whether short term curcumin administration can prevent the abnormal oro-facial movements (AOFM) which develop following blockade of dopamine D2 receptors by antagonist such as Haloperidol. The objective of this study is to determine whether short term treatment with curcumin along with Haloperidol can prevent the development of AOFM in rats. Male Sprague Dawley rats were administered curcumin at 200 mg/kg, and Haloperidol at 2 mg/kg daily for 2 weeks, and AOFMs and locomotor activity were assessed at baseline, day 7 and day 14. By day 14, rats receiving concurrent curcumin administration had a significant reduction in the incidence of Haloperidol-induced AOFMs, but no change on the Haloperidol-induced hypolocomotion. There was no spiked increase in locomotor activity in absence of challenge with dopamine D2 receptor agonist. The exact mechanism by which curcumin attenuates AOFMs remains unknown, therefore, we performed a proteomic analysis of the striatal samples obtained from control and curcumin treated groups. A number of proteins were altered by curcumin, among them an antiapoptotic protein, Bcl-XL, was significantly upregulated. These results suggest that curcumin may be a promising treatment to prevent the development of AOFMs and further suggest some therapeutic value in the treatment of movement disorders. PMID:21218454

  7. Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions.

    PubMed

    Naumenko, V S; Kulikov, A V; Kondaurova, E M; Tsybko, A S; Kulikova, E A; Krasnov, I B; Shenkman, B S; Sychev, V N; Bazhenova, E Y; Sinyakova, N A; Popova, N K

    2015-01-22

    Mice of C57BL/6J strain were exposed to 1-month spaceflight on Russian biosatellite Bion-M1 to determine the effect of long-term actual spaceflight on the expression of genes involved in the processes of neurogenesis and apoptosis. Specifically, we focused on the genes encoding proapoptotic factor BAX, antiapoptotic factor BCL-XL, brain-derived neurotrophic factor (BDNF) and BDNF receptors TrkB and p75. Spaceflight reduced the expression of the antiapoptotic BCL-XL gene in the striatum and hypothalamus, but increased it in the hippocampus. To estimate environmental stress contribution into spaceflight effects we analyzed spaceflight-responsive genes in mice housed for 1 month on Earth in the same shuttle cabins that were used for spaceflight, and in mice of the laboratory control group. It was shown that 1-month shuttle cabin housing decreased BCL-XL gene expression in the striatum but failed to alter BCL-XL mRNA levels in the hippocampus or hypothalamus. Spaceflight failed to alter the expression of the proapoptotic BAX gene in all investigated brain structures, although the insignificant increase of the BAX mRNA level in the hippocampus of spaceflight mice was found. At the same time, shuttle cabin housing produced insignificant decrease in BAX gene expression in the hippocampus. In contrast to the BCL-XL gene, genes encoding BAX, BDNF as well as TrkB and p75 receptors did not respond to 30-day spaceflight. Thus, long-term spaceflight (1) did not affect the expression of genes encoding BDNF as well as TrkB and p75 receptors, (2) produced dysregulation in genetic control of the neuronal apoptosis, (3) implicated BCL-XL as the risk factor for spaceflight-induced behavioral abnormalities. PMID:25451288

  8. Darbepoetin alpha, a long-acting erythropoeitin derivate, does not alter LPS evoked myocardial depression and gene expression of Bax, Bcl-Xs, Bcl-XL, Bcl-2, and TNF-alpha.

    PubMed

    Brendt, Peter; Frey, Ulrich; Adamzik, Michael; Schäfer, Simon T; Peters, Jürgen

    2009-01-01

    Darbepoetin alpha (DA), a long-acting erythropoietin derivative stimulating erythropoiesis, can, by antiapoptotic effects, mitigate myocardial I/R injury. We tested the hypothesis that DA treatment improves left ventricular function (LV) in LPS evoked cardiomyopathy and alters gene expression of apoptosis-regulating proteins (Bcl-XL, Bcl-2, Bax, and Bcl-Xs) and TNF-alpha. In a prospective, controlled, randomized study in Lewis rats (n = 56; 8 groups), myocardial depression was evoked by LPS administration (serotype O127:B8; 10 mg/kg, i.p.). Darbepoetin alpha or vehicle was injected either 24 h before (pretreatment) or 2 h after LPS injection (treatment). Hearts were isolated 8 h after LPS injection, perfused (Krebs-Henseleit solution) in a Langendorff apparatus, and LV developed pressure and its derivatives were measured. For gene expression analysis, real-time polymerase chain reaction of LV specimen was performed. LPS decreased LV developed pressure (-64.6 +/- 7.9 mmHg) and its derivates by more than 60% in comparison to vehicle (P < 0,01), but this effect was not attenuated by DA pretreatment or DA treatment. LPS administration increased gene expression of Bcl-Xs, Bax, and TNF-alpha, but this was not altered by DA pretreatment. Furthermore, there was no effect on Bcl-Xl and Bcl-2 expression by DA alone. Whereas proapoptotic genes of the myocardium are up-regulated in LPS-induced cardiomyopathy, neither DA pretreatment nor treatment has significant effects on LV function or gene expression. This may suggest cardiac resistance to darbepoetin in LPS-mediated sepsis.

  9. Crystal Structure of the Bcl-XL-Beclin 1 Peptide Complex

    SciTech Connect

    Oberstein,A.; Jeffrey, P.; Shi, Y.

    2007-01-01

    Bcl-2 family proteins are key regulators of apoptosis and have recently been shown to modulate autophagy. The tumor suppressor Beclin 1 has been proposed to coordinate both apoptosis and autophagy through direct interaction with anti-apoptotic family members Bcl-2 and/or Bcl-X{sub L}. However, the molecular basis for this interaction remains enigmatic. Here we report that Beclin 1 contains a conserved BH3 domain, which is both necessary and sufficient for its interaction with Bcl-X{sub L}. We also report the crystal structure of a Beclin BH3 peptide in complex with Bcl-X{sub L} at 2.5{angstrom} resolution. Reminiscent of previously determined Bcl-X{sub L}-BH3 structures, the amphipathic BH3 helix of Beclin 1 bound to a conserved hydrophobic groove of Bcl-X{sub L}. These results define Beclin 1 as a novel BH3-only protein, implying that Beclin 1 may have a direct role in initiating apoptotic signaling. We propose that this putative apoptotic function may be linked to the ability of Beclin 1 to suppress tumor formation in mammals.

  10. Expresssion of bax/bcl-xl by low-power laser irradiation in the Amyloid Beta 25-35 induced apoptosis of PC12 cell

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Xing, Da

    2006-09-01

    Apoptosis has been reported as a contributing pathophysiological mechanism of Alzheimer's disease (AD). Recently, the anti-apoptosis function of low-power laser irradiation (LPLI) was proposed, suggesting LPLI may become a new means for AD therapy. In this study, we aimed to demonstrate the anti-apoptosis function of LPLI at molecular level. Aβ 25-35 was used to induce apoptosis of PC12 cell, and then the cells were dealt with LPLI. After irradiation, the molecular level of apoptosis was detected by quantifying the bax I bcl-xl mRNA ratio using a highly sensitive and quantitative polymerase chain reaction (QT-PCR) technique. The primary results show that the bax Ibcl-xl mRNA ratio of the PC12 cell treated with Aβ 25-35 was decreased by LPLI, demonstrating the anti-apoptosis function of LPLI at molecular level.

  11. Still embedded together binding to membranes regulates Bcl-2 protein interactions.

    PubMed

    Leber, B; Lin, J; Andrews, D W

    2010-09-23

    The dysregulation of apoptosis is a key step in developing tumours, and mediates resistance to cancer therapy. Many different signals for cell death converge on permeabilization of the outer mitochondrial membrane, which is controlled by the Bcl-2 family of proteins. The importance of this step is becoming increasingly relevant as the first generation of small molecules that inhibit the interaction of Bcl-2 family proteins enters clinical trials as anticancer agents. The Bcl-2 family can be divided into three classes: BH3-only proteins that are activated by various forms of cellular stress, Bax and Bak proteins that mediate mitochondrial membrane permeabilization, and inhibitory proteins such as Bcl-2 and Bcl-XL. The recently proposed embedded together model emphasizes the fact that many of the regulatory interactions between different classes of Bcl-2 family members occur at intracellular membranes, and binding to membranes causes conformational changes in the proteins that dictate functions in a dynamic manner. Within this context, recent results indicate that Bcl-XL functions as a dominant-negative Bax, a concept that resolves the paradox of similar structures but opposite functions of Bcl-XL and Bax. We have also shown that the conformational change that allows Bax to insert into the outer mitochondrial membrane is the rate-limiting step in the multistep process of Bax activation. Nevertheless, investigating the structure of activated Bax or Bak as monomers and as components of the oligomeric structures that mediate membrane permeabilization is the focus of ongoing research (and controversy) at many laboratories worldwide. PMID:20639903

  12. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors.

    PubMed

    Su, Rui-Jun; Baylink, David J; Neises, Amanda; Kiroyan, Jason B; Meng, Xianmei; Payne, Kimberly J; Tschudy-Seney, Benjamin; Duan, Yuyou; Appleby, Nancy; Kearns-Jonker, Mary; Gridley, Daila S; Wang, Jun; Lau, K-H William; Zhang, Xiao-Bing

    2013-01-01

    The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34(+) cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming virus (SFFV) long terminal repeat (LTR) promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4)-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs) into pluripotency, yet at a very low efficiency. We found that inclusion of BCL-XL increases the reprogramming efficiency by approximately 10-fold. Furthermore, culture of CD3(-)/CD19(-) cells or T/B cell-depleted MNCs for 4-6 days led to the generation of 20-30 iPSC colonies from 1 ml PB, an efficiency that is substantially higher than previously reported. PB iPSCs express pluripotency markers, form teratomas, and can be induced to differentiate in vitro into mesenchymal stem cells, cardiomyocytes, and hepatocytes. Used together, our optimized factor combination and reprogramming strategy lead to efficient generation of integration-free iPSCs from adult PB. This discovery has potential applications in iPSC banking, disease modeling and regenerative medicine.

  13. Development of selective inhibitors for anti-apoptotic Bcl-2 proteins from BHI-1

    PubMed Central

    Xing, Chengguo; Wang, Liangyou; Tang, XiaoHu; Sham, Yuk Y

    2007-01-01

    A series of inhibitors for anti-apoptotic Bcl-2 proteins based on BHI-1 were synthesized and their binding interactions with Bcl-2, Bcl-XL, and Bcl-w were evaluated. It was found that modification of BHI-1 resulted in varied binding profiles among Bcl-2, Bcl-XL, and Bcl-w and a set of inhibitors with varied selectivity to Bcl-2, Bcl-XL, and Bcl-w protein have been identified. Molecular modeling of the interaction of the BHI-1 based analogs with the anti-apoptotic Bcl-2 proteins suggested that the binding site for the BHI-1 based inhibitor was the least conserved section among Bcl-2, Bcl-XL, and Bcl-w: targeting the non-conserved section may account for the observed selectivity of the BHI-1 based inhibitors among the anti-apoptotic Bcl-2 proteins. The validity of the model was supported by a strong correlation between the model-calculated binding energy and the experimental binding affinity. In summary, our studies suggest that most of the reported inhibitors for anti-apoptotic Bcl-2 proteins are nonselective and BHI-1 is a promising template to distinguish among Bcl-2, Bcl-XL, and Bcl-w by targeting the nonconserved domain among the anti-apoptotic Bcl-2 proteins. Molecular-modeling aided rational development of BHI-1 based selective inhibitor for anti-apoptotic Bcl-2 proteins is underway. PMID:17227711

  14. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies

    PubMed Central

    Bogenberger, J M; Kornblau, S M; Pierceall, W E; Lena, R; Chow, D; Shi, C-X; Mantei, J; Ahmann, G; Gonzales, I M; Choudhary, A; Valdez, R; Camoriano, J; Fauble, V; Tiedemann, R E; Qiu, Y H; Coombes, K R; Cardone, M; Braggio, E; Yin, H; Azorsa, D O; Mesa, R A; Stewart, A K; Tibes, R

    2014-01-01

    Synergistic molecular vulnerabilities enhancing hypomethylating agents in myeloid malignancies have remained elusive. RNA-interference drug modifier screens identified antiapoptotic BCL-2 family members as potent 5-Azacytidine-sensitizing targets. In further dissecting BCL-XL, BCL-2 and MCL-1 contribution to 5-Azacytidine activity, siRNA silencing of BCL-XL and MCL-1, but not BCL-2, exhibited variable synergy with 5-Azacytidine in vitro. The BCL-XL, BCL-2 and BCL-w inhibitor ABT-737 sensitized most cell lines more potently compared with the selective BCL-2 inhibitor ABT-199, which synergized with 5-Azacytidine mostly at higher doses. Ex vivo, ABT-737 enhanced 5-Azacytidine activity across primary AML, MDS and MPN specimens. Protein levels of BCL-XL, BCL-2 and MCL-1 in 577 AML patient samples showed overlapping expression across AML FAB subtypes and heterogeneous expression within subtypes, further supporting a concept of dual/multiple BCL-2 family member targeting consistent with RNAi and pharmacologic results. Consequently, silencing of MCL-1 and BCL-XL increased the activity of ABT-199. Functional interrogation of BCL-2 family proteins by BH3 profiling performed on patient samples significantly discriminated clinical response versus resistance to 5-Azacytidine-based therapies. On the basis of these results, we propose a clinical trial of navitoclax (clinical-grade ABT-737) combined with 5-Azacytidine in myeloid malignancies, as well as to prospectively validate BH3 profiling in predicting 5-Azacytidine response. PMID:24451410

  15. Assessment of expressions of Bcl-XL, b-FGF, Bmp-2, Caspase-3, PDGFR-α, Smad1 and TGF-β1 genes in a rat model of lung ischemia/reperfusion

    PubMed Central

    Şimşek, Hasan; Demiryürek, Şeniz; Demir, Tuncer; Atabay, Hüsne Didem; Çeribasi, Ali Osman; Bayraktar, Recep; Kaplan, Davut Sinan; Öztuzcu, Serdar; Cengiz, Beyhan

    2016-01-01

    Objective(s): Ischemia is described as organs and tissues are destitute of oxygen due to decreased arterial or venous blood flow. Many mechanisms play role in cell death happened as a consequence of a new blood flow is needed for both cell regeneration and to clean toxic metabolites during ischemia and later. Lung damage induced by ischemia/reperfusion (I/R) is a frequent problem in lung transplantation. Apoptosis (programmed cell death) is known as cell suicide, and plays a key role in embryonic developmental and in maintain adult tissue’s life. Materials and Methods: It is investigated expressions of Smad1, Bmp-2, Bcl-XL, b-FGF, Caspase-3, TGF-β1, PDGFR-α genes for molecular changes in lung tissues, after I/R is formed, in this study. For this, we included 40 Wistar albino rats to this study and divided 4 groups (n=10). The Groups were determined as Control (C), Group 1= 1 hr ischemia (I), Group 2= 1 hr ischemia+2 hr reperfusion (I+2R), Group 3= 1 hr ischemia+4 hr reperfusion (I+4R). Besides, molecular analysis and histopathologic examinations of tissues were performed, and the results were evaluated by normalization and statistics analysis. Results: We have found a significant increase in expression of Bcl-XL (P=0.046) and Caspase-3 (P=0.026) genes of group 1, and it was not monitored any significant difference in Group 2 and Group 3. In all groups, the changes in b-FGF (P=0.087), Bmp-2 (P=0.457), TGF-β1 (P=0.201) and PDGFR-α (P=0.116) were not significant compared to control group. We did not see any mRNA expression of Smad1 gene in all groups include control. Conclusion: These findings suggest that I/R injury may trigger apoptotic mechanism in lung. PMID:27081467

  16. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis.

  17. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis. PMID:27110097

  18. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis. PMID:27110097

  19. Oxygen concentration and cysteamine supplementation during in vitro production of buffalo (Bubalus bubalis) embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID.

    PubMed

    Elamaran, G; Singh, K P; Singh, M K; Singla, S K; Chauhan, M S; Manik, R S; Palta, P

    2012-12-01

    This study examined the effects of O(2) concentration (5% vs 20%) during in vitro maturation (IVM), fertilization (IVF) and culture (IVC) or supplementation of IVM and IVC media with cysteamine (50 and 100 μm, respectively; IVM, IVF and IVC carried out in 20% O(2)), on blastocyst rate and relative mRNA abundance of some apoptosis-related genes measured by real-time qPCR in immature and in vitro-matured buffalo oocytes and in embryos at 2-, 4-, 8- to 16-cell, morula and blastocyst stages. The blastocyst rate was significantly higher (p < 0.05) while the percentage of TUNEL-positive cells was significantly lower (p < 0.05) under 5% O(2) than that under 20% O(2). The mRNA expression of anti-apoptotic genes BCL-2 and MCL-1 was significantly higher (p < 0.05) and that of pro-apoptotic genes BAX and BID was lower (p < 0.05) under 5% O(2) than that under 20% O(2) concentration at many embryonic stages. Following cysteamine supplementation, the blastocyst rate and the relative mRNA abundance of BCL-XL and MCL-1 was significantly higher (p < 0.05) and that of BAX but not BID was lower (p < 0.05) at many stages of embryonic development, although it did not affect the percentage of TUNEL positive cells in the blastocysts significantly. The mRNA expression pattern of these genes during embryonic development was different in 5% vs 20% O(2) groups and in cysteamine supplemented vs controls. At the 8- to 16-cell stage, where developmental block occurs in buffalo, the relative mRNA abundance of BCL-2 and MCL-1 was highest under 5% O(2) concentration and that of BAX and BID was highest (p < 0.05) under 20% O(2) concentration. These results suggest that one of the mechanisms through which beneficial effects of low O(2) concentration and cysteamine supplementation are mediated during in vitro embryo production is through an increase in the expression of anti-apoptotic and a decrease in the expression of pro-apoptotic genes. PMID:22452597

  20. Screening of Small-Molecule Inhibitors of Protein-Protein Interaction with Capillary Electrophoresis Frontal Analysis.

    PubMed

    Xu, Mei; Liu, Chao; Zhou, Mi; Li, Qing; Wang, Renxiao; Kang, Jingwu

    2016-08-16

    A simple and effective method for identifying inhibitors of protein-protein interactions (PPIs) was developed by using capillary electrophoresis frontal analysis (CE-FA). Antiapoptotic B-cell-2 (Bcl-2) family member Bcl-XL protein, a 5-carboxyfluorescein labeled peptide truncated from the BH3 domain of Bid (F-Bid) as the ligand, and a known Bcl-XL-Bid interaction inhibitor ABT-263 were employed as an experimental model for the proof of concept. In CE-FA, the free ligand is separated from the protein and protein-ligand complex to permit the measurement of the equilibrium concentration of the ligand, hence the dissociation constant of the protein-ligand complex. In the presence of inhibitors, formation of the protein-ligand complex is hindered, thereby the inhibition can be easily identified by the raised plateau height of the ligand and the decayed plateau of the complex. Further, we proposed an equation used to convert the IC50 value into the inhibition constant Ki value, which is more useful than the former for comparison. In addition, the sample pooling strategy was employed to improve the screening throughput more than 10 times. A small chemical library composed of synthetic compounds and natural extracts were screened with the method, two natural products, namely, demethylzeylasteral and celastrol, were identified as new inhibitors to block the Bcl-XL-Bid interaction. Cell-based assay was performed to validate the activity of the identified compounds. The result demonstrated that CE-FA represents a straightforward and robust technique for screening of PPI inhibitors. PMID:27425825

  1. The C-terminal domain (CTD) in linker histones antagonizes anti-apoptotic proteins to modulate apoptotic outcomes at the mitochondrion

    PubMed Central

    Garg, M; Ramdas, N; Vijayalakshmi, M; Shivashankar, G V; Sarin, A

    2014-01-01

    The loss of mitochondrial integrity as a consequence of apoptogenic complexes formed on the outer membrane constitutes a key step in controlling progression of apoptotic cascades. Here, we show that multiple members of the linker histone (LH) family of proteins modify apoptotic cascades initiated by the Bcl-2 protein Bak, and impart resistance to its endogenous antagonist Bcl-xL. Our experiments reveal apoptogenic capabilities equivalent to those documented for H1.2 in H1.1 and H1.3 isoforms. Deletion mutants of H1.2 and site-directed mutagenesis of H1.1 and H1.2 implicated the C-terminal domain in apoptogenic activity. In this context, disruption of protein kinase-C activity using chemical inhibitors, dominant-negative approaches and RNA interference coupled with site-directed modifications in H1.1, identified the protein kinase-Cβ1 isoform as a repressor of H1.1/H1.3 apoptogenic activity. Finally, a H1.2 C-terminal tail recombinant attenuated Bcl-xl inhibition of Bak-induced apoptosis, suggesting that the C-terminal domain was necessary and sufficient for apoptogenic functions. Thus, integration with apoptotic intermediates (via C-terminal tail interactions) may constitute a more generalized function of LH isoforms in apoptotic cascades. PMID:24525734

  2. Hydrophobic surfactant proteins strongly induce negative curvature.

    PubMed

    Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B

    2015-07-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  3. Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature

    PubMed Central

    Chavarha, Mariya; Loney, Ryan W.; Rananavare, Shankar B.; Hall, Stephen B.

    2015-01-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  4. Highly specific protein-protein interactions, evolution and negative design.

    PubMed

    Sear, Richard P

    2004-12-01

    We consider highly specific protein-protein interactions in proteomes of simple model proteins. We are inspired by the work of Zarrinpar et al (2003 Nature 426 676). They took a binding domain in a signalling pathway in yeast and replaced it with domains of the same class but from different organisms. They found that the probability of a protein binding to a protein from the proteome of a different organism is rather high, around one half. We calculate the probability of a model protein from one proteome binding to the protein of a different proteome. These proteomes are obtained by sampling the space of functional proteomes uniformly. In agreement with Zarrinpar et al we find that the probability of a protein binding a protein from another proteome is rather high, of order one tenth. Our results, together with those of Zarrinpar et al, suggest that designing, say, a peptide to block or reconstitute a single signalling pathway, without affecting any other pathways, requires knowledge of all the partners of the class of binding domains the peptide is designed to mimic. This knowledge is required to use negative design to explicitly design out interactions of the peptide with proteins other than its target. We also found that patches that are required to bind with high specificity evolve more slowly than those that are required only to not bind to any other patch. This is consistent with some analysis of sequence data for proteins engaged in highly specific interactions.

  5. Persea declinata (Bl.) Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation

    PubMed Central

    Wong, Yi Li; Wong, Won Fen; Ali Mohd, Mustafa; Hadi, A. Hamid A.

    2014-01-01

    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development. PMID:24808916

  6. Persea declinata (Bl.) Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation.

    PubMed

    Narrima, Putri; Paydar, Mohammadjavad; Looi, Chung Yeng; Wong, Yi Li; Taha, Hairin; Wong, Won Fen; Ali Mohd, Mustafa; Hadi, A Hamid A

    2014-01-01

    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development. PMID:24808916

  7. In vitro efficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatin A-mediated restoration of CAR expression and downregulation of cFLIP and Bcl-XL.

    PubMed

    El-Zawahry, A; Lu, P; White, S J; Voelkel-Johnson, C

    2006-03-01

    Current therapies for bladder cancer are suboptimal and adenoviral gene therapy has been explored as an alternative treatment. In this study, we evaluated the in vitro efficacy of an adenovirus expressing TNF-related apoptosis-inducing ligand (AdTRAIL). At low concentrations of virus, T24 cells were more resistant to AdTRAIL-induced apoptosis than 5637 bladder carcinoma cells. Resistance in T24 cells correlated with poor infectivity and lack of surface expression of coxsackie and adenovirus receptor (CAR). Pretreatment with low concentrations of the histone deacetylase inhibitor trichostatin A, restored CAR expression in T24 cells, which facilitated viral infection and resulted in apoptosis at low concentrations of AdTRAIL. In addition, trichostatin A reduced the expression of Bcl-X(L) and cFLIP resulting in increased sensitivity to recombinant TRAIL. Overexpression of cFLIP inhibited TRAIL-mediated killing in trichostatin A pretreated cells, indicating that downregulation of this antiapoptotic protein is required for sensitization. Therefore, trichostatin A can enhance the efficacy of AdTRAIL by restoring CAR expression and by generating a more pro-apoptotic phenotype that would facilitate bystander activity of TRAIL. Combination of histone deacetylase inhibitors with intravesical AdTRAIL gene therapy may be a novel treatment strategy for bladder cancer. PMID:16167063

  8. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  9. Histone deacetylase inhibitors restore toxic BH3 domain protein expression in anoikis-resistant mammary and brain cancer stem cells, thereby enhancing the response to anti-ERBB1/ERBB2 therapy.

    PubMed

    Cruickshanks, Nichola; Hamed, Hossein A; Booth, Laurence; Tavallai, Seyedmehrad; Syed, Jahangir; Sajithlal, Gangadharan B; Grant, Steven; Poklepovic, Andrew; Dent, Paul

    2013-10-01

    The present studies focused on defining the mechanisms by which anoikis-resistant (AR) mammary carcinoma cells can be reverted to a therapy-sensitive phenotype. AR mammary carcinoma cells had reduced expression of the toxic BH3 domain proteins BAX, BAK, NOXA, and PUMA. In AR cells expression of the protective BCL-2 family proteins BCL-XL and MCL-1 was increased. AR cells were resistant to cell killing by multiple anti-tumor cell therapies, including ERBB1/2 inhibitor + MCL-1 inhibitor treatment, and had a reduced autophagic flux response to these therapies, despite similarly exhibiting increased levels of LC3II processing. Knockdown of MCL-1 and BCL-XL caused necro-apoptosis in AR cells to a greater extent than in parental cells. Pre-treatment of anoikis-resistant cells with histone deacetylase inhibitors (HDACIs) for 24 h increased the levels of toxic BH3 domain proteins, reduced MCL-1 levels, and restored/re-sensitized the cell death response of AR tumor cells to multiple toxic therapies. In vivo, pre-treatment of AR breast tumors in the brain with valproate restored the chemo-sensitivity of the tumors and prolonged animal survival. These data argue that one mechanism to enhance the anti-tumor effect of chemotherapy could be HDACI pre-treatment.

  10. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  11. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels.

    PubMed

    Gogurla, Narendar; Sinha, Arun K; Naskar, Deboki; Kundu, Subhas C; Ray, Samit K

    2016-04-14

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms. PMID:26996157

  12. The rheostat in the membrane: BCL-2 family proteins and apoptosis

    PubMed Central

    Volkmann, N; Marassi, F M; Newmeyer, D D; Hanein, D

    2014-01-01

    Apoptosis, a mechanism for programmed cell death, has key roles in human health and disease. Many signals for cellular life and death are regulated by the BCL-2 family proteins and converge at mitochondria, where cell fate is ultimately decided. The BCL-2 family includes both pro-life (e.g. BCL-XL) and pro-death (e.g. BAX, BAK) proteins. Previously, it was thought that a balance between these opposing proteins, like a simple ‘rheostat', could control the sensitivity of cells to apoptotic stresses. Later, this rheostat concept had to be extended, when it became clear that BCL-2 family proteins regulate each other through a complex network of bimolecular interactions, some transient and some relatively stable. Now, studies have shown that the apoptotic circuitry is even more sophisticated, in that BCL-2 family interactions are spatially dynamic, even in nonapoptotic cells. For example, BAX and BCL-XL can shuttle between the cytoplasm and the mitochondrial outer membrane (MOM). Upstream signaling pathways can regulate the cytoplasmic–MOM equilibrium of BAX and thereby adjust the sensitivity of cells to apoptotic stimuli. Thus, we can view the MOM as the central locale of a dynamic life–death rheostat. BAX invariably forms extensive homo-oligomers after activation in membranes. However, recent studies, showing that activated BAX monomers determine the kinetics of MOM permeabilization (MOMP), perturb the lipid bilayer and form nanometer size pores, pose questions about the role of the oligomerization. Other lingering questions concern the molecular mechanisms of BAX redistribution between MOM and cytoplasm and the details of BAX/BAK–membrane assemblies. Future studies need to delineate how BCL-2 family proteins regulate MOMP, in concert with auxiliary MOM proteins, in a dynamic membrane environment. Technologies aimed at elucidating the structure and function of the full-length proteins in membranes are needed to illuminate some of these critical issues. PMID

  13. The rheostat in the membrane: BCL-2 family proteins and apoptosis.

    PubMed

    Volkmann, N; Marassi, F M; Newmeyer, D D; Hanein, D

    2014-02-01

    Apoptosis, a mechanism for programmed cell death, has key roles in human health and disease. Many signals for cellular life and death are regulated by the BCL-2 family proteins and converge at mitochondria, where cell fate is ultimately decided. The BCL-2 family includes both pro-life (e.g. BCL-XL) and pro-death (e.g. BAX, BAK) proteins. Previously, it was thought that a balance between these opposing proteins, like a simple 'rheostat', could control the sensitivity of cells to apoptotic stresses. Later, this rheostat concept had to be extended, when it became clear that BCL-2 family proteins regulate each other through a complex network of bimolecular interactions, some transient and some relatively stable. Now, studies have shown that the apoptotic circuitry is even more sophisticated, in that BCL-2 family interactions are spatially dynamic, even in nonapoptotic cells. For example, BAX and BCL-XL can shuttle between the cytoplasm and the mitochondrial outer membrane (MOM). Upstream signaling pathways can regulate the cytoplasmic-MOM equilibrium of BAX and thereby adjust the sensitivity of cells to apoptotic stimuli. Thus, we can view the MOM as the central locale of a dynamic life-death rheostat. BAX invariably forms extensive homo-oligomers after activation in membranes. However, recent studies, showing that activated BAX monomers determine the kinetics of MOM permeabilization (MOMP), perturb the lipid bilayer and form nanometer size pores, pose questions about the role of the oligomerization. Other lingering questions concern the molecular mechanisms of BAX redistribution between MOM and cytoplasm and the details of BAX/BAK-membrane assemblies. Future studies need to delineate how BCL-2 family proteins regulate MOMP, in concert with auxiliary MOM proteins, in a dynamic membrane environment. Technologies aimed at elucidating the structure and function of the full-length proteins in membranes are needed to illuminate some of these critical issues.

  14. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation. PMID:17263472

  15. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation.

  16. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    PubMed

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts. PMID:24582986

  17. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    PubMed

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  18. Choosing negative examples for the prediction of protein-protein interactions

    PubMed Central

    Ben-Hur, Asa; Noble, William Stafford

    2006-01-01

    The protein-protein interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. This need has prompted the development of a number of methods for predicting protein-protein interactions based on various sources of data and methodologies. The common method for choosing negative examples for training a predictor of protein-protein interactions is based on annotations of cellular localization, and the observation that pairs of proteins that have different localization patterns are unlikely to interact. While this method leads to high quality sets of non-interacting proteins, we find that this choice can lead to biased estimates of prediction accuracy, because the constraints placed on the distribution of the negative examples makes the task easier. The effects of this bias are demonstrated in the context of both sequence-based and non-sequence based features used for predicting protein-protein interactions. PMID:16723005

  19. A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

    SciTech Connect

    Pelletier, Dale A; Auberry, Deanna L; Buchanan, Michelle V; Cannon, Bill; Daly, Don S.; Doktycz, Mitchel John; Foote, Linda J; Hervey, IV, William Judson; Hooker, Brian; Hurst, Gregory {Greg} B; Kennel, Steve J; Lankford, Patricia K; Larimer, Frank W; Lu, Tse-Yuan S; McDonald, W Hayes; McKeown, Catherine K; Morrell-Falvey, Jennifer L; Owens, Elizabeth T; Schmoyer, Denise D; Shah, Manesh B; Wiley, Steven; Wang, Yisong; Gilmore, Jason

    2008-01-01

    Abstract One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged bait proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.

  20. A general system for studying protein-protein interactions in gram-negative bacteria

    SciTech Connect

    Pelletier, Dale A.; Hurst, G. B.; Foote, Linda J.; Lankford, Patricia K.; McKeown, Cathy K.; Lu, Tse-Yuan S.; Schmoyer, Denise D.; Shah, Manesh B.; Hervey IV, W. J.; McDonald, W. Hayes; Hooker, Brian S.; Cannon, William R.; Daly, Don S.; Gilmore, Jason M.; Wiley, H. S.; Auberry, Deanna L.; Wang, Yisong; Larimer, Frank; Kennel, S. J.; Doktycz, M. J.; Morrell-Falvey, Jennifer; Owens, Elizabeth T.; Buchanan, M. V.

    2008-08-01

    One of the most promising of the emerging methods for large-scale studies of interactions among proteins is co-isolation of an affinity-tagged protein and its interaction partners, followed by mass spectrometric identification of the co-purifying proteins. We describe a methodology for systematically identifying the proteins that interact with affinity-tagged “bait” proteins expressed from a medium copy plasmid, which are based on a broad host range (pBBR1MCS5) vector backbone that has been modified to incorporate the Gateway DEST plasmid multiple cloning region. This construct was designed to facilitate expression of fusion proteins bearing an affinity tag, across a range of Gram negative bacterial hosts. We demonstrate the performance of this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results from the RNA polymerase complex from these two species compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.

  1. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  2. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling.

    PubMed

    Woodard, Geoffrey E; Jardín, Isaac; Berna-Erro, A; Salido, Gines M; Rosado, Juan A

    2015-01-01

    Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.

  3. Role of parathyroid hormone-related protein in tubulointerstitial apoptosis and fibrosis after folic acid-induced nephrotoxicity.

    PubMed

    Ortega, Arantxa; Rámila, David; Ardura, Juan Antonio; Esteban, Vanesa; Ruiz-Ortega, Marta; Barat, Antonio; Gazapo, Rosa; Bosch, Ricardo J; Esbrit, Pedro

    2006-06-01

    Parathyroid hormone-related protein (PTHrP) is shortly upregulated in acute renal injury, but its pathophysiologic role is unclear. Investigated was whether PTHrP might act as a profibrogenic factor in mice that do or do not overexpress PTHrP in the proximal tubule after folic acid (FA) nephrotoxicity, a model of acute renal damage followed by partial regeneration and patchy tubulointerstitial fibrosis. It was found that constitutive PTHrP overexpression in these animals conveyed a significant increase in tubulointerstitial fibrosis, associated with both fibroblast activation (as alpha-smooth muscle actin staining) and macrophage influx, compared with control littermates at 2 to 3 wk after FA damage. Cell proliferation and survival was higher (P<0.01) in the renal interstitium of PTHrP-overexpressing mice than in control littermates within this period after injury. Moreover, the former mice had a constitutive Bcl-XL protein overexpression. In vitro studies in renal tubulointerstitial and fibroblastic cells strongly suggest that PTHrP (1-36) (100 nM) reduced FA-induced apoptosis through a dual mechanism involving Bcl-XL upregulation and Akt and Bad phosphorylation. PTHrP (1-36) also stimulated monocyte chemoattractant protein-1 expression in tubuloepithelial cells, as well as type-1 procollagen gene expression and fibronectin (mRNA levels and protein secretion) in these cells and renal fibroblastic cells. Our findings indicate that this peptide, by interaction with the PTH1 receptor, can increase tubulointerstitial cell survival and seems to act as a proinflammatory and profibrogenic factor in the FA-damaged kidney.

  4. MDR1-P-glycoprotein behaves as an oncofetal protein that promotes cell survival in gastric cancer cells.

    PubMed

    Rocco, Alba; Compare, Debora; Liguori, Eleonora; Cianflone, Alessandra; Pirozzi, Giuseppe; Tirino, Virginia; Bertoni, Alessandra; Santoriello, Margherita; Garbi, Corrado; D'Armiento, Maria; Staibano, Stefania; Nardone, Gerardo

    2012-10-01

    P-glycoprotein (P-gp), traditionally linked to cancer poor prognosis and multidrug resistance, is undetectable in normal gastric mucosa and overexpressed in gastric cancer (GC). We propose that P-gp may be involved in Helicobacter pylori (Hp)-related gastric carcinogenesis by inhibiting apoptosis. Aim of the study was to evaluate the expression of P-gp in fetal stomach and in Hp-related gastric carcinogenesis, the epigenetic control of the multi-drug resistance-1 (MDR1) gene, the localization and interaction between P-gp and Bcl-x(L) and the effect of the selective silencing of P-gp on cell survival. P-gp and Bcl-xl expression was evaluated by immunohistochemistry on 28 spontaneously abortive human fetuses, 66 Hp-negative subjects, 138 Hp-positive chronic gastritis (CG) of whom 28 with intestinal metaplasia (IM) and 45 intestinal type GCs. P-gp/Bcl-x(L) colocalization was investigated by confocal immunofluorescence microscopy and protein-protein interaction by co-immunoprecipitation, in basal conditions and after stress-induced apoptosis, in GC cell lines AGS and MKN-28 and hepatocellular carcinoma cell line Hep-G2. The role of P-gp in controlling apoptosis was evaluated by knocking down its expression with a specific small interfering RNAs in stressed AGS and MKN-28 cell lines. P-gp is expressed in the gastric mucosa of all human fetuses while, it is undetectable in adult normal mucosa and re-expressed in 30/110 Hp-positive non-IM-CG, 28/28 IM-CG and 40/45 GCs. P-gp expression directly correlates with that of Bcl-x(L) and with the promoter hypomethylation of the MDR1 gene. In GC cell lines, P-gp is localized on the plasma membrane and mitochondria where it colocalizes with Bcl-x(L). Co-immunoprecipitation confirms the physical interaction between P-gp and Bcl-x(L) in AGS, MKN-28 and Hep-G2, at both basal level and after stress-induced apoptosis. The selective silencing of P-gp sensitizes GC cells to stress-induced apoptosis. P-gp behaves as an oncofetal protein

  5. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    PubMed Central

    Raja, Erna; Edlund, Karolina; Kahata, Kaoru; Zieba, Agata; Morén, Anita; Watanabe, Yukihide; Voytyuk, Iryna; Botling, Johan; Söderberg, Ola; Micke, Patrick; Pyrowolakis, George; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease. PMID:26701726

  6. Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation

    PubMed Central

    Kim, Young-Mi; Kim, Jung Hwan; Kwon, Hyuk Min; Lee, Dong Heon; Won, Moo-Ho; Kwon, Young-Guen; Kim, Young-Myeong

    2013-01-01

    Korean Red Ginseng extract (KRGE) is a traditional herbal medicine utilized to prevent endothelium dysfunction in the cardiovascular system; however, its underlying mechanism has not been clearly elucidated. We here examined the pharmacological effect and molecular mechanism of KRGE on apoptosis of human umbilical vein endothelial cells (HUVECs) in a serum-deprived apoptosis model. KRGE protected HUVECs from serum-deprived apoptosis by inhibiting mitochondrial cytochrome c release and caspase-9/-3 activation. This protective effect was significantly higher than that of American ginseng extract. KRGE treatment increased antiapoptotic Bcl-2 and Bcl-XL protein expression and Akt-dependent Bad phosphorylation. Moreover, KRGE prevented serum deprivation-induced subcellular redistribution of these proteins between the mitochondrion and the cytosol, resulting in suppression of mitochondrial cytochrome c release. In addition, KRGE increased nitric oxide (NO) production via Akt-dependent activation of endothelial NO synthase (eNOS), as well as inhibited caspase-9/-3 activities. These increases were reversed by co-treatment of cells with inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) and pre-incubation of cell lysates in dithiothreitol, indicating KRGE induces NO-mediated caspase modification. Indeed, KRGE inhibited caspase-3 activity via S-nitrosylation. These findings suggest that KRGE prevents serum deprivation-induced HUVEC apoptosis via increased Bcl-2 and Bcl-XL protein expression, PI3K/Akt-dependent Bad phosphorylation, and eNOS/NO-mediated S-nitrosylation of caspases. The cytoprotective property of KRGE may be valuable for developing new pharmaceutical means that limit endothelial cell death induced during the pathogenesis of vascular diseases. PMID:24233159

  7. Nuclear NF-κB p65 phosphorylation at Serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer

    PubMed Central

    Arun, Pattatheyil; Brown, Matthew; Ehsanian, Reza; Chen, Zhong; Van Waes, Carter

    2009-01-01

    Purpose Aberrant nuclear activation and phosphorylation of the canonical NF-κB subunit RELA/p65 at Serine-536 by Inhibitor Kappa B Kinase is prevalent in head and neck squamous cell carcinoma (HNSCC), but the role of other kinases in NF-κB activation has not been well defined. Here, we investigated the prevalence and function of p65-Ser276 phosphorylation by Protein Kinase A (PKA) in the malignant phenotype, gene transactivation, and as a potential target for therapy. Experimental Design Phospho and total p65 protein expression and localization was determined in HNSCC tissue array and in cell lines. The effects of PKA inhibitor H-89 on cell proliferation and cell cycle and of H-89 and PKA specific siRNA knockdown on NF-κB activation and downstream gene expression were examined. Results Nuclear NF-κB p65 phosphorylated at Ser276 was prevalent in HNSCC and adjacent dysplastic mucosa, but localized to the cytoplasm in normal mucosa. In HNSCC lines, TNF-α significantly increased while H-89 inhibited constitutive and TNF-α induced nuclear p65-Ser276 phosphorylation, and significantly suppressed NF-κB and target gene IL-8 reporter activity. Knock down of PKA by siRNA inhibited NF-κB, IL-8 and BCL-XL reporter gene activities. H-89 suppressed cell proliferation, induced cell death and blocked the cell cycle in G1/S phase. Consistent with its biological effects, H-89 down-modulated expression of NF-κB related genes Cyclin D1, BCL2, BCL-XL, COX2, IL-8, and VEGF, as well as induced cell cycle inhibitor p21CIP1/WAF1, while suppressing proliferative marker Ki67. Conclusions NF-κB RELA Ser276 phosphorylation by PKA promotes the malignant phenotype and holds potential as a therapeutic target in HNSCC. PMID:19789307

  8. Visualizing Proteins and Macromolecular Complexes by Negative Stain EM: from Grid Preparation to Image Acquisition

    PubMed Central

    Booth, David S.; Avila-Sakar, Agustin; Cheng, Yifan

    2011-01-01

    Single particle electron microscopy (EM), of both negative stained or frozen hydrated biological samples, has become a versatile tool in structural biology 1. In recent years, this method has achieved great success in studying structures of proteins and macromolecular complexes 2, 3. Compared with electron cryomicroscopy (cryoEM), in which frozen hydrated protein samples are embedded in a thin layer of vitreous ice 4, negative staining is a simpler sample preparation method in which protein samples are embedded in a thin layer of dried heavy metal salt to increase specimen contrast 5. The enhanced contrast of negative stain EM allows examination of relatively small biological samples. In addition to determining three-dimensional (3D) structure of purified proteins or protein complexes 6, this method can be used for much broader purposes. For example, negative stain EM can be easily used to visualize purified protein samples, obtaining information such as homogeneity/heterogeneity of the sample, formation of protein complexes or large assemblies, or simply to evaluate the quality of a protein preparation. In this video article, we present a complete protocol for using an EM to observe negatively stained protein sample, from preparing carbon coated grids for negative stain EM to acquiring images of negatively stained sample in an electron microscope operated at 120kV accelerating voltage. These protocols have been used in our laboratory routinely and can be easily followed by novice users. PMID:22215030

  9. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    PubMed

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  10. Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein.

    PubMed

    Amako, Yutaka; Syed, Gulam H; Siddiqui, Aleem

    2011-04-01

    Hepatitis C virus (HCV) RNA replicates its genome on specialized endoplasmic reticulum modified membranes termed membranous web and utilizes lipid droplets for initiating the viral nucleocapsid assembly. HCV maturation and/or the egress pathway requires host sphingolipid synthesis, which occur in the Golgi. Ceramide transfer protein (CERT) and oxysterol-binding protein (OSBP) play a crucial role in sphingolipid biosynthesis. Protein kinase D (PKD), a serine/threonine kinase, is recruited to the trans-Golgi network where it influences vesicular trafficking to the plasma membrane by regulation of several important mediators via phosphorylation. PKD attenuates the function of both CERT and OSBP by phosphorylation at their respective Ser(132) and Ser(240) residues (phosphorylation inhibition). Here, we investigated the functional role of PKD in HCV secretion. Our studies show that HCV gene expression down-regulated PKD activation. PKD depletion by shRNA or inhibition by pharmacological inhibitor Gö6976 enhanced HCV secretion. Overexpression of a constitutively active form of PKD suppressed HCV secretion. The suppression by PKD was subverted by the ectopic expression of nonphosphorylatable serine mutant CERT S132A or OSBP S240A. These observations imply that PKD negatively regulates HCV secretion/release by attenuating OSBP and CERT functions by phosphorylation inhibition. This study identifies the key role of the Golgi components in the HCV maturation process. PMID:21285358

  11. Negative Example Selection for Protein Function Prediction: The NoGO Database

    PubMed Central

    Youngs, Noah; Penfold-Brown, Duncan; Bonneau, Richard; Shasha, Dennis

    2014-01-01

    Negative examples – genes that are known not to carry out a given protein function – are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html). PMID:24922051

  12. Negative example selection for protein function prediction: the NoGO database.

    PubMed

    Youngs, Noah; Penfold-Brown, Duncan; Bonneau, Richard; Shasha, Dennis

    2014-06-01

    Negative examples - genes that are known not to carry out a given protein function - are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html).

  13. Estimation of Protein Absorption on Polymer Material by Carbon-Negative Ion Implantation

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuya; Tsuji, Hiroshi; Hattori, Mitsutaka; Sommani, Piyanuch; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    Selective cell attachment on carbon-negative-ion implanted region of polystyrene was already reported by the authors. However, the selectivity and adhesion strength in the cell pattering were partially insufficient. The adhesive proteins called extracellular matrix (ECM), in general, intervene between cell and substrate surface in the cell attachment on the solid surface. Therefore, we considered to obtain clearer selective cell attachment with tighter binding strength on the implanted region of polystyrene when these adhesive proteins precedently adsorbed on the implanted region of polystyrene. In this paper, we have investigated adsorption properties of three kinds of adhesive proteins (gelatin, fibronectin, laminin) and cell attachment properties on precedent protein adsorbed surface of polystyrene modified by carbon negative-ion implantation. Carbon negative ions were implanted into polystyrene at energy of 10 keV with dose in a range of 1×1014~1×1016 ions/cm2. After implantation, the samples were dipped in the protein solutions for 2 hours. Then, the protein adsorption ratio between implanted and unimplanted regions was evaluated by detecting amount of nitrogen atoms on the surface by X-ray photoelectron spectroscopy (XPS). As a result, the protein-precedently-absorbed sample implanted at dose more than 3×1015 ions/cm2 showed the large gelatin adsorption ratio of more than 2, where the much densely populated cell-attachment was observed more than that on the implanted region of polystyrene without precedent adsorption of protein after cell culture.

  14. Making a beta barrel: Assembly of Outer Membrane Proteins in Gram negative bacteria

    PubMed Central

    Rigel, Nathan W.; Silhavy, Thomas J.

    2011-01-01

    The outer membrane (OM) of Gram negative bacteria is an essential organelle that serves as a selective permeability barrier by keeping toxic compounds out of the cell while allowing vital nutrients in. How the OM and its constituent lipid and protein components are assembled remains an area of active research. In this review, we describe our current understanding of how outer membrane proteins (OMPs) are delivered to and then assembled in the OM of the model Gram-negative organism Escherichia coli. PMID:22221898

  15. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens

    PubMed Central

    Yanasarn, Nijaporn; Sloat, Brian R.; Cui, Zhengrong

    2011-01-01

    Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8+ cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome’s ability (i) to up-regulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development. PMID:21615153

  16. Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy.

    PubMed

    Nannenga, Brent L; Iadanza, Matthew G; Vollmar, Breanna S; Gonen, Tamir

    2013-01-01

    Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.

  17. BAG1: The Guardian of Anti-Apoptotic Proteins in Acute Myeloid Leukemia

    PubMed Central

    Aveic, Sanja; Pigazzi, Martina; Basso, Giuseppe

    2011-01-01

    BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance. PMID:22016818

  18. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    PubMed

    Aveic, Sanja; Pigazzi, Martina; Basso, Giuseppe

    2011-01-01

    BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  19. A novel pathway for outer membrane protein biogenesis in Gram‐negative bacteria

    PubMed Central

    Jeeves, Mark

    2015-01-01

    Summary The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM. PMID:26059329

  20. SRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity

    PubMed Central

    Li, Yingzhong; Li, Shuxin; Bi, Dongling; Cheng, Yu Ti; Li, Xin; Zhang, Yuelin

    2010-01-01

    Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity. PMID:20862316

  1. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  2. MUC1-C Stabilizes MCL-1 in the Oxidative Stress Response of Triple-Negative Breast Cancer Cells to BCL-2 Inhibitors

    PubMed Central

    Hiraki, Masayuki; Suzuki, Yozo; Alam, Maroof; Hinohara, Kunihiko; Hasegawa, Masanori; Jin, Caining; Kharbanda, Surender; Kufe, Donald

    2016-01-01

    Aberrant expression of myeloid cell leukemia-1 (MCL-1) is a major cause of drug resistance in triple-negative breast cancer (TNBC) cells. Mucin 1 (MUC1) is a heterodimeric oncoprotein that is aberrantly overexpressed in most TNBC. The present studies show that targeting the oncogenic MUC1 C-terminal subunit (MUC1-C) in TNBC cells with silencing or pharmacologic inhibition with GO-203 is associated with downregulation of MCL-1 levels. Targeting MUC1-C suppresses the MEK → ERK and PI3K → AKT pathways, and in turn destabilizes MCL-1. The small molecules ABT-737 and ABT-263 target BCL-2, BCL-XL and BCL-w, but not MCL-1. We show that treatment with ABT-737 increases reactive oxygen species and thereby MUC1-C expression. In this way, MUC1-C is upregulated in TNBC cells resistant to ABT-737 or ABT-263. We also demonstrate that MUC1-C is necessary for the resistance-associated increases in MCL-1 levels. Significantly, combining GO-203 with ABT-737 is synergistic in inhibiting survival of parental and drug resistant TNBC cells. These findings indicate that targeting MUC1-C is a potential strategy for reversing MCL-1-mediated resistance in TNBC. PMID:27217294

  3. HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase

    PubMed Central

    Lecoeur, H; Borgne-Sanchez, A; Chaloin, O; El-Khoury, R; Brabant, M; Langonné, A; Porceddu, M; Brière, J-J; Buron, N; Rebouillat, D; Péchoux, C; Deniaud, A; Brenner, C; Briand, J-P; Muller, S; Rustin, P; Jacotot, E

    2012-01-01

    The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor. PMID:22419111

  4. Mitogen-activated protein kinase phosphatase 1 negatively regulates MAPK signaling in mouse hypothalamus.

    PubMed

    Adachi, Koichi; Goto, Motomitsu; Onoue, Takeshi; Tsunekawa, Taku; Shibata, Miyuki; Hagimoto, Shigeru; Ito, Yoshihiro; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2014-05-21

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) is shown to negatively regulate MAPK signaling in various peripheral tissues as well as the central nervous system such as cortex, striatum and hippocampus. In this study, we examined whether MKP-1 regulates MAPK signaling in the mouse hypothalamus. Intraperitoneal injection of TNFα significantly increased MKP-1 mRNA expression in paraventricular and arcuate nuclei in the hypothalamus. TNFα treatment induced increases in MKP-1 expression at both mRNA and protein levels, accompanied by the inactivation of MAPK signaling in mouse hypothalamic explants. Inhibition of MKP-1 by its inhibitor or siRNA increased MAPK activity in the explants. Our data indicate that MKP-1 negatively regulates MAPK signaling in the mouse hypothalamus.

  5. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  6. Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop.

    PubMed

    Huang, Guocun; Chen, She; Li, Shaojie; Cha, Joonseok; Long, Chengzu; Li, Lily; He, Qiyang; Liu, Yi

    2007-12-15

    Regulation of circadian clock components by phosphorylation plays essential roles in clock functions and is conserved from fungi to mammals. In the Neurospora circadian negative feedback loop, FREQUENCY (FRQ) protein inhibits WHITE COLLAR (WC) complex activity by recruiting the casein kinases CKI and CKII to phosphorylate the WC proteins, resulting in the repression of frq transcription. On the other hand, CKI and CKII progressively phosphorylate FRQ to promote FRQ degradation, a process that is a major determinant of circadian period length. Here, by using whole-cell isotope labeling and quantitative mass spectrometry methods, we show that the WC-1 phosphorylation events critical for the negative feedback process occur sequentially-first by a priming kinase, then by the FRQ-recruited casein kinases. We further show that the cyclic AMP-dependent protein kinase A (PKA) is essential for clock function and inhibits WC activity by serving as a priming kinase for the casein kinases. In addition, PKA also regulates FRQ phosphorylation, but unlike CKI and CKII, PKA stabilizes FRQ, similar to the stabilization of human PERIOD2 (hPER2) due to the phosphorylation at the familial advanced sleep phase syndrome (FASPS) site. Thus, PKA is a key clock component that regulates several critical processes in the circadian negative feedback loop. PMID:18079175

  7. Regulation of OSU-03012 toxicity by ER stress proteins and ER stress-inducing drugs.

    PubMed

    Booth, Laurence; Roberts, Jane L; Cruickshanks, Nichola; Grant, Steven; Poklepovic, Andrew; Dent, Paul

    2014-10-01

    The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors, and also determined the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knockdown of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012, and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase-9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase-8 inhibitor c-FLIP-s, or knockdown of death receptor CD95 or the death receptor caspase-8 linker protein FADD, suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knockdown of the autophagy regulatory proteins Beclin1 or ATG5 protected the cells from OSU-03012 and from [OSU-03012 + PDE5 inhibitor] toxicity. Knockdown of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor]-induced JNK activation, and inhibition of JNK suppressed the elevated killing caused by IRE1 knockdown. Knockdown of CD95 blunted JNK activation. Collectively, our data demonstrate that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in glioblastoma multiforme (GBM) cells. PMID:25103559

  8. Effective Targeting of Estrogen Receptor Negative Breast Cancers with the Protein Kinase D inhibitor CRT0066101

    PubMed Central

    Borges, Sahra; Perez, Edith A.; Thompson, E. Aubrey; Radisky, Derek C.; Geiger, Xochiquetzal J.; Storz, Peter

    2015-01-01

    Invasive ductal carcinomas (IDCs) of the breast are associated with altered expression of hormone receptors (HR), amplification or overexpression of HER2, or a triple-negative phenotype. The most aggressive cases of IDC are characterized by a high proliferation rate, a great propensity to metastasize and their ability to resist to standard chemotherapy, hormone therapy or HER2 targeted therapy. Using progression tissue microarrays we here demonstrate that the serine/threonine kinase Protein Kinase D3 (PKD3) is highly up-regulated in estrogen receptor (ER)-negative tumors. We identify direct binding of the estrogen receptor to the PRKD3 gene promoter as a mechanism of inhibition of PKD3 expression. Loss of ER results in upregulation of PKD3 leading to all hallmarks of aggressive IDC, including increased cell proliferation, migration and invasion. This identifies ER-negative breast cancers as ideal for treatment with the PKD inhibitor CRT0066101. We show that similar to a knockdown of PKD3, treatment with this inhibitor targets all tumorigenic processes in vitro and decreases growth of primary tumors and metastasis in vivo. Our data strongly support the development of PKD inhibitors for clinical use for ER-negative breast cancers, including the triple-negative phenotype. PMID:25852060

  9. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  10. Binding of cellular repressor protein or the IE2 protein to a cis-acting negative regulatory element upstream of a human cytomegalovirus early promoter.

    PubMed Central

    Huang, L; Stinski, M F

    1995-01-01

    We have previously shown that the human cytomegalovirus early UL4 promoter has upstream negative and positive cis-acting regulatory elements. In the absence of the upstream negative regulatory region, the positive element confers strong transcriptional activity. The positive element contains a CCAAT box dyad symmetry and binds the cellular transcription factor NF-Y. The effect of the negative regulatory element is negated by the viral IE2 protein (L. Huang, C.L. Malone, and M.F. Stinski, J. Virol. 68:2108, 1994). We investigated the binding of cellular or viral IE2 protein to the negative regulatory region. The major cis-acting negative regulatory element was located between -168 and -134 bp relative to the transcription start site. This element could be transferred to a heterologous promoter, and it functioned in either orientation. Mutational analysis demonstrated that a core DNA sequence in the cis-acting negative regulatory element, 5'-GTTTGGAATCGTT-3', was required for the binding of either a cellular repressor protein(s) or the viral IE2 protein. The cellular DNA binding activity was present in both nonpermissive HeLa and permissive human fibroblast cells but more abundant in HeLa cells. Binding of the cellular repressor protein to the upstream cis-acting negative regulatory element correlates with repression of transcription from the early UL4 promoter. Binding of the viral IE2 protein correlates with negation of the repressive effect. PMID:7494269

  11. Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos

    PubMed Central

    Dunworth, William P.; Cardona-Costa, Jose; Bozkulak, Esra Cagavi; Kim, Jun-Dae; Meadows, Stryder; Fischer, Johanna C.; Wang, Yeqi; Cleaver, Ondine; Qyang, Yibing; Ober, Elke A.; Jin, Suk-Won

    2014-01-01

    Rationale The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. Objective Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. Methods and Results BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2 signaling in zebrafish embryos and mouse embryonic stem cell–derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox protein 1 during development. Conclusions Our data identify BMP2 as a key negative regulator for the emergence of the lymphatic lineage during vertebrate development. PMID:24122719

  12. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    PubMed Central

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na+/H+ exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9. PMID:27358166

  13. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat.

    PubMed

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na(+) and superfluous accumulation of Na(+) in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na(+)/H(+) exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9.

  14. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat.

    PubMed

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na(+) and superfluous accumulation of Na(+) in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na(+)/H(+) exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9. PMID:27358166

  15. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

    PubMed Central

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-01-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes. PMID:25085430

  16. Ex vivo complement protein adsorption on positively and negatively charged cellulose dialyser membranes.

    PubMed

    Mahiout, A; Matata, B M; Vienken, J; Courtney, J M

    1997-05-01

    An ex vivo test system was used to measure complement protein C3 and factor B adsorption onto small dialyser modules made from regenerated and modified cellulosic hollow fibre membranes in which positive diethylaminoethyl (DEAE) or negative carboxymethyl (CM) groups were introduced into the cellulose matrix. The extracorporeal system, which included test-dialysers and the dialysis environment, allowed the use of labelled proteins without contaminating the blood donors which were connected in an open-loop fashion to the extracorporeal test system. The modules were removed at selected time points from the extracorporeal system for radioactivity counting. The results were used to evaluate the mechanisms involved in complement reactions to foreign surfaces. The system therefore allowed the analysis of complement protein adsorption occurring in the dialyser modules and its relationship to the complement generation rate in the extracorporeal system to be evaluated. It was possible to demonstrate that significant complement C3 and factor B adsorption occurred in the test modules made of cellulosic membranes. Complement adsorption as a function of the pH and the release reaction of the adsorbed C3 and factor B after membrane blood perfusion were therefore found to be variable according to the cellulosic membrane type and the presence of positive or negative charged groups within the cellulose matrix. The data obtained from the ex vivo model therefore provided additional evidence on the discussion of the mechanisms involved in the increased complement activation by regenerated cellulose and in its attenuation by DEAE- or CM-modified cellulose.

  17. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis.

    PubMed

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl2 stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. PMID:27154224

  18. Binding constraints on the evolution of enzymes and signalling proteins: the important role of negative pleiotropy.

    PubMed

    Liberles, David A; Tisdell, Makayla D M; Grahnen, Johan A

    2011-07-01

    A number of biophysical and population-genetic processes influence amino acid substitution rates. It is commonly recognized that proteins must fold into a native structure with preference over an unfolded state, and must bind to functional interacting partners favourably to function properly. What is less clear is how important folding and binding specificity are to amino acid substitution rates. A hypothesis of the importance of binding specificity in constraining sequence and functional evolution is presented. Examples include an evolutionary simulation of a population of SH2 sequences evolved by threading through the structure and binding to a native ligand, as well as SH3 domain signalling in yeast and selection for specificity in enzymatic reactions. An example in vampire bats where negative pleiotropy appears to have been adaptive is presented. Finally, considerations of compartmentalization and macromolecular crowding on negative pleiotropy are discussed. PMID:21490020

  19. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport

    PubMed Central

    Held, Aaron; Sargeant, John; Thorsen, Kevin; Hay, Jesse C.

    2016-01-01

    Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport—peflin is a negative regulator of transport. PMID:27276012

  20. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  1. A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis

    PubMed Central

    Büttner, Sabrina; Ruli, Doris; Vögtle, F-Nora; Galluzzi, Lorenzo; Moitzi, Barbara; Eisenberg, Tobias; Kepp, Oliver; Habernig, Lukas; Carmona-Gutierrez, Didac; Rockenfeller, Patrick; Laun, Peter; Breitenbach, Michael; Khoury, Chamel; Fröhlich, Kai-Uwe; Rechberger, Gerald; Meisinger, Chris; Kroemer, Guido; Madeo, Frank

    2011-01-01

    Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-XL and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms. PMID:21673659

  2. Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene.

    PubMed

    Wang, Pi-Lin; Niidome, Tetsuhiro; Akaike, Akinori; Kihara, Takeshi; Sugimoto, Hachiro

    2009-07-01

    Rac1, a member of the Rho family GTPases, participates in a variety of cellular functions including lamellipodia formation, actin cytoskeleton organization, cell growth, apoptosis, and neuronal development. Recent studies have implicated Rac1 in cytoskeletal abnormalities, production of reactive oxygen species, and generation of the amyloid beta-peptide (Abeta) observed in Alzheimer's disease. In this study, we examined the relationship between Rac1 and amyloid precursor protein (APP), because the abnormal proteolytic processing of APP is a pathologic feature of Alzheimer's disease. In primary hippocampal neurons, the Rac1-specific inhibitor NSC23766 decreased both Rac1 activity and APP protein levels in a concentration-dependent manner. To elucidate how NSC23766 decreases APP protein levels, we examined the effects of NSC23766 on APP processing, degradation, and biosynthesis. NSC23766 did not increase the levels of the proteolytic products of APP, sAPPalpha, Abeta40, and Abeta42. The proteasome inhibitor lactacystin did not reverse the NSC23766-induced decrease in APP protein levels. NSC23766 did, however, decrease the levels of both APP mRNA and APP protein. Decreased levels of APP mRNA and protein were also observed when HEK293 cells were transfected with an expression vector containing a dominant-negative Rac1 mutant or with siRNA targeting Rac1. By overexpressing progressively deleted fragments of the APP promoter in HEK293 cells, we identified a Rac1 response site at positions -233 to -41 bp in the APP promoter. Taken together, our results suggest that Rac1 regulates transcription of the APP gene in primary hippocampal neurons.

  3. Negative Regulation of NADPH Oxidase 4 by Hydrogen Peroxide-inducible Clone 5 (Hic-5) Protein*

    PubMed Central

    Desai, Leena P.; Zhou, Yong; Estrada, Aida V.; Ding, Qiang; Cheng, Guangjie; Collawn, James F.; Thannickal, Victor J.

    2014-01-01

    Hydrogen peroxide-inducible clone 5 (Hic-5) is a focal adhesion adaptor protein induced by the profibrotic cytokine TGF-β1. We have demonstrated previously that TGF-β1 induces myofibroblast differentiation and lung fibrosis by activation of the reactive oxygen species-generating enzyme NADPH oxidase 4 (Nox4). Here we investigated a potential role for Hic-5 in regulating Nox4, myofibroblast differentiation, and senescence. In normal human diploid fibroblasts, TGF-β1 induces Hic-5 expression in a delayed manner relative to the induction of Nox4 and myofibroblast differentiation. Hic-5 silencing induced constitutive Nox4 expression and enhanced TGF-β1-inducible Nox4 levels. The induction of constitutive Nox4 protein in Hic-5-silenced cells was independent of transcription and translation and controlled by the ubiquitin-proteasomal system. Hic-5 associates with the ubiquitin ligase Cbl-c and the ubiquitin-binding protein heat shock protein 27 (HSP27). The interaction of these proteins is required for the ubiquitination of Nox4 and for maintaining low basal levels of this reactive oxygen species-generating enzyme. Our model suggests that TGF-β1-induced Hic-5 functions as a negative feedback mechanism to limit myofibroblast differentiation and senescence by promoting the ubiquitin-proteasomal system-mediated degradation of Nox4. Together, these studies indicate that endogenous Hic-5 suppresses senescence and profibrotic activities of myofibroblasts by down-regulating Nox4 protein expression. Additionally, these are the first studies, to our knowledge, to demonstrate posttranslational regulation of Nox4. PMID:24831009

  4. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  5. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    PubMed

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  6. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    PubMed

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase. PMID:25131196

  7. Survival function of protein kinase C{iota} as a novel nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-activated bad kinase.

    PubMed

    Jin, Zhaohui; Xin, Meiguo; Deng, Xingming

    2005-04-22

    Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen in cigarette smoke. NNK cannot only induce DNA damage but also promotes the survival of human lung cancer cells. Protein kinase C (PKC)iota is an atypical PKC isoform and plays an important role in cell survival, but the downstream survival substrate(s) is not yet identified. Bad, a proapoptotic BH3-only member of Bcl2 family, is co-expressed with PKCiota in both small cell lung cancer and non-small cell lung cancer cells. We discovered that NNK potently induces multisite Bad phosphorylation at Ser-112, Ser-136, and Ser-155 via activation of PKCiota in association with increased survival of human lung cancer cells. Purified, active PKCiota can directly phosphorylate both endogenous and recombinant Bad at these three sites and disrupt Bad/Bcl-XL binding in vitro. Overexpression of PKCiota results in an enhancement of Bad phosphorylation. NNK also stimulates activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the PKC inhibitor (staurosporine) or a Src-specific inhibitor (PP2) can block NNK-induced Bad phosphorylation and promote apoptotic cell death. The beta-adrenergic receptor inhibitor propranolol blocks both NNK-induced activation of PKCiota and Bad phosphorylation, indicating that NNK-induced Bad phosphorylation occurs at least in part through the upstream beta-adrenergic receptor. Mechanistically, NNK-induced Bad phosphorylation prevents its interaction with Bcl-XL. Because the specific depletion of PKCiota by RNA interference inhibits both NNK-induced Bad phosphorylation and survival, this confirms that PKCiota is a necessary component in NNK-mediated survival signaling. Collectively, these findings reveal a novel role for PKCiota as an NNK-activated physiological Bad kinase that can directly phosphorylate and inactivate this proapoptotic BH3-only protein, which leads to

  8. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening.

    PubMed

    Jia, Hai-Feng; Lu, Dong; Sun, Jing-Hua; Li, Chun-Li; Xing, Yu; Qin, Ling; Shen, Yuan-Yue

    2013-04-01

    Although a great deal of progress has been made toward understanding the role of abscisic acid (ABA) in fruit ripening, many components in the ABA signalling pathway remain to be elucidated. Here, a strawberry gene homologous to the Arabidopsis gene ABI1, named FaABI1, was isolated and characterized. The 1641bp cDNA includes an intact open reading frame that encodes a deduced protein of 546 amino acids, in which putative conserved domains were determined by homology analysis. Transcriptional analysis showed that the levels of FaABI1 mRNA expression declined rapidly during strawberry fruit development as evidenced by real-time PCR, semi-quantitative reverse transcription-PCR, and northern blotting analyses, suggesting that the Ser/Thr protein phosphatase PP2C1 encoded by FaABI1 may be involved in fruit ripening as a negative regulator. The results of Tobacco rattle virus-induced gene silencing and PBI121 vector-mediated overexpression suggested that the down- and up-regulation of FaABI1 mRNA expression levels in degreening strawberry fruit could promote and inhibit ripening, respectively. Furthermore, alteration of FaABI1 expression could differentially regulate the transcripts of a set of both ABA-responsive and ripening-related genes, including ABI3, ABI4, ABI5, SnRK2, ABRE1, CHS, PG1, PL, CHI, F3H, DFR, ANS, and UFGT. Taken together, the data provide new evidence for an important role for ABA in regulating strawberry fruit ripening in the processes of which the type 2C protein phosphatase ABI1 serves as a negative regulator. Finally, a possible core mechanism underlying ABA perception and signalling transduction in strawberry fruit ripening is discussed.

  9. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  10. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  11. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.

    PubMed

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function.

  12. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness

    PubMed Central

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-01-01

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor. PMID:26837600

  13. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway?

    PubMed Central

    Pečenková, Tamara; Sabol, Peter; Kulich, Ivan; Ortmannová, Jitka; Žárský, Viktor

    2016-01-01

    Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein–protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants. PMID:26973696

  14. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.

    PubMed

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function. PMID:26930489

  15. Src-like Adaptor Protein (Slap) Is a Negative Regulator of T Cell Receptor Signaling

    PubMed Central

    Sosinowski, Tomasz; Pandey, Akhilesh; Dixit, Vishva M.; Weiss, Arthur

    2000-01-01

    Initiation of T cell antigen receptor (TCR) signaling is dependent on Lck, a Src family kinase. The Src-like adaptor protein (SLAP) contains Src homology (SH)3 and SH2 domains, which are highly homologous to those of Lck and other Src family members. Because of the structural similarity between Lck and SLAP, we studied its potential role in TCR signaling. Here, we show that SLAP is expressed in T cells, and that when expressed in Jurkat T cells it can specifically inhibit TCR signaling leading to nuclear factor of activated T cells (NFAT)-, activator protein 1 (AP-1)–, and interleukin 2–dependent transcription. The SH3 and SH2 domains of SLAP are required for maximal attenuation of TCR signaling. This inhibitory activity can be bypassed by the combination of phorbol myristate acetate (PMA) and ionomycin, suggesting that SLAP acts proximally in the TCR signaling pathway. SLAP colocalizes with endosomes in Jurkat and in HeLa cells, and is insoluble in mild detergents. In stimulated Jurkat cells, SLAP associates with a molecular signaling complex containing CD3ζ, ZAP-70, SH2 domain–containing leukocyte protein of 76 kD (SLP-76), Vav, and possibly linker for activation of T cells (LAT). These results suggest that SLAP is a negative regulator of TCR signaling. PMID:10662792

  16. Src-like adaptor protein (SLAP) is a negative regulator of T cell receptor signaling.

    PubMed

    Sosinowski, T; Pandey, A; Dixit, V M; Weiss, A

    2000-02-01

    Initiation of T cell antigen receptor (TCR) signaling is dependent on Lck, a Src family kinase. The Src-like adaptor protein (SLAP) contains Src homology (SH)3 and SH2 domains, which are highly homologous to those of Lck and other Src family members. Because of the structural similarity between Lck and SLAP, we studied its potential role in TCR signaling. Here, we show that SLAP is expressed in T cells, and that when expressed in Jurkat T cells it can specifically inhibit TCR signaling leading to nuclear factor of activated T cells (NFAT)-, activator protein 1 (AP-1)-, and interleukin 2-dependent transcription. The SH3 and SH2 domains of SLAP are required for maximal attenuation of TCR signaling. This inhibitory activity can be bypassed by the combination of phorbol myristate acetate (PMA) and ionomycin, suggesting that SLAP acts proximally in the TCR signaling pathway. SLAP colocalizes with endosomes in Jurkat and in HeLa cells, and is insoluble in mild detergents. In stimulated Jurkat cells, SLAP associates with a molecular signaling complex containing CD3zeta, ZAP-70, SH2 domain-containing leukocyte protein of 76 kD (SLP-76), Vav, and possibly linker for activation of T cells (LAT). These results suggest that SLAP is a negative regulator of TCR signaling.

  17. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function

    PubMed Central

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function. PMID:26930489

  18. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation

    PubMed Central

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina

    2015-01-01

    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/CFL2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components including α-actinin, T-cap and MLP. Our findings unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, and in differentiated striated muscles as a contributor to sarcomeric integrity. PMID:24860983

  19. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  20. Positive and negative regulation of adenovirus infection by CAR-like soluble protein, CLSP.

    PubMed

    Kawabata, K; Tashiro, K; Sakurai, F; Osada, N; Kusuda, J; Hayakawa, T; Yamanishi, K; Mizuguchi, H

    2007-08-01

    Coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin (Ig) superfamily and a component of epithelial tight junction. CAR also functions as a primary receptor for coxsackievirus B and adenovirus (Ad) infection. In this study, we report the identification of a novel protein, CAR-like soluble protein (CLSP), which is closely related to CAR. Mouse CLSP (mCLSP) was composed of 390 amino acids, including three Ig domains, and showed strong homology to the IgV domain of CAR. Interestingly, mCLSP lacks a transmembrane domain, indicating that this is a soluble protein. mCLSP mRNA was detected primarily in the brain and ovary. When mCLSP cDNA was introduced into SK HEP-1 cells, which were known to be CAR positive and easily infected with Ad vector, the infection with Ad vector was severely inhibited. On the other hand, mCLSP promoted the infection with Ad vector in CAR-negative NIH3T3 cells. Furthermore, recombinant CLSP directly bound to Ad and inhibited the Ad vector-mediated transduction in SK HEP-1 cells. Computational analysis for a genome database showed that the CLSP gene is rodent-specific, and that human and bovine lack this gene. These results suggest that CLSP may play a role in the antiviral defense of the host in rodent animals.

  1. Polymorphism in the M sub r 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes

    SciTech Connect

    Saboori, A.M.; Smith, B.L.; Agre, P. )

    1988-06-01

    A M{sub r} 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the M{sub r} 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO{sub 4}, and a tracer of immunoprecipitated {sup 125}I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO{sub 4}/PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO{sub 4}/PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after {sup 125}I-labeling and {alpha}-chymotrypsin digestion. The peptide maps were very similar. These data indicate that a similar core Rh protein exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms.

  2. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  3. Poly r(C) binding protein (PCBP) 1 is a negative regulator of thyroid carcinoma

    PubMed Central

    Zhang, Mingpeng; Wang, Xin; Tan, Jin; Zhao, Minghui; Lian, Linjuan; Zhang, Weisan

    2016-01-01

    Poly r(C) binding protein (PCBP) 1 or heterogeneous ribonucleoprotein (hnRNP) E1 is a RNA binding protein functional in multiple biological processes. PCBP1 has been shown to function as a tumor suppressor by negatively regulating translation of EMT inducer proteins in different cancers. Loss of PCBP1 expression or its Akt2-mediated phosphorylation at serine residue 43 has both been indicated to de-repress its regulation of EMT inducer proteins. However, its role in thyroid carcinoma has not been elucidated. Here we report that PCBP1 expression is significantly downregulated in thyroid carcinoma patients. In vitro kinase assay revealed that immunoprecipitated PCBP1 from transient or stably transfected thyroid carcinoma cells can be phosphorylated by recombinant Akt2 kinase. In situ analysis revealed that PCBP1 is a putative target of miR-490-3p, which was further confirmed by PCBP1 3’UTR-based reporter assays using the wild-type or a miR-490 seed mutant 3’UTR. The endogenous regulation of the PCBP1 3’UTR reporter by miR-490-3p could be rescued by transfection of miR-490 antagomir in WRO and BCPAP cells. Stably overexpressing PCBP1 BCPAP cells attenuated tumor formation completely as compared to empty vector overexpressing cells in xenograft assay. Cumulatively, our results indicate that PCBP1 functions as a tumor suppressor in thyroid carcinoma and that its expression is down regulated by high expression of the miR-490-3p observed in thyroid carcinoma patients. PMID:27648147

  4. Poly r(C) binding protein (PCBP) 1 is a negative regulator of thyroid carcinoma.

    PubMed

    Zhang, Mingpeng; Wang, Xin; Tan, Jin; Zhao, Minghui; Lian, Linjuan; Zhang, Weisan

    2016-01-01

    Poly r(C) binding protein (PCBP) 1 or heterogeneous ribonucleoprotein (hnRNP) E1 is a RNA binding protein functional in multiple biological processes. PCBP1 has been shown to function as a tumor suppressor by negatively regulating translation of EMT inducer proteins in different cancers. Loss of PCBP1 expression or its Akt2-mediated phosphorylation at serine residue 43 has both been indicated to de-repress its regulation of EMT inducer proteins. However, its role in thyroid carcinoma has not been elucidated. Here we report that PCBP1 expression is significantly downregulated in thyroid carcinoma patients. In vitro kinase assay revealed that immunoprecipitated PCBP1 from transient or stably transfected thyroid carcinoma cells can be phosphorylated by recombinant Akt2 kinase. In situ analysis revealed that PCBP1 is a putative target of miR-490-3p, which was further confirmed by PCBP1 3'UTR-based reporter assays using the wild-type or a miR-490 seed mutant 3'UTR. The endogenous regulation of the PCBP1 3'UTR reporter by miR-490-3p could be rescued by transfection of miR-490 antagomir in WRO and BCPAP cells. Stably overexpressing PCBP1 BCPAP cells attenuated tumor formation completely as compared to empty vector overexpressing cells in xenograft assay. Cumulatively, our results indicate that PCBP1 functions as a tumor suppressor in thyroid carcinoma and that its expression is down regulated by high expression of the miR-490-3p observed in thyroid carcinoma patients. PMID:27648147

  5. Expression of metabolism-related proteins in triple-negative breast cancer

    PubMed Central

    Kim, Min-Ju; Kim, Do-Hee; Jung, Woo-Hee; Koo, Ja-Seung

    2014-01-01

    To investigate the dominant metabolic type of triple-negative breast cancer (TNBC) and evaluate its clinical implication through analysis of protein expression related to glycolysis, glutaminolysis, and mitochondrial oxidative phosphorylation. Tissue samples from 129 patients with TNBC who underwent mastectomy due to invasive breast cancer from 2000 to 2005 were prepared for tissue microarray. By immunohistochemical staining of the tissue microarrays, the markers of glycolysis-related proteins (Glut-1, CAIX, MCT4), glutaminolysis-related proteins (GLS1, GDH, ASCT2), and mitochondrial enzymes (ATP synthase, SDHA and SDHB) were analyzed. Based on the results, the metabolic phenotypes were defined based on positivity for more than two of three markers for each phenotype as follows: glycolysis type (Glut-1, CAIX and MCT4), glutaminolysis type (GLS1, GDH and ASCT2) and mitochondrial type (ATP synthase, SDHA and SDHB). The percentages of samples with metabolic phenotypes of tumor and stroma of TNBC were as follows: for tumor, mitochondrial type (85.3%) > glutaminolysis type (67.4%) > glycolysis type (63.0%); and for stroma, glutaminolysis type (37.2%) > glycolysis type (16.3%) > mitochondrial type (14.0%). The most common metabolic phenotype of TNBC was glycolysis type for basal-like type and non-glycolysis type for non-basal-like type (p=0.047). The correlation between glutaminolysis and mitochondrial type was statistically significant in both tumor and stroma (p<0.001). In conclusion, tumor cells of TNBC express glycolysis and mitochondrial metabolism-related proteins. Glycolysis type is the most common phenotype of basal-like type, and reversely, non-glycolysis type is the most common phenotype of non basal-like type. PMID:24427351

  6. Poly r(C) binding protein (PCBP) 1 is a negative regulator of thyroid carcinoma

    PubMed Central

    Zhang, Mingpeng; Wang, Xin; Tan, Jin; Zhao, Minghui; Lian, Linjuan; Zhang, Weisan

    2016-01-01

    Poly r(C) binding protein (PCBP) 1 or heterogeneous ribonucleoprotein (hnRNP) E1 is a RNA binding protein functional in multiple biological processes. PCBP1 has been shown to function as a tumor suppressor by negatively regulating translation of EMT inducer proteins in different cancers. Loss of PCBP1 expression or its Akt2-mediated phosphorylation at serine residue 43 has both been indicated to de-repress its regulation of EMT inducer proteins. However, its role in thyroid carcinoma has not been elucidated. Here we report that PCBP1 expression is significantly downregulated in thyroid carcinoma patients. In vitro kinase assay revealed that immunoprecipitated PCBP1 from transient or stably transfected thyroid carcinoma cells can be phosphorylated by recombinant Akt2 kinase. In situ analysis revealed that PCBP1 is a putative target of miR-490-3p, which was further confirmed by PCBP1 3’UTR-based reporter assays using the wild-type or a miR-490 seed mutant 3’UTR. The endogenous regulation of the PCBP1 3’UTR reporter by miR-490-3p could be rescued by transfection of miR-490 antagomir in WRO and BCPAP cells. Stably overexpressing PCBP1 BCPAP cells attenuated tumor formation completely as compared to empty vector overexpressing cells in xenograft assay. Cumulatively, our results indicate that PCBP1 functions as a tumor suppressor in thyroid carcinoma and that its expression is down regulated by high expression of the miR-490-3p observed in thyroid carcinoma patients.

  7. Negative regulation of parathyroid hormone-related protein expression by steroid hormones.

    PubMed

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  8. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1.

    PubMed

    Couto, Daniel; Niebergall, Roda; Liang, Xiangxiu; Bücherl, Christoph A; Sklenar, Jan; Macho, Alberto P; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Maclean, Dan; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min; Zipfel, Cyril

    2016-08-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  9. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1

    PubMed Central

    Liang, Xiangxiu; Bücherl, Christoph A.; Sklenar, Jan; Macho, Alberto P.; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min

    2016-01-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  10. Gram Negative Bacterial Inflammation Ameliorated by the Plasma Protein Beta 2-Glycoprotein I

    PubMed Central

    Zhou, Saijun; Chen, Gang; Qi, Miao; El-Assaad, Fatima; Wang, Ying; Dong, Shangwen; Chen, Liming; Yu, Demin; Weaver, James C.; Beretov, Julia; Krilis, Steven A.; Giannakopoulos, Bill

    2016-01-01

    Lipopolysaccharide (LPS) is a major component of the outer wall of gram negative bacteria. In high doses LPS contributes to the inflammation in gram negative sepsis, and in low doses contributes to the low grade inflammation characteristic of the metabolic syndrome. We wanted to assess the role of beta2-glycoprotein I (β2GPI) a highly conserved plasma protein and its different biochemical forms in a mouse model of LPS systemic inflammation. Normal and β2GPI deficient mice were administered LPS through their veins and assessed for a range of inflammation markers in their blood and liver. Different biochemical forms of β2GPI were measured in normal mice given either saline or LPS. We show that β2GPI has a significant role in inhibiting LPS induced inflammation. In this study we provide some evidence that β2GPI serves a protective role in a mouse model of LPS inflammation. This resolves the controversy of previous studies which used LPS and β2GPI in test tube based models of LPS induced activation of white cells. We also highlight the potential relevance of a newly discovered biochemical form of β2GPI in LPS mediated inflammation and we speculate that this form has a protective role against LPS induced pathology. PMID:27670000

  11. [Advances in the research of LuxR family protein in quorum-sensing system of gram-negative bacteria].

    PubMed

    Chen, Z; Xiang, J

    2016-09-20

    Quorum sensing (QS) is a cell-density-dependent method for information transmission among bacteria, as well as a mechanism for the bacteria to adapt to environment. LuxR family protein plays a key role in gram-negative bacterial QS system as a kind of transcription regulators and participates in a variety of biological behaviors with LuxI protein and signal molecules, such as bioluminescence, biofilm formation, virulence factors production, and so on. The advances in the research of LuxR family protein in QS system of gram-negative bacteria were summarized in this review. PMID:27647069

  12. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication

    PubMed Central

    Van de Mark, Daniel; Kong, Dong; Loncarek, Jadranka; Stearns, Tim

    2015-01-01

    Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding. PMID:26337392

  13. A cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein.

    PubMed

    Lorenzato, Annalisa; Olivero, Martina; Perro, Mario; Brière, Jean Jacques; Rustin, Pierre; Di Renzo, Maria Flavia

    2008-02-15

    The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most frequent in HLRCC patients. Here we show the functional analyses of the R190H, in comparison to the better characterized E319Q mutation. We first expressed wild-type and mutated proteins in FH deficient human skin fibroblasts, using lentiviral vectors. The wild-type transgene was able to restore the FH enzymatic activity in cells, while the R190H- and E319Q-FH were not. More interestingly, when the same transgenes were expressed in normal, FH-proficient cells, only the R190H-FH reduced the endogenous FH enzymatic activity. By enforcing the expression of equal amount of wild-type and R190H-FH in the same cell, we showed that the mutated FH protein directly inhibited enzymatic activity by nearly abrogating the FH homotetramer formation. These data demonstrate the dominant negative effect of the R190H missense mutation in the FH gene and suggest that the FH tumor-suppressing activity might be impaired in cells carrying a heterozygous mutation.

  14. A cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein.

    PubMed

    Lorenzato, Annalisa; Olivero, Martina; Perro, Mario; Brière, Jean Jacques; Rustin, Pierre; Di Renzo, Maria Flavia

    2008-02-15

    The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most frequent in HLRCC patients. Here we show the functional analyses of the R190H, in comparison to the better characterized E319Q mutation. We first expressed wild-type and mutated proteins in FH deficient human skin fibroblasts, using lentiviral vectors. The wild-type transgene was able to restore the FH enzymatic activity in cells, while the R190H- and E319Q-FH were not. More interestingly, when the same transgenes were expressed in normal, FH-proficient cells, only the R190H-FH reduced the endogenous FH enzymatic activity. By enforcing the expression of equal amount of wild-type and R190H-FH in the same cell, we showed that the mutated FH protein directly inhibited enzymatic activity by nearly abrogating the FH homotetramer formation. These data demonstrate the dominant negative effect of the R190H missense mutation in the FH gene and suggest that the FH tumor-suppressing activity might be impaired in cells carrying a heterozygous mutation. PMID:17960613

  15. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication.

    PubMed

    Van de Mark, Daniel; Kong, Dong; Loncarek, Jadranka; Stearns, Tim

    2015-11-01

    Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding.

  16. Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain

    PubMed Central

    1996-01-01

    The myelin Po protein is believed to hold myelin together via interactions of both its extracellular and cytoplasmic domains. We have already shown that the extracellular domains of Po can interact in a homophilic manner (Filbin, M.T., F.S. Walsh, B.D. Trapp, J.A. Pizzey, and G.I. Tennekoon. 1990. Nature (Lond.). 344:871-872). In addition, we have shown that for this homophilic adhesion to take place, the cytoplasmic domain of Po must be intact and most likely interacting with the cytoskeleton; Po proteins truncated in their cytoplasmic domains are not adhesive (Wong, M.H., and M.T. Filbin, 1994. J. Cell Biol. 126:1089-1097). To determine if the presence of these truncated forms of Po could have an effect on the functioning of the full-length Po, we coexpressed both molecules in CHO cells. The adhesiveness of CHO cells expressing both full-length Po and truncated Po was then compared to cells expressing only full-length Po. In these coexpressors, both the full-length and the truncated Po proteins were glycosylated. They reached the surface of the cell in approximately equal amounts as shown by an ELISA and surface labeling, followed by immunoprecipitation. Furthermore, the amount of full-length Po at the cell surface was equivalent to other cell lines expressing only full-length Po that we had already shown to be adhesive. Therefore, there should be sufficient levels of full-length Po at the surface of these coexpressors to measure adhesion of Po. However, as assessed by an aggregation assay, the coexpressors were not adhesive. By 60 min they had not formed large aggregates and were indistinguishable from the control transfected cells not expressing Po. In contrast, in the same time, the cells expressing only the full-length Po had formed large aggregates. This indicates that the truncated forms of Po have a dominant-negative effect on the adhesiveness of the full-length Po. Furthermore, from cross-linking studies, full-length Po, when expressed alone but not when

  17. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  18. Protein Expression of DNA Damage Repair Proteins Dictates Response to Topoisomerase and PARP Inhibitors in Triple-Negative Breast Cancer

    PubMed Central

    Boerner, Julie L.; Nechiporchik, Nicole; Mueller, Kelly L.; Polin, Lisa; Heilbrun, Lance; Boerner, Scott A.; Zoratti, Gina L.; Stark, Karri; LoRusso, Patricia M.; Burger, Angelika

    2015-01-01

    Patients with metastatic triple-negative breast cancer (TNBC) have a poor prognosis. New approaches for the treatment of TNBC are needed to improve patient survival. The concept of synthetic lethality, brought about by inactivating complementary DNA repair pathways, has been proposed as a promising therapeutic option for these tumors. The TNBC tumor type has been associated with BRCA mutations, and inhibitors of Poly (ADP-ribose) polymerase (PARP), a family of proteins that facilitates DNA repair, have been shown to effectively kill BRCA defective tumors by preventing cells from repairing DNA damage, leading to a loss of cell viability and clonogenic survival. Here we present preclinical efficacy results of combining the PARP inhibitor, ABT-888, with CPT-11, a topoisomerase I inhibitor. CPT-11 binds to topoisomerase I at the replication fork, creating a bulky adduct that is recognized as damaged DNA. When DNA damage was stimulated with CPT-11, protein expression of the nucleotide excision repair enzyme ERCC1 inversely correlated with cell viability, but not clonogenic survival. However, 4 out of the 6 TNBC cells were synergistically responsive by cell viability and 5 out of the 6 TNBC cells were synergistically responsive by clonogenic survival to the combination of ABT-888 and CPT-11. In vivo, the BRCA mutant cell line MX-1 treated with CPT-11 alone demonstrated significant decreased tumor growth; this decrease was enhanced further with the addition of ABT-888. Decrease in tumor growth correlated with an increase in double strand DNA breaks as measured by γ-H2AX phosphorylation. In summary, inhibiting two arms of the DNA repair pathway simultaneously in TNBC cell lines, independent of BRCA mutation status, resulted in un-repairable DNA damage and subsequent cell death. PMID:25774912

  19. BAD, a Proapoptotic Protein, Escapes ERK/RSK Phosphorylation in Deguelin and siRNA-Treated HeLa Cells.

    PubMed

    Hafeez, Samra; Urooj, Mahwish; Saleem, Shamiala; Gillani, Zeeshan; Shaheen, Sumaira; Qazi, Mahmood Husain; Naseer, Muhammad Imran; Iqbal, Zafar; Ansari, Shakeel Ahmed; Haque, Absarul; Asif, Muhammad; Mir, Manzoor Ahmad; Ali, Ashraf; Pushparaj, Peter Natesan; Jamal, Mohammad Sarwar; Rasool, Mahmood

    2016-01-01

    This study has been undertaken to explore the therapeutic effects of deguelin and specific siRNAs in HeLa cells. The data provided clearly show the silencing of ERK 1/2 with siRNAs and inhibition of ERK1/2 with deguelin treatment in HeLa cells. Additionally, we are providing information that deguelin binds directly to anti-apoptotic Bcl-2, Bcl-xl and Mcl-1 in the hydrophobic grooves, thereby releasing BAD and BAX from dimerization with these proteins. This results in increased apoptotic activity through the intrinsic pathway involved in rupture of mitochondrial membrane and release of cytochrome C. Evidence for inhibition of ERK1/2 by deguelin and escape of BAD phosphorylation at serine 112 through ERK/RSK pathway has been further fortified by obtaining similar results by silencing ERK 1/2 each with specific siRNAs. Increase in BAD after treatment with deguelin or siRNAs has been interpreted to mean that deguelin acts through several alternative pathways and therefore can be used as effective therapeutic agent.

  20. Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases

    PubMed Central

    Krupa, A.; Srinivasan, N.

    2002-01-01

    By means of profile-matching procedures, conservation of functionally important residues, and fold-recognition techniques, we show that two distinct families of lipopolysaccharide kinases encoded in the genomes of Gram-negative bacteria are related to each other and to two distinct classes of proteins, namely eukaryotic protein kinases and right open reading frame (RIO1). Members of one of the lipopolysaccharide kinase families are identified only in pathogenic bacteria. Phosphorylation by these enzymes is relevant in the construction of outer membrane, immune response, and pathogenic virulence. The class of proteins called RIO1, also related to eukaryotic protein kinases and previously known to occur only in archaea and eukaryotes, are now identified in eubacteria as well. It has been suggested here that RIO1 proteins are intermediately related to lipopolysaccharide kinases and eukaryotic protein kinases implying an evolutionary relationship between the three classes of proteins. PMID:12021457

  1. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses.

    PubMed

    Lin, Zuh-Jyh Daniel; Liebrand, Thomas W H; Yadeta, Koste A; Coaker, Gitta

    2015-12-01

    Receptor-like cytoplasmic kinases (RLCKs) are a subset of plant receptor-like kinases lacking both extracellular and transmembrane domains. Some of the 46 members in the Arabidopsis (Arabidopsis thaliana) RLCK subfamily VII have been linked to plant innate immunity; however, most remain uncharacterized. Thus, multiple subfamily VII members are expected to be involved in plant immune signaling. Here, we investigate the role of AvrPphB SUSCEPTIBLE1-LIKE13 (PBL13), a subfamily VII RLCK with unique domain architecture. Unlike other characterized RLCKs, PBL13 transfer DNA insertion lines exhibit enhanced disease resistance after inoculation with virulent Pseudomonas syringae. The pbl13-2 knockout also exhibits elevated basal-level expression of the PATHOGENESIS-RELATED GENE1 defense marker gene, enhanced reactive oxygen species (ROS) burst in response to perception of bacterial microbial patterns, and accelerated flagellin-induced activation of mitogen-activated protein kinases. Recombinant PBL13 is an active kinase, and its primary autophosphorylated sites map to a 15-amino acid repeat motif unique to PBL13. Complementation of pbl13-2 with PBL13-3xFLAG converts the enhanced resistance and elevated ROS phenotypes back to wild-type levels. In contrast, kinase-dead PBL13(K111A)-3xFLAG was unable to rescue pbl13-2 disease phenotypes. Consistent with the enhanced ROS burst in the pbl13-2 knockout, PBL13 is able to associate with the nicotinamide adenine dinucleotide phosphate, reduced oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN D (RBOHD) by split-luciferase complementation assay, and this association is disrupted by flagellin treatment. We conclude that the PBL13 kinase negatively regulates plant innate immunity to pathogenic bacteria and can associate with RBOHD before pathogen perception. These data are consistent with the hypothesis that PBL13 acts to prevent inappropriate activation of defense responses in the absence of pathogen challenge.

  2. Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids.

    PubMed

    Ganisl, Barbara; Taucher, Monika; Riml, Christian; Breuker, Kathrin

    2011-01-01

    Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood. PMID:22006635

  3. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    PubMed

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001).

  4. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    SciTech Connect

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  5. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase.

    PubMed

    Martínez de Morentin, Pablo B; Whittle, Andrew J; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; Vidal-Puig, Antonio; López, Miguel

    2012-04-01

    Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity. PMID:22315316

  6. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins.

    PubMed

    Peng, Jamy C; Valouev, Anton; Liu, Na; Lin, Haifan

    2016-03-01

    The Drosophila melanogaster Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi interacts with Polycomb group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with the PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin coimmunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), histone H3 trimethylated at lysine 27 (H3K27me3) and RNA polymerase II in wild-type and piwi mutant ovaries demonstrates that Piwi binds a conserved DNA motif at ∼ 72 genomic sites and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 trimethylation. Moreover, Piwi influences RNA polymerase II activities in Drosophila ovaries, likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influencing transcription during oogenesis. PMID:26780607

  7. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase.

    PubMed

    Martínez de Morentin, Pablo B; Whittle, Andrew J; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; Vidal-Puig, Antonio; López, Miguel

    2012-04-01

    Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity.

  8. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb Group proteins

    PubMed Central

    Peng, Jamy C.; Valouev, Anton; Liu, Na; Lin, Haifan

    2015-01-01

    The Drosophila Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi cooperates with Polycomb Group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin co-immunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), lysine-27-tri-methylated histone 3 (H3K27m3), and RNA polymerase II in wild-type and piwi mutant ovaries reveals that Piwi binds a conserved DNA motif at ~72 genomic sites, and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 tri-methylation. Moreover, Piwi influences RNA Polymerase II activities in Drosophila ovaries likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influences transcription during oogenesis. PMID:26780607

  9. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons

    SciTech Connect

    Helmann, J.D.; Walsh, C.T. ); Wang, Ying; Mahler, I. )

    1989-01-01

    The authors report the overexpression, purification, and properties of the regulatory protein, MerR, for a chromosomally encoded mercury resistance determinant from Bacillus strain RC607. This protein is similar in sequence to the metalloregulatory proteins encoded by gram-negative resistance determinants found on transposons Tn21 and Tn501 and to a predicted gene product of a Staphylococcus aureus resistance determinant. In vitro DNA-binding and transcription experiments were used to demonstrate those purified Bacillus MerR protein controls transcription from a promoter-operator site similar in sequence to that found in the transposon resistance determinants. The Bacillus MerR protein bound in vitro to its promoter-operator region in both the presence and absence of mercuric ion and functioned as a negative and positive regulator of transcription. The MerR protein bound less tightly to its operator region (ca. 50- to 100-fold) in the presence of mercuric ion; this reduced affinity was largely accounted for by an increased rate of dissociation of the MerR protein from the DNA. Despite this reduced DNA-binding affinity, genetic and biochemical evidence support a model in which the MerR protein-mercuric ion complex is a positive regulator of operon transcription. Although the Bacillus MerR protein bound only weakly to the heterologous Tn501 operator region, the Tn501 and Tn21 MerR proteins bound with high affinity to the Bacillus promoter-operator region and exhibited negative, but not positive, transcriptional control.

  10. Compelling Advantages of Negative Ion Mode Detection in High-Mass MALDI-MS for Homomeric Protein Complexes

    NASA Astrophysics Data System (ADS)

    Mädler, Stefanie; Barylyuk, Konstantin; Boeri Erba, Elisabetta; Nieckarz, Robert J.; Zenobi, Renato

    2012-02-01

    Chemical cross-linking in combination with high-mass MALDI mass spectrometry allows for the rapid identification of interactions and determination of the complex stoichiometry of noncovalent protein-protein interactions. As the molecular weight of these complexes increases, the fraction of multiply charged species typically increases. In the case of homomeric complexes, signals from multiply charged multimers overlap with singly charged subunits. Remarkably, spectra recorded in negative ion mode show lower abundances of multiply charged species, lower background, higher reproducibility, and, thus, overall cleaner spectra compared with positive ion mode spectra. In this work, a dedicated high-mass detector was applied for measuring high-mass proteins (up to 200 kDa) by negative ion mode MALDI-MS. The influences of sample preparation and instrumental parameters were carefully investigated. Relative signal integrals of multiply charged anions were relatively independent of any of the examined parameters and could thus be approximated easily for the spectra of cross-linked complexes. For example, the fraction of doubly charged anions signals overlapping with the signals of singly charged subunits could be more precisely estimated than in positive ion mode. Sinapinic acid was found to be an excellent matrix for the analysis of proteins and cross-linked protein complexes in both ion modes. Our results suggest that negative ion mode data of chemically cross-linked protein complexes are complementary to positive ion mode data and can in some cases represent the solution phase situation better than positive ion mode.

  11. MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.

    PubMed

    Magnus, Marcin; Pawlowski, Marcin; Bujnicki, Janusz M

    2012-12-01

    Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22705560

  12. Salivary Protein Profiles among HER2/neu-Receptor-Positive and -Negative Breast Cancer Patients: Support for Using Salivary Protein Profiles for Modeling Breast Cancer Progression

    PubMed Central

    Streckfus, Charles F.; Arreola, Daniel; Edwards, Cynthia; Bigler, Lenora

    2012-01-01

    Purpose. The objective of this study was to compare the salivary protein profiles from individuals diagnosed with breast cancer that were either HER2/neu receptor positive or negative. Methods. Two pooled saliva specimens underwent proteomic analysis. One pooled specimen was from women diagnosed with stage IIa HER2/neu-receptor-positive breast cancer patients (n = 10) and the other was from women diagnosed with stage IIa HER2/neu-receptor-negative cancer patients (n = 10). The pooled samples were trypsinized and the peptides labeled with iTRAQ reagent. Specimens were analyzed using an LC-MS/MS mass spectrometer. Results. The results yielded approximately 71 differentially expressed proteins in the saliva specimens. There were 34 upregulated proteins and 37 downregulated proteins. PMID:22570650

  13. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection

    PubMed Central

    Bielli, Pamela; Bordi, Matteo; Biasio, Valentina Di; Sette, Claudio

    2014-01-01

    Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5′ splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5′ splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5′ splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5′ splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5′ splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5′ splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator. PMID:25294838

  14. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  15. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  16. Dominant-negative Gα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease

    PubMed Central

    Marivin, Arthur; Leyme, Anthony; Parag-Sharma, Kshitij; DiGiacomo, Vincent; Cheung, Anthony Y.; Nguyen, Lien T.; Dominguez, Isabel; Garcia-Marcos, Mikel

    2016-01-01

    Auriculo-Condylar Syndrome (ACS), a rare condition that impairs craniofacial development, is caused by mutations in a G protein-coupled receptor (GPCR) signaling pathway. In mice, disruption of signaling by the endothelin type A receptor (ETAR), which is mediated by the G protein subunit Gαq/11 and subsequently phospholipase C (PLC), impairs neural crest cell differentiation that is required for normal craniofacial development. Some ACS patients have mutations in GNAI3, which encodes Gαi3, but it is unknown whether this G protein has a role within the ETAR pathway. Here, we used a Xenopus model of vertebrate development, in vitro biochemistry, and biosensors of G protein activity in mammalian cells to systematically characterize the phenotype and function of all known ACS-associated Gαi3 mutants. We found that ACS-associated mutations in GNAI3 produce dominant-negative Gαi3 mutant proteins that couple to ETAR but cannot bind and hydrolyze guanosine triphosphate, resulting in the prevention of endothelin-mediated activation of Gαq/11 and PLC. Thus, ACS is caused by functionally dominant-negative mutations in a heterotrimeric G protein subunit. PMID:27072656

  17. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    PubMed

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148

  18. Targeting γ-herpesvirus 68 Bcl-2-mediated down-regulation of autophagy.

    PubMed

    Su, Minfei; Mei, Yang; Sanishvili, Ruslan; Levine, Beth; Colbert, Christopher L; Sinha, Sangita

    2014-03-21

    γ-herpesviruses (γHVs) are common human pathogens that encode homologs of the anti-apoptotic cellular Bcl-2 proteins, which are critical to viral reactivation and oncogenic transformation. The murine γHV68 provides a tractable in vivo model for understanding general features of these important human pathogens. Bcl-XL, a cellular Bcl-2 homolog, and the murine γHV68 Bcl-2 homolog, M11, both bind to a BH3 domain within the key autophagy effector Beclin 1 with comparable affinities, resulting in the down-regulation of Beclin 1-mediated autophagy. Despite this similarity, differences in residues lining the binding site of M11 and Bcl-XL dictate varying affinities for the different BH3 domain-containing proteins. Here we delineate Beclin 1 differential specificity determinants for binding to M11 or Bcl-XL by quantifying autophagy levels in cells expressing different Beclin 1 mutants and either M11 or Bcl-XL, and we show that a G120E/D121A Beclin 1 mutant selectively prevents down-regulation of Beclin 1-mediated autophagy by Bcl-XL, but not by M11. We use isothermal titration calorimetry to identify a Beclin 1 BH3 domain-derived peptide that selectively binds to M11, but not to Bcl-XL. The x-ray crystal structure of this peptide bound to M11 reveals the mechanism by which the M11 BH3 domain-binding groove accommodates this M11-specific peptide. This information was used to develop a cell-permeable peptide inhibitor that selectively inhibits M11-mediated, but not Bcl-XL-mediated, down-regulation of autophagy.

  19. A Subset of CD4/CD8 Double-Negative T Cells Expresses HIV Proteins in Patients on Antiretroviral Therapy

    PubMed Central

    DeMaster, Laura K.; Liu, Xiaohe; VanBelzen, D. Jake; Trinité, Benjamin; Zheng, Lingjie; Agosto, Luis M.; Migueles, Stephen A.; Connors, Mark; Sambucetti, Lidia; Levy, David N.; Pasternak, Alexander O.

    2015-01-01

    ABSTRACT A major goal in HIV eradication research is characterizing the reservoir cells that harbor HIV in the presence of antiretroviral therapy (ART), which reseed viremia after treatment is stopped. In general, it is assumed that the reservoir consists of CD4+ T cells that express no viral proteins. However, recent findings suggest that this may be an overly simplistic view and that the cells that contribute to the reservoir may be a diverse population that includes both CD4+ and CD4− cells. In this study, we directly infected resting CD4+ T cells and used fluorescence-activated cell sorting (FACS) and fiber-optic array scanning technology (FAST) to identify and image cells expressing HIV Gag. We found that Gag expression from integrated proviruses occurred in resting cells that lacked surface CD4, likely resulting from Nef- and Env-mediated receptor internalization. We also extended our approach to detect cells expressing HIV proteins in patients suppressed on ART. We found evidence that rare Gag+ cells persist during ART and that these cells are often negative for CD4. We propose that these double-negative α/β T cells that express HIV protein may be a component of the long-lived reservoir. IMPORTANCE A reservoir of infected cells persists in HIV-infected patients during antiretroviral therapy (ART) that leads to rebound of virus if treatment is stopped. In this study, we used flow cytometry and cell imaging to characterize protein expression in HIV-infected resting cells. HIV Gag protein can be directly detected in infected resting cells and occurs with simultaneous loss of CD4, consistent with the expression of additional viral proteins, such as Env and Nef. Gag+ CD4− cells can also be detected in suppressed patients, suggesting that a subset of infected cells express proteins during ART. Understanding the regulation of viral protein expression during ART will be key to designing effective strategies to eradicate HIV reservoirs. PMID:26537682

  20. Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria*

    PubMed Central

    Xu, Yongbin; Moeller, Arne; Jun, So-Young; Le, Minho; Yoon, Bo-Young; Kim, Jin-Sik; Lee, Kangseok; Ha, Nam-Chul

    2012-01-01

    Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria. PMID:22308040

  1. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection

    PubMed Central

    2014-01-01

    Background Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. Results This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Conclusions Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses. PMID:25084837

  2. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  3. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  4. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  5. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  6. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein.

    PubMed

    Verma, Sandhya; Bednar, Valerie; Blount, Andrew; Hogue, Brenda G

    2006-05-01

    The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly. PMID:16611893

  7. Hepatitis B virus DNA-negative dane particles lack core protein but contain a 22-kDa precore protein without C-terminal arginine-rich domain.

    PubMed

    Kimura, Tatsuji; Ohno, Nobuhiko; Terada, Nobuo; Rokuhara, Akinori; Matsumoto, Akihiro; Yagi, Shintaro; Tanaka, Eiji; Kiyosawa, Kendo; Ohno, Shinichi; Maki, Noboru

    2005-06-10

    DNA-negative Dane particles have been observed in hepatitis B virus (HBV)-infected sera. The capsids of the empty particles are thought to be composed of core protein but have not been studied in detail. In the present study, the protein composition of the particles was examined using new enzyme immunoassays for the HBV core antigen (HBcAg) and for the HBV precore/core proteins (core-related antigens, HBcrAg). HBcrAg were abundant in fractions slightly less dense than HBcAg and HBV DNA. Three times more Dane-like particles were observed in the HBcrAg-rich fraction than in the HBV DNA-rich fraction by electron microscopy. Western blots and mass spectrometry identified the HBcrAg as a 22-kDa precore protein (p22cr) containing the uncleaved signal peptide and lacking the arginine-rich domain that is involved in binding the RNA pregenome or the DNA genome. In sera from 30 HBV-infected patients, HBcAg represented only a median 10.5% of the precore/core proteins in enveloped particles. These data suggest that most of the Dane particles lack viral DNA and core capsid but contain p22cr. This study provides a model for the formation of the DNA-negative Dane particles. The precore proteins, which lack the arginine-rich nucleotide-binding domain, form viral RNA/DNA-negative capsid-like particles and are enveloped and released as empty particles.

  8. Regulation of OSU-03012 toxicity by ER stress proteins and ER stress inducing drugs

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Cruickshanks, Nichola; Grant, Steven; Poklepovic, Andrew; Dent, Paul

    2014-01-01

    The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors, and to determine the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knock down of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012, and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase 9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase 8 inhibitor c-FLIP-s, or knock down of death receptor CD95 or the death receptor – caspase 8 linker protein FADD, suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knock down of the autophagy regulatory proteins Beclin1 or ATG5 protected cells from OSU-03012 and of [OSU-03012 + PDE5 inhibitor] toxicity. Knock down of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor] –induced JNK activation and inhibition of JNK suppressed the elevated killing caused by IRE1 knock down. Knock down of CD95 blunted JNK activation. Collectively our data demonstrates that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in GBM cells. PMID:25103559

  9. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis.

    PubMed

    Dutilleul, Christelle; Ribeiro, Iliana; Blanc, Nathalie; Nezames, Cynthia D; Deng, Xing Wang; Zglobicki, Piotr; Palacio Barrera, Ana María; Atehortùa, Lucia; Courtois, Martine; Labas, Valérie; Giglioli-Guivarc'h, Nathalie; Ducos, Eric

    2016-01-01

    The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes. PMID:26147561

  10. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation

    PubMed Central

    Lin, Jing-Yi; Li, Mei-Ling; Shih, Shin-Ru

    2009-01-01

    An internal ribosomal entry site (IRES) that directs the initiation of viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the internal ribosomal entry site. Biotinylated RNA-affinity chromatography and proteomic approaches were employed to identify far upstream element (FUSE) binding protein 2 (FBP2) as an ITAF for EV71. The interactions of FBP2 with EV71 IRES were confirmed by competition assay and by mapping the association sites in both viral IRES and FBP2 protein. During EV71 infection, FBP2 was enriched in cytoplasm where viral replication occurs, whereas FBP2 was localized in the nucleus in mock-infected cells. The synthesis of viral proteins increased in FBP2-knockdown cells that were infected by EV71. IRES activity in FBP2-knockdown cells exceeded that in the negative control (NC) siRNA-treated cells. On the other hand, IRES activity decreased when FBP2 was over-expressed in the cells. Results of this study suggest that FBP2 is a novel ITAF that interacts with EV71 IRES and negatively regulates viral translation. PMID:19010963

  11. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    PubMed Central

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-01-01

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and

  12. Genome-wide protein localization prediction strategies for gram negative bacteria

    SciTech Connect

    Romine, Margaret F.

    2011-06-15

    Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms.

  13. Improved enrichment and proteomic identification of outer membrane proteins from a Gram-negative bacterium: focus on Caulobacter crescentus.

    PubMed

    Cao, Yuan; Johnson, Helen M; Bazemore-Walker, Carthene R

    2012-01-01

    Efforts to characterize proteins found in the outer membrane (OM) of Gram-negative bacteria have been steadily increasing due to the promise of expanding our understanding of fundamental bacterial processes such as cell adhesion or cell wall biogenesis as well as the promise of finding potential vaccine- or drug-targets for virulent bacteria. We have developed a mass spectrometry-compatible experimental strategy that resulted in increased coverage of the OM proteome of a model organism, Caulobacter crescentus. The specificity of the OM enrichment step was improved by using detergent solubilization of the protein pellet, low-density cell culture conditions, and a surface-layer deficient cell line. Additionally, efficient gel-assisted digestion, high-resolution RP/RP-MS/MS, and rigorous bioinformatic analysis led to the identification of 234 proteins using strict identification criteria (≥ two unique peptides per protein; peptide false discovery rate <2%). Eighty-four of the detected proteins were predicted to localize to the OM or extracellular space. These results represent ~70% coverage of the predicted OM/extracellular proteome of C. crescentus. This analytical approach, which considers important experimental variables not previously explored in published OM protein studies, can be applied to other OM proteomic endeavors "as is" or with slight modification and should improve the large-scale study of this especially challenging subproteome.

  14. Negative effects of desiccation on the protein sorting and post-translational modification.

    PubMed

    Wang, Xiaoqin; He, Yikun

    2009-05-01

    Bryophytes as the first land plants are believed to have colonized the land from a fresh water origin, requiring adaptive mechanisms that survival of dehydration. Physcomitrella patens is such a non-vascular bryophyte and shows rare desiccation tolerance in its vegetative tissues. Previous studies showed that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling and microtubule depolymerization. And proteomic alteration supported the cellular structural changes in respond to desiccation stress. In this addendum, we report that Golgi bodies are absent and adaptor protein complex AP-1 large subunit is downregulated during the course of dehydration. Those phenomena may be adverse in protein posttranslational modification, protein sorting and cell walls synthesis under the desiccation condition. PMID:19816114

  15. The nucleotide-binding proteins Nubp1 and Nubp2 are negative regulators of ciliogenesis.

    PubMed

    Kypri, Elena; Christodoulou, Andri; Maimaris, Giannis; Lethan, Mette; Markaki, Maria; Lysandrou, Costas; Lederer, Carsten W; Tavernarakis, Nektarios; Geimer, Stefan; Pedersen, Lotte B; Santama, Niovi

    2014-02-01

    Nucleotide-binding proteins Nubp1 and Nubp2 are MRP/MinD-type P-loop NTPases with sequence similarity to bacterial division site-determining proteins and are conserved, essential proteins throughout the Eukaryotes. They have been implicated, together with their interacting minus-end directed motor protein KIFC5A, in the regulation of centriole duplication in mammalian cells. Here we show that Nubp1 and Nubp2 are integral components of centrioles throughout the cell cycle, recruited independently of KIFC5A. We further demonstrate their localization at the basal body of the primary cilium in quiescent vertebrate cells or invertebrate sensory cilia, as well as in the motile cilia of mouse cells and in the flagella of Chlamydomonas. RNAi-mediated silencing of nubp-1 in C. elegans causes the formation of morphologically aberrant and additional cilia in sensory neurons. Correspondingly, downregulation of Nubp1 or Nubp2 in mouse quiescent NIH 3T3 cells markedly increases the number of ciliated cells, while knockdown of KIFC5A dramatically reduces ciliogenesis. Simultaneous double silencing of Nubp1 + KIFC5A restores the percentage of ciliated cells to control levels. We document the normal ciliary recruitment, during these silencing regimes, of basal body proteins critical for ciliogenesis, namely CP110, CEP290, cenexin, Chibby, AurA, Rab8, and BBS7. Interestingly, we uncover novel interactions of Nubp1 with several members of the CCT/TRiC molecular chaperone complex, which we find enriched at the basal body and recruited independently of the Nubps or KIFC5A. Our combined results for Nubp1, Nubp2, and KIFC5A and their striking effects on cilium formation suggest a central regulatory role for these proteins, likely involving CCT/TRiC chaperone activity, in ciliogenesis.

  16. Transmembrane Adaptor Protein PAG/CBP Is Involved in both Positive and Negative Regulation of Mast Cell Signaling

    PubMed Central

    Draberova, Lubica; Bugajev, Viktor; Potuckova, Lucie; Halova, Ivana; Bambouskova, Monika; Polakovicova, Iva; Xavier, Ramnik J.; Seed, Brian

    2014-01-01

    The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved. PMID:25246632

  17. Dynamin-2 is a novel NOS1β interacting protein and negative regulator in the collecting duct.

    PubMed

    Hyndman, Kelly A; Arguello, Alexandra M; Morsing, Sofia K H; Pollock, Jennifer S

    2016-04-01

    Nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) production in collecting ducts is critical for maintaining fluid-electrolyte balance. Rat collecting ducts express both the full-length NOS1α and its truncated variant NOS1β, while NOS1β predominates in mouse collecting ducts. We reported that dynamin-2 (DNM2), a protein involved in excising vesicles from the plasma membrane, and NOS1α form a protein-protein interaction that promotes NO production in rat collecting ducts. NOS1β was found to be highly expressed in human renal cortical/medullary samples; hence, we tested the hypothesis that DNM2 is a positive regulator of NOS1β-derived NO production. COS7 and mouse inner medullary collecting duct-3 (mIMCD3) cells were transfected with NOS1β and/or DNM2. Coimmunoprecipitation experiments show that NOS1β and DNM2 formed a protein-protein interaction. DNM2 overexpression decreased nitrite production (index of NO) in both COS7 and mIMCD-3 cells by 50-75%. mIMCD-3 cells treated with a panel of dynamin inhibitors or DNM2 siRNA displayed increased nitrite production. To elucidate the physiological significance of IMCD DNM2/NOS1β regulation in vivo, flox control and CDNOS1 knockout mice were placed on a high-salt diet, and freshly isolated IMCDs were treated acutely with a dynamin inhibitor. Dynamin inhibition increased nitrite production by IMCDs from flox mice. This response was blunted (but not abolished) in collecting duct-specific NOS1 knockout mice, suggesting that DNM2 also negatively regulates NOS3 in the mouse IMCD. We conclude that DNM2 is a novel negative regulator of NO production in mouse collecting ducts. We propose that DNM2 acts as a "break" to prevent excess or potentially toxic NO levels under high-salt conditions. PMID:26791826

  18. Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling.

    PubMed

    Qu, Dan; Xu, Xiao-Man; Zhang, Meng; Jiang, Ting-Shu; Zhang, Yi; Li, Sheng-Qi

    2015-07-01

    Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl-b and c-Cbl, which are negative regulators of phosphoinositide 3-kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B-cell lymphoma 2 (Bcl-2)-associated X and p53 and reduced those of Bcl-2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin-induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells.

  19. S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis.

    PubMed

    Ning, Xiaoxuan; Sun, Shiren; Zhang, Kun; Liang, Jie; Chuai, Yucai; Li, Yuan; Wang, Xiaoming

    2012-01-01

    Calcyclin-binding protein (CacyBP/SIP), identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100). The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer. PMID:22295074

  20. A Gram-Negative Bacterial Secreted Protein Types Prediction Method Based on PSI-BLAST Profile

    PubMed Central

    2016-01-01

    Prediction of secreted protein types based solely on sequence data remains to be a challenging problem. In this study, we extract the long-range correlation information and linear correlation information from position-specific score matrix (PSSM). A total of 6800 features are extracted at 17 different gaps; then, 309 features are selected by a filter feature selection method based on the training set. To verify the performance of our method, jackknife and independent dataset tests are performed on the test set and the reported overall accuracies are 93.60% and 100%, respectively. Comparison of our results with the existing method shows that our method provides the favorable performance for secreted protein type prediction. PMID:27563663

  1. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  2. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination.

    PubMed

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes.

  3. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins.

    PubMed Central

    Paces-Fessy, Mélanie; Boucher, Dominique; Petit, Emile; Paute-Briand, Sandrine; Blanchet-Tournier, Marie-Françoise

    2004-01-01

    Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus. PMID:14611647

  4. Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids.

    PubMed

    Malleier, Julia M; Oskolkova, Olga; Bochkov, Valery; Jerabek, Ingrid; Sokolikova, Barbora; Perkmann, Thomas; Breuss, Johannes; Binder, Bernd R; Geiger, Margarethe

    2007-06-01

    Protein C inhibitor (PCI) is a serpin with affinity for heparin and phosphatidylethanolamine (PE). We analyzed the interaction of PCI with different phospholipids and their oxidized forms. PCI bound to oxidized PE (OxPE), and oxidized and unoxidized phosphatidylserine (PS) immobilized on microtiter plates and in aqueous suspension. Binding to OxPE and PS was competed by heparin, but not by the aminophospholipid-binding protein annexin V or the PCI-binding lipid retinoic acid. PS and OxPE stimulated the inhibition of activated protein C (aPC) by PCI in a Ca(++)-dependent manner, indicating that binding of both, aPC (Ca(++) dependent) and PCI (Ca(++) independent), to phospholipids is necessary. A peptide corresponding to the heparin-binding site of PCI abolished the stimulatory effect of PS on aPC inhibition. No stimulatory effect of phospholipids on aPC inhibition was seen with a PCI mutant lacking the heparin-binding site. A heparin-like effect of phospholipids (OxPE) was not seen with antithrombin III, another heparin-binding serpin, suggesting that it is specific for PCI. PCI and annexin V were found to be endogenously colocalized in atherosclerotic plaques, supporting the hypothesis that exposure of oxidized PE and/or PS may be important for the local regulation of PCI activity in vivo.

  5. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer. PMID:27481946

  6. RanBPM Protein Acts as a Negative Regulator of BLT2 Receptor to Attenuate BLT2-mediated Cell Motility*

    PubMed Central

    Wei, Jun-Dong; Kim, Joo-Young; Kim, Ae-Kyoung; Jang, Sung Key; Kim, Jae-Hong

    2013-01-01

    BLT2, a low affinity receptor for leukotriene B4 (LTB4), is a member of the G protein-coupled receptor family and is involved in many signal transduction pathways associated with various cellular phenotypes, including chemotactic motility. However, the regulatory mechanism for BLT2 has not yet been demonstrated. To understand the regulatory mechanism of BLT2, we screened and identified the proteins that bind to BLT2. Using a yeast two-hybrid assay with the BLT2 C-terminal domain as bait, we found that RanBPM, a previously proposed scaffold protein, interacts with BLT2. We demonstrated the specific interaction between BLT2 and RanBPM by GST pulldown assay and co-immunoprecipitation assay. To elucidate the biological function of the RanBPM-BLT2 interaction, we evaluated the effects of RanBPM overexpression or knockdown. We found that BLT2-mediated motility was severely attenuated by RanBPM overexpression and that knockdown of endogenous RanBPM by shRNA strongly promoted BLT2-mediated motility, suggesting a negative regulatory function of RanBPM toward BLT2. Furthermore, we observed that the addition of BLT2 ligands caused the dissociation of BLT2 and RanBPM, thus releasing the negative regulatory effect of RanBPM. Finally, we propose that Akt-induced BLT2 phosphorylation at residue Thr355, which occurs after the addition of BLT2 ligands, is a potential mechanism by which BLT2 dissociates from RanBPM, resulting in stimulation of BLT2 signaling. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2 signaling to attenuate BLT2-mediated cell motility. PMID:23928309

  7. A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins.

    PubMed

    Sun, Yuna; Guo, Yu; Lou, Zhiyong

    2012-12-01

    Nucleocapsid protein (NPs) of negative-sense single-stranded RNA (-ssRNA) viruses function in different stages of viral replication, transcription, and maturation. Structural investigations show that -ssRNA viruses that encode NPs preliminarily serve as structural building blocks that encapsidate and protect the viral genomic RNA and mediate the interaction between genomic RNA and RNA-dependent RNA polymerase. However, recent structural results have revealed other biological functions of -ssRNA viruses that extend our understanding of the versatile roles of virally encoded NPs. PMID:23136065

  8. Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breastancer

    PubMed Central

    Grothey, A; Hashizume, R; Sahin, A A; McCrea, P D

    2000-01-01

    Loss of hormone receptor (HR) status in breast carcinomas is associated with increased tumour cell motility and invasiveness. In an immunohistological study of 58 primary breast cancers, oestrogen (ER) and progesterone (PR) receptor levels were inversely correlated with the expression of fascin, an actin-bundling protein associated with cell motility (P< 0.0001 and P = 0.0019, respectively). In addition, fascin was preferentially expressed in non-diploid tumours (P = 0.03). In summary, the upregulation of fascin in HR-negative breast cancers may contribute to their more aggressive behaviour. © 2000 Cancer Research Campaign PMID:10970687

  9. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  10. BIM-Mediated Membrane Insertion of the BAK Pore Domain Is an Essential Requirement for Apoptosis

    PubMed Central

    Weber, Kathrin; Harper, Nicholas; Schwabe, John; Cohen, Gerald M.

    2013-01-01

    Summary BAK activation represents a key step during apoptosis, but how it converts into a mitochondria-permeabilizing pore remains unclear. By further delineating the structural rearrangements involved, we reveal that BAK activation progresses through a series of independent steps: BH3-domain exposure, N-terminal change, oligomerization, and membrane insertion. Employing a “BCL-XL-addiction” model, we show that neutralization of BCL-XL by the BH3 mimetic ABT-737 resulted in death only when cells were reconstituted with BCL-XL:BAK, but not BCL-2/ BCL-XL:BIM complexes. Although this resembles the indirect model, release of BAK from BCL-XL did not result in spontaneous adoption of the pore conformation. Commitment to apoptosis required association of the direct activator BIM with oligomeric BAK promoting its conversion to a membrane-inserted pore. The sequential nature of this cascade provides multiple opportunities for other BCL-2 proteins to interfere with or promote BAK activation and unites aspects of the indirect and direct activation models. PMID:24120870

  11. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus.

    PubMed

    Williams, K L; Nanda, I; Lyons, G E; Kuo, C T; Schmid, M; Leiden, J M; Kaplan, M H; Taparowsky, E J

    2001-05-01

    BATF belongs to the AP-1/ATF superfamily of transcription factors and forms heterodimers with Jun proteins to bind AP-1 consensus DNA. Unlike Fos/Jun heterodimers which stimulate gene transcription, BATF/Jun heterodimers are transcriptionally inert and inhibit biological processes that are associated with the overstimulation of AP-1 activity. Here, we describe the murine BATF cDNA and genomic clones and map the BATF locus to chromosome 12 D2-3. Using in situ hybridization of BATF mRNA, we show that BATF gene expression is highly restricted, with the most prominent signals detected in the thymus. BATF mRNA levels are regulated differentially during discrete stages of T cell development and are up-regulated following activation of T cells in the periphery. To demonstrate the impact of BATF on AP-1 activity in vivo, AP-1 luciferase reporter mice were crossed to transgenic mice overexpressing BATF exclusively in thymic T cells. Results show that elevated levels of BATF protein correlate with reduced transactivation by AP-1. Since the differential regulation of AP-1 activity is linked to key transitions in the developing immune system, our observations support a critical role for BATF in determining the overall level of AP-1 activity, and thus AP-1 target gene expression, in specific T cell subtypes.

  12. Negative regulation of RNA-binding protein HuR by tumor-suppressor ECRG2.

    PubMed

    Lucchesi, C; Sheikh, M S; Huang, Y

    2016-05-19

    Esophageal cancer-related gene 2 (ECRG2) is a newer tumor suppressor whose function in the regulation of cell growth and apoptosis remains to be elucidated. Here we show that ECRG2 expression was upregulated in response to DNA damage, and increased ECRG2 expression induced growth suppression in cancer cells but not in non-cancerous epithelial cells. ECRG2-mediated growth suppression was associated with activation of caspases and marked reduction in the levels of apoptosis inhibitor, X chromosome-linked inhibitor of apoptosis protein (XIAP). ECRG2, via RNA-binding protein human antigen R (HuR), regulated XIAP mRNA stability and expression. Furthermore, ECRG2 increased HuR ubiquitination and degradation but was unable to modulate the non-ubiquitinable mutant form of HuR. We also identified missense and frame-shift ECRG2 mutations in various human malignancies and noted that, unlike wild-type ECRG2, one cancer-derived ECRG2 mutant harboring glutamic acid instead of valine at position 30 (V30E) failed to induce cell death and activation of caspases. This naturally occurring V30E mutant also did not suppress XIAP and HuR. Importantly, the V30E mutant overexpressing cancer cells acquired resistance against multiple anticancer drugs, thus suggesting that ECRG2 mutations appear to have an important role in the acquisition of anticancer drug resistance in a subset of human malignancies.

  13. Cyclic GMP-dependent protein kinase activation in the absence of negative inotropic effects in the rat ventricle

    PubMed Central

    MacDonell, Karen L; Diamond, Jack

    1997-01-01

    It has been suggested that activation of cyclic GMP-dependent protein kinase (PKG) is a necessary step in the chain of events leading to the production of negative inotropy by muscarinic receptor agonists in mammalian ventricles, and that some cyclic GMP-elevating agents, such as sodium nitroprusside (SNP), fail to exert a negative inotropic effect because they elevate cyclic GMP levels in a pool that does not activate the kinase. This hypothesis was tested in the present study by monitoring the effects of carbachol, SNP and atrial natriuretic peptide (ANP) on contractility, cyclic GMP content and PKG activity in rat intact ventricular preparations and freshly isolated ventricular cardiomyocytes.The presence of PKG in both the intact vehicle and in isolated ventricular cardiomyocytes was confirmed by MonoQ anion exchange chromatography and Western blotting. The elution profile indicated that the conditions of the PKG assay were selective for measuring PKG activity.Carbachol induced a marked negative inotropic effect in intact, perfused hearts and ventricular strips in the presence of isoproterenol. The negative inotropic effect of carbachol was not associated with significant changes in cyclic GMP content or PKG activity in intact ventricular tissue, or in PKG activity in isolated cardiomyocytes.SNP and ANP significantly increased cyclic GMP levels and activated PKG in intact ventricular preparations. Both drugs also activated PKG in isolated cardiomyocytes. However, neither drug had any negative inotropic effect in isoprenaline-stimulated perfused hearts and ANP did not change the contractility of isoprenaline-stimulated isolated cardiomyocytes.The results of this study demonstrate that the negative inotropic effects of muscarinic receptor agonists can occur in the absence of significant activation of PKG. Conversely, marked increases in ventricular cyclic GMP content and PKG activity caused by SNP or ANP were not accompanied by a negative inotropic effect

  14. Anomalous Negative Fluorescence Anisotropy in Yellow Fluorescent Protein (YFP 10C): Quantitative Analysis of FRET in YFP Dimers

    PubMed Central

    Shi, Xinghua; Basran, Jaswir; Seward, Harriet E.; Childs, William; Bagshaw, Clive R.; Boxer, Steven G.

    2008-01-01

    YFP is widely used as a genetically-encoded fluorescent marker in biology. In the course of a comprehensive study of this protein, we observed an unusual, negative fluorescence anisotropy at pH 6.0 (McAnaney, T. B., Zeng, W., Doe, C. F. E., Bhanji, N., Wakelin, S., Pearson, D. S., Abbyad, P., Shi, X. H., Boxer, S. G., and Bagshaw, C. R. (2005), Biochemistry 44, 5510–5524). Here we report that the fluorescence anisotropy of YFP 10C depends on protein concentration in the low micromolar range that was not expected. We propose that the negative anisotropy is a result of unidirectional Förster resonance energy transfer (FRET) in a dimer of YFP, with the donor chromophore in the neutral form and the acceptor chromophore in the anionic form. This unusual mechanism is supported by studies of a monomeric YFP (A206K YFP) and transient-absorption spectroscopy of YFP 10C. A detailed analysis of the chromophore transition dipole moment direction is presented. The anisotropy and rate constant of this energy transfer are consistent with values produced by an analysis of the dimer structure observed in crystals. PMID:18027983

  15. Function of AURKA protein kinase in the formation of vasculogenic mimicry in triple-negative breast cancer stem cells

    PubMed Central

    Liu, Ying; Sun, Baocun; Liu, Tieju; Zhao, Xiulan; Wang, Xudong; Li, Yanlei; Meng, Jie; Gu, Qiang; Liu, Fang; Dong, Xueyi; Liu, Peimei; Sun, Ran; Zhao, Nan

    2016-01-01

    Tumor cell vasculogenic mimicry (VM), a newly defined pattern of tumor blood supply, signifies the functional plasticity of aggressive cancer cells forming vascular networks. VM and cancer stem cells (CSCs) have been shown to be associated with tumor growth, local invasion, and distant metastasis. In our previous study, CSCs in triple-negative breast cancer were potential to participate in VM formation. In this study, breast CSCs were isolated from the triple-negative breast cancer cell line MDA-MB-231 by using mammosphere culture. Western blotting and reverse transcription polymerase chain reaction showed that mammosphere cells displayed an increased expression of AURKA protein kinase and stem cell marker c-myc and sox2. The VM formation by mammosphere cells was inhibited by AURKA knockdown or the addition of AURKA inhibitor MLN8237. In the meantime, MLN8237 induced the increased E-cadherin and decreased c-myc, sox2, and β-catenin expressions. The function of AURKA in VM formation was further confirmed using a xenograft-murine model. The results suggested that AURKA protein kinase is involved in VM formation of CSCs and may become a new treatment target in suppressing VM and metastasis of breast cancer. PMID:27366084

  16. Function of AURKA protein kinase in the formation of vasculogenic mimicry in triple-negative breast cancer stem cells.

    PubMed

    Liu, Ying; Sun, Baocun; Liu, Tieju; Zhao, Xiulan; Wang, Xudong; Li, Yanlei; Meng, Jie; Gu, Qiang; Liu, Fang; Dong, Xueyi; Liu, Peimei; Sun, Ran; Zhao, Nan

    2016-01-01

    Tumor cell vasculogenic mimicry (VM), a newly defined pattern of tumor blood supply, signifies the functional plasticity of aggressive cancer cells forming vascular networks. VM and cancer stem cells (CSCs) have been shown to be associated with tumor growth, local invasion, and distant metastasis. In our previous study, CSCs in triple-negative breast cancer were potential to participate in VM formation. In this study, breast CSCs were isolated from the triple-negative breast cancer cell line MDA-MB-231 by using mammosphere culture. Western blotting and reverse transcription polymerase chain reaction showed that mammosphere cells displayed an increased expression of AURKA protein kinase and stem cell marker c-myc and sox2. The VM formation by mammosphere cells was inhibited by AURKA knockdown or the addition of AURKA inhibitor MLN8237. In the meantime, MLN8237 induced the increased E-cadherin and decreased c-myc, sox2, and β-catenin expressions. The function of AURKA in VM formation was further confirmed using a xenograft-murine model. The results suggested that AURKA protein kinase is involved in VM formation of CSCs and may become a new treatment target in suppressing VM and metastasis of breast cancer. PMID:27366084

  17. Nek5 interacts with mitochondrial proteins and interferes negatively in mitochondrial mediated cell death and respiration.

    PubMed

    Melo Hanchuk, Talita D; Papa, Priscila Ferreira; La Guardia, Paolo G; Vercesi, Anibal E; Kobarg, Jörg

    2015-06-01

    Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2 μM). Nek5 silenced cells as well as cells expressing a "kinase dead" version of Nek5, displayed an increase in ROS formation after 4 h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.

  18. Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C

    PubMed Central

    Sahin, Bogachan; Hawasli, Ammar H.; Greene, Robert W.; Molkentin, Jeffery D.; Bibb, James A.

    2008-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed protein serine/threonine kinase essential for brain development and implicated in synaptic plasticity, dopaminergic neurotransmission, drug addiction, and neurodegenerative disorders. Relatively little is known about the molecular mechanisms that regulate the activity of Cdk5 in vivo. In order to determine whether protein kinase C (PKC) regulates Cdk5 activity in the central nervous system, the phosphorylation levels of two Cdk5 substrates were evaluated under conditions of altered PKC activity in vivo. Treatment of acute striatal slices with a PKC-activating phorbol ester caused a time- and dose-dependent decrease in the levels of phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 dopamine- and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32). This effect was reversed by the PKC inhibitor, Ro-32-0432. Moreover, phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 DARPP-32 levels were elevated in brain tissue from mice lacking the gene for PKC-α. PKC did not phosphorylate Cdk5 or its cofactor, p25, in vitro. Striatal levels of the Cdk5 cofactor, p35, did not change in response to phorbol ester treatment. Furthermore, Cdk5 immunoprecipitated from striatal slices treated with phorbol ester had unaltered activity toward a control substrate in vitro. These results suggest that PKC exerts its effects on the phosphorylation state of Cdk5 substrates through an indirect mechanism that may involve the regulatory binding partners of Cdk5 other than its neuronal cofactors. PMID:18190909

  19. Nek5 interacts with mitochondrial proteins and interferes negatively in mitochondrial mediated cell death and respiration.

    PubMed

    Melo Hanchuk, Talita D; Papa, Priscila Ferreira; La Guardia, Paolo G; Vercesi, Anibal E; Kobarg, Jörg

    2015-06-01

    Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2 μM). Nek5 silenced cells as well as cells expressing a "kinase dead" version of Nek5, displayed an increase in ROS formation after 4 h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells. PMID:25725288

  20. Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C.

    PubMed

    Sahin, Bogachan; Hawasli, Ammar H; Greene, Robert W; Molkentin, Jeffery D; Bibb, James A

    2008-03-10

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed protein serine/threonine kinase essential for brain development and implicated in synaptic plasticity, dopaminergic neurotransmission, drug addiction, and neurodegenerative disorders. Relatively little is known about the molecular mechanisms that regulate the activity of Cdk5 in vivo. In order to determine whether protein kinase C (PKC) regulates Cdk5 activity in the central nervous system, the phosphorylation levels of two Cdk5 substrates were evaluated under conditions of altered PKC activity in vivo. Treatment of acute striatal slices with a PKC-activating phorbol ester caused a time- and dose-dependent decrease in the levels of phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 dopamine- and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32). This effect was reversed by the PKC inhibitor, Ro-32-0432. Moreover, phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 DARPP-32 levels were elevated in brain tissue from mice lacking the gene for PKC-alpha. PKC did not phosphorylate Cdk5 or its cofactor, p25, in vitro. Striatal levels of the Cdk5 cofactor, p35, did not change in response to phorbol ester treatment. Furthermore, Cdk5 immunoprecipitated from striatal slices treated with phorbol ester had unaltered activity toward a control substrate in vitro. These results suggest that PKC exerts its effects on the phosphorylation state of Cdk5 substrates through an indirect mechanism that may involve the regulatory binding partners of Cdk5 other than its neuronal cofactors.

  1. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes

    PubMed Central

    2012-01-01

    Background The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Results Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa) and archaeal (283 aa) proteins are significantly smaller (33-40% on average). Average protein sizes in different phylogenetic groups were: Alveolata (628 aa), Amoebozoa (533 aa), Fornicata (543 aa), Placozoa (453 aa), Eumetazoa (486 aa), Fungi (487 aa), Stramenopila (486 aa), Viridiplantae (392 aa). Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Conclusions Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs). There is a negative correlation between average protein size and total number of proteins among

  2. Quantitative double-label radiography of two-dimensional protein gels using color negative film and computer analysis.

    PubMed

    Goldman, R C; Trus, B L; Leive, L

    1983-04-01

    We have devised a method of data collection and computer analysis which allows utilization of the resolving power of two-dimensional gel electrophoresis of proteins, in conjunction with the versatility of using two different radionuclides simultaneously. Cultures of Escherichia coli growing with exponential growth rate constants (mu) of 0.32 and 1.43 were labeled with [3H]leucine and [14C]leucine, respectively; these samples were mixed, and cell protein was separated on a two-dimensional gel. Spacial and quantitative data for both radionuclides were recorded on color negative film by radiographic exposure. Data for 14C alone were then collected photographically from the red-light-sensitive layer of the film using a red filter, while data for 3H and spillover of 14C were collected photographically from the blue-light-sensitive layer using a blue filter. These two data sets were analyzed by CINT, a computer program for analysis of two-dimensional gels, and quantitative data for 3H were calculated after determination of spillover of 14C in a manner analogous to quantification of 3H and 14C by liquid scintillation counting. Quantitative data from over 1000 protein spots representing from 0.002% to 10% of the total 3H or 14C, respectively, are available in a matter of hours. We have used this method to analyze the effect of growth rate and medium composition on the relative levels of individual proteins in a pathogenic strain of E. coli which contains group 111 O-antigen. As expected, the relative levels of aminoacyl-tRNA synthetases, protein chain elongation factors, ribosomal proteins, and the alpha-subunit of RNA polymerase are all increased with increased growth rate; the magnitude of these changes agreed with previous data derived using other strains of E. coli. Alterations in the levels of other proteins identified on the two-dimensional gels could be interpreted in terms of changes in medium composition. When compared to manual data collection by excising

  3. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli.

    PubMed

    Srivastava, Aashish; Asahara, Haruichi; Zhang, Meng; Zhang, Weijia; Liu, Haiying; Cui, Sheng; Jin, Qi; Chong, Shaorong

    2016-01-01

    Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis), purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis), and an aminoacyl-tRNA synthetase (AARS) mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens. PMID:27564552

  4. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli

    PubMed Central

    Srivastava, Aashish; Asahara, Haruichi; Zhang, Meng; Zhang, Weijia; Liu, Haiying; Cui, Sheng; Jin, Qi; Chong, Shaorong

    2016-01-01

    Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis), purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis), and an aminoacyl-tRNA synthetase (AARS) mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens. PMID:27564552

  5. MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability

    PubMed Central

    Sun, Yang; Qin, Zhen; Li, Qi; Wan, Jing-jing; Cheng, Ming-he; Wang, Peng-yuan; Su, Ding-feng; Yu, Jian-guang; Liu, Xia

    2016-01-01

    Aim: MicroRNAs play pivotal roles in regulation of both innate and adaptive immune responses. In the present study, we investigated the effects of microRNA-124 (miR-124) on production of the pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-treated mouse macrophages. Methods: Mouse macrophage cell line RAW264.7 was stimulated with LPS (100 ng/mL). The levels of miR-124 and TNF-α mRNA were evaluated using q-PCR. ELISA and Western blotting were used to detect TNF-α protein level in cell supernatants and cells, respectively. 3′-UTR luciferase reporter assays were used to analyze the targets of miR-124. For in vivo experiments, mice were injected with LPS (30 mg/kg, ip). Results: LPS stimulation significantly increased the mRNA level of miR-124 in RAW264.7 macrophages in vitro and mice in vivo. In RAW264.7 macrophages, knockdown of miR-124 with miR-124 inhibitor dose-dependently increased LPS-stimulated production of TNF-α protein and prolonged the half-life of TNF-α protein, but did not change TNF-α mRNA levels, whereas overexpression of miR-124 with miR-124 mimic produced the opposite effects. Furthermore, miR-124 was found to directly target two components of deubiquitinating enzymes: ubiquitin-specific proteases (USP) 2 and 14. Knockdown of USP2 or USP14 accelerated protein degradation of TNF-α, and abolished the effect of miR-124 on TNF-α protein stability. Conclusion: miR-124, targeting USP2 and USP14, negatively regulates LPS-induced TNF-α production in mouse macrophages, suggesting miR-124 as a new therapeutic target in inflammation-related diseases. PMID:27063215

  6. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    PubMed Central

    Prokhorenko, Isabella R; Zubova, Svetlana V; Ivanov, Alexandr Yu; Grachev, Sergey V

    2009-01-01

    Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS) packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Significant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall. PMID:20360884

  7. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression.

    PubMed

    Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A; Barrett, Timothy G

    2015-02-01

    Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca(2+) imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca(2+) concentration ([Ca(2+)]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773

  8. Ferroportin-1 is a 'nuclear'-negative acute-phase protein in rat liver: a comparison with other iron-transport proteins.

    PubMed

    Naz, Naila; Malik, Ihtzaz A; Sheikh, Nadeem; Ahmad, Shakil; Khan, Sajjad; Blaschke, Martina; Schultze, Frank; Ramadori, Giuliano

    2012-06-01

    Liver is the central organ of iron metabolism. During acute-phase-response (APR), serum iron concentration rapidly decreases. The current study aimed to compare expression and localization of iron transport protein ferroportin-1 (Fpn-1) and of other iron import proteins after experimental tissue damage induced by injecting turpentine oil in the hind limbs of rats and mice. Serum and spleen iron concentration decreased with an increase in total liver, cytoplasmic and nuclear iron concentration. In liver, mRNA amount of Fpn-1, Fpn-1a, Fpn-1b, HFE, hemojuvelin (HJV) and hephaestin (heph) genes showed a rapid decrease. Hepcidin, divalent metal transporter-1 (DMT-1), transferrin (Tf) and Tf-receptor-1 (TfR1), TfR-2 (TfR2) gene expression was increased. Western blot analysis of liver tissue lysate confirmed the changes observed at mRNA level. In spleen, a rapid decrease in gene expression of Fpn-1, Fpn-1a, Fpn-1b, DMT-1, Tf, TfR1 and TfR2, and an increase in hepcidin was observed. Immunohistochemistry of DMT-1 and TfR2 were mainly detected in the nucleus of rat liver and spleen, whereas TfR1 was clearly localized in the plasma membrane. Fpn-1 was mostly found in the nuclei of liver cells, whereas in spleen, the protein was mainly detected in the cell membrane. Western blot analysis of liver fractions confirmed immunohistochemical results. In livers of wild-type mice, gene expression of Fpn-1, Fpn-1a and Fpn-1b was downregulated, whereas hepcidin gene expression was increased. In contrast, these changes were less pronounced in IL-6ko-mice. Cytokine (IL-6, IL-1b and TNF-a) treatment of rat hepatocytes showed a downregulation of Fpn-1, Fpn-1a and Fpn-1b, and upregulation of hepcidin gene expression. Moreover, western blot analysis of cell lysate of IL-6-treated hepatocytes detected, as expected, an increase of a2-macroglobulin (positive acute-phase protein), whereas albumin (negative acute-phase protein) and Fpn-1 were downregulated. Our results demonstrate that liver

  9. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections.

    PubMed

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-02-19

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11-37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals. PMID:26740623

  10. Pharmacological and protein profiling suggest venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia

    PubMed Central

    Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A.; Wierda, William G.; Keating, Michael J.; Balakrishnan, Kumudha; Gandhi, Varsha

    2015-01-01

    Purpose Bruton’s tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Experimental design Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199) and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. Results The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted highly cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family anti-apoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Conclusions Our biological and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. PMID:25829398

  11. Mir-190b negatively contributes to the Trypanosoma cruzi- infected cell survival by repressing PTEN protein expression

    PubMed Central

    Monteiro, Cíntia Júnia; Mota, Suianne Letícia Antunes; Diniz, Lívia de Figueiredo; Bahia, Maria Terezinha; Moraes, Karen CM

    2015-01-01

    Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells. PMID:26692329

  12. Deviation of negatively charged protein fractions in the trochophore and veliger larvae by the larvicidal action of baygon in freshwater pulmonate Gyraulus convexiusculus (Planorbidae).

    PubMed

    Bhide, Mangla; Gupta, Priyamvada

    2006-10-01

    In the present investigation egg capsules of Gyraulus convexiusculus were treated with different concentrations of baygon. A dose and duration dependent deviations in the number of negatively charged protein fractions in the trochophore and veliger larval stages were observed. It resulted into anomalies in the morphogenesis and organogenesis of corresponding larval stages. Most of the protein bands showed the decrease in the protein positive intensities in comparison to control. This suggested that baygon causes larval toxicity in Gyraulus convexiusculus.

  13. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium.

    PubMed

    Pruitt, Rory N; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R; Chan, Leanne Jade G; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B; Sonti, Ramesh V; Petzold, Christopher J; Liu, Chang C; Brodbelt, Jennifer S; Felix, Georg; Ronald, Pamela C

    2015-07-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21-amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals.

  14. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL.

    PubMed

    Zhu, Minghua; Liu, Yan; Koonpaew, Surapong; Granillo, Olivia; Zhang, Weiguo

    2004-10-18

    Linker for activation of B cells (LAB, also called NTAL; a product of wbscr5 gene) is a newly identified transmembrane adaptor protein that is expressed in B cells, NK cells, and mast cells. Upon BCR activation, LAB is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT-deficient mice. To study the in vivo function of LAB, LAB-deficient mice were generated. Although disruption of the Lab gene did not affect lymphocyte development, it caused mast cells to be hyperresponsive to stimulation via the FcepsilonRI, evidenced by enhanced Erk activation, calcium mobilization, degranulation, and cytokine production. These data suggested that LAB negatively regulates mast cell function. However, mast cells that lacked both linker for activation of T cells (LAT) and LAB proteins had a more severe block in FcepsilonRI-mediated signaling than LAT(-/-) mast cells, demonstrating that LAB also shares a redundant function with LAT to play a positive role in FcepsilonRI-mediated signaling.

  15. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium

    PubMed Central

    Pruitt, Rory N.; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R.; Chan, Leanne Jade G.; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L.; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B.; Sonti, Ramesh V.; Petzold, Christopher J.; Liu, Chang C.; Brodbelt, Jennifer S.; Felix, Georg; Ronald, Pamela C.

    2015-01-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21–amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals. PMID:26601222

  16. The Slx5-Slx8 Complex Affects Sumoylation of DNA Repair Proteins and Negatively Regulates Recombination▿ †

    PubMed Central

    Burgess, Rebecca C.; Rahman, Sadia; Lisby, Michael; Rothstein, Rodney; Zhao, Xiaolan

    2007-01-01

    Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Δ mutants exhibited clonal lethality, which was due to the overamplification of 2μm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Δ mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins. PMID:17591698

  17. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    PubMed

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. PMID:25935310

  18. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    PubMed

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β.

  19. Molecular cloning of a gene encoding a Chlamydia psittaci 57-kDa protein that shares antigenic determinants with ca. 60-kDa proteins present in many gram-negative bacteria.

    PubMed

    Menozzi, F D; Menozzi-Dejaiffe, C; Nano, F E

    1989-03-01

    In order to develop reagents to study the immune response of guinea pigs to infection by Chlamydia psittaci guinea pig inclusion conjunctivitis strain (GPIC), we constructed a plasmid clone bank with C. psittaci DNA. One of the recombinant clones isolated produced large amounts of a 57-kilodalton (kDa) protein that was immunoreactive with sera from GPIC infected guinea pigs. While investigating this recombinant protein, we discovered that all the Gram-negative bacteria analyzed so far have immunoreactive proteins of similar size. This protein seems to be a 'common antigen' already described in various Gram-negative bacteria.

  20. TATA-binding protein-like protein (TLP/TRF2/TLF) negatively regulates cell cycle progression and is required for the stress-mediated G(2) checkpoint.

    PubMed

    Shimada, Miho; Nakadai, Tomoyoshi; Tamura, Taka-Aki

    2003-06-01

    The TATA-binding protein (TBP) is a universal transcription factor required for all of the eukaryotic RNA polymerases. In addition to TBP, metazoans commonly express a distantly TBP-related protein referred to as TBP-like protein (TLP/TRF2/TLF). Although the function of TLP in transcriptional regulation is not clear, it is known that TLP is required for embryogenesis and spermiogenesis. In the present study, we investigated the cellular functions of TLP by using TLP knockout chicken DT40 cells. TLP was found to be dispensable for cell growth. Unexpectedly, TLP-null cells exhibited a 20% elevated cell cycle progression rate that was attributed to shortening of the G(2) phase. This indicates that TLP functions as a negative regulator of cell growth. Moreover, we found that TLP mainly existed in the cytoplasm and was translocated to the nucleus restrictedly at the G(2) phase. Ectopic expression of nuclear localization signal-carrying TLP resulted in an increase (1.5-fold) in the proportion of cells remaining in the G(2)/M phase and apoptotic state. Notably, TLP-null cells showed an insufficient G(2) checkpoint when the cells were exposed to stresses such as UV light and methyl methanesulfonate, and the population of apoptotic cells after stresses decreased to 40%. These phenomena in G(2) checkpoint regulation are suggested to be p53 independent because p53 does not function in DT40 cells. Moreover, TLP was transiently translocated to the nucleus shortly (15 min) after stress treatment. The expression of several stress response and cell cycle regulatory genes drifted in a both TLP- and stress-dependent manner. Nucleus-translocating TLP is therefore thought to work by checking cell integrity through its transcription regulatory ability. TLP is considered to be a signal-transducing transcription factor in cell cycle regulation and stress response.

  1. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis.

    PubMed

    Carvalho, Raquel Fonseca; Carvalho, Sofia Domingues; Duque, Paula

    2010-10-01

    The plant-specific SR45 belongs to the highly conserved family of serine/arginine-rich (SR) proteins, which play key roles in precursor-mRNA splicing and other aspects of RNA metabolism. An Arabidopsis (Arabidopsis thaliana) loss-of-function mutant, sr45-1, displays pleiotropic phenotypes, such as defects in flower and leaf morphology, root growth, and flowering time. Here, we show that the sr45-1 mutation confers hypersensitivity to glucose (Glc) during early seedling growth in Arabidopsis. Unlike wild-type plants, the sr45-1 mutant displays impaired cotyledon greening and expansion as well as reduced hypocotyl elongation of dark-grown seedlings when grown in the presence of low (3%) Glc concentrations. In addition, SR45 is involved in the control of Glc-responsive gene expression, as the mutant displays enhanced repression of photosynthetic and nitrogen metabolism genes and overinduction of starch and anthocyanin biosynthesis genes. Like many other sugar response mutants, sr45-1 also shows hypersensitivity to abscisic acid (ABA) but appears to be unaffected in ethylene signaling. Importantly, the sr45-1 mutant shows enhanced ability to accumulate ABA in response to Glc, and the ABA biosynthesis inhibitor fluridone partially rescues the sugar-mediated growth arrest. Moreover, three ABA biosynthesis genes and two key ABA signaling genes, ABI3 and ABI5, are markedly overinduced by Glc in sr45-1. These results provide evidence that the SR45 protein defines a novel player in plant sugar response that negatively regulates Glc signaling during early seedling development by down-regulating both Glc-specific ABA accumulation and ABA biosynthesis and signaling gene expression. PMID:20699397

  2. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability.

    PubMed

    Carvalho, Raquel F; Szakonyi, Dóra; Simpson, Craig G; Barbosa, Inês C R; Brown, John W S; Baena-González, Elena; Duque, Paula

    2016-08-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. PMID:27436712

  3. Endothelial nitric oxide synthase negatively regulates hydrogen peroxide-stimulated AMP-activated protein kinase in endothelial cells.

    PubMed

    Jin, Benjamin Y; Sartoretto, Juliano L; Gladyshev, Vadim N; Michel, Thomas

    2009-10-13

    Hydrogen peroxide and other reactive oxygen species are intimately involved in endothelial cell signaling. In many cell types, the AMP-activated protein kinase (AMPK) has been implicated in the control of metabolic responses, but the role of endothelial cell redox signaling in the modulation of AMPK remains to be completely defined. We used RNA interference and pharmacological methods to establish that H(2)O(2) is a critical activator of AMPK in cultured bovine aortic endothelial cells (BAECs). H(2)O(2) treatment of BAECs rapidly and significantly increases the phosphorylation of AMPK. The EC(50) for H(2)O(2)-promoted phosphorylation of AMPK is 65 + or - 15 microM, within the physiological range of cellular H(2)O(2) concentrations. The Ca(2+)/calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) inhibitor STO-609 abolishes H(2)O(2)-dependent AMPK activation, whereas eNOS inhibitors enhance AMPK activation. Similarly, siRNA-mediated knockdown of CaMKKbeta abrogates AMPK activation, whereas siRNA-mediated knockdown of eNOS leads to a striking increase in AMPK phosphorylation. Cellular imaging studies using the H(2)O(2) biosensor HyPer show that siRNA-mediated eNOS knockdown leads to a marked increase in intracellular H(2)O(2) generation, which is blocked by PEG-catalase. eNOS(-/-) mice show a marked increase in AMPK phosphorylation in liver and lung compared to wild-type mice. Lung endothelial cells from eNOS(-/-) mice also show a significant increase in AMPK phosphorylation. Taken together, these results establish that CaMKKbeta is critically involved in mediating the phosphorylation of AMPK promoted by H(2)O(2) in endothelial cells, and document that eNOS is an important negative regulator of AMPK phosphorylation and intracellular H(2)O(2) generation in endothelial cells. PMID:19805165

  4. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses1[OPEN

    PubMed Central

    2015-01-01

    Receptor-like cytoplasmic kinases (RLCKs) are a subset of plant receptor-like kinases lacking both extracellular and transmembrane domains. Some of the 46 members in the Arabidopsis (Arabidopsis thaliana) RLCK subfamily VII have been linked to plant innate immunity; however, most remain uncharacterized. Thus, multiple subfamily VII members are expected to be involved in plant immune signaling. Here, we investigate the role of AvrPphB SUSCEPTIBLE1-LIKE13 (PBL13), a subfamily VII RLCK with unique domain architecture. Unlike other characterized RLCKs, PBL13 transfer DNA insertion lines exhibit enhanced disease resistance after inoculation with virulent Pseudomonas syringae. The pbl13-2 knockout also exhibits elevated basal-level expression of the PATHOGENESIS-RELATED GENE1 defense marker gene, enhanced reactive oxygen species (ROS) burst in response to perception of bacterial microbial patterns, and accelerated flagellin-induced activation of mitogen-activated protein kinases. Recombinant PBL13 is an active kinase, and its primary autophosphorylated sites map to a 15-amino acid repeat motif unique to PBL13. Complementation of pbl13-2 with PBL13-3xFLAG converts the enhanced resistance and elevated ROS phenotypes back to wild-type levels. In contrast, kinase-dead PBL13K111A-3xFLAG was unable to rescue pbl13-2 disease phenotypes. Consistent with the enhanced ROS burst in the pbl13-2 knockout, PBL13 is able to associate with the nicotinamide adenine dinucleotide phosphate, reduced oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN D (RBOHD) by split-luciferase complementation assay, and this association is disrupted by flagellin treatment. We conclude that the PBL13 kinase negatively regulates plant innate immunity to pathogenic bacteria and can associate with RBOHD before pathogen perception. These data are consistent with the hypothesis that PBL13 acts to prevent inappropriate activation of defense responses in the absence of pathogen challenge. PMID:26432875

  5. CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression.

    PubMed

    Bae, W; Jones, P G; Inouye, M

    1997-11-01

    When the gene for CspA, the major cold shock protein of Escherichia coli, was disrupted by a novel positive/negative selection method, the deltacspA cells did not show any discernible growth defect at either 37 or 15 degrees C. By two-dimensional gel electrophoresis, total protein synthesis was analyzed after temperature downshift in the deltacspA strain. The production of the CspA homologs CspB and CspG increased, and the duration of their expression was prolonged, suggesting that both CspB and CspG compensate for the function of CspA in the absence of CspA during cold shock adaptation. Interestingly, the production of the 159-base 5'-untranslated region (5'-UTR) of cspA from the chromosomal cspA::cat gene, detected by primer extension, failed to be repressed after cold shock. When an independent system to produce CspA was added to the deltacspA strain, the 5'-UTR production for the cspA::cat gene was significantly reduced compared to that of the deltacspA strain. By examining the expression of translationally fused cspA and cspB genes to lacZ in the deltacspA strain, it was found that cspA is more strongly regulated by CspA than cspB is. We showed that the increased expression of the 5'-UTR of the cspA mRNA in the deltacspA strain occurred mainly at the level of transcription and, to a certain extent, at the level of mRNA stabilization. The mRNA stabilization in the deltacspA strain was observed for other mRNAs, supporting the notion that CspA functions as an mRNA chaperone to destabilize secondary structures in mRNAs. PMID:9371456

  6. PRMT4-Mediated Arginine Methylation Negatively Regulates Retinoblastoma Tumor Suppressor Protein and Promotes E2F-1 Dissociation

    PubMed Central

    Kim, Kevin Y.; Wang, Don-Hong; Campbell, Mel; Huerta, Steve B.; Shevchenko, Bogdan; Izumiya, Chie

    2014-01-01

    The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G1-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb Cterm) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb Cterm phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4–E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1. PMID:25348716

  7. The FERM Protein Yurt Is a Negative Regulatory Component of the Crumbs Complex that Controls Epithelial Polarity and Apical Membrane Size

    PubMed Central

    Laprise, Patrick; Beronja, Slobodan; Silva-Gagliardi, Nancy F.; Pellikka, Milena; Jensen, Abbie M.; McGlade, C. Jane; Tepass, Ulrich

    2010-01-01

    Summary The Crumbs (Crb) complex is a key regulator of epithelial cell architecture where it promotes apical membrane formation. Here, we show that binding of the FERM protein Yurt to the cytoplasmic domain of Crb is part of a negative-feedback loop that regulates Crb activity. Yurt is predominantly a basolateral protein but is recruited by Crb to apical membranes late during epithelial development. Loss of Yurt causes an expansion of the apical membrane in embryonic epithelia and photoreceptor cells similar to Crb overexpression and in contrast to loss of Crb. Analysis of yurt crb double mutants suggests that these genes function in one pathway and that yurt negatively regulates crb. We also show that the mammalian Yurt orthologs YMO1 and EHM2 bind to mammalian Crb proteins. We propose that Yurt is part of an evolutionary conserved negative-feedback mechanism that restricts Crb complex activity in promoting apical membrane formation. PMID:16950127

  8. Binding to extracellular matrix proteins and formation of biogenic amines by food-associated coagulase-negative staphylococci.

    PubMed

    Seitter, Marion; Geng, Bettina; Hertel, Christian

    2011-02-28

    In connection with a study on the DNA microarray based detection of genes involved in safety and technologically relevant properties (Seitter (née Resch) et al., 2011), food-associated coagulase-negative staphylococci (CNS) were investigated phenotypically with regard to their ability to bind to the extracellular matrix proteins (ECM) and to produce biogenic amines. The properties have been shown to be involved in the colonization of injured tissue and invasion into host cells as well as in pharmacologic effects on humans, respectively. The CNS exhibited a low, but nevertheless clearly measurable ECM binding capacity, except for strains of Staphylococcus equorum and Staphylococcus succinus, which show a comparable or even higher binding to fibrinogen and fibronectin than that of the control strain Staphylococcus aureus Cowan. Formation of biogenic amines could be often detected in S. carnosus, S. condimenti and S. strains, but rarely in S. equorum and not in S. succinus and S. xylosus strains. Mostly, 2-phenylethylamine, tyramine and tryptamine were formed by resting cells in amounts < 25 mg/l, whereas growing cells formed high amounts (> 100 mg/l) of 2-phenylethylamine and putrescine. This study confirmed the need of consideration of ECM binding and biogenic amine formation in the safety assessment of CNS used in the production of fermented foods.

  9. Expression of receptor protein tyrosine phosphatase ζ is a risk factor for triple negative breast cancer relapse

    PubMed Central

    FU, FENFEN; XIAO, XI; ZHANG, TAO; ZOU, QIONGYAN; CHEN, ZONGLIN; PEI, LEI; SU, JUAN; YI, WENJUN

    2016-01-01

    Patients with triple negative breast cancer (TNBC) have a higher rate of distant recurrence and a poorer prognosis than those with other breast cancer subtypes. Therefore, it is important to study the mechanism of TNBC relapse. A retrospective immunohistochemical analysis of the expression of receptor protein tyrosine phosphatase ζ (PTPRZ1) and pleiotrophin (PTN) was performed for 325 cases of breast cancer. These samples included 66 cases of luminal A breast cancer, 67 cases of luminal B breast cancer, 78 cases of Her-2-enriched breast cancer, 78 cases of TNBC and 36 cases of relapsed TNBC (RTNBC). In addition, 30 control specimens and 30 cases of metastasized lymph nodes were examined. PTPRZ1 and PTN were highly expressed in the RTNBC group. Compared with the RTNBC group, significant differences in the expression of PTPRZ1 were observed between the TNBC, BC and control groups. A significant difference was observed in the expression of PTN in the BC group (P<0.05) compared to RTNBC, and there were no significant differences in the expression of PTPRZ1 and PTN among the molecular subtypes. No significant correlation was observed between the expression of PTPRZ1, PTN, ER, PR, Her-2 and ALN and the tumor size or menopause status. No significant correlation was identified between the expression of PTPRZ1 and PTN and the expression of CD24 and CD44. In summary, high expression of PTPRZ1 may be an independent risk indicator for TNBC recurrence and metastasis. PMID:26893832

  10. Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte-mediated defense reaction against gram-negative bacteria.

    PubMed

    Koizumi, N; Imai, Y; Morozumi, A; Imamura, M; Kadotani, T; Yaoi, K; Iwahana, H; Sato, R

    1999-09-01

    BmLBP is a lipopolysaccharide-binding protein in B. mori and participates in bacterial clearance in vivo. Here, we investigated the function of BmLBP more specifically. More than 90% of injected gram-negative rough strains to which BmLBP binds were removed from the plasma within 30 min post-injection, whereas it required 8h for the clearance of smooth strains to which BmLBP does not bind. Observation of the hemocoel after the injection of Escherichia coli rough strain showed that melanized nodules were formed at 30 min post-injection when the clearance of injected E. coli cells had occurred. Fluorescence microscope observation revealed that E. coli cells were actually trapped in the nodules formed in vivo. Furthermore, plasma pre-treated E. coli rough cells (BmLBP bound) added to hemocytes isolated in vitro caused vigorous hemocyte aggregations with the bacteria, while plasma pre-treated smooth cells did not. The formation of aggregates was inhibited by anti-BmLBP serum pre-treatment, suggesting that BmLBP causes the clearance of bacteria by promoting hemocyte nodule formation. PMID:12770298

  11. p202, an interferon-inducible negative regulator of cell growth, is a target of the adenovirus E1A protein.

    PubMed

    Xin, H; D'Souza, S; Fang, L; Lengyel, P; Choubey, D

    2001-10-18

    Studies have revealed that human adenovirus-encoded E1A protein promotes cell proliferation through the targeted interaction with cellular proteins that act as key negative regulators of cell growth. The targets of E1A protein include the retinoblastoma tumor suppressor protein (pRb). Because p202, an interferon (IFN)-inducible murine protein (52-kDa), negatively regulates cell growth in part through the pRb/E2F pathway, we tested whether the p202 is a target of the adenovirus-encoded E1A protein for functional inactivation. Here we report that the expression of E1A protein overcame p202-mediated inhibition of cell growth and this correlated with an alleviation of p202-mediated inhibition of the transcriptional activity of E2F. Furthermore, E1A protein relieved p202-mediated inhibition of the specific DNA-binding activity of E2F complexes, including those containing the pocket proteins. Additionally, the E1A protein bound to p202 both in vitro and in vivo and a deletion of four amino acids in the conserved region 2 (CR2) of E1A protein significantly reduced the binding of E1A to p202. Interestingly, ectopic expression of p202 under reduced serum conditions significantly reduced E1A-mediated apoptosis. Taken together, our observations provide support to the idea that the p202 and adenovirus E1A protein functionally counteract each other and E1A protein targets p202 to promote cell proliferation. PMID:11687962

  12. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M.; Nichols, Wright W.

    2015-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets. PMID:26574008

  13. NsdB, a TPR-like-domain-containing protein negatively affecting production of antibiotics in Streptomyces coelicolor A3 (2).

    PubMed

    Zhang, Li; Li, Wen-Cheng; Zhao, Chun-Hua; Chater, Keith F; Tao, Mei-Feng

    2007-10-01

    Tetratricopeptide repeat (TPR) domains usually mediate protein-protein interactions. NsdA, one of the 70 proteins containing TPR-like domains in Streptomyces coelicolor A3 (2), was previously found to negatively control sporulation and antibiotic production. Here we show that elimination of SCO7252, which encodes another of these proteins, also caused overproduction of two antibiotics, actinorhodin and CDA, but did not affect morphological differentiation. Disruption of SCO1593, encoding another of the family, had no obvious phenotypic effects. In surface-grown cultures, expression of SCO7252, which was named nsdB, was initiated at about 30 h, like that of nsdA. Analysis in silico of the 70 predicted TPR-like-containing proteins of S. coelicolor showed that 32 of them contained only TPR-like domains, and 25 of the remainder contained additional DNA-binding domains, implying that they might control gene expression directly.

  14. Methylseleninic Acid Enhances Taxane Drug Efficacy against Human Prostate Cancer and Down-Regulates ntiapoptotic roteins Bcl-XL and Survivin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: Our previous work has shown that methylseleninic acid (MSeA) sensitized hormone refractory prostate cancer (HRPCa) cells to apoptosis induced by paclitaxel (taxol) through enhancing multiple caspases. This study aimed to: 1) determine the general applicability of the sensitization effect ...

  15. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-XL

    SciTech Connect

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy

    2001-09-25

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) is a well-established mechanism that contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in the repair of DSBs in human cells. However, in addition to promoting genomic stability, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We previously demonstrated that overexpression of BCL-2 or BCL-xL enhanced the frequency of x-ray-induced mutations involving the TK1 locus, including loss of heterozygosity (LOH) events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells, and to directly determine whether ectopic expression of BCL-xL affects HDR. We used the B-lymphoblastoid cell line TK6, which expresses wild-type TP53 and resembles normal lymphocytes in undergoing apoptosis following! genotoxic stress. U sing isogenic derivatives of TK6 cells (TK6-neo, TK6-bcl-xL), we find that a DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold in TK6-neo cells, demonstrating that a DSB can be efficiently repaired by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3- to 4-fold more frequent in BCL-xL overexpressing cells. The results demonstrate that HDR plays an important role in maintaining genomic integrity in human cells and that ectopic expression of BCL-xL enhances HDR of DSBs. To our knowledge, this is the first study to highlight a function for BCL-xL in modulating DSB repair in human cells.

  16. GlgS, described previously as a glycogen synthesis control protein, negatively regulates motility and biofilm formation in Escherichia coli.

    PubMed

    Rahimpour, Mehdi; Montero, Manuel; Almagro, Goizeder; Viale, Alejandro M; Sevilla, Ángel; Cánovas, Manuel; Muñoz, Francisco J; Baroja-Fernández, Edurne; Bahaji, Abdellatif; Eydallin, Gustavo; Dose, Hitomi; Takeuchi, Rikiya; Mori, Hirotada; Pozueta-Romero, Javier

    2013-06-15

    Escherichia coli glycogen metabolism involves the regulation of glgBXCAP operon expression and allosteric control of the GlgC [ADPG (ADP-glucose) pyrophosphorylase]-mediated catalysis of ATP and G1P (glucose-1-phosphate) to ADPG linked to glycogen biosynthesis. E. coli glycogen metabolism is also affected by glgS. Though the precise function of the protein it encodes is unknown, its deficiency causes both reduced glycogen content and enhanced levels of the GlgC-negative allosteric regulator AMP. The transcriptomic analyses carried out in the present study revealed that, compared with their isogenic BW25113 wild-type strain, glgS-null (ΔglgS) mutants have increased expression of the operons involved in the synthesis of type 1 fimbriae adhesins, flagella and nucleotides. In agreement, ΔglgS cells were hyperflagellated and hyperfimbriated, and displayed elevated swarming motility; these phenotypes all reverted to the wild-type by ectopic glgS expression. Also, ΔglgS cells accumulated high colanic acid content and displayed increased ability to form biofilms on polystyrene surfaces. F-driven conjugation based on large-scale interaction studies of glgS with all the non-essential genes of E. coli showed that deletion of purine biosynthesis genes complement the glycogen-deficient, high motility and high biofilm content phenotypes of ΔglgS cells. Overall the results of the present study indicate that glycogen deficiency in ΔglgS cells can be ascribed to high flagellar propulsion and high exopolysaccharide and purine nucleotides biosynthetic activities competing with GlgC for the same ATP and G1P pools. Supporting this proposal, glycogen-less ΔglgC cells displayed an elevated swarming motility, and accumulated high levels of colanic acid and biofilm. Furthermore, glgC overexpression reverted the glycogen-deficient, high swarming motility, high colanic acid and high biofilm content phenotypes of ΔglgS cells to the wild-type. As on the basis of the present study Glg

  17. Special AT-rich sequence-binding protein 2 acts as a negative regulator of stemness in colorectal cancer cells

    PubMed Central

    Li, Ying; Liu, Yu-Hong; Hu, Yu-Ying; Chen, Lin; Li, Jian-Ming

    2016-01-01

    AIM To find the mechanisms by which special AT-rich sequence-binding protein 2 (SATB2) influences colorectal cancer (CRC) metastasis. METHODS Cell growth assay, colony-forming assay, cell adhesion assay and cell migration assay were used to evaluate the biological characteristics of CRC cells with gain or loss of SATB2. Sphere formation assay was used to detect the self-renewal ability of CRC cells. The mRNA expression of stem cell markers in CRC cells with upregulated or downregulated SATB2 expression was detected by quantitative real-time polymerase chain reaction. Chromatin immunoprecipitation (ChIP) was used to verify the binding loci of SATB2 on genomic sequences of stem cell markers. The Cancer Genome Atlas (TCGA) database and our clinical samples were analyzed to find the correlation between SATB2 and some key stem cell markers. RESULTS Downregulation of SATB2 led to an aggressive phenotype in SW480 and DLD-1 cells, which was characterized by increased migration and invasion abilities. Overexpression of SATB2 suppressed the migration and invasion abilities in SW480 and SW620 cells. Using sequential sphere formation assay to detect the self-renewal abilities of CRC cells, we found more secondary sphere formation but not primary sphere formation in SW480 and DLD-1 cells after SATB2 expression was knocked down. Moreover, most markers for stem cells such as CD133, CD44, AXIN2, MEIS2 and NANOG were increased in cells with SATB2 knockdown and decreased in cells with SATB2 overexpression. ChIP assay showed that SATB2 bound to regulatory elements of CD133, CD44, MEIS2 and AXIN2 genes. Using TCGA database and our clinical samples, we found that SATB2 was correlated with some key stem cell markers including CD44 and CD24 in clinical tissues of CRC patients. CONCLUSION SATB2 can directly bind to the regulatory elements in the genetic loci of several stem cell markers and consequently inhibit the progression of CRC by negatively regulating stemness of CRC cells. PMID

  18. A Screen for Dominant Negative Mutants of SEC18 Reveals a Role for the AAA Protein Consensus Sequence in ATP Hydrolysis

    PubMed Central

    Steel, Gregor J.; Harley, Carol; Boyd, Alan; Morgan, Alan

    2000-01-01

    An evolutionarily ancient mechanism is used for intracellular membrane fusion events ranging from endoplasmic reticulum–Golgi traffic in yeast to synaptic vesicle exocytosis in the human brain. At the heart of this mechanism is the core complex of N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). Although these proteins are accepted as key players in vesicular traffic, their molecular mechanisms of action remain unclear. To illuminate important structure–function relationships in NSF, a screen for dominant negative mutants of yeast NSF (Sec18p) was undertaken. This involved random mutagenesis of a GAL1-regulated SEC18 yeast expression plasmid. Several dominant negative alleles were identified on the basis of galactose-inducible growth arrest, of which one, sec18-109, was characterized in detail. The sec18-109 phenotype (abnormal membrane trafficking through the biosynthetic pathway, accumulation of a membranous tubular network, growth suppression, increased cell density) is due to a single A-G substitution in SEC18 resulting in a missense mutation in Sec18p (Thr394→Pro). Thr394 is conserved in most AAA proteins and indeed forms part of the minimal AAA consensus sequence that serves as a signature of this large protein family. Analysis of recombinant Sec18-109p indicates that the mutation does not prevent hexamerization or interaction with yeast α-SNAP (Sec17p), but instead results in undetectable ATPase activity that cannot be stimulated by Sec17p. This suggests a role for the AAA protein consensus sequence in regulating ATP hydrolysis. Furthermore, this approach of screening for dominant negative mutants in yeast can be applied to other conserved proteins so as to highlight important functional domains in their mammalian counterparts. PMID:10749934

  19. Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS.

    PubMed

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  20. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  1. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  2. An integrated molecular analysis of lung adenocarcinomas identifies potential therapeutic targets among TTF1-negative tumors including DNA repair proteins and Nrf2

    PubMed Central

    Cardnell, Robert J.G.; Behrens, Carmen; Diao, Lixia; Fan, YouHong; Tang, Ximing; Tong, Pan; John D., Minna; Mills, Gordon B.; Heymach, John V.; Wistuba, Ignacio I.; Wang, Jing; Byers., Lauren A.

    2015-01-01

    Purpose Thyroid transcription factor-1 (TTF1) immunohistochemistry (IHC) is used clinically to differentiate primary lung adenocarcinomas (LUAD) from squamous lung cancers and metastatic adenocarcinomas from other primary sites. However, a subset of LUAD (15-20%) does not express TTF1 and TTF1-negative patients have worse clinical outcomes. As there are no established targeted agents with activity in TTF1-negative LUAD, we performed an integrated molecular analysis to identify potential therapeutic targets. Experimental Design Using two clinical LUAD cohorts (274 tumors), one from our institution (PROSPECT) and the TCGA, we interrogated proteomic profiles (by reverse-phase protein array (RPPA)), gene expression, and mutational data. Drug response data from 74 cell lines were used to validate potential therapeutic agents. Results Strong correlations were observed between TTF1 IHC and TTF1 measurements by RPPA (Rho=0.57, p<0.001) and gene expression (NKX2-1, Rho=0.61, p<0.001). Established driver mutations (e.g. BRAF and EGFR) were associated with high TTF1 expression. In contrast, TTF1-negative LUAD had a higher frequency of inactivating KEAP1 mutations (p=0.001). Proteomic profiling identified increased expression of DNA repair proteins (e.g., Chk1 and the DNA repair score) and suppressed PI3K/MAPK signaling among TTF1-negative tumors, with differences in total proteins confirmed at the mRNA level. Cell line analysis showed drugs targeting DNA repair to be more active in TTF1-low cell lines. Conclusions Combined genomic and proteomic analyses demonstrated infrequent alteration of validated lung cancer targets (including the absence of BRAF mutations in TTF1-negative LUAD), but identified novel potential targets for TTF1-negative LUAD includingKEAP1/Nrf2 and DNA repair pathways. PMID:25878335

  3. CHCHD2 connects mitochondrial metabolism to apoptosis.

    PubMed

    Liu, Yong; Zhang, Yanping

    2015-01-01

    As the powerhouse of cells and gatekeeper for apoptosis, mitochondria control life and death. CHCHD2, a mitochondrial protein previously known to regulate metabolism, has recently been identified as an apoptosis inhibitor. New data suggest a model in which CHCHD2 performs a prosurvival function by acting as both a reactive oxygen species scavenger and BCL-XL activator. PMID:27308501

  4. Ectopic expression of AP-2α transcription factor suppresses glioma progression.

    PubMed

    Su, Wenjing; Xia, Juan; Chen, Xueqin; Xu, Miao; Nie, Ling; Chen, Ni; Gong, Jing; Li, Xinglan; Zhou, Qiao

    2014-01-01

    The transcriptional factor AP-2α is a tumor suppressor gene and is downregulated in various neoplasms including glioma. Although the level of AP-2α is negatively associated with the grade of human glioma, the specific functions of AP-2α in glioma are still unknown. In this study, we experimentally showed that artificial overexpression of AP-2α in glioma T98G and U251 cells significantly downregulated the mRNA levels of Bcl-xl, Bcl-2, c-IAP2 and survivin, together with upregulation of the Hrk mRNA levels. Reintroduction of AP-2α also induced downregulation of the protein levels of survivin and VEGF in glioma cells. In biological assays with T98G and U251 cells, AP-2α reduced tumor cell growth, increased cell death, attenuated cell migration and endothelial tube formation. The AP-2α transcription factor may play an important role in suppressing glioma progression. PMID:25674231

  5. Ectopic expression of AP-2α transcription factor suppresses glioma progression

    PubMed Central

    Su, Wenjing; Xia, Juan; Chen, Xueqin; Xu, Miao; Nie, Ling; Chen, Ni; Gong, Jing; Li, Xinglan; Zhou, Qiao

    2014-01-01

    The transcriptional factor AP-2α is a tumor suppressor gene and is downregulated in various neoplasms including glioma. Although the level of AP-2α is negatively associated with the grade of human glioma, the specific functions of AP-2α in glioma are still unknown. In this study, we experimentally showed that artificial overexpression of AP-2α in glioma T98G and U251 cells significantly downregulated the mRNA levels of Bcl-xl, Bcl-2, c-IAP2 and survivin, together with upregulation of the Hrk mRNA levels. Reintroduction of AP-2α also induced downregulation of the protein levels of survivin and VEGF in glioma cells. In biological assays with T98G and U251 cells, AP-2α reduced tumor cell growth, increased cell death, attenuated cell migration and endothelial tube formation. The AP-2α transcription factor may play an important role in suppressing glioma progression. PMID:25674231

  6. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes.

    PubMed

    Mercante, Virginia; Duarte, Cecilia M; Sánchez, Cintia M; Zalguizuri, Andrés; Caetano-Anollés, Gustavo; Lepek, Viviana C

    2015-01-01

    Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.

  7. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna

    2006-07-21

    Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.

  8. A rare case of rapidly progressive dementia with elevated RT-QuIC and negative 14-3-3 and tau proteins.

    PubMed

    Trikamji, Bhavesh; Hamlin, Clive; Baldwin, Kelly J

    2016-05-01

    Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressing dementia with death usually occurring within 6 months. There is no verified disease-specific pre-mortem diagnostic test besides brain biopsy. We describe a 66 y old previously high functioning male who presented with a 5 month history of rapidly progressive dementia. Neurological examination revealed a score of 19/30 on MOCA testing. An extensive workup into various causes of dementia including electroencephalography and imaging studies was unremarkable. The cerebrospinal fluid was sent to National Prion Disease Center and it revealed elevated RT-QuIC levels with negative 14-3-3 and T tau proteins. Based on literature review, our case is one of few living subjects with elevated RT-QuIC levels and negative 14-3-3 and tau proteins. PMID:27249661

  9. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families

    PubMed Central

    Pinto, Amelia K.; Williams, Graham D.; Szretter, Kristy J.; White, James P.; Proença-Módena, José Luiz; Liu, Gai; Olejnik, Judith; Brien, James D.; Ebihara, Hideki; Mühlberger, Elke; Amarasinghe, Gaya; Diamond, Michael S.

    2015-01-01

    ABSTRACT Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed 5′-triphosphates (5′-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1 for 5′-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infected Ifit1−/− and wild-type control mice and primary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV], and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack of Ifit1 gene expression did not result in increased infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical between Ifit1−/− and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not inhibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oligonucleotides resembling the 5′ ends of IAV gene segments. The affinity for 5′-ppp RNA was approximately 10-fold lower than that for non-2′-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant restriction factor against negative-sense RNA viruses. IMPORTANCE Negative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly outbreaks in recent history. The host interferon response and induction of antiviral genes contribute to the control of

  10. Ubiquitin-associated Domain-containing Ubiquitin Regulatory X (UBX) Protein UBXN1 Is a Negative Regulator of Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Wang, Yu-Bo; Tan, Bo; Mu, Rui; Chang, Yan; Wu, Min; Tu, Hai-Qing; Zhang, Yu-Cheng; Guo, Sai-Sai; Qin, Xuan-He; Li, Tao; Li, Wei-Hua; Li, Ai-Ling; Zhang, Xue-Min; Li, Hui-Yan

    2015-01-01

    Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97. PMID:25681446

  11. Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria.

    PubMed

    Arends, Karsten; Schiwon, Katarzyna; Sakinc, Türkan; Hübner, Johannes; Grohmann, Elisabeth

    2012-02-01

    On the basis of pIP501, a green fluorescent protein (GFP)-tagged monitoring tool was constructed for quantifying plasmid mobilization among Gram-positive bacteria and between Gram-positive Enterococcus faecalis and Gram-negative Escherichia coli. Furthermore, retromobilization of the GFP-tagged monitoring tool was shown from E. faecalis OG1X into the clinical isolate E. faecalis T9.

  12. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis.

    PubMed

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-10-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction.

  13. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-01-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction. PMID:26304848

  14. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells

    PubMed Central

    Moss Bendtsen, Kristian; Jensen, Mogens H.; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes. PMID:26365394

  15. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells.

    PubMed

    Moss Bendtsen, Kristian; Jensen, Mogens H; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes.

  16. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling.

    PubMed

    Borgal, Lori; Habbig, Sandra; Hatzold, Julia; Liebau, Max C; Dafinger, Claudia; Sacarea, Ilinca; Hammerschmidt, Matthias; Benzing, Thomas; Schermer, Bernhard

    2012-07-20

    Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.

  17. A Thrombomodulin Mutation that Impairs Active Protein C Generation Is Detrimental in Severe Pneumonia-Derived Gram-Negative Sepsis (Melioidosis)

    PubMed Central

    Kager, Liesbeth M.; Wiersinga, W. Joost; Roelofs, Joris J. T. H.; de Boer, Onno J.; Weiler, Hartmut; van 't Veer, Cornelis; van der Poll, Tom

    2014-01-01

    Background During severe (pneumo)sepsis inflammatory and coagulation pathways become activated as part of the host immune response. Thrombomodulin (TM) is involved in a range of host defense mechanisms during infection and plays a pivotal role in activation of protein C (PC) into active protein C (APC). APC has both anticoagulant and anti-inflammatory properties. In this study we investigated the effects of impaired TM-mediated APC generation during melioidosis, a common form of community-acquired Gram-negative (pneumo)sepsis in South-East Asia caused by Burkholderia (B.) pseudomallei. Methodology/Principal Findings (WT) mice and mice with an impaired capacity to activate protein C due to a point mutation in their Thbd gene (TMpro/pro mice) were intranasally infected with B. pseudomallei and sacrificed after 24, 48 or 72 hours for analyses. Additionally, survival studies were performed. When compared to WT mice, TMpro/pro mice displayed a worse survival upon infection with B. pseudomallei, accompanied by increased coagulation activation, enhanced lung neutrophil influx and bronchoalveolar inflammation at late time points, together with increased hepatocellular injury. The TMpro/pro mutation had limited if any impact on bacterial growth and dissemination. Conclusion/Significance TM-mediated protein C activation contributes to protective immunity after infection with B. pseudomallei. These results add to a better understanding of the regulation of the inflammatory and procoagulant response during severe Gram-negative (pneumo)sepsis. PMID:24762740

  18. Plasma Membrane Localization Is Essential for Oryza sativa Pto-Interacting Protein 1a-Mediated Negative Regulation of Immune Signaling in Rice1[W][OPEN

    PubMed Central

    Matsui, Hidenori; Fujiwara, Masayuki; Hamada, Satoshi; Shimamoto, Ko; Nomura, Yuko; Nakagami, Hirofumi; Takahashi, Akira; Hirochika, Hirohiko

    2014-01-01

    Oryza sativa Pto-interacting protein 1a (OsPti1a), an ortholog of tomato (Solanum lycopersicum) SlPti1, functions as a negative regulator of innate immunity in rice (Oryza sativa). In ospti1a mutants, the activation of immune responses, including hypersensitive response-like cell death, is caused by loss of the OsPti1a protein; however, it is as yet unclear how OsPti1a suppresses immune responses. Here, we report that OsPti1a localizes to detergent-resistant membrane fractions of the plasma membrane through lipid modification of the protein’s amino terminus, which is highly conserved among Pti1 orthologs in several plant species. Importantly, mislocalization of OsPti1a after deletion of its amino terminus reduced its ability to complement the mutant phenotypes, including hypersensitive response-like cell death. Furthermore, complex formation of OsPti1a depends on its amino terminus-mediated membrane localization. Liquid chromatography-tandem mass spectrometry analysis of OsPti1a complex-interacting proteins identified several defense-related proteins. Collectively, these findings indicate that appropriate complex formation by OsPti1a at the plasma membrane is required for the negative regulation of plant immune responses in rice. PMID:24958714

  19. The σ1 Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control

    PubMed Central

    Rodríguez-Muñoz, María; Sánchez-Blázquez, Pilar; Herrero-Labrador, Raquel; Martínez-Murillo, Ricardo; Merlos, Manuel; Vela, José Miguel

    2015-01-01

    Abstract Aims: The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinociception. Results: The MOR C terminus carries the histidine triad nucleotide-binding protein 1 (HINT1) coupled to the regulator of G-protein signaling RGSZ2-neural nitric oxide synthase assembly. Activated MORs stimulate the production of nitric oxide (NO), and the redox zinc switch RGSZ2 converts this signal into free zinc ions that are required to recruit the redox sensor PKCγ to HINT1 proteins. Then, PKCγ impairs HINT1-RGSZ2 association and enables σ1R-NR1 interaction with MOR-HINT1 complexes to restrain opioid signaling. The inhibition of NOS or the absence of σ1Rs prevents HINT1-PKCγ interaction, and MOR-NMDAR cross-regulation fails. The σ1R antagonists transitorily remove the binding of σ1Rs to NR1 subunits, facilitate the entrance of negative regulators of NMDARs, likely Ca2+-CaM, and prevent NR1 interaction with HINT1, thereby impairing the negative feedback of glutamate on opioid analgesia. Innovation: A redox-regulated process situates MOR signaling under NMDAR control, and in this context, the σ1R binds to the cytosolic C terminal region of the NMDAR NR1 subunit. Conclusion: The σ1R antagonists enhance opioid analgesia in naïve mice by releasing MORs from the negative influence of NMDARs, and they also reset antinociception in morphine tolerant animals. Moreover, σ1R antagonists alleviate neuropathic pain, probably by driving the inhibition of up-regulated NMDARs. Antioxid. Redox Signal. 22, 799–818. PMID:25557043

  20. Serological diagnosis of pneumococcal infection in children with pneumonia using protein antigens: A study of cut-offs with positive and negative controls.

    PubMed

    Andrade, Dafne Carvalho; Borges, Igor Carmo; Ivaska, Lauri; Peltola, Ville; Meinke, Andreas; Barral, Aldina; Käyhty, Helena; Ruuskanen, Olli; Nascimento-Carvalho, Cristiana Maria

    2016-06-01

    The etiological diagnosis of infection by Streptococcus pneumoniae in children is difficult, and the use of indirect techniques is frequently warranted. We aimed to study the use of pneumococcal proteins for the serological diagnosis of pneumococcal infection in children with pneumonia. We analyzed paired serum samples from 13 Brazilian children with invasive pneumococcal pneumonia (positive control group) and 23 Finnish children with viral pharyngitis (negative control group), all aged <5years-old. Children with pharyngitis were evaluated for oropharyngeal colonization, and none of them carried S. pneumoniae. We used a multiplex bead-based assay with eight proteins: Ply, CbpA, PspA1 and 2, PcpA, PhtD, StkP and PcsB. The optimal cut-off for increase in antibody level for the diagnosis of pneumococcal infection was determined for each antigen by ROC curve analysis. The positive control group had a significantly higher rate of ≥2-fold rise in antibody levels against all pneumococcal proteins, except Ply, compared to the negative controls. The cut-off of ≥2-fold increase in antibody levels was accurate for pneumococcal infection diagnosis for all investigated antigens. However, there was a substantial increase in the accuracy of the test with a cut-off of ≥1.52-fold rise in antibody levels for PcpA. When using the investigated protein antigens for the diagnosis of pneumococcal infection, the detection of response against at least one antigen was highly sensitive (92.31%) and specific (91.30%). The use of serology with pneumococcal proteins is a promising method for the diagnosis of pneumococcal infection in children with pneumonia. The use of a ≥2-fold increase cut-off is adequate for most pneumococcal proteins. PMID:26928648

  1. Hsp70 negatively controls rotavirus protein bioavailability in caco-2 cells infected by the rotavirus RF strain.

    PubMed

    Broquet, Alexis H; Lenoir, Christelle; Gardet, Agnès; Sapin, Catherine; Chwetzoff, Serge; Jouniaux, Anne-Marie; Lopez, Susana; Trugnan, Germain; Bachelet, Maria; Thomas, Ginette

    2007-02-01

    Previous studies demonstrated that the induction of the heat shock protein Hsp70 in response to viral infection is highly specific and differs from one cell to another and for a given virus type. However, no clear consensus exists so far to explain the likely reasons for Hsp70 induction within host cells during viral infection. We show here that upon rotavirus infection of intestinal cells, Hsp70 is indeed rapidly, specifically, and transiently induced. Using small interfering RNA-Hsp70-transfected Caco-2 cells, we observed that Hsp70 silencing was associated with an increased virus protein level and enhanced progeny virus production. Upon Hsp70 silencing, we observed that the ubiquitination of the main rotavirus structural proteins was strongly reduced. In addition, the use of proteasome inhibitors in infected Caco-2 cells was shown to induce an accumulation of structural viral proteins. Together, these results are consistent with a role of Hsp70 in the control of the bioavailability of viral proteins within cells for virus morphogenesis.

  2. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host

    PubMed Central

    Grishin, Andrey M; Beyrakhova, Ksenia A; Cygler, Miroslaw

    2015-01-01

    Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼500 different kinases and ∼130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases. PMID:25565677

  3. Outer membrane protein A and OprF – Versatile roles in Gram-negative bacterial infections

    PubMed Central

    Krishnan, Subramanian; Prasadarao, Nemani V.

    2012-01-01

    Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria with a multitude of functions. Although the structural features and porin function of OmpA were well studied, its role in the pathogenesis of various bacterial infections has been emerging for the past decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion, invasion and evasion of host-defense mechanisms. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and for many other functions. In addition, the function of OmpA like proteins such as OprF of Pseudomonas aeruginosa is also discussed herein. PMID:22240162

  4. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein

    SciTech Connect

    Zhu, Zhenqi; He, Xin; Johnson, Carla; Stoops, John; Eaker, Amanda E.; Stoffer, David S.; Bell, Aaron; Zarnegar, Reza; DeFrances, Marie C. . E-mail: defrancesmc@upmc.edu

    2007-06-22

    Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.

  5. PIL5, a Phytochrome-Interacting Basic Helix-Loop-Helix Protein, Is a Key Negative Regulator of Seed Germination in Arabidopsis thalianaW⃞

    PubMed Central

    Oh, Eunkyoo; Kim, Jonghyun; Park, Eunae; Kim, Jeong-Il; Kang, Changwon; Choi, Giltsu

    2004-01-01

    The first decision made by an angiosperm seed, whether to germinate or not, is based on integration of various environmental signals such as water and light. The phytochromes (Phys) act as red and far-red light (Pfr) photoreceptors to mediate light signaling through yet uncharacterized pathways. We report here that the PIF3-like 5 (PIL5) protein, a basic helix-loop-helix transcription factor, is a key negative regulator of phytochrome-mediated seed germination. PIL5 preferentially interacts with the Pfr forms of Phytochrome A (PhyA) and Phytochrome B (PhyB). Analyses of a pil5 mutant in conjunction with phyA and phyB mutants, a pif3 pil5 double mutant, and PIL5 overexpression lines indicate that PIL5 is a negative factor in Phy-mediated promotion of seed germination, inhibition of hypocotyl negative gravitropism, and inhibition of hypocotyl elongation. Our data identify PIL5 as the first Phy-interacting protein that regulates seed germination. PMID:15486102

  6. Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17.

    PubMed

    Vaibhava, Vipul; Nagabhushana, Ananthamurthy; Chalasani, Madhavi Latha Somaraju; Sudhakar, Cherukuri; Kumari, Asha; Swarup, Ghanshyam

    2012-11-01

    Rab GTPases regulate various membrane trafficking pathways but the mechanisms by which GTPase-activating proteins recognise specific Rabs are not clear. Rab8 is involved in controlling several trafficking processes, including the trafficking of transferrin receptor from the early endosome to the recycling endosome. Here, we provide evidence to show that TBC1D17, a Rab GTPase-activating protein, through its catalytic activity, regulates Rab8-mediated endocytic trafficking of transferrin receptor. Optineurin, a Rab8-binding effector protein, mediates the interaction and colocalisation of TBC1D17 with Rab8. A non-catalytic region of TBC1D17 is required for direct interaction with optineurin. Co-expression of Rab8, but not other Rabs tested, rescues the inhibition of transferrin receptor trafficking by TBC1D17. The activated GTP-bound form of Rab8 is localised to the tubules emanating from the endocytic recycling compartment. Through its catalytic activity, TBC1D17 inhibits recruitment of Rab8 to the tubules and reduces colocalisation of transferrin receptor and Rab8. Knockdown of optineurin or TBC1D17 results in enhanced recruitment of Rab8 to the tubules. A glaucoma-associated mutant of optineurin, E50K, causes enhanced inhibition of Rab8 by TBC1D17, resulting in defective endocytic recycling of transferrin receptor. Our results show that TBC1D17, through its interaction with optineurin, regulates Rab8-mediated endocytic recycling of transferrin receptor and recruitment of Rab8 to the endocytic recycling tubules. We describe a mechanism of regulating a Rab GTPase by an effector protein (optineurin) that acts as an adaptor to bring together a Rab (Rab8) and its GTPase-activating protein (TBC1D17).

  7. The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus

    PubMed Central

    Leung, Molly M.; Brimacombe, Cedric A.; Spiegelman, G. B.; Beatty, J. Thomas

    2013-01-01

    Summary The gtaI gene of Rhodobacter capsulatus encodes an N-acyl-homoserine lactone (acyl-HSL) synthase. Immediately 5′ of the gtaI gene is ORF rcc00328 that encodes a potential acyl-HSL receptor protein. A combination of genetic and biochemical approaches showed that rcc00328 (renamed gtaR) modulates the production of a genetic exchange element called the gene transfer agent (RcGTA), and regulates the transcription of gtaI. Although gtaI mutants exhibited decreased levels of RcGTA production, mutagenesis of gtaR did not, whereas a gtaR/gtaI double mutant produced wild-type levels of RcGTA. Because mutagenesis of gtaR suppressed the effect of the gtaI mutation, we suggest that the GtaR protein is a negative transcriptional regulator of RcGTA gene expression. We discovered that the gtaR and gtaI genes are co-transcribed, and also negatively regulated by the GtaR protein in the absence of acyl-HSL. A His-tagged GtaR protein was purified, and DNA-binding experiments revealed a binding site in the promoter region of the gtaRI operon. This GtaR protein did not bind to the RcGTA promoter region, and therefore modulation of RcGTA production appears to require at least one additional factor. We found that RcGTA production was stimulated by spent media from other species, and identified exogenous acyl-HSLs that induce RcGTA. PMID:22211723

  8. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane.

    PubMed

    Clifton, Luke A; Ciesielski, Filip; Skoda, Maximilian W A; Paracini, Nicolò; Holt, Stephen A; Lakey, Jeremy H

    2016-04-12

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  9. The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata.

    PubMed

    Miyamoto, Hiroshi; Miyoshi, Fumiko; Kohno, Jun

    2005-03-01

    Signals and organic matrix proteins secreted from the mantle are critical for the development of shells in molluscs. Nacrein, which is composed of a carbonic anhydrase domain and a Gly-X-Asn repeat domain, is one of the organic matrix proteins that accumulates in shells. In situ hybridization revealed that nacrein was expressed in the outer epithelial cells of the mantle of the pearl oyster Pinctada fucata. The recombinant nacrein protein inhibited the precipitation of calcium carbonate from a saturated solution containing CaCl2 and NaHCO3, indicating that it can act as a negative regulator for calcification in the shells of molluscs. Because deletion of the Gly-X-Asn repeat domain of nacrein had a significant effect on the ability of nacrein to inhibit the precipitation of calcium carbonate, it is conceivable that the repeat domain has a primary role in the inhibitory function of nacrein in shell formation. Together these studies suggest that nacrein functions as a negative regulator in calcification in the extrapallial space between the shell and the mantle by inhibiting the precipitation of CaCO3.

  10. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  11. Particularity and universality of a putative Gram-negative bacteria-binding protein (GNBP) gene from amphioxus (Branchiostoma belcheri): insights into the function and evolution of GNBP.

    PubMed

    Jin, Ping; Zhou, Lu; Song, Xiaojun; Qian, Jinjun; Chen, Liming; Ma, Fei

    2012-10-01

    Gram-negative bacteria-binding proteins (GNBPs) are important pattern recognition proteins (PRPs), which can initiate host defense in response to pathogen surface molecules. The roles of GNBP in innate immunity of arthropods and molluscs have recently been reported. However, the GNBP gene has not been characterized in the species of higher evolutionary status yet. In this study, we identified and characterized an amphioxus GNBP gene (designated as AmphiGNBP). First, we identified and cloned the AmphiGNBP and found that the AmphiGNBP encodes a putative protein with 558 amino acids, which contains a conserved β-1, 3-glucan recognizing and binding domain. Second, we found that the AmphiGNBP encodes two extra WSC (cell Wall integrity and Stress response Component) domains, which are unique in AmphiGNBP protein. The two WSC domains of AmphiGNBP protein coupled with the expansion of amphioxus immunity repertoire might undergo intensive domain shuffling during the age of the Cambrian explosion. Finally, we found that the AmphiGNBP was mainly expressed in immune tissues, such as hepatic cecum and intestine, and the expression of AmphiGNBP was affected after LPS stimulation. In conclusion, our findings disclose the particularity and universality of AmphiGNBP and provide profound insights into the function and evolution of GNBP.

  12. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    PubMed

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS.

  13. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori.

    PubMed

    Lee, W J; Lee, J D; Kravchenko, V V; Ulevitch, R J; Brey, P T

    1996-07-23

    A 50-kDa hemolymph protein, having strong affinity to the cell wall of Gram(-) bacteria, was purified from the hemolymph of the silkworm, Bombyx mori. The cDNA encoding this Gram(-) bacteria-binding protein (GNBP) was isolated from an immunized silkworm fat body cDNA library and sequenced. Comparison of the deduced amino acid sequence with known sequences revealed that GNBP contained a region displaying significant homology to the putative catalytic region of a group of bacterial beta-1,3 glucanases and beta-1,3-1,4 glucanases. Silkworm GNBP was also shown to have amino acid sequence similarity to the vertebrate lipopolysaccharide receptor CD14 and was recognized specifically by a polygonal anti-CD14 antibody. Northern blot analysis showed that GNBP was constitutively expressed in fat body, as well as in cuticular epithelial cells of naive silkworms. Intense transcription was, however, rapidly induced following a cuticular or hemoceolien bacterial challenge. An mRNA that hybridized with GNBP cDNA was also found in the l(2)mbn immunocompetent Drosophila cell line. These observations suggest that GNBP is an inducible acute phase protein implicated in the immune response of the silkworm and perhaps other insects.

  14. Antithrombin acts as a negative acute phase protein as established with studies on HepG2 cells and in baboons.

    PubMed

    Niessen, R W; Lamping, R J; Jansen, P M; Prins, M H; Peters, M; Taylor, F B; de Vijlder, J J; ten Cate, J W; Hack, C E; Sturk, A

    1997-09-01

    Patients with sepsis or after major surgery have decreased plasma levels of the anticoagulant protein antithrombin. In such patients elevated levels of interleukin-6 (IL-6) are present and this interleukin is known to induce positive and negative acute phase responses. To investigate the possibility that antithrombin acts as a negative acute phase response-protein we performed studies on the human hepatoma cell line HepG2 in vitro and baboons in vivo. HepG2 cells were treated with recombinant human IL-6, IL-1beta, or combinations of the latter two, and tested for production of antithrombin, fibrinogen and prealbumin (transthyretin). This treatment resulted in a dose dependent increase in fibrinogen concentration (with a maximum effect of 2.8-2.9-fold) and a dose dependent decrease in prealbumin (with a maximum effect of 0.6-0.7-fold) and antithrombin concentrations (with a maximum effect of 0.6-0.8-fold). Simultaneous treatment of the HepG2 cells with IL-6 (1,000 pg/ml or 2,500 pg/ml) and IL-1beta (25 pg/ml), provided more extensively decreased prealbumin (0.8 and 0.6-fold, respectively) and antithrombin concentration (0.7 and 0.6-fold, respectively) compared to the single interleukin treatment at these concentrations. Baboons treated with 2 microg IL-6 x kg body-weight(-1) x day(-1) showed increased plasma CRP levels (59-fold, p <0.05) and decreased prealbumin (0.9-fold, p <0.05) and antithrombin (0.8-fold, p <0.05) plasma levels, without evidence for coagulation activation. Our results indicate that antithrombin acts as a negative acute phase protein, which may contribute to the decreased antithrombin plasma levels observed after major surgery or in sepsis.

  15. An essential role for Bruton's [corrected] tyrosine kinase in the regulation of B-cell apoptosis.

    PubMed Central

    Anderson, J S; Teutsch, M; Dong, Z; Wortis, H H

    1996-01-01

    Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK. Images Fig. 4 PMID:8855292

  16. Molecular cloning of a small DNA binding protein with specificity for a tissue-specific negative element within the rps1 promoter.

    PubMed Central

    Zhou, D X; Bisanz-Seyer, C; Mache, R

    1995-01-01

    A cDNA encoding a specific binding activity for the tissue-specific negative cis-element S1F binding site of spinach rps1 was isolated from a spinach cDNA expression library. This cDNA of 0.7 kb encodes an unusual small peptide of only 70 amino acids, with a basic domain which contains a nuclear localization signal and a putative DNA binding helix. This protein, named S1Fa, is highly conserved between dicotyledonous and monocotyledonous plants and may represent a novel class of DNA binding proteins. The corresponding mRNA is accumulated more in roots and in etiolated seedlings than in green leaves. This expression pattern is correlated with the tissue-specific function of the S1F binding site which represses the rps1 promoter preferentially in roots and in etiolated plants. Images PMID:7739894

  17. The catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity.

    PubMed Central

    Stathakis, D G; Burton, D Y; McIvor, W E; Krishnakumar, S; Wright, T R; O'Donnell, J M

    1999-01-01

    We report the genetic, phenotypic, and biochemical analyses of Catecholamines up (Catsup), a gene that encodes a negative regulator of tyrosine hydroxylase (TH) activity. Mutations within this locus are semidominant lethals of variable penetrance that result in three broad, overlapping effective lethal phases (ELPs), indicating that the Catsup gene product is essential throughout development. Mutants from each ELP exhibit either cuticle defects or catecholamine-related abnormalities, such as melanotic salivary glands or pseudotumors. Additionally, Catsup mutants have significantly elevated TH activity that may arise from a post-translational modification of the enzyme. The hyperactivation of TH in Catsup mutants results in abnormally high levels of catecholamines, which can account for the lethality, visible phenotypes, and female sterility observed in these mutants. We propose that Catsup is a component of a novel system that downregulates TH activity, making Catsup the fourth locus found within the Dopa decarboxylase (Ddc) gene cluster that functions in catecholamine metabolism. PMID:10471719

  18. Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif.

    PubMed

    Leader, David P; Milner-White, E James

    2015-11-01

    The backbone NH groups of proteins can form N1N3-bridges to δ-ve or anionic acceptor atoms when the tripeptide in which they occur orients them appropriately, as in the RL and LR nest motifs, which have dihedral angles 1,2-αR αL and 1,2-αL αR , respectively. We searched a protein database for structures with backbone N1N3-bridging to anionic atoms of the polypeptide chain and found that RL and LR nests together accounted for 92% of examples found (88% RL nests, 4% LR nests). Almost all the remaining 8% of N1N3-bridges were found within a third tripeptide motif which has not been described previously. We term this a "crown," because of the disposition of the tripeptide CO groups relative to the three NH groups and the acceptor oxygen anion, and the crown together with its bridged anion we term a "crown bridge." At position 2 of these structures the dihedral angles have a tight αR distribution, but at position 1 they have a wider distribution, with ϕ and ψ values generally being lower than those at position 1. Over half of crown bridges involve the backbone CO group three residues N-terminal to the tripeptide, the remainder being to other main-chain or side-chain carbonyl groups. As with nests, bridging of crowns to oxygen atoms within ligands was observed, as was bridging to the sulfur atom of an iron-sulfur cluster. This latter property may be of significance for protein evolution.

  19. BKV Agnoprotein Interacts with α-Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein, and Negatively Influences Transport of VSVG-EGFP

    PubMed Central

    Johannessen, Mona; Walquist, Mari; Gerits, Nancy; Dragset, Marte; Spang, Anne; Moens, Ugo

    2011-01-01

    Background The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them α-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and α-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and α-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with α-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with α-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter. PMID:21931730

  20. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96.

    PubMed

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  1. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    PubMed Central

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  2. The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5

    PubMed Central

    Xu, Yifeng; Gan, Eng-Seng; Ito, Toshiro

    2013-01-01

    Epigenetic regulations of transposable elements (TEs) and TE-like repeat sequences help to protect genomic integrity and control various developmental processes, including flowering time. This complex action of gene silencing requires the coordination of many key players including DNA methylases, histone deacetylases and histone methyltranferases. We have recently reported that an AT-hook DNA binding protein, TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK), participates in silencing TEs and TE-like sequence containing genes, such as LerFLOWERING LOCUS C (FLC) and FWA. TEK knockdown in amiTEK plants causes increased histone acetylation, reduced H3K9me2 and DNA hypomethylation in the target loci, which ultimately leads to the upregulation of FLC and FWA as well as TE reactivation. In this report, we show that, besides FLC, other FLC-like genes MADS AFFECTING FLOWERING 4 (MAF4) and MAF5 are also upregulated in amiTEK. Here we discuss the role of the nuclear matrix protein TEK in the maintenance of genome integrity and in the control of flowering. PMID:23733063

  3. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat.

    PubMed

    Bogard, Matthieu; Allard, Vincent; Brancourt-Hulmel, Maryse; Heumez, Emmanuel; Machet, Jean-Marie; Jeuffroy, Marie-Hélène; Gate, Philippe; Martre, Pierre; Le Gouis, Jacques

    2010-10-01

    In plants, carbon and nitrogen (N) economies are intimately linked at the physiological and biochemical level. The strong genetic negative correlation between grain yield and grain protein concentration observed in various cereals is an illustration of this inter-relationship. Studies have shown that deviation from this negative relationship (grain protein deviation or GPD) has a genetic basis, but its physiological basis is still poorly understood. This study analysed data on 27 genotypes grown in multienvironment field trials, representing a wide range of agricultural practices and climatic conditions. The objective was to identify physiological processes related to the genetic variability in GPD. Under most environments, GPD was significantly related to post-anthesis N uptake independently of anthesis date and total N at anthesis. The underlying physiological trait might be related to genotypic differences in either access to soil N, regulation of N uptake by plant N status, or ability to maintain root activity during the grain-filling period. GPD is an interesting potential target in breeding as it appears to be relatively robust across different environments and would be valuable in increasing total N uptake by maturity.

  4. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens.

    PubMed

    Takeuchi, Kasumi; Tsuchiya, Wataru; Noda, Naomi; Suzuki, Rintaro; Yamazaki, Toshimasa; Haas, Dieter

    2014-08-01

    In Pseudomonas protegens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway controls secondary metabolism and suppression of fungal root pathogens via the expression of regulatory small RNAs (sRNAs). Because of its high cost, this pathway needs to be protected from overexpression and to be turned off in response to environmental stress such as the lack of nutrients. However, little is known about its underlying molecular mechanisms. In this study, we demonstrated that Lon protease, a member of the ATP-dependent protease family, negatively regulated the Gac/Rsm cascade. In a lon mutant, the steady-state levels and the stability of the GacA protein were significantly elevated at the end of exponential growth. As a consequence, the expression of the sRNAs RsmY and RsmZ and that of dependent physiological functions such as antibiotic production were significantly enhanced. Biocontrol of Pythium ultimum on cucumber roots required fewer lon mutant cells than wild-type cells. In starved cells, the loss of Lon function prolonged the half-life of the GacA protein. Thus, Lon protease is an important negative regulator of the Gac/Rsm signal transduction pathway in P. protegens.

  5. miR-30c negatively regulates the migration and invasion by targeting the immediate early response protein 2 in SMMC-7721 and HepG2 cells

    PubMed Central

    Wu, Wenjuan; Zhang, Xizhi; Liao, Yuexia; Zhang, Weicheng; Cheng, Haichao; Deng, Zijing; Shen, Jingyuan; Yuan, Qing; Zhang, Yu; Shen, Weigan

    2015-01-01

    miR-30c has been reported to act as a tumor suppressor and negatively regulate cancer metastasis by directly targeting metastasis associated genes; however, miR-30c has also been shown to promote the invasion of metastatic breast cancer cells, suggesting that miR-30c might be involved in cancer cell metastasis in different ways via targeting different genes. In this study, we demonstrated that over-expression and knockdown of immediate early response protein 2 (IER2) modulated the general capacity of the migration and invasion in hepatocellular carcinoma cell line SMMC-7721 and HepG2, whereas overexpression and knockdown of miR-30c decreased and promoted cell motility, respectively. Further studies revealed that miR-30c overexpression down-regulated the expression of IER2 protein but not its mRNA level, and miR-30c can directly target the 3’ untranslated region (3’UTR) of IER2, and subsequently reducing its expression. Moreover, we also showed that suppression of cell motility by miR-30c was partially rescued by IER2 re-expression. Our results indicated that miR-30c may function as a negative regulator in cell motility, with IER2 as a direct and functional target in SMMC-7721 and HepG2 cells. PMID:26101708

  6. PHF23 (plant homeodomain finger protein 23) negatively regulates cell autophagy by promoting ubiquitination and degradation of E3 ligase LRSAM1

    PubMed Central

    Wang, Zhenda; Hu, Jia; Li, Ge; Qu, Liujing; He, Qihua; Lou, Yaxin; Song, Quansheng; Ma, Dalong; Chen, Yingyu

    2015-01-01

    Autophagy is a multistep process that involves the degradation and digestion of intracellular components by the lysosome. It has been proved that many core autophagy-related molecules participate in this event. However, new component proteins that regulate autophagy are still being discovered. At present, we report PHF23 (PHD finger protein 23) with a PHD-like zinc finger domain that can negatively regulate autophagy. Data from experiments indicated that the overexpression of PHF23 impaired autophagy, as characterized by decreased levels of LC3B-II and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, knockdown of PHF23 resulted in opposite effects. Molecular mechanism studies suggested that PHF23 interacts with LRSAM1, which is an E3 ligase key for ubiquitin-dependent autophagy against invading bacteria. PHF23 promotes the ubiquitination and proteasome degradation of LRSAM1. We also show that the PHD finger of PHF23 is a functional domain needed for the interaction with LRSAM1. Altogether, our results indicate that PHF23 is a negative regulator associated in autophagy via the LRSAM1 signaling pathway. The physical and functional connection between the PHF23 and LRSAM1 needs further investigation. PMID:25484098

  7. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein

    PubMed Central

    Cornelis, Sigrid; Tinton, Sandrine A.; Schepens, Bert; Bruynooghe, Yanik; Beyaert, Rudi

    2005-01-01

    Upstream of N-ras (Unr) has been described as an internal initiation trans-acting factor (ITAF) in the cap-independent translation of some particular viral and cellular mRNAs. Two factors led us to hypothesize that the UNR 5′-untranslated region (5′-UTR) may contain an internal ribosome entry site (IRES). The first was the requirement for persisting Unr expression under conditions that correlate with cap-independent translation. The other was the observation that the primary UNR transcript contains a 447 nt long 5′-UTR including two upstream AUGs that may restrict translation initiation via cap-dependent ribosome scanning. Here we report that the UNR 5′-UTR allows IRES-dependent translation, as revealed by a dicistronic reporter assay. Various controls ruled out the contribution of leaky scanning, cryptic promoter sequences or RNA processing events to the ability of the UNR 5′-UTR to mediate internal initiation of translation. Ultraviolet cross-linking analysis and RNA affinity chromatography revealed the binding of polypyrimidine tract binding protein (PTB) to the UNR IRES, requiring a pyrimidine-rich region (nucleotides 335–355). Whereas overexpression of PTB in several cell lines inhibited UNR IRES activity and UNR protein expression, depletion of endogenous PTB using RNAi increased UNR IRES activity. Moreover, a mutant version of the UNR IRES lacking the PTB binding site was more efficient at directing IRES-mediated translation. In conclusion, our results demonstrate that translation of the ITAF Unr can itself be regulated by an IRES that is downregulated by PTB. PMID:15928332

  8. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae.

    PubMed

    Nicastro, Raffaele; Tripodi, Farida; Gaggini, Marco; Castoldi, Andrea; Reghellin, Veronica; Nonnis, Simona; Tedeschi, Gabriella; Coccetti, Paola

    2015-10-01

    In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.

  9. Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line

    SciTech Connect

    Qiang, Weiguang; Wu, Qinqin; Zhou, Fuxiang; Xie, Conghua; Wu, Changping; Zhou, Yunfeng

    2014-03-07

    Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.

  10. Negative Regulation of Melanoma Differentiation-associated Gene 5 (MDA5)-dependent Antiviral Innate Immune Responses by Arf-like Protein 5B*

    PubMed Central

    Kitai, Yuichi; Takeuchi, Osamu; Kawasaki, Takumi; Ori, Daisuke; Sueyoshi, Takuya; Murase, Motoya; Akira, Shizuo; Kawai, Taro

    2015-01-01

    RIG-I-like receptors (RLRs), including retinoic acid-inducible gene-I (RIG-I) and MDA5, constitute a family of cytoplasmic RNA helicases that senses viral RNA and mounts antiviral innate immunity by producing type I interferons and inflammatory cytokines. Despite their essential roles in antiviral host defense, RLR signaling is negatively regulated to protect the host from excessive inflammation and autoimmunity. Here, we identified ADP-ribosylation factor-like protein 5B (Arl5B), an Arl family small GTPase, as a regulator of RLR signaling through MDA5 but not RIG-I. Overexpression of Arl5B repressed interferon β promoter activation by MDA5 but not RIG-I, and its knockdown enhanced MDA5-mediated responses. Furthermore, Arl5B-deficient mouse embryonic fibroblast cells exhibited increased type I interferon expression in response to MDA5 agonists such as poly(I:C) and encephalomyocarditis virus. Arl5B-mediated negative regulation of MDA5 signaling does not require its GTP binding ability but requires Arl5B binding to the C-terminal domain of MDA5, which prevents interaction between MDA5 and poly(I:C). Our results, therefore, suggest that Arl5B is a negative regulator for MDA5. PMID:25451939

  11. Arabidopsis SAG protein containing the MDN1 domain participates in seed germination and seedling development by negatively regulating ABI3 and ABI5.

    PubMed

    Chen, Changtian; Wu, Changai; Miao, Jiaming; Lei, Yunxue; Zhao, Dongxiao; Sun, Dan; Yang, Guodong; Huang, Jinguang; Zheng, Chengchao

    2014-01-01

    Three proteins containing a midasin homologue 1 (MDN1) domain from the yeast Solanum chacoense and Arabidopsis thaliana have important functions in yeast survival, seed development, and female gametogenesis. In this study, a novel protein containing the MDN1 domain from Arabidopsis negatively regulated abscisic acid (ABA) signalling during seed germination. Seeds of a T-DNA insertion line of this gene exhibited increased sensitivity to ABA during seed germination and seedling development (named sag). By contrast, seeds with overexpressed AtSAG (OX2) were less sensitive to ABA. The seeds of the sag mutant showed similar sensitivity to high concentrations of mannitol and NaCl during these stages. AtSAG was also highly expressed in germinating seeds. However, ABA-induced AtSAG expression remained almost unchanged. ABA-responsive marker genes, including ABI3, ABI5, Em1, Em6, RD29A, and RAB18, were upregulated in sag mutants but were downregulated in OX2. Genetic analyses indicated that the function of AtSAG in ABA signalling depended on ABI3 and ABI5. The expression of some target genes of ABI3 and ABI5, such as seed storage protein and oleosin genes, was induced higher by ABA in sag mutants than in wild-type germinated seeds, even higher than in abi5 mutants. This finding indicated that other regulators similar to ABI3 or ABI5 played a role during these stages. Taken together, these results indicate that AtSAG is an important negative regulator of ABA signalling during seed germination and seedling development.

  12. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis.

    PubMed

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia; Altmannova, Veronika; Sebesta, Marek; Pacesa, Martin; Fugger, Kasper; Sorensen, Claus Storgaard; Lee, Marietta Y W T; Haracska, Lajos; Krejci, Lumir

    2016-04-20

    Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.

  13. Expression of aquaporin1, a water channel protein, in cytoplasm is negatively correlated with prognosis of breast cancer patients

    PubMed Central

    Shao, Ying; Liu, Xiaoli; Yang, Limin; Huang, Yong; Fu, Li; Gu, Feng; Ma, Yongjie

    2016-01-01

    Aquaporin1 (AQP1) belongs to a highly conserved family of aquaporin proteins which facilitate water flux across cell membranes. Although emerging evidences indicated the cytoplasm was important for AQP1 localization, the function of AQP1 corresponding to its cytoplasmic distribution has rarely been explored until present. In our clinical study, we reported for the first time that AQP1 was localized dominantly in the cytoplasm of cancer cells of invasive breast cancer patients and cytoplasmic AQP1 was an independent prognostic factor. High expression of AQP1 indicated a shorter survival, especially in luminal subtype. Moreover, in line with our findings in clinic, cytoplasmic expression of AQP1 was further validated in both primary cultured breast cancer cells and AQP1 over-expressing cell lines, in which the functional importance of cytoplasmic AQP1 was confirmed in vitro. In conclusion, our study provided the first evidence that cytoplasmic expression of AQP1 promoted breast cancer progression and it could be a potential prognostic biomarker for breast cancer. PMID:26812884

  14. Protein tyrosine phosphatase PTP1 negatively regulates Dictyostelium STATa and is required for proper cell-type proportioning.

    PubMed

    Early, A; Gamper, M; Moniakis, J; Kim, E; Hunter, T; Williams, J G; Firtel, R A

    2001-04-01

    The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region.

  15. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase

    PubMed Central

    Townsley, Fiona M.; Aristarkhov, Alexander; Beck, Sharon; Hershko, Avram; Ruderman, Joan V.

    1997-01-01

    Destruction of mitotic cyclins by ubiquitin-dependent proteolysis is required for cells to complete mitosis and enter interphase of the next cell cycle. In clam eggs, this process is catalyzed by a cyclin-selective ubiquitin carrier protein, E2-C, and the cyclosome/anaphase promoting complex (APC), a 20S particle containing cyclin-selective ubiquitin ligase activity. Here we report cloning a human homolog of E2-C, UbcH10, which shares 61% amino acid identity with clam E2-C and can substitute for clam E2-C in vitro. Dominant-negative clam E2-C and human UbcH10 proteins, created by altering the catalytic cysteine to serine, inhibit the in vitro ubiquitination and destruction of cyclin B in clam oocyte extracts. When transfected into mammalian cells, mutant UbcH10 inhibits the destruction of both cyclin A and B, arrests cells in M phase, and inhibits the onset of anaphase, presumably by blocking the ubiquitin-dependent proteolysis of proteins responsible for sister chromatid separation. Thus, E2-C/UbcH10-mediated ubiquitination is involved in both cdc2 inactivation and sister chromatid separation, processes that are normally coordinated during exit from mitosis. PMID:9122200

  16. Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria.

    PubMed

    Kim, Jin-Sik; Song, Saemee; Lee, Minho; Lee, Seunghwa; Lee, Kangseok; Ha, Nam-Chul

    2016-03-01

    The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria.

  17. A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis

    PubMed Central

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade. PMID:25635681

  18. Saccharomyces cerevisiae Env7 is a novel serine/threonine kinase 16-related protein kinase and negatively regulates organelle fusion at the lysosomal vacuole.

    PubMed

    Manandhar, Surya P; Ricarte, Florante; Cocca, Stephanie M; Gharakhanian, Editte

    2013-02-01

    Membrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15. In vitro kinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome system in vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established that env7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds. ENV7 function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, and ENV7 is not a suppressor of yck3Δ. Bayesian phylogenetic analyses strongly support ENV7 as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system.

  19. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2010-05-21

    By incorporating the information of gene ontology, functional domain, and sequential evolution, a new predictor called Gneg-mPLoc was developed. It can be used to identify Gram-negative bacterial proteins among the following eight locations: (1) cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, (5) inner membrane, (6) nucleoid, (7) outer membrane, and (8) periplasm. It can also be used to deal with the case when a query protein may simultaneously exist in more than one location. Compared with the original predictor called Gneg-PLoc, the new predictor is much more powerful and flexible. For a newly constructed stringent benchmark dataset in which none of proteins included has >or=25% pairwise sequence identity to any other in a same subset (location), the overall jackknife success rate achieved by Gneg-mPLoc was 85.5%, which was more than 14% higher than the corresponding rate by the Gneg-PLoc. As a user friendly web-server, Gneg-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/Gneg-multi/.

  20. ERBB2 in Cat Mammary Neoplasias Disclosed a Positive Correlation between RNA and Protein Low Expression Levels: A Model for erbB-2 Negative Human Breast Cancer

    PubMed Central

    Abreu, Rui M. V.; Bastos, Estela; Amorim, Irina; Gut, Ivo G.; Gärtner, Fátima; Chaves, Raquel

    2013-01-01

    Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%–59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10–15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC

  1. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis.

    PubMed

    Kim, Yun Young; Jung, Kwang Wook; Yoo, Kyoung Shin; Jeung, Ji Ung; Shin, Jeong Sheop

    2011-05-01

    Caleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized. We have demonstrated that a novel stress-responsive and OB-associated Ca(2+)-binding caleosin-like protein, AtCLO4, is expressed in non-seed tissues of Arabidopsis, including guard cells, and down-regulated following exposure to exogenous ABA and salt stress. At the seed germination stage, a loss-of-function mutant (atclo4) was hypersensitive to ABA, salt and mannitol stresses, whereas AtCLO4-overexpressing (Ox) lines were more hyposensitive to those stresses than the wild type. In adult stage, atclo4 mutant and AtCLO4-Ox plants showed enhanced and decreased drought tolerance, respectively. Following exposure to exogenous ABA, the expression of key ABA-dependent regulatory genes, such as ABF3 and ABF4, was up-regulated in the atclo4 mutant, while it was down-regulated in AtCLO4-Ox lines. Based on these results, we propose that the OB-associated Ca(2+)-binding AtCLO4 protein acts as a negative regulator of ABA responses in Arabidopsis. PMID:21471120

  2. Multi-Target QSAR Approaches for Modeling Protein Inhibitors. Simultaneous Prediction of Activities Against Biomacromolecules Present in Gram-Negative Bacteria.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Drug discovery is aimed at finding therapeutic agents for the treatment of many diverse diseases and infections. However, this is a very slow an expensive process, and for this reason, in silico approaches are needed to rationalize the search for new molecular entities with desired biological profiles. Models focused on quantitative structure-activity relationships (QSAR) have constituted useful complementary tools in medicinal chemistry, allowing the virtual predictions of dissimilar pharmacological activities of compounds. In the last 10 years, multi-target (mt) QSAR models have been reported, representing great advances with respect to those models generated from classical approaches. Thus, mt- QSAR models can simultaneously predict activities against different biological targets (proteins, microorganisms, cell lines, etc.) by using large and heterogeneous datasets of chemicals. The present review is devoted to discuss the most promising mt-QSAR models, particularly those developed for the prediction of protein inhibitors. We also report the first multi-tasking QSAR (mtk-QSAR) model for simultaneous prediction of inhibitors against biomacromolecules (specifically proteins) present in Gram-negative bacteria. This model allowed us to consider both different proteins and multiple experimental conditions under which the inhibitory activities of the chemicals were determined. The mtk-QSAR model exhibited accuracies higher than 98% in both training and prediction sets, also displaying a very good performance in the classification of active and inactive cases that depended on the specific elements of the experimental conditions. The physicochemical interpretations of the molecular descriptors were also analyzed, providing important insights regarding the molecular patterns associated with the appearance/enhancement of the inhibitory potency. PMID:25961517

  3. Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice

    PubMed Central

    Roberti, María Paula; Arriaga, Juan Martín; Bianchini, Michele; Quintá, Héctor Ramiro; Bravo, Alicia Inés; Levy, Estrella Mariel; Mordoh, José; Barrio, María Marcela

    2012-01-01

    Triple negative breast cancers (TNBC) lacking hormone receptors and HER-2 amplification are very aggressive tumors. Since relevant differences between primary tumors and metastases could arise during tumor progression as evidenced by phenotypic discordances reported for hormonal receptors or HER-2 expression, in this analysis we studied changes that occurred in our TNBC model IIB-BR-G throughout the development of IIB-BR-G-MTS6 metastasis to the lymph nodes (LN) in nude mice, using an antibody-based protein array to characterize their expression profile. We also analyzed their growth kinetics, migration, invasiveness and cytoskeleton structure in vitro and in vivo. In vitro IIB-BR-G-MTS6 cells grew slower but showed higher anchorage independent growth. In vivo IIB-BR-G-MTS6 tumors grew significantly faster and showed a 100% incidence of LN metastasis after s.c. inoculation, although no metastasis was observed for IIB-BR-G. CCL3, IL1β, CXCL1, CSF2, CSF3, IGFBP1, IL1α, IL6, IL8, CCL20, PLAUR, PlGF and VEGF were strongly upregulated in IIB-BR-G-MTS6 while CCL4, ICAM3, CXCL12, TNFRSF18, FIGF were the most downregulated proteins in the metastatic cell line. IIB-BR-G-MTS6 protein expression profile could reflect a higher NFκB activation in these cells. In vitro, IIB-BR-G displayed higher migration but IIB-BR-G-MTS6 had more elevated matrigel invasion ability. In agreement with that observation, IIB-BR-G-MTS6 had an upregulated expression of MMP1, MMP9, MMP13, PLAUR and HGF. IIB-BR-G-MTS6 tumors presented also higher local lymphatic invasion than IIB-BR-G but similar lymphatic vessel densities. VEGFC and VEGFA/B expression were higher both in vitro and in vivo for IIB-BR-G-MTS6. IIB-BR-G-MTS6 expressed more vimentin than IB-BR-G cells, which was mainly localized in the cellular extremities and both cell lines are E-cadherin negative. Our results suggest that IIB-BR-G-MTS6 cells have acquired a pronounced epithelial-to-mesenchymal transition phenotype. Protein

  4. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer

    PubMed Central

    Jia, Yuanhui; Li, Pishun; Fang, Lan; Zhu, Haijun; Xu, Liangliang; Cheng, Hao; Zhang, Junying; Li, Fei; Feng, Yan; Li, Yan; Li, Jialun; Wang, Ruiping; Du, James X; Li, Jiwen; Chen, Taiping; Ji, Hongbin; Han, Jackie; Yu, Wenqiang; Wu, Qihan; Wong, Jiemin

    2016-01-01

    Global DNA hypomethylation is a most common epigenetic alteration in cancer, but the mechanism remains elusive. Previous studies demonstrate that UHRF1 but not UHRF2 is required for mediating DNA maintenance methylation by DNMT1. Here we report unexpectedly a conserved function for UHRF1 and UHRF2: inhibiting de novo DNA methylation by functioning as E3 ligases promoting DNMT3A degradation. UHRF1/2 are frequently overexpressed in cancers and we present evidence that UHRF1/2 overexpression downregulates DNMT3A proteins and consequently leads to DNA hypomethylation. Abrogating this negative regulation on DNMT3A or overexpression of DNMT3A leads to increased DNA methylation and impaired tumor growth. We propose a working model that UHRF1/2 safeguards the fidelity of DNA methylation and suggests that UHRF1/2 overexpression is likely a causal factor for widespread DNA hypomethylation in cancer via suppressing DNMT3A. PMID:27462454

  5. Tripartite motif-containing protein 38 negatively regulates TLR3/4- and RIG-I-mediated IFN-β production and antiviral response by targeting NAP1.

    PubMed

    Zhao, Wei; Wang, Lijuan; Zhang, Meng; Wang, Peng; Yuan, Chao; Qi, Jianni; Meng, Hong; Gao, Chengjiang

    2012-06-01

    Recognition of RNA virus through TLR and RIG-I-like receptor results in rapid expression of type I IFNs, which play an essential role in host antiviral responses. However, the mechanisms to terminate the production of type I IFNs are not well defined. In the current study, we identified a member of the tripartite motif (TRIM) family, TRIM38, as a negative regulator in TLR3/4- and RIG-I-mediated IFN-β signaling. Knockdown of TRIM38 expression by small interfering RNA resulted in augmented activation of IFN regulatory factor 3 and enhanced expression of IFN-β, whereas overexpression of TRIM38 had opposite effects. Coimmunoprecipitation and colocalization experiments demonstrated that TRIM38 interacted with NF-κB-activating kinase-associated protein 1 (NAP1), which is required for TLR-induced IFN regulatory factor 3 activation and IFN-β production. As an E3 ligase, TRIM38 promoted K48-linked polyubiquitination and proteasomal degradation of NAP1. Thus, knockdown of TRIM38 expression resulted in higher protein level of NAP1 in primary macrophages. Consistent with the inhibitory roles in TLR3/4- and RIG-I-mediated IFN-β signaling, knockdown of TRIM38 significantly inhibited the replication of vesicular stomatitis virus. Overexpression of TRIM38 resulted in enhanced replication of vesicular stomatitis virus. Therefore, our results demonstrate that TRIM38 is a negative regulator for TLR and RIG-I-mediated IFN-β production by targeting NAP1 for ubiquitination and subsequent proteasome-mediated degradation. PMID:22539786

  6. ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.

    PubMed

    Kim, Hani; Kim, Soon-Hee; Seo, Dong Hye; Chung, Sunglan; Kim, Sang-Woo; Lee, Jeong-Soo; Kim, Woo Taek; Lee, Jae-Hoon

    2016-02-01

    To elucidate the contribution of CRL3-ABA-mediated responses, we attempted to find CRL3 substrate receptors involved in ABA signaling. One gene named ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 (AHT1) was upregulated more than 2.5 times by ABA, and its coding region possessed a BTB/POZ domain, which is the common feature of CRL3 substrate receptors. Loss of AHT1 led to retardation of the germination process, not inhibition of root growth. AHT1 transcripts also increased in response to mannitol, NaCl and drought treatments at the seedling stage and in dry seeds. High expression of AHT1 in dry seeds was inhibited by the defect of ABA signaling components such as ABI1, ABI3 and SRKs indicating that the expression of AHT1 is dependent on ABA signaling. Among bZIP transcription factors participating in ABA signaling, the losses of ABI5/DPBF1, AREB1/ABF2, EEL/DPBF4 and DPBF2/bZIP67 resulted in reduced AHT1 expression, showing that these transcription factors play a positive role in ABA-induced AHT1 expression. While loss of AHT1 did not affect the expression pattern of NCED3, ABI2, SRKs and AREB/ABF genes, it led to hyperinduction of ABI5/DPBF genes such as ABI5/DPBF1, EEL/DPBF4 and AREB3/DPBF3, which are mainly involved in seed development and germination, as well as ABA-inducible genes transactivated by ABI5. Overall, these findings indicate that AHT1 negatively regulates ABA-mediated inhibition of germination, possibly by repressing the expression of a subset of ABI5/DPBF subfamily genes, and that AHT1 may be regulated by a negative feedback process through its linkage with a part of ABI5/DPBF proteins. PMID:26667153

  7. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites.

    PubMed

    Xiao, Xuan; Wu, Zhi-Cheng; Chou, Kuo-Chen

    2011-01-01

    Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains both singleplex and multiplex proteins. In this paper, by introducing the "multi-label scale" and hybridizing the information of gene ontology with the sequential evolution information, a novel predictor called iLoc-Gneg is developed for predicting the subcellular localization of gram-positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gneg-mPLoc was adopted to demonstrate the power of iLoc-Gneg. The dataset contains 1,392 gram-negative bacterial proteins classified into the following eight locations: (1) cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, (5) inner membrane, (6) nucleoid, (7) outer membrane, and (8) periplasm. Of the 1,392 proteins, 1,328 are each with only one subcellular location and the other 64 are each with two subcellular locations, but none of the proteins included has pairwise sequence identity to any other in a same subset (subcellular location). It was observed that the overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gneg was over 91%, which is about 6% higher than that by Gneg-mPLoc. As a user-friendly web-server, iLoc-Gneg is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Gneg. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user's convenience, the iLoc-Gneg web-server also has the function to accept the batch job submission, which is not available in the existing version of Gneg-mPLoc web-server. It is anticipated that iLoc-Gneg may become a useful high throughput tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development.

  8. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening.

    PubMed

    Han, Yu; Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo

    2015-03-01

    Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556

  9. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening.

    PubMed

    Han, Yu; Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo

    2015-03-01

    Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening.

  10. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an Ortholog of OPEN STOMATA1, Is a Negative Regulator of Strawberry Fruit Development and Ripening1[OPEN

    PubMed Central

    Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo

    2015-01-01

    Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556

  11. A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection

    PubMed Central

    Sun, Yuan-yuan; Sun, Li

    2016-01-01

    Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. PMID:27105425

  12. Soybean C2H2-Type Zinc Finger Protein GmZFP3 with Conserved QALGGH Motif Negatively Regulates Drought Responses in Transgenic Arabidopsis

    PubMed Central

    Zhang, Dayong; Tong, Jinfeng; Xu, Zhaolong; Wei, Peipei; Xu, Ling; Wan, Qun; Huang, Yihong; He, Xiaolan; Yang, Jiayin; Shao, Hongbo; Ma, Hongxiang

    2016-01-01

    Plant response to environmental stresses is regulated by a complicated network of regulatory and functional genes. In this study, we isolated the putative stress-associated gene GmZFP3 (a C2H2-type Zinc finger protein gene) based on the previous finding that it was one of two genes located in the QTL region between the Satt590 and Satt567 markers related to soybean tolerance to drought. Temporal and spatial expression analysis using quantitative real-time PCR indicated that GmZFP3 was primarily expressed in roots, stems and leaf organs and was expressed at low levels in flowers and soybean pods. Moreover, GmZFP3 expression increased in response to polyethylene glycol (PEG) and Abscisic acid (ABA) treatments. In addition, subcellular localization analysis indicated that GmZFP3 was ubiquitously distributed in plant cells. Transgenic experiments indicated that GmZFP3 played a negative role in plant tolerance to drought. Analysis of ABA-related marker gene expression in Arabidopsis suggested that GmZFP3 might be involved in the ABA-dependent pathway during the drought stress response. Taken together, these results suggest that soybean GmZFP3 negatively regulates the drought response. PMID:27047508

  13. AcEBP1, an ErbB3-Binding Protein (EBP1) from halophyte Atriplex canescens, negatively regulates cell growth and stress responses in Arabidopsis.

    PubMed

    Li, Jingtao; Yu, Gang; Sun, Xinhua; Zhang, Xianghui; Liu, Jinliang; Pan, Hongyu

    2016-07-01

    An ErbB-3-binding protein gene AcEBP1, also known as proliferation-associated 2G4 gene (PA2G4s) belonging to the M24 superfamily, was obtained from the saltbush Atriplex canescens. Subcellular localization imaging showed the fusion protein AcEBP1-eGFP was located in the nucleus of epidermal cells in Nicotiana benthamiana. The AcEBP1 gene expression levels were up-regulated under salt, osmotic stress, and hormones treatment as revealed by qRT-PCR. Overexpression of AcEBP1 in Arabidopsis demonstrated that AcEBP1 was involved in root cell growth and stress responses (NaCl, osmotic stress, ABA, low temperature, and drought). These phenotypic data were correlated with the expression patterns of stress responsive genes and PR genes. The AcEBP1 transgenic Arabidopsis plants also displayed increased sensitivity under low temperature and evaluated resistance to drought stress. Together, these results demonstrate that AcEBP1 negatively affects cell growth and is a regulator under stress conditions. PMID:27181948

  14. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  15. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    SciTech Connect

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-02-19

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  16. Ultraviolet B-induced activated protein-1 activation does not require epidermal growth factor receptor but is blocked by a dominant negative PKClambda/iota.

    PubMed

    Huang, C; Ma, W y; Bowden, G T; Dong, Z

    1996-12-01

    The exposure of mammalian cells to UV irradiation leads to the activation of transcription factors such as activated protein-1 (AP-1) and NFkappaB. It is postulated that epidermal growth factor (EGF) receptor, but not protein kinase C (PKC), is the major membrane mediator in UV-induced signal transduction. Since UVB is responsible for most of the carcinogenic effects of sun exposure, we investigated the role of EGF receptors and PKC in UVB-induced AP-1 activation. Our results indicated that while the down-regulation of novel PKC (nPKC) and conventional PKC (cPKC) by pretreatment of cells with 12-O-tetradecanoyl phorbol-13-acetate cannot block UVB-induced AP-1 activity, it can block 12-O-tetradecanoyl phorbol-13-acetate-induced AP-1 activity. Further, the dominant negative mutant PKClambda/iota blocked UVB-induced AP-1 activity in all doses and time courses studied. In contrast, UVB-induced AP-1 activity from cells devoid of EGF receptor (B82) was not significantly different from that of the stable transfectants with a kinase-deficient EGF receptor (B82M721) or those with a wild-type EGF receptor (B82L) at all UVB irradiation doses and time courses studied. All of this evidence indicated that aPKC, but not EGF receptor, is involved in UVB-induced AP-1 activation. PMID:8940130

  17. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor signaling and support the tumourigenic potential of glioma-initiating cells.

    PubMed

    Ciceroni, C; Arcella, A; Mosillo, P; Battaglia, G; Mastrantoni, E; Oliva, M A; Carpinelli, G; Santoro, F; Sale, P; Ricci-Vitiani, L; De Maria, R; Pallini, R; Giangaspero, F; Nicoletti, F; Melchiorri, D

    2008-09-01

    Targeted-therapies enhancing differentiation of glioma-initiating cells (GICs) are potential innovative approaches to the treatment of malignant gliomas. These cells support tumour growth and recurrence and are resistant to radiotherapy and chemotherapy. We have found that GICs express mGlu3 metabotropic glutamate receptors. Activation of these receptors sustained the undifferentiated state of GICs in culture by negatively modulating the action of bone morphogenetic proteins, which physiologically signal through the phosphorylation of the transcription factors, Smads. The cross-talk between mGlu3 receptors and BMP receptors was mediated by the activation of the mitogen-activated protein kinase pathway. Remarkably, pharmacological blockade of mGlu3 receptors stimulated the differentiation of cultured GICs into astrocytes, an effect that appeared to be long lasting, independent of the growth conditions, and irreversible. In in vivo experiments, a 3-month treatment with the brain-permeant mGlu receptor antagonist, LY341495 limited the growth of infiltrating brain tumours originating from GICs implanted into the brain parenchyma of nude mice. While clusters of tumour cells were consistently found in the brain of control mice, they were virtually absent in a large proportion of mice treated with LY341495. These findings pave the way to a new non-cytotoxic treatment of malignant gliomas based on the use of mGlu3 receptor antagonists. PMID:18621067

  18. The CpxQ sRNA Negatively Regulates Skp To Prevent Mistargeting of β-Barrel Outer Membrane Proteins into the Cytoplasmic Membrane

    PubMed Central

    Koren, Daria

    2016-01-01

    ABSTRACT The promoter most strongly induced upon activation of the Cpx two-component envelope stress response is the cpxP promoter. The 3′ untranscribed region (UTR) of the cpxP transcript is shown to produce a small RNA (sRNA), CpxQ. We investigated the role of CpxQ in combating envelope stress. Remarkably, the two effectors specified by the transcript are deployed to combat distinct stresses in different cellular compartments. CpxP acts in both a regulatory negative-feedback loop and as an effector that combats periplasmic protein misfolding. We find that CpxQ combats toxicity at the inner membrane (IM) by downregulating the synthesis of the periplasmic chaperone Skp. Our data indicate that this regulation prevents Skp from inserting β-barrel outer membrane proteins (OMPs) into the IM, a lethal event that likely collapses the proton motive force. Our findings suggest that Skp can fold and directly insert OMPs into a lipid bilayer in vivo without the aid of the Bam complex. PMID:27048800

  19. microRNA-497 induces cell apoptosis by negatively regulating Bcl-2 protein expression at the posttranscriptional level in human breast cancer

    PubMed Central

    Wei, Chuankui; Luo, Qifeng; Sun, Xiaoguo; Li, Dengfeng; Song, Hongming; Li, Xiaoyu; Song, Jialu; Hua, Kaiyao; Fang, Lin

    2015-01-01

    Many studies have demonstrated that microRNAs (miRNAs) may play vital roles in the development of breast cancer. The aim of this study was to examine the expression levels of miR-497 in human breast cancer and investigate whether its potential roles involved targeting Bcl-2. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to examine the expression levels of miR-497 in 48 breast cancer specimens and six breast cancer cell lines. MTT assay, colony formation assay, and flow cytometry were conducted to explore the potential functions of miR-497 in human MDA-MB-231 breast cancer cells. Correlation analysis and dual-luciferase reporter assay were performed to validate whether Bcl-2 was a direct target of miR-497. The effects of modulating miR-497 on endogenous levels of Bcl-2 were subsequently confirmed via qRT-PCR and western blot. MTT assay, colony formation assay and flow cytometry were used to indicate the roles of endogenous Bcl-2 in breast cancer cells. miR-497 expression levels were significantly decreased in human breast cancer specimens and cell lines (P<0.05). Overexpression of miR-497 in breast cancer cells suppressed cell proliferation and induced apoptosis. Correlation analysis indicated that miR-497 was highly inversely correlated with Bcl-2 protein expression in breast cancer specimens. Dual-luciferase reporter assays confirmed that Bcl-2 was a direct target of miR-497. qRT-PCR and western blot showed that miR-497 negatively regulated Bcl-2 protein expression but had no impact on mRNA expression of Bcl-2. Knockdown of Bcl-2 expression in MDA-MB-231 cells significantly suppressed cell proliferation and promoted apoptosis. Our study suggests that miR-497 may act as a breast cancer suppressor through negative regulation of Bcl-2 protein expression at the posttranscriptional levels. Therefore, targeting miR-497 may provide a novel strategy for the diagnosis and treatment of patients with this lethal disease. PMID

  20. The Three Receptor Tyrosine Kinases c-KIT, VEGFR2 and PDGFRα, Closely Spaced at 4q12, Show Increased Protein Expression in Triple-Negative Breast Cancer

    PubMed Central

    Jansson, Sara; Bendahl, Pär-Ola; Grabau, Dorthe Aamand; Falck, Anna-Karin; Fernö, Mårten; Aaltonen, Kristina; Rydén, Lisa

    2014-01-01

    Background Triple-negative breast cancer (TNBC) is a heterogeneous subgroup of breast cancer with poor prognosis and no targeted therapy available. Receptor tyrosine kinases (RTKs) are emerging targets in anticancer therapy and many RTK-inhibiting drugs are currently being developed. The aim of this study was to elucidate if there is a correlation between the protein expression of three RTKs c-KIT, VEGFR2 and PDGFRα, their gene copy number, and prognosis in TNBC compared to non-TNBC. Methods Tumor tissue samples from patients diagnosed with primary breast cancer were stained with immunohistochemistry (IHC) for protein assessment, and with fluorescence in situ hybridization (FISH) for gene copy number determination. Breast cancer mortality (BCM), measured from the date of surgery to death, was used as endpoint. Results The cohort included 464 patients, out of which 34 (7.3%) had a TNBC. High expression of the three RTKs was more common in TNBC compared to non-TNBC: c-KIT 49% vs. 10% (P<0.001), PDGFRα 32% vs. 19% (P = 0.07) and VEGFR2 32% vs. 6% (P<0.001). The odds ratio (OR) of c-KIT, VEGFR2 and PDGFRα positivity, adjusted for tumor characteristics, was 6.8, 3.6 and 1.3 times higher for TNBC than for non-TNBC. 73.5% of the TNBC had high expression of at least one of the three investigated receptors, compared to 30.0% of the non-TNBC (P<0.001). Survival analysis showed no significant difference in BCM for TNBC patients with high vs. low c-KIT, PDGFRα or VEGFR2 protein expression. 193 (42%) tumors were evaluated with FISH. No correlation was seen between increased gene copy number and TNBC, or between increased gene copy number and high protein expression of the RTK. Conclusion c-KIT, VEGFR2 and PDGFRα show higher protein expression in TNBC compared to non-TNBC. Further investigation clarifying the importance of these RTKs in TNBC is encouraged, as they are possible targets for anticancer therapy. PMID:25025175

  1. Regulation of glycoprotein D synthesis: does alpha 4, the major regulatory protein of herpes simplex virus 1, regulate late genes both positively and negatively?

    PubMed Central

    Arsenakis, M; Campadelli-Fiume, G; Roizman, B

    1988-01-01

    Earlier studies have described the alpha 4/c113 baby hamster kidney cell line which constitutively expresses the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1). Introduction of the HSV-1 glycoprotein B (gB) gene, regulated as a gamma 1 gene, into these cells yielded a cell line which constitutively expressed both the alpha 4 and gamma 1 gB genes. The expression of the gB gene was dependent on the presence of functional alpha 4 protein. In this article we report that we introduced into the alpha 4/c113 and into the parental BHK cells, the HSV-1 BamHI J fragment, which encodes the domains of four genes, including those of glycoproteins D, G, and I (gD, gG, and gI), and most of the coding sequences of the glycoprotein E (gE) gene. In contrast to the earlier studies, we obtained significant constitutive expression of gD (also a gamma 1 gene) in a cell line (BJ) derived from parental BHK cells, but not in a cell line (alpha 4/BJ) which expresses functional alpha 4 protein. RNA homologous to the gD gene was present in significant amounts in the BJ cell line; smaller amounts of this RNA were detected in the alpha 4/BJ cell line. RNA homologous to gE, presumed to be polyadenylated from signals in the vector sequences, was present in the BJ cells but not in the alpha 4/BJ cells. The expression of the HSV-1 gD and gE genes was readily induced in the alpha 4/BJ cells by superinfection with HSV-2. The BJ cell line was, in contrast, resistant to expression of HSV-1 and HSV-2 genes. The BamHI J DNA fragment copy number was approximately 1 per BJ cell genome equivalent and 30 to 50 per alpha 4/BJ cell genome equivalent. We conclude that (i) the genes specifying gD and gB belong to different viral regulatory gene subsets, (ii) the gD gene is subject to both positive and negative regulation, (iii) both gD and gE mRNAs are subject to translational controls although they may be different, and (iv) the absence of expression of gD in the alpha 4/BJ

  2. Negative effect of a low-carbohydrate, high-protein, high-fat diet on small peripheral artery reactivity in patients with increased cardiovascular risk.

    PubMed

    Merino, Jordi; Kones, Richard; Ferré, Raimon; Plana, Núria; Girona, Josefa; Aragonés, Gemma; Ibarretxe, Daiana; Heras, Mercedes; Masana, Luis

    2013-04-14

    Low-carbohydrate diets have become increasingly popular for weight loss. Although they may improve some metabolic markers, particularly in type 2 diabetes mellitus (T2D) or the metabolic syndrome (MS), their net effect on arterial wall function remains unclear. The objective was to evaluate the relation between dietary macronutrient composition and the small artery reactive hyperaemia index (saRHI), a marker of small artery endothelial function, in a cohort of patients at increased cardiovascular (CV) risk. The present cross-sectional study included 247 patients. Diet was evaluated by a 3-d food-intake register and reduced to a novel low-carbohydrate diet score (LCDS). Physical examination, demographic, biochemical and anthropometry parameters were recorded, and the saRHI was measured in each patient. Individuals in the lowest LCDS quartile (Q1, 45 % carbohydrate; 20 % protein; 32 % fat) had higher saRHI values than those in the top quartile (Q4, 29 % carbohydrate, 24 % protein, 40 % fat; 1.66 (sd 0.41) v. 1.52 (sd 0.22), P= 0.037). These results were particularly strong in patients with the MS (Q1 = 1.82 (sd 0.32) v. Q4 = 1.61 (sd 027); P= 0.021) and T2D (Q1 = 1.78 (sd 0.31) v. Q4 = 1.62 (sd 0.35); P= 0.011). Multivariate analysis demonstrated that individuals in the highest LCDS quartile had a significantly negative coefficient of saRHI, which was independent of confounders (OR -0.85; 95 % CI 0.19, 0.92; P= 0.031). These findings suggest that a dietary pattern characterised by a low amount of carbohydrate, but high amounts of protein and fat, is associated with a poorer small artery vascular reactivity in patients with increased CV risk.

  3. A single immunoglobulin-domain IgSF protein from Sciaenops ocellatus regulates pathogen-induced immune response in a negative manner.

    PubMed

    Cheng, Shun-feng; Hu, Yong-hua; Sun, Bo-guang; Zhang, Min; Chi, Heng; Sun, Li

    2012-09-01

    The immunoglobulin superfamily (IgSF) is a large group of cell surface proteins that include various immunoregulatory receptors such as novel immune type receptors (NITRs), which are a family of diversified proteins found exclusively in bony fish. In this study, we identified and analyzed an IgSF protein, SoIgSF1, from red drum (Sciaenops ocellatus). SoIgSF1 is composed of 225 amino acid residues and moderately related to teleost NITRs. In silico analysis indicated that SoIgSF1 is a type I transmembrane glycoprotein and contains an N-terminal signal peptide sequence, a single extracellular immunoglobulin V domain, a transmembrane region, and a cytoplasmic region. However, unlike most NITRs, the cytoplasmic region of SoIgSF1 exhibits no consensus inhibitory or stimulatory signaling sequences but has two tyrosine-containing motifs that conform to the right-half sequence of the immunoreceptor tyrosine-based inhibitory motif (ITIM). Quantitative real time RT-PCR analysis showed that SoIgSF1 expression occurred mainly in immune organs and was drastically induced by viral and bacterial infection. Immunofluorescence microscopy indicated that viral infection of head kidney (HK) leukocytes induced surface expression of SoIgSF1, which was able to interact with antibodies against recombinant SoIgSF1. Antibody cross-linking of SoIgSF1 on HK leukocytes inhibited the expression of immune relevant genes and promoted viral and bacterial infection. Taken together, these results indicate that SoIgSF1, though lacking canonical intracellular signaling motifs, is involved in regulation of host immune response during pathogen infection possibly by functioning as a negative signaling receptor through a novel mechanism. PMID:22564857

  4. Nerve growth factor-induced derepression of peripherin gene expression is associated with alterations in proteins binding to a negative regulatory element.

    PubMed Central

    Thompson, M A; Lee, E; Lawe, D; Gizang-Ginsberg, E; Ziff, E B

    1992-01-01

    The peripherin gene, which encodes a neuronal-specific intermediate filament protein, is transcriptionally induced with a late time course when nerve growth factor (NGF) stimulates PC12 cells to differentiate into neurons. We have studied its transcriptional regulation in order to better understand the neuronal-specific end steps of the signal transduction pathway of NGF. By 5' deletion mapping of the peripherin promoter, we have localized two positive regulatory elements necessary for full induction by NGF: a distal positive element and a proximal constitutive element within 111 bp of the transcriptional start site. In addition, there is a negative regulatory element (NRE; -179 to -111), the deletion of which results in elevated basal expression of the gene. Methylation interference footprinting of the NRE defined a unique sequence, GGCAGGGCGCC, as the binding site for proteins present in nuclear extracts from both undifferentiated and differentiated PC12 cells. However, DNA mobility shift assays using an oligonucleotide probe containing the footprinted sequence demonstrate a prominent retarded complex in extracts from undifferentiated PC12 cells which migrates with slower mobility than do the complexes produced by using differentiated PC12 cell extract. Transfection experiments using peripherin-chloramphenicol acetyltransferase constructs in which the footprinted sequence has been mutated confirm that the NRE has a functional, though not exclusive, role in repressing peripherin expression in undifferentiated and nonneuronal cells. We propose a two-step model of activation of peripherin by NGF in which dissociation of a repressor from the protein complex at the NRE, coupled with a positive signal from the distal positive element, results in depression of the gene. Images PMID:1588954

  5. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    PubMed Central

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  6. Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus.

    PubMed

    Guo, Jun; Bai, Pengfei; Yang, Qian; Liu, Furong; Wang, Xiaodong; Huang, Lili; Kang, Zhensheng

    2013-10-01

    Genetic characterization of the Arabidopsis lesion simulating disease 1 (lsd1) mutant, a lesion mimic mutant (LMM), has revealed the essential role of AtLSD1 in the negative regulation of cell death and disease resistance. The three zinc-finger motifs found in AtLSD1 revealed a novel plant-specific gene family, whose members are significantly related to programmed cell death (PCD). In this study, we characterized a functional homologue to AtLSD1, TaLSD1, in the wheat-stripe rust fungus pathosystem. The expression of TaLSD1 was differentially induced during incompatible and compatible interactions between wheat and Puccinia striiformis f. sp. tritici (Pst) and was up-regulated by oxidative stress generated by methyl viologen (MV). TaLSD1 was found to be predominately localized in the nucleus of onion epidermal cell. Transient overexpression assays in Nicotiana benthamiana demonstrated that TaLSD1 partially inhibited programmed cell death triggered by a mouse Bax protein, whereas expression of TaLSD1 alone had no influence on the phenotype of tobacco. Knocking down the expression of TaLSD1 through virus-induced gene silencing (VIGS) increased wheat resistance against Pst accompanied by an enhanced hypersensitive response (HR), an increase in PR1 gene expression and a reduction in Pst hyphal growth. Our results suggest that TaLSD1 functions negatively in regulating the plant hypersensitive cell death and is involved in disease resistance of wheat against the stripe rust pathogen.

  7. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids.

    PubMed Central

    Lee, C W; Chang, J; Lee, K J; Sung, Y C

    1994-01-01

    The Bel1 transactivator is essential for the replication of human foamy virus (HFV). To define the functional domains of HFV Bel1, we generated random missense mutations throughout the entire coding sequence of Bel1. Functional analyses of 24 missense mutations have revealed the presence of at least two functional domains in Bel1. One domain corresponds to a basic amino acid-rich motif which acts as a bipartite nuclear targeting sequence. A second, central domain corresponds to a presumed effector region which, when mutated, leads to dominant-negative mutants and/or lacks transactivating ability. In addition, deletion analyses and domain-swapping experiments further showed that Bel1 protein contains a strong carboxy-terminal activation domain. The activating region is also capable of functioning as a transcription-activating domain in yeast cells, although it does not bear any significant sequence homology to the well-characterized acidic activation domain which is known to function only in yeast and mammalian cells. We also demonstrated that the regions of Bel1 from residues 1 to 76 and from residues 153 to 225 repressed transcriptional activation exerted by the Bel1 activation domain. In contrast, the region from residues 82 to 150 appears to overcome an inhibitory effect. These results indicate that Bel1 contains one positive and two negative regulatory domains that modulate a distinct activation domain of Bel1. These regulatory domains of Bel1 cannot affect the function of the VP16 activation domain, suggesting that these domains specifically regulate the activation domain of Bel1. Furthermore, in vivo competition experiments showed that the positive regulatory domain acts in trans. Thus, our results demonstrate that Bel1-mediated transactivation appears to undergo a complex regulatory pathway which provides a novel mode of regulation for a transcriptional activation domain. Images PMID:8139046

  8. Decreased expression of autophagy protein LC3 and stemness (CD44+/CD24-/low) indicate poor prognosis in triple-negative breast cancer.

    PubMed

    Chang, Shu-Jyuan; Ou-Yang, Fu; Tu, Hung-Pin; Lin, Chih-Hung; Huang, Shu-Hung; Kostoro, Joanna; Hou, Ming-Feng; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-02-01

    This study evaluated the prognostic value of expression of autophagy protein light chain 3 (LC3) and the prognostic value of coexpression of LC3 and stemness markers CD44+/CD24-/low in triple-negative breast cancer (TNBC). LC3 and LC3/CD44+/CD24-/low immunophenotypes in tumor tissues were evaluated by immunohistochemistry in 67 TNBC patients. LC3- was expressed in 30 (44.78%) cases. The LC3- phenotype revealed a significant negative association with overall survival in both univariate (P = .0006) and multivariate (P = .0153) analyses. LC3-/CD44+/CD24-/low phenotype was observed in 24 (35.82%) of 67 TNBC patients. According to Kaplan-Meier analysis, prognosis was significantly worse in tumors with LC3-/CD44+/CD24-/low phenotype (P = .0280). Multivariate analysis indicated that LC3-/CD44+/CD24-/low phenotype was a significant independent prognostic indicator of overall survival. These results suggest that LC3 suppresses TNBC in mature tumor cells and cancer stem cells (CSCs). In conclusion, this study suggests that CSCs are linked to progression of autophagy in TNBC. During the progression and development of TNBC, autophagy of CSCs/progenitor cells is low. LC3-/CD44+/CD24-/low immunophenotype indicates a highly aggressive TNBC subgroup associated with a poor prognosis. This study investigated that LC3 deficiency may restrain TNBC in mature tumor cells and CSCs. Therefore, a reasonable inference is that inducing autophagy may be an effective therapeutic strategy in TNBC. PMID:26772398

  9. Targeting Energy Metabolic and Oncogenic Signaling Pathways in Triple-negative Breast Cancer by a Novel Adenosine Monophosphate-activated Protein Kinase (AMPK) Activator*

    PubMed Central

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K.; Shapiro, Charles L.; Chen, Ching-Shih

    2011-01-01

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC50, 0.3 μm) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC50, 5 and 2 μm, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47–49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  10. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen. PMID:20363780

  11. Carbohydrate-Responsive Element-Binding Protein (ChREBP) Is a Negative Regulator of ARNT/HIF-1β Gene Expression in Pancreatic Islet β-Cells

    PubMed Central

    Noordeen, Nafeesa A.; Khera, Tarnjit K.; Sun, Gao; Longbottom, E. Rebecca; Pullen, Timothy J.; da Silva Xavier, Gabriela; Rutter, Guy A.; Leclerc, Isabelle

    2010-01-01

    OBJECTIVE Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that has been shown to regulate carbohydrate metabolism in the liver and pancreatic β-cells in response to elevated glucose concentrations. Because few genes have been identified so far as bona fide ChREBP-target genes, we have performed a genome-wide analysis of the ChREBP transcriptome in pancreatic β-cells. RESEARCH DESIGN AND METHODS Chromatin immunoprecipitation and high-density oligonucleotide tiling arrays (ChIP-chip; Agilent Technologies) using MIN6 pancreatic β-cell extracts were performed together with transcriptional and other analysis using standard techniques. RESULTS One of the genes identified by ChIP-chip and linked to glucose sensing and insulin secretion was aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor-1β (HIF-1β), a transcription factor implicated in altered gene expression and pancreatic-islet dysfunction in type 2 diabetes. We first confirmed that elevated glucose concentrations decreased ARNT/HIF-1β levels in INS-1 (832/13) cells and primary mouse islets. Demonstrating a role for ChREBP in ARNT gene regulation, ChREBP silencing increased ARNT mRNA levels in INS-1 (832/13) cells, and ChREBP overexpression decreased ARNT mRNA in INS-1 (832/13) cells and primary mouse islets. We demonstrated that ChREBP and Max-like protein X (MLX) bind on the ARNT/HIF-1β promoter on the proximal region that also confers the negative glucose responsiveness. CONCLUSIONS These results demonstrate that ChREBP acts as a novel repressor of the ARNT/HIF-1β gene and might contribute to β-cell dysfunction induced by glucotoxicity. PMID:19833882

  12. The Plant-Specific SR45 Protein Negatively Regulates Glucose and ABA Signaling during Early Seedling Development in Arabidopsis1[W

    PubMed Central

    Carvalho, Raquel Fonseca; Carvalho, Sofia Domingues; Duque, Paula

    2010-01-01

    The plant-specific SR45 belongs to the highly conserved family of serine/arginine-rich (SR) proteins, which play key roles in precursor-mRNA splicing and other aspects of RNA metabolism. An Arabidopsis (Arabidopsis thaliana) loss-of-function mutant, sr45-1, displays pleiotropic phenotypes, such as defects in flower and leaf morphology, root growth, and flowering time. Here, we show that the sr45-1 mutation confers hypersensitivity to glucose (Glc) during early seedling growth in Arabidopsis. Unlike wild-type plants, the sr45-1 mutant displays impaired cotyledon greening and expansion as well as reduced hypocotyl elongation of dark-grown seedlings when grown in the presence of low (3%) Glc concentrations. In addition, SR45 is involved in the control of Glc-responsive gene expression, as the mutant displays enhanced repression of photosynthetic and nitrogen metabolism genes and overinduction of starch and anthocyanin biosynthesis genes. Like many other sugar response mutants, sr45-1 also shows hypersensitivity to abscisic acid (ABA) but appears to be unaffected in ethylene signaling. Importantly, the sr45-1 mutant shows enhanced ability to accumulate ABA in response to Glc, and the ABA biosynthesis inhibitor fluridone partially rescues the sugar-mediated growth arrest. Moreover, three ABA biosynthesis genes and two key ABA signaling genes, ABI3 and ABI5, are markedly overinduced by Glc in sr45-1. These results provide evidence that the SR45 protein defines a novel player in plant sugar response that negatively regulates Glc signaling during early seedling development by down-regulating both Glc-specific ABA accumulation and ABA biosynthesis and signaling gene expression. PMID:20699397

  13. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen.

  14. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.

    PubMed

    Amoury, Manal; Mladenov, Radoslav; Nachreiner, Thomas; Pham, Anh-Tuan; Hristodorov, Dmitrij; Di Fiore, Stefano; Helfrich, Wijnand; Pardo, Alessa; Fey, Georg; Schwenkert, Michael; Thepen, Theophilus; Kiessling, Fabian; Hussain, Ahmad F; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2016-08-15

    Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC.

  15. High Levels of Nucleolar Spindle-Associated Protein and Reduced Levels of BRCA1 Expression Predict Poor Prognosis in Triple-Negative Breast Cancer

    PubMed Central

    Hu, Xin; Li, Shan; Yao, Ling; Yang, Xue-Li; Shao, Zhi-Ming

    2015-01-01

    Purpose Nucleolar spindle-associated protein (NuSAP1) is an important mitosis-related protein, and aberrant NuSAP1 expression is associated with abnormal spindles and mitosis. This study investigated the prognostic value of NuSAP1 in breast cancer. Methods Two sets of tissue microarrays (TMAs) that included samples from 450 breast cancer patients were constructed, of which 250 patients were training set and the other 200 patients were validation set. Immunohistochemical staining was performed to determine the NuSAP1 levels. A Kaplan-Meier analysis was used to estimate the prognostic value of NuSAP1 in breast cancer. A stepwise Cox analysis was performed to construct a risk-prediction model for triple-negative breast cancer (TNBC). All statistical analysis was performed with SPSS software. Results There were 108 (43.5%) and 88 (44.0%) patients expressed NuSAP1 in the training set and validation set respectively. High levels of NuSAP1 expression were related to poor disease-free survival (DFS) in both training (P = 0.028) and validation (P = 0.006) cohorts, particularly in TNBC. With combination of two cohorts, both NuSAP1 (HR = 4.136, 95% CI: 1.956–8.747, P < 0.001) and BRCA1 (HR = 0.383, 95% CI: 0.160–0.915, P = 0.031) were independent prognostic indicators of DFS in TNBC. A receiver operating characteristic (ROC) analysis revealed that the combination of NuSAP1 and BRCA1 significantly improved the prognostic power compared with the traditional model (0.778 versus 0.612, P < 0.001). Conclusions Our study confirms the prognostic value of NuSAP1 in breast cancer. The combination of NuSAP1 and BRCA1 could improve the DFS prediction accuracy in TNBC. PMID:26485712

  16. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.

    PubMed

    Amoury, Manal; Mladenov, Radoslav; Nachreiner, Thomas; Pham, Anh-Tuan; Hristodorov, Dmitrij; Di Fiore, Stefano; Helfrich, Wijnand; Pardo, Alessa; Fey, Georg; Schwenkert, Michael; Thepen, Theophilus; Kiessling, Fabian; Hussain, Ahmad F; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2016-08-15

    Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC. PMID:27037627

  17. Negative Regulation of Grb10 Interacting GYF Protein 2 on Insulin-Like Growth Factor-1 Receptor Signaling Pathway Caused Diabetic Mice Cognitive Impairment

    PubMed Central

    Xie, Jing; Wei, Qianping; Deng, Huacong; Li, Gang; Ma, Lingli; Zeng, Hui

    2014-01-01

    Heterozygous Gigyf2+/− mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway. PMID:25268761

  18. Extensive protein hydrolysate formula effectively reduces regurgitation in infants with positive and negative challenge tests for cow’s milk allergy

    PubMed Central

    Vandenplas, Y; De Greef, E

    2014-01-01

    Aim Cow’s milk protein allergy (CMPA) is treated using an elimination diet with an extensive protein hydrolysate. We explored whether a thickened or nonthickened version was best for infants with suspected CMPA, which commonly causes regurgitation/vomiting. Methods Diagnosis of CMPA was based on a positive challenge test. We compared the efficacy of two casein extensive hydrolysates (eCH), a nonthickened version (NT-eCH) and a thickened version (T-eCH), using a symptom-based score covering regurgitation, crying, stool consistency, eczema, urticarial and respiratory symptoms. Results A challenge was performed in 52/72 infants with suspected CMPA and was positive in 65.4%. All confirmed CMPA cases tolerated eCH. The symptom-based score decreased significantly in all infants within a month, and the highest reduction was in those with confirmed CMPA. Regurgitation was reduced in all infants (6.4 ± 3.2–2.8 ± 2.9, p < 0.001), but fell more with the T-eCH (−4.2 ± 3.2 regurgitations/day vs. −3.0 ± 4.5, ns), especially in infants with a negative challenge (−3.9 ± 4.0 vs. −1.9 ± 3.4, ns). Conclusion eCH fulfilled the criteria for a hypoallergenic formula, and the NT-eCH and T-eCH formulas both reduced CMPA symptoms. The symptom-based score is useful for evaluating how effective dietary treatments are for CMPA. PMID:24575806

  19. Identification of PGAM5 as a Mammalian Protein Histidine Phosphatase that Plays a Central Role to Negatively Regulate CD4(+) T Cells.

    PubMed

    Panda, Saswati; Srivastava, Shekhar; Li, Zhai; Vaeth, Martin; Fuhs, Stephen R; Hunter, Tony; Skolnik, Edward Y

    2016-08-01

    Whereas phosphorylation of serine, threonine, and tyrosine is exceedingly well characterized, the role of histidine phosphorylation in mammalian signaling is largely unexplored. Here we show that phosphoglycerate mutase family 5 (PGAM5) functions as a phosphohistidine phosphatase that specifically associates with and dephosphorylates the catalytic histidine on nucleoside diphosphate kinase B (NDPK-B). By dephosphorylating NDPK-B, PGAM5 negatively regulates CD4(+) T cells by inhibiting NDPK-B-mediated histidine phosphorylation and activation of the K(+) channel KCa3.1, which is required for TCR-stimulated Ca(2+) influx and cytokine production. Using recently developed monoclonal antibodies that specifically recognize phosphorylation of nitrogens at the N1 (1-pHis) or N3 (3-pHis) positions of the imidazole ring, we detect for the first time phosphoisoform-specific regulation of histidine-phosphorylated proteins in vivo, and we link these modifications to TCR signaling. These results represent an important step forward in studying the role of histidine phosphorylation in mammalian biology and disease. PMID:27453048

  20. Different protein-lipid interaction in human red blood cell membrane of Rh positive and Rh negative blood compared with Rhnull.

    PubMed

    Dorn-Zachertz, D; Zimmer, G

    1981-01-01

    1-anilino-naphthalene-8-sulfonate (ANS) fluorescence measurements have revealed that red blood cell membrane of the Rhnull type undergoes a transition at about 16 degrees C. In contrast, viscosity measurements of the extracted membrane lipids showed the usually observed transition at about 18 degrees C. Lower values of titratable sulfhydryl (SH) groups were observed in Rhnull membrane using 5,5'-dithiobis-(2-nitro-benzoic-acid) (Nbs2). In contrast, disulfide bonds in Rhnull membrane were estimated to be about 3 times the value of the controls. Spin labeling experiments using 2-(3-carboxypropyl)-4, 4 dimethyl-2-tridecyl 3-oxazolidinyloxyl were carried out with phospholipase A2 modified membranes. The mobile part of the spectra was significantly increased on the Rhnull membrane. In the presence of D-glucose, infrared spectrometry showed a larger reduction of the intensity of the POO-band in Rhnull membrane. In contrast to controls, binding of the reagent diethylpyrocarbonate resulted in no significant changes of the Rhnull membrane as determined by electron spin resonance (ESR) measurements. D-glucose transport activity was found to be at the upper level of a group of Rh positive and Rh negative persons. It is suggested that the intensity of the polar protein-lipid interaction is reduced in Rhnull membrane.

  1. Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin.

    PubMed

    Hoy, Benjamin; Geppert, Tim; Boehm, Manja; Reisen, Felix; Plattner, Patrick; Gadermaier, Gabriele; Sewald, Norbert; Ferreira, Fatima; Briza, Peter; Schneider, Gisbert; Backert, Steffen; Wessler, Silja

    2012-03-23

    The periplasmic chaperone and serine protease HtrA is important for bacterial stress responses and protein quality control. Recently, we discovered that HtrA from Helicobacter pylori is secreted and cleaves E-cadherin to disrupt the epithelial barrier, but it remained unknown whether this maybe a general virulence mechanism. Here, we show that important other pathogens including enteropathogenic Escherichia coli, Shigella flexneri, and Campylobacter jejuni, but not Neisseria gonorrhoeae, cleaved E-cadherin on host cells. HtrA deletion in C. jejuni led to severe defects in E-cadherin cleavage, loss of cell adherence, paracellular transmigration, and basolateral invasion. Computational modeling of HtrAs revealed a conserved pocket in the active center exhibiting pronounced proteolytic activity. Differential E-cadherin cleavage was determined by an alanine-to-glutamine exchange in the active center of neisserial HtrA. These data suggest that HtrA-mediated E-cadherin cleavage is a prevalent pathogenic mechanism of multiple gram-negative bacteria representing an attractive novel target for therapeutic intervention to combat bacterial infections. PMID:22337879

  2. New insight on the biological role of p53 protein as a tumor suppressor: re-evaluation of its clinical significance in triple-negative breast cancer.

    PubMed

    Jin, Min-Sun; Park, In Ae; Kim, Ji Young; Chung, Yul Ri; Im, Seock-Ah; Lee, Kyung-Hun; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Ryu, Han Suk

    2016-08-01

    While p53 mutation is found in the majority of triple-negative breast cancer (TNBC) and despite recent developments in p53-targeting agents, their therapeutic application is still limited by the absence of standard biomarkers and ambiguousness of its essential biological role in cancer. Whole sections from 305 TNBC cases were stained for p53 to determine the correlation with lymph node metastasis and clinical outcomes in the whole cohort as well as in stratified patient groups according to AJCC stage and the use of adjuvant chemotherapy. Reduced immunohistochemical expression of p53 was an independent risk factor for lymph node metastasis. p53 overexpression was predictive of better clinical outcome in all patients (P = 0.012, disease-free survival and P = 0.008, overall survival) and the stratified cohorts of those who had early breast cancer and received adjuvant chemotherapy. Suppression of endogenous mutant p53 by siRNA and induction of wild-type p53 repressed TNBC cell invasion in vitro. In TNBC, increased immunohistochemical expression of p53 may reflect the accumulation of wild-type p53 rather than the mutant form. Strong p53 protein expression may serve as a favorable prognostic indicator and provide evidence for the use of specific agents targeting p53.

  3. N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor.

    PubMed

    Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Kurokawa, Kenji; Lee, Bok Luel

    2009-08-31

    The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-kappaB-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation. PMID:19712587

  4. Protein kinase C α is involved in the regulation of AXL receptor tyrosine kinase expression in triple-negative breast cancer cells.

    PubMed

    Yue, Chia-Herng; Liu, Liang-Chih; Kao, Erl-Shyh; Lin, Ho; Hsu, Li-Sung; Hsu, Chih-Wei; Lin, Yu-Yu; Lin, Yi-Syuan; Liu, Jer-Yuh; Lee, Chia-Jen

    2016-08-01

    AXL receptor tyrosine kinase is overexpressed in triple-negative breast cancer (TNBC), and has a function in cancer progression and metastases. However, the mechanism underlying AXL gene regulation in TNBC remains unknown. In this study, the involvement of protein kinase C α (PKCα) in the expression of AXL was investigated in human TNBC cells. The microarray data from other studies showed that PKCα is significantly correlated with AXL expression in TNBC cell lines. Tissue array analysis also confirmed their correlation in TNBC. The PKCα inhibitor Go6976 was used to treat MDA‑MB‑231 and Hs578T TNBC cells, which resulted in decreased expression of AXL and epithelia-mesenchymal transition-related gene vimentin, and decreased cell proliferation. An MZF‑1 acidic domain fragment (MZF-1 peptide), which was designed to downregulate PKCα expression, was transfected into the cells and resulted in inhibition of AXL expression. This effect was reversed by co‑treatment with the constitutive form of PKCα. Moreover, the downregulation of PKCα was also confirmed by treatment with TAT‑fused MZF‑1 peptide. Thus, the current study proposes that AXL may be correlated with PKCα‑dependent TNBC cells, and could be modulated by MZF‑1 peptides. PMID:27357025

  5. Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system.

    PubMed

    Maier, Richard H; Maier, Christina J; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2012-12-01

    Many functional proteomic experiments make use of high-throughput technologies such as mass spectrometry combined with two-dimensional polyacrylamide gel electrophoresis and the yeast two-hybrid (Y2H) system. Currently there are even automated versions of the Y2H system available that can be used for proteome-wide research. The Y2H system has the capacity to deliver a profusion of Y2H positive colonies from a single library screen. However, subsequent analysis of these numerous primary candidates with complementary methods can be overwhelming. Therefore, a method to select the most promising candidates with strong interaction properties might be useful to reduce the number of candidates requiring further analysis. The method described here offers a new way of quantifying and rating the performance of positive Y2H candidates. The novelty lies in the detection and measurement of mRNA expression instead of proteins or conventional Y2H genetic reporters. This method correlates well with the direct genetic reporter readouts usually used in the Y2H system, and has greater sensitivity for detecting and quantifying protein-protein interactions (PPIs) than the conventional Y2H system, as demonstrated by detection of the Y2H false-negative PPI of RXR/PPARG. Approximately 20% of all proteins are not suitable for the Y2H system, the so-called autoactivators. A further advantage of this method is the possibility to evaluate molecules that usually cannot be analyzed in the Y2H system, exemplified by a VDR-LXXLL motif peptide interaction. PMID:22982175

  6. Tailor-made designer helical peptides that induce mitochondrion-mediated cell death without necrosis.

    PubMed

    Nogami, Kagayaki; Takahama, Kentaro; Okushima, Ayako; Oyoshi, Takanori; Fujimoto, Kazuhisa; Inouye, Masahiko

    2014-11-24

    Managing protein-protein interactions is essential for resolving unknown biological events at the molecular level and developing drugs. We have designed and synthesized a side-chain-crosslinked helical peptides based on the binding domain of a pro-apoptotic protein (Bad) that induces programmed cell death. The peptide showed high helical content and bound to its target, Bcl-XL, more strongly than its non-crosslinked counterparts. When HeLa cells were incubated with the crosslinked peptide, the peptide entered the cytosol across the plasma membrane. The peptide formed a stable complex with Bcl-XL localized at the outer mitochondrial membrane, and this binding event caused the release of cytochrome c from the intermembrane space of mitochondria into the cytosol. This activated the caspase cascade: 70% of HeLa cells died by the apoptosis pathway (without evidence of necrosis).

  7. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    PubMed

    Hannan, Fadil M; Howles, Sarah A; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M; Babinsky, Valerie N; Reed, Anita A; Thakker, Clare E; Bockenhauer, Detlef; Brown, Rosalind S; Connell, John M; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J; McKnight, John A; Morrison, Patrick J; Mughal, M Zulf; O'Halloran, Domhnall; Pearce, Simon H; Porteous, Mary E; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; Van't Hoff, William G; Wang, Timothy; Whyte, Michael P; Nesbit, M Andrew; Thakker, Rajesh V

    2015-09-15

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue. PMID:26082470

  8. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    PubMed

    Hannan, Fadil M; Howles, Sarah A; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M; Babinsky, Valerie N; Reed, Anita A; Thakker, Clare E; Bockenhauer, Detlef; Brown, Rosalind S; Connell, John M; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J; McKnight, John A; Morrison, Patrick J; Mughal, M Zulf; O'Halloran, Domhnall; Pearce, Simon H; Porteous, Mary E; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; Van't Hoff, William G; Wang, Timothy; Whyte, Michael P; Nesbit, M Andrew; Thakker, Rajesh V

    2015-09-15

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.

  9. Negative necrotaxis.

    PubMed

    Ragot, R

    1993-01-01

    We studied necrotaxis in several strains of protists and compared the reaction of living cells in the vicinity of cells killed by a ruby laser. Negative necrotaxis was observed for the unicellular green alga Euglena gracilis, whereas Chlamydomonas was shown to exhibit positive necrotaxis. The cellular colony Pandorina morum exhibited no reaction to the killing of nearby colonies. Both the colorless cryptomonad Chilomonas paramecium and the ciliate Tetrahymena pyriformis exhibited negative necrotaxis following the lysis of vitally stained specimens of their own species. They also exhibited negative necrotaxis following the lysis of Euglena cells. It was also demonstrated that the cellular content of Euglena cells lysed by heat or by a mechanical procedure acts as a repellent to intact Euglena cells. These results suggest that the negative necrotaxis provoked in Euglena by the laser irradiation is probably due to the chemotactic effect produced by the release of cell content in the extracellular medium. This cell content could, according to its chemical composition, act either as a repellent, an attractant, or be inactive. The sensitivity of cells (specific or nonspecific ion channels or chemoreceptors) are also of prime importance in the process.

  10. Acyl Carrier Protein Synthases from Gram-Negative, Gram-Positive, and Atypical Bacterial Species: Biochemical and Structural Properties and Physiological Implications

    PubMed Central

    McAllister, Kelly A.; Peery, Robert B.; Zhao, Genshi

    2006-01-01

    Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4′-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology. PMID:16788183

  11. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6

    PubMed Central

    YI, YONG WEON; YOU, KYUSIC; BAE, EDWARD JEONG; KWAK, SAHNG-JUNE; SEONG, YEON-SUN; BAE, INSOO

    2015-01-01

    Triple-negative breast cancer (TNBC) exhibits innate resistance to the EGFR inhibition despite high level expression of EGFR. Recently, we found that the proliferation of basal-like (BL) subtype TNBC cells is synergistically inhibited by combination of EGFR and PI3K/AKT inhibitors. On the contrary, TNBC cells of mesenchymal stem-like (MSL) subtype are resistant to these combinations. To identify potential synthetic lethal interaction of compounds for treatment of MSL subtype TNBC cells, we performed MTT screening of MDA-MB-231 cells with a small library of receptor tyrosine kinase inhibitors (RTKIs) in the presence of gefitinib, an EGFR inhibitor. We identified MET inhibitors as potent RTKIs that caused synthetic lethality in combination with gefitinib in MDA-MB-231 cells. We demonstrated that combination of a MET inhibitor SU11274 with various EGFR inhibitors resulted in synergistic suppression of cell viability (in MTT assay) and cell survival (in colony formation assay) of MSL subtype TNBC cells. We further demonstrated that SU11274 alone induced G2 arrest and gefitinib/SU11274 combination sustained the SU11274-induced G2 arrest in these cells. In addition, SU11274/gefitinib combination synergistically reduced the level of ribosomal protein S6 (RPS6) in MSL subtype TNBC cells. In addition, knockdown of RPS6 itself, in both HS578T and MDA-MB-231, markedly reduced the proliferation of these cells. Taken together, our data suggest that dual targeting of EGFR and MET inhibits the proliferation of MSL subtype TNBC cells through down-regulation of RPS6. PMID:25955731

  12. Antagonism between MCL-1 and PUMA governs stem/progenitor cell survival during hematopoietic recovery from stress

    PubMed Central

    Delbridge, Alex R. D.; Opferman, Joseph T.; Grabow, Stephanie

    2015-01-01

    Understanding the critical factors that govern recovery of the hematopoietic system from stress, such as during anticancer therapy and bone marrow transplantation, is of clinical significance. We investigated the importance of the prosurvival proteins myeloid cell leukemia-1 (MCL-1) and B-cell lymphoma–extra large (BCL-XL) in stem/progenitor cell survival and fitness during hematopoietic recovery from stress. Loss of a single Mcl-1 allele, which reduced MCL-1 protein levels, severely compromised hematopoietic recovery from myeloablative challenge and following bone marrow transplantation, whereas BCL-XL was dispensable in both contexts. We identified inhibition of proapoptotic p53 upregulated modulator of apoptosis (PUMA) as the key role of MCL-1 in both settings, with Mcl-1+/−;Puma−/− mice completely protected from the deleterious effects of loss of 1 Mcl-1 allele. These results reveal the molecular mechanisms that govern cell survival during hematopoietic recovery from stress. PMID:25847014

  13. Recombinant Human Erythropoietin Protects Myocardial Cells from Apoptosis via the Janus-Activated Kinase 2/Signal Transducer and Activator of Transcription 5 Pathway in Rats with Epilepsy

    PubMed Central

    Ma, Bao-Xin; Li, Jie; Li, Hua; Wu, Sui-Sheng

    2015-01-01

    Objective To investigate the potential mechanisms underlying the protective effects of recombinant human erythropoietin (rhEPO) and carbamylated EPO (CEPO) against myocardial cell apoptosis in epilepsy. Methods Rats were given an intra-amygdala injection of kainic acid to induce epilepsy. Groups of rats were treated with rhEPO or CEPO before induction of epilepsy, whereas additional rats were given a caudal vein injection of AG490, a selective inhibitor of Janus kinase 2 (JAK2). At different time points after seizure onset, electroencephalogram changes were recorded, and myocardium samples were taken for the detection of myocardial cell apoptosis and expression of JAK2, signal transducer and activator of transcription 5 (STAT5), caspase-3, and bcl-xl mRNAs and proteins. Results Induction of epilepsy significantly enhanced myocardial cell apoptosis and upregulated the expression of caspase-3 and bcl-xl proteins and JAK2 and STAT5a at both the mRNA and protein levels. Pretreatment with either rhEPO or CEPO reduced the number of apoptotic cells, upregulated bcl-xl expression, and downregulated caspase-3 expression in the myocardium of epileptic rats. Both myocardial JAK2 and STAT5a mRNAs, as well as phosphorylated species of JAK2 and STAT5a, were upregulated in epileptic rats in response to rhEPO—but not to CEPO—pretreatment. AG490 treatment increased apoptosis, upregulated caspase-3 protein expression, and downregulated bcl-xl protein expression in the myocardium of epileptic rats. Conclusions These results indicate that myocardial cell apoptosis may contribute to myocardial injury in epilepsy. EPO protects myocardial cells from apoptosis via the JAK2/STAT5 pathway in rats with experimental epilepsy, whereas CEPO exerts antiapoptotic activity perhaps via a pathway independent of JAK2/STAT5 signaling. PMID:26649078

  14. A peptide derived from human bactericidal/permeability-increasing protein (BPI) exerts bactericidal activity against Gram-negative bacterial isolates obtained from clinical cases of bovine mastitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gram-negative bacteria are responsible for approximately one-third of the clinical cases of bovine mastitis and can elicit a life-threatening, systemic inflammatory response. Lipopolysaccharide (LPS) is a membrane component of all Gram-negative bacteria and is largely responsible for evoking the de...

  15. Efficacy of dietary spray dried plasma protein to mitigate the negative effects on performance of pigs fed diets with corn naturally contaminated with multiple mycotoxins.

    PubMed

    Weaver, A C; Campbell, J M; Crenshaw, J D; Polo, J; Kim, S W

    2014-09-01

    The ability of spray dried plasma protein (SDPP) to reduce the negative effects of multiple mycotoxins from naturally contaminated corn on weaned pig performance and health was investigated (n = 180; 6.84 ± 0.11 kg). For 12 d after weaning, pigs were fed phase 1 nursery diets with either 0% SDPP (PP0) or 6% SDPP (PP6). After 12 d, pigs were fed phase 2 diets for 3 wk. Pigs fed PP0 in phase 1 continued to be fed a phase 2 diet with no SDPP (PP0/PP0) or were fed a diet including corn naturally contaminated with multiple mycotoxins (M), labeled PP0/PP0M. Pigs fed SDPP in phase 1 were fed either a diet with no SDPP (PP6/PP0), a diet with M and no SDPP (PP6/PP0M), a diet with M and 3% SDPP (PP6/PP3M), or a diet with M and 6% SDPP (PP6/PP6M). During phase 1, pigs fed PP6 had increased (P < 0.05) ADG, ADFI, and G:F, whereas immunological parameters were not altered. During phase 2, pigs consuming PP0/PP0M had reduced ADG (P < 0.01) and ADFI (P < 0.05) in contrast to pigs fed PP0/PP0, whereas the performance of pigs fed PP6/PP0M was intermediate to pigs fed PP0/PP0M and PP6/PP0. The ADG and ADFI did not differ for pigs fed PP0/PP0M and PP6/PP0M during phase 2. Performance of pigs fed PP6/PP3M in contrast to pigs fed PP6/PP0M during phase 2 did not differ; however, these pigs had lower (P < 0.05) tumor necrosis factor α and tended (P = 0.094) to have lower DNA damage. During phase 2, ADG and ADFI of pigs fed PP6/PP6M did not differ from pigs fed PP6/PP0M, but G:F tended (P = 0.067) to be increased in pigs fed PP6/PP6M. Over the entire study period, pigs fed PP0/PP0M had reduced (P < 0.05) ADG and tended (P = 0.067) to have reduced ADFI. During this time, pigs fed PP6/PP0M tended to have greater ADG and ADFI (P = 0.093 and P = 0.067, respectively) compared with pigs fed PP0/PP0M. Overall, feeding a diet with SDPP improved growth performance and feed intake of young pigs directly after weaning. Feeding multiple M had a negative impact on growth performance of pigs during

  16. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism.

    PubMed

    Shen, Wen-Chuan; Li, Huei-Ying; Chen, Guang-Chao; Chern, Yijuang; Tu, Pang-Hsien

    2015-04-01

    OPTN (optineurin) is an autophagy receptor and mutations in the OPTN gene result in familial glaucoma (E50K) and amyotrophic lateral sclerosis (ALS) (E478G). However, the mechanisms through which mutant OPTN leads to human diseases remain to be characterized. Here, we demonstrated that OPTN colocalized with inclusion bodies (IBs) formed by mutant HTT/huntingtin protein (mHTT) in R6/2 transgenic mice and IBs formed by 81QNmHTT (nuclear form), 109QmHTT (cytoplasmic form) or the truncated form of TARDBP/TDP-43 (TARDBP(ND251)) in Neuro2A cells. This colocalization required the ubiquitin (Ub)-binding domain (UbBD, amino acids 424 to 511) of OPTN. Overexpression of wild-type (WT) OPTN decreased IBs through K63-linked polyubiquitin-mediated autophagy. E50K or 210 to 410Δ (with amino acids 210 to 410 deleted) whose mutation or deletion was outside the UbBD decreased the IBs formed by 109QmHTT or TARDBP(ND251), as was the case with WT OPTN. In contrast, UbBD mutants, including E478G, D474N, UbBDΔ, 411 to 520Δ and 210 to 520Δ, increased accumulation of IBs. UbBD mutants (E478G, UbBDΔ) retained a substantial ability to interact with WT OPTN, and were found to colocalize with polyubiquitinated IBs, which might occur indirectly through their WT partner in a WT-mutant complex. They decreased autophagic flux evidenced by alteration in LC3 level and turnover and in the number of LC3-positive puncta under stresses like starvation or formation of IBs. UbBD mutants exhibited a weakened interaction with MYO6 (myosin VI) and TOM1 (target of myb1 homolog [chicken]), important for autophagosome maturation, in cells or sorted 109QmHtt IBs. Taken together, our data indicated that UbBD mutants acted as dominant-negative traps through the formation of WT-mutant hybrid complexes to compromise the maturation of autophagosomes, which in turn interfered with OPTN-mediated autophagy and clearance of IBs. PMID:25484089

  17. Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans.

    PubMed

    Gullón, Sonia; Arranz, Esther I G; Mellado, Rafael P

    2013-12-01

    Bacterial lipoproteins are a specialised class of membrane proteins that represent a small percentage of the proteome of Gram-positive bacteria, yet these lipoproteins have been reported to play important roles in nutrient scavenging, cell envelope assembly, protein folding, environmental signalling, host cell adhesion and virulence. Upon translocation of lipoproteins, the type II signal peptidase (Lsp) cleaves the signal peptide, leaving the lipoproteins bound to the outer face of the cytoplasmic membrane by means of linking lipid molecule to their +1 cysteine residue. We have studied the role played by Lsp in Streptomyces lividans cellular metabolism, particularly, in secretory protein production, and found that the absence of functional Lsp, apparently produces a translocase blockage, diminishes the synthesis of secretory proteins and triggers a stringent response. These findings could be particularly relevant when optimising S. lividans for the overproduction of secretory proteins of industrial application.

  18. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    PubMed

    Liu, Xinyu; Fernandes, Roxanne; Gertsenstein, Marina; Perumalsamy, Alagammal; Lai, Ingrid; Chi, Maggie; Moley, Kelle H; Greenblatt, Ellen; Jurisica, Igor; Casper, Robert F; Sun, Yu; Jurisicova, Andrea

    2011-01-01

    Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality.

  19. Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a negative regulator of luteinizing/chorionic gonadotropin hormone-induced steroidogenesis in Leydig cells: central role of steroidogenic acute regulatory protein (StAR).

    PubMed

    Fukushima, Masato; Villar, Joaquin; Tsai-Morris, Chon-Hwa; Dufau, Maria L

    2011-08-26

    Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a testis-specific gonadotropin-regulated RNA helicase that is present in Leydig cells (LCs) and germ cells and is essential for spermatid development and completion of spermatogenesis. Normal basal levels of testosterone in serum and LCs were observed in GRTH null (GRTH(-/-)) mice. However, testosterone production was enhanced in LCs of GRTH(-/-) mice compared with WT mice by both in vivo and in vitro human chorionic gonadotropin stimulation. LCs of GRTH(-/-) mice had swollen mitochondria with a significantly increased cholesterol content in the inner mitochondrial membrane. Basal protein levels of SREBP2, HMG-CoA reductase, and steroidogenic acute regulatory protein (StAR; a protein that transports cholesterol to the inner mitochondrial membrane) were markedly increased in LCs of GRTH(-/-) mice compared with WT mice. Gonadotropin stimulation caused an increase in StAR mRNA levels and protein expression in GRTH(-/-) mice versus WT mice, with no further increase in SREBP2 and down-regulation of HMG-CoA reductase protein. The half-life of StAR mRNA was significantly increased in GRTH(-/-) mice. Moreover, association of StAR mRNA with GRTH protein was observed in WT mice. Human chorionic gonadotropin increased GRTH gene expression and its associated StAR protein at cytoplasmic sites. Taken together, these findings indicate that, through its negative role in StAR message stability, GRTH regulates cholesterol availability at the mitochondrial level. The finding of an inhibitory action of GRTH associated with gonadotropin-mediated steroidogenesis has provided insights into a novel negative autocrine molecular control mechanism of this helicase in the regulation of steroid production in the male.

  20. Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist that Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation*

    PubMed Central

    Doi, Kenichiro; Li, Rongshi; Sung, Shen-Shu; Wu, Hongwei; Liu, Yan; Manieri, Wanda; Krishnegowda, Gowdahalli; Awwad, Andy; Dewey, Alden; Liu, Xin; Amin, Shantu; Cheng, Chunwei; Qin, Yong; Schonbrunn, Ernst; Daughdrill, Gary; Loughran, Thomas P.; Sebti, Said; Wang, Hong-Gang

    2012-01-01

    The anti-apoptotic Bcl-2 family of proteins, including Bcl-2, Bcl-XL and Mcl-1, are well-validated drug targets for cancer treatment. Several small molecules have been designed to interfere with Bcl-2 and its fellow pro-survival family members. While ABT-737 and its orally active analog ABT-263 are the most potent and specific inhibitors to date that bind Bcl-2 and Bcl-XL with high affinity but have a much lower affinity for Mcl-1, they are not very effective as single agents in certain cancer types because of elevated levels of Mcl-1. Accordingly, compounds that specifically target Mcl-1 may overcome this resistance. In this study, we identified and characterized the natural product marinopyrrole A as a novel Mcl-1-specific inhibitor and named it maritoclax. We found that maritoclax binds to Mcl-1, but not Bcl-XL, and is able to disrupt the interaction between Bim and Mcl-1. Moreover, maritoclax induces Mcl-1 degradation via the proteasome system, which is associated with the pro-apoptotic activity of maritoclax. Importantly, maritoclax selectively kills Mcl-1-dependent, but not Bcl-2- or Bcl-XL-dependent, leukemia cells and markedly enhances the efficacy of ABT-737 against hematologic malignancies, including K562, Raji, and multidrug-resistant HL60/VCR, by ∼60- to 2000-fold at 1–2 μm. Taken together, these results suggest that maritoclax represents a new class of Mcl-1 inhibitors, which antagonizes Mcl-1 and overcomes ABT-737 resistance by targeting Mcl-1 for degradation. PMID:22311987

  1. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer

    PubMed Central

    Li, Rui; Hu, Zhongliang; Sun, Shi-Yong; Chen, Zhuo G.; Owonikoko, Taofeek K.; Sica, Gabriel L.; Ramalingam, Suresh S.; Curran, Walter J.; Khuri, Fadlo R.; Deng, Xingming

    2013-01-01

    The emergence of resistance to epidermal growth factor receptor (EGFR) inhibitor therapy is a major clinical problem for patients with non-small cell lung cancer (NSCLC). The mechanisms underlying tumor resistance to inhibitors of the kinase activity of EGFR are not fully understood. Here we found that inhibition of EGFR by erlotinib induces STAT3 phosphorylation at Tyr705 in association with increased Bcl2/Bcl-XL at both mRNA and protein levels in various human lung cancer cells. PTPMeg2 is a physiologic STAT3 phosphatase that can directly dephosphorylate STAT3 at the Tyr705 site. Intriguingly, treatment of cells with erlotinib results in downregulation of PTPMeg2 without activation of STAT3 kinases (i.e. JAK2 or c-Src), suggesting that erlotinib enhanced phosphorylation of STAT3 may occur, at least in part, from suppression of PTPMeg2 expression. Since elevated levels of phosphorylated STAT3 (pSTAT3), Bcl2 and Bcl-XL were observed in erlotinib-resistant lung cancer (HCC827/ER) cells as compared to erlotinib-sensitive parental HCC827 cells, we postulate that erlotinib-activated STAT3/Bcl2/Bcl-XL survival pathway may contribute to acquired resistance to erlotinib. Both blockage of Tyr705 phosphorylation of STAT3 by niclosamide and depletion of STAT3 by RNA interference in HCC827/ER cells reverses erlotinib resistance. Niclosamide in combination with erlotinib potently represses erlotinib-resistant lung cancer xenografts in association with increased apoptosis in tumor tissues, suggesting that niclosamide can restore sensitivity to erlotinib. These findings uncover a novel mechanism of erlotinib resistance and provide a novel approach to overcome resistance by blocking the STAT3/Bcl2/Bcl-XL survival signaling pathway in human lung cancer. PMID:23894143

  2. The 'regulatory' beta-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation.

    PubMed

    Bjørling-Poulsen, Marina; Siehler, Simone; Wiesmüller, Lisa; Meek, David; Niefind, Karsten; Issinger, Olaf-Georg

    2005-09-01

    The 'regulatory' beta-subunit of protein kinase CK2 has previously been shown to interact with protein kinases such as A-Raf, c-Mos, Lyn and Chk1 in addition to the catalytic subunit of CK2. Sequence alignments suggest that these interactions have a structural basis, and hence other protein kinases harboring corresponding sequences may be potential interaction partners for CK2beta. We show here that Chk2 specifically interacts with CK2beta in vitro and in cultured cells, and that activation of Chk2 leads to a reduction of this interaction. Additionally, we show that the presence of the CK2beta-subunit significantly reduces the Chk2-catalysed phosphorylation of p53 in vitro. These findings support the notion that CK2beta can act as a general modulator of remote docking sites in protein kinase--substrate interactions.

  3. Fibroblast Growth Factor (FGF) Signaling during Gastrulation Negatively Modulates the Abundance of MicroRNAs That Regulate Proteins Required for Cell Migration and Embryo Patterning*

    PubMed Central

    Bobbs, Alexander S.; Saarela, Aleksi V.; Yatskievych, Tatiana A.; Antin, Parker B.

    2012-01-01

    FGF signaling plays a pivotal role in regulating cell movements and lineage induction during gastrulation. Here we identify 44 microRNAs that are expressed in the primitive streak region of gastrula stage chicken embryos. We show that the primary effect of FGF signaling on microRNA abundance is to negatively regulate the levels of miR-let-7b, -9, -19b, -107, -130b, and -218. LIN28B inhibits microRNA processing and is positively regulated by FGF signaling. Gain- and loss-of-function experiments show that LIN28B negatively regulates the expression of miR-19b, -130b, and let-7b, whereas negative modulation of miR-9, -107, and -218 appears to be independent of LIN28B function. Predicted mRNA targets of the FGF-regulated microRNAs are over-represented in serine/threonine and tyrosine kinase receptors, including ACVR1, ACVR2B, PDGFRA, TGFBR1, and TGFBR3. Luciferase assays show that these and other candidates are targeted by FGF-regulated microRNAs. PDGFRA, a receptor whose activity is required for cell migration through the primitive streak, is a target of miR-130b and -218 in vivo. These results identify a novel mechanism by which FGF signaling regulates gene expression by negatively modulating microRNA abundance through both LIN28B-dependent and LIN28B-independent pathways. PMID:22995917

  4. Molecular profiles and pathogen-induced transcriptional responses of prawn B cell lymphoma-2 related ovarian killer protein (BOK).

    PubMed

    Chaurasia, Mukesh Kumar; Palanisamy, Rajesh; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Arockiaraj, Jesu

    2015-08-01

    In this study, we have reported a molecular characterization of the first B cell lymphoma-2 (BCL-2) related ovarian killer protein (BOK) from freshwater prawn Macrobrachium rosenbergii (Mr). BOK is a novel pro-apoptotic protein of the BCL-2 family that entails in mediating apoptosis to remove cancer cells. A cDNA sequence of MrBOK was identified from the prawn cDNA library and its full length was obtained by internal sequencing. The coding region of MrBOK yields a polypeptide of 291 amino acids. The analysis revealed that MrBOK contains a transmembrane helix at V(261)-L(283) and a putative BCL-2 family domain at V(144)-W(245). MrBOK also possessed four putative BCL-2 homology domains including BH1, BH2, BH3 and weak BH4. The BH3 contains 21 binding sites and among them five residues are highly conserved with the aligned BOK proteins. The homology analysis showed that MrBOK shared maximum similarity with the Caligus rogercresseyi BOK A. The topology of the phylogenetic tree was classified into nine sister groups which includes BOK, BAK, BAX, BAD, BCL-2, BCL-XL, NR13 and MCL members. The BOK protein group further sub-grouped into vertebrate and invertebrate BOK, wherein MrBOK located within insect monophyletic clad of invertebrate BOK. The secondary structural analysis showed that MrBOK contains 11 α-helices (52.2%) which are connected over random coils (47.7%). The 3D structure of MrBOK showed three central helices (α6, α7 and α8) which formed the core of the protein and are flanked on one side by α1, α2 and α3, and on the other side by α4, α5 and α11. MrBOK mRNA is expressed most abundantly (P < 0.05) in ovary compared to other tissues taken for analysis. Hence ovary was selected to study the possible roles of MrBOK mRNA regulation upon bacterial (Aeromonas hydrophila and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodovirus] infection. During bacterial and viral infection, the highest MrBOK mRNA transcription was varied

  5. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    PubMed

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-01

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.

  6. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  7. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  8. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria.

    PubMed

    Cuthbertson, Leslie; Mainprize, Iain L; Naismith, James H; Whitfield, Chris

    2009-03-01

    Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology.

  9. Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on WNT signaling

    PubMed Central

    2014-01-01

    Background Triple negative breast cancer (TNBC) is characterized by lack of expression of both estrogen and progesterone receptor as well as lack of overexpression or amplification of HER2. Despite an increased probability of response to chemotherapy, many patients resistant to current chemotherapy regimens suffer from a worse prognosis compared to other breast cancer subtypes. However, molecular determinants of response to chemotherapy specific to TNBC remain largely unknown. Thus, there is a high demand for biomarkers potentially stratifying triple negative breast cancer patients for neoadjuvant chemotherapies or alternative therapies. Methods In order to identify genes correlating with both the triple negative breast cancer subtype as well as response to neoadjuvant chemotherapy we employed publicly available gene expression profiles of patients, which had received neoadjuvant chemotherapy. Analysis of tissue microarrays as well as breast cancer cell lines revealed correlation to the triple negative breast cancer subtype. Subsequently, effects of siRNA-mediated knockdown on response to standard chemotherapeutic agents as well as radiation therapy were analyzed. Additionally, we evaluated the molecular mechanisms by which SFRP1 alters the carcinogenic properties of breast cancer cells. Results SFRP1 was identified as being significantly overexpressed in TNBC compared to other breast cancer subtypes. Additionally, SFRP1 expression is significantly correlated with an increased probability of positive response to neoadjuvant chemotherapy. Knockdown of SFRP1 in triple negative breast cancer cells renders the cells more resistant to standard chemotherapy. Moreover, tumorigenic properties of the cells are modified by knockdown, as shown by both migration or invasion capacity as well reduced apoptotic events. Surprisingly, we found that these effects do not rely on Wnt signaling. Furthermore, we show that pro-apoptotic as well as migratory pathways are differentially

  10. Specific α-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor Ste2.

    PubMed

    Alvaro, Christopher G; O'Donnell, Allyson F; Prosser, Derek C; Augustine, Andrew A; Goldman, Aaron; Brodsky, Jeffrey L; Cyert, Martha S; Wendland, Beverly; Thorner, Jeremy

    2014-07-01

    G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate responses to extracellular stimuli by mediating ligand-dependent activation of cognate heterotrimeric G proteins. In yeast, occupancy of GPCR Ste2 by peptide pheromone α-factor initiates signaling by releasing a stimulatory Gβγ complex (Ste4-Ste18) from its inhibitory Gα subunit (Gpa1). Prolonged pathway stimulation is detrimental, and feedback mechanisms have evolved that act at the receptor level to limit the duration of signaling and stimulate recovery from pheromone-induced G1 arrest, including upregulation of the expression of an α-factor-degrading protease (Bar1), a regulator of G-protein signaling protein (Sst2) that stimulates Gpa1-GTP hydrolysis, and Gpa1 itself. Ste2 is also downregulated by endocytosis, both constitutive and ligand induced. Ste2 internalization requires its phosphorylation and subsequent ubiquitinylation by membrane-localized protein kinases (Yck1 and Yck2) and a ubiquitin ligase (Rsp5). Here, we demonstrate that three different members of the α-arrestin family (Ldb19/Art1, Rod1/Art4, and Rog3/Art7) contribute to Ste2 desensitization and internalization, and they do so by discrete mechanisms. We provide genetic and biochemical evidence that Ldb19 and Rod1 recruit Rsp5 to Ste2 via PPXY motifs in their C-terminal regions; in contrast, the arrestin fold domain at the N terminus of Rog3 is sufficient to promote adaptation. Finally, we show that Rod1 function requires calcineurin-dependent dephosphorylation.

  11. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules.

    PubMed

    Simon, Katharina; Hennen, Stephanie; Merten, Nicole; Blättermann, Stefanie; Gillard, Michel; Kostenis, Evi; Gomeza, Jesus

    2016-01-01

    Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.

  12. Specific α-Arrestins Negatively Regulate Saccharomyces cerevisiae Pheromone Response by Down-Modulating the G-Protein-Coupled Receptor Ste2

    PubMed Central

    Alvaro, Christopher G.; O'Donnell, Allyson F.; Prosser, Derek C.; Augustine, Andrew A.; Goldman, Aaron; Brodsky, Jeffrey L.; Cyert, Martha S.; Wendland, Beverly

    2014-01-01

    G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate responses to extracellular stimuli by mediating ligand-dependent activation of cognate heterotrimeric G proteins. In yeast, occupancy of GPCR Ste2 by peptide pheromone α-factor initiates signaling by releasing a stimulatory Gβγ complex (Ste4-Ste18) from its inhibitory Gα subunit (Gpa1). Prolonged pathway stimulation is detrimental, and feedback mechanisms have evolved that act at the receptor level to limit the duration of signaling and stimulate recovery from pheromone-induced G1 arrest, including upregulation of the expression of an α-factor-degrading protease (Bar1), a regulator of G-protein signaling protein (Sst2) that stimulates Gpa1-GTP hydrolysis, and Gpa1 itself. Ste2 is also downregulated by endocytosis, both constitutive and ligand induced. Ste2 internalization requires its phosphorylation and subsequent ubiquitinylation by membrane-localized protein kinases (Yck1 and Yck2) and a ubiquitin ligase (Rsp5). Here, we demonstrate that three different members of the α-arrestin family (Ldb19/Art1, Rod1/Art4, and Rog3/Art7) contribute to Ste2 desensitization and internalization, and they do so by discrete mechanisms. We provide genetic and biochemical evidence that Ldb19 and Rod1 recruit Rsp5 to Ste2 via PPXY motifs in their C-terminal regions; in contrast, the arrestin fold domain at the N terminus of Rog3 is sufficient to promote adaptation. Finally, we show that Rod1 function requires calcineurin-dependent dephosphorylation. PMID:24820415

  13. Nucleoprotein of influenza A virus negatively impacts antiapoptotic protein API5 to enhance E2F1-dependent apoptosis and virus replication

    PubMed Central

    Mayank, A K; Sharma, S; Nailwal, H; Lal, S K

    2015-01-01

    Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV replication. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication. PMID:26673663

  14. Host MicroRNA miR-197 Plays a Negative Regulatory Role in the Enterovirus 71 Infectious Cycle by Targeting the RAN Protein

    PubMed Central

    Tang, Wen-Fang; Huang, Ru-Ting; Chien, Kun-Yi; Huang, Jo-Yun; Lau, Kean-Seng; Jheng, Jia-Rong; Chiu, Cheng-Hsun; Wu, Tzong-Yuan; Chen, Chung-Yung

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71), a member of Picornaviridae, is associated with severe central nervous system complications. In this study, we identified a cellular microRNA (miRNA), miR-197, whose expression was downregulated by viral infection in a time-dependent manner. In miR-197 mimic-transfected cells, EV71 replication was inhibited, whereas the internal ribosome entry site (IRES) activity was decreased in EV71 strains with or without predicted miR-197 target sites, indicating that miR-197 targets host proteins to modulate viral replication. We thus used a quantitative proteomics approach, aided by the TargetScan algorithm, to identify putative target genes of miR-197. Among them, RAN was selected and validated as a genuine target in a 3′ untranslated region (UTR) reporter assay. Reduced production of RAN by RNA interference markedly reduced the synthesis of EV71-encoded viral proteins and virus titers. Furthermore, reintroduction of nondegradable RAN into these knockdown cells rescued viral protein synthesis. miR-197 levels were modulated by EV71 to maintain RAN mRNA translatability at late times postinfection since we demonstrated that cap-independent translation exerted by its intrinsic IRES activity was occurring at times when translation attenuation was induced by EV71. EV71-induced downregulation of miR-197 expression increased the expression of RAN, which supported the nuclear transport of the essential viral proteins 3D/3CD and host protein hnRNP K for viral replication. Our data suggest that downregulation of cellular miRNAs may constitute a newly identified mechanism that sustains the expression of host proteins to facilitate viral replication. IMPORTANCE Enterovirus 71 (EV71) is a picornavirus with a positive-sense single-stranded RNA that globally inhibits the cellular translational system, mainly by cleaving cellular eukaryotic translation initiation factor 4G (eIF4G) and poly(A)-binding protein (PABP), which inhibits the association of the

  15. Pre-exposure to a novel nutritional mixture containing a series of phytochemicals prevents acetaminophen-induced programmed and unprogrammed cell deaths by enhancing BCL-XL expression and minimizing oxidative stress in the liver.

    PubMed

    Ray, Sidhartha D; Patel, Nirav; Shah, Nilank; Nagori, Akila; Naqvi, Anne; Stohs, Sidney J

    2006-12-01

    From a disease-prevention perspective, recent progress in phytochemical and nutraceutical research clearly suggests (benefits outweigh the risk pattern). Although powerful antioxidant properties have been the most acclaimed mechanism of action for these entities, the individual antioxidants studied in clinical trials do not appear to have consistent preventative effects. The actions of the antioxidant nutrients alone do not explain the observed health benefits of diets rich in fruits and vegetables for chronic diseases. Therefore, we proposed that the additive and synergistic effects of phytochemicals in fruits and vegetables are responsible for these potent antioxidant and anticancer activities, and that the benefit of a diet rich in fruits and vegetables is attributed to the complex mixture of phytochemicals present in plants [1]. Surprisingly, however, no studies have attempted to evaluate the combined antitoxic potential of a phytochemical-nutraceutical mixture (PNM) in in vivo models. Therefore, this study, for the first time, was designed to investigate whether pre-exposure to a unique PNM has the ability to impede mechanistic events involved in acetaminophen (APAP)-induced hepatotoxicity. Besides several vitamins and minerals in balanced proportions (approximately US RDA), the PNM used in this investigation contained several well-known phytochemicals such as citrus flavonoids, red wine polyphenols, Garcinia, Gymnema, Ginkgo, Ephedra sinica, Camellia sinensis, Silybum, Guarana, Eluthero, Allium sativum and Ocimum basilicum extracts. To evaluate PNM's antitoxic potential, groups of animals ICR mice, 3 months old) received either a control diet or PNM containing diets (1X and 10X) for 4 weeks. On day-28, animals were divided into two subgroups. Half the animals were administered normal saline and the other half received 400mg/kg ip injections of APAP. All the animals were sacrificed 24h after APAP exposure. Serum and tissue (liver and kidneys) samples were analyzed. APAP alone caused massive liver injury (nearly 495-fold increase in ALT) and oxidative stress (Lipid peroxidation: 268% increase in MDA) coupled with genomic DNA fragmentation (288% increase). Exposure to 1X-PNM for 28 days significantly reduced animal mortality and all the APAP-induced biochemical events (In 1X-PNM + AP: ALT leakage decreased to 54 fold; MDA accumulation decreased to 125%, and DNA fragmentation decreased to 122%), whereas 10X-PNM + APAP slightly escalated both oxidative stress and genomic DNA fragmentation preceding liver injury. Liver homogenates subjected to western blot analysis disclosed the ability of 1X-PNM to counteract APAP-induced decrease in Bcl-xL expression. Histopathological evaluation of stained liver tissue sections indicated anti-apoptogenic and anti-necrogenic reponses coupled with near complete prevention of glycogen depletion by 1X-PNM. Collectively, our investigation suggests that a mixture containing an assortment of phytochemicals/nutraceuticals may serve as a much more powerful blend in preventing drug or chemical-induced organ injuries than a single phytochemical or nutraceutical entity. In addition, ephedra and caffeine containing PNM-exposure in a controlled manner may potentially shield vital target organs from toxicities caused by intentional, unintentional or accidental exposures to structurally and functionally diverse drug and chemical entities. PMID:16902808

  16. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed.

    PubMed

    Stojadinovic, Marija; Radosavljevic, Jelena; Ognjenovic, Jana; Vesic, Jelena; Prodic, Ivana; Stanic-Vucinic, Dragana; Cirkovic Velickovic, Tanja

    2013-02-15

    Non-covalent interactions between β-lactoglobulin (BLG) and polyphenol extracts of teas, coffee and cocoa were studied by fluorescence and CD spectroscopy at pH values of the gastrointestinal tract (GIT). The biological implications of non-covalent binding of polyphenols to BLG were investigated by in vitro pepsin and pancreatin digestibility assay and ABTS radical scavenging activity of complexes formed. The polyphenol-BLG systems were stable at pH values of the GIT. The most profound effect of pH on binding affinity was observed for polyphenol extracts rich in phenolic acids. Stronger non-covalent interactions delayed pepsin and pancreatin digestion of BLG and induced β-sheet to α-helix transition at neutral pH. All polyphenols tested protected protein secondary structure at an extremely acidic pH of 1.2. A positive correlation was found between the strength of protein-polyphenol interactions and (a) half time of protein decay in gastric conditions (R(2)=0.85), (b) masking of total antioxidant capacity of protein-polyphenol complexes (R(2)=0.95).

  17. Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer

    PubMed Central

    Kabisch, Maria; Lorenzo Bermejo, Justo; Dünnebier, Thomas; Ying, Shibo; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Lambrechts, Diether; Neven, Patrick; Peeters, Stephanie; Weltens, Caroline; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Purrington, Kristen; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Peto, Julian; dos-Santos-Silva, Isabel; Johnson, Nichola; Fletcher, Olivia; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Schmidt, Marjanka K.; Broeks, Annegien; Cornelissen, Sten; Hogervorst, Frans B.L.; Li, Jingmei; Brand, Judith S.; Humphreys, Keith; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Burwinkel, Barbara; Marmé, Frederik; Yang, Rongxi; Bugert, Peter; González-Neira, Anna; Benitez, Javier; Pilar Zamora, M.; Arias Perez, Jose I.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W.R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; Kriege, Mieke; Koppert, Linetta B.; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Slettedahl, Seth; Toland, Amanda E.; Vachon, Celine; Yannoukakos, Drakoulis; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Fasching, Peter A.; Ruebner, Matthias; Ekici, Arif B.; Beckmann, Matthias W.; Brenner, Hermann; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk J.; Swerdlow, Anthony; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Radice, Paolo; Peterlongo, Paolo; Scuvera, Giulietta; Fortuzzi, Stefano; Bogdanova, Natalia; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Zheng, Wei; Shrubsole, Martha J.; Cai, Qiuyin; Torres, Diana; Anton-Culver, Hoda; Kristensen, Vessela; Bacot, François; Tessier, Daniel C.; Vincent, Daniel; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Maranian, Mel; Simard, Jacques; Chenevix-Trench, Georgia; Hall, Per; Pharoah, Paul D.P.; Dunning, Alison M.; Easton, Douglas F.; Hamann, Ute

    2015-01-01

    The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92–0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83–0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3ʹ untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00–1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02–1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04–1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated. PMID:25586992

  18. A macromolecular complex involving the amyloid precursor protein (APP) and the cytosolic adapter FE65 is a negative regulator of axon branching

    PubMed Central

    Ikin, Annat F.; Sabo, Shasta L.; Lanier, Lorene M.; Buxbaum, Joseph D.

    2011-01-01

    Several studies suggest a role for the amyloid precursor protein (APP) in neurite outgrowth and synaptogenesis, but the downstream interactions that mediate the function of APP during neuron development are unknown. By introducing interaction-deficient FE65 into cultured hippocampal neurons using adenovirus, we show that a complex including APP, FE65 and an additional protein is involved in neurite outgrowth at early stages of neuronal development. Both FE65 that is unable to interact with APP (PID2 mutants) or a WW mutant increased axon branching. Although the FE65 mutants did not affect total neurite output, both mutants decreased axon segment length, consistent with an overall slowing of axonal growth cones. FE65 mutants did not alter the localization of either APP or FE65 in axonal growth cones, suggesting that the effects on neurite outgrowth are achieved by alterations in local complex formation within the axonal growth cone. PMID:17383198

  19. Overlapping protein-binding sites within a negative regulatory element modulate the brain-preferential expression of the human HPRT gene

    SciTech Connect

    Rincon-Limas, D.E.; Amaya-Manzanares, E.; Nino-Rosales, M.L.

    1994-09-01

    The hypoxanthine phosphoribosyltransferase (HPRT) gene, whose deficiency in humans causes the Lesch-Nyhan syndrome, is constitutively expressed at low levels in all tissues but at higher levels in the brain, the significance and mechanism of which is unknown. Towards dissecting this molecular mechanism, we have previously identified a 182 bp element (hHPRT-NE) within the 5{prime}-flanking region of the human HPRT gene which is involved not only in conferring neuronal specificity but also in repressing gene expression in non-neuronal tissues. Here we report that this element interacts with different nuclear proteins, some of which are present specifically in neuronal cells (complex I) and others of which are present in cells showing constitutive expression of the gene (complex II). In addition, we found that complex I factors are expressed in human NT2/D1 cells following induction of neuronal differentiation by retinoic acid. This finding correlates with an increase of HPRT gene transcription following neuronal differentiation, as demonstrated by RT-PCR and RNAase protection assays. We also mapped the binding sites for both complexes to a 60 bp region which, when tested by transient transfections in cultured fibroblasts, functioned as a repressor element. Methylation interference footprinting revealed a minimal unique DNA motif as the binding site for nuclear proteins from both neuronal and non-neuronal sources. Moreover, UV-crosslinking experiments showed that both complexes are formed by the association of several distinct proteins. Strikingly, site-directed mutagenesis of the footprinted region indicated that different nucleotides are essential for the association of these two complexes. These data suggest that differential formation of DNA-protein complexes at this regulatory domain could be a major determinant in the brain-preferential expression of the human HPRT gene.

  20. The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar.

    PubMed

    Martin, Ludovic; Decourteix, Mélanie; Badel, Eric; Huguet, Stéphanie; Moulia, Bruno; Julien, Jean-Louis; Leblanc-Fournier, Nathalie

    2014-07-01

    Mechanical cues are essential signals regulating plant growth and development. In response to wind, trees develop a thigmomorphogenetic response characterized by a reduction in longitudinal growth, an increase in diameter growth, and changes in mechanical properties. The molecular mechanisms behind these processes are poorly understood. In poplar, PtaZFP2, a C2H2 transcription factor, is rapidly up-regulated after stem bending. To investigate the function of PtaZFP2, we analyzed PtaZFP2-overexpressing poplars (Populus tremula × Populus alba). To unravel the genes downstream PtaZFP2, a transcriptomic analysis was performed. PtaZFP2-overexpressing poplars showed longitudinal and cambial growth reductions together with an increase in the tangent and hardening plastic moduli. The regulation level of mechanoresponsive genes was much weaker after stem bending in PtaZFP2-overexpressing poplars than in wild-type plants, showing that PtaZFP2 negatively modulates plant responsiveness to mechanical stimulation. Microarray analysis revealed a high proportion of down-regulated genes in PtaZFP2-overexpressing poplars. Among these genes, several were also shown to be regulated by mechanical stimulation. Our results confirmed the important role of PtaZFP2 during plant acclimation to mechanical load, in particular through a negative control of plant molecular responsiveness. This desensitization process could modulate the amplitude and duration of the plant response during recurrent stimuli.

  1. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens.

    PubMed

    Horng, Yu-Tze; Deng, Su-Chen; Daykin, Mavis; Soo, Po-Chi; Wei, Jun-Rong; Luh, Kwen-Tay; Ho, Shen-Wu; Swift, Simon; Lai, Hsin-Chih; Williams, Paul

    2002-09-01

    Serratia marcescens SS-1 produces at least four N-acylhomoserine lactones (AHLs) which were identified using high-resolution mass spectrometry and chemical synthesis, as N-(3-oxohexanoyl) homo-serine lactone (3-oxo-C6-HSL), N-hexanoyl- (C6-HSL), N-heptanoyl (C7-HSL) and N-octanoyl- (C8-HSL) homoserine lactone. These AHLs are synthesized via the LuxI homologue SpnI, and regulate via the LuxR homologue SpnR, the production of the red pigment, prodigiosin, the nuclease, NucA, and a biosurfactant which facilitates surface translocation. spnR overexpression and spnR gene deletion show that SpnR, in contrast to most LuxR homologues, acts as a negative regulator. spnI overexpression, the provision of exogenous AHLs and spnI gene deletion suggest that SpnR is de-repressed by 3-oxo-C6-HSL. In addition, long chain AHLs antagonize the biosurfactant-mediated surface translocation of S. marcescens SS-1. Upstream of spnI there is a gene which we have termed spnT. spnI and spnT form an operon and although database searches failed to reveal any spnT homologues, overexpression of this novel gene negatively affected both sliding motility and prodigiosin production.

  2. Manipulation of cellular GSH biosynthetic capacity via TAT-mediated protein transduction of wild-type or a dominant-negative mutant of glutamate cysteine ligase alters cell sensitivity to oxidant-induced cytotoxicity

    SciTech Connect

    Backos, Donald S.; Brocker, Chad N.; Franklin, Christopher C.

    2010-02-15

    The glutathione (GSH) antioxidant defense system plays a central role in protecting mammalian cells against oxidative injury. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme in GSH biosynthesis and is a heterodimeric holoenzyme composed of catalytic (GCLC) and modifier (GCLM) subunits. As a means of assessing the cytoprotective effects of enhanced GSH biosynthetic capacity, we have developed a protein transduction approach whereby recombinant GCL protein can be rapidly and directly transferred into cells when coupled to the HIV TAT protein transduction domain. Bacterial expression vectors encoding TAT fusion proteins of both GCL subunits were generated and recombinant fusion proteins were synthesized and purified to near homogeneity. The TAT-GCL fusion proteins were capable of heterodimerization and formation of functional GCL holoenzyme in vitro. Exposure of Hepa-1c1c7 cells to the TAT-GCL fusion proteins resulted in the time- and dose-dependent transduction of both GCL subunits and increased cellular GCL activity and GSH levels. A heterodimerization-competent, enzymatically deficient GCLC-TAT mutant was also generated in an attempt to create a dominant-negative suppressor of GCL. Transduction of cells with a catalytically inactive GCLC(E103A)-TAT mutant decreased cellular GCL activity in a dose-dependent manner. TAT-mediated manipulation of cellular GCL activity was also functionally relevant as transduction with wild-type GCLC(WT)-TAT or mutant GCLC(E103A)-TAT conferred protection or enhanced sensitivity to H{sub 2}O{sub 2}-induced cell death, respectively. These findings demonstrate that TAT-mediated transduction of wild-type or dominant-inhibitory mutants of the GCL subunits is a viable means of manipulating cellular GCL activity to assess the effects of altered GSH biosynthetic capacity.

  3. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis.

    PubMed

    Oh, Chang-Sik; Beer, Steven V

    2007-10-01

    HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of the effects of HrpN in disease, we sought a HrpN-interacting protein(s) in apple, using a yeast two-hybrid assay. A single positive clone, designated HIPM (HrpN-interacting protein from Malus), was found. HIPM, a 6.5-kD protein, interacted with HrpN in yeast and in vitro. Deletion analysis showed that the N-terminal 198 of 403 amino acids of HrpN are required for interaction with HIPM. HIPM orthologs were found in Arabidopsis (AtHIPM) and rice (Oryza sativa; OsHIPM). HrpN also interacted with AtHIPM in yeast and in vitro. In silico analyses revealed that the three plant proteins contain putative signal peptides and putative transmembrane domains. We showed that both HIPM and AtHIPM have functional signal peptides, and green fluorescent protein-tagged HIPM and AtHIPM associated, in clusters, with plasma membranes. Both HIPM and AtHIPM are expressed constitutively; however, they are expressed more strongly in apple and Arabidopsis flowers than in leaves and stems. The size of AtHIPM knockout mutant plants of Arabidopsis was slightly larger than the wild-type plants. Interestingly, the knockout mutant did not exhibit enhanced plant growth in response to treatment with HrpN. Overexpression of AtHIPM conversely resulted in smaller plants. These results indicate that AtHIPM functions as a negative regulator of plant growth and mediates enhanced growth that results from treatment with HrpN. PMID:17704235

  4. Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system.

    PubMed

    Wilson, R L; Stauffer, L T; Stauffer, G V

    1993-08-01

    When Escherichia coli was grown in medium containing both inosine and glycine, the PurR repressor protein was shown to be responsible for a twofold reduction from the fully induced glycine cleavage enzyme levels. This twofold repression was also seen by measuring beta-galactosidase levels in cells carrying a lambda gcvT-lacZ gene fusion. In this fusion, the synthesis of beta-galactosidase is under the control of the gcv regulatory region. A DNA fragment carrying the gcv control region was shown by gel mobility shift assay and DNase I footprinting to bind purified PurR protein, suggesting a direct involvement of the repressor in gcv regulation. A separate mechanism of purine-mediated regulation of gcv was shown to be independent of the purR gene product and resulted in an approximately 10-fold reduction of beta-galactosidase levels when cells were grown in medium containing inosine but lacking the inducer glycine. This additional repression was dependent upon a functional gcvA gene, a positive activator for the glycine cleavage enzyme system. A dual role for the GcvA protein as both an activator in the presence of glycine and a repressor in the presence of inosine is suggested.

  5. HAND1 gene expression is negatively regulated by the High Mobility Group A1 proteins and is drastically reduced in human thyroid carcinomas.

    PubMed

    Martinez Hoyos, J; Ferraro, A; Sacchetti, S; Keller, S; De Martino, I; Borbone, E; Pallante, P; Fedele, M; Montanaro, D; Esposito, F; Cserjesi, P; Chiariotti, L; Troncone, G; Fusco, A

    2009-02-12

    HMGA1 proteins exert their major physiological function during embryonic development and play a critical role in neoplastic transformation. Here, we show that Hand1 gene, which codes for a transcription factor crucial for differentiation of trophoblast giant cells and heart development, is upregulated in hmga1 minus embryonic stem cells. We demonstrate that HMGA1 proteins bind directly to Hand1 promoter both in vitro and in vivo and inhibit Hand1 promoter activity. We have also investigated HAND1 expression in human thyroid carcinoma cell lines and tissues, in which HMGA proteins are overexpressed, with respect to normal thyroid; an inverse correlation between HMGA1 and HAND1 expression was found in all thyroid tumor histotypes. A correlation between HAND1 gene repression and promoter hypermethylation was found in anaplastic carcinomas but not in other thyroid tumor histotypes. Therefore, we can hypothesize that HMGA1 overexpression plays a key role on HAND1 silencing in differentiated thyroid carcinomas and that promoter hypermethylation occurs in later stages of thyroid tumor progression. Finally, the restoration of the HAND1 gene expression reduces the clonogenic ability of two human thyroid carcinoma-derived cell lines, suggesting that HAND1 downregulation may have a role in the process of thyroid carcinogenesis.

  6. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  7. Bortezomib mitigates adverse prognosis conferred by Bcl-2 overexpression in patients with relapsed/refractory multiple myeloma.

    PubMed

    Ailawadhi, Sikander; Miecznikowski, Jeff; Gaile, Dan P; Wang, Dongliang; Sher, Taimur; Mulligan, George; Bryant, Barb; Wilding, Gregory E; Mashtare, Terry; Stein, Leighton; Masood, Aisha; Neuwirth, Rachel; Lee, Kelvin P; Chanan-Khan, Asher

    2012-06-01

    Overexpression of the Bcl-2 family of genes results in increased transcription of anti-apoptotic proteins. In vitro data suggest that this may enhance acquired chemoresistance and correlate with extramedullary invasion. This has led to pursuing the Bcl-2 family of proteins as therapeutic targets in several malignant disorders, including multiple myeloma (MM). The impact of novel therapeutic agents such as bortezomib on these molecular markers is not known. We investigated the association between the expression of anti-apoptotic members of the Bcl-2 family and the efficacy of bortezomib in patients with relapsed/refractory MM. Gene expression data generated prospectively from large clinical trials were utilized. Hypothesis testing using a multisample test for equivalence was performed. The association between Bcl-2 expression levels and clinical response was negated in bortezomib-treated patients (p = 0.014), while not so in dexamethasone-treated patients (p = 0.92). Similar results were noted for variant 2 of the Mcl-1 gene (p = 0.003). Results for Bcl-xl did not meet the level of significance. Thus, the importance of the Bcl-2 family of proteins as prognostic markers in MM should be reassessed in the novel therapeutic agent era. Our data suggest that bortezomib may overcome the prognostic effect conferred by overexpression of some of the anti-apoptotic Bcl-2 family of genes in patients with relapsed/refractory MM. PMID:22054286

  8. Killing of Gram-negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement proteins in the death of Salmonella strains O48.

    PubMed

    Bugla-Płoskońska, G; Kiersnowski, A; Futoma-Kołoch, B; Doroszkiewicz, W

    2009-08-01

    Serum is an environment in which bacterial cells should not exist. The serum complement system provides innate defense against microbial infections. It consists of at least 35 proteins, mostly in pre-activated enzymatic forms. The activation of complement is achieved through three major pathways: the classical, alternative, and lectin. Lysozyme, widely present in body fluids, catalyzes the hydrolysis of beta 1,4 linkage between N-acetyloglucosamine and N-acetylmuramic acid in the bacterial cell wall and cooperates with the complement system in the bactericidal action of serum. In this study, ten strains of serotype O48 Salmonella, mainly associated with warm-blooded vertebrates and clinically important causing diarrhea in infants and children, were tested. The results demonstrated that the most efficient killing of Salmonella O48 occurred when all the components of normal bovine serum (NBS) and normal human serum (NHS) cooperated. To prove the role of lysozyme in the bactericidal activity of bovine and human serum, the method of serum adsorption onto bentonite (montmorillonite, MMT) was used. In order to investigate structural transitions accompanying the adsorption of serum components, we applied X-ray diffraction methods. The results of this investigation suggested that apart from lysozyme, other proteins (as, e.g., C3 protein or IgG immunoglobulin) were adsorbed on MMT particles. It was also shown that Ca(2+) cations can be adsorbed on bentonite. This may explain the different sensitivities of the serovars belonging to the same O48 Salmonella serotype to NBS and NHS devoid of lysozyme.

  9. Killing of Gram-negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement proteins in the death of Salmonella strains O48.

    PubMed

    Bugla-Płoskońska, G; Kiersnowski, A; Futoma-Kołoch, B; Doroszkiewicz, W

    2009-08-01

    Serum is an environment in which bacterial cells should not exist. The serum complement system provides innate defense against microbial infections. It consists of at least 35 proteins, mostly in pre-activated enzymatic forms. The activation of complement is achieved through three major pathways: the classical, alternative, and lectin. Lysozyme, widely present in body fluids, catalyzes the hydrolysis of beta 1,4 linkage between N-acetyloglucosamine and N-acetylmuramic acid in the bacterial cell wall and cooperates with the complement system in the bactericidal action of serum. In this study, ten strains of serotype O48 Salmonella, mainly associated with warm-blooded vertebrates and clinically important causing diarrhea in infants and children, were tested. The results demonstrated that the most efficient killing of Salmonella O48 occurred when all the components of normal bovine serum (NBS) and normal human serum (NHS) cooperated. To prove the role of lysozyme in the bactericidal activity of bovine and human serum, the method of serum adsorption onto bentonite (montmorillonite, MMT) was used. In order to investigate structural transitions accompanying the adsorption of serum components, we applied X-ray diffraction methods. The results of this investigation suggested that apart from lysozyme, other proteins (as, e.g., C3 protein or IgG immunoglobulin) were adsorbed on MMT particles. It was also shown that Ca(2+) cations can be adsorbed on bentonite. This may explain the different sensitivities of the serovars belonging to the same O48 Salmonella serotype to NBS and NHS devoid of lysozyme. PMID:19294463

  10. Monoclonal antibodies to a 100-kd protein reveal abundant A beta-negative plaques throughout gray matter of Alzheimer's disease brains.

    PubMed Central

    Schmidt, M. L.; Lee, V. M.; Forman, M.; Chiu, T. S.; Trojanowski, J. Q.

    1997-01-01

    Here we describe the initial characterization of a 100-kd protein recognized by four new monoclonal antibodies that reveal abundant and unique plaque-like lesions throughout gray matter of Alzheimer's disease brains. This 100-kd protein and these new plaque-like lesions were identified by four monoclonal antibodies raised to immunogens extracted from Alzheimer's disease neurofibrillary abnormalities. However, these antibodies did not recognize hyperphosphorylated tau in Western blots or neurofibrillary lesions by immunohistochemistry. As all of these antibodies displayed similar properties, one, AMY117, was used to characterize the new plaque-like lesions in detail. These studies demonstrated that AMY117-positive plaques were not visualized by amyloid stains and never co-localized with A beta deposits, although AMY117-positive and A beta-positive lesions frequently occurred in the same cortical and subcortical gray matter regions. Abundant AMY117-positive plaques were found in the brains of all 32 sporadic Alzheimer's disease patients and all 6 elderly Down's syndrome subjects. Although AMY117-positive plaques also were seen in the brains of nondemented patients with numerous A beta deposits. AMY117-positive plaques were rare or absent in the brains of other elderly controls and patients with other neurodegenerative or neuropsychiatric disorders. We conclude that the AMY117-positive plaques described here for the first time are major lesions of the Alzheimer's disease brain. Thus, it will be important to elucidate the role played by the 100-kd protein and the AMY117 plaques in the etiology and pathogenesis of Alzheimer's disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9212733

  11. ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis[C][W

    PubMed Central

    Rodrigues, Américo; Adamo, Mattia; Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rabissi, Agnese; Lumbreras, Victoria; González-Guzmán, Miguel; Antoni, Regina; Rodriguez, Pedro L.; Baena-González, Elena

    2013-01-01

    Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways. PMID:24179127

  12. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM.

    PubMed

    Zeng, Liang; Kang, Chunsheng; Di, Chunhui; Fee, Brian E; Rivas, Miriam; Lin, James; Adamson, David Cory

    2014-04-01

    Previous studies identified the frequent loss of adherens junction-associated protein 1 (AJAP1) expression in glioblastoma (GBM) and its correlation with worse survival. AJAP1 may suppress glioma cell migration, which plays an important role in tumor progression in malignant gliomas such as GBM. However, the role of AJAP1 in cell cycle arrest or apoptosis and resistance to chemotherapy remains unclear. Based on microarray screening results, quantitative PCR and luciferase plasmid reporter constructs were used to evaluate the possible regulatory role of AJAP1 on MAGEA2 expression and function. Cell death assays, TUNEL and other markers of apoptosis were utilized to detect cell apoptosis. Restoration of AJAP1 expression in glioma cells was analyzed after temozolomide exposure. AJAP1 suppressed the expression of MAGEA2 and inhibited the transcriptional activity of MAGEA2 in glioma cells. As AJAP1 expression decreased MAGEA2 protein expression apoptosis increased moderately. Consistent with increased cell death, the induced loss of MAGEA2 expression correlated with increased caspase 3/7 activity, BCL2/BAX ratio and TUNEL signal. AJAP1 expression enhanced cell death in the presence of temozolomide. This study suggests AJAP1 may also function as a pro-apoptotic factor and potentiate cell death by temozolomide in glioma cells. This effect may be partially explained by AJAP1-mediated gene regulation of MAGEA2. PMID:24481586

  13. Rationally Repurposing Ruxolitinib (Jakafi (®)) as a Solid Tumor Therapeutic.

    PubMed

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Dent, Paul

    2016-01-01

    We determined whether the approved myelofibrosis drug ruxolitinib (Jakafi(®)), an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could be repurposed as an anti-cancer agent for solid tumors. Ruxolitinib synergistically interacted with dual ERBB1/2/4 inhibitors to kill breast as well as lung, ovarian and brain cancer cells. Knock down of JAK1/2 or of ERBB1/2/3/4 recapitulated on-target drug effects. The combination of (ruxolitinib + ERBB1/2/4 inhibitor) rapidly inactivated AKT, mTORC1, mTORC2, STAT3, and STAT5, and activated eIF2α. In parallel, the drug combination reduced expression of MCL-1, BCL-XL, HSP90, HSP70, and GRP78, and increased expression of Beclin1. Activated forms of STAT3, AKT, or mTOR prevented the drug-induced decline in BCL-XL, MCL-1, HSP90, and HSP70 levels. Over-expression of chaperones maintained AKT/mTOR activity in the presence of drugs and protected tumor cells from the drug combination. Expression of dominant negative eIF2α S51A prevented the increase in Beclin1 expression and protected tumor cells from the drug combination. Loss of mTOR activity was associated with increased ATG13 S318 phosphorylation and with autophagosome formation. Autophagosomes initially co-localized with mitochondria and subsequently with lysosomes. Knock down of Beclin1 suppressed: drug-induced mitophagy; the activation of the toxic BH3 domain proteins BAX and BAK; and tumor cell killing. Knock down of apoptosis-inducing factor (AIF) protected tumor cells from the drug combination, whereas blockade of caspase 9 signaling did not. The drug combination released AIF into the cytosol and increased nuclear AIF: eIF3A co-localization. A 4-day transient exposure of orthotopic tumors to (ruxolitinib + afatinib) profoundly reduced mammary tumor growth over the following 35 days. Re-grown tumors exhibited high levels of BAD S112 phosphorylation and activation of ERK1/2 and NFκB. Our data demonstrate that mitophagy is an essential component of (ruxolitinib

  14. Rationally Repurposing Ruxolitinib (Jakafi®) as a Solid Tumor Therapeutic

    PubMed Central

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Dent, Paul

    2016-01-01

    We determined whether the approved myelofibrosis drug ruxolitinib (Jakafi®), an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could be repurposed as an anti-cancer agent for solid tumors. Ruxolitinib synergistically interacted with dual ERBB1/2/4 inhibitors to kill breast as well as lung, ovarian and brain cancer cells. Knock down of JAK1/2 or of ERBB1/2/3/4 recapitulated on-target drug effects. The combination of (ruxolitinib + ERBB1/2/4 inhibitor) rapidly inactivated AKT, mTORC1, mTORC2, STAT3, and STAT5, and activated eIF2α. In parallel, the drug combination reduced expression of MCL-1, BCL-XL, HSP90, HSP70, and GRP78, and increased expression of Beclin1. Activated forms of STAT3, AKT, or mTOR prevented the drug-induced decline in BCL-XL, MCL-1, HSP90, and HSP70 levels. Over-expression of chaperones maintained AKT/mTOR activity in the presence of drugs and protected tumor cells from the drug combination. Expression of dominant negative eIF2α S51A prevented the increase in Beclin1 expression and protected tumor cells from the drug combination. Loss of mTOR activity was associated with increased ATG13 S318 phosphorylation and with autophagosome formation. Autophagosomes initially co-localized with mitochondria and subsequently with lysosomes. Knock down of Beclin1 suppressed: drug-induced mitophagy; the activation of the toxic BH3 domain proteins BAX and BAK; and tumor cell killing. Knock down of apoptosis-inducing factor (AIF) protected tumor cells from the drug combination, whereas blockade of caspase 9 signaling did not. The drug combination released AIF into the cytosol and increased nuclear AIF: eIF3A co-localization. A 4-day transient exposure of orthotopic tumors to (ruxolitinib + afatinib) profoundly reduced mammary tumor growth over the following 35 days. Re-grown tumors exhibited high levels of BAD S112 phosphorylation and activation of ERK1/2 and NFκB. Our data demonstrate that mitophagy is an essential component of (ruxolitinib

  15. A Switch of G Protein-Coupled Receptor Binding Preference from Phosphoinositide 3-Kinase (PI3K)–p85 to Filamin A Negatively Controls the PI3K Pathway

    PubMed Central

    Najib, Souad; Saint-Laurent, Nathalie; Estève, Jean-Pierre; Schulz, Stefan; Boutet-Robinet, Elisa; Fourmy, Daniel; Lättig, Jens; Mollereau, Catherine; Pyronnet, Stéphane; Susini, Christiane

    2012-01-01

    Frequent oncogenic alterations occur in the phosphoinositide 3-kinase (PI3K) pathway, urging identification of novel negative controls. We previously reported an original mechanism for restraining PI3K activity, controlled by the somatostatin G protein-coupled receptor (GPCR) sst2 and involving a ligand-regulated interaction between sst2 with the PI3K regulatory p85 subunit. We here identify the scaffolding protein filamin A (FLNA) as a critical player regulating the dynamic of this complex. A preexisting sst2-p85 complex, which was shown to account for a significant basal PI3K activity in the absence of ligand, is disrupted upon sst2 activation. FLNA was here identified as a competitor of p85 for direct binding to two juxtaposed sites on sst2. Switching of GPCR binding preference from p85 toward FLNA is determined by changes in the tyrosine phosphorylation of p85- and FLNA-binding sites on sst2 upon activation. It results in the disruption of the sst2-p85 complex and the subsequent inhibition of PI3K. Knocking down FLNA expression, or abrogating FLNA recruitment to sst2, reversed the inhibition of PI3K and of tumor growth induced by sst2. Importantly, we report that this FLNA inhibitory control on PI3K can be generalized to another GPCR, the mu opioid receptor, thereby providing an unprecedented mechanism underlying GPCR-negative control on PI3K. PMID:22203038

  16. The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global negative regulator affecting expression of several categories of genes, including mating-pheromone-responsive genes.

    PubMed

    Irie, K; Yamaguchi, K; Kawase, K; Matsumoto, K

    1994-05-01

    The STE4 gene encodes the beta subunit of a heterotrimeric G protein that is an essential component of the pheromone signal transduction pathway. To identify downstream component(s) of Ste4, we sought pseudo-revertants that restored mating competence to ste4 mutants. The suppressor mot2 was isolated as a recessive mutation that restored conjugational competence to a temperature-sensitive ste4 mutant and simultaneously conferred a temperature-sensitive growth phenotype. The MOT2 gene encodes a putative zinc finger protein, the deletion of which resulted in temperature-sensitive growth, increased expression of FUS1 in the absence of pheromones, and suppression of a deletion of the alpha-factor receptor. On the other hand, sterility resulting from deletion of STE4 was not suppressed by the mot2 deletion. These phenotypes are similar to those associated with temperature-sensitive mutations in CDC36 and CDC39, which are proposed to encode general negative regulators of transcription rather than factors involved in the pheromone response pathway. Deletion of MOT2 also caused increased transcription of unrelated genes such as GAL7 and PHO84. Overexpression of MOT2 suppresses the growth defect of temperature-sensitive mutations in CDC36 and CDC39. These observations suggest that Mot2 functions as a general negative regulator of transcription in the same processes as Cdc36 and Cdc39.

  17. The MEKK1-MKK1/MKK2-MPK4 Kinase Cascade Negatively Regulates Immunity Mediated by a Mitogen-Activated Protein Kinase Kinase Kinase in Arabidopsis[C][W

    PubMed Central

    Kong, Qing; Qu, Na; Gao, Minghui; Zhang, Zhibin; Ding, Xiaojun; Yang, Fan; Li, Yingzhong; Dong, Oliver X.; Chen, She; Li, Xin; Zhang, Yuelin

    2012-01-01

    In Arabidopsis thaliana, the MEKK1-MKK1/MKK2-MPK4 mitogen-activated protein (MAP) kinase cascade represses cell death and immune responses. In mekk1, mkk1 mkk2, and mpk4 mutants, programmed cell death and defense responses are constitutively activated, but the mechanism by which MEKK1, MKK1/MKK2, and MPK4 negatively regulate cell death and immunity was unknown. From a screen for suppressors of mkk1 mkk2, we found that mutations in suppressor of mkk1 mkk2 1 (summ1) suppress the cell death and defense responses not only in mkk1 mkk2 but also in mekk1 and mpk4. SUMM1 encodes the MAP kinase kinase kinase MEKK2. It interacts with MPK4 and is phosphorylated by MPK4 in vitro. Overexpression of SUMM1 activates cell death and defense responses that are dependent on the nucleotide binding–leucine-rich repeat protein SUMM2. Taken together, our data suggest that the MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates MEKK2 and activation of MEKK2 triggers SUMM2-mediated immune responses. PMID:22643122

  18. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production

    PubMed Central

    Isabelle, Georis; Tate, Jennifer J; Vierendeels, Fabienne; Cooper, Terrance G; Dubois, Evelyne

    2015-01-01

    The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1. PMID:26259534

  19. Members of a Novel Family of Mammalian Protein Kinases Complement the DNA-Negative Phenotype of a Vaccinia Virus ts Mutant Defective in the B1 Kinase

    PubMed Central

    Boyle, Kathleen A.; Traktman, Paula

    2004-01-01

    Temperature-sensitive (ts) mutants of vaccinia virus defective in the B1 kinase demonstrate a conditionally lethal defect in DNA synthesis. B1 is the prototypic member of a new family of protein kinases (vaccinia virus-related kinases, or VRK) that possess distinctive B1-like sequence features within their catalytic motifs (R. J. Nichols and P. Traktman, J. Biol. Chem., in press). Given the striking sequence similarity between B1 and the VRK enzymes, we proposed that they might share overlapping substrate specificity. We therefore sought to determine whether the human and mouse VRK1 enzymes (hVRK1 and mVRK1, respectively) could complement a B1 deficiency in vivo. Recombinant ts2 viruses expressing hVRK1, mVRK1, or wild-type B1 were able to synthesize viral DNA at high temperature, but those expressing the more distantly related human casein kinase 1α2 could not. Complementation required the enzymatic activity of hVRK1, since a catalytically inactive allele of hVRK1 was unable to confer a temperature-insensitive phenotype. Interestingly, rescue of viral DNA synthesis was not coupled to the ability to phosphorylate H5, the only virus-encoded protein shown to be a B1 substrate in vivo. Expression of hVRK1 during nonpermissive ts2 infections restored virus production and plaque formation, whereas expression of mVRK1 resulted in an intermediate level of rescue. Taken together, these observations indicate that enzymatically active cellular VRK1 kinases can perform the function(s) of B1 required for genome replication, most likely due to overlapping specificity for cellular and/or viral substrates. PMID:14747564

  20. BikDDA, a mutant of Bik with longer half-life expression protein, can be a novel therapeutic gene for triple-negative breast cancer.

    PubMed

    Jiao, Shiping; Wu, Minqing; Ye, Feng; Tang, Hailin; Xie, Xinhua; Xie, Xiaoming

    2014-01-01

    Our previous studies showed that BikDD, a constitutively active mutant form of Bik, exhibited powerful antitumor effects in preclinical pancreatic, lung and breast cancer models. Howerver, the antitumor activity of BikDD in triple-negative breast cancer (TNBC) is unknown. Here we show that aberrant expression of p-ERK1/2 was a meaningful molecular phenotype in TNBC patients, and can be an obstacle for treatment because of the converse correlation with Bik. A novel mutant, BikDDA, in which Ser124 was changed to Alanine to block BikDD phosphorylation by p-ERK1/2 prevented subsequent ubiquitin-proteasome degradation. BikDDA showed a prolonged half-life and enhanced pro-apoptotic ability in TNBC cells compared with BikDD. Moreover, aberrant expression of p-ERK1/2 was associated with 5-fluorouracil resistance in breast cancer patients and BikDDA enhanced the therapeutic effects of 5-fluorouracil in vitro.

  1. BikDDA, a Mutant of Bik with Longer Half-Life Expression Protein, Can Be a Novel Therapeutic Gene for Triple-Negative Breast Cancer

    PubMed Central

    Jiao, Shiping; Wu, Minqing; Ye, Feng; Tang, Hailin; Xie, Xinhua; Xie, Xiaoming

    2014-01-01

    Our previous studies showed that BikDD, a constitutively active mutant form of Bik, exhibited powerful antitumor effects in preclinical pancreatic, lung and breast cancer models. Howerver, the antitumor activity of BikDD in triple-negative breast cancer (TNBC) is unknown. Here we show that aberrant expression of p-ERK1/2 was a meaningful molecular phenotype in TNBC patients, and can be an obstacle for treatment because of the converse correlation with Bik. A novel mutant, BikDDA, in which Ser124 was changed to Alanine to block BikDD phosphorylation by p-ERK1/2 prevented subsequent ubiquitin-proteasome degradation. BikDDA showed a prolonged half-life and enhanced pro-apoptotic ability in TNBC cells compared with BikDD. Moreover, aberrant expression of p-ERK1/2 was associated with 5-fluorouracil resistance in breast cancer patients and BikDDA enhanced the therapeutic effects of 5-fluorouracil in vitro. PMID:24637719

  2. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells.

    PubMed

    Makino, Yuichi; Uenishi, Rie; Okamoto, Kensaku; Isoe, Tsubasa; Hosono, Osamu; Tanaka, Hirotoshi; Kanopka, Arvydas; Poellinger, Lorenz; Haneda, Masakazu; Morimoto, Chikao

    2007-05-11

    The inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS), a dominant negative regulator of hypoxia-inducible transcription factors (HIFs), is potentially implicated in negative regulation of angiogenesis in such tissues as the avascular cornea of the eye. We have previously shown IPAS mRNA expression is up-regulated in hypoxic tissues, which at least in part involves hypoxia-dependent alternative splicing of the transcripts from the IPAS/HIF-3alpha locus. In the present study, we demonstrate that a hypoxia-driven transcriptional mechanism also plays a role in augmentation of IPAS gene expression. Isolation and analyses of the promoter region flanking to the first exon of IPAS gene revealed a functional hypoxia response element at position -834 to -799, whereas the sequence upstream of the HIF-3alpha first exon scarcely responded to hypoxic stimuli. A transient transfection experiment demonstrated that HIF-1alpha mediates IPAS promoter activation via the functional hypoxia response element under hypoxic conditions and that a constitutively active form of HIF-1alpha is sufficient for induction of the promoter in normoxic cells. Moreover, chromatin immunoprecipitation and electrophoretic mobility shift assays showed binding of the HIF-1 complex to the element in a hypoxia-dependent manner. Taken together, HIF-1 directly up-regulates IPAS gene expression through a mechanism distinct from RNA splicing, providing a further level of negative feedback gene regulation in adaptive responses to hypoxic/ischemic conditions. PMID:17355974

  3. Loss of Bad expression confers poor prognosis in non-small cell lung cancer.

    PubMed

    Huang, Yi; Liu, Dan; Chen, Bojiang; Zeng, Jing; Wang, Lei; Zhang, Shangfu; Mo, Xianming; Li, Weimin

    2012-09-01

    Proapoptotic BH-3-only protein Bad (Bcl-Xl/Bcl-2-associated death promoter homolog, Bad) initiates apoptosis in human cells, and contributes to tumorigenesis and chemotherapy resistant in malignancies. This study explored association between the Bad expression level and prognosis in patients with non-small cell lung cancer (NSCLC). In our study, a cohort of 88 resected primary NSCLC cases were collected and analyzed. Bad expression level was determined via immunohistochemical staining assay. The prognostic significances of Bad expression were evaluated with univariate and multivariate survival analysis. The results showed that compared with normal lung tissues, Bad expression level significantly decreased in NSCLC (P < 0.05). Bad expression was associated with adjuvant therapy status. Loss of Bad independently predicted poor prognosis in whole NSCLC cohort and early stage subjects (T1 + T2 and N0 + N1) (all P < 0.05). Overall survival time was also drastically shortened for Bad negative phenotype in NSCLC patients with smoking history, especially lung squamous cell carcinoma (all P < 0.05). In conclusion, this study provided clinical evidence that loss of Bad is an independent and powerful predictor of adverse prognosis in NSCLC. Bad protein could be a new biomarker for selecting individual therapy strategies and predicting therapeutic response in subjects with NSCLC.

  4. RsmC of Erwinia carotovora subsp. carotovora Negatively Controls Motility, Extracellular Protein Production, and Virulence by Binding FlhD and Modulating Transcriptional Activity of the Master Regulator, FlhDC▿

    PubMed Central

    Chatterjee, Asita; Cui, Yaya; Chatterjee, Arun K.

    2009-01-01

    RsmC and FlhDC are global regulators controlling extracellular proteins/enzymes, rsmB RNA, motility, and virulence of Erwinia carotovora subsp. carotovora. FlhDC, the master regulator of flagellar genes, controls these traits by positively regulating gacA, fliA, and rsmC and negatively regulating hexA. RsmC, on the other hand, is a negative regulator of extracellular proteins/enzymes, motility, and virulence since the deficiency of RsmC in FlhDC+ strain results in overproduction of extracellular proteins/enzymes, hypermotility, and hypervirulence. These phenotypes are abolished in an RsmC− FlhDC− double mutant. We show that RsmC interferes with FlhDC action. Indeed, the expression of all three targets (i.e., gacA, rsmC, and fliA) positively regulated in E. carotovora subsp. carotovora by FlhDC is inhibited by RsmC. RsmC also partly relieves the inhibition of hexA expression by FlhDC. The results of yeast two-hybrid analysis revealed that RsmC binds FlhD and FlhDC, but not FlhC. We propose that binding of RsmC with FlhD/FlhDC interferes with its regulatory functions and that RsmC acts as an anti-FlhD4FlhC2 factor. We document here for the first time that RsmC interferes with activation of fliA and motility in several members of the Enterobacteriaceae family. The extent of E. carotovora subsp. carotovora RsmC-mediated inhibition of FlhDC-dependent expression of fliA and motility varies depending upon enterobacterial species. The data presented here support the idea that differences in structural features in enterobacterial FlhD are responsible for differential susceptibility to E. carotovora subsp. carotovora RsmC action. PMID:19447906

  5. Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation.

    PubMed

    Dubuissez, Marion; Loison, Ingrid; Paget, Sonia; Vorng, Han; Ait-Yahia, Saliha; Rohr, Olivier; Tsicopoulos, Anne; Leprince, Dominique

    2016-07-01

    The transcription factor BCL11B/CTIP2 is a major regulatory protein implicated in various aspects of development, function and survival of T cells. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation and SUMOylation modulate BCL11B transcriptional activity, switching it from a repressor in naive murine thymocytes to a transcriptional activator in activated thymocytes. Here, we show that BCL11B interacts via its conserved N-terminal MSRRKQ motif with endogenous MTA1 and MTA3 proteins to recruit various NuRD complexes. Furthermore, we demonstrate that protein kinase C (PKC)-mediated phosphorylation of BCL11B Ser2 does not significantly impact BCL11B SUMOylation but negatively regulates NuRD recruitment by dampening the interaction with MTA1 or MTA3 (MTA1/3) and RbAp46 proteins. We detected increased phosphorylation of BCL11B Ser2 upon in vivo activation of transformed and primary human CD4(+) T cells. We show that following activation of CD4(+) T cells, BCL11B still binds to IL-2 and Id2 promoters but activates their transcription by recruiting P300 instead of MTA1. Prolonged stimulation results in the direct transcriptional repression of BCL11B by KLF4. Our results unveil Ser2 phosphorylation as a new BCL11B posttranslational modification linking PKC signaling pathway to T-cell receptor (TCR) activation and define a simple model for the functional switch of BCL11B from a transcriptional repressor to an activator during TCR activation of human CD4(+) T cells. PMID:27161321

  6. Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation.

    PubMed

    Zanin-Zhorov, Alexandra; Tal, Guy; Shivtiel, Shoham; Cohen, Michal; Lapidot, Tsvee; Nussbaum, Gabriel; Margalit, Raanan; Cohen, Irun R; Lider, Ofer

    2005-07-01

    Previously, we reported that treatment of T cells with the 60-kDa heat shock protein (HSP60) inhibits chemotaxis. We now report that treatment of purified human T cells with recombinant human HSP60 or its biologically active peptide p277 up-regulates suppressor of cytokine signaling (SOCS)3 expression via TLR2 and STAT3 activation. SOCS3, in turn, inhibits the downstream effects of stromal cell-derived-1alpha (CXCL12)-CXCR4 interaction in: 1) phosphorylation of ERK1/2, Pyk2, AKT, and myosin L chain, required for cell adhesion and migration; 2) formation of rear-front T cell polarity; and 3) migration into the bone marrow of NOD/SCID mice. HSP60 also activates SOCS3 in mouse lymphocytes and inhibits their chemotaxis toward stromal cell-derived factor-1alpha and their ability to adoptively transfer delayed-type hypersensitivity. These effects of HSP60 could not be attributed to LPS or LPS-associated lipoprotein contamination. Thus, HSP60 can regulate T cell-mediated inflammation via specific signal transduction and SOCS3 activation. PMID:15972659

  7. Glycogen Synthase Kinase-3β (GSK3β) Negatively Regulates PTTG1/Human Securin Protein Stability, and GSK3β Inactivation Correlates with Securin Accumulation in Breast Tumors*

    PubMed Central

    Mora-Santos, Mar; Limón-Mortés, M. Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2011-01-01

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCFβTrCP E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers. PMID:21757741

  8. The nuclear and adherent junction complex component protein ubinuclein negatively regulates the productive cycle of Epstein-Barr virus in epithelial cells.

    PubMed

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus.

  9. The Nuclear and Adherent Junction Complex Component Protein Ubinuclein Negatively Regulates the Productive Cycle of Epstein-Barr Virus in Epithelial Cells▿

    PubMed Central

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus. PMID:21084479

  10. The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish.

    PubMed

    Hashimoto, Hisashi; Rebagliati, Michael; Ahmad, Nadira; Muraoka, Osamu; Kurokawa, Tadahide; Hibi, Masahiko; Suzuki, Tohru

    2004-04-01

    We have isolated a novel gene, charon, that encodes a member of the Cerberus/Dan family of secreted factors. In zebrafish, Fugu and flounder, charon is expressed in regions embracing Kupffer's vesicle, which is considered to be the teleost fish equivalent to the region of the mouse definitive node that is required for left-right (L/R) patterning. Misexpression of Charon elicited phenotypes similar to those of mutant embryos defective in Nodal signaling or embryos overexpressing Antivin(Atv)/Lefty1, an inhibitor for Nodal and Activin. Charon also suppressed the dorsalizing activity of all three of the known zebrafish Nodal-related proteins (Cyclops, Squint and Southpaw), indicating that Charon can antagonize Nodal signaling. Because Southpaw functions in the L/R patterning of lateral plate mesoderm and the diencephalon, we asked whether Charon is involved in regulating L/R asymmetry. Inhibition of Charon's function by antisense morpholino oligonucleotides (MOs) led to a loss of L/R polarity, as evidenced by bilateral expression of the left side-specific genes in the lateral plate mesoderm (southpaw, cyclops, atv/lefty1, lefty2 and pitx2) and diencephalon (cyclops, atv/lefty1 and pitx2), and defects in early (heart jogging) and late (heart looping) asymmetric heart development, but did not disturb the notochord development or the atv/lefty1-mediated midline barrier function. MO-mediated inhibition of both Charon and Southpaw led to a reduction in or loss of the expression of the left side-specific genes, suggesting that Southpaw is epistatic to Charon in left-side formation. These data indicate that antagonistic interactions between Charon and Nodal (Southpaw), which take place in regions adjacent to Kupffer's vesicle, play an important role in L/R patterning in zebrafish.

  11. Protein–Protein Interfaces from Cytochrome c Oxidase I Evolve Faster than Nonbinding Surfaces, yet Negative Selection Is the Driving Force

    PubMed Central

    Aledo, Juan Carlos; Valverde, Héctor; Ruíz-Camacho, Manuel; Morilla, Ian; López, Francisco Demetrio

    2014-01-01

    Respiratory complexes are encoded by two genomes (mitochondrial DNA [mtDNA] and nuclear DNA [nDNA]). Although the importance of intergenomic coadaptation is acknowledged, the forces and constraints shaping such coevolution are largely unknown. Previous works using cytochrome c oxidase (COX) as a model enzyme have led to the so-called “optimizing interaction” hypothesis. According to this view, mtDNA-encoded residues close to nDNA-encoded residues evolve faster than the rest of positions, favoring the optimization of protein–protein interfaces. Herein, using evolutionary data in combination with structural information of COX, we show that failing to discern the effects of interaction from other structural and functional effects can lead to deceptive conclusions such as the “optimizing hypothesis.” Once spurious factors have been accounted for, data analysis shows that mtDNA-encoded residues engaged in contacts are, in general, more constrained than their noncontact counterparts. Nevertheless, noncontact residues from the surface of COX I subunit are a remarkable exception, being subjected to an exceptionally high purifying selection that may be related to the maintenance of a suitable heme environment. We also report that mtDNA-encoded residues involved in contacts with other mtDNA-encoded subunits are more constrained than mtDNA-encoded residues interacting with nDNA-encoded polypeptides. This differential behavior cannot be explained on the basis of predicted thermodynamic stability, as interactions between mtDNA-encoded subunits contribute more weakly to the complex stability than those interactions between subunits encoded by different genomes. Therefore, the higher conservation observed among mtDNA-encoded residues involved in intragenome interactions is likely due to factors other than structural stability. PMID:25359921

  12. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways

    PubMed Central

    2014-01-01

    Introduction Metastasis is the main cause of breast cancer morbidity and mortality. Processes that allow for tumor cell migration and invasion are important therapeutic targets. Here we demonstrate that receptor-interacting protein kinase 2 (RIP2), a kinase known to be involved in inflammatory processes, also has novel roles in cancer cell migration and invasion. Methods A total of six breast cancer expression databases, including The Cancer Genome Atlas, were assessed for RIP2 expression among various clinical subtypes and its role as a prognostic biomarker. mRNA fluorescence in situ hybridization (FISH) for RIP2 was performed on 17 stage III breast cancers to determine if there was a correlation between RIP2 expression and lymph node involvement. RNA-interference was used to knock-down RIP2 expression in MDA-MB-231, Htb126, SUM149PT, MCF7, T47D, and HCC1428 cells. Cell migration and invasion were measured in vitro by scratch/wound healing and transwell migration assays. A xenograft mouse model was used to assess tumor growth and chemosensitivity to docetaxel in vivo in MDA-MB-231 cells with and without RIP2 small hairpin RNA knockdown. Western blot and immunofluorescence imaging were used to evaluate protein expressions. Results Interrogation of expression databases showed that RIP2 expression is significantly over-expressed in triple-negative breast cancers (TNBC: estrogen-receptor (ER) negative, progesterone-receptor (PR) negative, Her2/neu- (Her2) negative), compared to other clinical subtypes. High RIP2 expression correlates with worse progression-free survival using a combined breast cancer expression array dataset consisting of 946 patients. Multivariate analysis shows RIP2 as an independent prognostic biomarker. Knock-down of RIP2 significantly decreases migration in both scratch/wound healing and transwell migration assays in MDA-MB-231, Htb126, SUM149PT, MCF7, and T47D cells and is correlated with decreased Nuclear Factor-kappaB and c-Jun N

  13. Serum retinol binding protein 4 is negatively related to beta cell function in Chinese women with non-alcoholic fatty liver disease: a cross-sectional study

    PubMed Central

    2013-01-01

    Background To observe the relationship between serum retinol binding protein 4(RBP4) and β cell function in Chinese subjects with non-alcoholic fatty liver disease (NAFLD) and without known diabetes. Methods 106 patients diagnosed as fatty liver by ultrasonography (M/F: 61/45; aged 47.44 ± 14.16 years) were enrolled in our current cross-sectional study. Subjects with known diabetes, chronic virus hepatitis and excessive alcohol consumption were excluded. Serum RBP4 was detected by ELISA and validated by quantitative Western blotting. β cell function were assessed by HOMA in all subjects and by hyperglycemic clamp in 17 normal glucose tolerance subjects (M = 6, F = 11). Results The levels of serum RBP4 in men were higher than that in women (55.96 ± 11.14 vs 45.87 ± 10.31 μg/ml, p < 0.001). Pearson’s correlation analysis demonstrated that in women, serum RBP4 levels were significantly associated with fasting blood glucose (FBG), HOMA-β, and increment of first phase insulin secretion (1PH), but not associated with age, BMI, waist circumference, WHR, systolic (SBP) and diastolic blood pressure (DBP), TC, TG, HDL-c, LDL-c, 2 h blood glucose, HOMA-IR, ALT, AST, γ-GT, hepatic fat content (HFC), and insulin sensitivity index (ISI). However, in men, serum RBP4 levels were significantly associated with HDL-c, ALT, AST, but not associated with any other parameters as mentioned above. A stepwise multiple linear regression analysis demonstrated that in women, HOMA-IR and RBP4 were significantly associated with HOMA-β, while in men, HOMA-IR and BMI were significantly variables associated with HOMA-β. Conclusions Serum RBP4, secreted mainly by liver and adipose tissue, may involve in the pathogenesis of β cell dysfunction in Chinese women patients with NAFLD. PMID:24160775

  14. Meningitis - gram-negative

    MedlinePlus

    Gram-negative meningitis ... Acute bacterial meningitis can be caused by Gram-negative bacteria. Meningococcal and H. influenzae meningitis are caused by Gram-negative bacteria and are covered in detail in other articles. This article ...

  15. 2,2′-Diphenyl-3,3′-Diindolylmethane: A Potent Compound Induces Apoptosis in Breast Cancer Cells by Inhibiting EGFR Pathway

    PubMed Central

    Bhowmik, Arijit; Das, Nilanjana; Pal, Uttam; Mandal, Madhumita; Bhattacharya, Seemana; Sarkar, Moumita; Jaisankar, Parasuraman; Maiti, Nakul C.; Ghosh, Mrinal K.

    2013-01-01

    Despite recent advances in medicine, 30–40% of patients with breast cancer show recurrence underscoring the need for improved effective therapy. In this study, by in vitro screening we have selected a novel synthetic indole derivative 2,2'-diphenyl-3,3'-diindolylmethane (DPDIM) as a potential anti- breast cancer agent. DPDIM induces apoptosis both in vitro in breast cancer cells MCF7, MDA-MB 231 and MDA-MB 468 and in vivo in 7,12-dimethylbenz[α]anthracene (DMBA) induced Sprague-Dawley (SD) rat mammary tumor. Our in vitro studies show that DPDIM exerts apoptotic effect by negatively regulating the activity of EGFR and its downstream molecules like STAT3, AKT and ERK1/2 which are involved in the proliferation and survival of these cancer cells. In silico predictions also suggest that DPDIM may bind to EGFR at its ATP binding site. DPDIM furthermore inhibits EGF induced increased cell viability. We have also shown decreased expression of pro-survival factor Bcl-XL as well as increase in the level of pro-apoptotic proteins like Bax, Bad, Bim in DPDIM treated cells in vitro and in vivo. Our results further indicate that the DPDIM induced apoptosis is mediated through mitochondrial apoptotic pathway involving the caspase-cascade. To the best of our knowledge this is the first report of DPDIM for its anticancer activity. Altogether this report suggests that DPDIM could be an effective therapeutic agent for breast cancer. PMID:23555785

  16. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels.

    PubMed Central

    Kyöstiö, S R; Owens, R A; Weitzman, M D; Antoni, B A; Chejanovsky, N; Carter, B J

    1994-01-01

    The rep gene of adeno-associated virus type 2 (AAV) encodes four overlapping Rep proteins that are involved in gene regulation and replication of the virus. We studied here the regulation of mRNA transcribed from the AAV p5 and p19 promoters, using transient expression in human 293 cells followed by Northern (RNA) blot analysis of the mRNA. The p5 transcript encodes the larger Rep proteins, Rep78 and Rep68, while the p19 transcript encodes the smaller proteins, Rep52 and Rep40. A plasmid (pNTC3) containing the entire AAV genome with an amber mutation in the rep gene accumulated higher levels of p5 and p19 mRNA than a plasmid containing the wild-type AAV genome. Addition of increasing amounts of the wild-type rep gene in trans from a heterologous promoter inhibited p5 and p19 mRNA accumulation from pNTC3, indicating that the levels of both transcripts were decreased by the Rep proteins. Cotransfections with plasmids producing individual wild-type Rep proteins in trans showed that p5 and p19 mRNA accumulation was inhibited 5- to 10-fold by Rep78 and Rep68 and 2- to 3-fold by Rep52 and Rep40. Analysis of carboxyl-terminal truncation mutants of Rep78 showed that the ability of Rep78 to decrease p5 and p19 mRNA levels was lost when 159 or more amino acids were deleted. Rep78 and Rep68 mutants deleted for the methionine at residue 225 showed decreased abilities to down-regulate both p5 and p19 transcript levels, while mutants containing a substitution of glycine for the methionine resembled the wild-type Rep78. A Rep78 protein with a mutation in the putative nucleoside triphosphate binding site inhibited expression from p5 but not from p19, suggesting that the regulation of p5 transcript levels by Rep78 and Rep68 differs from that of p19. A deletion analysis of AAV cis sequences revealed that an intact terminal repeat was not required for negative regulation of p5 and p19 transcript levels and that the regulation of p19 mRNA levels by Rep78 did not require the presence

  17. Activation of the beta-adrenoceptor-protein kinase A signaling pathway within the ventral bed nucleus of the stria terminalis mediates the negative affective component of pain in rats.

    PubMed

    Deyama, Satoshi; Katayama, Takahiro; Ohno, Atsushi; Nakagawa, Takayuki; Kaneko, Shuji; Yamaguchi, Taku; Yoshioka, Mitsuhiro; Minami, Masabumi

    2008-07-30

    Pain is an unpleasant sensory and emotional experience. The neural systems underlying the sensory component of pain have been studied extensively, but we are only beginning to understand those underlying its affective component. The bed nucleus of the stria terminalis (BNST) has been implicated in stress responses and negative affective states, such as anxiety, fear, and aversion. Recently, we demonstrated the crucial role of the BNST in the negative affective component of pain using the conditioned place aversion (CPA) test. In the present study, we investigated the involvement of the beta-adrenoceptor-protein kinase A (PKA) signaling pathway within the BNST, in particular, within the ventral part of the BNST (vBNST), in pain-induced aversion in male Sprague Dawley rats. In vivo microdialysis showed that extracellular noradrenaline levels within the vBNST were significantly increased by intraplantar formalin injection. Using the CPA test, we found that intra-vBNST injection of timolol, a beta-adrenoceptor antagonist, dose-dependently attenuated the intraplantar-formalin-induced CPA (F-CPA) without reducing nociceptive behaviors. Experiments with subtype-selective antagonists demonstrated the essential role of beta(2)-adrenoceptors in F-CPA. Intra-vBNST injection of isoproterenol, a beta-adrenoceptor agonist, dose-dependently produced CPA even in the absence of noxious stimulation. This isoproterenol-induced CPA was reversed by the coinjection of Rp-cyclic adenosine monophosphorothioate (Rp-cAMPS), a selective PKA inhibitor. Furthermore, intra-vBNST injection of Rp-cAMPS dose-dependently attenuated the F-CPA. Together, these results suggest that PKA activation within the vBNST via the enhancement of beta-adrenergic transmission is important for the negative affective component of pain.

  18. Upregulation of Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast Cancer

    PubMed Central

    Kochel, Tyler J.; Goloubeva, Olga G.; Fulton, Amy M.

    2016-01-01

    Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1–EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer. PMID:27257388

  19. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA

    PubMed Central

    Voloshin, Oleg N.; Ramirez, Benjamin E.; Bax, Ad; Camerini-Otero, R. Daniel

    2001-01-01

    DinI is a recently described negative regulator of the SOS response in Escherichia coli. Here we show that it physically interacts with RecA and prevents the binding of single-stranded DNA to RecA, which is required for the activation of the latter. DinI also displaces ssDNA from a stable RecA–DNA cofilament, thus eliminating the SOS signal. In addition, DinI inhibits RecA-mediated homologous DNA pairing, but has no effect on actively proceeding strand exchange. Biochemical data, together with the molecular structure, define the C-terminal α-helix in DinI as the active site of the protein. In an unusual example of molecular mimicry, a negatively charged surface on this α-helix, by imitating single-stranded DNA, interacts with the loop L2 homologous pairing region of RecA and interferes with the activation of RecA. PMID:11230150

  20. Upregulation of Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast Cancer.

    PubMed

    Kochel, Tyler J; Goloubeva, Olga G; Fulton, Amy M

    2016-01-01

    Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1-EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer. PMID:27257388

  1. Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme-pRNA intermediate formation.

    PubMed

    Neubauer, Julie; Ogino, Minako; Green, Todd J; Ogino, Tomoaki

    2016-01-01

    The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase; block V) domain in RNA polymerase L proteins of non-segmented negative strand (NNS) RNA viruses (e.g. rabies, measles, Ebola) contains five collinear sequence elements, Rx(3)Wx(3-8)ΦxGxζx(P/A) (motif A; Φ, hydrophobic; ζ, hydrophilic), (Y/W)ΦGSxT (motif B), W (motif C), HR (motif D) and ζxxΦx(F/Y)QxxΦ (motif E). We performed site-directed mutagenesis of the L protein of vesicular stomatitis virus (VSV, a prototypic NNS RNA virus) to examine participation of these motifs in mRNA capping. Similar to the catalytic residues in motif D, G1100 in motif A, T1157 in motif B, W1188 in motif C, and F1269 and Q1270 in motif E were found to be essential or important for the PRNTase activity in the step of the covalent L-pRNA intermediate formation, but not for the GTPase activity that generates GDP (pRNA acceptor). Cap defective mutations in these residues induced termination of mRNA synthesis at position +40 followed by aberrant stop-start transcription, and abolished virus gene expression in host cells. These results suggest that the conserved motifs constitute the active site of the PRNTase domain and the L-pRNA intermediate formation followed by the cap formation is essential for successful synthesis of full-length mRNAs.

  2. Nuclear T-STAR Protein Expression Correlates with HER2 Status, Hormone Receptor Negativity and Prolonged Recurrence Free Survival in Primary Breast Cancer and Decreased Cancer Cell Growth In Vitro

    PubMed Central

    Sernbo, Sandra; Borrebaeck, Carl A. K.; Uhlén, Mathias; Jirström, Karin; Ek, Sara

    2013-01-01

    T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification. PMID:23923007

  3. Nuclear T-STAR protein expression correlates with HER2 status, hormone receptor negativity and prolonged recurrence free survival in primary breast cancer and decreased cancer cell growth in vitro.

    PubMed

    Sernbo, Sandra; Borrebaeck, Carl A K; Uhlén, Mathias; Jirström, Karin; Ek, Sara

    2013-01-01

    T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification.

  4. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  5. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  6. Sentential Negation in English

    ERIC Educational Resources Information Center

    Mowarin, Macaulay

    2009-01-01

    This paper undertakes a detailed analysis of sentential negation in the English language with Chomsky's Government-Binding theory of Transformational Grammar as theoretical model. It distinguishes between constituent and sentential negation in English. The essay identifies the exact position of Negation phrase in an English clause structure. It…

  7. Elevated Protein Kinase D3 (PKD3) Expression Supports Proliferation of Triple-negative Breast Cancer Cells and Contributes to mTORC1-S6K1 Pathway Activation*

    PubMed Central

    Huck, Bettina; Duss, Stephan; Hausser, Angelika; Olayioye, Monilola A.

    2014-01-01

    Here, we show that the expression of the Golgi-localized serine-threonine kinase protein kinase D3 (PKD3) is elevated in triple-negative breast cancer (TNBC). Using an antibody array, we identified PKD3 to trigger the activation of S6 kinase 1 (S6K1), a main downstream target of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Accordingly, PKD3 knockdown in TNBC cells led to reduced S6K1 phosphorylation, which was associated with impaired activation of mTORC1 at endolysosomal membranes, the accumulation of the mannose 6-phosphate receptor in and the recruitment of the autophagy marker light chain 3 to enlarged acidic vesicles. We further show that PKD3 depletion strongly inhibited cell spreading and proliferation of TNBC cells, identifying this kinase as a potential novel molecular therapeutic target in TNBC. Together, our data suggest that PKD3 in TNBC cells provides a molecular connection between the Golgi and endolysosomal compartments to enhance proliferative mTORC1-S6K1 signaling. PMID:24337579

  8. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model.

    PubMed

    Amoury, Manal; Kolberg, Katharina; Pham, Anh-Tuan; Hristodorov, Dmitrij; Mladenov, Radoslav; Di Fiore, Stefano; Helfrich, Wijnand; Kiessling, Fabian; Fischer, Rainer; Pardo, Alessa; Thepen, Theophilus; Hussain, Ahmad F; Nachreiner, Thomas; Barth, Stefan

    2016-03-28

    Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype. Thus, selective elimination of EpCAM(+) TNBC tumor cells is of clinical importance. Therefore, we constructed a fully human targeted cytolytic fusion protein, designated GbR201K-αEpCAM(scFv), in which an EpCAM-selective single-chain antibody fragment (scFv) is genetically fused to a granzyme B (Gb) mutant with reduced sensitivity to its natural inhibitor serpin B9. In vitro studies confirmed its specific binding, internalization and cytotoxicity toward a panel of EpCAM-expressing TNBC cells. Biodistribution kinetics and tumor-targeting efficacy using MDA-MB-468 cells in a human TNBC xenograft model in mice revealed selective accumulation of GbR201K-αEpCAM(scFv) in the tumors after i.v. injection. Moreover, treatment of tumor-bearing mice demonstrated a prominent inhibition of tumor growth of up to 50 % in this proof-of-concept study. Taken together, our results indicate that GbR201K-αEpCAM(scFv) is a promising novel targeted therapeutic for the treatment of TNBC. PMID:26806809

  9. A re-examination of the MDM2/p53 interaction leads to revised design criteria for novel inhibitors.

    PubMed

    Vasilevich, Natalya I; Afanasyev, Ilya I; Kovalskiy, Dmitry A; Genis, Dmitry V; Kochubey, Valery S

    2014-11-01

    The general model of epitope-type MDM2 inhibitor was developed based on the structural information on the complexes between MDM2 and various low molecular weight ligands found in the PDB database. Application of this model to our in-house library has led us to a new scaffold capable of interrupting protein-protein interactions. A synthetic library based on this and related scaffolds resulted in new classes of compounds that possess biochemical and cellular activity and good pharmacokinetic properties. We assume that such general approach to PPI inhibitors design may be useful for the development of inhibitors of various PPI types, including Bcl/XL.

  10. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  11. A single-nucleotide polymorphism in the 3'-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer.

    PubMed

    Wang, Wenmiao; Yuan, Peng; Yu, Dianke; Du, Feng; Zhu, Anjie; Li, Qing; Zhang, Pin; Lin, Dongxin; Xu, Binghe

    2016-04-01

    Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and high heterogeneity. The aim of this study was to screen patients for single-nucleotide polymorphisms (SNPs) associated with the prognosis of TNBC. Database-derived SNPs (NextBio, Ensembl, NCBI and MirSNP) located in the 3'-untranslated regions (3'-UTRs) of genes that are differentially expressed in breast cancer were selected. The possible associations between 111 SNPs and progression risk among 323 TNBC patients were investigated using a two-step case-control study with a discovery cohort (n=162) and a validation cohort (n=161). We identified the rs1054135 SNP in the adipocyte fatty acid binding protein 4 (FABP4) gene as a predictor of TNBC recurrence. The G allele of rs1054135 was associated with a reduced risk of disease progression as well as a prolonged disease-free survival time (DFS), with a hazard ratio (HR) for recurrence in the combined sample of 0.269 [95%CI: 0.098-0.735;P=0.001]. Notably, for individuals having the rs1054135 SNP with the AA/AG genotype, the magnitude of increased tumour recurrence risk for overweight patients (BMI≥25kg/m2) was significantly elevated (HR2.53; 95%CI: 1.06-6.03). Immunohistochemical staining of adipocytes adjacent to TNBC tissues showed that the expression level of FABP4 was statistically significantly lower in patients with the rs1054135-GG genotype and those in the disease-free group (P=0.0004 and P=0.0091, respectively). These results suggested that the expression of a lipid metabolism-related gene and an important SNP in the 3'-UTR of FABP4 are associated with TNBC prognosis, which may aid in the screening of high-risk patients with TNBC recurrence and the development of novel chemotherapeutic agents.

  12. Negative Questions in Chinese

    ERIC Educational Resources Information Center

    Yat-shing, Cheung

    1974-01-01

    Mainly concerned with where negative questions in Chinese originate.An abstract treatment allows the derviation of all questions from a general underlying structure with disjunctive pattern and accounts for the discordance between the answer to a negative question and its answer particle. (Author/RM)

  13. Genetic suppression of HO-1 exacerbates renal damage: reversed by an increase in the antiapoptotic signaling pathway.

    PubMed

    Olszanecki, Rafal; Rezzani, Rita; Omura, Shinji; Stec, David E; Rodella, Luigi; Botros, Fady T; Goodman, Alvin I; Drummond, George; Abraham, Nader G

    2007-01-01

    Apoptosis has been shown to contribute to the development of acute and chronic renal failure. The antiapoptotic action of the heme oxygenase (HO) system may represent an important protective mechanism in kidney pathology. We examined whether the lack of HO-1 would influence apoptosis in clipped kidneys of two-kidney, one-clip (2K1C) rats. Five-day-old Sprague-Dawley rats were injected in the left ventricle with approximately 5 x 10(9) colony-forming units/ml of retrovirus containing rat HO-1 antisense (LSN-RHO-1-AS) or control retrovirus (LXSN). After 3 mo, a 0.25-mm U-shaped silver clip was placed around the left renal artery. Animals were killed 3 wk later. Clipping the renal artery in LSN-RHO-1-AS rats did not result in increased HO-1 expression. In contrast to LXSN animals, 2K1C LSN-RHO-1-AS rats showed increased expression of cyclooxygenase 2 (COX-2) and higher 3-nitrotyrosine (3-NT) content as well as increased expression of the proapoptotic protein Apaf-1 and caspase-3 activity. Clipping the renal artery in LXSN rats resulted in increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xl, while clipping the renal artery in LSN-RHO-1-AS rats did not change Bcl-2 levels and decreased the levels of Bcl-xl. Treatment of LSN-RHO-1-AS rats with cobalt protoporphyrin resulted in induction of renal HO-1, which was accompanied by decreases in blood pressure, COX-2, 3-NT, and caspase-3 activity, and increased expression of anti-apoptotic molecules (Bcl-2, Bcl-xl, Akt and p-Akt) in the clipped kidneys. These findings underscore the prominent role of HO-1 in counteracting apoptosis in this 2K1C renovascular hypertension model. PMID:16940561

  14. [Dephosphorelation of Bad and upregulation of Bcl-2 in hippocampus of rats following limbic seizure induced by kainic acid injection into amygdaloid nucleus].

    PubMed

    Li, Tian-Fu; Lu, Chuan-Zhen; Xia, Zuo-Li; Niu, Jing-Zhong; Yang, Ming-Feng; Luo, Yu-Min; Hong, Zhen

    2005-06-25

    The purpose of the present study was to explore the seizure-induced changes in Bad (Bcl-2-associated death protein), 14-3-3, phosphoBad, Bcl-2 and Bcl-XL expression in the rat model of focal limbic seizure. Unilateral intra-amygdaloid injection of kainic acid (KA) was made to induce seizure. Electroencephalogram (EEG) and regional cerebral flow (r-CBF) were monitored continuously. Diazepam (30 mg/kg) was administered to terminate the seizure. The apoptotic and surviving neurons in the hippocampus were observed by terminal deoxynucleotidyl transferrase-mediated dUTP nick end labeling (TUNEL) and cresyl violet staining, the expression of Bad, 14-3-3, phosphoBad, Bcl-2 and Bcl-XL were detected with immunofluorescence, Western blot and immunoprecipitation. The results showed that TUNEL-positive neurons appeared at 8 h and reached maximum at 24 h following seizure cessation within the ipsilateral CA3 subfield of the hippocampus. Seizure induced the dephosphorylation of Bad and the dissociation of Bad from its chaperone protein 14-3-3 and subsequent dimerization of Bad with Bcl-XL. The expression of phosphoBad decreased and Bcl-2 increased. There was little change in r-CBF after the seizure. These results suggest that seizure leads to a dephosphorylation of Bad and an upregulation of Bcl-2. Dephosphorylation of Bad may be injurious while the upregulation of Bcl-2 may be protective to the brain damage induced by seizures, but not related with r-CBF.

  15. Kriging without negative weights

    SciTech Connect

    Szidarovszky, F.; Baafi, E.Y.; Kim, Y.C.

    1987-08-01

    Under a constant drift, the linear kriging estimator is considered as a weighted average of n available sample values. Kriging weights are determined such that the estimator is unbiased and optimal. To meet these requirements, negative kriging weights are sometimes found. Use of negative weights can produce negative block grades, which makes no practical sense. In some applications, all kriging weights may be required to be nonnegative. In this paper, a derivation of a set of nonlinear equations with the nonnegative constraint is presented. A numerical algorithm also is developed for the solution of the new set of kriging equations.

  16. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  17. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  18. Logo and Negative Numbers.

    ERIC Educational Resources Information Center

    Strawn, Candace A.

    1998-01-01

    Describes LOGO's turtle graphics capabilities based on a sixth-grade classroom's activities with negative numbers and Logo programming. A sidebar explains LOGO and offers suggestions to teachers for using LOGO effectively. (LRW)

  19. A Novel Angiogenesis Inhibitor Bevacizumab Induces Apoptosis in the Rat Endometriosis Model

    PubMed Central

    Soysal, D; Kızıldağ, S; Saatlı, B; Posacı, C; Soysal, S; Koyuncuoğlu, M; Doğan, ÖE

    2014-01-01

    Our aim was to investigate the effects of anti-vascular endothelial growth factor (anti-VEGF) antibody Bevacizumab on endometrial explants and on apoptotic gene expression levels in the rat endometriosis model. Endometriotic implants were surgically formed, and rats treated with (i) 1 mg/kg single subcutaneous injection of depot leuprolide acetate; (ii) 2.5 mg/kg of single intaperitoneal injection of bevacizumab; (iii) intraperitoneal injection of saline. Histopathologic scores and adhesion scores of endometriotic foci and levels of Bcl-2-associated X protein (Bax), Cytochrome c (Cyt-c), B-cell lymphoma/leukemia 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) mRNA gene expressions of endometriotic foci. Bevacizumab treatment decreased the endometriotic explant size compared with control. Bevacizumab-treated rats had lower total adhesion scores when compared with the control group. Semi-quantitative evaluation of the persistence of endometrial epithelial cells in the explants showed a lower score in gonadotropin-releasing hormone (GnRH) agonist-treated rats compared with control rats. In Bevacizumab increased expression of Bax 3.1-fold, Cyt-c 1.3-fold and decreased expression of Bcl-2 0.4-fold, Bcl-xl 0.8-fold compared with the control group. The GnRH agonist increased expression of Bax 3.0 fold, Cyt-c 1.3 fold and decreased expression of Bcl-2 0.4-fold, Bcl-xl 0.8-fold, compared with the control group. This study suggests that a novel angiogenesis inhibitor, anti-VEGF antibody bevacizumab is as effective as GnRH agonist in the regression of the endometriotic lesions in rat endometriosis model. One possible mechanism of this effect is the induction of apoptosis. PMID:25937801

  20. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells.

    PubMed

    Urresti, Jorge; Ruiz-Meana, Marisol; Coccia, Elena; Arévalo, Juan Carlos; Castellano, José; Fernández-Sanz, Celia; Galenkamp, Koen M O; Planells-Ferrer, Laura; Moubarak, Rana S; Llecha-Cano, Núria; Reix, Stéphanie; García-Dorado, David; Barneda-Zahonero, Bruna; Comella, Joan X

    2016-01-15

    Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.

  1. Interleukin-6: A Constitutive Modulator of Glycoprotein 130, Neuroinflammatory and Cell Survival Signaling in Retina

    PubMed Central

    Echevarria, Franklin D.; Rickman, Abigayle E.; Sappington, Rebecca M.

    2016-01-01

    Objective The interleukin-6 (IL-6) family of cytokines and their signal transducer glycoprotein (gp130) are implicated in inflammatory and cell survival functions in glaucoma. There are several avenues for interdependent modulation of IL-6 family members and gp130 signaling. Here we investigated whether IL-6 modulates gp130 and related neuroinflammatory, cell survival and regulatory signaling in both healthy and glaucomatous retina. Methods In naïve and glaucomatous (Microbead Occlusion Model), wildtype (WT) and IL-6 knockout (IL-6−/−) mice, we examined gp130 protein expression and localization, using western blot and immunohistochemistry. Gene targets related to IL-6 and gp130 signaling and pertinent to neuroinflammation (TNFα, IL-1β), cell health (Bax, Bcl-xl) and STAT3 regulation (Socs3) were quantified using qRTPCR. Results In the naïve retina, IL-6−/− retina contained significantly less gp130 compared to WT retina. This IL-6-related decrease in gp130 was accompanied by a reduction in mRNA expression of TNFα, Socs3 and Bax. After 4 weeks of microbead-induced ocular hypertension, both microbead- and saline-injected (control) eyes of IL-6−/− mice exhibited higher expression of TNFα, compared to WT mice. IL-1β expression was also reduced specifically in IL-6−/− retina with microbead-induced glaucoma. While saline and microbead injection increased Bcl-xl and Socs3 mRNA in both WT and IL-6−/− mice, IL-6−/− deficiency led to smaller increases for both Bcl-xl and Socs3. Conclusions Our findings support a role for IL-6 in setting baseline parameters for neuroinflammatory, cell health and gp130 regulatory signaling that can impact the nature and magnitude of retinal responses to glaucoma-related stressors.

  2. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells.

    PubMed

    Urresti, Jorge; Ruiz-Meana, Marisol; Coccia, Elena; Arévalo, Juan Carlos; Castellano, José; Fernández-Sanz, Celia; Galenkamp, Koen M O; Planells-Ferrer, Laura; Moubarak, Rana S; Llecha-Cano, Núria; Reix, Stéphanie; García-Dorado, David; Barneda-Zahonero, Bruna; Comella, Joan X

    2016-01-15

    Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG. PMID:26582200

  3. Selective Bcl-2 inhibition to treat chronic lymphocytic leukemia and non-Hodgkin lymphoma.

    PubMed

    Ng, Samuel Y; Davids, Matthew S

    2014-04-01

    ABT-199, a second-generation BH3 mimetic, is an orally bioavailable, small molecule inhibitor that selectively targets B-cell lymphoma/leukemia 2 (Bcl-2). Bcl-2 is a key protein that inhibits the intrinsic mitochondrial pathway of apoptosis. First-generation BH3 mimetics such as navitoclax (ABT-263) had a broad range of inhibitory activity against Bcl-2 family members, including Bcl-2, Bcl-XL, and Bcl-w. This drug demonstrated antitumor activity in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL); however, on-target Bcl-XL inhibition led to dose-dependent thrombocytopenia and posed a barrier to maximizing the activity of this agent. Through an elegant reengineering of navitoclax, ABT-199 was developed as a Bcl-2-selective small molecule inhibitor. In preclinical studies, ABT-199 was shown to have greater than 100-fold selectivity for Bcl-2 over Bcl-XL. This selectivity has been consistent with the early results of the ongoing phase 1 clinical trial of ABT-199 in which the drug has demonstrated high rates of activity in relapsed/refractory CLL and NHL without dose-dependent thrombocytopenia. On-target tumor lysis syndrome (TLS) has been observed in a subset of patients treated with ABT-199, but changes in initial dosing and stepwise dose escalation have now been implemented to mitigate this risk. Ongoing correlative studies are being performed to help identify patients with the highest chance of response and the greatest risk for TLS. PMID:25003352

  4. No to negative data

    SciTech Connect

    Wiley, H. S.

    2008-04-01

    A frequent criticism in biology is that we don’t publish our negative data. As a result, the literature has become biased towards papers that favor specific hypotheses1. Some scientists have become so concerned about this trend that they have created journals dedicated to publishing negative results (e.g. the Journal of Negative Results in Biomedicine). Personally, I don’t think they should bother. I say this because I believe negative results are not worth publishing. Rest assured that I do not include drug studies that show a lack of effectiveness towards a specific disease or condition. This type of finding is significant in a societal context, not a scientific one, and thus we all have a vested interest in seeing this type of result published. I am talking about a set of experimental results that fail to support a particular hypothesis. The problem with these types of negative results is that they don’t actually advance science. Science is a set of ideas that can be supported by observations. A negative result does not support any specific idea, but only tells you what isn’t right. Well, there are only a small number of potential hypotheses that are correct, but essentially an infinite number of ideas are not correct. I don’t want to waste my time reading a paper about what doesn’t happen, just about those things that do. I can remember a positive result because I can associate it with a specific concept. What do I do with a negative one? It is hard enough to following the current literature. A flood of negative results would make that task all but impossible

  5. Negative affixes in medical English.

    PubMed

    Dzuganova, B

    2006-01-01

    Many medical terms have negative meaning expressed by means of a negative prefix or suffix. The most frequently used negative prefixes are: a-, dis-, in-, non-, and un-. There is only one negative suffix -less (Ref. 15). PMID:17125069

  6. Anxiety and feedback negativity.

    PubMed

    Gu, Ruolei; Huang, Yu-Xia; Luo, Yue-Jia

    2010-09-01

    It has been suggested that anxious individuals are more prone to feel that negative outcomes are particularly extreme and to interpret ambiguous outcomes as negative compared to nonanxious individuals. Previous studies have demonstrated that the feedback negativity (FN) component of event-related brain potential (ERP) is sensitive to outcome evaluation and outcome expectancy. Hence, we predicted that the FN should be different between high trait-anxiety (HTA) and low trait-anxiety (LTA) individuals. To test our hypothesis, the ERPs were recorded during a simple monetary gambling task. The FN was measured as a difference wave created across conditions. We found that the amplitude of the FN indicating negative versus positive outcomes was significantly larger for LTA individuals compared to HTA individuals. However, there was no significant difference in the FN between groups in response to ambiguous versus positive outcomes. The results indicate that there is a relationship between the FN and individual differences in anxiety. We suggest that these results reflect the impact of anxiety on outcome expectation. Our results challenge the reinforcement learning theory of error-related negativity, which proposes that ERN and FN reflect the same cognitive process.

  7. [Chemotherapies of negative schizophrenia].

    PubMed

    Petit, M; Dollfus, S

    1991-01-01

    Five years ago, Goldberg claimed that negative symptoms of schizophrenia do respond to neuroleptics. This apparent discovery is, in fact, a very common way of thinking for European schools of psychiatry, specially the French one guided by Delay and Deniker. Initially focused on reserpine and some alerting phenothiazines such as thioproperazine, this opinion has been extended to benzamides in the 1970s. The analysis of the publications devoted to this point indicates that several drugs are actually considered as potent disinhibitors (i.e. active on negative symptoms of schizophrenia): Phenothiazines: As shown in the controlled studies by Itil (1971), Poirier-Littré (1988), fluphenazine and pipotiazine improve the BPRS anergia factor and the SANS score. Butyrophenones: The first description of the "imipramine like" effect of trifluperidol by Janssen (1959) initiated the studies by Gallant (1960), Fox (1963). They compared trifluperidol at low doses versus haloperidol and chlorpromazine at medium and high doses, BPRS anergia factor improved only at low doses. Diphenylbutylpiperidines (DPBP): Meltzer's review (1986) concluded to the efficacy of such drugs on negative symptoms appearing as a specific biochemical relationship effect. A definite analysis about doses leads to a very different interpretation: DPBP low doses and only low doses improved negative symptoms as much as some low doses of phenothiazines. On the opposite, DPBP, phenothiazines and butyrophenones high doses are inefficient.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1683624

  8. The Negative Repetition Effect

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  9. Cryo-negative staining.

    PubMed

    Adrian, M; Dubochet, J; Fuller, S D; Harris, J R

    1998-01-01

    A procedure is presented for the preparation of thin layers of vitrified biological suspensions in the presence of ammonium molybdate, which we term cryo-negative staining. The direct blotting of sample plus stain solution on holey carbon supports produces thin aqueous films across the holes, which are routinely thinner than the aqueous film produced by conventional negative staining on a continuous carbon layer. Because of this, a higher than usual concentration of negative stain (ca. 16% rather than 2%) is required for cryo-negative staining in order to produce an optimal image contrast. The maintenance of the hydrated state, the absence of adsorption to a carbon film and associated sample flattening, together with reduced stain granularity, generates high contrast cryo-images of superior quality to conventional air-dry negative staining. Image features characteristic of unstained vitrified cryo-electron microscopic specimens are present, but with reverse contrast. Examples of cryo-negative staining of several particulate biological samples are shown, including bacteriophage T2, tobacco mosaic virus (TMV), bovine liver catalase crystals, tomato bushy stunt virus (TBSV), turnip yellow mosaic virus (TYMV), keyhole limpet hemocyanin (KLH) types 1 and 2, the 20S proteasome from moss and the E. coli chaperone GroEL. Densitometric quantitation of the mass-density of cryo-negatively stained bacteriophage T2 specimens before and after freeze-drying within the TEM indicates a water content of 30% in the vitreous specimen. Determination of the image resolution from cryo-negatively stained TMV rods and catalase crystals shows the presence of optical diffraction data to ca. 10 A and 11.5 A, respectively. For cryo-negatively stained vitrified catalase crystals, electron diffraction shows that atomic resolution is preserved (to better than 20 diffraction orders and less than 3 A). The electron diffraction resolution is reduced to ca. 10 A when catalase crystal specimens are

  10. Negative Mass Propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    Schrödinger's analysis of the Dirac equation gives a hint for the existence of negative masses hidden behind positive masses. But their use for propulsion by reducing the inertia of matter for example, in the limit of macroscopic bodied with zero rest mass, depends on a technical solution to free them from their imprisonment by positive masses. It appears that there are basically two ways this might be achieved: 1. By the application of strong electromagnetic or gravitational fields or by high particle energies. 2. By searching for places in the universe where nature has already done this separation, and from where the negative masses can be mined. The first of these two possibilities is for all practical means excluded, because if possible at all, it would depend on electromagnetic or gravitational fields with strength beyond what is technically attainable, or on extremely large likewise not attainable particle energies. With regard to the 2nd possibility, it has been observed that non-baryonic cold dark matter tends to accumulate near the center of galaxies, or places in the universe which have a large gravitational potential well. Because of the equivalence principle of general relativity, the attraction towards the center of a gravitational potential well, produced by a positive mass, is for negative masses the same as for positive masses, and large amounts of negative masses might have over billions of years been trapped in these gravitational potential wells. Now it just happens that the center of the moon is a potential well, not too deep that it cannot be reached by making a tunnel through the moon, not possible for the deeper potential well of the earth, where the temperature and pressure are too high. Making a tunnel through the moon, provided there is a good supply of negative mass, could revolutionize interstellar space flight. A sequence of thermonuclear shape charges would make such tunnel technically feasible.

  11. Activity of Green Tea Polyphenol Epigallocatechin-3-gallate Against Ovarian Carcinoma Cell Lines

    PubMed Central

    Kim, Yong Wook; Bae, Su Mi; Lee, Joon Mo; Namkoong, Sung Eun; Han, Sei Jun; Lee, Byoung Rai; Lee, Insu P.; Kim, Sang Hee; Lee, Young Joo; Kim, Chong Kook; Kim, Yong-Wan

    2004-01-01

    Purpose A constituent of green tea, (-)-epigallocatechin-3-gallate (EGCG), is known to possess anti-cancer properties. In this study, the time-course of the anticancer effects of EGCG on human ovarian cancer cells were investigated to provide insights into the molecular-level understanding of the growth suppression mechanism involved in EGCG-mediated apoptosis and cell cycle arrest. Materials and Methods Three human ovarian cancer cell lines (p53 negative, SKOV-3 cells; mutant type p53, OVCAR-3 cells; and wild type p53, PA-1 cells) were used. The effect of EGCG treatment was studied via a cell count assay, cell cycle analysis, FACS, Western blot and macroarray assay. Results EGCG exerts a significant role in suppressing ovarian cancer cell growth, showed dose dependent growth inhibitory effects in each cell line and induced apoptosis and cell cycle arrest. The cell cycle was arrested at the G1 phase by EGCG in SKOV-3 and OVCAR-3 cells. In contrast, the cell cycle was arrested in the G1/S phase in PA-1 cells. EGCG differentially regulated the expression of genes and proteins (Bax, p21, Retinoblastoma, cyclin D1, CDK4 and Bcl-XL) more than 2 fold, showing a possible gene regulatory role for EGCG. The continual expression in p21WAF1 suggests that EGCG acts in the same way with p53 proteins to facilitate apoptosis after EGCG treatment. Bax, PCNA and Bcl-X are also important in EGCG-mediated apoptosis. In contrast, CDK4 and Rb are not important in ovarian cancer cell growth inhibition. Conclusion EGCG can inhibit ovarian cancer cell growth through the induction of apoptosis and cell cycle arrest, as well as in the regulation of cell cycle related proteins. Therefore, EGCG-mediated apoptosis could be applied to an advanced strategy in the development of a potential drug against ovarian cancer. PMID:20368822

  12. Think (Gram) negative!

    PubMed Central

    2010-01-01

    The increasing prevalence of multiresistant Gram-negative bacteria of the Enterobacteriaceae family in Europe is a worrisome phenomenon. Extended spectrum betalactamase-producing Escherichia coli strains are widespread in the community and are frequently imported into the hospital. Of even more concern is the spread of carbapenem-resistant strains of Klebsiella spp. from regions where they are already endemic. Antibiotic use is a main driver of antibiotic resistance, which again increases broad spectrum antibiotic use, resulting in a vicious circle that is difficult to interrupt. The present commentary highlights important findings of a surveillance study of antimicrobial use and resistance in German ICUs over 8 years with a focus on Gram-negative resistance. PMID:20587087

  13. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general ide