Science.gov

Sample records for protein bcl-xl negatively

  1. C-erb-B2 and Bcl-xl protein expression in Barrett's oesophagus in correlation with morphological parameters.

    PubMed

    Barwijuk-Machała, M; Reszeć, J; Kemona, A; Sobaniec-Lotowska, M

    2004-01-01

    The aim of the study was to evaluate the correlation of c-erb-b2 and Bcl-xl expression in biopsy specimens of Barrett's oesophagus from 44 patients with morphological features. The examined group was subdivided into: negative for dysplasia, indefinite for dysplasia, positive for dysplasia-low grade, and adenocarcinoma with high grade dysplasia. Positive c-erb-B2 staining was found in 34.1% and Bcl-xl protein expression was observed in 96.9% of BE. The results showed increased c-erb-B2 and Bcl-xl protein expressions with progressive grades of dysplasia to adenocarcinoma. In conclusion, an evaluation of c-erb-B2 and Bcl-xl expression can be useful for the histopatologic diagnosis of BE and correct interpretation of dysplasia.

  2. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    PubMed

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.

  3. Inhibition of Antiapoptotic BCL-XL, BCL-2, and MCL-1 Proteins by Small Molecule Mimetics

    PubMed Central

    Dalafave, D.S.; Prisco, G.

    2010-01-01

    Informatics and computational design methods were used to create new molecules that could potentially bind antiapoptotic proteins, thus promoting death of cancer cells. Apoptosis is a cellular process that leads to the death of damaged cells. Its malfunction can cause cancer and poor response to conventional chemotherapy. After being activated by cellular stress signals, proapoptotic proteins bind antiapoptotic proteins, thus allowing apoptosis to go forward. An excess of antiapoptotic proteins can prevent apoptosis. Designed molecules that mimic the roles of proapoptotic proteins can promote the death of cancer cells. The goal of our study was to create new putative mimetics that could simultaneously bind several antiapoptotic proteins. Five new small molecules were designed that formed stable complexes with BCL-2, BCL-XL, and MCL-1 antiapoptotic proteins. These results are novel because, to our knowledge, there are not many, if any, small molecules known to bind all three proteins. Drug-likeness studies performed on the designed molecules, as well as previous experimental and preclinical studies on similar agents, strongly suggest that the designed molecules may indeed be promising drug candidates. All five molecules showed “drug-like” properties and had overall drug-likeness scores between 81% and 96%. A single drug based on these mimetics should cost less and cause fewer side effects than a combination of drugs each aimed at a single protein. Computer-based molecular design promises to accelerate drug research by predicting potential effectiveness of designed molecules prior to laborious experiments and costly preclinical trials. PMID:20838611

  4. After Embedding in Membranes Antiapoptotic Bcl-XL Protein Binds Both Bcl-2 Homology Region 3 and Helix 1 of Proapoptotic Bax Protein to Inhibit Apoptotic Mitochondrial Permeabilization*

    PubMed Central

    Ding, Jingzhen; Mooers, Blaine H. M.; Zhang, Zhi; Kale, Justin; Falcone, Domina; McNichol, Jamie; Huang, Bo; Zhang, Xuejun C.; Xing, Chengguo; Andrews, David W.; Lin, Jialing

    2014-01-01

    Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1–3 (BH1–3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM. PMID:24616095

  5. Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor κb Activation, and Bcl-XL Levels in Vivo

    PubMed Central

    Jones, Russell G.; Parsons, Michael; Bonnard, Madeleine; Chan, Vera S.F.; Yeh, Wen-Chen; Woodgett, James R.; Ohashi, Pamela S.

    2000-01-01

    The serine/threonine kinase protein kinase B (PKB)/Akt mediates cell survival in a variety of systems. We have generated transgenic mice expressing a constitutively active form of PKB (gag-PKB) to examine the effects of PKB activity on T lymphocyte survival. Thymocytes and mature T cells overexpressing gag-PKB displayed increased active PKB, enhanced viability in culture, and resistance to a variety of apoptotic stimuli. PKB activity prolonged the survival of CD4+CD8+ double positive (DP) thymocytes in fetal thymic organ culture, but was unable to prevent antigen-induced clonal deletion of thymocytes expressing the major histocompatibility complex class I–restricted P14 T cell receptor (TCR). In mature T lymphocytes, PKB can be activated in response to TCR stimulation, and peptide-antigen–specific proliferation is enhanced in T cells expressing the gag-PKB transgene. Both thymocytes and T cells overexpressing gag-PKB displayed elevated levels of the antiapoptotic molecule Bcl-XL. In addition, the activation of peripheral T cells led to enhanced nuclear factor (NF)-κB activation via accelerated degradation of the NF-κB inhibitory protein IκBα. Our data highlight a physiological role for PKB in promoting survival of DP thymocytes and mature T cells, and provide evidence for the direct association of three major survival molecules (PKB, Bcl-XL, and NF-κB) in vivo in T lymphocytes. PMID:10811865

  6. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum.

    PubMed

    Ng, F W; Nguyen, M; Kwan, T; Branton, P E; Nicholson, D W; Cromlish, J A; Shore, G C

    1997-10-20

    We have identified a human Bcl-2-interacting protein, p28 Bap31. It is a 28-kD (p28) polytopic integral protein of the endoplasmic reticulum whose COOH-terminal cytosolic region contains overlapping predicted leucine zipper and weak death effector homology domains, flanked on either side by identical caspase recognition sites. In cotransfected 293T cells, p28 is part of a complex that includes Bcl-2/Bcl-XL and procaspase-8 (pro-FLICE). Bax, a pro-apoptotic member of the Bcl-2 family, does not associate with the complex; however, it prevents Bcl-2 from doing so. In the absence (but not presence) of elevated Bcl-2 levels, apoptotic signaling by adenovirus E1A oncoproteins promote cleavage of p28 at the two caspase recognition sites. Purified caspase-8 (FLICE/MACH/Mch5) and caspase-1(ICE), but not caspase-3 (CPP32/apopain/ Yama), efficiently catalyze this reaction in vitro. The resulting NH2-terminal p20 fragment induces apoptosis when expressed ectopically in otherwise normal cells. Taken together, the results suggest that p28 Bap31 is part of a complex in the endoplasmic reticulum that mechanically bridges an apoptosis-initiating caspase, like procaspase-8, with the anti-apoptotic regulator Bcl-2 or Bcl-XL. This raises the possibility that the p28 complex contributes to the regulation of procaspase-8 or a related caspase in response to E1A, dependent on the status of the Bcl-2 setpoint within the complex.

  7. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway.

    PubMed

    Zeng, Ke-Wu; Wang, Xue-Mei; Ko, Hyeonseok; Kwon, Hak Cheol; Cha, Jin Wook; Yang, Hyun Ok

    2011-12-15

    Amyloid β-protein (Aβ), which is deposited in neurons as neurofibrillary tangles, is known to exert cytotoxic effects by inducing mitochondrial dysfunction. Additionally, the PI3K/Akt-mediated interaction between Bad and Bcl(XL) plays an important role in maintaining mitochondrial integrity. However, the application of therapeutic drugs, especially natural products in Alzheimer's disease therapy via PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway has not aroused extensive attention. In the present study, we investigated the neuroprotective effects of hyperoside, a bioactive flavonoid compound from Hypericum perforatum, on Aβ(25-35)-induced primary cultured cortical neurons, and also examined the potential cellular signaling mechanism for Aβ detoxication. Our results showed that treatment with hyperoside significantly inhibited Aβ(25-35)-induced cytotoxicity and apoptosis by reversing Aβ-induced mitochondrial dysfunction, including mitochondrial membrane potential decrease, reactive oxygen species production, and mitochondrial release of cytochrome c. Further study indicated that hyperoside can activate the PI3K/Akt signaling pathway, resulting in inhibition of the interaction between Bad and Bcl(XL), without effects on the interaction between Bad and Bcl-2. Furthermore, hyperoside inhibited mitochondria-dependent downstream caspase-mediated apoptotic pathway, such as that involving caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP). These results demonstrate that hyperoside can protect Aβ-induced primary cultured cortical neurons via PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway, and they raise the possibility that hyperoside could be developed into a clinically valuable treatment for Alzheimer's disease and other neuronal degenerative diseases associated with mitochondrial dysfunction. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Bcl-xl-specific antibody labels activated microglia associated with Alzheimer's disease and other pathological states.

    PubMed

    Drache, B; Diehl, G E; Beyreuther, K; Perlmutter, L S; König, G

    1997-01-01

    This report describes the production of a monoclonal antibody raised against Bcl-xl, and includes an initial study of bcl-xl expression in neuropathology including Alzheimer's disease (AD). Bcl-xl is a potent apoptotic inhibitor and is known to be the predominant Bcl-x isoform in brain. To examine the expression of bcl-xl in aged brain and neurodegenerative disease, we raised a Bcl-xl-specific monoclonal antibody. In aged human brain, the highest bcl-xl expression was observed in cerebellum. By immunohistochemistry, significant bcl-xl expression was detected in reactive microglia of patients with AD and other neurological diseases such as progressive supranuclear palsy. Bcl-xl-positive microglia frequently colocalized with beta-amyloid plaques in AD and with activated astrocytes in non-AD and AD brains, suggesting a general role for Bcl-xl in regions of pathology. High levels of Bcl-xl protein might render microglia more resistant to cytotoxic environments such as areas of neurodegeneration and astrogliosis.

  9. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells

    PubMed Central

    ZHU, LIANG; ZHU, BIN; YANG, LUOYAN; ZHAO, XIAOKUN; JIANG, HONHYI; MA, FANG

    2014-01-01

    Apoptosis in prostate cancer (PCa) induced by ionizing radiation (IR) is believed to play a critical role in radioresistance. Bcl-xl, an important member of the anti-apoptotic Bcl-2 family, has critical roles in tumor progression and development. The aim of the present study was to investigate the association of Bcl-xl expression and radiosensitivity from murine PCa RM-1 cells. An adenovirus-mediated RNA interference technique was employed to inhibit the expression of the RelB gene. RelB proteins were detected upon irradiation following transfection with small interfering (si)RelB, as shown by western blot analysis. The radiosensitivity of the RM-1 cells was determined by clonogenic assays. The apoptosis of the RM-1 cells were detected by flow cytometry assay, then quantitative polymerase chain reaction assays were performed to determine the expression level of Bcl-xl mRNA in the RM-1 cells. Radiation treatment increased the RelB protein levels from the cytosol and nucleus in the RM-1 cells. The protein expression levels of RelB in the pLentilox-sh-RelB-transfected RM-1 cells were significantly lower than in the negative interference group following radiation treatment. The percentage of cells undergoing apoptosis in the siRelB-RM-1 group was significantly higher than that in the control group following radiation treatment. Finally, a positive link between Bcl-xl expression and RelB activity was established in the RM-1 cells. Inhibition of RelB correlates with a decrease in expression of Bcl-xl. In conclusion, adenovirus-mediated siRNA targeting RelB inhibits Bcl-xl expression, enhances radiosensitivity and regulates the irradiation-induced apoptosis of the murine PCa RM-1 cell line. PMID:24839547

  10. Ikaros dominant negative isoform (Ik6) induces IL-3-independent survival of murine pro-B lymphocytes by activating JAK-STAT and up-regulating Bcl-xl levels.

    PubMed

    Kano, Gen; Morimoto, Akira; Takanashi, Mami; Hibi, Shigeyoshi; Sugimoto, Tohru; Inaba, Tohru; Yagi, Tomohito; Imashuku, Shinsaku

    2008-05-01

    Ikaros is an essential regulator of lymphocyte differentiation. Mice transgenic for the Ikaros dominant negative (DN) mutation rapidly develop lymphoid malignancies. Various human leukemias have also been reported to express Ikaros DN isoforms, but its role in leukemogenesis is yet to be defined. We demonstrate that overexpressed Ikaros DN (Ik6) prolonged the survival of two different murine pro-B cell lines in cytokine deprived condition, and this was associated with increased expression of Bcl-xl. A survey of the upstream controller(s) of Bcl-xl expression revealed Ik6 overexpression enhanced the phosphorylation of JAK2 and STAT5. Interestingly, the Ik6 expressing cell lines showed reduced expression of B-cell differentiation surface marker CD45R (B220), which is also known as a JAK2 inhibitor. Although further evaluation with human clinical materials are required, these results propose a putative role of Ik6 in the development of B-lineage acute lymphoblastic leukemia, by activating the JAK2-STAT5 pathway and thus stimulating the production of Bcl-xl.

  11. Behavior of Solvent-Exposed Hydrophobic Groove in the Anti-Apoptotic Bcl-XL Protein: Clues for Its Ability to Bind Diverse BH3 Ligands from MD Simulations

    PubMed Central

    Sankararamakrishnan, Ramasubbu

    2013-01-01

    Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME) scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL. PMID:23468841

  12. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations.

    PubMed

    Lama, Dilraj; Modi, Vivek; Sankararamakrishnan, Ramasubbu

    2013-01-01

    Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME) scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.

  13. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53

    PubMed Central

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    ABSTRACT Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl. PMID:26694174

  14. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53.

    PubMed

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.

  15. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1

    PubMed Central

    Maiuri, M Chiara; Le Toumelin, Gaëtane; Criollo, Alfredo; Rain, Jean-Christophe; Gautier, Fabien; Juin, Philippe; Tasdemir, Ezgi; Pierron, Gérard; Troulinaki, Kostoula; Tavernarakis, Nektarios; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-01-01

    The anti-apoptotic proteins Bcl-2 and Bcl-XL bind and inhibit Beclin-1, an essential mediator of autophagy. Here, we demonstrate that this interaction involves a BH3 domain within Beclin-1 (residues 114–123). The physical interaction between Beclin-1 and Bcl-XL is lost when the BH3 domain of Beclin-1 or the BH3 receptor domain of Bcl-XL is mutated. Mutation of the BH3 domain of Beclin-1 or of the BH3 receptor domain of Bcl-XL abolishes the Bcl-XL-mediated inhibition of autophagy triggered by Beclin-1. The pharmacological BH3 mimetic ABT737 competitively inhibits the interaction between Beclin-1 and Bcl-2/Bcl-XL, antagonizes autophagy inhibition by Bcl-2/Bcl-XL and hence stimulates autophagy. Knockout or knockdown of the BH3-only protein Bad reduces starvation-induced autophagy, whereas Bad overexpression induces autophagy in human cells. Gain-of-function mutation of the sole BH3-only protein from Caenorhabditis elegans, EGL-1, induces autophagy, while deletion of EGL-1 compromises starvation-induced autophagy. These results reveal a novel autophagy-stimulatory function of BH3-only proteins beyond their established role as apoptosis inducers. BH3-only proteins and pharmacological BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin-1 and Bcl-2 or Bcl-XL. PMID:17446862

  16. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    PubMed Central

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  17. Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression.

    PubMed

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Bulygina, Veta V; Dygalo, Nikolay N

    2010-12-01

    Stress may predispose individuals toward depression through down-regulation of neurogenesis and increase in apoptosis in the brain. However, many subjects show high resistance to stress in relation to psychopathology. In the present study, we assessed the possibility that individual-specific patterns of gene expression associated with cell survival and proliferation may be among the molecular factors underlying stress resilience. Brain-derived neurotrophic factor (BDNF), anti-apoptotic B cell lymphoma like X (Bcl-xl) and pro-apoptotic bcl2-associated X protein (Bax) expression were determined in the hippocampus and frontal cortex of rats naturally differed in despair-like behavior in the forced swim test. In the hippocampus, BDNF messenger RNA (mRNA) level was significantly down-regulated 2h after the forced swim test exposure, and at this time point, Bcl-xl mRNA and protein levels were significantly higher in stressed than in untested animals. The ratios of hippocampal Bcl-xl to Bax mRNA negatively correlated with the total time spent immobile in the test. When animals were divided in two groups according to immobility responses in two consecutive swim sessions and designated as stress resilient if their immobility time did not increase in the second session as it did in stress sensitive rats, it was found that resilient rats had significantly higher Bcl-xl/Bax ratios in the hippocampus than stress sensitive animals. The data suggest that naturally occurring variations in the Bcl-xl/Bax ratio in the hippocampus may contribute to individual differences in vulnerability to stress-induced depression-like behaviors.

  18. Molecular dynamics simulations of pro-apoptotic BH3 peptide helices in aqueous medium: relationship between helix stability and their binding affinities to the anti-apoptotic protein Bcl-XL

    NASA Astrophysics Data System (ADS)

    Lama, Dilraj; Sankararamakrishnan, Ramasubbu

    2011-05-01

    The B-cell lymphoma 2 (Bcl-2) family of proteins regulates the intrinsic pathway of apoptosis. Interactions between specific anti- and pro-apoptotic Bcl-2 proteins determine the fate of a cell. Anti-apoptotic Bcl-2 proteins have been shown to be over-expressed in certain cancers and they are attractive targets for developing anti-cancer drugs. Peptides from the BH3 region of pro-apoptotic proteins have been shown to interact with anti-apoptotic Bcl-2 proteins and induce biological activity similar to that observed in parent proteins. However, the specificity of BH3 peptides derived from different pro-apoptotic proteins differ for different anti-apoptotic Bcl-2 proteins. In this study, we have investigated the relationship between the stable helical nature of BH3 peptides and their affinities to Bcl-XL, an anti-apoptotic Bcl-2 protein. We have carried out molecular dynamics simulations of six BH3 peptides derived from Bak, Bad and Bim pro-apoptotic proteins for a period of 50 ns each in aqueous medium. Due to the amphipathic nature of BH3 peptides, the hydrophobic residues on the hydrophobic face tend to cluster together in all BH3 peptides. While this process resulted in a complete loss of helical structure in 16-mer Bak and 16-mer Bad wild type peptides, stabilizing interactions in the hydrophilic face of the BH3 peptides and capping interactions helped to maintain partial helical character in 16-mer Bad mutant and 16-mer Bim peptides. The latter two 16-mer peptides exhibit higher affinity for Bcl-XL. Similarly the longer BH3 peptides, 25-mer Bad and 33-mer Bim, also resulted in smaller and stable helical fragments and their helical conformation is stabilized by interactions between residues in the solvent-exposed hydrophilic half of the peptide. The stable nature of helical segment in a BH3 peptide can be directly correlated to its binding affinity and the helical region encompassed the highly conserved Leu residue. We propose that upon approaching the

  19. BCL-2 and BCL-XL restrict lineage choice during hematopoietic differentiation.

    PubMed

    Haughn, Loralee; Hawley, Robert G; Morrison, Deborah K; von Boehmer, Harald; Hockenbery, David M

    2003-07-04

    Differentiation of hematopoietic cells from multipotential progenitors is regulated by multiple growth factors and cytokines. A prominent feature of these soluble factors is promotion of cell survival, in part mediated by expression of either of the anti-apoptotic proteins, BCL-2 and BCL-XL. The complex expression pattern of these frequently redundant survival factors during hematopoiesis may indicate a role in lineage determination. To investigate the latter possibility, we analyzed factor-dependent cell-Patersen (FDCP)-Mix multipotent progenitor cells in which we stably expressed BCL-2 or BCL-XL. Each factor maintained complete survival of interleukin-3 (IL-3)-deprived FDCP-Mix cells but, unexpectedly, directed FDCP-Mix cells along restricted and divergent differentiation pathways. Thus, IL-3-deprived FDCP-Mix BCL-2 cells differentiated exclusively to granulocytes and monocytes/macrophages, whereas FDCP-Mix BCL-XL cells became erythroid. FDCP-Mix BCL-2 cells grown in IL-3 were distinguished from FDCP-Mix and FDCP-Mix BCL-XL cells by a striking reduction in cellular levels of Raf-1 protein. Replacement of the BCL-2 BH4 domain with the related BCL-XL BH4 sequence resulted in a switch of FDCP-Mix BCL-2 cells to erythroid fate accompanied by persistence of Raf-1 protein expression. Moreover, enforced expression of Raf-1 redirected FDCP-Mix BCL-2 cells to an erythroid fate, and prohibited generation of myeloid cells. These results identify novel roles for BCL-2 and BCL-XL in cell fate decisions beyond cell survival. These effects are associated with differential regulation of Raf-1 expression, perhaps involving the previously identified interaction between BCL-2-BH4 and the catalytic domain of Raf-1.

  20. Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models.

    PubMed

    Punnoose, Elizabeth A; Leverson, Joel D; Peale, Franklin; Boghaert, Erwin R; Belmont, Lisa D; Tan, Nguyen; Young, Amy; Mitten, Michael; Ingalla, Ellen; Darbonne, Walter C; Oleksijew, Anatol; Tapang, Paul; Yue, Peng; Oeh, Jason; Lee, Leslie; Maiga, Sophie; Fairbrother, Wayne J; Amiot, Martine; Souers, Andrew J; Sampath, Deepak

    2016-05-01

    BCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-XL (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/venetoclax). Resistance to these three drugs is mediated by expression of MCL-1. However, given the selectivity profile of venetoclax it is unclear whether coexpression of BCL-XL also affects antitumor responses to venetoclax in multiple myeloma. In multiple myeloma cell lines (n = 21), BCL-2 is expressed but sensitivity to venetoclax correlated with high BCL-2 and low BCL-XL or MCL-1 expression. Multiple myeloma cells that coexpress BCL-2 and BCL-XL were resistant to venetoclax but sensitive to a BCL-XL-selective inhibitor (A-1155463). Multiple myeloma xenograft models that coexpressed BCL-XL or MCL-1 with BCL-2 were also resistant to venetoclax. Resistance to venetoclax was mitigated by cotreatment with bortezomib in xenografts that coexpressed BCL-2 and MCL-1 due to upregulation of NOXA, a proapoptotic factor that neutralizes MCL-1. In contrast, xenografts that expressed BCL-XL, MCL-1, and BCL-2 were more sensitive to the combination of bortezomib with a BCL-XL selective inhibitor (A-1331852) but not with venetoclax cotreatment when compared with monotherapies. IHC of multiple myeloma patient bone marrow biopsies and aspirates (n = 95) revealed high levels of BCL-2 and BCL-XL in 62% and 43% of evaluable samples, respectively, while 34% were characterized as BCL-2(High)/BCL-XL (Low) In addition to MCL-1, our data suggest that BCL-XL may also be a potential resistance factor to venetoclax monotherapy and in combination with bortezomib. Mol Cancer Ther; 15(5); 1132-44. ©2016 AACR.

  1. Structural insights into mouse anti-apoptotic Bcl-xl reveal affinity for Beclin 1 and gossypol

    SciTech Connect

    Priyadarshi, Amit; Roy, Ankoor; Kim, Key-Sun; Kim, Eunice EunKyeong; Hwang, Kwang Yeon

    2010-04-09

    This study reports the crystal structures of Bcl-xl wild type and three Bcl-xl mutants (Y101A, F105A, and R139A) with amino acid substitutions in the hydrophobic groove of the Bcl-xl BH3 domain. An additional 12 ordered residues were observed in a highly flexible loop between the {alpha}1 and {alpha}2 helices, and were recognized as an important deamidation site for the regulation of apoptosis. The autophagy-effector protein, Beclin 1, contains a novel BH3 domain (residues 101-125), which binds to the surface cleft of Bcl-xl, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and analytical gel-filtration results. Gossypol, a potent inhibitor of Bcl-xl, had a K{sub d} value of 0.9 {mu}M. In addition, the structural and biochemical analysis of five Bcl-xl substitution mutants will provide structural insights into the design and development of anti-cancer drugs.

  2. Heat-induced fibrillation of BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Olenick, Max B; Schuchardt, Brett J; Mikles, David C; Deegan, Brian J; McDonald, Caleb B; Seldeen, Kenneth L; Kurouski, Dmitry; Faridi, Mohd Hafeez; Shareef, Mohammed M; Gupta, Vineet; Lednev, Igor K; Farooq, Amjad

    2013-09-01

    The BclXL apoptotic repressor bears the propensity to associate into megadalton oligomers in solution, particularly under acidic pH. Herein, using various biophysical methods, we analyze the effect of temperature on the oligomerization of BclXL. Our data show that BclXL undergoes irreversible aggregation and assembles into highly-ordered rope-like homogeneous fibrils with length in the order of mm and a diameter in the μm-range under elevated temperatures. Remarkably, the formation of such fibrils correlates with the decay of a largely α-helical fold into a predominantly β-sheet architecture of BclXL in a manner akin to the formation of amyloid fibrils. Further interrogation reveals that while BclXL fibrils formed under elevated temperatures show no observable affinity toward BH3 ligands, they appear to be optimally primed for insertion into cardiolipin bicelles. This salient observation strongly argues that BclXL fibrils likely represent an on-pathway intermediate for insertion into mitochondrial outer membrane during the onset of apoptosis. Collectively, our study sheds light on the propensity of BclXL to form amyloid-like fibrils with important consequences on its mechanism of action in gauging the apoptotic fate of cells in health and disease.

  3. Bh3 induced conformational changes in Bcl-Xl revealed by crystal structure and comparative analysis.

    PubMed

    Rajan, Sreekanth; Choi, Minjoo; Baek, Kwanghee; Yoon, Ho Sup

    2015-07-01

    Apoptosis or programmed cell death is a regulatory process in cells in response to stimuli perturbing physiological conditions. The Bcl-2 family of proteins plays an important role in regulating homeostasis during apoptosis. In the process, the molecular interactions among the three members of this family, the pro-apoptotic, anti-apoptotic and BH3-only proteins at the mitochondrial outer membrane define the fate of a cell. Here, we report the crystal structures of the human anti-apoptotic protein Bcl-XL in complex with BH3-only BID(BH3) and BIM(BH3) peptides determined at 2.0 Å and 1.5 Å resolution, respectively. The BH3 peptides bind to the canonical hydrophobic pocket in Bcl-XL and adopt an alpha helical conformation in the bound form. Despite a similar structural fold, a comparison with other BH3 complexes revealed structural differences due to their sequence variations. In the Bcl-XL-BID(BH3) complex we observed a large pocket, in comparison with other BH3 complexes, lined by residues from helices α1, α2, α3, and α5 located adjacent to the canonical hydrophobic pocket. These results suggest that there are differences in the mode of interactions by the BH3 peptides that may translate into functional differences in apoptotic regulation.

  4. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-08-18

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.

  5. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis

    PubMed Central

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  6. MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 or BCL-XL

    PubMed Central

    Vikström, Ingela B; Slomp, Anne; Carrington, Emma M; Moesbergen, Laura M; Chang, Catherine; Kelly, Gemma L; Glaser, Stefan P; Jansen, J H Marco; Leusen, Jeanette H W; Strasser, Andreas; Huang, David C S; Lew, Andrew M; Peperzak, Victor; Tarlinton, David M

    2016-01-01

    Pro-survival BCL-2 family members protect cells from programmed cell death that can be induced by multiple internal or external cues. Within the haematopoietic lineages, the BCL-2 family members BCL-2, BCL-XL and MCL-1 are known to support cell survival but the individual and overlapping roles of these pro-survival BCL-2 proteins for the persistence of individual leukocyte subsets in vivo has not yet been determined. By combining inducible knockout mouse models with the BH3-mimetic compound ABT-737, which inhibits BCL-2, BCL-XL and BCL-W, we found that dependency on MCL-1, BCL-XL or BCL-2 expression changes during B-cell development. We show that BCL-XL expression promotes survival of immature B cells, expression of BCL-2 is important for survival of mature B cells and long-lived plasma cells (PC), and expression of MCL-1 is important for survival throughout B-cell development. These data were confirmed with novel highly specific BH3-mimetic compounds that target either BCL-2, BCL-XL or MCL-1. In addition, we observed that combined inhibition of these pro-survival proteins acts in concert to delete specific B-cell subsets. Reduced expression of MCL-1 further sensitized immature as well as transitional B cells and splenic PC to loss of BCL-XL expression. More markedly, loss of MCL-1 greatly sensitizes PC populations to BCL-2 inhibition using ABT-737, even though the total wild-type PC pool in the spleen is not significantly affected by this drug and the bone marrow (BM) PC population only slightly. Combined loss or inhibition of MCL-1 and BCL-2 reduced the numbers of established PC >100-fold within days. Our data suggest that combination treatment targeting these pro-survival proteins could be advantageous for treatment of antibody-mediated autoimmune diseases and B-cell malignancies. PMID:27560714

  7. β-catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl

    PubMed Central

    ZHANG, JIN; LIU, JIE; LI, HUI; WANG, JUN

    2016-01-01

    The Wnt/β-catenin signaling pathway has been reported to regulate cisplatin resistance in several types of cancer cell. The present study aimed to investigate the role and underlying mechanism of Wnt/β-catenin signaling in cisplatin resistance of lung adenocarcinoma cells. Wild-type and cisplatin-resistant A549 human lung adenocarcinoma cells (A549/WT and A549/CDDP, respectively) were cultured in vitro and exposed to different cisplatin concentrations. Cells were incubated with 10 mM lithium chloride (LiCl) to activate β-catenin signaling. Cell proliferation was determined using the MTS assay. Cell apoptosis was evaluated using Annexin V/propidium iodide double staining, followed by flow cytometry. β-catenin was knocked down using small interfering RNA (siRNA). The intracellular distribution of β-catenin was determined by immunocytochemistry, and the mRNA and protein expressions of target genes were examined by reverse transcription-quantitative polymerase chain reaction and western zblotting, respectively. β-catenin and B-cell lymphoma-extra large (Bcl-xl) were significantly upregulated in A549/CDDP cells compared with A549/WT cells (P<0.05). LiCl reduced the sensitivity of A549/WT cells to cisplatin (P<0.01); and upregulated, increased phosphorylation (P<0.05) and enhanced nuclear translocation of β-catenin. LiCl also significantly elevated the mRNA and protein expression levels of Bcl-xl (P<0.05). Notably, silencing of β-catenin with siRNA decreased the mRNA and protein expression of Bcl-xl, and sensitized A549/WT cells to cisplatin (P<0.01). The findings of the current study suggest that upregulation of β-catenin signaling may contribute to cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Therefore, molecular targeting of Wnt/β-catenin signaling may sensitize lung cancer cells to cisplatin. PMID:26860078

  8. High CIP2A levels correlate with an antiapoptotic phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia

    PubMed Central

    Lucas, C M; Milani, M; Butterworth, M; Carmell, N; Scott, L J; Clark, R E; Cohen, G M; Varadarajan, S

    2016-01-01

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a predictive biomarker of disease progression in many malignancies, including imatinib-treated chronic myeloid leukemia (CML). Although high CIP2A levels correlate with disease progression in CML, the underlying molecular mechanisms remain elusive. In a screen of diagnostic chronic phase samples from patients with high and low CIP2A protein levels, high CIP2A levels correlate with an antiapoptotic phenotype, characterized by downregulation of proapoptotic BCL-2 family members, including BIM, PUMA and HRK, and upregulation of the antiapoptotic protein BCL-XL. These results suggest that the poor prognosis of patients with high CIP2A levels is due to an antiapoptotic phenotype. Disrupting this antiapoptotic phenotype by inhibition of BCL-XL via RNA interference or A-1331852, a novel, potent and BCL-XL-selective inhibitor, resulted in extensive apoptosis either alone or in combination with imatinib, dasatinib or nilotinib, both in cell lines and in primary CD34+ cells from patients with high levels of CIP2A. These results demonstrate that BCL-XL is the major antiapoptotic survival protein and may be a novel therapeutic target in CML. PMID:26987906

  9. Edelfosine Induces an Apoptotic Process in Leishmania infantum That Is Regulated by the Ectopic Expression of Bcl-XL and Hrk▿

    PubMed Central

    Alzate, Juan Fernando; Arias, Andrés; Mollinedo, Faustino; Rico, Eva; de la Iglesia-Vicente, Janis; Jiménez-Ruiz, Antonio

    2008-01-01

    The alkyl-lysophospholipids edelfosine and miltefosine induce apoptosis in Leishmania infantum promastigotes. The finding that edelfosine-induced cell death can be regulated by the ectopic expression of the antiapoptotic and proapoptotic members of the Bcl-2 family of proteins Bcl-XL and Hrk suggests that this process is similar to apoptosis in eukaryotic cells. PMID:18644968

  10. Can Bcl-XL expression predict the radio sensitivity of Bilharzial-related squamous bladder carcinoma? a prospective comparative study

    PubMed Central

    2011-01-01

    Background Local pelvic recurrence after radical cystectomy for muscle invasive bilharzial related squamous cell carcinoma accounts for 75% of treatment failures even in organ confined tumors. Despite the proven value of lymphadenectomy, up to 60% of patients undergoing cystectomy do not have it. These factors are in favor of adjuvant radiotherapy reevaluation. objectives: to evaluate the effect of adjuvant radiotherapy on disease free survival in muscle invasive bilharzial related squamous cell carcinoma of the urinary bladder and to test the predictability of radio-sensitivity using the anti apoptotic protein Bcl-XL. Methods The study prospectively included 71 patients, (47 males, 24 females) with muscle invasive bilharzial related squamous cell carcinoma of the bladder (Stage pT2a-T3N0-N3M0) who underwent radical cystectomy in Assiut university hospitals between January 2005 and December 2006. Thirty eight patients received adjuvant radiotherapy to the pelvis in the dose of 50Gy/25 fractions/5 weeks (Group 1), while 33 patients did not receive adjuvant radiotherapy (group 2). Immunohistochemical characterization for bcl-xL expression was done. Follow up was done every 3 months for 12 to 36 months with a mean of 16 ± 10 months. All data were analyzed using SPSS version 16. Three years cumulative disease free survival was calculated and adjusted to Bcl-XL expression and side effects of the treatment were recorded. Results The disease free cumulative survival was 48% for group 1 and 29% for group 2 (log rank p value 0.03). The multivariate predictors of tumor recurrence were the positive Bcl-XL expression (odd ratio 41.1, 95% CI 8.4 - 102.3, p < 0.0001) and radiotherapy (odd ratio 0.19, 95% CI 0.05 - 0.78, p < 0.02). With Cox regression, the only independent multivariate predictor of radio-sensitivity was the Bcl-XL expression with odd ratio 4.6 and a p value < 0.0001. All patients tolerated the treatment with no life threatening or late complications during the

  11. Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1).

    PubMed

    Delbridge, Alex R D; Chappaz, Stephane; Ritchie, Matthew E; Kile, Benjamin T; Strasser, Andreas; Grabow, Stephanie

    2016-09-01

    Apoptosis is required to maintain tissue homeostasis in multicellular organisms. Platelets, the anucleate cells that are essential for blood clotting, are a prime example. Their brief life span in the circulation is regulated by the intrinsic apoptosis pathway. Pro-survival BCL-XL (also termed BCL2L1) is essential for platelet viability. It functions to restrain the pro-apoptotic BCL-2 family members BAK (also termed BAK1) and BAX, the essential mediators of intrinsic apoptosis. Genetic deletion or pharmacological inhibition of BCL-XL results in thrombocytopenia. Conversely, deletion of BAK in platelets doubles their circulating life span. However, what triggers platelet apoptosis in vivo remains unclear. The pro-apoptotic BH3-only proteins are essential for initiating apoptosis in nucleated cells, and there is some evidence to suggest they also play a role in platelet biology. We investigated whether PUMA (also termed BBC3), a potent BH3-only protein that can inhibit all pro-survival BCL-2 family members as well as directly activate BAX, regulates the death of platelets. Surprisingly, loss of PUMA had no impact on the loss of platelets caused by loss of BCL-XL. It therefore remains to be established whether other BH3-only proteins play a critical role in induction of apoptosis in platelets or whether their death is controlled solely by the interactions between BCL-XL with BAK and BAX.

  12. Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity.

    PubMed

    Tao, Zhi-Fu; Hasvold, Lisa; Wang, Le; Wang, Xilu; Petros, Andrew M; Park, Chang H; Boghaert, Erwin R; Catron, Nathaniel D; Chen, Jun; Colman, Peter M; Czabotar, Peter E; Deshayes, Kurt; Fairbrother, Wayne J; Flygare, John A; Hymowitz, Sarah G; Jin, Sha; Judge, Russell A; Koehler, Michael F T; Kovar, Peter J; Lessene, Guillaume; Mitten, Michael J; Ndubaku, Chudi O; Nimmer, Paul; Purkey, Hans E; Oleksijew, Anatol; Phillips, Darren C; Sleebs, Brad E; Smith, Brian J; Smith, Morey L; Tahir, Stephen K; Watson, Keith G; Xiao, Yu; Xue, John; Zhang, Haichao; Zobel, Kerry; Rosenberg, Saul H; Tse, Chris; Leverson, Joel D; Elmore, Steven W; Souers, Andrew J

    2014-10-09

    A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

  13. Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-XL/p53-mediated amplification mechanisms

    PubMed Central

    Shi, Y-L; Feng, S; Chen, W; Hua, Z-C; Bian, J-J; Yin, W

    2014-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy; however, non-small-cell lung carcinoma (NSCLC) cells are relatively TRAIL resistant. Identification of small molecules that can restore NSCLC susceptibility to TRAIL-induced apoptosis is meaningful. We found here that rotenone, as a mitochondrial respiration inhibitor, preferentially increased NSCLC cells sensitivity to TRAIL-mediated apoptosis at subtoxic concentrations, the mechanisms by which were accounted by the upregulation of death receptors and the downregulation of c-FLIP (cellular FLICE-like inhibitory protein). Further analysis revealed that death receptors expression by rotenone was regulated by p53, whereas c-FLIP downregulation was blocked by Bcl-XL overexpression. Rotenone triggered the mitochondria-derived reactive oxygen species (ROS) generation, which subsequently led to Bcl-XL downregulation and PUMA upregulation. As PUMA expression was regulated by p53, the PUMA, Bcl-XL and p53 in rotenone-treated cells form a positive feedback amplification loop to increase the apoptosis sensitivity. Mitochondria-derived ROS, however, promote the formation of this amplification loop. Collectively, we concluded that ROS generation, Bcl-XL and p53-mediated amplification mechanisms had an important role in the sensitization of NSCLC cells to TRAIL-mediated apoptosis by rotenone. The combined TRAIL and rotenone treatment may be appreciated as a useful approach for the therapy of NSCLC that warrants further investigation. PMID:25522273

  14. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

    PubMed

    Ng, F W; Shore, G C

    1998-02-06

    Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

  15. CXCR4 Chemokine Receptor Signaling Induces Apoptosis in Acute Myeloid Leukemia Cells via Regulation of the Bcl-2 Family Members Bcl-XL, Noxa, and Bak*

    PubMed Central

    Kremer, Kimberly N.; Peterson, Kevin L.; Schneider, Paula A.; Meng, X. Wei; Dai, Haiming; Hess, Allan D.; Smith, B. Douglas; Rodriguez-Ramirez, Christie; Karp, Judith E.; Kaufmann, Scott H.; Hedin, Karen E.

    2013-01-01

    The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted. PMID:23798675

  16. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    SciTech Connect

    Dai, Guodong; Peng, Tao; Zhou, Xuhong; Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi; Yuan, Yulin

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  17. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins

    PubMed Central

    Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G

    2015-01-01

    Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak. PMID:26610208

  18. Bcl-XL specifically activates Bak to induce swelling and restructuring of the endoplasmic reticulum

    PubMed Central

    Klee, Martina; Pimentel-Muiños, Felipe X.

    2005-01-01

    Bcl-2 family members Bak and Bax constitute a mitochondrial gateway for multiple death pathways. Both proteins are also present in the endoplasmic reticulum where they control apoptosis through the regulation of calcium levels. We show here that reticular Bak has the additional capacity of modulating the structure of this organelle. Coexpression of Bak and Bcl-XL provokes extensive swelling and vacuolization of reticular cisternae. A Bak version lacking the BH3 domain suffices to induce this phenotype, and reticular targeting of this mutant retains the activity. Expression of upstream BH3-only activators in similar conditions recapitulates ER swelling and vacuolization if ryanodine receptor calcium channel activity is inhibited. Experiments with Bak and Bax-deficient mouse embryonic fibroblasts show that endogenous Bak mediates the effect, whereas Bax is mainly irrelevant. These results reveal a previously unidentified role of Bak in regulating reticular conformation. Because this activity is absent in Bax, it constitutes one of the first examples of functional divergence between the two multidomain homologues. PMID:15728194

  19. C/EBPβ-mediated transcriptional regulation of bcl-xl gene expression in human breast epithelial cells in response to cigarette smoke condensate

    PubMed Central

    Connors, Shahnjayla K.; Balusu, Ramesh; Kundu, Chanakya N.; Jaiswal, Aruna S.; Gairola, C. Gary; Narayan, Satya

    2008-01-01

    In previous studies, we have shown that cigarette smoke condensate (CSC), a surrogate for cigarette smoke, is capable of transforming the spontaneously immortalized human breast epithelial cell line, MCF10A. These transformed cells displayed upregulation of the anti-apoptotic gene, bcl-xl. Upregulation of this gene may impede the apoptotic pathway and allow the accumulation of DNA damage that can lead to cell transformation and carcinogenesis. In the present study, we have determined the mechanism of CSC-mediated transcriptional upregulation of bcl-xl gene expression in MCF10A cells. We cloned the human bcl-xl promoter (pBcl-xLP) and identified putative transcription factor binding sites. Sequential deletion constructs that removed the putative cis-elements were constructed and transfected into MCF10A cells to determine the CSC-responsive cis-element(s) on the pBcl-xLP. Gel-shift, supershift, and chromatin immunoprecipitation (ChIP) analysis confirmed that C/EBPβ specifically bound to a C/EBP-binding site on the pBcl-xLP in vitro and in vivo. Additionally, overexpression of C/EBPβ-LAP2 stimulated pBcl-xLP activity and Bcl-xL protein levels, which mimicked the conditions of CSC treatment. Our results indicate that C/EBPβ regulates bcl-xl gene expression in MCF10A cells in response to CSC treatment, therefore making it a potential target for chemotherapeutic intervention of cigarette smoke-induced breast carcinogenesis. PMID:19043455

  20. Lewis y enhances CAM-DR in ovarian cancer cells by activating the FAK signaling pathway and upregulating Bcl-2/Bcl-XL expression.

    PubMed

    Yan, Limei; Wang, Changzhi; Lin, Bei; Liu, Juanjuan; Liu, Dawo; Hou, Rui; Wang, Yifei; Gao, Lili; Zhang, Shulan; Iwamori, Masao

    2015-06-01

    Oligosaccharides on the surface of adhesion molecules may contribute to the process of CAM-DR. To investigate the role of the Lewis y antigen in this process, we established a cell adhesion model mediated by the integrin α5β1-FN interaction in the ovarian cancer cell line, RMG-1-hFUT, which highly expresses Lewis y by transfection with α1,2-fucosyltransferase into RMG-1 cells. Our results indicate that the rates of carboplatin-induced apoptosis and necrosis are reduced in FN-adhered tumor cells, and carboplatin resistance is significantly decreased in the presence of anti-Lewis y antibody. CAM-DR in tumor cells has been correlated with elevated expression of the nuclear anti-apoptotic proteins Bcl-2 and Bcl-XL. Lewis y promotes the expression of the Bcl-2 and Bcl-XL genes by activating the focal adhesion kinase signaling pathway and accelerating their transcription. Thus, Lewis y leads to inhibition of apoptosis and enhancement of CAM-DR by activation of the FAK signaling pathway and upregulation of Bcl-2/Bcl-XL expression in ovarian cancer cell lines. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. A High Soy Diet Enhances Neurotropin Receptor and Bcl-XL Gene Expression in the Brains of Ovariectomized Female Rats

    PubMed Central

    Lovekamp-Swan, Tara; Glendenning, Michele L.; Schreihofer, Derek A.

    2007-01-01

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen’s benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or two weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-XL. Immunohistochemistry confirmed increases in both TrkA and Bcl-XL. Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement. PMID:17582385

  2. Expression of Bcl-XL Restores Cell Survival, but Not Proliferation and Effector Differentiation, in Cd28-Deficient T Lymphocytes

    PubMed Central

    Dahl, A. Maria; Klein, Christoph; Andres, Pietro G.; London, Cheryl A.; Lodge, Michael P.; Mulligan, Richard C.; Abbas, Abul K.

    2000-01-01

    Lymphocytes deficient in the T cell costimulatory molecule CD28 exhibit defects in cell survival, clonal expansion, and differentiation into effector cells. It is known that CD28-mediated signaling results in the upregulation of the Bcl family member Bcl-XL. To investigate the role that Bcl-XL plays in the various functions of CD28, we expressed Bcl-XL in CD28-deficient primary T lymphocytes using retrovirus-mediated gene transfer. T cells were activated in vitro and infected with Bcl-XL or control retroviruses; this method allows gene expression in activated, cycling cells. Expression of Bcl-XL in naive T cells was achieved by reconstitution of the immune system of lethally irradiated recipient mice with retrovirus-infected purified bone marrow stem cells from CD28−/− or wild-type donor mice. Our studies demonstrate that Bcl-XL prolongs the survival of CD28−/− T cells but does not restore normal proliferation or effector cell development. These results indicate that the various functions of CD28 can be dissociated, and provide an experimental approach for testing the roles of downstream signals in the functions of cellular receptors such as CD28. PMID:10859328

  3. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL.

    PubMed Central

    Cao, Xiaobo X.; Mohuiddin, Imran; Chada, Sunil; Mhashilkar, Abner M.; Ozvaran, Mustafa K.; McConkey, David J.; Miller, Steven D.; Daniel, Jonathon C.; Smythe, W. Roy

    2002-01-01

    BACKGROUND: Malignant pleural mesothelioma (MPM) is unresponsive to conventional therapies. Forced expression of the novel tumor suppressor mda-7 gene in other cell types has resulted in decreased growth and apoptosis. We evaluated cell growth, apoptosis and tumor suppressor characteristics following forced expression of this gene in mesothelioma cell lines. METHODS: MDA-7 expression in human MPM cells at baseline, following pharmacologic differentiation and viral mda-7 transduction (Ad-mda7) were evaluated with Western blot. Cell viability was evaluated with a colorimetric (XTT) assay, and apoptosis with subG1 FACS and Hoescht. Caspase-3 expression was evaluated by functional assay. These parameters were also evaluated in a stable bcl-xl hyper-expressing MPM cell line. Bax mRNA levels were evaluated with real-time PCR. RESULTS: No baseline or differentiated MPM MDA7 expression was found, but was noted following Ad-mda7 exposure. More than 50% of MPM cells were killed at 5 days following Ad-mda7 exposure (p < 0.001). Apoptosis was accompanied by caspase-3 cleavage and increased BAX expression at both the protein (translational) and mRNA (transcriptional) level. These findings were reduced in a bcl-xl hyper-expressing cell line (P < 0.01). CONCLUSIONS: Although mda-7 does not appear to be a MPM suppressor gene, adenoviral-mediated expression in cell lines induces apoptotic cellular death related to BAX upregulation and caspase cleavage. This is supported by abrogation of effect in a bcl-xl hyper-expressing cell line. PMID:12606823

  4. Overexpression of Bcl(XL) in B cells promotes Th1 response and exacerbates collagen-induced arthritis.

    PubMed

    Zheng, Biao; Marinova, Ekaterina; Switzer, Kirsten; Wansley, Daniel; He, Hongxia; Bheekha-Escura, Roy; Behrens, Timothy W; Han, Shuhua

    2007-11-15

    B cells play a pathogenic or regulatory role in many autoimmune diseases through production of autoantibodies, cytokine production, and Ag presentation. However, the mechanisms that regulate these B cell functions under different autoimmune settings remain unclear. In the current study, we found that when B cells overexpress an antiapoptotic gene, Bcl(XL), they significantly increased production of IFN-gamma and enhanced Th1 response. Consistently, Bcl-x(L) transgenic mice developed more severe and sustained collagen-induced arthritis due to the enhanced Th1 response. The production of autoantibodies in Bcl(XL) transgenic mice was comparable to that in wild-type mice. Thus, our results indicate a novel role of Bcl(XL) in regulating B cell functions and immune responses. In patients with rheumatoid arthritis, arthritogenic B cells often up-regulate Bcl(XL) expression, which may not only render B cells resistant to apoptosis but also alter the ability of the autoreactive B cells to produce cytokines and modulate the inflammatory response. This may have therapeutic implications if Bcl(XL) expression can be down-regulated in autoreactive B cells.

  5. Quercetin Potentiates Doxorubicin Mediated Antitumor Effects against Liver Cancer through p53/Bcl-xl

    PubMed Central

    Wang, Guanyu; Sharma, Sherven; Dong, Qinghua

    2012-01-01

    Background The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice. Methodology and Results The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers. Conclusion and Significance These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer. PMID:23240061

  6. Immortalization of osteoclast precursors by targeting Bcl -XL and Simian virus 40 large T antigen to the osteoclast lineage in transgenic mice.

    PubMed Central

    Hentunen, T A; Reddy, S V; Boyce, B F; Devlin, R; Park, H R; Chung, H; Selander, K S; Dallas, M; Kurihara, N; Galson, D L; Goldring, S R; Koop, B A; Windle, J J; Roodman, G D

    1998-01-01

    Cellular and molecular characterization of osteoclasts (OCL) has been extremely difficult since OCL are rare cells, and are difficult to isolate in large numbers. We used the tartrate-resistant acid phosphatase promoter to target the bcl-XL and/or Simian Virus 40 large T antigen (Tag) genes to cells in the OCL lineage in transgenic mice as a means of immortalizing OCL precursors. Immunocytochemical studies confirmed that we had targeted Bcl-XL and/or Tag to OCL, and transformed and mitotic OCL were readily apparent in bones from both Tag and bcl-XL/Tag mice. OCL formation in primary bone marrow cultures from bcl-XL, Tag, or bcl-XL/Tag mice was twofold greater compared with that of nontransgenic littermates. Bone marrow cells from bcl-XL/Tag mice, but not from singly transgenic bcl-XL or Tag mice, have survived in continuous culture for more than a year. These cells form high numbers of bone-resorbing OCL when cultured using standard conditions for inducing OCL formation, with approximately 50% of the mononuclear cells incorporated into OCL. The OCL that form express calcitonin receptors and contract in response to calcitonin. Studies examining the proliferative capacity and the resistance of OCL precursors from these transgenic mice to apoptosis demonstrated that the increased numbers of OCL precursors in marrow from bcl-XL/Tag mice was due to their increased survival rather than an increased proliferative capacity compared with Tag, bcl-XL, or normal mice. Histomorphometric studies of bones from bcl-XL/Tag mice also confirmed that there were increased numbers of OCL precursors (TRAP + mononuclear cells) present in vivo. These data demonstrate that by targeting both bcl-XL and Tag to cells in the OCL lineage, we have immortalized OCL precursors that form bone-resorbing OCL with an efficiency that is 300-500 times greater than that of normal marrow. PMID:9649561

  7. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65

    PubMed Central

    2013-01-01

    Background In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. Results The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. Conclusions The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm

  8. rno-miR-665 targets BCL2L1 (Bcl-xl) and increases vulnerability to propofol in developing astrocytes.

    PubMed

    Sun, Wen-Chong; Pei, Ling

    2016-07-01

    Propofol exerts a cytotoxic influence over immature neurocytes. Our previous study revealed that clinically relevant doses of propofol accelerated apoptosis of primary cultured astrocytes of developing rodent brains via rno-miR-665 regulation. However, the role of rno-miR-665 during the growth spurt of neonatal rodent brains in vivo is still uncertain. Post-natal day 7 (P7) rats received a single injection of propofol 30 mg/kg intraperitoneally (i.p.), and neuroapoptosis of hippocampal astrocytes was analyzed by immunofluorescence and scanning electron microscopy. The differential expression of rno-miR-665, BCL2L1 (Bcl-xl), and cleaved caspase 3 (CC3) was surveyed by qRT-PCR and western blotting. In addition, the utility of A-1155463, a highly potent and BCL2L1-selective antagonist, was aimed to assess the contribution of BCL2L1 for neuroglial survival. Following the intraventricular injection of lentivirus rno-miR-665, neuroprotection was detected by 5-point scale measurement. The single dose of propofol 30 mg/kg triggered dose-dependent apoptosis of developing hippocampal astrocytes. Meanwhile, propofol triggered both rno-miR-665 and CC3, and depressed BCL2L1, which was predicted as one target gene of rno-miR-665. Combination treatment with A-1155463 and propofol induced lower mRNA and protein levels of BCL2L1 and more CC3 activation than propofol treatment alone in vivo. The lentivirus-mediated knockdown of rno-miR-665 elevated BCL2L1 and attenuated CC3 levels, whereas up-regulation of rno-miR-665 suppressed BCL2L1 and induced CC3 expression in vivo. More importantly, rno-miR-665 antagomir infusion improved neurological outcomes of pups receiving propofol during the brain growth spurt. Rno-miR-665, providing a potential target for alternative therapeutics for pediatric anesthesia, is susceptible to propofol by negatively targeting antiapoptotic BCL2L1. Relatively little is known about the association between exposure of astrocytes to brief propofol

  9. Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases.

    PubMed

    Carlage, Tyler; Kshirsagar, Rashmi; Zang, Li; Janakiraman, Vijay; Hincapie, Marina; Lyubarskaya, Yelena; Weiskopf, Andy; Hancock, William S

    2012-01-01

    Mammalian cell cultures used for biopharmaceutical production undergo various dynamic biological changes over time, including the transition of cells from an exponential growth phase to a stationary phase during cell culture. To better understand the dynamic aspects of cell culture, a quantitative proteomics approach was used to identify dynamic trends in protein expression over the course of a Chinese hamster ovary (CHO) cell culture for the production of a recombinant monoclonal antibody and overexpressing the antiapoptotic gene Bcl-xl. Samples were analyzed using a method incorporating iTRAQ labeling, two-dimensional LC/MS, and linear regression calculations to identify significant dynamic trends in protein abundance. Using this approach, 59 proteins were identified with significant temporal changes in expression. Pathway analysis tools were used to identify a putative network of proteins associated with cell growth and apoptosis. Among the differentially expressed proteins were molecular chaperones and isomerases, such as GRP78 and PDI, and reported cell growth markers MCM2 and MCM5. In addition, two proteins with growth-regulating properties, transglutaminase-2 and clusterin, were identified. These proteins are associated with tumor proliferation and apoptosis and were observed to be expressed at relatively high levels during stationary phase, which was confirmed by western blotting. The proteomic methodology described here provides a dynamic view of protein expression throughout a CHO fed-batch cell culture, which may be useful for further elucidating the biological processes driving mammalian cell culture performance.

  10. Tivantinib (ARQ 197) affects the apoptotic and proliferative machinery downstream of c-MET: role of Mcl-1, Bcl-xl and Cyclin B1.

    PubMed

    Lu, Shuai; Török, Helga-Paula; Gallmeier, Eike; Kolligs, Frank T; Rizzani, Antonia; Arena, Sabrina; Göke, Burkhard; Gerbes, Alexander L; De Toni, Enrico N

    2015-09-08

    Tivantinib, a c-MET inhibitor, is investigated as a second-line treatment of HCC. It was shown that c-MET overexpression predicts its efficacy. Therefore, a phase-3 trial of tivantinib has been initiated to recruit "c-MET-high" patients only. However, recent evidence indicates that the anticancer activity of tivantinib is not due to c-MET inhibition, suggesting that c-MET is a predictor of response to this compound rather than its actual target. By assessing the mechanisms underlying the anticancer properties of tivantinib we showed that this agent causes apoptosis and cell cycle arrest by inhibiting the anti-apoptotic molecules Mcl-1 and Bcl-xl, and by increasing Cyclin B1 expression regardless of c-MET status. However, we found that tivantinib might antagonize the antiapoptotic effects of c-MET activation since HGF enhanced the expression of Mcl-1 and Bcl-xl. In summary, we show that the activity of tivantinib is independent of c-MET and describe Mcl-1, Bcl-xl and Cyclin B1 as effectors of its antineoplastic effects in HCC cells. We suggest that the predictive effect of c-MET expression in part reflects the c-MET-driven overexpression of Mcl-1 and Bcl-xl in c-MET-high patients and that these molecules are considered as possible response predictors.

  11. CXCL12 prolongs naive CD4+ T lymphocytes survival via activation of PKA, CREB and Bcl2 and BclXl up-regulation.

    PubMed

    Vitiello, Laura; Ferraro, Elisabetta; De Simone, Salvatore; Gatta, Lucia; Feraco, Alessandra; Racioppi, Luigi; Rosano, Giuseppe

    2016-12-01

    Naive T lymphocytes recirculate through the body, traveling from secondary lymphoid organs through tissues and via lymphatic vessels and peripheral blood into other secondary lymphoid organs and into the bone marrow. In these tissues, lymphocytes are exposed to the chemokine CXCL12 which is abundantly produced in bone marrow and in lymph nodes by stromal cells. CXCL12 is known to drive lymphocytes chemotaxis and, in cells types such as stem cells, an antiapopototic effect has been described. Here we analyzed the effect of CXCL12 exposure on naïve CD4+ T lymphocytes purified from peripheral blood by immunomagnetic negative isolation and cultured in a nutrient poor medium. We also studied, mainly by western blot analysis, the signaling pathways involved in CXCL12 action on naïve CD4+ T lymphocytes. We found that CXCL12-exposed cells survived longer than untreated ones and this prolonged lifespan was specific for resting naïve lymphocytes, while in vitro activated lymphoblasts died rapidly despite CXCL12 treatment. We demonstrated that the increased percentage of living cells observed upon CXCL12 administration was not due to induction of proliferation but to a prosurvival effect of this chemokine. Moreover, our data suggest that this prosurvival effect on naïve CD4+ T lymphocytes might likely be mediated by PKA-dependent CREB activation and consequent increased expression of the antiapoptotic factors Bcl2 and BclXl. This newly reported activity of CXCL12 might contribute to the maintenance of the naïve T lymphocytes pool in vivo, which is needed to ensure a proper immune response to new antigens. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463.

    PubMed

    Zhu, Yi; Doornebal, Ewald J; Pirtskhalava, Tamar; Giorgadze, Nino; Wentworth, Mark; Fuhrmann-Stroissnigg, Heike; Niedernhofer, Laura J; Robbins, Paul D; Tchkonia, Tamara; Kirkland, James L

    2017-03-08

    Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-XL inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.

  13. Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells.

    PubMed

    Hirose, Sho-Ichi; Takayama, Naoya; Nakamura, Sou; Nagasawa, Kazumichi; Ochi, Kiyosumi; Hirata, Shinji; Yamazaki, Satoshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Sano, Shinya; Takahashi, Nobuyasu; Sawaguchi, Akira; Ito, Mamoru; Kato, Takashi; Nakauchi, Hiromitsu; Eto, Koji

    2013-01-01

    The lack of knowledge about the mechanism of erythrocyte biogenesis through self-replication makes the in vitro generation of large quantities of cells difficult. We show that transduction of c-MYC and BCL-XL into multipotent hematopoietic progenitor cells derived from pluripotent stem cells and gene overexpression enable sustained exponential self-replication of glycophorin A(+) erythroblasts, which we term immortalized erythrocyte progenitor cells (imERYPCs). In an inducible expression system, turning off the overexpression of c-MYC and BCL-XL enabled imERYPCs to mature with chromatin condensation and reduced cell size, hemoglobin synthesis, downregulation of GCN5, upregulation of GATA1, and endogenous BCL-XL and RAF1, all of which appeared to recapitulate normal erythropoiesis. imERYPCs mostly displayed fetal-type hemoglobin and normal oxygen dissociation in vitro and circulation in immunodeficient mice following transfusion. Using critical factors to induce imERYPCs provides a model of erythrocyte biogenesis that could potentially contribute to a stable supply of erythrocytes for donor-independent transfusion.

  14. Gingko biloba extract (EGb 761) prevents increase of Bad-Bcl-XL interaction following cerebral ischemia.

    PubMed

    Koh, Phil-Ok

    2009-01-01

    A standardized extract of Gingko biloba, EGb 761, has been shown to exert a neuroprotective effect against permanent and transient focal cerebral ischemia. This study investigated whether EGb 761 modulates Bcl-2 family proteins in ischemic brain injury. Male adult rats were treated with EGb 761 (100 mg/kg) or vehicle prior to middle cerebral artery occlusion (MCAO), brain tissues were collected 24 hours after MCAO. EGb761 administration significantly decreased the number of TUNEL-positive cells in the cerebral cortex. Ischemic brain injury induced decrease of Bcl-2 and Bcl-X(L) levels. EGb 761 prevented not only the injury-induced decrease of Bcl-2 and Bcl-X(L) levels, but also the injury-induced increase of Bax. Moreover, in the presence of EGb 761, the interaction of Bad and Bcl-X(L) decreased compared to that of vehicle-treated animals. In addition, EGb 761 prevented the injury-induced increase of cleaved PARP. The finding suggests that EGb 761 prevents cell death against ischemic brain injury and EGb 761 neuroprotection is affected by preventing the injury-induced increase of Bad and Bcl-X(L) interaction.

  15. Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression

    PubMed Central

    2011-01-01

    Background Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn., has been described as a chemopreventive and chemotherapeutic compound. Methods In this study, we investigated the effect of TQ on survival, actin cytoskeletal reorganization, proliferation and signal transduction in multiple myeloma (MM) cells. Results We found that TQ induces growth arrest in both MDN and XG2 cells in a dose- and time-dependent manner. TQ also inhibited CXC ligand-12 (CXCL-12)-mediated actin polymerization and cellular proliferation, as shown by flow cytometry. The signal transducer and activator of transcription (STAT) and B-cell lymphoma-2 (Bcl-2) signaling pathways may play important roles in the malignant transformation of a number of human malignancies. The constitutive activation of the STAT3 and Bcl-2 pathways is frequently observed in several cancer cell lines, including MM cells. Using flow cytometry, we found that TQ markedly decreased STAT3 phosphorylation and Bcl-2 and Bcl-XL expression without modulating STAT5 phosphorylation in MM cells. Using western blotting, we confirmed the inhibitory effect of TQ on STAT3 phosphorylation and Bcl-2 and Bcl-XL expression. Conclusions Taken together, our data suggests that TQ could potentially be applied toward the treatment of MM and other malignancies. PMID:22177381

  16. miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation

    PubMed Central

    Denoyelle, C; Lambert, B; Meryet-Figuière, M; Vigneron, N; Brotin, E; Lecerf, C; Abeilard, E; Giffard, F; Louis, M-H; Gauduchon, P; Juin, P; Poulain, L

    2014-01-01

    We sought to identify miRNAs that can efficiently induce apoptosis in ovarian cancer cells by overcoming BCL-XL and MCL1 anti-apoptotic activity, using combined computational and experimental approaches. We found that miR-491-5p efficiently induces apoptosis in IGROV1-R10 cells by directly inhibiting BCL-XL expression and by inducing BIM accumulation in its dephosphorylated form. This latter effect is due to direct targeting of epidermal growth factor receptor (EGFR) by miR-491-5p and consequent inhibition of downstream AKT and MAPK signalling pathways. Induction of apoptosis by miR-491-5p in this cell line is mimicked by a combination of EGFR inhibition together with a BH3-mimetic molecule. In contrast, SKOV3 cells treated with miR-491-5p maintain AKT and MAPK activity, do not induce BIM and do not undergo cell death despite BCL-XL and EGFR downregulation. In this cell line, sensitivity to miR-491-5p is restored by inhibition of both AKT and MAPK signalling pathways. Altogether, this work highlights the potential of miRNA functional studies to decipher cell signalling pathways or major regulatory hubs involved in cell survival to finally propose the rationale design of new strategies on the basis of pharmacological combinations. PMID:25299770

  17. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death.

    PubMed

    Yang, E; Zha, J; Jockel, J; Boise, L H; Thompson, C B; Korsmeyer, S J

    1995-01-27

    To extend the mammalian cell death pathway, we screened for further Bcl-2 interacting proteins. Both yeast two-hybrid screening and lambda expression cloning identified a novel interacting protein, Bad, whose homology to Bcl-2 is limited to the BH1 and BH2 domains. Bad selectively dimerized with Bcl-xL as well as Bcl-2, but not with Bax, Bcl-xs, Mcl-1, A1, or itself. Bad binds more strongly to Bcl-xL than Bcl-2 in mammalian cells, and it reversed the death repressor activity of Bcl-xL, but not that of Bcl-2. When Bad dimerized with Bcl-xL, Bax was displaced and apoptosis was restored. When approximately half of Bax was heterodimerized, death was inhibited. The susceptibility of a cell to a death signal is determined by these competing dimerizations in which levels of Bad influence the effectiveness of Bcl-2 versus Bcl-xL in repressing death.

  18. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    PubMed Central

    2012-01-01

    Background It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. Methods The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. Results In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Conclusion Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors. PMID:23171055

  19. A high soy diet enhances neurotropin receptor and Bcl-XL gene expression in the brains of ovariectomized female rats.

    PubMed

    Lovekamp-Swan, Tara; Glendenning, Michele L; Schreihofer, Derek A

    2007-07-23

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen's benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or 2 weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-X(L). Immunohistochemistry confirmed increases in both TrkA and Bcl-X(L). Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement.

  20. To the knowledge of the 20GYGFG24 sequence stretch of type-1 VDAC: to understand why BCl-XL B4 domain peptides keep HeLa cells closed in hypotonic surroundings.

    PubMed

    Thinnes, Friedrich P

    2012-06-01

    Type-1 VDAC/porin, as a part of its voltage sensor, includes a GxxxG motif sequence that has been shown to work as an ATP-binding site. The motif has also been demonstrated to function as an aggregation/membrane perturbation sequence that opens VDAC in the plasmalemma of neuronal cells in experiment on apoptosis induction. Here it is discussed how type-1 VDAC channels at the cell surface of HeLa cells in hypotonic surroundings might be kept closed after pre-incubation with BCl-XL B4 domain peptides.

  1. A double mutant knockin of the CD28 YMNM and PYAP motifs reveals a critical role for the YMNM motif in regulation of T cell proliferation and Bcl-Xl expression1

    PubMed Central

    Boomer, Jonathan S.; Deppong, Christine M.; Shah, Dulari D.; Bricker, Traci L.; Green, Jonathan M.

    2014-01-01

    CD28 is a critical regulator of T cell function, augmenting proliferation, cytokine secretion and cell survival. Our previous work using knockin mice expressing point mutations in CD28 had demonstrated that the distal proline motif was primarily responsible for much of CD28 function, whereas in marked contrast to prior studies, mutation of the PI3-kinase binding motif had little discernible effect. In this study, we examined the phenotype of mice in which both motifs are simultaneously mutated. We found that mutation of the PYAP motif unmasks a critical role for the proximal tyrosine motif in regulating T cell proliferation and expression of Bcl-Xl, but not cytokine secretion. In addition, we demonstrated that while function is more severely impaired in the double mutant than in either single mutant, there remained residual CD28-dependent responses, definitively establishing that additional motifs can partially mediate CD28 function. PMID:24639356

  2. Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET.

    PubMed

    Liu, Qian; Leber, Brian; Andrews, David W

    2012-10-01

    Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics.

  3. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice

    PubMed Central

    1995-01-01

    The survival of T lymphocytes is tightly controlled during development. Here, we show that Bcl-xL, a protein homologue of Bcl-2, is highly regulated in the thymus in a pattern different than that of Bcl-2. The maximum expression was in CD4+CD8+ thymocytes, a developmental stage where Bcl-2 is downregulated. To assess the role of Bcl-xL in thymocyte apoptosis, we generated mice overexpressing an E mu-bcl-x transgene within the T cell compartment. Constitutive expression of Bcl-xL resulted in accumulation of thymocytes and mature T cells in lymphoid organs. Thymocytes overexpressing Bcl-xL exhibited increased viability in vitro and were resistant to apoptosis induced by different signals, including glucocorticoid, gamma irradiation, calcium ionophore, and CD3 cross-linking. However, Bcl-xL was unable to block clonal deletion of thymocytes reactive with self-superantigens or H-Y antigen. These studies demonstrate that Bcl-2 and Bcl-xL, two functionally related proteins, are regulated independently during T cell development. In contrast to Bcl-2, which has been implicated in the maintenance of mature T cells, Bcl-xL appears to provide a survival signal for the maintenance of more immature CD4+CD8+ thymocytes before positive selection. PMID:7500043

  4. Screening of Protein-Protein Interaction Modulators via Sulfo-Click Kinetic Target-Guided Synthesis

    PubMed Central

    Kulkarni, Sameer S.; Hu, Xiangdong; Doi, Kenichiro; Wang, Hong-Gang

    2011-01-01

    Kinetic Target-Guided Synthesis (TGS) and in situ click chemistry are among unconventional discovery strategies having the potential to streamline the development of protein-protein interaction modulators (PPIMs). In kinetic TGS and in situ click chemistry, the target is directly involved in the assembly of its own potent, bidentate ligand from a pool of reactive fragments. Herein, we report the use and validation of kinetic TGS based on the sulfo-click reaction between thio acids and sulfonyl azides as a screening and synthesis platform for the identification of high-quality PPIMs. Starting from a randomly designed library consisting of 9 thio acids and 9 sulfonyl azides leading to 81 potential acylsulfonamides, the target protein, Bcl-XL selectively assembled four PPIMs, acylsulfonamides SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5, which have been shown to modulate Bcl-XL/BH3 interactions. To further investigate the Bcl-XL templation effect, control experiments were carried out using two mutants of Bcl-XL. In one mutant, phenylalanine Phe131 and aspartic acid Asp133, which are critical for the BH3 domain binding, have been substituted by alanines, while arginine Arg139, a residue identified to play a crucial role in the binding of ABT-737, a BH3 mimetic, has been replaced by an alanine in the other mutant. Incubation of these mutants with the reactive fragments and subsequent LC/MS-SIM analysis confirmed that these building block combinations yield the corresponding acylsulfonamides at the BH3 binding site, the actual “hot spot” of Bcl-XL. These results validate kinetic TGS using the sulfo-click reaction as a valuable tool for the straightforward identification of high-quality PPIMs. PMID:21506574

  5. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis. PMID:27110097

  6. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis.

  7. Oxygen concentration and cysteamine supplementation during in vitro production of buffalo (Bubalus bubalis) embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID.

    PubMed

    Elamaran, G; Singh, K P; Singh, M K; Singla, S K; Chauhan, M S; Manik, R S; Palta, P

    2012-12-01

    This study examined the effects of O(2) concentration (5% vs 20%) during in vitro maturation (IVM), fertilization (IVF) and culture (IVC) or supplementation of IVM and IVC media with cysteamine (50 and 100 μm, respectively; IVM, IVF and IVC carried out in 20% O(2)), on blastocyst rate and relative mRNA abundance of some apoptosis-related genes measured by real-time qPCR in immature and in vitro-matured buffalo oocytes and in embryos at 2-, 4-, 8- to 16-cell, morula and blastocyst stages. The blastocyst rate was significantly higher (p < 0.05) while the percentage of TUNEL-positive cells was significantly lower (p < 0.05) under 5% O(2) than that under 20% O(2). The mRNA expression of anti-apoptotic genes BCL-2 and MCL-1 was significantly higher (p < 0.05) and that of pro-apoptotic genes BAX and BID was lower (p < 0.05) under 5% O(2) than that under 20% O(2) concentration at many embryonic stages. Following cysteamine supplementation, the blastocyst rate and the relative mRNA abundance of BCL-XL and MCL-1 was significantly higher (p < 0.05) and that of BAX but not BID was lower (p < 0.05) at many stages of embryonic development, although it did not affect the percentage of TUNEL positive cells in the blastocysts significantly. The mRNA expression pattern of these genes during embryonic development was different in 5% vs 20% O(2) groups and in cysteamine supplemented vs controls. At the 8- to 16-cell stage, where developmental block occurs in buffalo, the relative mRNA abundance of BCL-2 and MCL-1 was highest under 5% O(2) concentration and that of BAX and BID was highest (p < 0.05) under 20% O(2) concentration. These results suggest that one of the mechanisms through which beneficial effects of low O(2) concentration and cysteamine supplementation are mediated during in vitro embryo production is through an increase in the expression of anti-apoptotic and a decrease in the expression of pro-apoptotic genes.

  8. Oxidative stress-induced apoptotic insults to rat osteoblasts are attenuated by nitric oxide pretreatment via GATA-5-involved regulation of Bcl-X L gene expression and protein translocation.

    PubMed

    Wu, Gong-Jhe; Wang, Weu; Lin, Yi-Ling; Liu, Shing Hwa; Chen, Ruei-Ming

    2016-04-01

    Nitric oxide (NO) has biphasic effects on regulating osteoblast survival and death. This study was aimed to evaluate the effects of NO pretreatment on hydrogen peroxide (HP)-induced insults of rat osteoblasts and the possible mechanisms. Exposure of osteoblasts prepared from rat calvarias to HP significantly increased intracellular reactive oxygen species levels, decreased alkaline phosphatase activity and cell survival, and ultimately induced cell apoptosis. However, NO pretreatment lowered HP-induced oxidative stress and apoptotic insults. In parallel, HP increased Bax levels and its translocation from the cytoplasm to mitochondria. NO pretreatment caused significant attenuations in HP-induced modulations in Bax synthesis and translocation. In contrast, pretreatment with NO enhanced levels and translocation of antiapoptotic Bcl-XL protein in rat osteoblasts. RNA analyses further revealed that HP inhibited Bcl-XL mRNA expression without affecting Bax mRNA levels. In comparison, NO induced Bcl-XL mRNA production and alleviated HP-caused inhibition of this mRNA expression. As to the mechanism, HP suppressed RNA and protein levels of transcription factor GATA-5 in rat osteoblasts. Pretreatment with NO induced GATA-5 mRNA and protein expressions and simultaneously attenuated HP-induced inhibition of this gene's expression. Consequently, GATA-5 knockdown using RNA interference inhibited Bcl-XL mRNA expression and concurrently lowered NO's protection against HP-induced apoptotic insults. Therefore, this study showed that NO can protect rat osteoblasts from HP-induced apoptotic insults. The protective mechanisms are mediated by GATA-5-mediated transcriptional induction of Bcl-X L gene, and translocational modulation of Bcl-XL and Bax proteins.

  9. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids

    PubMed Central

    Kalinina, Tatyana S.; Bulygina, Veta V.; Lanshakov, Dmitry A.; Babluk, Ekaterina V.

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons. PMID:26624017

  10. Persea declinata (Bl.) Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation

    PubMed Central

    Wong, Yi Li; Wong, Won Fen; Ali Mohd, Mustafa; Hadi, A. Hamid A.

    2014-01-01

    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development. PMID:24808916

  11. BH3-Only Protein BIM Mediates Heat Shock-Induced Apoptosis

    PubMed Central

    Mahajan, Indra M.; Chen, Miao-Der; Muro, Israel; Robertson, John D.; Wright, Casey W.; Bratton, Shawn B.

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax−/−Bak−/− cells and better than either Bid−/− or dominant-negative caspase-9-expressing cells. Only Bim−/− and Bax−/−Bak−/− cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid−/− cells, it readily did so in Bim−/− cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1−/− cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members. PMID:24427286

  12. Molecular Basis for Bcl-2 Homology 3 Domain Recognition in the Bcl-2 Protein Family

    PubMed Central

    Moroy, Gautier; Martin, Elyette; Dejaegere, Annick; Stote, Roland H.

    2009-01-01

    The proteins of the Bcl-2 family are important regulators of apoptosis, or programmed cell death. These proteins regulate this fundamental biological process via the formation of heterodimers involving both pro- and anti-apoptotic family members. Disruption of the balance between anti- and pro-apoptotic Bcl-2 proteins is the cause of numerous pathologies. Bcl-xl, an anti-apoptotic protein of this family, is known to form heterodimers with multiple pro-apoptotic proteins, such as Bad, Bim, Bak, and Bid. To elucidate the molecular basis of this recognition process, we used molecular dynamics simulations coupled with the Molecular Mechanics/Poisson-Boltzmann Surface Area approach to identify the amino acids that make significant energetic contributions to the binding free energy of four complexes formed between Bcl-xl and pro-apoptotic Bcl-2 homology 3 peptides. A fifth protein-peptide complex composed of another anti-apoptotic protein, Bcl-w, in complex with the peptide from Bim was also studied. The results identified amino acids of both the anti-apoptotic proteins as well as the Bcl-2 homology 3 (BH3) domains of the pro-apoptotic proteins that make strong, recurrent interactions in the protein complexes. The calculations show that the two anti-apoptotic proteins, Bcl-xl and Bcl-w, share a similar recognition mechanism. Our results provide insight into the molecular basis for the promiscuous nature of this molecular recognition process by members of the Bcl-2 protein family. These amino acids could be targeted in the design of new mimetics that serve as scaffolds for new antitumoral molecules. PMID:19293158

  13. Highly specific protein-protein interactions, evolution and negative design.

    PubMed

    Sear, Richard P

    2004-12-01

    We consider highly specific protein-protein interactions in proteomes of simple model proteins. We are inspired by the work of Zarrinpar et al (2003 Nature 426 676). They took a binding domain in a signalling pathway in yeast and replaced it with domains of the same class but from different organisms. They found that the probability of a protein binding to a protein from the proteome of a different organism is rather high, around one half. We calculate the probability of a model protein from one proteome binding to the protein of a different proteome. These proteomes are obtained by sampling the space of functional proteomes uniformly. In agreement with Zarrinpar et al we find that the probability of a protein binding a protein from another proteome is rather high, of order one tenth. Our results, together with those of Zarrinpar et al, suggest that designing, say, a peptide to block or reconstitute a single signalling pathway, without affecting any other pathways, requires knowledge of all the partners of the class of binding domains the peptide is designed to mimic. This knowledge is required to use negative design to explicitly design out interactions of the peptide with proteins other than its target. We also found that patches that are required to bind with high specificity evolve more slowly than those that are required only to not bind to any other patch. This is consistent with some analysis of sequence data for proteins engaged in highly specific interactions.

  14. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation

    PubMed Central

    Anderson, Grace R.; Wardell, Suzanne E.; Cakir, Merve; Crawford, Lorin; Leeds, Jim C.; Nussbaum, Daniel P.; Shankar, Pallavi S.; Soderquist, Ryan S.; Stein, Elizabeth M.; Tingley, Jennifer P.; Winter, Peter S.; Zieser-Misenheimer, Elizabeth K.; Alley, Holly M.; Yllanes, Alexander; Haney, Victoria; Blackwell, Kimberly L.; McCall, Shannon J.; McDonnell, Donald P.; Wood, Kris C.

    2017-01-01

    Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that the combined inhibition of BCL-XL and the mTOR/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses MCL-1 protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL. This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of molecular subtype or PIK3CA mutational status. Further, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to anti-apoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard of care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations. PMID:27974663

  15. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation.

    PubMed

    Anderson, Grace R; Wardell, Suzanne E; Cakir, Merve; Crawford, Lorin; Leeds, Jim C; Nussbaum, Daniel P; Shankar, Pallavi S; Soderquist, Ryan S; Stein, Elizabeth M; Tingley, Jennifer P; Winter, Peter S; Zieser-Misenheimer, Elizabeth K; Alley, Holly M; Yllanes, Alexander; Haney, Victoria; Blackwell, Kimberly L; McCall, Shannon J; McDonnell, Donald P; Wood, Kris C

    2016-12-14

    Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma-extra large (BCL-XL) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia-1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status. Furthermore, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to antiapoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard-of-care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations.

  16. Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum.

    PubMed

    Mund, Thomas; Gewies, Andreas; Schoenfeld, Nicole; Bauer, Manuel K A; Grimm, Stefan

    2003-04-01

    We have isolated Spike, a novel and evolutionary conserved BH3-only protein. BH3-only proteins constitute a family of apoptosis inducers that mediate proapoptotic signals. In contrast to most proteins of this family, Spike was not found to be associated with mitochondria. Furthermore, unlike the known BH3-only proteins, Spike could not interact with all tested Bcl-2 family members, despite its BH3 domain being necessary for cell killing. Our findings indicate that Spike is localized to the endoplasmic reticulum. The endoplasmic reticulum is an organelle that has only recently been implicated in regulation of apoptosis. At this locale, Spike interacts with Bap31, an adaptor protein for pro-caspase-8 and Bcl-XL. In doing so, Spike is able to inhibit the formation of a complex between Bap31 and the antiapoptotic Bcl-XL protein. Furthermore, Spike transmits the signal of specific death receptors. Its down-regulation in certain tumors suggests that Spike may also play a role in tumorigenesis. Our findings add new insight for how BH3-only and antiapoptotic Bcl-2 proteins regulate cell death.

  17. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  18. Monocytic differentiation and synthesis of proteins associated with apoptosis in human leukemia U-937 cells acquiring resistance to vincristine.

    PubMed

    Pantazis, P; Chatterjee, D; Han, Z; Wyche, J; DeJesus, A; Giovanella, B

    1996-07-01

    Human leukemia U-937/WT cells were exposed to stepwise increased concentrations of Vincristine so that Vincristine-resistant cell sublines (termed U-937/RV) were developed. Established U-937/RV cell sublines have continuously propagated over a year, both in absence and presence of VCR, and have demonstrated similar features. In contrast to U-937/WT cells, U-937/RV cells have longer doubling time, and are more differentiated as determined by appearance of distinct morphological features and synthesis of mRNA that codes for the monocyte colony-stimulating factor-1 receptor (c-fms). Both apoptosis-suppressing Bcl-2 and Bcl-XL proteins were undectable in U-937/WT cells, whereas Bcl-2 was nearly detectable and Bcl-XL readily detectable in U-937/RV cells. The apoptosis-promoting Bax protein was also absent in U-937/WT cells and readily detected in U-937/RV cells. Vincristine-resistant cells with different levels of resistance synthesize similar levels of c-fms mRNA and Bax protein. Finally, unlike U-937/WT cells, U-937/RV cells have no ability to induce tumors when xenografted in immunodeficient mice. The findings collectively suggest that development of resistance to Vincristine in U-937/WT cells may correlate with cell differentiation and synthesis of proteins that regulate apoptosis.

  19. BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide–induced cell death in myeloma

    PubMed Central

    Morales, Alejo A.; Gutman, Delia; Lee, Kelvin P.

    2008-01-01

    The use of arsenic trioxide (ATO) to treat multiple myeloma (MM) is supported by preclinical studies as well as several phase 2 studies, but the precise mechanism(s) of action of ATO has not been completely elucidated. We used gene expression profiling to determine the regulation of apoptosis-related genes by ATO in 4 MM cell lines and then focused on Bcl-2 family genes. ATO induced up-regulation of 3 proapoptotic BH3-only proteins (Noxa, Bmf, and Puma) and down-regulation of 2 antiapoptotic proteins Mcl-1 and Bcl-XL. Coimmunoprecipitation demonstrated that Noxa and Puma bind Mcl-1 to release Bak and Bim within 6 hours of ATO addition. Bak and Bim are also released from Bcl-XL. Silencing of Bmf, Noxa, and Bim significantly protected cells from ATO-induced apoptosis, while Puma silencing had no effect. Consistent with a role for Noxa inhibition of Mcl-1, the Bad-mimetic ABT-737 synergized with ATO in the killing of 2 MM lines. Finally, Noxa expression was enhanced by GSH depletion and inhibited by increasing GSH levels in the cells. Understanding the pattern of BH3-only protein response should aid in the rational design of arsenic-containing regimens. PMID:18354037

  20. Negative cooperativity in the nitrogenase Fe protein electron delivery cycle

    PubMed Central

    Danyal, Karamatullah; Shaw, Sudipta; Page, Taylor R.; Duval, Simon; Horitani, Masaki; Marts, Amy R.; Lukoyanov, Dmitriy; Dean, Dennis R.; Raugei, Simone; Hoffman, Brian M.; Seefeldt, Lance C.; Antony, Edwin

    2016-01-01

    Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αβ half of the α2β2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αβ active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves. PMID:27698129

  1. Similarity between the sequences of taxol-selected peptides and the disordered loop of the anti-apoptotic protein, Bcl-2.

    PubMed

    Rodi, D J; Makowski, L

    1999-01-01

    The anti-cancer drug taxol is known to bind to and induce the polymerization of tubulin and has recently been shown to bind to the anti-apoptotic protein Bcl-2, but not to its homolog, Bcl-XL. Libraries of random peptides displayed on the surface of a bacteriophage were screened to select those exhibiting affinity for taxol. The sequences of these peptides were compared to sequences of proteins involved in mitosis and apoptosis. No significant similarities were detected between the sequences of tubulins and the taxol-selected peptides. However, a high level of similarity exists between the selected peptides and the disordered loop of Bcl-2. Conversely, there was little similarity between the sequences of the selected peptides and Bcl-XL. These results indicate that peptides displayed on the surface of a bacteriophage can mimic the ligand-binding behavior of a disordered protein loop and that comparison of the sequences of affinity-selected peptides with protein sequences can be predictive for ligand binding.

  2. Engineering the protein folding landscape in gram-negative bacteria.

    PubMed

    Mansell, Thomas J; Fisher, Adam C; DeLisa, Matthew P

    2008-04-01

    Gram-negative bacteria, especially Escherichia coli, are often the preferred hosts for recombinant protein production because of their fast doubling times, ability to grow to high cell density, propensity for high recombinant protein titers and straightforward protein purification techniques. The utility of simple bacteria in such studies continues to improve as a result of an ever-increasing body of knowledge regarding their native protein biogenesis machinery. From translation on the ribosome to interaction with cytosolic accessory factors to transport across the inner membrane into the periplasmic space, cellular proteins interact with many different types of cellular machinery and each interaction can have a profound effect on the protein folding process. This review addresses key aspects of cellular protein folding, solubility and expression in E. coli with particular focus on the elegant biological machinery that orchestrates the transition from nascent polypeptide to folded, functional protein. Specifically highlighted are a variety of different techniques to intentionally alter the folding environment of the cell as a means to understand and engineer intracellular protein folding and stability.

  3. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels.

    PubMed

    Gogurla, Narendar; Sinha, Arun K; Naskar, Deboki; Kundu, Subhas C; Ray, Samit K

    2016-04-14

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  4. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  5. Negative cooperativity in the nitrogenase Fe protein electron delivery cycle

    SciTech Connect

    Danyal, Karamatullah; Shaw, Sudipta; Page, Taylor R.; Duval, Simon; Horitani, Masaki; Marts, Amy R.; Lukoyanov, Dmitriy; Dean, Dennis R.; Raugei, Simone; Hoffman, Brian M.; Seefeldt, Lance C.; Antony, Edwin

    2016-10-04

    Mo-dependent nitrogenase catalyzes the biological reduction of atmospheric dinitrogen (N2) to two ammonia (NH3) molecules, through the action of two component proteins, the MoFe protein and the Fe protein. The catalytic MoFe protein is a symmetric dimer of αβ units, each of which contains one active site FeMo-co (FeMo-co; [7Fe-9S-Mo-C-homocitrate]) and an electron-carrier P cluster. Each half of the nitrogenase ternary complex, in which one Fe protein with two bound ATP molecules has bound to each MoFe protein αβ unit, undergoes an electron transfer (ET) cycle with ET from a Fe protein [4Fe-4S] cluster into its αβ unit followed by the hydrolysis of the two ATP to two ADP and two Pi. The prevailing model holds that each αβ unit of the MoFe protein functions independently. We now report that the ET cycle exhibits negative cooperativity, with ET and ATP hydrolysis in one half of the ternary nitrogenase complex suppressing these processes in the other half. The observed ET, ATP hydrolysis, and Pi release behavior is captured in a global fit to a two-branch negative-cooperativity kinetic model. A possible mechanism for communication between the two halves of MoFe protein is suggested by normal mode analysis showing correlated and anti-correlated motions between the two nitrogenase αβ halves. EPR spectra furthermore show small differences between those of resting-state and singly-reduced MoFe protein that can be attributed to an intra-complex allosteric perturbation of the resting-state FeMo-co in one αβ unit by reduction of FeMo-co in the other. This work is supported as a part of the Biological and Electron Transfer and Catalysis (EFRC) program, an Energy Frontiers Research Center funded by the US Department of Energy (DOE), Office of Science (DE-SC0012518) to LCS, by National Institutes of Health (NIH) grants HL 63203 and GM 111097to BMH, and R15GM110671 to EA, and by the Division of Chemical Sciences, Geosciences, and Bio-Sciences, DOE to SR. The protein

  6. Intrinsic and extrinsic negative regulators of nuclear protein transport processes

    PubMed Central

    Sekimoto, Toshihiro; Yoneda, Yoshihiro

    2012-01-01

    The nuclear–cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclear transport processes have been observed in stressed cells, which would change gene expressions. Some viruses interfere with nuclear transport in host cells to evade immune defense. Moreover, certain transport factors negatively regulate nuclear protein transport in cells. Understanding the regulatory mechanisms of nuclear–cytoplasmic trafficking not only provides important information about cellular processes, but also is of use for developing specific inhibitors for transport pathways. PMID:22672474

  7. Outer membrane protein biogenesis in Gram-negative bacteria

    PubMed Central

    Rollauer, Sarah E.; Sooreshjani, Moloud A.; Noinaj, Nicholas; Buchanan, Susan K.

    2015-01-01

    Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM. PMID:26370935

  8. Negative regulation of FAK signaling by SOCS proteins

    PubMed Central

    Liu, Enbo; Côté, Jean-François; Vuori, Kristiina

    2003-01-01

    Focal adhesion kinase (FAK) becomes activated upon integrin-mediated cell adhesion and controls cellular responses to the engagement of integrins, including cell migration and survival. We show here that a coordinated signaling by integrins and growth factor receptors induces expression of suppressor of cytokine signaling-3 (SOCS-3) and subsequent interaction between endogenous FAK and SOCS-3 proteins in 3T3 fibroblasts. Cotransfection studies demonstrated that SOCS-3, and also SOCS-1, interact with FAK in a FAK-Y397-dependent manner, and that both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of the SOCS proteins contribute to FAK binding. SOCS-1 and SOCS-3 were found to inhibit FAK-associated kinase activity in vitro and tyrosine phosphorylation of FAK in cells. The SOCS proteins also promoted polyubiquitination and degradation of FAK in a SOCS box-dependent manner and inhibited FAK-dependent signaling events, such as cell motility on fibronectin. These studies suggest a negative role of SOCS proteins in FAK signaling, and for a previously unidentified regulatory mechanism for FAK function. PMID:14517242

  9. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-07

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation.

  10. Anti-apoptotic BCL-2 family proteins in acute neural injury

    PubMed Central

    Anilkumar, Ujval; Prehn, Jochen H. M.

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling. PMID:25324720

  11. Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway

    PubMed Central

    2014-01-01

    Background There are a lot of unmet needs in patients with triple-negative breast cancer (TNBC). Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, has been used for decades to treat hypertriglyceridaemia and mixed dyslipidaemia. Recent studies show that it might have anti-tumor effects, however, the mechanism remains unclear. Here, we assessed the ability of fenofibrate to induce apoptosis of TNBC in vitro and in vivo and explored involved mechanisms. Methods MTT method was used to evaluate the anti-proliferation effect of fenofibrate, and invert microscope to observe the apoptotic morphological changes. The percentage of apoptotic cells and distribution ratios of cell cycle were determined by flow cytometric analysis. The related protein levels were measured by Western blot method. The changes of genes and pathways were detected by gene expression profiling. The tumor growth in vivo was assessed by MDA-MB-231 xenograft mouse model. Terminal deoxytransferase-catalyzed DNA nick-end labeling (TUNEL) assay was employed to estimate the percentage of apoptotic cells in vivo. In order to evaluate the safety of fenofibrate, blood sampled from rat eyes was detected. Results We found that fenofibrate had anti-proliferation effects on breast cancer cell lines, of which the first five most sensitive ones were all TNBC cell lines. Its induction of apoptosis was independent on PPAR-α status with the highest apoptosis percentage of 41.8 ± 8.8%, and it occurred in a time- and dose-dependent manner accompanied by up-regulation of Bad, down-regulation of Bcl-xl, Survivin and activation of caspase-3. Interestingly, activation of NF-κB pathway played an important role in the induction of apoptosis by fenofibtate and the effect could be almost totally blocked by a NF-κB specific inhibitor, pyrrolidine dithiocarbamate (PDTC). In addition, fenofibrate led to cell cycle arrest at G0/G1 phase accompanied by down-regulation of Cyclin D1, Cdk4 and up

  12. A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

    SciTech Connect

    Pelletier, Dale A; Auberry, Deanna L; Buchanan, Michelle V; Cannon, Bill; Daly, Don S.; Doktycz, Mitchel John; Foote, Linda J; Hervey, IV, William Judson; Hooker, Brian; Hurst, Gregory {Greg} B; Kennel, Steve J; Lankford, Patricia K; Larimer, Frank W; Lu, Tse-Yuan S; McDonald, W Hayes; McKeown, Catherine K; Morrell-Falvey, Jennifer L; Owens, Elizabeth T; Schmoyer, Denise D; Shah, Manesh B; Wiley, Steven; Wang, Yisong; Gilmore, Jason

    2008-01-01

    Abstract One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged bait proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.

  13. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  14. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    PubMed

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.

  15. A general system for studying protein-protein interactions in gram-negative bacteria

    SciTech Connect

    Pelletier, Dale A.; Hurst, G. B.; Foote, Linda J.; Lankford, Patricia K.; McKeown, Cathy K.; Lu, Tse-Yuan S.; Schmoyer, Denise D.; Shah, Manesh B.; Hervey IV, W. J.; McDonald, W. Hayes; Hooker, Brian S.; Cannon, William R.; Daly, Don S.; Gilmore, Jason M.; Wiley, H. S.; Auberry, Deanna L.; Wang, Yisong; Larimer, Frank; Kennel, S. J.; Doktycz, M. J.; Morrell-Falvey, Jennifer; Owens, Elizabeth T.; Buchanan, M. V.

    2008-08-01

    One of the most promising of the emerging methods for large-scale studies of interactions among proteins is co-isolation of an affinity-tagged protein and its interaction partners, followed by mass spectrometric identification of the co-purifying proteins. We describe a methodology for systematically identifying the proteins that interact with affinity-tagged “bait” proteins expressed from a medium copy plasmid, which are based on a broad host range (pBBR1MCS5) vector backbone that has been modified to incorporate the Gateway DEST plasmid multiple cloning region. This construct was designed to facilitate expression of fusion proteins bearing an affinity tag, across a range of Gram negative bacterial hosts. We demonstrate the performance of this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results from the RNA polymerase complex from these two species compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.

  16. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    NASA Astrophysics Data System (ADS)

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  17. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    PubMed Central

    Raja, Erna; Edlund, Karolina; Kahata, Kaoru; Zieba, Agata; Morén, Anita; Watanabe, Yukihide; Voytyuk, Iryna; Botling, Johan; Söderberg, Ola; Micke, Patrick; Pyrowolakis, George; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease. PMID:26701726

  18. GM-CSF CAUSES A PARADOXICAL INCREASE IN THE BH3-ONLY PRO-APOPTOTIC PROTEIN BIM IN HUMAN NEUTROPHILS

    PubMed Central

    Cowburn, Andrew S; Summers, Charlotte; Dunmore, Benjamin J; Farahi, Neda; Print, Cristin G; Cook, Simon J; Chilvers, Edwin R

    2014-01-01

    Neutrophil apoptosis is essential for the resolution of inflammation but delayed by several inflammatory mediators. In such terminally differentiated cells it has been uncertain whether these agents can inhibit apoptosis through transcriptional regulation of anti-death (Bcl-XL, Mcl-1, Bcl2A1) or BH3-only (Bim, Bid, Puma) Bcl2-family proteins. We report that GM-CSF and TNFα prevent the normal time-dependent loss of Mcl-1 and Bcl2A1 in neutrophils and demonstrate that they cause a NF-κB-dependent increase in Bcl-XL transcription/translation. Surprisingly, we show that GM-CSF and TNFα increase and/or maintain mRNA levels for the pro-apoptotic BH3-only protein Bid and that GM-CSF has a similar NF-κB-dependent effect on Bim transcription and BimEL expression. The in-vivo relevance of these findings was shown by the demonstration that GM-CSF is the dominant neutrophil survival factor present in lung lavage from patients with ventilator-associated pneumonia and confirmation of an increase lung neutrophil Bim mRNA. Finally GM-CSF caused mitochondrial location of Bim and a switch in phenotype to a cell that displays accelerated caspase-9-dependent apoptosis. This study demonstrates the capacity of neutrophil survival agents to induce a paradoxical increase in the pro-apoptotic proteins Bid and Bim and suggests that this may function to facilitate rapid apoptosis at the termination of the inflammatory cycle. PMID:20705940

  19. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF).

    PubMed

    Schäbitz, Wolf-Rüdiger; Krüger, Carola; Pitzer, Claudia; Weber, Daniela; Laage, Rico; Gassler, Nikolaus; Aronowski, Jaroslaw; Mier, Walter; Kirsch, Friederike; Dittgen, Tanjew; Bach, Alfred; Sommer, Clemens; Schneider, Armin

    2008-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF alpha-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- and time-dependent manner. Of the signaling pathways studied, GM-CSF most prominently induced the PI3K-Akt pathway, and inhibition of Akt strongly decreased antiapoptotic activity. Intravenously given GM-CSF passes the blood-brain barrier, and decreases infarct damage in two different experimental stroke models (middle cerebral artery occlusion (MCAO), and combined common carotid/distal MCA occlusion) concomitant with induction of BCL-Xl expression. Thus, GM-CSF acts as a neuroprotective protein in the CNS. This finding is remarkably reminiscent of the recently discovered functionality of two other hematopoietic factors, erythropoietin and granulocyte colony-stimulating factor in the CNS. The identification of a third hematopoietic factor acting as a neurotrophic factor in the CNS suggests a common principle in the functional evolution of these factors. Clinically, GM-CSF now broadens the repertoire of hematopoietic factors available as novel drug candidates for stroke and neurodegenerative diseases.

  20. sHA 14-1, a stable and ROS-free antagonist against anti-apoptotic Bcl-2 proteins, bypasses drug resistances and synergizes cancer therapies in human leukemia cell

    PubMed Central

    Tian, Defeng; Das, Sonia Goutam Kumar; Doshi, Jignesh M.; Peng, Jun; Lin, Jialing; Xing, Chengguo

    2009-01-01

    HA 14-1, a small-molecule antagonist against anti-apoptotic Bcl-2 proteins, was demonstrated to induce selective cytotoxicity toward malignant cells and to overcome drug resistance. Due to its poor stability and the reactive oxygen species (ROS) generated by its decomposition, chemical modification of HA 14-1 is needed for its future development. We have synthesized a stabilized analog of HA 14-1 – sHA 14-1, which did not induce the formation of ROS. As expected for a putative antagonist against anti-apoptotic Bcl-2 proteins like HA 14-1, sHA 14-1 disrupted the binding interaction of a Bak BH3 peptide with Bcl-2 or Bcl-XL protein, inhibited the growth of tumor cells through the induction of apoptosis, and circumvented the drug resistance induced by the over-expression of anti-apoptotic Bcl-2 and Bcl-XL proteins. Interestingly, the impairment of extrinsic apoptotic pathway induced moderate resistance to sHA 14-1. The moderate resistance suggested that sHA 14-1 generated part of its apoptotic stress through the intrinsic pathway, possibly through its antagonism against anti-apoptotic Bcl-2 proteins. The resistance indicated that sHA 14-1 generated apoptotic stress through the extrinsic apoptotic pathway as well. The ability of sHA 14-1 to induce apoptotic stress through both pathways was further supported by the synergism of sHA 14-1 towards the cytotoxicities of Fas ligand and dexamethasone in Jurkat cells. Taken together, these findings suggest that sHA 14-1 may represent a promising candidate for the treatment of drug-resistant cancers either as a monotherapy or in combination with current cancer therapies. PMID:18037229

  1. Tumor protein D52 represents a negative regulator of ATM protein levels

    PubMed Central

    Chen, Yuyan; Kamili, Alvin; Hardy, Jayne R; Groblewski, Guy E; Khanna, Kum Kum; Byrne, Jennifer A

    2013-01-01

    Tumor protein D52 (TPD52) is a coiled-coil motif bearing hydrophilic polypeptide known to be overexpressed in cancers of diverse cellular origins. Increased TPD52 expression is associated with increased proliferation and invasive capacity in different cell types. Recent studies have reported a correlation between TPD52 transcript levels and G2 chromosomal radiosensitivity in lymphocytes of women at risk of hereditary breast cancer, and that TPD52 knockdown significantly reduced the radiation sensitivity of multiple cancer cell lines. In this study, we investigated possible roles for TPD52 in DNA damage response, and found that increased TPD52 expression in breast cancer and TPD52-expressing BALB/c 3T3 cells compromised ATM-mediated cellular responses to DNA double-strand breaks induced by γ-ray irradiation, which was associated with downregulation of steady-state ATM protein, but not transcript levels, regardless of irradiation status. TPD52-expressing 3T3 cells also showed significantly increased radiation sensitivity compared with vector cells evaluated by clonogenic assays. Furthermore, direct interactions between exogenous and endogenous ATM and TPD52 were detected by GST pull-down and co-immunoprecipitation assays. We also identified the interaction domains involved in this binding as TPD52 residues 111–131, and ATM residues 1–245 and 772–1102. Taken together, our results suggest that TPD52 may represent a novel negative regulator of ATM protein levels. PMID:23974097

  2. Prostaglandin E2 negatively regulates AMP-activated protein kinase via protein kinase A signaling pathway.

    PubMed

    Funahashi, Koji; Cao, Xia; Yamauchi, Masako; Kozaki, Yasuko; Ishiguro, Naoki; Kambe, Fukushi

    2009-01-01

    We investigated possible involvement of prostaglandin (PG) E2 in regulation of AMP-activated protein kinase (AMPK). When osteoblastic MG63 cells were cultured in serum-deprived media, Thr-172 phosphorylation of AMPK alpha-subunit was markedly increased. Treatment of the cells with PGE2 significantly reduced the phosphorylation. Ser-79 phosphorylation of acetyl-CoA carboxylase, a direct target for AMPK, was also reduced by PGE2. On the other hand, PGE2 reciprocally increased Ser-485 phosphorylation of the alpha-subunit that could be associated with inhibition of AMPK activity. These effects of PGE2 were mimicked by PGE2 receptor EP2 and EP4 agonists and forskolin, but not by EP1 and EP3 agonists, and the effects were suppressed by an adenylate cyclase inhibitor SQ22536 and a protein kinase A inhibitor H89. Additionally, the PGE2 effects were duplicated in primary calvarial osteoblasts. Together, the present study demonstrates that PGE2 negatively regulates AMPK activity via activation of protein kinase A signaling pathway.

  3. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    PubMed

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  4. Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae.

    PubMed

    Barrett, LaKisha; Orlova, Marianna; Maziarz, Marcin; Kuchin, Sergei

    2012-02-01

    Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.

  5. Skeletal muscle responses to negative energy balance: effects of dietary protein.

    PubMed

    Carbone, John W; McClung, James P; Pasiakos, Stefan M

    2012-03-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g · kg(-1) · d(-1)) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described.

  6. Skeletal Muscle Responses to Negative Energy Balance: Effects of Dietary Protein12

    PubMed Central

    Carbone, John W.; McClung, James P.; Pasiakos, Stefan M.

    2012-01-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g·kg−1·d−1) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described. PMID:22516719

  7. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development.

    PubMed

    Dickerman, Benjamin K; White, Christine L; Kessler, Patricia M; Sadler, Anthony J; Williams, Bryan R G; Sen, Ganes C

    2015-12-01

    The murine double-stranded RNA-binding protein termed protein kinase R (PKR)-associated protein X (RAX) and the human homolog, protein activator of PKR (PACT), were originally characterized as activators of PKR. Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax(-/-) mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eukaryotic translation initiation factor 2 α subunit (eIF2α) (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax(-/-) mice. Generating rax(-/-) mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax(-/-) defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax(-/-) mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax(-/-) defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21(WAF1/CIP1). These results demonstrate that PKR kinase activity is required for onset of the rax(-/-) phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development.

  8. Negative Example Selection for Protein Function Prediction: The NoGO Database

    PubMed Central

    Youngs, Noah; Penfold-Brown, Duncan; Bonneau, Richard; Shasha, Dennis

    2014-01-01

    Negative examples – genes that are known not to carry out a given protein function – are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html). PMID:24922051

  9. Negative example selection for protein function prediction: the NoGO database.

    PubMed

    Youngs, Noah; Penfold-Brown, Duncan; Bonneau, Richard; Shasha, Dennis

    2014-06-01

    Negative examples - genes that are known not to carry out a given protein function - are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html).

  10. Estimation of Protein Absorption on Polymer Material by Carbon-Negative Ion Implantation

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuya; Tsuji, Hiroshi; Hattori, Mitsutaka; Sommani, Piyanuch; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    Selective cell attachment on carbon-negative-ion implanted region of polystyrene was already reported by the authors. However, the selectivity and adhesion strength in the cell pattering were partially insufficient. The adhesive proteins called extracellular matrix (ECM), in general, intervene between cell and substrate surface in the cell attachment on the solid surface. Therefore, we considered to obtain clearer selective cell attachment with tighter binding strength on the implanted region of polystyrene when these adhesive proteins precedently adsorbed on the implanted region of polystyrene. In this paper, we have investigated adsorption properties of three kinds of adhesive proteins (gelatin, fibronectin, laminin) and cell attachment properties on precedent protein adsorbed surface of polystyrene modified by carbon negative-ion implantation. Carbon negative ions were implanted into polystyrene at energy of 10 keV with dose in a range of 1×1014~1×1016 ions/cm2. After implantation, the samples were dipped in the protein solutions for 2 hours. Then, the protein adsorption ratio between implanted and unimplanted regions was evaluated by detecting amount of nitrogen atoms on the surface by X-ray photoelectron spectroscopy (XPS). As a result, the protein-precedently-absorbed sample implanted at dose more than 3×1015 ions/cm2 showed the large gelatin adsorption ratio of more than 2, where the much densely populated cell-attachment was observed more than that on the implanted region of polystyrene without precedent adsorption of protein after cell culture.

  11. Dominant-Negative Proteins in Herpesviruses – From Assigning Gene Function to Intracellular Immunization

    PubMed Central

    Mühlbach, Hermine; Mohr, Christian A.; Ruzsics, Zsolt; Koszinowski, Ulrich H.

    2009-01-01

    Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies. PMID:21994555

  12. Detecting selection for negative design in proteins through an improved model of the misfolded state.

    PubMed

    Minning, Jonas; Porto, Markus; Bastolla, Ugo

    2013-07-01

    Proteins that need to be structured in their native state must be stable both against the unfolded ensemble and against incorrectly folded (misfolded) conformations with low free energy. Positive design targets the first type of stability by strengthening native interactions. The second type of stability is achieved by destabilizing interactions that occur frequently in the misfolded ensemble, a strategy called negative design. Here, we investigate negative design adopting a statistical mechanical model of the misfolded ensemble, which improves the usual Gaussian approximation by taking into account the third moment of the energy distribution and contact correlations. Applying this model, we detect and quantify selection for negative design in most natural proteins, and we analytically design protein sequences that are stable both against unfolding and against misfolding. Copyright © 2013 Wiley Periodicals, Inc.

  13. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    PubMed Central

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-01

    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

  14. Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression.

    PubMed

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-18

    Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors.

  15. Chkl binds and phosphorylates BAD protein.

    PubMed

    Han, Edward Kyu-ho; Butler, Chris; Zhang, Haichao; Severin, Jean M; Qin, Wenying; Holzman, Tom F; Gubbins, Earl J; Simmer, Robert L; Rosenberg, Saul; Giranda, Vincent L; Ng, Shi-Chung; Luo, Y

    2004-01-01

    Chk1 (checkpoint kinase 1) is a serine-threonine kinase that is critical for G2/M arrest in response to DNA damage. Chk1 phosphorylates Cdc25C at serine-216, a major regulatory site, in response to DNA damage. Furthermore, Chk1 also phosphorylates Cdc25A on serine 123 which accelerates its degradation through the ubiquitin-proteasome pathway and arrests cells in late G2-phase after DNA damage. In the present study, we demonstrated that Chk1 phosphorylates pro-apoptotic protein BAD (Bcl-2/Bcl-XL-Antagonist, causing cell Death) in vitro. In vitro phosphorylation analysis with various mouse BAD peptides has revealed two phosphorylation sites for Chk1 at serine-155 and serine-170. When wild-type and mutant BAD (S155A) constructs were transfected into 293T cells, an association between BAD and Chk1 was observed by co-immunoprecipitation. In addition, there was an increase in the phosphorylation of serine-155 following DNA damage by adriamycin treatment. Our results suggest that Chk1 associates with BAD and phosphorylates the BAD protein at serine-155. Taken together, our results suggest that Chk1 may inactivate BAD by associating with and phosphorylating residues critical for BAD function in response to DNA damage.

  16. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens

    PubMed Central

    Yanasarn, Nijaporn; Sloat, Brian R.; Cui, Zhengrong

    2011-01-01

    Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8+ cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome’s ability (i) to up-regulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development. PMID:21615153

  17. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development

    PubMed Central

    Dickerman, Benjamin K.; White, Christine L.; Kessler, Patricia M.; Sadler, Anthony J.; Williams, Bryan R.G.; Sen, Ganes C.

    2015-01-01

    The murine double-stranded RNA-binding protein RAX and the human homolog PACT were originally characterized as activators of protein kinase R (PKR). Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax−/− mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eIF2α (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax−/− mice. Generating rax−/− mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax−/− defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax−/− mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax−/− defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21WAF1/CIP1. These results demonstrate that PKR kinase activity is required for onset of the rax−/− phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development. PMID:26414443

  18. Protein domain networks: Scale-free mixing of positive and negative exponents

    NASA Astrophysics Data System (ADS)

    Nacher, J. C.; Hayashida, M.; Akutsu, T.

    2006-07-01

    Many biological studies have been focused on the study of proteins, since proteins are essential for most cell functions. Although proteins are unique, they share certain common properties. For example, well-defined regions within a protein can fold independently from the rest of the protein and have their own function. They are called protein domains, and served as protein building blocks. In this article, we present a theoretical model for studying the protein domain networks, where one node of the network corresponds to one protein and two proteins are connected if they contain the same domain. The resulting distribution of nodes with a given degree, k, shows not only a power-law with negative exponent γ=-1, but it resembles the superposition of two power-law functions, one with a negative exponent and another with a positive exponent β=1. We call this distribution pattern “ scale-free mixing”. To explain the emergence of this superposition of power-laws, we propose a basic model with two main components: (1) mutation and (2) duplication of domains. Precisely, duplication gives rise to complete subgraphs (i.e., cliques) on the network, thus for several values of k a large number of nodes with degree k is produced, which explains the positive power-law branch of the degree distribution. In order to compare our model with experimental data, we generate protein domain networks with data from the UniProt Knowledgebase-Swissprot database for protein sequences and using InterPro, Pfam and Smart for domain databases. Our results indicate that the signal of this scale-free mixing pattern is also observed in the experimental data and it is conserved among organisms as Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Mus musculus, and Homo sapiens.

  19. Negative-Strand RNA Virus L Proteins: One Machine, Many Activities.

    PubMed

    Das, Kalyan; Arnold, Eddy

    2015-07-16

    Structures of L proteins from La Crosse orthobunyavirus and vesicular stomatitis virus reveal insights into RNA synthesis and distinctive mRNA capping mechanisms of segmented and non-segmented negative-sense single-strand RNA viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients.

    PubMed

    Magangane, Pumza; Sookhayi, Raveendra; Govender, Dhirendra; Naidoo, Richard

    2016-12-01

    DLBCL is the most common lymphoma subtype occurring in older populations as well as in younger HIV infected patients. The current treatment options for DLBCL are effective for most patients yet the relapse rate is high. While many biomarkers for DLBCL exist, they are not in clinical use due to low sensitivity and specificity. In addition, these biomarkers have not been studied in the HIV context. Therefore, the identification of new biomarkers for HIV negative and HIV positive DLBCL, may lead to a better understanding of the disease pathology and better therapeutic design. Protein biomarkers for DLBCL were determined using MALDI imaging mass spectrometry (IMS) and characterised using LC-MS. The expression of one of the biomarkers, heat shock protein (Hsp) 70, was confirmed on a separate cohort of samples using immunohistochemistry. The biomarkers identified in the study consisted of four protein clusters including glycolytic enzymes, ribosomal proteins, histones and collagen. These proteins could differentiate between control and tumour tissue, and the DLBCL immunohistochemical subtypes in both cohorts. The majority (41/52) of samples in the confirmation cohort were negative for Hsp70 expression. The HIV positive DLBCL cases had a higher percentage of cases expressing Hsp70 than their HIV negative counterparts. The non-GC subtype also frequently overexpressed Hsp70, confirming MALDI IMS data. The expression of Hsp70 did not correlate with survival in both the HIV negative and HIV positive cohort. This study identified potential biomarkers for HIV negative and HIV positive DLBCL from FFPE tissue sections. These may be used as diagnostic and prognostic markers complementary to current clinical management programmes for DLBCL.

  1. Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80.

    PubMed Central

    Salmeron, J M; Langdon, S D; Johnston, S A

    1989-01-01

    In Saccharomyces cerevisiae, transcriptional activation mediated by the GAL4 regulatory protein is repressed in the absence of galactose by the binding of the GAL80 protein, an interaction that requires the carboxy-terminal 28 amino acids of GAL4. The homolog of GAL4 from Kluyveromyces lactis, LAC9, activates transcription in S. cerevisiae and is highly similar to GAL4 in its carboxyl terminus but is not repressed by wild-type levels of GAL80 protein. Here we show that GAL80 does repress LAC9-activated transcription in S. cerevisiae if overproduced. We sought to determine the molecular basis for the difference in the responses of the LAC9 and GAL4 proteins to GAL80. Our results indicate that this difference is due primarily to the fact that under wild-type conditions, the level of LAC9 protein in S. cerevisiae is much higher than that of GAL4, which suggests that LAC9 escapes GAL80-mediated repression by titration of GAL80 protein in vivo. The difference in response to GAL80 is not due to amino acid sequence differences between the LAC9 and GAL4 carboxyl termini. We discuss the implications of these results for the mechanism of galactose metabolism regulation in S. cerevisiae and K. lactis. Images PMID:2550790

  2. Antibodies against Mycobacterial Proteins as Biomarkers for HIV-Associated Smear-Negative Tuberculosis

    PubMed Central

    Siev, Michael; Wilson, Douglas; Kainth, Supreet; Kasprowicz, Victoria O.; Feintuch, Catherine M.; Jenny-Avital, Elizabeth R.

    2014-01-01

    Serology data are limited for patients with sputum smear-negative HIV-associated active tuberculosis (TB). We evaluated the serum antibody responses against the mycobacterial proteins MPT51, MS, and echA1 and the 38-kDa protein via enzyme-linked immunosorbent assay (ELISA) in South African (S.A.) HIV-positive (HIV+) smear-negative TB patients (n = 56), U.S. HIV+ controls with a positive tuberculin skin test (TST+; n = 21), and S.A. HIV-negative (HIV−) (n = 18) and HIV+ (n = 24) controls. TB patients had positive antibody reactivity against MPT51 (73%), echA1 (59%), MS (36%), and the 38-kDa protein (11%). Little reactivity against MPT51 and echA1 was observed in control groups at low risk for TB, i.e., S.A. HIV− (0% and 6%, respectively), and at moderate risk for TB development, i.e., U.S. HIV+ TST+ controls (14% and 10%, respectively). By contrast, more reactivity was detected in the S.A. HIV+ control group at higher risk for TB (25% and 45%, respectively). Our data hold promise that antibody detection against MPT51 and echA1 might have adjunctive value in the detection of HIV+ smear-negative TB and might reflect increasing Mycobacterium tuberculosis infection activity in asymptomatic HIV+ individuals. PMID:24671553

  3. Src Inhibition Can Synergize with Gemcitabine and Reverse Resistance in Triple Negative Breast Cancer Cells via the AKT/c-Jun Pathway

    PubMed Central

    Liu, Ming-Ming; Zhang, Jian; Tao, Zhong-Hua; Hu, Xi-Chun

    2016-01-01

    Purpose Gemcitabine-based chemotherapy remains one of the standards in management of metastatic breast cancer. However, intrinsic and acquired resistance to gemcitabine inevitably occurs. The aims of this study were to assess the efficacy of the combination of src inhibition and gemcitabine in gemcitabine-resistant breast cancer cells. Methods and Results By using colony formation, sphere forming, flow cytometry, cell counting kit-8 and transwell assays, 231/GEM-res (gemcitabine-resistant) cell line, which was 10 times more resistant, was shown to have elevated drug tolerance, enhanced proliferative and self-renewal abilities, compared with its parental cells. Inhibition of src by both saracatinib (AZD0530) and siRNA could partially reverse gemcitabine resistance and attenuate resistance-associated anti-apoptosis, migration and stem cell capacities. In addition, the combination of src inhibition and gemcitabine had synergistic antitumor effects. Western blot analysis revealed up-regulation of pro-apoptotic protein BAX, along with the down-regulation of anti-apoptotic proteins (BCL-XL, Survivin), migration associated proteins (p-FAK, MMP-3) and cancer stem cell (CSC) markers (CD44, Oct-4), which was probably mediated by AKT/c-Jun pathway. Conclusion In highly gemcitabine-resistant 231 cells, src inhibition can synergize with gemcitabine, reverse drug resistance, inhibit tumor growth/metastasis/stemness of cancer stem cells, possibly via the AKT/c-Jun pathway. PMID:28036386

  4. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  5. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility.

    PubMed

    Kramer, Ryan M; Shende, Varad R; Motl, Nicole; Pace, C Nick; Scholtz, J Martin

    2012-04-18

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    PubMed Central

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  7. Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets

    PubMed Central

    Bischof, Johannes; Salzmann, Manuel; Streubel, Maria Karolin; Hasek, Jiri; Geltinger, Florian; Duschl, Jutta; Bresgen, Nikolaus; Briza, Peter; Haskova, Danusa; Lejskova, Renata; Sopjani, Mentor; Richter, Klaus; Rinnerthaler, Mark

    2017-01-01

    In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response. PMID:28386457

  8. Regulation of anti-apoptotic Bcl-2 family protein Mcl-1 by S6 kinase 2

    PubMed Central

    Sridharan, Savitha

    2017-01-01

    The anti-apoptotic Bcl-2 family protein myeloid cell leukemia-1 (Mcl-1) plays an important role in breast cancer cell survival and chemoresistance. We have previously shown that knockdown of the 40S ribosomal protein S6 kinase-2 (S6K2), which acts downstream of the mechanistic target of rapamycin complex 1 (mTORC1), enhanced breast cancer cell death by apoptotic stimuli. The increase in cell death by S6K2 depletion was partly due to inactivation of Akt. In the present study, we investigated if S6K2 regulates Mcl-1, which acts downstream of Akt. Silencing of S6K2 but not S6K1 in T47D cells decreased Mcl-1 level, and potentiated apoptosis induced by TRAIL and doxorubicin. Knockdown of S6K2 also decreased the level of anti-apoptotic Bcl-xl. Depletion of the tumor suppressor protein PDCD4 (programmed cell death 4), which regulates translation of several anti-apoptotic proteins, reversed downregulation of Bcl-xl but not Mcl-1 and failed to reverse the effect of S6K2 knockdown on potentiation of doxorubicin-induced apoptosis. Downregulation of Mcl-1 by S6K2 knockdown was partly restored by the proteasome inhibitor MG132. Overexpression of catalytically-active Akt or knockdown of glycogen synthase kinase-3 (GSK3)-β, a substrate for Akt, had little effect on Mcl-1 downregulation caused by S6K2 deficiency. Silencing of S6K2 increased the level of c-Jun N-terminal kinase (JNK) and knockdown of JNK1 increased basal Mcl-1 level and partly reversed the effect of S6K2 knockdown on Mcl-1 downregulation. JNK1 knockdown also had a modest effect in attenuating the increase in doxorubicin-induced apoptosis caused by S6K2 deficiency. These results suggest that S6K2 regulates apoptosis via multiple mechanisms, and involves both Akt and JNK. PMID:28301598

  9. PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria.

    PubMed

    Gardy, Jennifer L; Spencer, Cory; Wang, Ke; Ester, Martin; Tusnády, Gábor E; Simon, István; Hua, Sujun; deFays, Katalin; Lambert, Christophe; Nakai, Kenta; Brinkman, Fiona S L

    2003-07-01

    Automated prediction of bacterial protein subcellular localization is an important tool for genome annotation and drug discovery. PSORT has been one of the most widely used computational methods for such bacterial protein analysis; however, it has not been updated since it was introduced in 1991. In addition, neither PSORT nor any of the other computational methods available make predictions for all five of the localization sites characteristic of Gram-negative bacteria. Here we present PSORT-B, an updated version of PSORT for Gram-negative bacteria, which is available as a web-based application at http://www.psort.org. PSORT-B examines a given protein sequence for amino acid composition, similarity to proteins of known localization, presence of a signal peptide, transmembrane alpha-helices and motifs corresponding to specific localizations. A probabilistic method integrates these analyses, returning a list of five possible localization sites with associated probability scores. PSORT-B, designed to favor high precision (specificity) over high recall (sensitivity), attained an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, using a dataset we developed of 1443 proteins of experimentally known localization. This dataset, the largest of its kind, is freely available, along with the PSORT-B source code (under GNU General Public License).

  10. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  11. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria.

    PubMed

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-04-10

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates.

  12. Hydrophobic Fractionation Enhances Novel Protein Detection by Mass Spectrometry in Triple Negative Breast Cancer

    PubMed Central

    Lu, Ming; Whitelegge, Julian P.; Whelan, Stephen A.; He, Jianbo; Saxton, Romaine E.; Faull, Kym F.; Chang, Helena R.

    2010-01-01

    It is widely believed that discovery of specific, sensitive and reliable tumor biomarkers can improve the treatment of cancer. The goal of this study was to develop a novel fractionation protocol targeting hydrophobic proteins as possible cancer cell membrane biomarkers. Hydrophobic proteins of breast cancer tissues and cell lines were enriched by polymeric reverse phase columns. The retained proteins were eluted and digested for peptide identification by nano-liquid chromatography with tandem mass spectrometry using a hybrid linear ion-trap Orbitrap. Hundreds of proteins were identified from each of these three specimens: tumors, normal breast tissue, and breast cancer cell lines. Many of the identified proteins defined key cellular functions. Protein profiles of cancer and normal tissues from the same patient were systematically examined and compared. Stem cell markers were overexpressed in triple negative breast cancer (TNBC) compared with non-TNBC samples. Because breast cancer stem cells are known to be resistant to radiation and chemotherapy, and can be the source of metastasis frequently seen in patients with TNBC, our study may provide evidence of molecules promoting the aggressiveness of TNBC. The initial results obtained using a combination of hydrophobic fractionation and nano-LC mass spectrometry analysis of these proteins appear promising in the discovery of potential cancer biomarkers. When sufficiently refined, this approach may prove useful for early detection and better treatment of breast cancer. PMID:20596302

  13. BAG1: The Guardian of Anti-Apoptotic Proteins in Acute Myeloid Leukemia

    PubMed Central

    Aveic, Sanja; Pigazzi, Martina; Basso, Giuseppe

    2011-01-01

    BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance. PMID:22016818

  14. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    PubMed

    Aveic, Sanja; Pigazzi, Martina; Basso, Giuseppe

    2011-01-01

    BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  15. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    PubMed

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. © 2015 Lee et al.

  16. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    PubMed Central

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  17. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  18. Negative electrostatic surface potential of protein sites specific for anionic ligands.

    PubMed Central

    Ledvina, P S; Yao, N; Choudhary, A; Quiocho, F A

    1996-01-01

    Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692896

  19. Subcellular localization of Gram-negative bacterial proteins using sparse learning.

    PubMed

    Zheng, Zhonglong; Yang, Jie

    2010-04-01

    One of the main challenges faced by biological applications is to predict protein subcellular localization in an automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological system into account. Traditionally such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressive Sensing), we propose a method which performs locality preserving projection with a sparseness criterion such that the feature selection and dimension reduction are merged into one analysis. The proposed sparse method decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse method is quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  20. Negative electrostatic surface potential of protein sites specific for anionic ligands.

    PubMed

    Ledvina, P S; Yao, N; Choudhary, A; Quiocho, F A

    1996-06-25

    Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired.

  1. Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission

    PubMed Central

    Schmidt, Nathan W.; Mishra, Abhijit; Wang, Jun; DeGrado, William F.; Wong, Gerard C. L.

    2013-01-01

    The M2 protein is a multi-functional protein, which plays several roles in the replication cycle of the influenza A virus. Here we focus on its ability to promote budding of the mature virus from the cell surface. Using high resolution small angle X-ray scattering we show that M2 can restructure lipid membranes into bicontinuous cubic phases which are rich in negative Gaussian curvature (NGC). The active generation of negative Gaussian membrane curvature by M2 is essential to influenza virus budding. M2 has been observed to colocalize with the region of high NGC at the neck of a bud. The structural requirements for scission are even more stringent than those for budding, as the neck must be considerably smaller than the virus during ‘pinch off’. Consistent with this, the amount of NGC in the induced cubic phases suggests that M2 proteins can generate high curvatures comparable to those on a neck with size 10x smaller than a spherical influenza virus. Similar experiments on variant proteins containing different M2 domains show that the cytoplasmic amphipathic helix is necessary and sufficient for NGC generation. Mutations to the helix which reduce its amphiphilicity and are known to diminish budding attenuated NGC generation. An M2 construct comprising the membrane interactive domains, the transmembrane helix and the cytoplasmic helix, displayed enhanced ability to generate NGC, suggesting that other domains cooperatively promote membrane curvature. These studies establish the importance of M2-induced negative Gaussian curvature during budding and suggest that antagonizing this curvature is a viable anti-influenza strategy. PMID:23962302

  2. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein*

    PubMed Central

    Bernier, Michel; Paul, Rajib K.; Martin-Montalvo, Alejandro; Scheibye-Knudsen, Morten; Song, Shaoming; He, Hua-Jun; Armour, Sean M.; Hubbard, Basil P.; Bohr, Vilhelm A.; Wang, Lili; Zong, Yaping; Sinclair, David A.; de Cabo, Rafael

    2011-01-01

    In mammals, the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) is regulated by the deacetylase SIRT1. However, whether the newly described nongenomic actions of STAT3 toward mitochondrial oxidative phosphorylation are dependent on SIRT1 is unclear. In this study, Sirt1 gene knock-out murine embryonic fibroblast (MEF) cells were used to delineate the role of SIRT1 in the regulation of STAT3 mitochondrial function. Here, we show that STAT3 mRNA and protein levels and the accumulation of serine-phosphorylated STAT3 in mitochondria were increased significantly in Sirt1-KO cells as compared with wild-type MEFs. Various mitochondrial bioenergetic parameters, such as the oxygen consumption rate in cell cultures, enzyme activities of the electron transport chain complexes in isolated mitochondria, and production of ATP and lactate, indicated that Sirt1-KO cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-κB pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1 appears to be a functional regulator of NF-κB-dependent STAT3 expression that induces mitochondrial biogenesis. These results have implications for understanding the interplay between STAT3 and SIRT1 in pro-inflammatory conditions. PMID:21467030

  3. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    PubMed Central

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na+/H+ exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9. PMID:27358166

  4. Use of glycol ethers for selective release of periplasmic proteins from Gram-negative bacteria.

    PubMed

    Allen, Jeffrey R; Patkar, Anant Y; Frank, Timothy C; Donate, Felipe A; Chiu, Yuk Chun; Shields, Jefry E; Gustafson, Mark E

    2007-01-01

    Genetic modification of Gram-negative bacteria to express a desired protein within the cell's periplasmic space, located between the inner cytoplasmic membrane and the outer cell wall, can offer an attractive strategy for commercial production of therapeutic proteins and industrial enzymes. In certain applications, the product expression rate is high, and the ability to isolate the product from the cell mass is greatly enhanced because of the product's compartmentalized location within the cell. Protein release methods that increase the permeability of the outer cell wall for primary recovery, but avoid rupturing the inner cell membrane, reduce contamination of the recovered product with other host cell components and simplify final purification. This article reports representative data for a new release method employing glycol ether solvents. The example involves the use of 2-butoxyethanol (commonly called ethylene glycol n-butyl ether or EB) for selective release of a proprietary biopharmaceutical protein produced in the periplasmic space of Pseudomonas fluorescens. In this example, glycol ether treatment yielded approximately 65% primary recovery with approximately 80% purity on a protein-only basis. Compared with other methods including heat treatment, osmotic shock, and the use of surfactants, the glycol ether treatment yielded significantly reduced concentrations of other host cell proteins, lipopolysaccharide endotoxin, and DNA in the recovered protein solution. The use of glycol ethers also allowed exploitation of temperature-change-induced phase splitting behavior to concentrate the desired product. Heating the aqueous EB extract solution to 55 degrees C formed two liquid phases: a glycol ether-rich phase and an aqueous product phase containing the great majority of the product protein. This phase-splitting step yielded an approximate 10-fold reduction in the volume of the initial product solution and a corresponding increase in the product's concentration.

  5. Positive and negative regulation of a SNARE protein by control of intracellular localization.

    PubMed

    Nakanishi, Hideki; de los Santos, Pablo; Neiman, Aaron M

    2004-04-01

    In Saccharomyces cerevisiae, the developmentally regulated Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein Spo20p mediates the fusion of vesicles with the prospore membrane, which is required for the formation of spores. Spo20p is subject to both positive and negative regulation by separate sequences in its aminoterminal domain. We report that the positive activity is conferred by a short, amphipathic helix that is sufficient to confer plasma membrane or prospore membrane localization to green fluorescent protein. In vitro, this helix binds to acidic phospholipids, and mutations that reduce or eliminate phospholipid binding in vitro inactivate Spo20p in vivo. Genetic manipulation of phospholipid pools indicates that the likely in vivo ligand of this domain is phosphatidic acid. The inhibitory activity is a nuclear targeting signal, which confers nuclear localization in vegetative cells and in cells entering meiosis. However, as cells initiate spore formation, fusions containing the inhibitory domain exit the nucleus and localize to the nascent prospore membrane. Thus, the SNARE Spo20p is both positively and negatively regulated by control of its intracellular localization.

  6. Negative Potentials Across Biological Membranes Promote Fusion by Class II and Class III Viral Proteins

    PubMed Central

    Markosyan, Ruben M.

    2010-01-01

    Voltage was investigated as a factor in the fusion of virions. Virions, pseudotyped with a class II, SFV E1 or VEEV E, or a class III protein, VSV G, were prepared with GFP within the core and a fluorescent lipid. This allowed both hemifusion and fusion to be monitored. Voltage clamping the target cell showed that fusion is promoted by a negative potential and hindered by a positive potential. Hemifusion occurred independent of polarity. Lipid dye movement, in the absence of content mixing, ceased before complete transfer for positive potentials, indicating that reversion of hemifused membranes into two distinct membranes is responsible for voltage dependence and inhibition of fusion. Content mixing quickly followed lipid dye transfer for a negative potential, providing a direct demonstration that hemifusion induced by class II and class III viral proteins is a functional intermediate of fusion. In the hemifused state, virions that fused exhibited slower lipid transfer than did nonfusing virions. All viruses with class II or III fusion proteins may utilize voltage to achieve infection. PMID:20427575

  7. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity.

    PubMed

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-09-17

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B'η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes.

  8. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

    PubMed Central

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-01-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes. PMID:25085430

  9. S-Carboxyethylcysteine (a constituent of Acacia seed) negatively affects casein protein utilization by rats.

    PubMed

    Falade, Olumuyiwa S; Adewusi, Steve R A; Harwood, Chris E

    2012-07-01

    Two rat bioassay experiments are reported. The first investigated the first limiting amino acid in Acacia colei and the second experiment investigated the effect of S-carboxyethylcysteine (CEC; a compound present in acacia seed) on protein use. In the first experiment, Wistar rats were fed A. colei seed supplemented with three levels of methionine, cysteine, and tryptophan (0.1%, 0.2%, and 0.4%). In the second experiment, the Wistar rats were fed CEC-incorporated casein diets. Supplementation of A. colei with tryptophan had no significant effect on the protein efficiency ratio, cysteine showed the highest protein efficiency ratio value at the 0.4% level, and the protein efficiency ratio increased significantly with the increase in methionine content, making methionine the first limiting amino acid. The methionine-induced growth rate was suppressed by the incorporation of CEC, which also had a negative effect on the plasma amino acid levels. The results indicated that methionine is the first limiting amino acid in A. colei and that CEC could affect the seed's protein use. Acacia colei seed can be used effectively as famine food only if it is complemented with other cereals known to be rich in sulfur amino acids. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria.

    PubMed

    Choi, Min-Seon; Kim, Wooki; Lee, Chanhui; Oh, Chang-Sik

    2013-10-01

    Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.

  11. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  12. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress

    PubMed Central

    Liang, Jingjing; Sagum, Cari A.; Bedford, Mark T.; Sudol, Marius; Han, Ziying

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles. PMID:28076420

  13. Autoregulation of Fox protein expression to produce dominant negative splicing factors

    PubMed Central

    Damianov, Andrey; Black, Douglas L.

    2010-01-01

    The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform. PMID:20042473

  14. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    SciTech Connect

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  15. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator.

    PubMed

    Brown, Steven A; Ripperger, Juergen; Kadener, Sebastian; Fleury-Olela, Fabienne; Vilbois, Francis; Rosbash, Michael; Schibler, Ueli

    2005-04-29

    The clock proteins PERIOD1 (PER1) and PERIOD2 (PER2) play essential roles in a negative transcriptional feedback loop that generates circadian rhythms in mammalian cells. We identified two PER1-associated factors, NONO and WDR5, that modulate PER activity. The reduction of NONO expression by RNA interference (RNAi) attenuated circadian rhythms in mammalian cells, and fruit flies carrying a hypomorphic allele were nearly arrhythmic. WDR5, a subunit of histone methyltransferase complexes, augmented PER-mediated transcriptional repression, and its reduction by RNAi diminished circadian histone methylations at the promoter of a clock gene.

  16. PPARγ Activation Attenuates Glycated-Serum Induced Pancreatic Beta-Cell Dysfunction through Enhancing Pdx1 and Mafa Protein Stability

    PubMed Central

    Zhu, Yunxia; Ma, Ai; Zhang, Hongxiu; Li, Chaojun

    2013-01-01

    Pancreatic-duodenal homeobox-1 (Pdx1) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa) play important roles in sustaining the pancreatic beta-cell differentiation phenotype. Peroxisome proliferator-activated receptor-γ (PPARγ) is also a regulator of cell differentiation. Our previous study revealed that glycated serum (GS) causes beta-cell dedifferentiation by down-regulating beta-cell specific genes, such as insulin and Pdx1. Here, we show that GS enhanced the cellular accumulation of ubiquitin-conjugated proteins, including Pdx1 and Mafa, in pancreatic beta-cells. Pharmacologic inhibition of proteolytic activity restored the protein levels of Pdx1 and Mafa, whereas inhibition of de novo protein synthesis accelerated their degradation. These findings suggest that both Pdx1 and Mafa are regulated at the post-transcriptional level. We further show that activation of PPARγ could restore GS-induced reduction of Pdx1 and Mafa protein levels, leading to improved insulin secretion and synthesis. Moreover, ectopic expression of Bcl-xl, a mitochondrial regulator, also restored Pdx1 and Mafa protein levels, linking mitochondrial function to Pdx1 and Mafa stability. Taken together, our results identify a key role of PPARγ in regulating pancreatic beta-cell function by improving the stability of Pdx1 and Mafa proteins. PMID:23424659

  17. Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein.

    PubMed

    Tunchai, Mattana; Hida, Akiko; Oku, Shota; Nakashimada, Yutaka; Nikata, Toshiyuki; Tajima, Takahisa; Kato, Junichi

    2017-07-22

    Ralstonia pseudosolanacearum Ps29 was repelled by maleate. Screening of a complete collection of Ps29 single-methyl-accepting chemotaxis protein (mcp) gene mutants identified the RSp0303 homolog (McpP) as a chemotaxis sensor mediating negative chemotaxis to maleate. Interestingly, the mcpP-deletion mutant was attracted to maleate, indicating that this bacterium expresses a MCP(s) for both positive and negative chemotaxis to maleate. We constructed a Ps29 derivative (designated POC14) harboring deletions in 14 individual mcp genes, including mcpP, to characterize McpP. Introduction of a plasmid harboring the mcpP gene (pPS16) restored the ability to negatively respond to maleate, confirming that McpP is a MCP for negative chemotaxis to maleate. We thought that maleate might be applied to controlling plant infection by R. pseudosolanacearum. To evaluate this possibility, we measured chemotactic responses of seven other virulent R. pseudosolanacearum strains to maleate. We confirmed that they harbored functional mcpP orthologues, but they showed no chemotactic responses to maleate. Quantitative RT-PCR analysis revealed that these seven R. pseudosolanacearum strains did not show negative chemotaxis to maleate because of negligible transcription of the mcpP genes. We compared the chemotactic responses of POC14 and POC14[pPS16] toward various chemicals and found that McpP senses inorganic phosphate as a chemoattractant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport.

    PubMed

    Rayl, Mariah; Truitt, Mishana; Held, Aaron; Sargeant, John; Thorsen, Kevin; Hay, Jesse C

    2016-01-01

    Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport-peflin is a negative regulator of transport.

  19. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport

    PubMed Central

    Held, Aaron; Sargeant, John; Thorsen, Kevin; Hay, Jesse C.

    2016-01-01

    Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport—peflin is a negative regulator of transport. PMID:27276012

  20. The unique IR2 protein of equine herpesvirus 1 negatively regulates viral gene expression.

    PubMed

    Kim, Seong K; Ahn, Byung C; Albrecht, Randy A; O'Callaghan, Dennis J

    2006-05-01

    The IR2 protein (IR2P) is a truncated form of the immediate-early protein (IEP) lacking the essential acidic transcriptional activation domain (TAD) and serine-rich tract and yet retaining binding domains for DNA and TFIIB and nuclear localization signal (NLS). Analysis of the IR2 promoter indicated that the IR2 promoter was upregulated by the EICP0P. The IR2P was first detected in the nucleus at 5 h postinfection in equine herpesvirus 1 (EHV-1)-infected HeLa and equine NBL6 cells. Transient-transfection assays revealed that (i) the IR2P by itself downregulated EHV-1 early promoters (EICP0, TK, EICP22, and EICP27) in a dose-dependent manner; (ii) the IR2P abrogated the IEP and the EICP27P (UL5) mediated transactivation of viral promoters in a dose-dependent manner; and (iii) the IR2P, like the IEP itself, also downregulated the IE promoter, indicating that the IEP TAD is not necessary to downregulate the IE promoter. In vitro interaction assays revealed that the IR2P interacts with TATA box-binding protein (TBP). The essential domain(s) of the IR2P that mediate negative regulation were mapped to amino acid residues 1 to 706, indicating that the DNA-binding domain and the NLS of the IR2P may be important for the downregulation. In transient-transfection and virus growth assays, the IR2P reduced EHV-1 production by 23-fold compared to virus titers achieved in cells transfected with the empty vector. Overall, these studies suggest that the IR2P downregulates viral gene expression by acting as a dominant-negative protein that blocks IEP-binding to viral promoters and/or squelching the limited supplies of TFIIB and TBP.

  1. The Unique IR2 Protein of Equine Herpesvirus 1 Negatively Regulates Viral Gene Expression

    PubMed Central

    Kim, Seong K.; Ahn, Byung C.; Albrecht, Randy A.; O'Callaghan, Dennis J.

    2006-01-01

    The IR2 protein (IR2P) is a truncated form of the immediate-early protein (IEP) lacking the essential acidic transcriptional activation domain (TAD) and serine-rich tract and yet retaining binding domains for DNA and TFIIB and nuclear localization signal (NLS). Analysis of the IR2 promoter indicated that the IR2 promoter was upregulated by the EICP0P. The IR2P was first detected in the nucleus at 5 h postinfection in equine herpesvirus 1 (EHV-1)-infected HeLa and equine NBL6 cells. Transient-transfection assays revealed that (i) the IR2P by itself downregulated EHV-1 early promoters (EICP0, TK, EICP22, and EICP27) in a dose-dependent manner; (ii) the IR2P abrogated the IEP and the EICP27P (UL5) mediated transactivation of viral promoters in a dose-dependent manner; and (iii) the IR2P, like the IEP itself, also downregulated the IE promoter, indicating that the IEP TAD is not necessary to downregulate the IE promoter. In vitro interaction assays revealed that the IR2P interacts with TATA box-binding protein (TBP). The essential domain(s) of the IR2P that mediate negative regulation were mapped to amino acid residues 1 to 706, indicating that the DNA-binding domain and the NLS of the IR2P may be important for the downregulation. In transient-transfection and virus growth assays, the IR2P reduced EHV-1 production by 23-fold compared to virus titers achieved in cells transfected with the empty vector. Overall, these studies suggest that the IR2P downregulates viral gene expression by acting as a dominant-negative protein that blocks IEP-binding to viral promoters and/or squelching the limited supplies of TFIIB and TBP. PMID:16641295

  2. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  3. Identification and functional characterization of Bet protein as a negative regulator of BFV3026 replication.

    PubMed

    Bing, Tiejun; Wu, Kai; Cui, Xiaoxu; Shao, Peng; Zhang, Qicheng; Bai, Xiaobo; Tan, Juan; Qiao, Wentao

    2014-06-01

    Foamy virus (FV) establishes persistent infection in the host without causing apparent disease. Besides the transactivator Tas protein, another auxiliary protein--Bet--has been reported in prototype foamy virus, equine foamy virus, and feline foamy virus. Here, we found the putative bbet gene in clone C74 from a cDNA library of bovine foamy virus strain 3026 (BFV3026) by comparison of gene localization, composition, and splicing features with other known bet genes. Subsequently, BBet protein was detected in BFV3026-infected cells by Western blot and immunofluorescence analyses. Analysis of the BBet mutant infectious clone (pBS-BFVdelBBet) revealed that BBet could inhibit BFV3026 replication. Consistent with this result, overexpression of BBet in Cf2Th cells reduced BFV replication by approximately threefold. Furthermore, virus replication levels similarly were reduced by approximately threefold in pBS-BFV-transfected and BFV3026-infected Cf2Th cells stably expressing BBet compared with control cells. After three passages, BFV3026 replicated more slowly in BBet-expressing cells. This study implicates BBet as a negative regulator of BFV replication and provides a resource for future studies on the function of this protein in the virus lifecycle.

  4. C-reactive protein is a biomarker of AFP-negative HBV-related hepatocellular carcinoma.

    PubMed

    She, Sha; Xiang, Yi; Yang, Min; Ding, Xiangchun; Liu, Xiaoyan; Ma, Lina; Liu, Qing; Liu, Bin; Lu, Zhenhui; Li, Shiying; Liu, Yi; Ran, Xiaoping; Xu, Xiaoming; Hu, Huaidong; Hu, Peng; Zhang, Dazhi; Ren, Hong; Yang, Yixuan

    2015-08-01

    Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide and is associated with the high rates of morbidity and mortality. α-fetoprotein (AFP) is common used in diagnosis of HCC; however, a growing body of research is questioning the diagnostic power of AFP. There is, therefore, an urgent need to develop additional novel non-invasive techniques for the early diagnosis of HCC, particularly for patients with AFP-negative [AFP(-)] HCC. Accordingly, in the present study, we employed iTRAQ-based mass spectro-metry to analyze the plasma proteins of subjects with AFP(-) HBV-related HCC, AFP(+) HBV-related HCC and non-malignant cirrhosis. We identified 14 aberrantly expressed proteins specific to the HCC patients, including 10 upregulated and 4 downregulated proteins. We verified C-reactive protein (CRP) overexpression by ELISA and immunohistochemical staining of clinical samples. Per ROC curve analyses, CRP was positive in 73.3% of patients with HBV-related HCC, and CRP overexpression had significant diagnostic power for AFP(-) HBV-related HCC. Furthermore, we found that silencing CRP caused a >2-fold decease in HBV replication. Additionally, we determined that this reduction in HBV replication involved the interferon-signaling pathway. However, silencing CRP also promoted HCC invasion and migration in vitro. In conclusion, we demonstrated that CRP can serve as a diagnostic biomarker for AFP(-) HBV-related HCC.

  5. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis.

    PubMed

    Nawkar, Ganesh M; Kang, Chang Ho; Maibam, Punyakishore; Park, Joung Hun; Jung, Young Jun; Chae, Ho Byoung; Chi, Yong Hun; Jung, In Jung; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2017-02-21

    Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box-like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.

  6. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry.

    PubMed

    Roelants, Françoise M; Su, Brooke M; von Wulffen, Joachim; Ramachandran, Subramaniam; Sartorel, Elodie; Trott, Amy E; Thorner, Jeremy

    2015-02-02

    Plasma membrane function requires distinct leaflet lipid compositions. Two of the P-type ATPases (flippases) in yeast, Dnf1 and Dnf2, translocate aminoglycerophospholipids from the outer to the inner leaflet, stimulated via phosphorylation by cortically localized protein kinase Fpk1. By monitoring Fpk1 activity in vivo, we found that Fpk1 was hyperactive in cells lacking Gin4, a protein kinase previously implicated in septin collar assembly. Gin4 colocalized with Fpk1 at the cortical site of future bud emergence and phosphorylated Fpk1 at multiple sites, which we mapped. As judged by biochemical and phenotypic criteria, a mutant (Fpk1(11A)), in which 11 sites were mutated to Ala, was hyperactive, causing increased inward transport of phosphatidylethanolamine. Thus, Gin4 is a negative regulator of Fpk1 and therefore an indirect negative regulator of flippase function. Moreover, we found that decreasing flippase function rescued the growth deficiency of four different cytokinesis mutants, which suggests that the primary function of Gin4 is highly localized control of membrane lipid asymmetry and is necessary for optimal cytokinesis. © 2015 Roelants et al.

  7. Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    PubMed Central

    Wang, Lin-Ing; Lin, Yu-Sheng; Liu, Kung-Hung; Jong, Ambrose Y.; Shen, Wei-Chiang

    2011-01-01

    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans. PMID:21559476

  8. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages.

    PubMed

    Kalantari, Parisa; Narayan, Vivek; Natarajan, Sathish K; Muralidhar, Kambadur; Gandhi, Ujjawal H; Vunta, Hema; Henderson, Andrew J; Prabhu, K Sandeep

    2008-11-28

    Epidemiological studies suggest a correlation between severity of acquired immunodeficiency syndrome (AIDS) and selenium deficiency, indicating a protective role for this anti-oxidant during HIV infection. Here we demonstrate that thioredoxin reductase-1 (TR1), a selenium-containing pyridine nucleotide-disulfide oxidoreductase that reduces protein disulfides to free thiols, negatively regulates the activity of the HIV-1 encoded transcriptional activator, Tat, in human macrophages. We used a small interfering RNA approach as well as a high affinity substrate of TR1, ebselen, to demonstrate that Tat-dependent transcription and HIV-1 replication were significantly increased in human macrophages when TR1 activity was reduced. The increase in HIV-1 replication in TR1 small interfering RNA-treated cells was independent of the redox-sensitive transcription factor, NF-kappaB. These studies indicate that TR-1 acts as a negative regulator of Tat-dependent transcription. Furthermore, in vitro biochemical assays with recombinant Tat protein confirmed that TR1 targets two disulfide bonds within the Cys-rich motif required for efficient HIV-1 transactivation. Increasing TR1 expression along with other selenoproteins by supplementing with selenium suggests a potential inexpensive adjuvant therapy for HIV/AIDS patients.

  9. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis

    PubMed Central

    Nawkar, Ganesh M.; Kang, Chang Ho; Maibam, Punyakishore; Park, Joung Hun; Jung, Young Jun; Chae, Ho Byoung; Chi, Yong Hun; Jung, In Jung; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2017-01-01

    Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression. PMID:28167764

  10. Arabidopsis cold shock domain protein 2 influences ABA accumulation in seed and negatively regulates germination.

    PubMed

    Sasaki, Kentaro; Kim, Myung-Hee; Kanno, Yuri; Seo, Mitsunori; Kamiya, Yuji; Imai, Ryozo

    2015-01-02

    The cold shock domain (CSD) is the most conserved nucleic acid binding domain and is distributed from bacteria to animals and plants. CSD proteins are RNA chaperones that destabilize RNA secondary structures to regulate stress tolerance and development. AtCSP2 is one of the four CSD proteins in Arabidopsis and is up-regulated in response to cold. Since AtCSP2 negatively regulates freezing tolerance, it was proposed to be a modulator of freezing tolerance during cold acclimation. Here, we examined the function of AtCSP2 in seed germination. We found that AtCSP2-overexpressing lines demonstrated retarded germination as compared with the wild type, with or without stress treatments. The ABA levels in AtCSP2-overexpressing seeds were higher than those in the wild type. In addition, overexpression of AtCSP2 reduced the expression of an ABA catabolic gene (CYP707A2) and gibberellin biosynthesis genes (GA20ox and GA3ox). These results suggest that AtCSP2 negatively regulates seed germination by controlling ABA and GA levels.

  11. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  12. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    PubMed

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  13. OSPREY Predicts Resistance Mutations using Positive and Negative Computational Protein Design

    PubMed Central

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M.; Georgiev, Ivelin; Anderson, Amy C.; Donald, Bruce R.

    2016-01-01

    Summary Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (1), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme’s catalytic function but selectively ablate binding of an inhibitor. PMID:27914058

  14. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.

    PubMed

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R

    2017-01-01

    Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.

  15. Polypyrimidine Tract Binding Protein Functions as a Negative Regulator of Feline Calicivirus Translation

    PubMed Central

    Karakasiliotis, Ioannis; Vashist, Surender; Bailey, Dalan; Abente, Eugenio J.; Green, Kim Y.; Roberts, Lisa O.; Sosnovtsev, Stanislav V.; Goodfellow, Ian G.

    2010-01-01

    Background Positive strand RNA viruses rely heavily on host cell RNA binding proteins for various aspects of their life cycle. Such proteins interact with sequences usually present at the 5′ or 3′ extremities of the viral RNA genome, to regulate viral translation and/or replication. We have previously reported that the well characterized host RNA binding protein polypyrimidine tract binding protein (PTB) interacts with the 5′end of the feline calicivirus (FCV) genomic and subgenomic RNAs, playing a role in the FCV life cycle. Principal Findings We have demonstrated that PTB interacts with at least two binding sites within the 5′end of the FCV genome. In vitro translation indicated that PTB may function as a negative regulator of FCV translation and this was subsequently confirmed as the translation of the viral subgenomic RNA in PTB siRNA treated cells was stimulated under conditions in which RNA replication could not occur. We also observed that PTB redistributes from the nucleus to the cytoplasm during FCV infection, partially localizing to viral replication complexes, suggesting that PTB binding may be involved in the switch from translation to replication. Reverse genetics studies demonstrated that synonymous mutations in the PTB binding sites result in a cell-type specific defect in FCV replication. Conclusions Our data indicates that PTB may function to negatively regulate FCV translation initiation. To reconcile this with efficient virus replication in cells, we propose a putative model for the function of PTB in the FCV life cycle. It is possible that during the early stages of infection, viral RNA is translated in the absence of PTB, however, as the levels of viral proteins increase, the nuclear-cytoplasmic shuttling of PTB is altered, increasing the cytoplasmic levels of PTB, inhibiting viral translation. Whether PTB acts directly to repress translation initiation or via the recruitment of other factors remains to be determined but this may

  16. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.

    PubMed

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function.

  17. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function

    PubMed Central

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function. PMID:26930489

  18. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression

    PubMed Central

    2014-01-01

    Background A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. Results APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3′ untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3′ UTR. Conclusions These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3′ UTRs. PMID:24666827

  19. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation.

    PubMed

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I; Spengos, Konstantinos; Garbis, Spiros D; Manta, Panagiota; Kranias, Evangelia G; Sanoudou, Despina

    2014-07-01

    Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity. © 2014 FEBS.

  20. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation

    PubMed Central

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina

    2015-01-01

    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/CFL2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components including α-actinin, T-cap and MLP. Our findings unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, and in differentiated striated muscles as a contributor to sarcomeric integrity. PMID:24860983

  1. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness

    PubMed Central

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-01-01

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor. PMID:26837600

  2. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness.

    PubMed

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-02-03

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor.

  3. Rit-mediated Stress Resistance Involves a p38-Mitogen- and Stress-activated Protein Kinase 1 (MSK1)-dependent cAMP Response Element-binding Protein (CREB) Activation Cascade*

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2012-01-01

    The cAMP response element (CRE)-binding protein (CREB) is a key regulatory factor of gene transcription, and plays an essential role in development of the central nervous system and for neuroprotection. Multiple signaling pathways have been shown to contribute to the regulation of CREB-dependent transcription, including both ERK and p38 mitogen-activated protein (MAP) kinases cascades. Recent studies have identified the Ras-related small G-protein, Rit, as a central regulator of a p38-MK2-HSP27 signaling cascade that functions as a critical survival mechanism for cells adapting to stress. Here, we examine the contribution of Rit-p38 signaling to the control of stress-dependent gene transcription. Using a pheochromocytoma cell model, we find that a novel Rit-p38-MSK1/2 pathway plays a critical role in stress-mediated CREB activation. RNAi-mediated Rit silencing, or inhibition of p38 or MSK1/2 kinases, was found to disrupt stress-mediated CREB-dependent transcription, resulting in increased cell death. Furthermore, ectopic expression of active Rit stimulates CREB-Ser133 phosphorylation, induces expression of the anti-apoptotic Bcl-2 and BclXL proteins, and promotes cell survival. These data indicate that the Rit-p38-MSK1/2 signaling pathway may have an important role in the stress-dependent regulation of CREB-dependent gene expression. PMID:23038261

  4. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  5. Polymorphism in the M sub r 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes

    SciTech Connect

    Saboori, A.M.; Smith, B.L.; Agre, P. )

    1988-06-01

    A M{sub r} 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the M{sub r} 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO{sub 4}, and a tracer of immunoprecipitated {sup 125}I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO{sub 4}/PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO{sub 4}/PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after {sup 125}I-labeling and {alpha}-chymotrypsin digestion. The peptide maps were very similar. These data indicate that a similar core Rh protein exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms.

  6. Cooperative binding of dominant-negative prion protein to kringle domains.

    PubMed

    Ryou, Chongsuk; Prusiner, Stanley B; Legname, Giuseppe

    2003-05-30

    Conversion of the cellular prion protein (PrP(C)) to the pathogenic isoform (PrP(Sc)) is a major biochemical alteration in the progression of prion disease. This conversion process is thought to require interaction between PrP(C) and an as yet unidentified auxiliary factor, provisionally designated protein X. In searching for protein X, we screened a phage display cDNA expression library constructed from prion-infected neuroblastoma (ScN2a) cells and identified a kringle protein domain using full-length recombinant mouse PrP (recMoPrP(23-231), hereafter recMoPrP) expressing a dominant-negative mutation at codon 218 (recMoPrP(Q218K)). In vitro binding analysis using ELISA verified specific interaction of recMoPrP to kringle domains (K(1+2+3)) with higher binding by recMoPrP(Q218K) than by full-length recMoPrP without the mutation. This interaction was confirmed by competitive binding analysis, in which the addition of either a specific anti-kringle antibody or L-lysine abolished the interaction. Biochemical studies of the interactions between K(1+2+3) and various concentrations of both recMoPrP molecules demonstrated binding in a dose-dependent manner. A Hill plot analysis of the data indicates positive cooperative binding of both recMoPrP(Q218K) and recMoPrP to K(1+2+3) with stronger binding by recMoPrP(Q218K). Using full-length and an N-terminally truncated MoPrP(89-231), we demonstrate that N-terminal sequences enable PrP to bind strongly to K(1+2+3). Further characterization with truncated MoPrP(89-231) refolded in different conformations revealed that both alpha-helical and beta-sheet conformations bind to K(1+2+3). Our data demonstrate specific, high-affinity binding of a dominant-negative PrP as well as binding of other PrPs to K(1+2+3). The relevance of such interactions during prion pathogenesis remains to be established.

  7. Negative regulation of parathyroid hormone-related protein expression by steroid hormones.

    PubMed

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  8. Protein serine/threonine Phosphotase-2A is differentially expressed and regulates eye development in vertebrates.

    PubMed

    Liu, W-B; Hu, X-H; Zhang, X-W; Deng, M-X; Nie, L; Hui, S-S; Duan, W; Tao, M; Zhang, C; Liu, J; Hu, W-F; Huang, Z-X; Li, L; Yi, M; Li, T-T; Wang, L; Liu, Y; Liu, S-J; Li, D W-C

    2013-09-01

    Protein serine/threonine phosphatase-2A (PP-2A) is one of the key enzymes responsible for dephosphorylation in vertebrates. PP-2A-mediated dephosphorylation participates in many different biological processes including cell proliferation, differentiation, transformation, apoptosis, autophage and senescence. However, whether PP-2A directly controls animal development remains to be explored. Here, we present direct evidence to show that PP-2A displays important functions in regulating eye development of vertebrates. Using goldfish as a model system, we have demonstrated the following novel information. First, inhibition of PP-2A activity leads to significant death of the treated embryos, which is derived from blastomere apoptosis associated with enhanced phosphorylation of Bcl-XL at Ser-62, and the survived embryos displayed severe phenotype in the eye. Second, knockdown of PP-2A with morpholino oligomers leads to significant death of the injected embryos. The survived embryos from PP-2A knockdown displayed clear retardation in lens differentiation. Finally, overexpression of each catalytic subunit of PP-2A also causes death of majority of the injected embryos and leads to absence of goldfish eye lens or severely disturbed differentiation. Together, our results provide direct evidence that protein phosphatase-2A is important for normal eye development in goldfish.

  9. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1.

    PubMed

    Couto, Daniel; Niebergall, Roda; Liang, Xiangxiu; Bücherl, Christoph A; Sklenar, Jan; Macho, Alberto P; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Maclean, Dan; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min; Zipfel, Cyril

    2016-08-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component.

  10. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1

    PubMed Central

    Liang, Xiangxiu; Bücherl, Christoph A.; Sklenar, Jan; Macho, Alberto P.; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min

    2016-01-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  11. Feature extraction by statistical contact potentials and wavelet transform for predicting subcellular localizations in gram negative bacterial proteins.

    PubMed

    Arango-Argoty, G A; Jaramillo-Garzón, J A; Castellanos-Domínguez, G

    2015-01-07

    Predicting the localization of a protein has become a useful practice for inferring its function. Most of the reported methods to predict subcellular localizations in Gram-negative bacterial proteins make use of standard protein representations that generally do not take into account the distribution of the amino acids and the structural information of the proteins. Here, we propose a protein representation based on the structural information contained in the pairwise statistical contact potentials. The wavelet transform decodes the information contained in the primary structure of the proteins, allowing the identification of patterns along the proteins, which are used to characterize the subcellular localizations. Then, a support vector machine classifier is trained to categorize them. Cellular compartments like periplasm and extracellular medium are difficult to predict, having a high false negative rate. The wavelet-based method achieves an overall high performance while maintaining a low false negative rate, particularly, on "periplasm" and "extracellular medium". Our results suggest the proposed protein characterization is a useful alternative to representing and predicting protein sequences over the classical and cutting edge protein depictions.

  12. A cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein.

    PubMed

    Lorenzato, Annalisa; Olivero, Martina; Perro, Mario; Brière, Jean Jacques; Rustin, Pierre; Di Renzo, Maria Flavia

    2008-02-15

    The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most frequent in HLRCC patients. Here we show the functional analyses of the R190H, in comparison to the better characterized E319Q mutation. We first expressed wild-type and mutated proteins in FH deficient human skin fibroblasts, using lentiviral vectors. The wild-type transgene was able to restore the FH enzymatic activity in cells, while the R190H- and E319Q-FH were not. More interestingly, when the same transgenes were expressed in normal, FH-proficient cells, only the R190H-FH reduced the endogenous FH enzymatic activity. By enforcing the expression of equal amount of wild-type and R190H-FH in the same cell, we showed that the mutated FH protein directly inhibited enzymatic activity by nearly abrogating the FH homotetramer formation. These data demonstrate the dominant negative effect of the R190H missense mutation in the FH gene and suggest that the FH tumor-suppressing activity might be impaired in cells carrying a heterozygous mutation.

  13. Protein kinase Calpha activation by RET: evidence for a negative feedback mechanism controlling RET tyrosine kinase.

    PubMed

    Andreozzi, Francesco; Melillo, Rosa Marina; Carlomagno, Francesca; Oriente, Francesco; Miele, Claudia; Fiory, Francesca; Santopietro, Stefania; Castellone, Maria Domenica; Beguinot, Francesco; Santoro, Massimo; Formisano, Pietro

    2003-05-15

    We have studied the role of protein kinase C (PKC) in signaling of the RET tyrosine kinase receptor. By using a chimeric receptor (E/R) in which RET kinase can be tightly controlled by the addition of epidermal growth factor (EGF), we have found that RET triggering induces a strong increase of PKCalpha, PKCdelta and PKCzeta activity and that PKCalpha, not PKCdelta and PKCzeta, forms a ligand-dependent protein complex with E/R. We have identified tyrosine 1062 in the RET carboxyl-terminal tail as the docking site for PKCalpha. Block of PKC activity by bisindolylmaleimide or chronic phorbol esters treatment decreased EGF-induced serine/threonine phosphorylation of E/R, while it caused a similarly sized increase of EGF-induced E/R tyrosine kinase activity and mitogenic signaling. Conversely, acute phorbol esters treatment, which promotes PKC activity, increased the levels of E/R serine/threonine phosphorylation and significantly decreased its phosphotyrosine content. A threefold reduction of tyrosine phosphorylation levels of the constitutively active RET/MEN2A oncoprotein was observed upon coexpression with PKCalpha. We conclude that RET binds to and activates PKCalpha. PKCalpha, in turn, causes RET phosphorylation and downregulates RET tyrosine kinase and downstream signaling, thus functioning as a negative feedback loop to modulate RET activity.

  14. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination.

    PubMed

    Burgess, Rebecca C; Rahman, Sadia; Lisby, Michael; Rothstein, Rodney; Zhao, Xiaolan

    2007-09-01

    Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Delta mutants exhibited clonal lethality, which was due to the overamplification of 2 microm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Delta mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins.

  15. Protein Tyrosine Kinase 6 Negatively Regulates Growth and Promotes Enterocyte Differentiation in the Small Intestine

    PubMed Central

    Haegebarth, Andrea; Bie, Wenjun; Yang, Ruyan; Crawford, Susan E.; Vasioukhin, Valeri; Fuchs, Elaine; Tyner, Angela L.

    2006-01-01

    Protein tyrosine kinase 6 (PTK6) (also called Brk or Sik) is an intracellular tyrosine kinase that is expressed in breast cancer and normal epithelial linings. In adult mice, PTK6 expression is high in villus epithelial cells of the small intestine. To explore functions of PTK6, we disrupted the mouse Ptk6 gene. We detected longer villi, an expanded zone of PCNA expression, and increased bromodeoxyuridine incorporation in the PTK6-deficient small intestine. Although differentiation of major epithelial cell types occurred, there was a marked delay in expression of intestinal fatty acid binding protein, suggesting a role for PTK6 in enterocyte differentiation. However, fat absorption was comparable in wild-type and Ptk6−/− mice. It was previously shown that the serine threonine kinase Akt is a substrate of PTK6 and that PTK6-mediated phosphorylation of Akt on tyrosine resulted in inhibition of Akt activity. Consistent with these findings, we detected increased Akt activity and nuclear β-catenin in intestines of PTK6-deficient mice and decreased nuclear localization of the Akt substrate FoxO1 in villus epithelial cells. PTK6 contributes to maintenance of tissue homeostasis through negative regulation of Akt in the small intestine and is associated with cell cycle exit and differentiation in normal intestinal epithelial cells. PMID:16782882

  16. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation.

    PubMed

    Wang, Xiaojing; Zeng, Rui; Xu, Haiyang; Xu, Zaiyan; Zuo, Bo

    2017-09-20

    Muscle fiber formation is a complex process and subject to fine regulation of a variety of protein-coding genes and non-coding RNA. In this study, we identified a nuclear protein-coding gene ANKRD23 which was highly expressed in muscle. Quantitative real-time PCR, western blotting and immunofluorescence were used to detect the expression change of myoblast differentiation marker genes after knockdown and overexpression of ANKRD23. The results showed that the expression of myoblast differentiation marker genes were increased by interference and reduced by ANKRD23 overexpression, indicating that ANKRD23 played a negative role in the myoblast differentiation. Interestingly, we discovered a long non-coding RNA-AK004293 which was overlapped with the 3'UTR of ANKRD23 gene. Then we detected the effect of AK004293 on the expression of ANKRD23 and myoblast differentiation marker genes in C2C12 myoblasts. The results showed that AK004293 had no significant effect on the expression of myoblast differentiation maker genes and ANKRD23. In conclusion, our results established the foundation for further studies about the regulation mechanism of ANKRD23 in muscle development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2017-01-05

    Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.

  18. Random Screening for Dominant-Negative Mutants of the Cytomegalovirus Nuclear Egress Protein M50▿

    PubMed Central

    Rupp, Brigitte; Ruzsics, Zsolt; Buser, Christopher; Adler, Barbara; Walther, Paul; Koszinowski, Ulrich H.

    2007-01-01

    Inactivation of gene products by dominant-negative (DN) mutants is a powerful tool to assign functions to proteins. Here, we present a two-step procedure to establish a random screen for DN alleles, using the essential murine cytomegalovirus gene M50 as an example. First, loss-of-function mutants from a linker-scanning library were tested for inhibition of virus reconstitution with the help of FLP-mediated ectopic insertion of the mutants into the viral genome. Second, DN candidates were confirmed by conditional expression of the inhibitory proteins in the virus context. This allowed the quantification of the inhibitory effect, the identification of the morphogenesis block, and the construction of DN mutants with improved activity. Based on these observations a DN mutant of the homologous gene (UL50) in human cytomegalovirus was predicted and constructed. Our data suggest that a proline-rich sequence motif in the variable region of M50/UL50 represents a new functional site which is essential for nuclear egress of cytomegalovirus capsids. PMID:17376929

  19. Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50.

    PubMed

    Rupp, Brigitte; Ruzsics, Zsolt; Buser, Christopher; Adler, Barbara; Walther, Paul; Koszinowski, Ulrich H

    2007-06-01

    Inactivation of gene products by dominant-negative (DN) mutants is a powerful tool to assign functions to proteins. Here, we present a two-step procedure to establish a random screen for DN alleles, using the essential murine cytomegalovirus gene M50 as an example. First, loss-of-function mutants from a linker-scanning library were tested for inhibition of virus reconstitution with the help of FLP-mediated ectopic insertion of the mutants into the viral genome. Second, DN candidates were confirmed by conditional expression of the inhibitory proteins in the virus context. This allowed the quantification of the inhibitory effect, the identification of the morphogenesis block, and the construction of DN mutants with improved activity. Based on these observations a DN mutant of the homologous gene (UL50) in human cytomegalovirus was predicted and constructed. Our data suggest that a proline-rich sequence motif in the variable region of M50/UL50 represents a new functional site which is essential for nuclear egress of cytomegalovirus capsids.

  20. Small leucine zipper protein functions as a negative regulator of estrogen receptor α in breast cancer.

    PubMed

    Jeong, Juyeon; Park, Sodam; An, Hyoung-Tae; Kang, Minsoo; Ko, Jesang

    2017-01-01

    The nuclear transcription factor estrogen receptor α (ERα) plays a critical role in breast cancer progression. ERα acts as an important growth stimulatory protein in breast cancer and the expression level of ERα is tightly related to the prognosis and treatment of patients. Small leucine zipper protein (sLZIP) functions as a transcriptional cofactor by binding to various nuclear receptors, including glucocorticoid receptor, androgen receptor, and peroxisome proliferator-activated receptor γ. However, the role of sLZIP in the regulation of ERα and its involvement in breast cancer progression is unknown. We found that sLZIP binds to ERα and represses the transcriptional activity of ERα in ERα-positive breast cancer cells. sLZIP also suppressed the expression of ERα target genes. sLZIP disrupted the binding of ERα to the estrogen response element of the target gene promoter, resulting in suppression of cell proliferation. sLZIP is a novel co-repressor of ERα, and plays a negative role in ERα-mediated cell proliferation in breast cancer.

  1. Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium

    SciTech Connect

    Gingrich, D.J.; Weber, D.N.; Shaw, C.F.; Garvey, J.S.; Petering, D.H.

    1986-03-01

    The physiochemical properties and physiological significance of the cadmium-binding protein (CdBP) of the algae Euglena gracilis have been studied. Following in vivo exposure of cells to 0.4 or 1.3 ..mu..g/mL of Cd/sup 2 +/, all the cytosolic Cd is bound to high molecular weight species. At 4.7 ..mu..g/mL, appreciable CdBP has formed in cells grown under illumination or in the dark. The large pool of very low molecular weight zinc species previously reported is increased when cells are exposed to high cadmium levels. Two distinct species, BP-1 and BP-2 are resolved by ion-exchange chromatography on DEAE-Sephadex. Unusually high conductivities are required to displace them, indicating that they are very negatively charged proteins at pH 8.6. The pH for half-titration of bound Cd/sup 2 +/ is between 5 and 6. Neither form of the CdBP cross-reacts with antibodies to rat liver metallothionein (MT) antibodies. The structural, chemical, and functional differences between the Euglena CdBPs and mammalian MTs are discussed. When cells are exposed to high levels of Cu, a CuBP is induced, and the very low molecular weight zinc band is depleted.

  2. Direct correlation of the crystal structure of proteins with the maximum positive and negative charge states of gaseous protein ions produced by electrospray ionization.

    PubMed

    Prakash, Halan; Mazumdar, Shyamalava

    2005-09-01

    Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.

  3. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic proteins: a phase I trial

    PubMed Central

    Ahmad, Shamaila Munir; Abildgaard, Niels; Straten, Per Thor; Svane, Inge Marie; Andersen, Mads Hald; Knudsen, Lene Meldgaard

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic vaccination with peptides from the proteins Bcl-2, Bcl-XL and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical decision of lacking effect and development of hypercalcemia, respectively. There were no signs of toxicity other than what was to be expected from bortezomib. Immune responses to the peptides were seen in all 6 patients receiving more than 2 vaccinations. Three patients had increased immune responses after vaccination. Vaccination against Bcl-2 was well tolerated and was able to induce immune responses in patients with relapsed MM. PMID:28078275

  4. Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain

    PubMed Central

    1996-01-01

    The myelin Po protein is believed to hold myelin together via interactions of both its extracellular and cytoplasmic domains. We have already shown that the extracellular domains of Po can interact in a homophilic manner (Filbin, M.T., F.S. Walsh, B.D. Trapp, J.A. Pizzey, and G.I. Tennekoon. 1990. Nature (Lond.). 344:871-872). In addition, we have shown that for this homophilic adhesion to take place, the cytoplasmic domain of Po must be intact and most likely interacting with the cytoskeleton; Po proteins truncated in their cytoplasmic domains are not adhesive (Wong, M.H., and M.T. Filbin, 1994. J. Cell Biol. 126:1089-1097). To determine if the presence of these truncated forms of Po could have an effect on the functioning of the full-length Po, we coexpressed both molecules in CHO cells. The adhesiveness of CHO cells expressing both full-length Po and truncated Po was then compared to cells expressing only full-length Po. In these coexpressors, both the full-length and the truncated Po proteins were glycosylated. They reached the surface of the cell in approximately equal amounts as shown by an ELISA and surface labeling, followed by immunoprecipitation. Furthermore, the amount of full-length Po at the cell surface was equivalent to other cell lines expressing only full-length Po that we had already shown to be adhesive. Therefore, there should be sufficient levels of full-length Po at the surface of these coexpressors to measure adhesion of Po. However, as assessed by an aggregation assay, the coexpressors were not adhesive. By 60 min they had not formed large aggregates and were indistinguishable from the control transfected cells not expressing Po. In contrast, in the same time, the cells expressing only the full-length Po had formed large aggregates. This indicates that the truncated forms of Po have a dominant-negative effect on the adhesiveness of the full-length Po. Furthermore, from cross-linking studies, full-length Po, when expressed alone but not when

  5. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  6. G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration

    PubMed Central

    Mizuno, Norikazu; Kokubu, Hiroshi; Sato, Maiko; Nishimura, Akiyuki; Yamauchi, Junji; Kurose, Hitoshi; Itoh, Hiroshi

    2005-01-01

    In the early development of the central nervous system, neural progenitor cells divide in an asymmetric manner and migrate along the radial glia cells. The radial migration is an important process for the proper lamination of the cerebral cortex. Recently, a new mode of the radial migration was found at the intermediate zone where the neural progenitor cells become multipolar and reduce the migration rate. However, the regulatory signals for the radial migration are unknown. Using the migration assay in vitro, we examined how neural progenitor cell migration is regulated. Neural progenitor cells derived from embryonic mouse telencephalon migrated on laminin-coated dishes. Endothelin (ET)-1 inhibited the neural progenitor cell migration. This ET-1 effect was blocked by BQ788, a specific inhibitor of the ETB receptor, and by the expression of a carboxyl-terminal peptide of Gαq but not Gαi. The expression of constitutively active mutant of Gαq, GαqR183C, inhibited the migration of neural progenitor cells. Moreover, the inhibitory effect of ET-1 was suppressed by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the expression of the JNK-binding domain of JNK-interacting protein-1, a specific inhibitor of the JNK pathway. Using the slice culture system of embryonic brain, we demonstrated that ET-1 and the constitutively active mutant of Gαq caused the retention of the neural progenitor cells in the intermediate zone and JNK-binding domain of JNK-interacting protein-1 abrogated the effect of ET-1. These results indicated that G protein-coupled receptor signaling negatively regulates neural progenitor cell migration through Gq and JNK. PMID:16116085

  7. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.

  8. Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer.

    PubMed

    Boerner, Julie L; Nechiporchik, Nicole; Mueller, Kelly L; Polin, Lisa; Heilbrun, Lance; Boerner, Scott A; Zoratti, Gina L; Stark, Karri; LoRusso, Patricia M; Burger, Angelika

    2015-01-01

    Patients with metastatic triple-negative breast cancer (TNBC) have a poor prognosis. New approaches for the treatment of TNBC are needed to improve patient survival. The concept of synthetic lethality, brought about by inactivating complementary DNA repair pathways, has been proposed as a promising therapeutic option for these tumors. The TNBC tumor type has been associated with BRCA mutations, and inhibitors of Poly (ADP-ribose) polymerase (PARP), a family of proteins that facilitates DNA repair, have been shown to effectively kill BRCA defective tumors by preventing cells from repairing DNA damage, leading to a loss of cell viability and clonogenic survival. Here we present preclinical efficacy results of combining the PARP inhibitor, ABT-888, with CPT-11, a topoisomerase I inhibitor. CPT-11 binds to topoisomerase I at the replication fork, creating a bulky adduct that is recognized as damaged DNA. When DNA damage was stimulated with CPT-11, protein expression of the nucleotide excision repair enzyme ERCC1 inversely correlated with cell viability, but not clonogenic survival. However, 4 out of the 6 TNBC cells were synergistically responsive by cell viability and 5 out of the 6 TNBC cells were synergistically responsive by clonogenic survival to the combination of ABT-888 and CPT-11. In vivo, the BRCA mutant cell line MX-1 treated with CPT-11 alone demonstrated significant decreased tumor growth; this decrease was enhanced further with the addition of ABT-888. Decrease in tumor growth correlated with an increase in double strand DNA breaks as measured by γ-H2AX phosphorylation. In summary, inhibiting two arms of the DNA repair pathway simultaneously in TNBC cell lines, independent of BRCA mutation status, resulted in un-repairable DNA damage and subsequent cell death.

  9. Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes.

    PubMed Central

    Saboori, A M; Smith, B L; Agre, P

    1988-01-01

    A Mr 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the Mr 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO4, and a tracer of immunoprecipitated 125I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO4/PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO4/PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after 125I-labeling and alpha-chymotrypsin digestion. The peptide maps were very similar; however, at least two additional iodopeptides were consistently noted in the Rh proteins purified from Rh(D)-positive erythrocytes. These data indicate that a similar core Rh protein (or group of related proteins) exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms. Images PMID:3131772

  10. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium.

    PubMed Central

    Gingrich, D J; Weber, D N; Shaw, C F; Garvey, J S; Petering, D H

    1986-01-01

    The physiochemical properties and physiological significance of the cadmium-binding protein (CdBP) of the algae Euglena gracilis have been studied. Following in vivo exposure of cells to 0.4 or 1.3 micrograms/mL of Cd2+, all the cytosolic Cd is bound to high molecular weight species. At 4.7 micrograms/mL, appreciable CdBP has formed in cells grown under illumination or in the dark. An analogous ZnBP could not be isolated from control or Zn-exposed (20 micrograms/mL) cells, but zinc and a trace of copper were bound to the CdBP when 2-mercaptoethanol (2-ME) is added to the homogenates of Cd-treated cells and the buffers used during isolation. The large pool of very low molecular weight zinc species previously reported is increased when cells are exposed to high cadmium levels. Two distinct species, BP-1 and BP-2 are resolved by ion-exchange chromatography on DEAE-Sephadex. Unusually high conductivities (25 and 40 mSiemen) are required to displace them, indicating that they are very negatively charged proteins at pH 8.6. The pH for half-titration of bound Cd2+ is between 5 and 6. EDTA (0.4 M) and the CdBP isolated by gel-exclusion chromatography react biphasically with pseudo-first-order rate constants of 4 +/- 3 X 10(-4) sec-1 and 7 +/- 2 X 10(-5) sec-1. Neither form of the CdBP cross-reacts with antibodies to rat liver metallothionein (MT) antibodies. The structural, chemical, and functional differences between the Euglena CdBPs and mammalian MTs are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3011392

  12. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins.

    PubMed

    Peng, Jamy C; Valouev, Anton; Liu, Na; Lin, Haifan

    2016-03-01

    The Drosophila melanogaster Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi interacts with Polycomb group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with the PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin coimmunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), histone H3 trimethylated at lysine 27 (H3K27me3) and RNA polymerase II in wild-type and piwi mutant ovaries demonstrates that Piwi binds a conserved DNA motif at ∼ 72 genomic sites and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 trimethylation. Moreover, Piwi influences RNA polymerase II activities in Drosophila ovaries, likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influencing transcription during oogenesis.

  13. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase.

    PubMed

    Martínez de Morentin, Pablo B; Whittle, Andrew J; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; Vidal-Puig, Antonio; López, Miguel

    2012-04-01

    Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity.

  14. Receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis.

    PubMed

    Soady, Kelly J; Tornillo, Giusy; Kendrick, Howard; Meniel, Valerie; Olijnyk-Dallis, Daria; Morris, Joanna S; Stein, Torsten; Gusterson, Barry A; Isacke, Clare M; Smalley, Matthew J

    2017-09-04

    PTPRB is a transmembrane protein tyrosine phosphatase known to regulate blood vessel remodelling and angiogenesis. Here we demonstrate that PTPRB negatively regulates branching morphogenesis in the mammary epithelium. We show that Ptprb is highly expressed in adult mammary stem cells and also, although at lower levels, in estrogen receptor positive luminal cells. During mammary development Ptprb expression is down-regulated during puberty, a period of extensive of ductal outgrowth and branching. In vivo shRNA knockdown of Ptprb in the cleared mammary fat pad transplant assay resulted in smaller epithelial outgrowths with an increased branching density and also increased branching in an in vitro organoid assay. Organoid branching was dependent on stimulation by FGF2, and Ptprb knockdown in mammary epithelial cells resulted in a higher level of FGFR activation and ERK1/2 phosphorylation, both at baseline and following FGF2 stimulation. Therefore, PTPRB regulates branching morphogenesis in the mammary epithelium by modulating the response of the FGFR signalling pathway to FGF stimulation. Considering the importance of branching morphogenesis in multiple taxa, our findings have general importance outside mammary developmental biology. © 2017. Published by The Company of Biologists Ltd.

  15. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    SciTech Connect

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  16. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium

    PubMed Central

    Xiong, Xiaoli; Bromley, Elizabeth H. C.; Oelschlaeger, Peter; Woolfson, Derek N.; Spencer, James

    2011-01-01

    Quinolones inhibit bacterial type II DNA topoisomerases (e.g. DNA gyrase) and are among the most important antibiotics in current use. However, their efficacy is now being threatened by various plasmid-mediated resistance determinants. Of these, the pentapeptide repeat-containing (PRP) Qnr proteins are believed to act as DNA mimics and are particularly prevalent in Gram-negative bacteria. Predicted Qnr-like proteins are also present in numerous environmental bacteria. Here, we demonstrate that one such, Aeromonas hydrophila AhQnr, is soluble, stable, and relieves quinolone inhibition of Escherichia coli DNA gyrase, thus providing an appropriate model system for Gram-negative Qnr proteins. The AhQnr crystal structure, the first for any Gram-negative Qnr, reveals two prominent loops (1 and 2) that project from the PRP structure. Deletion mutagenesis demonstrates that both contribute to protection of E. coli DNA gyrase from quinolones. Sequence comparisons indicate that these are likely to be present across the full range of Gram-negative Qnr proteins. On this basis we present a model for the AhQnr:DNA gyrase interaction where loop1 interacts with the gyrase A ‘tower’ and loop2 with the gyrase B TOPRIM domains. We propose this to be a general mechanism directing the interactions of Qnr proteins with DNA gyrase in Gram-negative bacteria. PMID:21227918

  17. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.

    PubMed

    McBride, Devin W; Rodgers, V G J

    2013-12-31

    A negative second virial coefficient has long been a predictor of potential protein crystallization and salting out. However, the assumption that this is due to attractive solute-solute interactions remains a source of debate. Here we reexamine the second virial coefficient from protein osmometry in terms of the free-solvent model. The free-solvent model has been shown to provide excellent predictions of the osmotic pressure of concentrated and crowded environments for aqueous protein solutions in moderate ionic strengths. The free-solvent model relies on two critical parameters, hydration and ion binding, both which can be determined independently of osmotic pressure data. Herein, the free-solvent model is mathematically represented as a virial expansion model and the second virial coefficient is expressed in terms of solute-solvent interactions, namely hydration and ion binding. Hydration and ion binding values are then used to estimate the second virial coefficient at various protein concentrations for three model proteins ovalbumin (OVA), bovine serum albumin (BSA), and hen egg lysozyme (HEL) in various monovalent salt aqueous solutions. The results show that the conditions for obtaining a negative second virial coefficient emerge when the ionic strength of the influenced region of the protein is higher than that of the bulk. This analysis suggests a plausible explanation as to why proteins are more favorable for salting out or crystallization when the solution is represented by a negative second virial coefficient.

  18. Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species.

    PubMed

    Um, Hong-Duck

    2016-02-02

    Although Bcl-2 family proteins were originally identified as key regulators of apoptosis, an impressive body of evidence has shown that pro-survival members of the Bcl-2 family, including Bcl-2, Bcl-XL, and Bcl-w, can also promote cell migration, invasion, and cancer metastasis. Interestingly, cell invasion was recently found to be suppressed by multidomain pro-apoptotic members of the Bcl-2 family, such as Bax and Bak. While the mechanisms underlying these new functions of Bcl-2 proteins are just beginning to be studied, reactive oxygen species (ROS) have emerged as inducers of cell invasion and the production of ROS from mitochondrial respiration is known to be promoted and suppressed by the pro-survival and multidomain pro-apoptotic Bcl-2 family members, respectively. Here, I review the evidence supporting the ability of Bcl-2 proteins to regulate cancer cell invasion and metastasis, and discuss our current understanding of their underlying mechanisms, with a particular focus on mitochondrial respiration and ROS, which could have implications for the development of strategies to overcome tumor progression.

  19. Selenium-Containing Polysaccharide-Protein Complex in Se-Enriched Ulva fasciata Induces Mitochondria-Mediated Apoptosis in A549 Human Lung Cancer Cells.

    PubMed

    Sun, Xian; Zhong, Yu; Luo, Hongtian; Yang, Yufeng

    2017-07-16

    The role of selenium (Se) and Ulva fasciata as potent cancer chemopreventive and chemotherapeutic agents has been supported by epidemiological, preclinical, and clinical studies. In this study, Se-containing polysaccharide-protein complex (Se-PPC), a novel organoselenium compound, a Se-containing polysaccharide-protein complex in Se-enriched Ulva fasciata, is a potent anti-proliferative agent against human lung cancer A549 cells. Se-PPC markedly inhibited the growth of cancer cells via induction of apoptosis which was accompanied by the formation of apoptotic bodies, an increase in the population of apoptotic sub-G1 phase cells, upregulation of p53, and activation of caspase-3 in A549 cells. Further investigation on intracellular mechanisms indicated that cytochrome C was released from mitochondria into cytosol in A549 cells after Se-PPC treatment. Se-PPC induced depletion of mitochondrial membrane potential (ΔΨm) in A549 cells through regulating the expression of anti-apoptotic (Bcl-2, Bcl-XL) and pro-apoptotic (Bax, Bid) proteins, resulting in disruption of the activation of caspase-9. This is the first report to demonstrate the cytotoxic effect of Se-PPC on human cancer cells and to provide a possible mechanism for this activity. Thus, Se-PPC is a promising novel organoselenium compound with potential to treat human cancers.

  20. Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization

    PubMed Central

    2015-01-01

    Background Predicting functional properties of proteins in protein-protein interaction (PPI) networks presents a challenging problem and has important implication in computational biology. Collective classification (CC) that utilizes both attribute features and relational information to jointly classify related proteins in PPI networks has been shown to be a powerful computational method for this problem setting. Enabling CC usually increases accuracy when given a fully-labeled PPI network with a large amount of labeled data. However, such labels can be difficult to obtain in many real-world PPI networks in which there are usually only a limited number of labeled proteins and there are a large amount of unlabeled proteins. In this case, most of the unlabeled proteins may not connected to the labeled ones, the supervision knowledge cannot be obtained effectively from local network connections. As a consequence, learning a CC model in sparsely-labeled PPI networks can lead to poor performance. Results We investigate a latent graph approach for finding an integration latent graph by exploiting various latent linkages and judiciously integrate the investigated linkages to link (separate) the proteins with similar (different) functions. We develop a regularized non-negative matrix factorization (RNMF) algorithm for CC to make protein functional properties prediction by utilizing various data sources that are available in this problem setting, including attribute features, latent graph, and unlabeled data information. In RNMF, a label matrix factorization term and a network regularization term are incorporated into the non-negative matrix factorization (NMF) objective function to seek a matrix factorization that respects the network structure and label information for classification prediction. Conclusion Experimental results on KDD Cup tasks predicting the localization and functions of proteins to yeast genes demonstrate the effectiveness of the proposed RNMF method for

  1. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation

    PubMed Central

    Jones, Robert A.; Robinson, Tyler J.; Liu, Jeff C.; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E.D.; Pellecchia, Giovanna; Fell, Victoria L.; Bae, SooIn; Muthuswamy, Lakshmi; Egan, Sean E.; Jiang, Zhe; Leone, Gustavo; Bader, Gary D.; Schimmer, Aaron

    2016-01-01

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low–like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration–approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC. PMID:27571409

  2. Chromium VI - Induced developmental toxicity of placenta is mediated through spatiotemporal dysregulation of cell survival and apoptotic proteins.

    PubMed

    Banu, Sakhila K; Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Taylor, Robert J; Burghardt, Robert C

    2017-03-01

    Environmental contamination with hexavalent chromium (CrVI) is a growing problem both in the U.S and developing countries. CrVI is a heavy-metal endocrine disruptor; women working in Cr industries exhibit an increased incidence of premature abortion and infertility. The current study was designed to understand the mechanism of CrVI toxicity on placental cell survival/death pathways. Pregnant mothers were treated with or without CrVI (50ppmK2Cr2O7) through drinking water from gestational day (GD) 9.5-14.5, and placentas were analyzed on GD 18.5. Results indicated that CrVI increased apoptosis of trophoblasts, vascular endothelium of the metrial glands and yolk sac epithelium through caspase-3 and p53-dependent pathways. CrVI increased apoptosis in labyrinth and basal zones in a caspase-3-independent manner via AIF, and through an ATM-p53-NOXA-PUMA-p27 network. CrVI downregulated cell survival proteins Bcl-2, Bcl-XL and XIAP in the placenta. CrVI disrupts placental histoarchitecture and increases cell death by spatiotemporal modulation of apoptotic signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Supplementing an energy adequate, higher-protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance.

    PubMed

    Berryman, Claire E; Sepowitz, John J; McClung, Holly L; Lieberman, Harris R; Farina, Emily K; McClung, James P; Ferrando, Arny A; Pasiakos, Stefan M

    2017-04-06

    Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy x-ray absorptiometry) and whole-body protein turnover (single-pool (15)N-alanine method) were determined before (PRE) and after 7 d (POST) of severe negative energy balance during military training in 63 male US Marines (mean±SD, 25±3 y, 84±9 kg). After POST measures were collected, volunteers were randomized to receive higher-protein (HIGH: 1103 kcal/d, 133 g protein/d), moderate protein (MOD: 974 kcal/d, 84 g protein/d), or carbohydrate-based low protein control (CON: 1042 kcal/d, 7 g protein/d) supplements, in addition to a self-selected, ad libitum diet, for the 27 d intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM, -5.8±1.0 kg, -7.0%), FFM (-3.1±1.6 kg, -4.7%), and net protein balance (-1.7±1.1 g protein/kg/d) were lower and proteolysis (1.1±1.9 g protein/kg/d) was higher compared to PRE (P<0.05). Self-selected, ad libitum dietary intake during REFED was similar between groups (3507 ± 730 kcal/d, 2.0±0.5 g protein/kg/d). However, diets differed by protein intake due to supplementation (CON: 2.0±0.4, MOD: 3.2±0.7, HIGH: 3.5±0.7 g/kg/d; P<0.05) but not total energy (4498±725 kcal/d). All volunteers, independent of group assignment, achieved positive net protein balance (0.4±1.0 g protein/kg/d) and gained TBM (5.9±1.7 kg, 7.8%) and FFM (3.6±1.8 kg, 5.7%) POST-REFED compared to POST (P<0.05). Supplementing ad libitum, energy-adequate, higher-protein diets with additional protein may not be necessary to restore FFM after short-term severe negative energy balance.

  4. The mouse albumin enhancer contains a negative regulatory element that interacts with a novel DNA-binding protein.

    PubMed Central

    Herbst, R S; Boczko, E M; Darnell, J E; Babiss, L E

    1990-01-01

    The far-upstream mouse albumin enhancer (-10.5 to -8.43 kilobases) has both positive and negative regulatory domains which contribute to the rate and tissue specificity of albumin gene transcription. (R. S. Herbst, N. Friedman, J. E. Darnell, Jr., and L. E. Babiss, Proc. Natl. Acad. Sci. USA 86:1553-1557). In this work, the negative regulatory region has been functionally localized to sequences -8.7 to -8.43 kilobases upstream of the albumin gene cap site. In the absence of the albumin-modulating region (in which there are binding sites for the transcription factor C/EBP), the negative region can suppress a neighboring positive-acting element, thereby interfering with albumin enhancer function. The negative region is also capable of negating the positive action of the heterologous transthyretin enhancer in an orientation-independent fashion. Within this negative-acting region we can detect two DNA-binding sites, both of which are recognized by a protein present in all cell types tested. This DNA-binding activity is not competed for by any of a series of known DNA-binding sites, and hence this new protein is a candidate for a role in suppressing the albumin gene in nonhepatic cells. Images PMID:2370857

  5. Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA.

    PubMed

    Wei, Tong-You Wade; Wu, Pei-Yu; Wu, Ting-Jung; Hou, Hsin-An; Chou, Wen-Chien; Teng, Chieh-Lin Jerry; Lin, Chih-Ru; Chen, Jo-Mei Maureen; Lin, Ting-Yang; Su, Hsiang-Chun; Huang, Chia-Chi Flora; Yu, Chang-Tze Ricky; Hsu, Shih-Lan; Tien, Hwei-Fang; Tsai, Ming-Daw

    2017-01-15

    Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.

  6. An antiapoptotic Bcl-2 family protein index predicts the response of leukaemic cells to the pan-Bcl-2 inhibitor S1

    PubMed Central

    Zhang, Z; Liu, Y; Song, T; Xue, Z; Shen, X; Liang, F; Zhao, Y; Li, Z; Sheng, H

    2013-01-01

    Background: Bcl-2-like members have been found to be inherently overexpressed in many types of haematologic malignancies. The small-molecule S1 is a BH3 mimetic and a triple inhibitor of Bcl-2, Mcl-1 and Bcl-XL. Methods: The lethal dose 50 (LD50) values of S1 in five leukaemic cell lines and 41 newly diagnosed leukaemia samples were tested. The levels of Bcl-2 family members and phosphorylated Bcl-2 were semiquantitatively measured by western blotting. The interactions between Bcl-2 family members were tested by co-immunoprecipitation. The correlation between the LD50 and expression levels of Bcl-2 family members, alone or in combination, was analysed. Results: S1 exhibited variable sensitivity with LD50 values ranging >2 logs in both established and primary leukaemic cells. The ratio of pBcl-2/(Bcl-2+Mcl-1) could predict the S1 response. Furthermore, we demonstrated that pBcl-2 antagonised S1 by sequestering the Bak and Bim proteins that were released from Mcl-1, andpBcl-2/Bak, pBcl-2/Bax and pBcl-2/Bim complexes cannot be disrupted by S1. Conclusion: A predictive index was obtained for the novel BH3 mimetic S1. The shift of proapoptotic proteins from being complexed with Mcl-1 to being complexed with pBcl-2 was revealed for the first time, which is the mechanism underlying the index value described herein. PMID:23558901

  7. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  8. Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast

    PubMed Central

    Kanneganti, Vydehi; Kama, Rachel; Gerst, Jeffrey E.

    2011-01-01

    Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans. PMID:21441304

  9. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  10. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    SciTech Connect

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  11. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.; Haitjema, Charles H.

    2017-02-21

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  12. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans.

    PubMed

    Gavaldà-Navarro, Aleix; Moreno-Navarrete, José M; Quesada-López, Tania; Cairó, Montserrat; Giralt, Marta; Fernández-Real, José M; Villarroya, Francesc

    2016-10-01

    Adipocyte lipopolysaccharide-binding protein (LBP) biosynthesis is associated with obesity-induced adipose tissue dysfunction. Our purpose was to study the role of LBP in regulating the browning of adipose tissue. Adult mice were maintained at 4°C for 3 weeks or treated with the β3-adrenergic agonist, CL316,243, for 1 week to induce the browning of white fat. Precursor cells from brown and white adipose tissues were cultured under differentiation-inducing conditions to yield brown and beige/brite adipocytes, respectively. In vitro, Lbp was knocked down in 3T3-L1 adipocytes, and cells were treated with recombinant LBP or co-cultured in transwells with control 3T3-L1 adipocytes. Wild-type and Lbp-null mice, fed a standard or high fat diet (HFD) for 15 weeks, were also used in investigations. In humans, subcutaneous and visceral adipose tissue samples were obtained from a cohort of morbidly obese participants. The induction of white fat browning by exposure of mice to cold or CL316,243 treatment was strongly associated with decreased Lbp mRNA expression in white adipose tissue. The acquisition of the beige/brite phenotype in cultured cells was associated with downregulation of Lbp. Moreover, silencing of Lbp induced the expression of brown fat-related genes in adipocytes, whereas LBP treatment reversed this effect. Lbp-null mice exhibited the spontaneous induction of subcutaneous adipose tissue browning, as evidenced by a remarkable increase in Ucp1 and Dio2 gene expression and the appearance of multivacuolar adipocyte clusters. The amount of brown adipose tissue, and brown adipose tissue activity were also increased in Lbp-null mice. These changes were associated with decreased weight gain in Lbp-null mice and protection against HFD-induced inflammatory responses, as shown by reduced IL-6 levels. However, rather than improving glucose homeostasis, these effects led to glucose intolerance and insulin resistance. LBP is identified as a negative regulator of the

  13. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp.

    PubMed

    Pacheco, M Andreína; Ryan, Elizabeth M; Poe, Amanda C; Basco, Leonardo; Udhayakumar, Venkatachalam; Collins, Williams E; Escalante, Ananias A

    2010-07-01

    Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Molecular characterization of SIG1, a Saccharomyces cerevisiae gene involved in negative regulation of G-protein-mediated signal transduction.

    PubMed Central

    Leberer, E; Dignard, D; Harcus, D; Whiteway, M; Thomas, D Y

    1994-01-01

    Two recessive mutations in the Saccharomyces cerevisiae SIG1 (suppressor of inhibitory G-protein) gene have been identified by their ability to suppress the signalling defect of dominant-negative variants of the mating response G-protein beta-subunit. The mutations and deletion of SIG1 enhance the sensitivity of the cells to pheromone and stimulate the basal transcription of a mating specific gene, FUS1, suggesting that Sig1p plays a negatively regulatory role in G beta gamma-mediated signal transduction. An additional function of Sig1p in vegetatively growing cells is suggested by the finding that the mutations and deletion of SIG1 cause temperature-sensitive growth defects. The SIG1 gene encodes a protein with a molecular weight of 65 kDa that contains at the amino-terminus two zinc finger-like sequence motifs. Epistasis experiments localize the action of Sig1p within the pheromone signalling pathway at a position at or shortly after the G-protein. We propose that Sig1p represents a novel negative regulator of G beta gamma-mediated signal transduction. Images PMID:8039500

  15. The Immunophilin-Like Protein XAP2 Is a Negative Regulator of Estrogen Signaling through Interaction with Estrogen Receptor α

    PubMed Central

    Berg, Petra; Korbonits, Marta; Pongratz, Ingemar

    2011-01-01

    XAP2 (also known as aryl hydrocarbon receptor interacting protein, AIP) is originally identified as a negative regulator of the hepatitis B virus X-associated protein. Recent studies have expanded the range of XAP2 client proteins to include the nuclear receptor family of transcription factors. In this study, we show that XAP2 is recruited to the promoter of ERα regulated genes like the breast cancer marker gene pS2 or GREB1 and negatively regulate the expression of these genes in MCF-7 cells. Interestingly, we show that XAP2 downregulates the E2-dependent transcriptional activation in an estrogen receptor (ER) isoform-specific manner: XAP2 inhibits ERα but not ERβ-mediated transcription. Thus, knockdown of intracellular XAP2 levels leads to increased ERα activity. XAP2 proteins, carrying mutations in their primary structures, loose the ability of interacting with ERα and can no longer regulate ER target gene transcription. Taken together, this study shows that XAP2 exerts a negative effect on ERα transcriptional activity and may thus prevent ERα-dependent events. PMID:21984905

  16. The Role of Negative Selection in Protein Evolution Revealed through the Energetics of the Native State Ensemble

    PubMed Central

    Hoffmann, Jordan; Wrabl, James O.; Hilser, Vincent J.

    2016-01-01

    Knowing the determinants of conformational specificity is essential for understanding protein structure, stability, and fold evolution. To address this issue, a novel statistical measure of energetic compatibility between sequence and structure was developed, using an experimentally validated model of the energetics of the native state ensemble. This approach successfully matched sequences from a diverse subset of the human proteome to their respective folds. Unexpectedly, significant energetic compatibility between ostensibly unrelated sequences and structures was also observed. Interrogation of these matches revealed a general framework for understanding the origins of conformational specificity within a proteome: specificity is a complex function of both the ability of a sequence to adopt folds other than the native, and ability of a fold to accommodate sequences other than the native. The regional variation in energetic compatibility indicates that the compatibility is dominated by incompatibility of sequence for alternative fold segments, suggesting that evolution of protein sequences has involved substantial negative selection, with certain segments serving as “gatekeepers” that presumably prevent alternative structures. Beyond these global trends, a size dependence exists in the degree to which the energetic compatibility is determined from negative selection, with smaller proteins displaying more negative selection. This partially explains how short sequences can adopt unique folds, despite the higher probability in shorter proteins for small numbers of mutations to increase compatibility with other folds. In providing evolutionary ground rules for the thermodynamic relationship between sequence and fold, this framework imparts valuable insight for rational design of unique folds or fold switches. PMID:26800099

  17. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains

    PubMed Central

    de Gier, Camilla; Pickering, Janessa L.; Richmond, Peter C.; Thornton, Ruth B.

    2016-01-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148

  18. Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis.

    PubMed

    Bergmann-Leitner, Elke S; Leitner, Wolfgang W; Duncan, Elizabeth H; Savranskaya, Tatyana; Angov, Evelina

    2009-09-18

    Malaria represents a major global health problem but despite extensive efforts, no effective vaccine is available. Various vaccine candidates have been developed that provide protection in animal models, such as a gene gun-delivered DNA vaccine encoding the circumsporozoite protein (CSP) of Plasmodium berghei. A common shortcoming of most malaria vaccines is the requirement for multiple immunizations leaving room for improvement even for established vaccine candidates such as the CSP-DNA vaccine. In this study, we explored whether regulating apoptosis in DNA vaccine transfected host cells could accelerate the onset of protective immunity and provide significant protection after a single immunization. A pro-apoptotic gene (Bax) was used as a molecular adjuvant in an attempt to mimic the immunostimulatory apoptosis triggered by viral or virus-derived vaccines, while anti-apoptotic genes such as Bcl-XL may increase the life span of transfected cells thus prolonging antigen production. Surprisingly, co-delivery of either Bax or Bcl-XL greatly reduced CSP-DNA vaccine efficacy after a single immunization. Co-delivery of Bax for three immunizations still had a detrimental effect on protective immunity, while repeated co-delivery of Bcl-XL had no negative impact. The fine characterization of humoral and cellular immune response modulated by these two molecular adjuvants revealed a previously unknown effect, i.e., a shift in the Th-profile. These results demonstrate that pro- or anti-apoptotic molecules should not be used as molecular adjuvants without careful evaluation of the resulting immune response. This finding represents yet another example that strategies to enhance vaccine efficacy developed for other model systems such as viral diseases cannot easily be applied to any vaccine.

  19. Identification of the innate human immune response to surface-exposed proteins of coagulase-negative staphylococci.

    PubMed Central

    Plaunt, M R; Patrick, C C

    1991-01-01

    The presumed host defense against coagulase-negative staphylococci (ConS), recognized pathogens in hosts with compromised immunity or indwelling medical devices, is opsonophagocytosis. Targets for opsonization remain unclear. Using radiolabeling techniques, we identified the surface-exposed proteins of ConS and determined the innate humoral immune responses to them among healthy adults. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of surface proteins extrinsically labeled with 125I demonstrated 20 to 30 proteins with molecular weights of 15,000 to greater than 130,000. Five to ten of these proteins were immunogenic and recognized by normal human sera, including predominant 18-, 41-, 48-, and 51-kDa proteins. We also evaluated the humoral response of cancer patients with ConS bacteremia. Patients' sera obtained before bacteremic episodes demonstrated a pattern of reactivity similar to that of normal human sera. When patients' sera obtained after bacteremic episodes were used to determine whether an expanded immune response followed infection, only one of seven showed reactivity with more proteins than seen with the innate response. Western blot (immunoblot) analysis and whole-cell enzyme-linked immunosorbent assays were also evaluated. This study identifies (i) the surface-exposed proteins available for host interaction, (ii) the innate human antibody response to these proteins, and (iii) the immune response of cancer patients with ConS bacteremia. Images PMID:2056051

  20. The PspA Protein of Escherichia coli Is a Negative Regulator of ς54-Dependent Transcription

    PubMed Central

    Dworkin, Jonathan; Jovanovic, Goran; Model, Peter

    2000-01-01

    In Eubacteria, expression of genes transcribed by an RNA polymerase holoenzyme containing the alternate sigma factor ς54 is positively regulated by proteins belonging to the family of enhancer-binding proteins (EBPs). These proteins bind to upstream activation sequences and are required for the initiation of transcription at the ς54-dependent promoters. They are typically inactive until modified in their N-terminal regulatory domain either by specific phosphorylation or by the binding of a small effector molecule. EBPs lacking this domain, such as the PspF activator of the ς54-dependent pspA promoter, are constitutively active. We describe here the in vivo and in vitro properties of the PspA protein of Escherichia coli, which negatively regulates expression of the pspA promoter without binding DNA directly. PMID:10629175

  1. [The multifunctional RNA polymerase L protein of non-segmented negative strand RNA viruses catalyzes unique mRNA capping].

    PubMed

    Ogino, Tomoaki

    2014-01-01

    Non-segmented negative strand RNA viruses belonging to the Mononegavirales order possess RNA-dependent RNA polymerase L proteins within viral particles. The L protein is a multifunctional enzyme catalyzing viral RNA synthesis and processing (i.e., mRNA capping, cap methylation, and polyadenylation). Using vesicular stomatitis virus (VSV) as a prototypic model virus, we have shown that the L protein catalyzes the unconventional mRNA capping reaction, which is strikingly different from the eukaryotic reaction. Furthermore, co-transcriptional pre-mRNA capping with the VSV L protein was found to be required for accurate stop?start transcription to synthesize full-length mRNAs in vitro and virus propagation in host cells. This article provides a review of historical and present studies leading to the elucidation of the molecular mechanism of VSV mRNA capping.

  2. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection

    PubMed Central

    Bielli, Pamela; Bordi, Matteo; Biasio, Valentina Di; Sette, Claudio

    2014-01-01

    Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5′ splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5′ splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5′ splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5′ splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5′ splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5′ splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator. PMID:25294838

  3. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  4. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  5. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals.

    PubMed

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-10-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c(+)CD40(low)IL-10(+) regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.

  6. Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria

    NASA Astrophysics Data System (ADS)

    Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.

    2017-10-01

    We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus ( Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus. [Figure not available: see fulltext.

  7. Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria

    NASA Astrophysics Data System (ADS)

    Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.

    2017-07-01

    We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus (Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus.

  8. S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis.

    PubMed

    Ning, Xiaoxuan; Sun, Shiren; Zhang, Kun; Liang, Jie; Chuai, Yucai; Li, Yuan; Wang, Xiaoming

    2012-01-01

    Calcyclin-binding protein (CacyBP/SIP), identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100). The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer.

  9. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection

    PubMed Central

    2014-01-01

    Background Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. Results This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Conclusions Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses. PMID:25084837

  10. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    PubMed

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  11. Adsorption of human serum proteins onto TREN-agarose: purification of human IgG by negative chromatography.

    PubMed

    Bresolin, Igor Tadeu Lazzarotto; Borsoi-Ribeiro, Mariana; Caro, Juliana Rodrigues; dos Santos, Francine Petit; de Castro, Marina Polesi; Bueno, Sonia Maria Alves

    2009-01-01

    Tris(2-aminoethyl)amine (TREN) - a chelating agent used in IMAC - immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90-95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.

  12. Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas

    PubMed Central

    Tufail, Rozina; Jorda, Mercy; Zhao, Wei; Reis, Isildinha; Nawaz, Zafar

    2011-01-01

    Yes-associated protein (YAP) is a well characterized transcriptional coactivator that interacts with various transcription factors and modulates their transcriptional activities. Phosphorylation of YAP by specific kinases regulates its cellular distribution and transcriptional activation functions. Sequestration of phosphorylated YAP in cytoplasm results in the reduction of transcription from its target genes. Since, YAP has been characterized as a coactivator of estrogen (ER) and progesterone (PR) receptors, we examined the immunohistochemical expression profile of YAP and correlation of YAP expression with that of ER and PR in normal (40 samples) and tumor breast (226 samples) from microarray tissue samples using immunohistochemistry. Here we show that YAP expression is significantly reduced in invasive carcinoma samples compared to normal breast tissues, which express high levels of YAP (YAP was positive for 45.1% of invasive carcinoma samples vs. 82.5% of normal samples p<.0001). Furthermore, our data shows that reduced expression of YAP in invasive carcinoma samples is significantly associated with ER negativity (YAP was negative for 59.9% in ER negative vs. 38.9% in ER positive invasive carcinoma samples, p=0.007) and PR negativity (YAP was negative for 60.1% in PR negative vs. 28.9% in PR positive, p=0.0004). Among invasive carcinoma samples, 42.9% were YAP, ER and PR negative, whereas only 7.5% were found to be YAP, ER and PR positive. On the contrary, 20 out of 23 (87%) normal breast tissues that were positive for ER and PR were also positive for YAP. These data suggest that YAP may act as a tumor suppressor in invasive breast carcinomas and it can also be used as a molecular marker for ER and PR negative breast tumors. PMID:21399893

  13. Regulator of G protein signaling 20 correlates with clinicopathological features and prognosis in triple-negative breast cancer.

    PubMed

    Li, Quan; Jin, Wenxu; Cai, Yefeng; Yang, Fang; Chen, Endong; Ye, Danrong; Wang, Qingxuan; Guan, Xiaoxiang

    2017-04-08

    Triple-negative breast cancer (TNBC) is a highly aggressive tumor subtype lacking effective prognostic indicators or therapeutic targets. Therefore, finding a novel molecular biomarker for TNBC to achieve target therapy and predict its prognosis is crucial in preventing inappropriate treatment. Regulator of G-protein signaling (RGS) families of protein can negatively regulate signaling of heterotrimeric G proteins and are known to be upregulated in various tumors. In this study, we demonstrated that RGS20 was more highly expressed in TNBC tumor tissue than in adjacent normal tissue by analyzing the cancer genome atlas (TCGA) database. However, RGS20 expression was low in all breast cancer and luminal breast cancer patients. Validated by the TCGA cohort, RGS20 was upregulated in lymph node-positive TNBC compared with that in lymph node-negative breast cancer. High expression of RGS20 had a risk of lymph node metastasis, ki-67 > 14%, poor N stage, and poor clinical stage in the immunohistochemistry of tissue microarrays. Moreover, K-M plot analysis showed that TNBC patients with high RGS20 expression had poor relapse-free survival. In summary, the findings revealed that RGS20 was a special TNBC oncogene that promoted tumor progression and influenced TNBC prognosis. This study is the first to show that RGS20 was a special oncogene, and its high expression was significantly associated with the progression and prognosis of TNBC. RGS20 may be a novel molecular biomarker for the targeted therapy and prognosis of TNBC.

  14. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  15. Loss of Protein, Immunoglobulins, and Electrolytes in Exudates from Negative Pressure Wound Therapy

    DTIC Science & Technology

    2010-10-01

    510 Nutrition in Clinical Practice Volume 25 Number 5 October 2010 510-516 © 2010 American Society for Parenteral and Enteral Nutrition 10.1177...burn patients and subse-quent importance of nutrition support has been well described.1-6 Nutrition support, with emphasis on appropriate caloric and...protein and calories as well as additional nutrition sup- port to promote adequate wound healing.7 Failure to consider protein loss from wounds leads to

  16. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis.

    PubMed

    Dutilleul, Christelle; Ribeiro, Iliana; Blanc, Nathalie; Nezames, Cynthia D; Deng, Xing Wang; Zglobicki, Piotr; Palacio Barrera, Ana María; Atehortùa, Lucia; Courtois, Martine; Labas, Valérie; Giglioli-Guivarc'h, Nathalie; Ducos, Eric

    2016-01-01

    The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.

  17. Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 131 potentiates its negative effect on estrogen signaling.

    PubMed

    Oh, Yohan; Chung, Kwang Chul

    2012-05-18

    Like ubiquitin, small ubiquitin-like modifier (SUMO) covalently attaches to specific target proteins and modulates their functional properties, including subcellular localization, protein dimerization, DNA binding, and transactivation of transcription factors. Diverse transcriptional co-regulator complexes regulate the ability of estrogen receptors to respond to positive and negative acting hormones. Zinc finger protein 131 (ZNF131) is poorly characterized but may act as a repressor of estrogen receptor α (ERα)-mediated trans-activation. Here, we identify ZNF131 as a target for SUMO modification and as a substrate for the SUMO E3 ligase human polycomb protein 2 (hPc2). We report that the SUMO-interacting motif 1 (SIM1) and the C-box of hPc2 are critical regions required for ZNF131 SUMOylation and define the ZNF131 SUMOylation site as lysine 567. We further show that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling and consequently attenuates estrogen-induced cell growth in a breast cancer cell line. Our findings suggest that SUMOylation is a novel regulator of ZNF131 action in estrogen signaling and breast cancer cell proliferation.

  18. Genome-wide protein localization prediction strategies for gram negative bacteria

    SciTech Connect

    Romine, Margaret F.

    2011-06-15

    Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms.

  19. The Caenorhabditis elegans mucin-like protein OSM-8 negatively regulates osmosensitive physiology via the transmembrane protein PTR-23.

    PubMed

    Rohlfing, Anne-Katrin; Miteva, Yana; Moronetti, Lorenza; He, Liping; Lamitina, Todd

    2011-01-06

    The molecular mechanisms of animal cell osmoregulation are poorly understood. Genetic studies of osmoregulation in yeast have identified mucin-like proteins as critical regulators of osmosensitive signaling and gene expression. Whether mucins play similar roles in higher organisms is not known. Here, we show that mutations in the Caenorhabditis elegans mucin-like gene osm-8 specifically disrupt osmoregulatory physiological processes. In osm-8 mutants, normal physiological responses to hypertonic stress, such as the accumulation of organic osmolytes and activation of osmoresponsive gene expression, are constitutively activated. As a result, osm-8 mutants exhibit resistance to normally lethal levels of hypertonic stress and have an osmotic stress resistance (Osr) phenotype. To identify genes required for Osm-8 phenotypes, we performed a genome-wide RNAi osm-8 suppressor screen. After screening ~18,000 gene knockdowns, we identified 27 suppressors that specifically affect the constitutive osmosensitive gene expression and Osr phenotypes of osm-8 mutants. We found that one suppressor, the transmembrane protein PTR-23, is co-expressed with osm-8 in the hypodermis and strongly suppresses several Osm-8 phenotypes, including the transcriptional activation of many osmosensitive mRNAs, constitutive glycerol accumulation, and osmotic stress resistance. Our studies are the first to show that an extracellular mucin-like protein plays an important role in animal osmoregulation in a manner that requires the activity of a novel transmembrane protein. Given that mucins and transmembrane proteins play similar roles in yeast osmoregulation, our findings suggest a possible evolutionarily conserved role for the mucin-plasma membrane interface in eukaryotic osmoregulation.

  20. Dominant-negative mutants of a yeast G-protein beta subunit identify two functional regions involved in pheromone signalling.

    PubMed Central

    Leberer, E; Dignard, D; Hougan, L; Thomas, D Y; Whiteway, M

    1992-01-01

    The STE4 gene, which encodes the beta subunit of the mating response G-protein in the yeast Saccharomyces cerevisiae, was subjected to a saturation mutagenesis using 'doped' oligodeoxynucleotides. We employed a genetic screen to select dominant-negative STE4 mutants, which when overexpressed from the GAL1 promoter, interfered with the signalling function of the wild type protein. The identified inhibitory amino acid alterations define two small regions that are crucially involved in transmitting the mating signal from G beta to downstream components of the signalling pathway. These results underline the positive signalling role of yeast G beta and assign for the first time the positive signalling function of a G-protein beta subunit to specific structural features. Images PMID:1464310

  1. The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy

    PubMed Central

    Postis, Vincent; Rawson, Shaun; Mitchell, Jennifer K.; Lee, Sarah C.; Parslow, Rosemary A.; Dafforn, Tim R.; Baldwin, Stephen A.; Muench, Stephen P.

    2015-01-01

    Despite the great progress recently made in resolving their structures, investigation of the structural biology of membrane proteins still presents major challenges. Even with new technical advances such as lipidic cubic phase crystallisation, obtaining well-ordered crystals remains a significant hurdle in membrane protein X-ray crystallographic studies. As an alternative, electron microscopy has been shown to be capable of resolving > 3.5 Å resolution detail in membrane proteins of modest (~ 300 kDa) size, without the need for crystals. However, the conventional use of detergents for either approach presents several issues, including the possible effects on structure of removing the proteins from their natural membrane environment. As an alternative, it has recently been demonstrated that membrane proteins can be effectively isolated, in the absence of detergents, using a styrene maleic acid co-polymer (SMA). This approach yields SMA lipid particles (SMALPs) in which the membrane proteins are surrounded by a small disk of lipid bilayer encircled by polymer. Here we use the Escherichia coli secondary transporter AcrB as a model membrane protein to demonstrate how a SMALP scaffold can be used to visualise membrane proteins, embedded in a near-native lipid environment, by negative stain electron microscopy, yielding structures at a modest resolution in a short (days) timeframe. Moreover, we show that AcrB within a SMALP scaffold is significantly more active than the equivalent DDM stabilised form. The advantages of SMALP scaffolds within electron microscopy are discussed and we conclude that they may prove to be an important tool in studying membrane protein structure and function. PMID:25450810

  2. Negative effects of desiccation on the protein sorting and post-translational modification.

    PubMed

    Wang, Xiaoqin; He, Yikun

    2009-05-01

    Bryophytes as the first land plants are believed to have colonized the land from a fresh water origin, requiring adaptive mechanisms that survival of dehydration. Physcomitrella patens is such a non-vascular bryophyte and shows rare desiccation tolerance in its vegetative tissues. Previous studies showed that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling and microtubule depolymerization. And proteomic alteration supported the cellular structural changes in respond to desiccation stress. In this addendum, we report that Golgi bodies are absent and adaptor protein complex AP-1 large subunit is downregulated during the course of dehydration. Those phenomena may be adverse in protein posttranslational modification, protein sorting and cell walls synthesis under the desiccation condition.

  3. Genome-wide protein localization prediction strategies for gram negative bacteria

    PubMed Central

    2011-01-01

    Background Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. Results As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms. Conclusion Improved localization prediction accuracy is not simply a matter of developing better computational algorithms. It

  4. Arabidopsis DET1 represses photomorphogenesis in part by negatively regulating DELLA protein abundance in darkness.

    PubMed

    Li, Kunlun; Gao, Zhaoxu; He, Hang; Terzaghi, William; Fan, Liu-Min; Deng, Xing Wang; Chen, Haodong

    2015-04-01

    Arabidopsis De-etiolated 1 (DET1) is one of the key repressors that maintain the etiolated state of seedlings in darkness. The plant hormone gibberellic acid (GA) also participates in this process, and plants deficient in GA synthesis or signaling show a partially de-etiolated phenotype in darkness. However, how DET1 and the GA pathway work in concert in repressing photomorphogenesis remains largely unknown. In this study, we found that the abundance of DELLA proteins in det1-1 was increased in comparison with that in the wild-type plants. Mutation in DET1 changed the sensitivity of hypocotyl elongation of mutant seedlings to GA and paclobutrazol (PAC), an inhibitor of GA synthesis. However, we did not find obvious differences between det1-1 and wild-type plants with regard to the bioactive GA content or the GA signaling upstream of DELLAs. Genetic data showed that removal of several DELLA proteins suppressed the det1-1 mutant phenotype more obviously than GA treatment, indicating that DET1 can regulate DELLA proteins via some other mechanisms. In addition, a large-scale transcriptomic analysis revealed that DET1 and DELLAs play antagonistic roles in regulating expression of photosynthetic and cell elongation-related genes in etiolated seedlings. Taken together, our results show that DET1 represses photomorphogenesis in darkness in part by reducing the abundance of DELLA proteins. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation

    PubMed Central

    Lopez-Molina, Luis; Mongrand, Sébastien; Kinoshita, Natsuko; Chua, Nam-Hai

    2003-01-01

    Plants have evolved protective mechanisms to ensure their survival when threatened by adverse environmental conditions during their transition to autotrophic growth. During germination, there is a 2- to 3-d period during which a plant can execute growth arrest when challenged by water deficit. This postgermination developmental checkpoint is signaled by the stress hormone abscisic acid (ABA), which induces the expression of the bZIP transcription activator ABI5. The growth arrest efficiency depends on ABI5 levels, and abi5 mutants are ABA-insensitive and unable to execute the ABA-mediated growth arrest. Here we show that a novel ABI5-interacting protein, designated as AFP, can form high molecular weight (Mr) complexes with ABI5 in embryo-derived extracts. Like ABI5, ABI five binding protein (AFP) mRNA and protein levels are induced by ABA during seed germination. Two different afp mutant alleles (afp-1 and afp-2) are hypersensitive to ABA, whereas transgenic plants overexpressing AFP are resistant; in these plants, AFP and ABI5 protein levels are inversely correlated. Genetic analysis shows that abi5-4 is epistatic to afp-1, indicating the ABA hypersensitivity of afp mutants requires ABI5. Proteasome inhibitor studies show that ABI5 stability is regulated by ABA through ubiquitin-related events. When expressed together, AFP and ABI5 are colocalized in nuclear bodies, which also contain COP1, a RING motif protein. Our results suggest that AFP attenuates ABA signals by targeting ABI5 for ubiquitin-mediated degradation in nuclear bodies. PMID:12569131

  6. MecA Protein Acts as a Negative Regulator of Genetic Competence in Streptococcus mutans

    PubMed Central

    Tian, Xiao-Lin; Dong, Gaofeng; Liu, Tianlei; Gomez, Zubelda A.; Wahl, Astrid; Hols, Pascal

    2013-01-01

    Streptococcus mutans develops competence for genetic transformation through a complex network that receives inputs from at least two signaling peptides, competence-stimulating peptide (CSP) and sigX-inducing peptide (XIP). The key step of competence induction is the transcriptional activation of comX, which encodes an alternative sigma factor, SigX (σX), controlling the expression of late competence genes essential for DNA uptake and recombination. In this study, we provide evidence that MecA acts as a negative regulator in the posttranslational regulation of SigX in S. mutans. Using luxAB transcriptional reporter strains, we demonstrate that MecA represses the expression of late competence genes in S. mutans grown in a complex medium that is subpermissive for competence induction by CSP. The negative regulation of competence by MecA requires the presence of a functional SigX. Accordingly, inactivation of MecA results in a prolonged competence state of S. mutans under this condition. We have also found that the AAA+ protease ClpC displays a similar repressing effect on late competence genes, suggesting that both MecA and ClpC function coordinately to regulate competence in the same regulatory circuit in S. mutans. This suggestion is strongly supported by the results of bacterial two-hybrid assays, which demonstrate that MecA interacts with both SigX and ClpC, forming a ternary SigX-MecA-ClpC complex. Western blot analysis also confirms that inactivation of MecA or ClpC results in the intracellular accumulation of the SigX in S. mutans. Together, our data support the notion that MecA mediates the formation of a ternary SigX-MecA-ClpC complex that sequesters SigX and thereby negatively regulates genetic competence in S. mutans. PMID:24039267

  7. Protein Kinase C isoform epsilon (ε) negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets

    PubMed Central

    Bynagari-Settipalli, Yamini S; Lakhani, Parth; Jin, Jianguo; Bhavaraju, Kamala; Rico, Mario C.; Kim, Soochong; Woulfe, Donna; Kunapuli, Satya P

    2012-01-01

    Objective Members of Protein Kinase C (PKC) family are shown to positively and negatively regulate platelet activation. Although positive regulatory roles are extensively studied, negative regulatory roles of PKCs are poorly understood. In this study we investigated the mechanism and specific isoforms involved in PKC-mediated negative regulation of ADP-induced functional responses. Methods and Results A pan-PKC inhibitor GF109203X potentiated ADP-induced cPLA2 phosphorylation and thromboxane generation, as well as ERK activation and intracellular calcium (Ca2+i) mobilization, two signaling molecules, upstream of cPLA2 activation. Thus, PKCs inhibit cPLA2 activation by inhibiting ERK and Ca2+i mobilization. Since, the inhibitor of Classical PKC isoforms, GO-6976 did not affect ADP-mediated thromboxane generation, we investigated the role of novel class of PKC isoforms. ADP- induced thromboxane generation, calcium mobilization and ERK phosphorylation were potentiated in PKCε null murine platelets compared to platelets from wild type (WT) littermates. Interestingly, when thromboxane release is blocked, ADP-induced aggregation in PKCε KO and WT was similar, suggesting that PKCε does not affect ADP-induced aggregation directly. PKCε knockout mice exhibited shorter times to occlusion in FeCl3-induced arterial injury model and shorter bleeding times in tail bleeding experiments. Conclusion We conclude that PKCε negatively regulates ADP-induced thromboxane generation in platelets and offers protection against thrombosis. PMID:22362759

  8. Early protein malnutrition negatively impacts physical growth and neurological reflexes and evokes anxiety and depressive-like behaviors.

    PubMed

    Belluscio, Laura M; Berardino, Bruno G; Ferroni, Nadina M; Ceruti, Julieta M; Cánepa, Eduardo T

    2014-04-22

    Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of their development. In humans, poor maternal nutrition is a major cause of intrauterine growth restriction which is associated with an increased risk of perinatal mortality and long-term morbidity. In addition, intrauterine growth restriction correlates with neurodevelopmental delays and alterations of brain structure and neurochemistry. While there is no doubt that maternal malnutrition is a principal cause of perturbed development of the fetal brain and that all nutrients have certain influence on brain maturation, proteins appear to be the most critical for the development of neurological functions. In the present study we assessed male and female mouse offspring, born to dams protein restricted during pregnancy and lactation, in physical growth and neurobehavioral development and also in social interaction, motivation, anxiety and depressive behaviors. Moreover, we evaluate the impact of the low protein diet on dams in relation to their maternal care and anxiety-related behavior given that these clearly affect pups development. We observed that maternal protein restriction during pregnancy and lactation delayed the physical growth and neurodevelopment of the offspring in a sex-independent manner. In addition, maternal undernutrition negatively affected offspring's juvenile social play, motivation, exploratory activity and risk assessment behaviors. These findings show that protein restriction during critical periods of development detrimentally program progeny behavior.

  9. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  10. The A-kinase anchor protein AKAP121 is a negative regulator of cardiomyocyte hypertrophy.

    PubMed

    Abrenica, Bernard; AlShaaban, Mohamed; Czubryt, Michael P

    2009-05-01

    Pathologic cardiac hypertrophy imposes a significant clinical burden on patients, yet the precise intracellular mechanisms responsible for its induction are only partially understood. We examined a potential role for AKAP121 to regulate cardiomyocyte hypertrophy, since recent reports have implicated other AKAPs in this process. We report here that knockdown of AKAP121 expression in isolated neonatal rat cardiomyocytes results in pronounced cellular hypertrophy. Loss of AKAP121 expression is associated with dephosphorylation and nuclear localization of NFATc3, a downstream effector of the hypertrophic phosphatase calcineurin. We also demonstrate that over-expression of AKAP121 in cardiac myocytes reduces basal cell size, and blocks hypertrophy induced by isoproterenol, indicating that AKAP121 negatively regulates the hypertrophic process. Co-immunoprecipitation data indicates that AKAP121 and calcineurin directly interact. Our findings are consistent with a model in which loss of AKAP121 expression leads to the release of an active pool of calcineurin, in turn causing nuclear translocation of NFATc3 and activation of the hypertrophic gene program. These results are the first to identify AKAP121 as a negative regulator of cardiomyocyte hypertrophy, and highlight AKAP121 as a potential target for therapeutic exploitation.

  11. TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells*

    PubMed Central

    Finch-Edmondson, Megan L.; Strauss, Robyn P.; Passman, Adam M.; Sudol, Marius; Yeoh, George C.; Callus, Bernard A.

    2015-01-01

    The mammalian Hippo signaling pathway regulates cell growth and survival and is frequently dysregulated in cancer. YAP and TAZ are transcriptional coactivators that function as effectors of this signaling pathway. Aberrant YAP and TAZ activity is reported in several human cancers, and normally the expression and nuclear localization of these proteins is tightly regulated. We sought to establish whether a direct relationship exists between YAP and TAZ. Using knockdown and overexpression experiments we show YAP inversely regulates the abundance of TAZ protein by proteasomal degradation. Interestingly this phenomenon was uni-directional since TAZ expression did not affect YAP abundance. Structure/function analyses suggest that YAP-induced TAZ degradation is a consequence of YAP-targeted gene transcription involving TEAD factors. Subsequent investigation of known regulators of TAZ degradation using specific inhibitors revealed a role for heat shock protein 90 and glycogen synthase kinase 3 but not casein kinase 1 nor LATS in YAP-mediated TAZ loss. Importantly, this phenomenon is conserved from mouse to human; however, interestingly, different YAP isoforms varied in their ability to degrade TAZ. Since shRNA-mediated TAZ depletion in HeLa and D645 cells caused apoptotic cell death, we propose that isoform-specific YAP-mediated TAZ degradation may contribute to the contradicting roles reported for YAP overexpression. This study identifies a novel mechanism of TAZ regulation by YAP, which has significant implications for our understanding of Hippo pathway regulation, YAP-isoform specific signaling, and the role of these proteins in cell proliferation, apoptosis, and tumorigenesis. PMID:26432639

  12. The HIV-1 Nucleocapsid Protein Recruits Negatively Charged Lipids To Ensure Its Optimal Binding to Lipid Membranes

    PubMed Central

    Kempf, Noémie; Postupalenko, Viktoriia; Bora, Saurabh; Didier, Pascal; Arntz, Youri; de Rocquigny, Hugues

    2014-01-01

    ABSTRACT The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼107 M−1) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol-(4,5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. IMPORTANCE The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or as a domain of the Gag precursor also interacts with host proteins, only a few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free

  13. Electrical Detection of Negatively Charged Proteins Using n-Type Carbon Nanotube Field-Effect Transistor Biosensors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuki; Maehashi, Kenzo; Ohno, Yasuhide; Matsumoto, Kazuhiko

    2010-02-01

    We fabricated n-type carbon nanotube field-effect transistor (CNTFET) biosensors. To prevent the single-wall carbon nanotube (SWNT)/metal contacts from adsorption of ambient molecules, SiNx passivation films were deposited on CNTFETs by catalytic chemical vapor deposition. CNTFETs with SiNx passivation films on SWNT/metal contacts, but SWNT channels are exposed to environment for sensing, exhibit n-type behavior both in air and solution. Negatively charged bovine serum albumin is successfully detected using the fabricated n-type CNTFET biosensors with SiNx passivation films. Electrical detections of both negatively and positively charged proteins are achieved using n- and p-type CNTFET biosensors, respectively.

  14. Regulation of OSU-03012 toxicity by ER stress proteins and ER stress inducing drugs

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Cruickshanks, Nichola; Grant, Steven; Poklepovic, Andrew; Dent, Paul

    2014-01-01

    The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors, and to determine the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knock down of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012, and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase 9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase 8 inhibitor c-FLIP-s, or knock down of death receptor CD95 or the death receptor – caspase 8 linker protein FADD, suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knock down of the autophagy regulatory proteins Beclin1 or ATG5 protected cells from OSU-03012 and of [OSU-03012 + PDE5 inhibitor] toxicity. Knock down of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor] –induced JNK activation and inhibition of JNK suppressed the elevated killing caused by IRE1 knock down. Knock down of CD95 blunted JNK activation. Collectively our data demonstrates that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in GBM cells. PMID:25103559

  15. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  16. A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins.

    PubMed

    Sun, Yuna; Guo, Yu; Lou, Zhiyong

    2012-12-01

    Nucleocapsid protein (NPs) of negative-sense single-stranded RNA (-ssRNA) viruses function in different stages of viral replication, transcription, and maturation. Structural investigations show that -ssRNA viruses that encode NPs preliminarily serve as structural building blocks that encapsidate and protect the viral genomic RNA and mediate the interaction between genomic RNA and RNA-dependent RNA polymerase. However, recent structural results have revealed other biological functions of -ssRNA viruses that extend our understanding of the versatile roles of virally encoded NPs.

  17. EBV latent membrane protein 1 is a negative regulator of TLR9.

    PubMed

    Fathallah, Ikbal; Parroche, Peggy; Gruffat, Henri; Zannetti, Claudia; Johansson, Hanna; Yue, Jiping; Manet, Evelyn; Tommasino, Massimo; Sylla, Bakary S; Hasan, Uzma A

    2010-12-01

    EBV infects most of the human population and is associated with a number of human diseases including cancers. Moreover, evasion of the immune system and chronic infection is an essential step for EBV-associated diseases. In this paper, we show that EBV can alter the regulation and expression of TLRs, the key effector molecules of the innate immune response. EBV infection of human primary B cells resulted in the inhibition of TLR9 functionality. Stimulation of TLR9 on primary B cells led to the production of IL-6, TNF-α, and IgG, which was inhibited in cells infected with EBV. The virus exerts its inhibitory function by decreasing TLR9 mRNA and protein levels. This event was observed at early time points after EBV infection of primary cells, as well as in an immortalized lymphoblastoid cell line. We determined that the EBV oncoprotein latent membrane protein 1 (LMP1) is a strong inhibitor of TLR9 transcription. Overexpression of LMP1 in B cells reduced TLR9 promoter activity, mRNA, and protein levels. LMP1 mutants altered in activating the NF-κB pathway prevented TLR9 promoter deregulation. Blocking the NF-κB pathway recovered TLR9 promoter activity. Mutating the NF-κB cis element on the TLR9 promoter restored luciferase transcription in the presence of LMP1. Finally, deletion of the LMP1 gene in the EBV genome abolished the ability of the virus to induce TLR9 downregulation. Our study describes a mechanism used by EBV to suppress the host immune response by deregulating the TLR9 transcript through LMP1-mediated NF-κB activation.

  18. The proapoptotic and antimitogenic protein p66SHC acts as a negative regulator of lymphocyte activation and autoimmunity.

    PubMed

    Finetti, Francesca; Pellegrini, Michela; Ulivieri, Cristina; Savino, Maria Teresa; Paccagnini, Eugenio; Ginanneschi, Chiara; Lanfrancone, Luisa; Pelicci, Pier Giuseppe; Baldari, Cosima T

    2008-05-15

    The ShcA locus encodes 3 protein isoforms that differ in tissue specificity, subcellular localization, and function. Among these, p66Shc inhibits TCR coupling to the Ras/MAPK pathway and primes T cells to undergo apoptotic death. We have investigated the outcome of p66Shc deficiency on lymphocyte development and homeostasis. We show that p66Shc(-/-) mice develop an age-related lupus-like autoimmune disease characterized by spontaneous peripheral T- and B-cell activation and proliferation, autoantibody production, and immune complex deposition in kidney and skin, resulting in autoimmune glomerulonephritis and alopecia. p66Shc(-/-) lymphocytes display enhanced proliferation in response to antigen receptor engagement in vitro and more robust immune responses both to vaccination and to allergen sensitization in vivo. The data identify p66Shc as a negative regulator of lymphocyte activation and show that loss of this protein results in breaking of immunologic tolerance and development of systemic autoimmunity.

  19. Identification of F-box only protein 7 as a negative regulator of NF-kappaB signalling

    PubMed Central

    Kuiken, Hendrik J; Egan, David A; Laman, Heike; Bernards, Rene; Beijersbergen, Roderick L; Dirac, Annette M

    2012-01-01

    The nuclear factor κB (NF-κB) signalling pathway controls important cellular events such as cell proliferation, differentiation, apoptosis and immune responses. Pathway activation occurs rapidly upon TNFα stimulation and is highly dependent on ubiquitination events. Using cytoplasmic to nuclear translocation of the NF-κB transcription factor family member p65 as a read-out, we screened a synthetic siRNA library targeting enzymes involved in ubiquitin conjugation and de-conjugation for modifiers of regulatory ubiquitination events in NF-κB signalling. We identified F-box protein only 7 (FBXO7), a component of Skp, Cullin, F-box (SCF)-ubiquitin ligase complexes, as a negative regulator of NF-κB signalling. F-box protein only 7 binds to, and mediates ubiquitin conjugation to cIAP1 and TRAF2, resulting in decreased RIP1 ubiquitination and lowered NF-κB signalling activity. PMID:22212761

  20. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  1. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  2. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters.

    PubMed

    Finetti, Francesca; Savino, Maria Teresa; Baldari, Cosima T

    2009-11-01

    The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.

  3. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein

    PubMed Central

    Laviolette, Laura A.; Mermoud, Julien; Calvo, Isabel A.; Olson, Nicholas; Boukhali, Myriam; Steinlein, Ortrud K.; Roider, Elisabeth; Sattler, Elke C.; Huang, Dachuan; Teh, Bin Tean; Motamedi, Mo; Haas, Wilhelm; Iliopoulos, Othon

    2017-01-01

    Germline mutations in the Folliculin (FLCN) tumour suppressor gene result in fibrofolliculomas, lung cysts and renal cancers, but the precise mechanisms of tumour suppression by FLCN remain elusive. Here we identify Rab7A, a small GTPase important for endocytic trafficking, as a novel FLCN interacting protein and demonstrate that FLCN acts as a Rab7A GTPase-activating protein. FLCN−/− cells display slower trafficking of epidermal growth factor receptors (EGFR) from early to late endosomes and enhanced activation of EGFR signalling upon ligand stimulation. Reintroduction of wild-type FLCN, but not tumour-associated FLCN mutants, suppresses EGFR signalling in a Rab7A-dependent manner. EGFR signalling is elevated in FLCN−/− tumours and the EGFR inhibitor afatinib suppresses the growth of human FLCN−/− cells as tumour xenografts. The functional interaction between FLCN and Rab7A appears conserved across species. Our work highlights a mechanism explaining, at least in part, the tumour suppressor function of FLCN. PMID:28656962

  4. Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis.

    PubMed

    Zhang, Qiong; Berkey, Robert; Pan, Zhiyong; Wang, Wenming; Zhang, Yi; Ma, Xianfeng; King, Harlan; Xiao, Shunyuan

    2015-01-01

    Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi.

  5. Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis

    PubMed Central

    Zhang, Qiong; Berkey, Robert; Pan, Zhiyong; Wang, Wenming; Zhang, Yi; Ma, Xianfeng; King, Harlan; Xiao, Shunyuan

    2015-01-01

    Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi. PMID:25830634

  6. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4-negative mouse hearts.

    PubMed

    Straubinger, Julia; Boldt, Karsten; Kuret, Anna; Deng, Lisa; Krattenmacher, Diana; Bork, Nadja; Desch, Matthias; Feil, Robert; Feil, Susanne; Nemer, Mona; Ueffing, Marius; Ruth, Peter; Just, Steffen; Lukowski, Robert

    2017-04-01

    LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.

  7. Huntingtin interacting protein HYPK is a negative regulator of heat shock response and is downregulated in models of Huntington's Disease.

    PubMed

    Das, Srijit; Bhattacharyya, Nitai Pada

    2016-05-01

    Huntingtin interacting protein HYPK (Huntingtin Yeast Partner K) is an intrinsically unstructured protein having chaperone-like activity and can suppress mutant huntingtin aggregates and toxicity in cell model of Huntington's Disease (HD). Heat shock response is an adaptive mechanism of cells characterized by upregulation of heat shock proteins by heat-induced activation of heat shock factor 1 (HSF1). The trans-activation ability of HSF1 is arrested upon restoration of proteostasis. We earlier identified HYPK as a heat-inducible protein and transcriptional target of HSF1. Here we show that HYPK can act as negative regulator of heat shock response by repressing transcriptional activity of HSF1. As part of its role as a repressor of heat shock response, HYPK can also inhibit HSF1-dependent trans-activation of its own promoter. HYPK is downregulated in cell and animal model of HD. We further show that transcriptional downregulation of HYPK in HD cell model is a consequence of reduced occupancy of HSF1 in HYPK promoter. Moreover, presence of mutant huntingtin inhibits effective induction of HYPK in response to heat shock. Taken together, our findings reveal that HYPK can suppress heat shock response via an autoregulatory loop and downregulation of HYPK in HD is caused by impaired transcriptional activity of HSF1 in presence of mutant huntingtin. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Hematopoietic Transcription Factor AML1 (RUNX1) Is Negatively Regulated by the Cell Cycle Protein Cyclin D3

    PubMed Central

    Peterson, Luke F.; Boyapati, Anita; Ranganathan, Velvizhi; Iwama, Atsushi; Tenen, Daniel G.; Tsai, Schickwann; Zhang, Dong-Er

    2005-01-01

    The family of cyclin D proteins plays a crucial role in the early events of the mammalian cell cycle. Recent studies have revealed the involvement of AML1 transactivation activity in promoting cell cycle progression through the induction of cyclin D proteins. This information in combination with our previous observation that a region in AML1 between amino acids 213 and 289 is important for its function led us to investigate prospective proteins associating with this region. We identified cyclin D3 by a yeast two-hybrid screen and detected AML1 interaction with the cyclin D family by both in vitro pull-down and in vivo coimmunoprecipitation assays. Furthermore, we demonstrate that cyclin D3 negatively regulates the transactivation activity of AML1 in a dose-dependent manner by competing with CBFβ for AML1 association, leading to a decreased binding affinity of AML1 for its target DNA sequence. AML1 and its fusion protein AML1-ETO have been shown to shorten and prolong the mammalian cell cycle, respectively. In addition, AML1 promotes myeloid cell differentiation. Thus, our observations suggest that the direct association of cyclin D3 with AML1 functions as a putative feedback mechanism to regulate cell cycle progression and differentiation. PMID:16287839

  9. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway.

    PubMed

    Zhao, Bo; Li, Haitao; Li, Juanjuan; Wang, Bo; Dai, Cheng; Wang, Jing; Liu, Kede

    2017-04-01

    Identification and characterization of a semi-dwarfing gene ds-3 encoding a mutant DELLA protein regulating plant height through gibberellin signaling pathway. Lodging is one of the most important factors causing severe yield loss in oilseed rape. Utilization of semi-dwarf varieties has been proved the most effective way to increase lodging resistance and yield in many crops. To develop semi-dwarf germplasm in oilseed rape, we identified a semi-dwarf mutant ds-3 which showed a reduced response to phytohormones gibberellins (GAs). Genetic analysis indicated the dwarfism was controlled by a single semi-dominant gene, ds-3. The DS-3 gene was mapped to a genomic region on chromosome C07, which is syntenic to the region of a previously identified semi-dwarf gene ds-1 (BnaA06.RGA). In this region, DS-3 (BnaC07.RGA) gene was identified to encode a DELLA protein that functions as a repressor in GA signaling pathway. A substitution of proline to leucine was identified in ds-3 in the conserved VHYNP motif, which is essential for GA-dependent interaction between gibberellin receptor GID1 and DELLA proteins. Segregation analysis in the F2 population derived from the cross between ds-1 and ds-3 demonstrated that BnaA06.RGA displayed a stronger effect on plant height than BnaC07.RGA, indicating that different RGA genes may play different roles in stem elongation. In addition to BnaA06.RGA and BnaC07.RGA, two more RGA genes (BnaA09.RGA and BnaC09.RGA) were identified in the Brassica napus (B. napus) genome. Reverse-transcription polymerase chain reaction (RT-PCR) and yeast two-hybrid (Y2H) assays suggest that both BnaA09.RGA and BnaC09.RGA are transcribed in leaves and stems and can mediate GA signaling in vivo. These genes represent potential targets for screening ideal semi-dwarfing alleles for oilseed rape breeding.

  10. Negative regulation of T cell activation and autoimmunity by the transmembrane adaptor protein LAB.

    PubMed

    Zhu, Minghua; Koonpaew, Surapong; Liu, Yan; Shen, Shudan; Denning, Timothy; Dzhagalov, Ivan; Rhee, Inmoo; Zhang, Weiguo

    2006-11-01

    LAB (linker for activation of B cells), also known as NTAL (non-T cell activation linker), is a LAT (linker for activation of T cells)-like adaptor protein that is expressed in B, NK, and mast cells. Its role in lymphocytes has not been clearly demonstrated. Here, we showed that aged LAB-deficient (Lat2(-/-)) mice developed an autoimmune syndrome. Lat2(-/-) T cells were hyperactivated and produced more cytokines than Lat2(+/+) T cells. Even though LAB was absent in naive T cells, LAB could be detected in activated Lat2(+/+) T cells. LAT-mediated signaling events were enhanced in Lat2(-/-) T cells; however, they were suppressed in T cells that overexpressed LAB. Mice with the Lat2 gene conditionally deleted from T cells also developed the autoimmune syndrome like Lat2(-/-) mice. Together, these data demonstrated an important role of LAB in limiting autoimmune response and exposed a mechanism regulating T cell activation.

  11. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation

    PubMed Central

    Zou, Bo; Wan, Dongli; Li, Ruili; Han, Xiaomin; Li, Guojing; Wang, Ruigang

    2017-01-01

    Anthocyanins, a kind of flavonoid, normally accumulate in the flowers and fruits and make them colorful. Anthocyanin accumulation is regulated via the different temporal and spatial expression of anthocyanin regulatory and biosynthetic genes. CBP60g, a calmodulin binding protein, has previously been shown to have a role in pathogen resistance, drought tolerance and ABA sensitivity. In this study, we found that CBP60g repressed anthocyanin accumulation induced by drought, sucrose and kinetin. The expression pattern of CBP60g was in accordance with the anthocyanin accumulation tissues. Real-time qPCR analysis revealed that the anthocyanin biosynthetic genes CHS, CHI and DFR, as well as two members of MBW complex, PAP1, a MYB transcription factor, and TT8, a bHLH transcription factor, were down regulated by CBP60g. PMID:28253311

  12. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein.

    PubMed Central

    Iliopoulos, O; Levy, A P; Jiang, C; Kaelin, W G; Goldberg, M A

    1996-01-01

    Inactivation of the von Hippel-Lindau protein (pVHL) has been implicated in the pathogenesis of renal carcinomas and central nervous system hemangioblastomas. These are highly vascular tumors which overproduce angiogenic peptides such as vascular endothelial growth factor/vascular permeability factor (VEGF/VPF). Renal carcinoma cells lacking wild-type pVHL were found to produce mRNAs encoding VEGF/VPF, the glucose transporter GLUT1, and the platelet-derived growth factor B chain under both normoxic and hypoxic conditions. Reintroduction of wild-type, but not mutant, pVHL into these cells specifically inhibited the production of these mRNAs under normoxic conditions, thus restoring their previously described hypoxia-inducible profile. Thus, pVHL appears to play a critical role in the transduction of signals generated by changes in ambient oxygen tension. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855223

  13. The small heat shock protein αA-crystallin negatively regulates pancreatic tumorigenesis

    PubMed Central

    Huang, Zhaoxia; Hu, Xiaohui; Gong, Lili; Arrigo, Andre-Patrick; Tang, Xiangcheng; Xiang, Jia-Wen; Liu, Fangyuan; Deng, Mi; Ji, Weike; Hu, Wenfeng; Zhu, Ji-Ye; Chen, Baojiang; Bridge, Julia; Hollingsworth, Michael A.; Gigantelli, James; Liu, Yizhi; Nguyen, Quan D.; Li, David Wan-Cheng

    2016-01-01

    Our recent study has shown that αA-crystallin appears to act as a tumor suppressor in pancreas. Here, we analyzed expression patterns of αA-crystallin in the pancreatic tumor tissue and the neighbor normal tissue from 74 pancreatic cancer patients and also pancreatic cancer cell lines. Immunocytochemistry revealed that αA-crystallin was highly expressed in the normal tissue from 56 patients, but barely detectable in the pancreatic tumor tissue. Moreover, a low level of αA-crystallin predicts poor prognosis for patients with pancreatic duct adenocarcinoma (PDAC). In the 12 pancreatic cell lines analyzed, except for Capan-1 and Miapaca-2 where the level of αA-crystallin was about 80% and 65% of that in the control cell line, HPNE, the remaining pancreatic cancer cells have much lower αA-crystallin levels. Overexpression of αA-crystallin in MiaPaca-1 cells lacking endogenous αA-crystallin significantly decreased its tumorigenicity ability as shown in the colony formation and wound healing assays. In contrast, knockdown of αA-crystallin in the Capan-1 cells significantly increased its tumorigenicity ability as demonstrated in the above assays. Together, our results further demonstrate that αA-crystallin negatively regulates pancreatic tumorigenesis and appears to be a prognosis biomarker for PDAC. PMID:27588467

  14. The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit.

    PubMed

    Zhang, Ying; Su, Ping; Liang, Ping; Liu, Tao; Liu, Xu; Liu, Xin-Ying; Zhang, Bo; Han, Tao; Zhu, Yan-Bing; Yin, Dong-Min; Li, Junfa; Zhou, Zhuan; Wang, Ke-Wei; Wang, Yun

    2010-06-02

    Glutamate-induced excitotoxicity has been implicated in the etiology of stroke, epilepsy, and neurodegenerative diseases. NMDA receptors (NMDARs) play a pivotal role in excitotoxic injury; however, clinical trials testing NMDAR antagonists as neuroprotectants have been discouraging. The development of novel neuroprotectant molecules is being vigorously pursued. Here, we report that downstream regulatory element antagonist modulator (DREAM) significantly inhibits surface expression of NMDARs and NMDAR-mediated current. Overexpression of DREAM showed neuroprotection against excitotoxic neuronal injury, whereas knockdown of DREAM enhanced NMDA-induced toxicity. DREAM could directly bind to the C0 domain of the NR1 subunit. Although DREAM contains multiple binding sites for the NR1 subunit, residues 21-40 of the N terminus are the main binding site for the NR1 subunit. Thus, 21-40 residues might relieve the autoinhibition conferred by residues 1-50 and derepress the DREAM core domain by a competitive mechanism. Intriguingly, the cell-permeable TAT-21-40 peptide, constructed according to the critical binding site of DREAM to the NR1 subunit, inhibits NMDAR-mediated currents in primary cultured hippocampal neurons and has a neuroprotective effect on in vitro neuronal excitotoxic injury and in vivo ischemic brain damage. Moreover, both pretreatment and posttreatment of TAT-21-40 is effective against excitotoxicity. In summary, this work reveals a novel, negative regulator of NMDARs and provides an attractive candidate for the treatment of excitotoxicity-related disease.

  15. The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans

    PubMed Central

    Van Wynsberghe, Priscilla M.; Finnegan, Emily F.; Stark, Thomas; Angelus, Evan P.; Homan, Kathryn E.; Yeo, Gene W.; Pasquinelli, Amy E.

    2014-01-01

    MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate amount of a particular miRNA in the correct location at the correct time, proper regulation of miRNA biogenesis is essential. Here we identify the Period protein homolog LIN-42 as a new regulator of miRNA biogenesis in Caenorhabditis elegans. We mapped a spontaneous suppressor of the normally lethal let-7(n2853) allele to the lin-42 gene. Mutations in this allele (ap201) or a second lin-42 allele (n1089) caused increased mature let-7 miRNA levels at most time points when mature let-7 miRNA is normally expressed. Levels of pri-let-7 and a let-7 transcriptional reporter were also increased in lin-42(n1089) worms. These results indicate that LIN-42 normally represses pri-let-7 transcription and thus the accumulation of let-7 miRNA. This inhibition is not specific to let-7, as pri- and mature levels of lin-4 and miR-35 were also increased in lin-42 mutants. Furthermore, small RNA-seq analysis showed widespread increases in the levels of mature miRNAs in lin-42 mutants. Thus, we propose that the period protein homolog LIN-42 is a global regulator of miRNA biogenesis. PMID:24699545

  16. The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans.

    PubMed

    Van Wynsberghe, Priscilla M; Finnegan, Emily F; Stark, Thomas; Angelus, Evan P; Homan, Kathryn E; Yeo, Gene W; Pasquinelli, Amy E

    2014-06-15

    MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate amount of a particular miRNA in the correct location at the correct time, proper regulation of miRNA biogenesis is essential. Here we identify the Period protein homolog LIN-42 as a new regulator of miRNA biogenesis in Caenorhabditis elegans. We mapped a spontaneous suppressor of the normally lethal let-7(n2853) allele to the lin-42 gene. Mutations in this allele (ap201) or a second lin-42 allele (n1089) caused increased mature let-7 miRNA levels at most time points when mature let-7 miRNA is normally expressed. Levels of pri-let-7 and a let-7 transcriptional reporter were also increased in lin-42(n1089) worms. These results indicate that LIN-42 normally represses pri-let-7 transcription and thus the accumulation of let-7 miRNA. This inhibition is not specific to let-7, as pri- and mature levels of lin-4 and miR-35 were also increased in lin-42 mutants. Furthermore, small RNA-seq analysis showed widespread increases in the levels of mature miRNAs in lin-42 mutants. Thus, we propose that the period protein homolog LIN-42 is a global regulator of miRNA biogenesis.

  17. Myeloid-Related Protein-14 Contributes to Protective Immunity in Gram-Negative Pneumonia Derived Sepsis

    PubMed Central

    Achouiti, Ahmed; Vogl, Thomas; Urban, Constantin F.; Röhm, Marc; Hommes, Tijmen J.; van Zoelen, Marieke A. D.; Florquin, Sandrine; Roth, Johannes; van 't Veer, Cornelis; de Vos, Alex F.; van der Poll, Tom

    2012-01-01

    Klebsiella (K.) pneumoniae is a common cause of pneumonia-derived sepsis. Myeloid related protein 8 (MRP8, S100A8) and MRP14 (S100A9) are the most abundant cytoplasmic proteins in neutrophils. They can form MRP8/14 heterodimers that are released upon cell stress stimuli. MRP8/14 reportedly exerts antimicrobial activity, but in acute fulminant sepsis models MRP8/14 has been found to contribute to organ damage and death. We here determined the role of MRP8/14 in K. pneumoniae sepsis originating from the lungs, using an established model characterized by gradual growth of bacteria with subsequent dissemination. Infection resulted in gradually increasing MRP8/14 levels in lungs and plasma. Mrp14 deficient (mrp14−/−) mice, unable to form MRP8/14 heterodimers, showed enhanced bacterial dissemination accompanied by increased organ damage and a reduced survival. Mrp14−/− macrophages were reduced in their capacity to phagocytose Klebsiella. In addition, recombinant MRP8/14 heterodimers, but not MRP8 or MRP14 alone, prevented growth of Klebsiella in vitro through chelation of divalent cations. Neutrophil extracellular traps (NETs) prepared from wildtype but not from mrp14−/− neutrophils inhibited Klebsiella growth; in accordance, the capacity of human NETs to kill Klebsiella was strongly impaired by an anti-MRP14 antibody or the addition of zinc. These results identify MRP8/14 as key player in protective innate immunity during Klebsiella pneumonia. PMID:23133376

  18. Nek5 interacts with mitochondrial proteins and interferes negatively in mitochondrial mediated cell death and respiration.

    PubMed

    Melo Hanchuk, Talita D; Papa, Priscila Ferreira; La Guardia, Paolo G; Vercesi, Anibal E; Kobarg, Jörg

    2015-06-01

    Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2 μM). Nek5 silenced cells as well as cells expressing a "kinase dead" version of Nek5, displayed an increase in ROS formation after 4 h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions.

    PubMed

    Ballinger, C A; Connell, P; Wu, Y; Hu, Z; Thompson, L J; Yin, L Y; Patterson, C

    1999-06-01

    The chaperone function of the mammalian 70-kDa heat shock proteins Hsc70 and Hsp70 is modulated by physical interactions with four previously identified chaperone cofactors: Hsp40, BAG-1, the Hsc70-interacting protein Hip, and the Hsc70-Hsp90-organizing protein Hop. Hip and Hop interact with Hsc70 via a tetratricopeptide repeat domain. In a search for additional tetratricopeptide repeat-containing proteins, we have identified a novel 35-kDa cytoplasmic protein, carboxyl terminus of Hsc70-interacting protein (CHIP). CHIP is highly expressed in adult striated muscle in vivo and is expressed broadly in vitro in tissue culture. Hsc70 and Hsp70 were identified as potential interaction partners for this protein in a yeast two-hybrid screen. In vitro binding assays demonstrated direct interactions between CHIP and both Hsc70 and Hsp70, and complexes containing CHIP and Hsc70 were identified in immunoprecipitates of human skeletal muscle cells in vivo. Using glutathione S-transferase fusions, we found that CHIP interacted with the carboxy-terminal residues 540 to 650 of Hsc70, whereas Hsc70 interacted with the amino-terminal residues 1 to 197 (containing the tetratricopeptide domain and an adjacent charged domain) of CHIP. Recombinant CHIP inhibited Hsp40-stimulated ATPase activity of Hsc70 and Hsp70, suggesting that CHIP blocks the forward reaction of the Hsc70-Hsp70 substrate-binding cycle. Consistent with this observation, both luciferase refolding and substrate binding in the presence of Hsp40 and Hsp70 were inhibited by CHIP. Taken together, these results indicate that CHIP decreases net ATPase activity and reduces chaperone efficiency, and they implicate CHIP in the negative regulation of the forward reaction of the Hsc70-Hsp70 substrate-binding cycle.

  20. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling.

    PubMed

    Mara, Chloe D; Huang, Tengbo; Irish, Vivian F

    2010-03-01

    The Arabidopsis thaliana MADS box transcription factors APETALA3 (AP3) and PISTILLATA (PI) heterodimerize and are required to specify petal identity, yet many details of how this regulatory process is effected are unclear. We have identified three related genes, BHLH136/BANQUO1 (BNQ1), BHLH134/BANQUO2 (BNQ2), and BHLH161/BANQUO3 (BNQ3), as being directly and negatively regulated by AP3 and PI in petals. BNQ1, BNQ2, and BNQ3 encode products belonging to a family of atypical non-DNA binding basic helix-loop-helix (bHLH) proteins that heterodimerize with and negatively regulate bHLH transcription factors. We show that bnq3 mutants have pale-green sepals and carpels and decreased chlorophyll levels, suggesting that BNQ3 has a role in regulating light responses. The ap3 bnq3 double mutant displays pale second-whorl organs, supporting the hypothesis that BNQ3 is downstream of AP3. Consistent with a role in light response, we show that the BNQ gene products regulate the function of HFR1 (for LONG HYPOCOTYL IN FAR-RED1), which encodes a bHLH protein that regulates photomorphogenesis through modulating phytochrome and cryptochrome signaling. The BNQ genes also are required for appropriate regulation of flowering time. Our results suggest that petal identity is specified in part through downregulation of BNQ-dependent photomorphogenic and developmental signaling pathways.

  1. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast.

    PubMed

    St-André, Olivier; Lemieux, Caroline; Perreault, Audrey; Lackner, Daniel H; Bähler, Jürg; Bachand, François

    2010-09-03

    Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.

  2. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: a negative correlation with the disease activity.

    PubMed

    Roma, E; Krini, M; Hantzi, E; Sakka, S; Panayiotou, I; Margeli, A; Papassotiriou, I; Kanaka-Gantenbein, C

    2012-10-01

    Retinol Binding Protein-4 (RBP-4), the action of which was initially thought to be only the transport of vitamin A, is a major circulating adipocytokine involved in the inflammation. We evaluated the serum RBP-4 levels in children with inflammatory bowel disease (IBD) and correlated them with transthyretin (TTR), inflammation markers, disease activity, and body mass index (BMI). In 41 children of mean age 11.9 ± 3.6 years (range 5-17.7 y) with IBD (19 with Crohn's disease (CD) and 22 with Ulcerative colitis (UC) serum RBP-4, TTR, Amyloid A (SAA), C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), disease activity and BMI were prospectively determined and compared with those of 42 matched controls. No difference in the RBP-4 and TTR serum levels, between patients and controls as well as between active and remission state of the disease was noticed. A negative correlation of serum RBP-4 with the disease activity, SAA and ESR and a positive correlation with TTR was found, but no significant correlation with CRP or BMI was found. Inflammation markers were significantly increased in patients compared to controls and had a positive correlation with the disease activity. RBP-4 negatively correlated with disease activity of children with IBD probably indicating a protective anti-inflammatory mechanism of action in addition to transport of vitamin A.

  3. CXCR4 Protein Epitope Mimetic Antagonist, POL5551, Disrupts Metastasis and Enhances Chemotherapy Effect in Triple Negative Breast Cancer

    PubMed Central

    Xiang, Jingyu; Hurchla, Michelle A.; Fontana, Francesca; Su, Xinming; Amend, Sarah R.; Esser, Alison K.; Douglas, Garry J.; Mudalagiriyappa, Chidananda; Luker, Kathryn E.; Pluard, Timothy; Ademuyiwa, Foluso O.; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D.; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L.; Dembowsky, Klaus; Weilbaecher, Katherine N.

    2016-01-01

    The SDF-1-receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow disseminated tumor cells (DTC) negative patients at high risk for metastasis and death. The Protein Epitope Mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared to single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we utilized a “chemotherapy framing” dosing strategy. When administered shortly before and after eribulin treatment, 3 doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. PMID:26269605

  4. The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis.

    PubMed

    Santner, Aaron A; Watson, John C

    2006-03-01

    The WAG1 and WAG2 genes of Arabidopsis thaliana encode protein-serine/threonine kinases that are closely related to PINOID. In order to determine what roles WAG1 and WAG2 play in seedling development, we used a reverse genetics approach to study the wag1, wag2 and wag1/wag2 mutant phenotypes for clues. Although the wag mutants do not contain detectable amounts of the corresponding mRNA, they are wild type in most respects. However, wag1/wag2 double mutants exhibit a pronounced wavy root phenotype when grown vertically on agar plates, a phenotype observed in wild-type plants only on plates inclined to angles less than 90 degrees. The wag1 and wag2 mutants also demonstrate enhanced root waving, but to a lesser extent. Moreover, the double mutant roots are more resistant to the effects of N-1-naphthylphthalamic acid on the inhibition of root curling, raising the possibility that transport of auxin is affected in the wag mutants. Promoter fusions to the gusA reporter gene demonstrate that the WAG promoters are most active in root tips, consistent with the observed phenotypes in the wag mutants.

  5. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion.

    PubMed

    Zhang, Hongjie; Li, Jing; Liang, Xiangying; Luo, Yun; Zen, Ke; Zhang, Chen-Yu

    2012-04-01

    It is known that endogenous levels of the incretin hormone glucagon-like peptide 1 (GLP1) can be enhanced by various secretagogues, but the mechanism underlying GLP1 secretion is still not fully understood. We assessed the possible effect of uncoupling protein 2 (UCP2) on GLP1 secretion in mouse intestinal tract and NCI-H716 cells, a well-characterized human enteroendocrine L cell model. Localization of UCP2 and GLP1 in the gastrointestinal tract was assessed by immunofluorescence staining. Ucp2 mRNA levels in gut were analyzed by quantitative RT-PCR. Human NCI-H716 cells were transiently transfected with siRNAs targeting UCP2. The plasma and ileum tissue levels of GLP1 (7-36) amide were measured using an ELISA kit. UCP2 was primarily expressed in the mucosal layer and colocalized with GLP1 in gastrointestinal mucosa. L cells secreting GLP1 also expressed UCP2. After glucose administration, UCP2-deficient mice showed increased glucose-induced GLP1 secretion compared with wild-type littermates. GLP1 secretion increased after NCI-H716 cells were transfected with siRNAs targeting UCP2. UCP2 was markedly upregulated in ileum tissue from ob/ob mice, and GLP1 secretion decreased compared with normal mice. Furthermore, GLP1 secretion increased after administration of genipin by oral gavage. Taken together, these results reveal an inhibitory role of UCP2 in glucose-induced GLP1 secretion.

  6. Stress-activated protein kinases are negatively regulated by cell density.

    PubMed Central

    Lallemand, D; Ham, J; Garbay, S; Bakiri, L; Traincard, F; Jeannequin, O; Pfarr, C M; Yaniv, M

    1998-01-01

    Stimulation by UV irradiation, TNFalpha, as well as PDGF or EGF activates the JNK/SAPK signalling pathway in mouse fibroblasts. This results in the phosphorylation of the N-terminal domain of c-Jun, increasing its transactivation potency. Using an antibody that specifically recognizes c-Jun phosphorylated at Ser63, we show that culture confluency drastically inhibited c-Jun N-terminal phosphorylation due to the inhibition of the JNK/SAPK pathway. Transfection experiments demonstrate that the inhibition occurs at the same level as, or upstream of, the small G-proteins cdc42 and Rac1. In contrast, the classical MAPK pathway was insensitive to confluency. The inhibition of JNK/SAPK activation depended on the integrity of the actin microfilament network. These results were confirmed and extended in monolayer wounding experiments. After PDGF, EGF or UV stimulation, c-Jun was predominantly phosphorylated in cells bordering the wound, which are the cells that move to occupy the wounded area. Thus, modulation of the stress-dependent signal cascade by confluency will restrict c-Jun N-terminal phosphorylation in response to mitogenic or chemotactic agents to cells that border a wounded area. PMID:9755162

  7. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes

    PubMed Central

    2012-01-01

    Background The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Results Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa) and archaeal (283 aa) proteins are significantly smaller (33-40% on average). Average protein sizes in different phylogenetic groups were: Alveolata (628 aa), Amoebozoa (533 aa), Fornicata (543 aa), Placozoa (453 aa), Eumetazoa (486 aa), Fungi (487 aa), Stramenopila (486 aa), Viridiplantae (392 aa). Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Conclusions Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs). There is a negative correlation between average protein size and total number of proteins among

  8. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes.

    PubMed

    Tiessen, Axel; Pérez-Rodríguez, Paulino; Delaye-Arredondo, Luis José

    2012-02-01

    The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa) and archaeal (283 aa) proteins are significantly smaller (33-40% on average). Average protein sizes in different phylogenetic groups were: Alveolata (628 aa), Amoebozoa (533 aa), Fornicata (543 aa), Placozoa (453 aa), Eumetazoa (486 aa), Fungi (487 aa), Stramenopila (486 aa), Viridiplantae (392 aa). Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs). There is a negative correlation between average protein size and total number of proteins among eukaryotes but not in prokaryotes

  9. The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal.

    PubMed

    Fulcher, Alex J; Roth, Daniela M; Fatima, Shadma; Alvisi, Gualtiero; Jans, David A

    2010-05-01

    This study describes for the first time the ability of the novel BRCA1-binding protein 2 (BRAP2) to inhibit the nuclear import of specific viral proteins dependent on phosphorylation. Ectopic expression of BRAP2 in transfected African green monkey kidney COS-7 cells was found to significantly reduce nuclear localization signal (NLS)-dependent nuclear accumulation of either simian virus SV40 large-tumor antigen (T-ag) or human cytomegalovirus DNA polymerase processivity factor ppUL44; this was also observed in HL-60 human promyelocytic leukemia cells on induction of BRAP2 expression by vitamin D3 treatment. BRAP2 inhibition of nuclear accumulation was dependent on phosphorylation sites flanking the respective NLSs, where substitution of the cyclin-dependent kinase site T124 of T-ag with Ala or Asp prevented or enhanced BRAP2 inhibition of nuclear import, respectively. Substitution of T427 within the NLS of ppUL44 gave similar results, whereas no effect of BRAP2 was observed on nuclear targeting of other viral proteins, such as herpes simplex virus-1 pUL30, which lacks a phosphorylation site near its NLS, and the human immunodeficiency virus-1 Tat protein. Pulldowns/AlphaScreen assays indicated direct, high-affinity binding of BRAP2(442-592) to T-ag(111-135), strictly dependent on negative charge at T124 and the NLS. All results are consistent with BRAP2 being a novel, phosphorylation-regulated negative regulator of nuclear import, with potential as an antiviral agent.

  10. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability

    PubMed Central

    Wu, Huixing; Kuzmenko, Alexander; Wan, Sijue; Schaffer, Lyndsay; Weiss, Alison; Fisher, James H.; Kim, Kwang Sik; McCormack, Francis X.

    2003-01-01

    The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. In this study, we examined the effect of SP-A and SP-D on the growth and viability of Gram-negative bacteria. The pulmonary clearance of Escherichia coli K12 was reduced in SP-A–null mice and was increased in SP-D–overexpressing mice, compared with strain-matched wild-type controls. Purified SP-A and SP-D inhibited bacterial synthetic functions of several, but not all, strains of E. coli, Klebsiella pneumoniae, and Enterobacter aerogenes. In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. Although both SP-A and SP-D agglutinated E. coli K12 in a calcium-dependent manner, microbial growth inhibition was independent of bacterial aggregation. At least part of the antimicrobial activity of SP-A and SP-D was localized to their C-terminal domains using truncated recombinant proteins. Incubation of E. coli K12 with SP-A or SP-D increased bacterial permeability. Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D–mediated growth inhibition. These data indicate that SP-A and SP-D are antimicrobial proteins that directly inhibit the proliferation of Gram-negative bacteria in a macrophage- and aggregation-independent manner by increasing the permeability of the microbial cell membrane. PMID:12750409

  11. Expression of a Dominant Negative CELF Protein In Vivo Leads to Altered Muscle Organization, Fiber Size, and Subtype

    PubMed Central

    Berger, Dara S.; Moyer, Michelle; Kliment, Gregory M.; van Lunteren, Erik; Ladd, Andrea N.

    2011-01-01

    Background CUG-BP and ETR-3-like factor (CELF) proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ) effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ) were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle. Methodology/Principal Findings Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected. Conclusions/Significance Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis. PMID:21541285

  12. Valosin-Containing Protein (VCP/p97)-Expression Correlates with Prognosis of HPV- Negative Oropharyngeal Squamous Cell Carcinoma (OSCC)

    PubMed Central

    Meyer, Moritz F.; Seuthe, Inga M. C.; Drebber, Uta; Siefer, Oliver; Kreppel, Matthias; Klein, Marcus O.; Mikolajczak, Stefanie; Klussmann, Jens Peter

    2014-01-01

    Valosin-containing protein (VCP)/p97 has been shown to be associated with antiapoptotic function via activation of the nuclear factor-B (NFB) signaling pathway and with metastasizing of tumors in several studies. VCP is located on chromosome 9p13-p12, a region often deleted in oropharyngeal squamous cell carcinoma (OSCC). The clinical significance of VCP expression in OSCC however remains unclear. In this study, expression of VCP was determined in 106 patients (77 male (71.3%) and 31 female (28.7%); age-range: 34–79 years (mean age 57 years)) by immunohistochemistry and in a subset of 15 patients by quantitative PCR. HPV-DNA was detected by polymerase chain reaction and p16INK4a immunohistochemistry. The experimental findings were correlated with clinico-pathological data and survival parameters. 47.2% of all OSCC specimens were analyzed as negative or weak staining intensity for VCP. 52.8% of all specimens showed a high staining intensity for VCP. 73.1% of all patients were tested HPV-negative, 26.9% were HPV-positive. The 5-year disease-free and overall survival probabilities of all patients were 71.2% and 55.7%, respectively. No correlation could be found between HPV-status and VCP expression. VCP overexpression in HPV-negative patients was associated with significantly better 5-year disease-free survival (86.4% vs., 45.6%, p = 0.017). The level of VCP-intensity determined by immunohistochemistry could be an additional prognostic marker in HPV-negative OSCC. VCP expression seems not to correlate with the HPV-status. PMID:25463965

  13. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli

    PubMed Central

    Srivastava, Aashish; Asahara, Haruichi; Zhang, Meng; Zhang, Weijia; Liu, Haiying; Cui, Sheng; Jin, Qi; Chong, Shaorong

    2016-01-01

    Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis), purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis), and an aminoacyl-tRNA synthetase (AARS) mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens. PMID:27564552

  14. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells.

    PubMed

    St Gelais, Corine; Roger, Jonathan; Wu, Li

    2015-08-01

    HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.

  15. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein.

    PubMed

    Yamadori, T; Baba, Y; Matsushita, M; Hashimoto, S; Kurosaki, M; Kurosaki, T; Kishimoto, T; Tsukada, S

    1999-05-25

    Bruton's tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1, 4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

  16. Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein

    PubMed Central

    Yamadori, Tomoki; Baba, Yoshihiro; Matsushita, Masato; Hashimoto, Shoji; Kurosaki, Mari; Kurosaki, Tomohiro; Kishimoto, Tadamitsu; Tsukada, Satoshi

    1999-01-01

    Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway. PMID:10339589

  17. The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst

    PubMed Central

    Monaghan, Jacqueline; Matschi, Susanne; Romeis, Tina; Zipfel, Cyril

    2015-01-01

    Plants are protected from microbial infection by a robust immune system. Two of the earliest responses mediated by surface-localized immune receptors include an increase in cytosolic calcium (Ca2+) and a burst of apoplastic reactive oxygen species (ROS). The Arabidopsis plasma membrane-associated cytoplasmic kinase BIK1 is an immediate convergent substrate of multiple surface-localized immune receptors that is genetically required for the PAMP-induced Ca2+ burst and directly regulates ROS production catalyzed by the NADPH oxidase RBOHD. We recently demonstrated that Arabidopsis plants maintain an optimal level of BIK1 through a process of continuous degradation regulated by the Ca2+-dependent protein kinase CPK28. cpk28 mutants accumulate more BIK1 protein and display enhanced immune signaling, while plants over-expressing CPK28 accumulate less BIK1 protein and display impaired immune signaling. Here, we show that CPK28 additionally contributes to the PAMP-induced Ca2+ burst, supporting its role as a negative regulator of BIK1. PMID:26039480

  18. CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters.

    PubMed Central

    Collart, M A; Struhl, K

    1993-01-01

    The yeast HIS3 promoter region contains two functionally distinct TATA elements, TC and TR, that are responsible respectively for initiation from the +1 and +13 sites. Both TC and TR support basal HIS3 transcription and require the TATA binding protein TFIID, but only TR responds to transcriptional activation by GCN4 and GAL4. By selecting for yeast strains that increase transcription by a GCN4 derivative with a defective activation domain, we have isolated a temperature-sensitive mutation in CDC39, a previously defined gene implicated in cell-cycle control and the pheromone response. This cdc39-2 mutation causes increased basal transcription of many, but not all genes, as well as increased transcriptional activation by GCN4 and GAL4. Surprisingly, basal HIS3 transcription from the +1 initiation site is strongly increased, while initiation from the +13 site is barely affected. Thus, unlike acidic activator proteins that function through TR, CDC39 preferentially affects transcription mediated by TC. CDC39 is an essential gene that encodes a very large nuclear protein (2108 amino acids) containing two glutamine-rich regions. These observations suggest that CDC39 negatively regulates transcription either by affecting the general RNA polymerase II machinery or by altering chromatin structure. Images PMID:8428577

  19. TIPE2 protein negatively regulates HBV-specific CD8⁺ T lymphocyte functions in humans.

    PubMed

    Zhang, Wenqian; Zhang, Jiao; Zhao, Lianying; Shao, Jie; Cui, Jian; Guo, Chun; Zhu, Faliang; Chen, Youhai H; Liu, Suxia

    2015-03-01

    Cytotoxic T cell-mediated killing of virus-infected hepatocytes is an important pathogenic process of hepatitis B. However, its underlying molecular mechanisms are not fully understood. TNFAIP8L2 (TIPE2) is a newly described anti-inflammatory protein that is essential for maintaining immune homeostasis. In this study, we found that the protein levels of TIPE2 in PBMCs of hepatitis B patients were significantly reduced and negatively correlated with the sera values of aminotransferases. Importantly, TIPE2 protein was downregulated preferentially in cytotoxic CD8(+) T cells, not CD4(+) helper T cells. The CD8(+) T cells with low TIPE2 expression were more activated and produced higher levels of perforin, granzyme B, and IFN-γ. As a result, their cytolytic activity was markedly enhanced. Interestingly, HBc18-27 peptide stimulation could reduce TIPE2 expression in PBMCs. These results indicate that TIPE2 plays an important role in regulating HBV-specific CD8(+) T cell functions in patients with hepatitis B.

  20. Negative regulation of opioid receptor-G protein-Ca2+ channel pathway by the nootropic nefiracetam.

    PubMed

    Yoshii, Mitsunobu; Furukawa, Taiji; Ogihara, Yoshiyasu; Watabe, Shigeo; Shiotani, Tadashi; Ishikawa, Yasuro; Nishimura, Masao; Nukada, Toshihide

    2004-10-01

    It has recently been reported that nefiracetam, a nootropic agent, is capable of attenuating the development of morphine dependence and tolerance in mice. The mechanism of this antimorphine action is not clear. The present study was designed to address this issue using Xenopus oocytes expressing delta-opioid receptors, G proteins (G(i3alpha) or G(o1alpha)), and N-type (alpha1B) Ca2+ channels. Membrane currents through Ca2+ channels were recorded from the oocytes under voltage-clamp conditions. The Ca2+ channel currents were reduced reversibly by 40-60% in the presence of 1 microM leucine-enkephalin (Leu-Enk). The Leu-Enk-induced current inhibition was recovered promptly by nefiracetam (1 microM), while control currents in the absence of Leu-Enk were not influenced by nefiracetam. A binding assay revealed that 3H-nefiracetam preferentially bound to the membrane fraction of oocytes expressing G(i3alpha). When delta-opioid receptors were coexpressed, the binding was significantly increased. However, an additional expression of alpha1B Ca2+ channels decreased the binding. The results suggest that nefiracetam preferentially binds to G(i3alpha) associated with delta-opioid receptors, thereby inhibiting the association of G proteins with Ca2+ channels. In conclusion, nefiracetam negatively regulates the inhibitory pathway of opioid receptor-G protein-Ca2+ channel.

  1. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings.

    PubMed

    Perruc, Elian; Charpenteau, Martine; Ramirez, Bertha Cecilia; Jauneau, Alain; Galaud, Jean-Philippe; Ranjeva, Raoul; Ranty, Benoît

    2004-05-01

    A clone for a novel Arabidopsisthaliana calmodulin (CaM)-binding protein of 25 kDa (AtCaMBP25) has been isolated by using a radiolabelled CaM probe to screen a cDNA expression library derived from A. thaliana cell suspension cultures challenged with osmotic stress. The deduced amino acid sequence of AtCaMBP25 contains putative nuclear localization sequences and shares significant degree of similarity with hypothetical plant proteins only. Fusion of the AtCaMBP25 coding sequence to reporter genes targets the hybrid protein to the nucleus. Bacterially expressed AtCaMBP25 binds, in a calcium-dependent manner, to a canonical CaM but not to a less conserved isoform of the calcium sensor. AtCaMBP25 is encoded by a single-copy gene, whose expression is induced in Arabidopsis seedlings exposed to dehydration, low temperature or high salinity. Transgenic plants overexpressing AtCaMBP25 exhibits an increased sensitivity to both ionic (NaCl) and non-ionic (mannitol) osmotic stress during seed germination and seedling growth. By contrast, transgenic lines expressing antisense AtCaMBP25 are significantly more tolerant to mannitol and NaCl stresses than the wild type. Thus, the AtCaMBP25 gene functions as a negative effector of osmotic stress tolerance and likely participates in stress signal transduction pathways.

  2. Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions.

    PubMed

    Khan, Tahsin; Douglas, Gavin M; Patel, Priyenbhai; Nguyen Ba, Alex N; Moses, Alan M

    2015-06-04

    Intrinsically disordered protein regions are abundant in eukaryotic proteins and lack stable tertiary structures and enzymatic functions. Previous studies of disordered region evolution based on interspecific alignments have revealed an increased propensity for indels and rapid rates of amino acid substitution. How disordered regions are maintained at high abundance in the proteome and across taxa, despite apparently weak evolutionary constraints, remains unclear. Here, we use single nucleotide and indel polymorphism data in yeast and human populations to survey the population variation within disordered regions. First, we show that single nucleotide polymorphisms in disordered regions are under weaker negative selection compared with more structured protein regions and have a higher proportion of neutral non-synonymous sites. We also confirm previous findings that nonframeshifting indels are much more abundant in disordered regions relative to structured regions. We find that the rate of nonframeshifting indel polymorphism in intrinsically disordered regions resembles that of noncoding DNA and pseudogenes, and that large indels segregate in disordered regions in the human population. Our survey of polymorphism confirms patterns of evolution in disordered regions inferred based on longer evolutionary comparisons.

  3. Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions

    PubMed Central

    Khan, Tahsin; Douglas, Gavin M.; Patel, Priyenbhai; Nguyen Ba, Alex N.; Moses, Alan M.

    2015-01-01

    Intrinsically disordered protein regions are abundant in eukaryotic proteins and lack stable tertiary structures and enzymatic functions. Previous studies of disordered region evolution based on interspecific alignments have revealed an increased propensity for indels and rapid rates of amino acid substitution. How disordered regions are maintained at high abundance in the proteome and across taxa, despite apparently weak evolutionary constraints, remains unclear. Here, we use single nucleotide and indel polymorphism data in yeast and human populations to survey the population variation within disordered regions. First, we show that single nucleotide polymorphisms in disordered regions are under weaker negative selection compared with more structured protein regions and have a higher proportion of neutral non-synonymous sites. We also confirm previous findings that nonframeshifting indels are much more abundant in disordered regions relative to structured regions. We find that the rate of nonframeshifting indel polymorphism in intrinsically disordered regions resembles that of noncoding DNA and pseudogenes, and that large indels segregate in disordered regions in the human population. Our survey of polymorphism confirms patterns of evolution in disordered regions inferred based on longer evolutionary comparisons. PMID:26047845

  4. Small leucine zipper protein (sLZIP) negatively regulates skeletal muscle differentiation via interaction with α-actinin-4.

    PubMed

    An, Hyoung-Tae; Kim, Jeonghan; Yoo, Seungmin; Ko, Jesang

    2014-02-21

    The small leucine zipper protein (sLZIP) plays a role in transcriptional regulation in various types of cells. However, the role of sLZIP in myogenesis is unknown. We identified α-actinin-4 (ACTN4) as a sLZIP-binding protein. ACTN4 functions as a transcriptional regulator of myocyte enhancer factor (MEF)2, which plays a critical role in expression of muscle-specific genes during skeletal muscle differentiation. We found that ACTN4 translocates to the nucleus, induces myogenic gene expression, and promotes myotube formation during myogenesis. The myogenic process is controlled by an association between myogenic factors and MEF2 transcription factors. ACTN4 increased expression of muscle-specific proteins via interaction with MEF2. However, sLZIP decreased myogenic gene expression and myotube formation during myogenesis via disruption of the association between ACTN4 and MEF2. ACTN4 increased the promoter activities of myogenic genes, whereas sLZIP abrogated the effect of ACTN4 on transcriptional activation of myogenic genes in myoblasts. The C terminus of sLZIP is required for interaction with the C terminus of ACTN4, based on deletion mutant analysis, and sLZIP plays a role in regulation of MEF2 transactivation via interaction with ACTN4. Our results indicate that sLZIP negatively regulates skeletal muscle differentiation via interaction with ACTN4 and that sLZIP can be used as a therapeutic target molecule for treatment of muscle hypertrophy and associated diseases.

  5. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients.

    PubMed

    Zhang, Minghui; Zhang, Xiaosan; Zhao, Shu; Wang, Yan; Di, Wenyu; Zhao, Gangling; Yang, Maopeng; Zhang, Qingyuan

    2014-12-01

    Triple-negative breast cancer (TNBC) is a particular type of breast cancer which is characterized by its biological aggressiveness, worse prognosis, and lack of prognostic markers or therapeutic targets in contrast with hormonal receptor-positive and human epidermal growth factor receptor 2-positive (HER2+) breast cancers. We aimed to evaluate survivin and epidermal growth factor receptor (EGFR) expression and their prognostic value and determine their relationships with the clinicopathological parameters of TNBC. A total of 136 patients who had undergone a resection of primary TNBC were enrolled at the Third Affiliated Hospital of Harbin Medical University from March 2003 to September 2005. Expression of ER, PR, HER2, EGFR, and survivin was assessed by immunohistochemistry. The association of TNBC and other clinicopathological variables and the prognostic value of survivin and EGFR expression were evaluated. Survivin was expressed in 62 (45.6 %) cases and EGFR was expressed in 82 (60.3 %) cases. Survivin expression was associated with menopausal status (P = 0.011), tumor size (P = 0.037), and lymph node status (P = 0.001). EGFR expression was associated with menopausal status (P = 0.029), lymph node status (P = 0.004), P53 expression (P = 0.001), Ki-67 expression (P = 0.028), and lymphatic vascular invasion (P = 0.037). A multivariate analysis demonstrated that tumor size (hazard ratio (HR) 1.587, 95 % confidence interval (CI) 1.081–2.330, P = 0.018 for disease-free survival (DFS); HR 1.606, 95%CI 1.096–2.354, P = 0.015 for overall survival (OS)), lymph node status (HR 2.873, 95%CI 1.544–5.344, P = 0.001 for DFS; HR 2.915, 95%CI 1.553–5.471, P = 0.001 for OS), tumor grade (HR 1.914, 95%CI 1.218–3.007, P = 0.005 for DFS; HR 1.983, 95%CI 1.228–3.203, P = 0.005 for OS), EGFR (HR 3.008, 95%CI 1.331–6.792, P = 0.008 for DFS; HR 3.151, 95%CI 1.374–7.226, P = 0.007 for OS), and survivin (HR 1

  6. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737

    PubMed Central

    Oakes, Samantha R.; Vaillant, François; Lim, Elgene; Lee, Lily; Breslin, Kelsey; Feleppa, Frank; Deb, Siddhartha; Ritchie, Matthew E.; Takano, Elena; Ward, Teresa; Fox, Stephen B.; Generali, Daniele; Smyth, Gordon K.; Strasser, Andreas; Huang, David C. S.; Visvader, Jane E.; Lindeman, Geoffrey J.

    2012-01-01

    Overexpression of the prosurvival protein BCL-2 is common in breast cancer. Here we have explored its role as a potential therapeutic target in this disease. BCL-2, its anti-apoptotic relatives MCL-1 and BCL-XL, and the proapoptotic BH3-only ligand BIM were found to be coexpressed at relatively high levels in a substantial proportion of heterogeneous breast tumors, including clinically aggressive basal-like cancers. To determine whether the BH3 mimetic ABT-737 that neutralizes BCL-2, BCL-XL, and BCL-W had potential efficacy in targeting BCL-2–expressing basal-like triple-negative tumors, we generated a panel of primary breast tumor xenografts in immunocompromised mice and treated recipients with either ABT-737, docetaxel, or a combination. Tumor response and overall survival were significantly improved by combination therapy, but only for tumor xenografts that expressed elevated levels of BCL-2. Treatment with ABT-737 alone was ineffective, suggesting that ABT-737 sensitizes the tumor cells to docetaxel. Combination therapy was accompanied by a marked increase in apoptosis and dissociation of BIM from BCL-2. Notably, BH3 mimetics also appeared effective in BCL-2–expressing xenograft lines that harbored p53 mutations. Our findings provide in vivo evidence that BH3 mimetics can be used to sensitize primary breast tumors to chemotherapy and further suggest that elevated BCL-2 expression constitutes a predictive response marker in breast cancer. PMID:21768359

  7. Ferroportin-1 is a 'nuclear'-negative acute-phase protein in rat liver: a comparison with other iron-transport proteins.

    PubMed

    Naz, Naila; Malik, Ihtzaz A; Sheikh, Nadeem; Ahmad, Shakil; Khan, Sajjad; Blaschke, Martina; Schultze, Frank; Ramadori, Giuliano

    2012-06-01

    Liver is the central organ of iron metabolism. During acute-phase-response (APR), serum iron concentration rapidly decreases. The current study aimed to compare expression and localization of iron transport protein ferroportin-1 (Fpn-1) and of other iron import proteins after experimental tissue damage induced by injecting turpentine oil in the hind limbs of rats and mice. Serum and spleen iron concentration decreased with an increase in total liver, cytoplasmic and nuclear iron concentration. In liver, mRNA amount of Fpn-1, Fpn-1a, Fpn-1b, HFE, hemojuvelin (HJV) and hephaestin (heph) genes showed a rapid decrease. Hepcidin, divalent metal transporter-1 (DMT-1), transferrin (Tf) and Tf-receptor-1 (TfR1), TfR-2 (TfR2) gene expression was increased. Western blot analysis of liver tissue lysate confirmed the changes observed at mRNA level. In spleen, a rapid decrease in gene expression of Fpn-1, Fpn-1a, Fpn-1b, DMT-1, Tf, TfR1 and TfR2, and an increase in hepcidin was observed. Immunohistochemistry of DMT-1 and TfR2 were mainly detected in the nucleus of rat liver and spleen, whereas TfR1 was clearly localized in the plasma membrane. Fpn-1 was mostly found in the nuclei of liver cells, whereas in spleen, the protein was mainly detected in the cell membrane. Western blot analysis of liver fractions confirmed immunohistochemical results. In livers of wild-type mice, gene expression of Fpn-1, Fpn-1a and Fpn-1b was downregulated, whereas hepcidin gene expression was increased. In contrast, these changes were less pronounced in IL-6ko-mice. Cytokine (IL-6, IL-1b and TNF-a) treatment of rat hepatocytes showed a downregulation of Fpn-1, Fpn-1a and Fpn-1b, and upregulation of hepcidin gene expression. Moreover, western blot analysis of cell lysate of IL-6-treated hepatocytes detected, as expected, an increase of a2-macroglobulin (positive acute-phase protein), whereas albumin (negative acute-phase protein) and Fpn-1 were downregulated. Our results demonstrate that liver

  8. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression.

    PubMed Central

    Liu, J; Bramblett, D; Zhu, Q; Lozano, M; Kobayashi, R; Ross, S R; Dudley, J P

    1997-01-01

    The nuclear matrix has been implicated in several cellular processes, including DNA replication, transcription, and RNA processing. In particular, transcriptional regulation is believed to be accomplished by binding of chromatin loops to the nuclear matrix and by the concentration of specific transcription factors near these matrix attachment regions (MARs). A number of MAR-binding proteins have been identified, but few have been directly linked to tissue-specific transcription. Recently, we have identified two cellular protein complexes (NBP and UBP) that bind to a region of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) previously shown to contain at least two negative regulatory elements (NREs) termed the promoter-proximal and promoter-distal NREs. These NREs are absent from MMTV strains that cause T-cell lymphomas instead of mammary carcinomas. We show here that NBP binds to a 22-bp sequence containing an imperfect inverted repeat in the promoter-proximal NRE. Previous data showed that a mutation (p924) within the inverted repeat elevated basal transcription from the MMTV promoter and destabilized the binding of NBP, but not UBP, to the proximal NRE. By using conventional and affinity methods to purify NBP from rat thymic nuclear extracts, we obtained a single major protein of 115 kDa that was identified by protease digestion and partial sequencing analysis as the nuclear matrix-binding protein special AT-rich sequence-binding protein 1 (SATB1). Antibody ablation, distamycin inhibition of binding, renaturation and competition experiments, and tissue distribution data all confirmed that the NBP complex contained SATB1. Similar types of experiments were used to show that the UBP complex contained the homeodomain protein Cux/CDP that binds the MAR of the intronic heavy-chain immunoglobulin enhancer. By using the p924 mutation within the MMTV LTR upstream of the chloramphenicol acetyltransferase gene, we generated two strains of transgenic mice

  9. Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity.

    PubMed

    Pokala, Navin; Handel, Tracy M

    2005-03-18

    The development of the EGAD program and energy function for protein design is described. In contrast to most protein design methods, which require several empirical parameters or heuristics such as patterning of residues or rotamers, EGAD has a minimalist philosophy; it uses very few empirical factors to account for inaccuracies resulting from the use of fixed backbones and discrete rotamers in protein design calculations, and describes the unfolded state, aggregates, and alternative conformers explicitly with physical models instead of fitted parameters. This approach unveils important issues in protein design that are often camouflaged by heuristic-emphasizing methods. Inter-atom energies are modeled with the OPLS-AA all-atom forcefield, electrostatics with the generalized Born continuum model, and the hydrophobic effect with a solvent-accessible surface area-dependent term. Experimental characterization of proteins designed with an unmodified version of the energy function revealed problems with under-packing, stability, aggregation, and structural specificity. Under-packing was addressed by modifying the van der Waals function. By optimizing only three parameters, the effects of >400 mutations on protein-protein complex formation were predicted to within 1.0 kcal mol(-1). As an independent test, this modified energy function was used to predict the stabilities of >1500 mutants to within 1.0 kcal mol(-1); this required a physical model of the unfolded state that includes more interactions than traditional tripeptide-based models. Solubility and structural specificity were addressed with simple physical approximations of aggregation and conformational equilibria. The complete energy function can design protein sequences that have high levels of identity with their natural counterparts, and have predicted structural properties more consistent with soluble and uniquely folded proteins than the initial designs.

  10. Methylseleninic Acid Enhances Taxane Drug Efficacy against Human Prostate Cancer and Down-Regulates ntiapoptotic roteins Bcl-XL and Survivin

    USDA-ARS?s Scientific Manuscript database

    PURPOSE: Our previous work has shown that methylseleninic acid (MSeA) sensitized hormone refractory prostate cancer (HRPCa) cells to apoptosis induced by paclitaxel (taxol) through enhancing multiple caspases. This study aimed to: 1) determine the general applicability of the sensitization effect ...

  11. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-XL

    SciTech Connect

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy

    2001-09-25

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) is a well-established mechanism that contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in the repair of DSBs in human cells. However, in addition to promoting genomic stability, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We previously demonstrated that overexpression of BCL-2 or BCL-xL enhanced the frequency of x-ray-induced mutations involving the TK1 locus, including loss of heterozygosity (LOH) events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells, and to directly determine whether ectopic expression of BCL-xL affects HDR. We used the B-lymphoblastoid cell line TK6, which expresses wild-type TP53 and resembles normal lymphocytes in undergoing apoptosis following! genotoxic stress. U sing isogenic derivatives of TK6 cells (TK6-neo, TK6-bcl-xL), we find that a DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold in TK6-neo cells, demonstrating that a DSB can be efficiently repaired by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3- to 4-fold more frequent in BCL-xL overexpressing cells. The results demonstrate that HDR plays an important role in maintaining genomic integrity in human cells and that ectopic expression of BCL-xL enhances HDR of DSBs. To our knowledge, this is the first study to highlight a function for BCL-xL in modulating DSB repair in human cells.

  12. The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii.

    PubMed

    Ahumada-Manuel, Carlos Leonel; Guzmán, Josefina; Peña, Carlos; Quiroz-Rocha, Elva; Espín, Guadalupe; Núñez, Cinthia

    2017-02-01

    Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

  13. Glucocorticoids repress transcription from a negative glucocorticoid response element recognized by two homeodomain-containing proteins, Pbx and Oct-1.

    PubMed

    Subramaniam, N; Cairns, W; Okret, S

    1998-09-04

    Several studies have established that the prolactin (PRL) gene is expressed not only in lactotrophs and somatotrophs of the anterior pituitary but, albeit to a lesser extent, in non-pituitary cells like human thymocytes, decidualized endometrium, mammary glands during lactation, and some human non-pituitary cell lines. Despite the requirement in the pituitary for the pituitary-specific transcription factor Pit-1/GHF-1 for PRL expression, the expression in non-pituitary cells occurs in the absence of Pit-1/GHF-1 and can be repressed by glucocorticoids. This prompted us to investigate the transcription factors in non-pituitary cells which are involved in controlling expression and glucocorticoid repression of a previously characterized negative glucocorticoid response element from the bovine prolactin gene (PRL3 nGRE). Here we have demonstrated that non-pituitary cells (COS-7 and mouse hepatoma Hepa1c1c7 cells) conferred increased expression via the PRL3 nGRE mainly because of the binding of the ubiquitously expressed POU-homeodomain-containing octamer transcription factor-1 (Oct-1) to an AT-rich sequence present in the PRL3 sequence. However, full transcriptional activity required the binding of a second ubiquitously expressed homeodomain-containing protein, Pbx, previously shown to bind cooperatively with several homeotic selector proteins. The Pbx binding site in the PRL3 nGRE, located just upstream of the Oct-1 binding site, showed a strong sequence similarity with known Pbx binding sites and bound Pbx with an affinity similar to that of other established Pbx target sequences. Interestingly, both Oct-1 and Pbx binding to the PRL3 nGRE were found to be required for glucocorticoid repression. Addition of in vitro translated glucocorticoid receptor DNA binding domain to the nuclear extract prevented Oct-1 and Pbx from binding to the PRL element. The involvement of the homeobox protein Pbx in glucocorticoid repression via an nGRE identifies a new role for this

  14. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections.

    PubMed

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-02-19

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11-37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals.

  15. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections*

    PubMed Central

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-01-01

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11–37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals. PMID:26740623

  16. The PP2C Alphabet is a negative regulator of stress-activated protein kinase signaling in Drosophila.

    PubMed

    Baril, Caroline; Sahmi, Malha; Ashton-Beaucage, Dariel; Stronach, Beth; Therrien, Marc

    2009-02-01

    The Jun N-terminal kinase and p38 pathways, also known as stress-activated protein kinase (SAPK) pathways, are signaling conduits reiteratively used throughout the development and adult life of metazoans where they play central roles in the control of apoptosis, immune function, and environmental stress responses. We recently identified a Drosophila Ser/Thr phosphatase of the PP2C family, named Alphabet (Alph), which acts as a negative regulator of the Ras/ERK pathway. Here we show that Alph also plays an inhibitory role with respect to Drosophila SAPK signaling during development as well as under stress conditions such as oxidative or genotoxic stresses. Epistasis experiments suggest that Alph acts at a step upstream of the MAPKKs Hep and Lic. Consistent with this interpretation, biochemical experiments identify the upstream MAPKKKs Slpr, Tak1, and Wnd as putative substrates. Together with previous findings, this work identifies Alph as a general attenuator of MAPK signaling in Drosophila.

  17. Genetic variation in the Yolk protein expression network of Drosophila melanogaster: sex-biased negative correlations with longevity.

    PubMed

    Tarone, A M; McIntyre, L M; Harshman, L G; Nuzhdin, S V

    2012-10-01

    One of the persistent problems in biology is understanding how genetic variation contributes to phenotypic variation. Associations at many levels have been reported, and yet causal inference has remained elusive. We propose to rely on the knowledge of causal relationships established by molecular biology approaches. The existing molecular knowledge forms a firm backbone upon which hypotheses connecting genetic variation, transcriptional variation and phenotypic variation can be built. The sex determination pathway is a well-established molecular network, with the Yolk protein 1-3 (Yp) genes as the most downstream target. Our analyses reveal that genetic variation in expression for genes known to be upstream in the pathway explains variation in downstream targets. Relationships differ between the two sexes, and each Yp has a distinct transcriptional pattern. Yp expression is significantly negatively correlated with longevity, an important life history trait, for both males and females.

  18. Light-harvesting chlorophyll a/b-protein: Three-dimensional structure of a reconstituted membrane lattice in negative stain

    PubMed Central

    Li, Jade

    1985-01-01

    The three-dimensional structure of a negatively stained hexagonal membrane lattice containing the light-harvesting chlorophyll a/b-protein complex and phospholipids has been determined to 30-Å resolution by image reconstruction from electron micrographs. This lattice has p321 symmetry, a lattice constant of 125 Å and a thickness of 75 Å. The monomer is shown to be an elongated molecule about 65 Å long in the dimension perpendicular to the plane of the membrane. It spans the hydrophobic domain of the membrane in an asymmetric fashion, projecting [unk]20 Å from one surface and less from the other. On the basis of this image and available biochemical data, the structure of the complex in the native thylakoid membrane is proposed. Images PMID:16593535

  19. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis.

    PubMed

    Chien, Pei-Shan; Nam, Hong Gil; Chen, Yet-Ran

    2015-08-01

    High salinity has negative impacts on plant growth through altered water uptake and ion-specific toxicities. Plants have therefore evolved an intricate regulatory network in which plant hormones play significant roles in modulating physiological responses to salinity. However, current understanding of the plant peptides involved in this regulatory network remains limited. Here, we identified a salt-regulated peptide in Arabidopsis. The peptide was 11 aa and was derived from the C terminus of a cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily. This peptide was found by searching homologues in Arabidopsis using the precursor of a tomato CAP-derived peptide (CAPE) that was initially identified as an immune signal. In searching for a CAPE involved in salt responses, we screened CAPE precursor genes that showed salt-responsive expression and found that the PROAtCAPE1 (AT4G33730) gene was regulated by salinity. We confirmed the endogenous Arabidopsis CAP-derived peptide 1 (AtCAPE1) by mass spectrometry and found that a key amino acid residue in PROAtCAPE1 is critical for AtCAPE1 production. Moreover, although PROAtCAPE1 was expressed mainly in the roots, AtCAPE1 was discovered to be upregulated systemically upon salt treatment. The salt-induced AtCAPE1 negatively regulated salt tolerance by suppressing several salt-tolerance genes functioning in the production of osmolytes, detoxification, stomatal closure control, and cell membrane protection. This discovery demonstrates that AtCAPE1, a homologue of tomato immune regulator CAPE1, plays an important role in the regulation of salt stress responses. Our discovery thus suggests that the peptide may function in a trade-off between pathogen defence and salt tolerance.

  20. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis

    PubMed Central

    Chien, Pei-Shan; Nam, Hong Gil; Chen, Yet-Ran

    2015-01-01

    High salinity has negative impacts on plant growth through altered water uptake and ion-specific toxicities. Plants have therefore evolved an intricate regulatory network in which plant hormones play significant roles in modulating physiological responses to salinity. However, current understanding of the plant peptides involved in this regulatory network remains limited. Here, we identified a salt-regulated peptide in Arabidopsis. The peptide was 11 aa and was derived from the C terminus of a cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily. This peptide was found by searching homologues in Arabidopsis using the precursor of a tomato CAP-derived peptide (CAPE) that was initially identified as an immune signal. In searching for a CAPE involved in salt responses, we screened CAPE precursor genes that showed salt-responsive expression and found that the PROAtCAPE1 (AT4G33730) gene was regulated by salinity. We confirmed the endogenous Arabidopsis CAP-derived peptide 1 (AtCAPE1) by mass spectrometry and found that a key amino acid residue in PROAtCAPE1 is critical for AtCAPE1 production. Moreover, although PROAtCAPE1 was expressed mainly in the roots, AtCAPE1 was discovered to be upregulated systemically upon salt treatment. The salt-induced AtCAPE1 negatively regulated salt tolerance by suppressing several salt-tolerance genes functioning in the production of osmolytes, detoxification, stomatal closure control, and cell membrane protection. This discovery demonstrates that AtCAPE1, a homologue of tomato immune regulator CAPE1, plays an important role in the regulation of salt stress responses. Our discovery thus suggests that the peptide may function in a trade-off between pathogen defence and salt tolerance. PMID:26093145

  1. Analysis of Flexibility of Proteins by means of Positive and Negative Ion MALDI In-Source Decay Mass Spectrometry.

    PubMed

    Iimuro, Ryunosuke; Takayama, Mitsuo

    2014-01-01

    The amino acid residues susceptible to in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been identified from both positive and negative ion ISD spectra of cytochrome c, myoglobin, thioredoxin and bovine serum albumin. Backbone cleavages at the N-Cα bonds of Xxx-Asp, Xxx-Asn, Xxx-Cys, and Gly-Xxx residues gave discontinuous intense peaks of c-ions, independent of positive and negative ion mode. The intensity values for c-ions, Int(c), were defined to allow estimation of the discontinuous intense peaks of c-ions. The identities of the high intensity value residues Asp, Asn, Cys, and Gly were compared with those identified using other measures of flexibility such as the B-factor, turn preferential factor and protection factor. The comparison indicates that Asp, Asn, and Gly residues are common to all measures. Thus, the intensity values of c-ions can be adopted as a measure of protein flexibility.

  2. Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding.

    PubMed

    Albizu, Laura; Balestre, Marie-Noëlle; Breton, Christophe; Pin, Jean-Philippe; Manning, Maurice; Mouillac, Bernard; Barberis, Claude; Durroux, Thierry

    2006-11-01

    An increasing amount of ligand binding data on G protein-coupled receptors (GPCRs) is not compatible with the prediction of the simple mass action law. This may be related to the propensity of most GPCRs, if not all, to oligomerize. Indeed, one of the consequences of receptor oligomerization could be a possible cross-talk between the protomers, which in turn could lead to negative or positive cooperative ligand binding. We prove here that this can be demonstrated experimentally. Saturation, dissociation, and competition binding experiments were performed on vasopressin and oxytocin receptors expressed in Chinese hamster ovary or COS-7 cells. Linear, concave, and convex Scatchard plots were then obtained, depending on the ligand used. Moreover, some competition curves exhibited an increase of the radiotracer binding for low concentrations of competitors, suggesting a cooperative binding process. These data demonstrate that various vasopressin analogs display either positive or negative cooperative binding. Because positive cooperative binding cannot be explained without considering receptor as multivalent, these binding data support the concept of GPCR dimerization process. The results, which are in good accordance with the predictions of previous mathematical models, suggest that binding experiments can be used to probe the existence of receptor dimers.

  3. Analysis of Flexibility of Proteins by means of Positive and Negative Ion MALDI In-Source Decay Mass Spectrometry

    PubMed Central

    Iimuro, Ryunosuke; Takayama, Mitsuo

    2014-01-01

    The amino acid residues susceptible to in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been identified from both positive and negative ion ISD spectra of cytochrome c, myoglobin, thioredoxin and bovine serum albumin. Backbone cleavages at the N–Cα bonds of Xxx–Asp, Xxx–Asn, Xxx–Cys, and Gly–Xxx residues gave discontinuous intense peaks of c-ions, independent of positive and negative ion mode. The intensity values for c-ions, Int(c), were defined to allow estimation of the discontinuous intense peaks of c-ions. The identities of the high intensity value residues Asp, Asn, Cys, and Gly were compared with those identified using other measures of flexibility such as the B-factor, turn preferential factor and protection factor. The comparison indicates that Asp, Asn, and Gly residues are common to all measures. Thus, the intensity values of c-ions can be adopted as a measure of protein flexibility. PMID:26819895

  4. Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation.

    PubMed

    Patel, Kirtesh; Wen, Jing; Magliocca, Kelly; Muller, Susan; Liu, Yuan; Chen, Zhuo Georgia; Saba, Nabil; Diaz, Roberto

    2014-11-01

    Cisplatin and radiation therapy remain the current standard for treating locally advanced SCCHN. Novel treatment approaches are needed, especially in patients with human papilloma virus (HPV)-negative disease who have worse outcomes despite multimodality therapy. Using our institutional review board approved database, we obtained twenty oropharyngeal squamous cell carcinoma (SCC) tissue samples: ten p16 positive, ten p16-negative. Because p16 expression is strongly associated with HPV positivity in oropharyngeal SCC, p16 status was used as a marker of HPV. We subsequently analyzed, via immunohistochemistry, heat shock protein 90 (HSP90) protein levels. Using HPV-positive and HPV-negative SCC cell lines, we compared baseline HSP90 expression levels and the effect of the HSP90 inhibitor ganetespib on viability and apoptosis. Clonogenic survival of HPV-negative cells treated with ganetespib, radiation therapy, and/or cisplatin was then investigated. We characterize the effects of ganetespib on proteins that are thought to drive DNA damage resistance in HPV-negative cells. HSP90 expression was significantly higher in p16-negative compared with p16-positive samples (p = 0.016) and in HPV-negative cell lines compared with positive cells. Ganetespib increased cytotoxicity and induced apoptosis in HPV-negative more than positive cells. Adding ganetespib to cisplatin and/or radiation therapy in HPV-negative cells further decreased clonogenic survival. Finally, ganetespib downregulated expressions of EGFR, ERK, AKT, p53, and HIF-1α. Ganetespib inhibited HPV-negative SCCHN viability and potentiated cell kill when combined with cisplatin or radiation therapy in vitro. With HSP90 expression higher in HPV-negative cells and in p16-negative patients, further exploration of the clinical activity of HSP90 inhibitors in SCCHN is warranted.

  5. RTP1 encodes a novel endoplasmic reticulum (ER)-localized protein in Arabidopsis and negatively regulates resistance against biotrophic pathogens.

    PubMed

    Pan, Qiaona; Cui, Beimi; Deng, Fengyan; Quan, Junli; Loake, Gary J; Shan, Weixing

    2016-03-01

    Oomycete pathogens cause serious damage to a wide spectrum of plants. Although host pathogen recognition via pathogen effectors and cognate plant resistance proteins is well established, the genetic basis of host factors that mediate plant susceptibility to oomycete pathogens is relatively unexplored. Here, we report on RTP1, a nodulin-related MtN21 family gene in Arabidopsis that mediates susceptibility to Phytophthora parasitica. RTP1 was identified by screening a T-DNA insertion mutant population and encoded an endoplasmic reticulum (ER)-localized protein. Overexpression of RTP1 rendered Arabidopsis more susceptible, whereas RNA silencing of RTP1 led to enhanced resistance to P. parasitica. Moreover, an RTP1 mutant, rtp1-1, displayed localized cell death, increased reactive oxygen species (ROS) production and accelerated PR1 expression, compared to the wild-type Col-0, in response to P. parasitica infection. rtp1-1 showed a similar disease response to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, including increased disease resistance, cell death and ROS production. Furthermore, rpt1-1 exhibited resistance to the fungal pathogen Golovinomyces cichoracearum, but not to the necrotrophic pathogen Botrytis cinerea. Taken together, these results suggest that RTP1 negatively regulates plant resistance to biotrophic pathogens, possibly by regulating ROS production, cell death progression and PR1 expression.

  6. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL.

    PubMed

    Zhu, Minghua; Liu, Yan; Koonpaew, Surapong; Granillo, Olivia; Zhang, Weiguo

    2004-10-18

    Linker for activation of B cells (LAB, also called NTAL; a product of wbscr5 gene) is a newly identified transmembrane adaptor protein that is expressed in B cells, NK cells, and mast cells. Upon BCR activation, LAB is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT-deficient mice. To study the in vivo function of LAB, LAB-deficient mice were generated. Although disruption of the Lab gene did not affect lymphocyte development, it caused mast cells to be hyperresponsive to stimulation via the FcepsilonRI, evidenced by enhanced Erk activation, calcium mobilization, degranulation, and cytokine production. These data suggested that LAB negatively regulates mast cell function. However, mast cells that lacked both linker for activation of T cells (LAT) and LAB proteins had a more severe block in FcepsilonRI-mediated signaling than LAT(-/-) mast cells, demonstrating that LAB also shares a redundant function with LAT to play a positive role in FcepsilonRI-mediated signaling.

  7. CDK5 Regulatory Subunit-Associated Protein 1-like 1 Negatively Regulates Adipocyte Differentiation through Activation of Wnt Signaling Pathway.

    PubMed

    Take, Kazumi; Waki, Hironori; Sun, Wei; Wada, Takahito; Yu, Jing; Nakamura, Masahiro; Aoyama, Tomohisa; Yamauchi, Toshimasa; Kadowaki, Takashi

    2017-08-04

    CDK5 Regulatory Subunit-Associated Protein 1-like 1 (CDKAL1) was identified as a susceptibility gene for type 2 diabetes and body mass index in genome-wide association studies. Although it was reported that CDKAL1 is a methylthiotransferase essential for tRNA(Lys)(UUU) and faithful translation of proinsulin generated in pancreatic β cells, the role of CDKAL1 in adipocytes has not been understood well. In this study, we found that CDKAL1 is expressed in adipose tissue and its expression is increased during differentiation. Stable overexpression of CDKAL1, however, inhibited adipocyte differentiation of 3T3-L1 cells, whereas knockdown of CDKAL1 promoted differentiation. CDKAL1 increased protein levels of β-catenin and its active unphosphorylated form in the nucleus, thereby promoting Wnt target gene expression, suggesting that CDKAL1 activated the Wnt/β-catenin pathway-a well-characterized inhibitory regulator of adipocyte differentiation. Mutant experiments show that conserved cysteine residues of Fe-S clusters of CDKAL1 are essential for its anti-adipogenic action. Our results identify CDKAL1 as novel negative regulator of adipocyte differentiation and provide insights into the link between CDKAL1 and metabolic diseases such as type 2 diabetes and obesity.

  8. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth.

    PubMed Central

    López-García, P; Knapp, S; Ladenstein, R; Forterre, P

    1998-01-01

    The topological state of DNA in hyperthermophilic archaea appears to correspond to a linking excess in comparison with DNA in mesophilic organisms. Since DNA binding proteins often contribute to the control of DNA topology by affecting DNA geometry in the presence of DNA topoisomerases, we tested whether the histone-like protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus alters DNA conformation. In ligase-mediated supercoiling assays carried out at 37, 60, 70, 80 and 90 degrees C we found that DNA binding of increasing amounts of Sso7d led to a progressive decrease in plasmid linking number (Lk), producing negative supercoiling. Identical unwinding effects were observed when recombinant non-methylated Sso7d was used. For a given Sso7d concentration the DNA unwinding induced was augmented with increasing temperature. However, after correction for the overwinding effect of high temperature on DNA, plasmids ligated at 60-90 degrees C exhibited similar sigma values at the highest Sso7d concentrations assayed. These results suggest that Sso7d may play a compensatory role in vivo by counteracting the overwinding effect of high temperature on DNA. Additionally, Sso7d unwinding could be involved in the topological changes observed during thermal stress (heat and cold shock), playing an analogous role in crenarchaeal cells to that proposed for HU in bacteria. PMID:9580681

  9. Signaling lymphocyte activation molecule-associated protein is a negative regulator of the CD8 T cell response in mice.

    PubMed

    Chen, Gang; Tai, Albert K; Lin, Miao; Chang, Francesca; Terhorst, Cox; Huber, Brigitte T

    2005-08-15

    The primary manifestation of X-linked lymphoproliferative syndrome, caused by a dysfunctional adapter protein, signaling lymphocyte activation molecule-associated protein (SAP), is an excessive T cell response upon EBV infection. Using the SAP-/- mouse as a model system for the human disease, we compared the response of CD8+ T cells from wild-type (wt) and mutant mice to various stimuli. First, we observed that CD8+ T cells from SAP-/- mice proliferate more vigorously than those from wt mice upon CD3/CD28 cross-linking in vitro. Second, we analyzed the consequence of SAP deficiency on CTL effector function and homeostasis. For this purpose, SAP-/- and wt mice were infected with the murine gamma-herpesvirus 68 (MHV-68). At 2 wk postinfection, the level of viral-specific CTL was much higher in mutant than in wt mice, measured both ex vivo and in vivo. In addition, we established that throughout 45 days of MHV-68 infection the frequency of virus-specific CD8+ T cells producing IFN-gamma was significantly higher in SAP-/- mice. Consequently, the level of latent infection by MHV-68 was considerably lower in SAP-/- mice, which indicates that SAP-/- CTL control this infection more efficiently than wt CTL. Finally, we found that the Vbeta4-specific CD8+ T cell expansion triggered by MHV-68 infection is also enhanced and prolonged in SAP-/- mice. Taken together, our data indicate that SAP functions as a negative regulator of CD8+ T cell activation.

  10. Cyclic AMP-dependent protein kinase A negatively regulates conidia formation by the tangerine pathotype of Alternaria alternata.

    PubMed

    Tsai, Hsieh-Chin; Yang, Siwy Ling; Chung, Kuang-Ren

    2013-02-01

    The necrotrophic fungal pathogen Alternaria alternata causes brown spot diseases in many citrus cultivars. The FUS3 and SLT2 mitogen-activated protein kinases (MAPK)-mediated signaling pathways have been shown to be required for conidiation. Exogenous application of cAMP to this fungal pathogen decreased conidia formation considerably. This study determined whether a cAMP-activated protein kinase A (PKA) is required for conidiation. Using loss-of-function mutations in PKA catalytic and regulatory subunit-coding genes, we demonstrated that PKA negatively regulates conidiation. Fungal mutants lacking PKA catalytic subunit gene (PKA ( cat )) reduced growth, lacked detectable PKA activity, and produced higher amounts of conidia compared to wild-type. Introduction of a functional copy of PKA ( cat ) into a null mutant partially restored PKA activity and produced wild-type level of conidia. In contrast, fungi lacking PKA regulatory subunit gene (PKA ( reg )) produced detectable PKA activity, exhibited severe growth reduction, formed swelling hyphal segments, and produced no mature conidia. Introduction of the PKA ( reg ) gene to a regulatory subunit mutant restored all phenotypes to wild type. PKA ( reg )-null mutants induced fewer necrotic lesions on citrus compared to wild-type, whereas PKA ( cat ) mutant displayed wild-type virulence. Overall, our studies indicate that PKA and FUS3-mediated signaling pathways apparently have very different roles in the regulation of conidia production and A. alternata pathogenesis in citrus.

  11. A Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis

    PubMed Central

    Zhu, Ling; Bu, Qingyun; Shen, Hui; Dang, Jonathan

    2016-01-01

    The phytochrome interacting factors (PIFs), a small group of basic helix-loop-helix transcription factors, repress photomorphogenesis both in the dark and light. Light signals perceived by the phytochrome family of photoreceptors induce rapid degradation of PIFs to promote photomorphogenesis. Here, we show that HECATE (HEC) proteins, another small group of HLH proteins, antagonistically regulate PIFs to promote photomorphogenesis. HEC1 and HEC2 heterodimerize with PIF family members. PIF1, HEC1, and HEC2 genes are spatially and temporally coexpressed, and HEC2 is localized in the nucleus. hec1, hec2, and hec3 single mutants and the hec1 hec2 double mutant showed hyposensitivity to light-induced seed germination and accumulation of chlorophyll and carotenoids, hallmark processes oppositely regulated by PIF1. HEC2 inhibits PIF1 target gene expression by directly heterodimerizing with PIF1 and preventing DNA binding and transcriptional activation activity of PIF1. Conversely, PIFs directly activate the expression of HEC1 and HEC2 in the dark, and light reduces the expression of these HECs possibly by degrading PIFs. HEC2 is partially degraded in the dark through the ubiquitin/26S-proteasome pathway and is stabilized by light. HEC2 overexpression also reduces the light-induced degradation of PIF1. Taken together, these data suggest that PIFs and HECs constitute a negative feedback loop to fine-tune photomorphogenesis in Arabidopsis thaliana. PMID:27073231

  12. Negative Cooperativity and High Affinity in Chitooligosaccharide Binding by a Mycobacterium smegmatis Protein Containing LysM and Lectin Domains.

    PubMed

    Patra, Dhabaleswar; Mishra, Padmanabh; Vijayan, Mamannamana; Surolia, Avadhesha

    2016-01-12

    LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

  13. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium

    PubMed Central

    Pruitt, Rory N.; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R.; Chan, Leanne Jade G.; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L.; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B.; Sonti, Ramesh V.; Petzold, Christopher J.; Liu, Chang C.; Brodbelt, Jennifer S.; Felix, Georg; Ronald, Pamela C.

    2015-01-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21–amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals. PMID:26601222

  14. An H-NS-like protein involved in the negative regulation of hrp genes in Xanthomonas oryzae pv. oryzae.

    PubMed

    Kametani-Ikawa, Yumi; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu

    2011-06-01

    hrp genes encode components of a type III secretion (T3S) system and play crucial roles in the pathogenicity of the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). A histone-like nucleoid-structuring (H-NS) protein binds DNA and acts as a global transcriptional repressor. Here, we investigated the involvement of an h-ns-like gene, named xrvB, in the expression of hrp genes in Xoo. Under the hrp-inducing culture condition, the expression of a key hrp regulator HrpG increased in the XrvB mutant, followed by activation of the downstream gene expression. Also, in planta, the secretion of a T3S protein (XopR) was activated by the mutation in xrvB. Gel retardation assay indicated that XrvB has DNA-binding activity, but without a preference for the promoter region of hrpG. The results suggest that XrvB negatively regulates hrp gene expression and that an unknown factor(s) mediates the regulation of hrpG expression by XrvB.

  15. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53

    PubMed Central

    Chao, Tengfei; Zhou, Xiang; Cao, Bo; Liao, Peng; Liu, Hongbing; Chen, Yun; Park, Hee-Won; Zeng, Shelya X.; Lu, Hua

    2016-01-01

    The tumour suppressor p53 transactivates the expression of its target genes to exert its functions. Here, we identify a pleckstrin homology domain-containing protein (PHLDB3)-encoding gene as a p53 target. PHLDB3 overexpression increases proliferation and restrains apoptosis of wild-type p53-harboring cancer cells by reducing p53 protein levels. PHLDB3 binds to MDM2 (mouse double minute 2 homolog) and facilitates MDM2-mediated ubiquitination and degradation of p53. Knockdown of PHLDB3 more efficiently inhibits the growth of mouse xenograft tumours derived from human colon cancer HCT116 cells that contain wild type p53 compared with p53-deficient HCT116 cells, and also sensitizes tumour cells to doxorubicin and 5-Fluorouracil. Analysis of cancer genomic databases reveals that PHLDB3 is amplified and/or highly expressed in numerous human cancers. Altogether, these results demonstrate that PHLDB3 promotes tumour growth by inactivating p53 in a negative feedback fashion and suggest PHLDB3 as a potential therapeutic target in various human cancers. PMID:28008906

  16. A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat.

    PubMed

    Bramblett, D; Hsu, C L; Lozano, M; Earnest, K; Fabritius, C; Dudley, J

    1995-12-01

    The tissue specificity of mouse mammary tumor virus (MMTV) expression is controlled by regulatory elements in the MMTV long terminal repeat (LTR). These regulatory elements include the hormone response element, located approximately between -200 and -75, as well as binding sites for NF-1, Oct-1 (OTF-1), and mammary gland enhancer factors. Naturally occurring MMTV deletion variants isolated from T-cell and kidney tumors, transgenic-mouse experiments with MMTV LTR deletions, and transient transfection assays with LTR constructs indicate that there are additional transcription regulatory elements, including a negative regulatory element (NRE), located upstream of the hormone response element. To further define this regulatory region, we have constructed a series of BAL 31 deletion mutants in the MMTV LTR for use in transient transfection assays. These assays indicated that deletion of two regions (referred to as promoter-distal and -proximal NREs) between -637 and -201 elevated basal MMTV promoter activity in the absence of glucocorticoids. The region between -637 and -264 was surveyed for the presence of nuclear protein binding sites by gel retardation assays. Only one type of protein complex (referred to as NRE-binding protein or NBP) bound exclusively to sites that mapped to the promoter-distal and -proximal NREs identified by BAL 31 mutations. The promoter-proximal binding site was mapped further by linker substitution mutations and transfection assays. Mutations that mapped to a region containing an inverted repeat beginning at -287 relative to the start of transcription elevated basal expression of a reporter gene driven by the MMTV LTR. A 59-bp DNA fragment from the distal NRE also bound the NBP complex. Gel retardation assays showed that mutations within both inverted repeats of the proximal NRE eliminated NBP binding and mutations within single repeats altered NBP binding. Intriguingly, the NBP complex was detected in extracts from T cells and lung cells but

  17. A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat.

    PubMed Central

    Bramblett, D; Hsu, C L; Lozano, M; Earnest, K; Fabritius, C; Dudley, J

    1995-01-01

    The tissue specificity of mouse mammary tumor virus (MMTV) expression is controlled by regulatory elements in the MMTV long terminal repeat (LTR). These regulatory elements include the hormone response element, located approximately between -200 and -75, as well as binding sites for NF-1, Oct-1 (OTF-1), and mammary gland enhancer factors. Naturally occurring MMTV deletion variants isolated from T-cell and kidney tumors, transgenic-mouse experiments with MMTV LTR deletions, and transient transfection assays with LTR constructs indicate that there are additional transcription regulatory elements, including a negative regulatory element (NRE), located upstream of the hormone response element. To further define this regulatory region, we have constructed a series of BAL 31 deletion mutants in the MMTV LTR for use in transient transfection assays. These assays indicated that deletion of two regions (referred to as promoter-distal and -proximal NREs) between -637 and -201 elevated basal MMTV promoter activity in the absence of glucocorticoids. The region between -637 and -264 was surveyed for the presence of nuclear protein binding sites by gel retardation assays. Only one type of protein complex (referred to as NRE-binding protein or NBP) bound exclusively to sites that mapped to the promoter-distal and -proximal NREs identified by BAL 31 mutations. The promoter-proximal binding site was mapped further by linker substitution mutations and transfection assays. Mutations that mapped to a region containing an inverted repeat beginning at -287 relative to the start of transcription elevated basal expression of a reporter gene driven by the MMTV LTR. A 59-bp DNA fragment from the distal NRE also bound the NBP complex. Gel retardation assays showed that mutations within both inverted repeats of the proximal NRE eliminated NBP binding and mutations within single repeats altered NBP binding. Intriguingly, the NBP complex was detected in extracts from T cells and lung cells but

  18. MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells

    PubMed Central

    Mukhopadhyay, Partha; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P.; Chakraborty, Subhankar; Jain, Maneesh; Pai, Priya; Smith, Lynette M.; Lele, Subodh M.; Batra, Surinder K.

    2013-01-01

    Introduction Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. Method In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining. Results MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. Conclusions MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling. PMID

  19. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    PubMed

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Intestine-Specific Deletion of Microsomal Triglyceride Transfer Protein Increases Mortality in Aged Mice

    PubMed Central

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A.; Breed, Elise R.; Yoseph, Benyam P.; Burd, Eileen M.; Farris, Alton B.

    2014-01-01

    Background Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8–10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Methods Aged (20–24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. Results In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Conclusions Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice. PMID:25010671

  1. High-Throughput Screen for the Chemical Inhibitors of Antiapoptotic Bcl-2 Family Proteins by Multiplex Flow Cytometry

    PubMed Central

    Curpan, Ramona F.; Simons, Peter C.; Zhai, Dayong; Young, Susan M.; Carter, Mark B.; Bologa, Cristian G.; Oprea, Tudor I.; Satterthwait, Arnold C.; Reed, John C.; Edwards, Bruce S.

    2011-01-01

    Abstract The human Bcl-2 family includes six antiapoptotic members (Bcl-2, Bcl-B, Bcl-W, Bcl-XL, Bfl-1, and Mcl-1) and many proapoptotic members, wherein a balance between the two determines cell life or death in many physiological and disease contexts. Elevated expression of various antiapoptotic Bcl-2 members is commonly observed in cancers, and chemical inhibitors of these proteins have been shown to promote apoptosis of malignant cells in culture, in animal models, and in human clinical trials. All six antiapoptotic members bind a helix from the proapoptotic family member Bim, thus quenching Bim's apoptotic signal. Here, we describe the use of a multiplex, high-throughput flow cytometry assay for the discovery of small molecule modulators that disrupt the interaction between the antiapoptotic members of the Bcl-2 family and Bim. The six antiapoptotic Bcl-2 family members were expressed as glutathione-S-transferase fusion proteins and bound individually to six glutathione bead sets, with each set having a different intensity of red fluorescence. A fluorescein-conjugated Bcl-2 homology region 3 (BH3) peptide from Bim was employed as a universal ligand. Flow cytometry measured the amount of green peptide bound to each bead set in a given well, with inhibitory compounds resulting in a decrease of green fluorescence on one or more bead set(s). Hits and cheminformatically selected analogs were retested in a dose–response series, resulting in three “active” compounds for Bcl-B. These three compounds were validated by fluorescence polarization and isothermal titration calorimetry. We discuss some of the lessons learned about screening a chemical library provided by the National Institutes of Health Small Molecule Repository (∼195,000 compounds) using high-throughput flow cytometry. PMID:21561376

  2. Pleckstrin Homology (PH) Domain Leucine-rich Repeat Protein Phosphatase Controls Cell Polarity by Negatively Regulating the Activity of Atypical Protein Kinase C.

    PubMed

    Xiong, Xiaopeng; Li, Xin; Wen, Yang-An; Gao, Tianyan

    2016-11-25

    The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell cultures as indicated by the formation of aberrant multi-lumen structures. Overexpression of PHLPP resulted in a decrease in aPKC phosphorylation at both the activation loop and the turn motif sites; conversely, knockdown of PHLPP increased aPKC phosphorylation. Moreover, in vitro dephosphorylation experiments revealed that both aPKC isoforms were substrates of PHLPP. Interestingly, knockdown of PKCζ, but not PKCι, led to similar disruption of the polarized lumen structure, suggesting that PKCζ likely controls the polarization process of Caco2 cells. Furthermore, knockdown of PHLPP altered the apical membrane localization of aPKCs and reduced the formation of aPKC-Par3 complex. Taken together, our results identify a novel role of PHLPP in regulating aPKC and cell polarity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability

    PubMed Central

    Barbosa, Inês C.R.

    2016-01-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana. Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. PMID:27436712

  4. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses1[OPEN

    PubMed Central

    2015-01-01

    Receptor-like cytoplasmic kinases (RLCKs) are a subset of plant receptor-like kinases lacking both extracellular and transmembrane domains. Some of the 46 members in the Arabidopsis (Arabidopsis thaliana) RLCK subfamily VII have been linked to plant innate immunity; however, most remain uncharacterized. Thus, multiple subfamily VII members are expected to be involved in plant immune signaling. Here, we investigate the role of AvrPphB SUSCEPTIBLE1-LIKE13 (PBL13), a subfamily VII RLCK with unique domain architecture. Unlike other characterized RLCKs, PBL13 transfer DNA insertion lines exhibit enhanced disease resistance after inoculation with virulent Pseudomonas syringae. The pbl13-2 knockout also exhibits elevated basal-level expression of the PATHOGENESIS-RELATED GENE1 defense marker gene, enhanced reactive oxygen species (ROS) burst in response to perception of bacterial microbial patterns, and accelerated flagellin-induced activation of mitogen-activated protein kinases. Recombinant PBL13 is an active kinase, and its primary autophosphorylated sites map to a 15-amino acid repeat motif unique to PBL13. Complementation of pbl13-2 with PBL13-3xFLAG converts the enhanced resistance and elevated ROS phenotypes back to wild-type levels. In contrast, kinase-dead PBL13K111A-3xFLAG was unable to rescue pbl13-2 disease phenotypes. Consistent with the enhanced ROS burst in the pbl13-2 knockout, PBL13 is able to associate with the nicotinamide adenine dinucleotide phosphate, reduced oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN D (RBOHD) by split-luciferase complementation assay, and this association is disrupted by flagellin treatment. We conclude that the PBL13 kinase negatively regulates plant innate immunity to pathogenic bacteria and can associate with RBOHD before pathogen perception. These data are consistent with the hypothesis that PBL13 acts to prevent inappropriate activation of defense responses in the absence of pathogen challenge. PMID:26432875

  5. Extensive protein hydrolysate formula effectively reduces regurgitation in infants with positive and negative challenge tests for cow's milk allergy.

    PubMed

    Vandenplas, Y; De Greef, E

    2014-06-01

    Cow's milk protein allergy (CMPA) is treated using an elimination diet with an extensive protein hydrolysate. We explored whether a thickened or nonthickened version was best for infants with suspected CMPA, which commonly causes regurgitation/vomiting. Diagnosis of CMPA was based on a positive challenge test. We compared the efficacy of two casein extensive hydrolysates (eCH), a nonthickened version (NT-eCH) and a thickened version (T-eCH), using a symptom-based score covering regurgitation, crying, stool consistency, eczema, urticarial and respiratory symptoms. A challenge was performed in 52/72 infants with suspected CMPA and was positive in 65.4%. All confirmed CMPA cases tolerated eCH. The symptom-based score decreased significantly in all infants within a month, and the highest reduction was in those with confirmed CMPA. Regurgitation was reduced in all infants (6.4 ± 3.2-2.8 ± 2.9, p < 0.001), but fell more with the T-eCH (-4.2 ± 3.2 regurgitations/day vs. -3.0 ± 4.5, ns), especially in infants with a negative challenge (-3.9 ± 4.0 vs. -1.9 ± 3.4, ns). eCH fulfilled the criteria for a hypoallergenic formula, and the NT-eCH and T-eCH formulas both reduced CMPA symptoms. The symptom-based score is useful for evaluating how effective dietary treatments are for CMPA. ©2014 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  6. Electrospray mass spectrometry of some proteins and the aqueous solution acid/base equilibrium model in the negative ion detection mode

    NASA Astrophysics Data System (ADS)

    Le Blanc, J. C. Y.; Guevremont, R.; Siu, K. W. M.

    1993-06-01

    Basic solutions of myoglobin, [beta]-lactoglobulin, pepsin and ubiquitin have been examined by means of electrospray mass spectrometry in the negative ion detection mode. The distribution of protein ions in the mass spectra was found to correlate well with the distribution of protein species in solution calculated from published titration data. These results lend further credibility to an earlier proposed aqueous solution acid/base equilibrium model, which relates the "bellshape" ion distribution observed in the electrospray mass spectrometry of proteins to the distribution of protein ions in solution.

  7. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma.

    PubMed

    Lee, Kyung-Ae; Chae, Jung-Il; Shim, Jung-Hyun

    2012-06-26

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a very poor prognosis. Several clinical studies such as immunotherapy, gene therapy and molecular targeting agents have been tried for treatment of malignant mesothelioma, however, there is no application for effective clinical treatment. Coffee has various biological functions such as anti-oxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic activities. The therapeutic activities of the bioactive compounds in coffee was sugested to influence intracellular signaling of MPM. Regarding to the cancer-related functions, In this study, suppression of Sp1 protein level followed by induction of MSTO-211H cell apoptosis by cafestol and kahweol were investigated in oreder to determine Sp1's potential as a significant target for human MPM therapy as well. Cells were treated separately with final concentration of cafestol and kahweol and the results were analyzed by MTS assay, DAPI staining, PI staining, luciferase assay, RT-PCR, and immunoblotting. Viability of MSTO-211H and H28 cells were decreased, and apoptotic cell death was increased in MSTO-211H as a result of cafestol and kahweol treatment. Cafestol and kahweol increased Sub-G1 population and nuclear condensation in MSTO-211H cells. Roles of Sp1 in cell proliferation and apoptosis of the MSTO-211H cells by the Sp1 inhibitor of Mithramycin A were previously confirmed. Cafestol and kahweol significantly suppressed Sp1 protein levels. Kahweol slightly attenuated Sp1 mRNA, while Cafestol did not affect in MSTO-211H cells. Cafestol and kahweol modulated the promoter activity and protein expression level of the Sp1 regulatory genes including Cyclin D1, Mcl-1, and Survivin in mesothelioma cells. Apoptosis signaling cascade was activated by cleavages of Bid, Caspase-3, and PARP with cafestol and by upregulation of Bax, and downregulation of Bcl-xl by kahweol. Sp1 can be a novel molecular target of cafestol and kahweol in human MPM.

  8. Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia.

    PubMed

    Han, Kyu-Hyun; Kim, Ae-Kyeong; Kim, Min-Hee; Kim, Do-Hyung; Go, Ha-Nl; Kang, Donglim; Chang, Jong Wook; Choi, Soon Won; Kang, Kyung-Sun; Kim, Dong-Ik

    2017-09-20

    The aim of the present study was to investigate protein profiles of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) cultured in normoxic (21% O2) and hypoxic (1% O2) conditions, and evaluate oxygenation effects on angiogenesis in an ischemic hindlimb mouse model using a modified ischemic scoring system. Hypoxic conditions did not change the expression of phenotypic markers and increased adipogenesis and chondrogenesis. Epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), TGF-β RII, and vascular endothelial growth factor (VEGF) were upregulated in the conditioned medium of hypoxic hUCB-MSCs, which are commonly related to angiogenesis and proliferation of biological processes by Gene Ontology. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, significant enrichment of the phosphorylation of abelson murine leukemia viral oncogene homolog 1 (ABL1) (Phospho-Tyr204) and B-cell lymphoma-extra large (BCL-XL) (Phospho-Thr47) as anti-apoptotic pathways was observed in hypoxic hUCB-MSCs. Furthermore, hypoxic conditions induced proliferation and migration, and reduced apoptosis of hUCB-MSCs in vitro. Based on the results of protein antibody array, we evaluated the angiogenic effects of injecting normoxic or hypoxic hUCB-MSCs (1×10(6)) into the ischemic hindlimb muscles of mice. Ischemic scores and capillary generation were significantly greater in the hypoxic hUCB-MSC injection group than in the normoxic hUCB-MSC group. Our findings demonstrate that culturing hUCB-MSCs in hypoxic conditions not only significantly enriches phosphorylation in the anti-apoptosis pathway and enhances the secretion of several angiogenic proteins from cells, but also alleviates ischemic injury of hindlimb of mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM.

    PubMed

    Rohrbeck, Leona; Gong, Jia-Nan; Lee, Erinna F; Kueh, Andrew J; Behren, Andreas; Tai, Lin; Lessene, Guillaume; Huang, David C S; Fairlie, Walter D; Strasser, Andreas; Herold, Marco J

    2016-12-01

    A large proportion of melanomas harbour the activating BRAF(V600E) mutation that renders these cells dependent on MAPK signalling for their survival. Although the highly specific and clinically approved BRAF(V600E) kinase inhibitor, PLX4032, induces apoptosis of melanoma cells bearing this mutation, the underlying molecular mechanisms are not fully understood. Here, we reveal that PLX4032-induced apoptosis depends on the induction of the pro-apoptotic BH3-only protein PUMA with a minor contribution of its relative BIM. Apoptosis could be significantly augmented when PLX4032 was combined with an inhibitor of the pro-survival protein BCL-XL, whereas neutralization of the pro-survival family member BCL-2 caused no additional cell death. Although the initial response to PLX4032 in melanoma patients is very potent, resistance to the drug eventually develops and relapse occurs. Several factors can cause melanoma cells to develop resistance to PLX4032; one of them is the activation of the receptor tyrosine kinase cMET on melanoma cells by its ligand, hepatocyte growth factor (HGF), provided by the tumour microenvironment or the cancer cells themselves. We found that HGF mediates resistance of cMET-expressing BRAF mutant melanoma cells to PLX4032-induced apoptosis through downregulation of PUMA and BIM rather than by increasing the expression of pro-survival BCL-2-like proteins. These results suggest that resistance to PLX4032 may be overcome by specifically increasing the levels of PUMA and BIM in melanoma cells through alternative signalling cascades or by blocking pro-survival BCL-2 family members with suitable BH3 mimetic compounds.

  10. Prediction of Recurrence and Survival for Triple-Negative Breast Cancer (TNBC) by a Protein Signature in Tissue Samples*

    PubMed Central

    Campone, Mario; Valo, Isabelle; Jézéquel, Pascal; Moreau, Marie; Boissard, Alice; Campion, Loic; Loussouarn, Delphine; Verriele, Véronique; Coqueret, Olivier; Guette, Catherine

    2015-01-01

    To date, there is no available targeted therapy for patients who are diagnosed with triple-negative breast cancers (TNBC). The aim of this study was to identify a new specific target for specific treatments. Frozen primary tumors were collected from 83 adjuvant therapy-naive TNBC patients. These samples were used for global proteome profiling by iTRAQ-OFFGEL-LC-MS/MS approach in two series: a training cohort (n = 42) and a test set (n = 41). Patients who remains free of local or distant metastasis for a minimum of 5 years after surgery were classified in the no-relapse group; the others were in the relapse group. OPLS and Kaplan–Meier analyses were performed to select candidate markers, which were validated by immunohistochemistry. Three proteins were identified in the training set and validated in the test set by Kaplan–Meier method and immunohistochemistry (IHC): TrpRS as a good prognostic markers and DP and TSP1 as bad prognostic markers. We propose the establishment of an IHC test to calculate the score of TrpRS, DP, and TSP1 in TNBC tumors to evaluate the degree of aggressiveness of the tumors. Finally, we propose that DP and TSP1 could provide therapeutic targets for specific treatments. PMID:26209610

  11. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome.

    PubMed

    Haneklaus, Moritz; O'Neil, John D; Clark, Andrew R; Masters, Seth L; O'Neill, Luke A J

    2017-03-16

    The NLRP3 inflammasome is a central regulator of inflammation in many common diseases, including atherosclerosis and Type 2 diabetes, driving the production of pro-inflammatory mediators such as IL-1β and IL-18. Due to its function as an inflammatory gatekeeper, expression and activation of NLRP3 need to be tightly regulated. In this study, we highlight novel post-transcriptional mechanisms that can modulate NLRP3 expression. We have identified the RNA-binding protein Tristetraprolin (TTP) as a negative regulator of NLRP3 in human macrophages. TTP targets AU-rich elements in the NLRP3 3' untranslated region (UTR) and represses NLRP3 expression. Knocking down TTP in primary macrophages leads to an increased induction of NLRP3 by LPS, which is also accompanied by increased Caspase-1 and IL-1β cleavage upon NLRP3, but not AIM2 or NLRC4 inflammasome activation. Furthermore, we found that human NLRP3 can be alternatively polyadenylated, producing a short 3'UTR isoform that excludes regulatory elements, including the TTP and miRNA-223 binding sites. Since TTP also represses IL-1β expression, it is a dual inhibitor of the IL-1β system, regulating expression of the cytokine and the upstream controller NLRP3.

  12. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea

    PubMed Central

    Wang, Houping; Hu, Yanru; Pan, Jinjing; Yu, Diqiu

    2015-01-01

    Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis cinerea. To characterize their roles in plant defense, we generated amiR-vq12 transgenic plants by using an artificial miRNA approach to suppress the expression of VQ12, and isolated a loss-of-function mutant of VQ29. Phenotypic analysis showed that decreasing the expression of VQ12 and VQ29 simultaneously rendered the amiR-vq12 vq29 double mutant plants resistant against B. cinerea. Consistently, the B. cinerea-induced expression of defense-related PLANT DEFENSIN1.2 (PDF1.2) was increased in amiR-vq12 vq29. In contrast, constitutively-expressing VQ12 or VQ29 confered transgenic plants susceptible to B. cinerea. Further investigation revealed that VQ12 and VQ29 physically interacted with themselves and each other to form homodimers and heterodimer. Moreover, expression analysis of VQ12 and VQ29 in defense-signaling mutants suggested that they were partially involved in jasmonate (JA)-signaling pathway. Taken together, our study indicates that VQ12 and VQ29 negatively regulate plant basal resistance against B. cinerea. PMID:26394921

  13. Binding to extracellular matrix proteins and formation of biogenic amines by food-associated coagulase-negative staphylococci.

    PubMed

    Seitter, Marion; Geng, Bettina; Hertel, Christian

    2011-02-28

    In connection with a study on the DNA microarray based detection of genes involved in safety and technologically relevant properties (Seitter (née Resch) et al., 2011), food-associated coagulase-negative staphylococci (CNS) were investigated phenotypically with regard to their ability to bind to the extracellular matrix proteins (ECM) and to produce biogenic amines. The properties have been shown to be involved in the colonization of injured tissue and invasion into host cells as well as in pharmacologic effects on humans, respectively. The CNS exhibited a low, but nevertheless clearly measurable ECM binding capacity, except for strains of Staphylococcus equorum and Staphylococcus succinus, which show a comparable or even higher binding to fibrinogen and fibronectin than that of the control strain Staphylococcus aureus Cowan. Formation of biogenic amines could be often detected in S. carnosus, S. condimenti and S. strains, but rarely in S. equorum and not in S. succinus and S. xylosus strains. Mostly, 2-phenylethylamine, tyramine and tryptamine were formed by resting cells in amounts < 25 mg/l, whereas growing cells formed high amounts (> 100 mg/l) of 2-phenylethylamine and putrescine. This study confirmed the need of consideration of ECM binding and biogenic amine formation in the safety assessment of CNS used in the production of fermented foods.

  14. The GTPase-activating protein GIT2 protects against colitis by negatively regulating Toll-like receptor signaling

    PubMed Central

    Wei, Juncheng; Wei, Chao; Wang, Min; Qiu, Xiao; Li, Yang; Yuan, Yanzhi; Jin, Chaozhi; Leng, Ling; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2014-01-01

    G protein-coupled receptor kinase-interactor 2 (GIT2) regulates thymocyte positive selection, neutrophil-direction sensing, and cell motility during immune responses by regulating the activity of the small GTPases ADP ribosylation factors (Arfs) and Ras-related C3 botulinum toxin substrate 1 (Rac1). Here, we show that Git2-deficient mice were more susceptible to dextran sodium sulfate (DSS)-induced colitis, Escherichia coli, or endotoxin-shock challenge, and a dramatic increase in proinflammatory cytokines was observed in Git2 knockout mice and macrophages. GIT2 is a previously unidentified negative regulator of Toll-like receptor (TLR)-induced NF-κB signaling. The ubiquitination of TNF receptor associated factor 6 (TRAF6) is critical for the activation of NF-κB. GIT2 terminates TLR-induced NF-κB and MAPK signaling by recruiting the deubiquitinating enzyme Cylindromatosis to inhibit the ubiquitination of TRAF6. Finally, we show that the susceptibility of Git2-deficient mice to DSS-induced colitis depends on TLR signaling. Thus, we show that GIT2 is an essential terminator of TLR signaling and that loss of GIT2 leads to uncontrolled inflammation and severe organ damage. PMID:24879442

  15. SAZ, a new SUPERMAN-like protein, negatively regulates a subset of ABA-responsive genes in Arabidopsis.

    PubMed

    Jiang, Chang-Jie; Aono, Mitsuko; Tamaoki, Masanori; Maeda, Satoru; Sugano, Shoji; Mori, Masaki; Takatsuji, Hiroshi

    2008-02-01

    Arabidopsis SUPERMAN (SUP) and members of its family are plant-unique C(2)H(2)-type zinc finger genes that have been implicated in plant growth and development. In this paper, we report that a new SUP-family gene, designated as S A- and A BA-downregulated z inc finger gene (SAZ), is involved in the negative regulation of ABA-mediated signaling. SAZ-GUS fusion proteins were predominantly localized in the nuclei when they were transiently expressed in onion epidermal cells. SAZ transcripts were expressed in the leaves and pistils of very young flower buds. In young seedlings, SAZ expression was downregulated in response to environmental stresses such as drought, salt, ozone and ultraviolet-B irradiation. This downregulation was also observed in response to the phytohormones salicylic acid (SA) and abscisic acid (ABA). SA-responsive downregulation of SAZ was not observed in the npr1-1 mutant, indicating that this regulation is NPR1 dependent. RNAi-mediated knockdown of SAZ (SAZ-kd) resulted in elevated expression of the drought- and ABA-responsive genes rd29B and rab18 under unstressed conditions, and it enhanced the response of these genes to drought and ABA treatment. The expression of several other drought- and/or ABA-responsive genes was not affected by SAZ-kd. Based on these results, we propose that SAZ plays a role in repressing a subset of the ABA-mediated stress-responsive genes in unstressed conditions.

  16. Prediction of Recurrence and Survival for Triple-Negative Breast Cancer (TNBC) by a Protein Signature in Tissue Samples.

    PubMed

    Campone, Mario; Valo, Isabelle; Jézéquel, Pascal; Moreau, Marie; Boissard, Alice; Campion, Loic; Loussouarn, Delphine; Verriele, Véronique; Coqueret, Olivier; Guette, Catherine

    2015-11-01

    To date, there is no available targeted therapy for patients who are diagnosed with triple-negative breast cancers (TNBC). The aim of this study was to identify a new specific target for specific treatments. Frozen primary tumors were collected from 83 adjuvant therapy-naive TNBC patients. These samples were used for global proteome profiling by iTRAQ-OFFGEL-LC-MS/MS approach in two series: a training cohort (n = 42) and a test set (n = 41). Patients who remains free of local or distant metastasis for a minimum of 5 years after surgery were classified in the no-relapse group; the others were in the relapse group. OPLS and Kaplan-Meier analyses were performed to select candidate markers, which were validated by immunohistochemistry. Three proteins were identified in the training set and validated in the test set by Kaplan-Meier method and immunohistochemistry (IHC): TrpRS as a good prognostic markers and DP and TSP1 as bad prognostic markers. We propose the establishment of an IHC test to calculate the score of TrpRS, DP, and TSP1 in TNBC tumors to evaluate the degree of aggressiveness of the tumors. Finally, we propose that DP and TSP1 could provide therapeutic targets for specific treatments.

  17. Negative ion production from peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gao, Junjie; Cassady, Carolyn J

    2008-12-01

    Negative ion production from peptides and proteins was investigated by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M-H](-) ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5-dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H](+) ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1-14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright 2008 John Wiley & Sons, Ltd.

  18. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks.

    PubMed

    Mei, Suyu; Zhu, Hao

    2015-01-26

    Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.

  19. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks

    PubMed Central

    Mei, Suyu; Zhu, Hao

    2015-01-01

    Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus. PMID:25620466

  20. Concentrations of procalcitonin and C-reactive protein, white blood cell count, and the immature-to-total neutrophil ratio in the blood of neonates with nosocomial infections: Gram-negative bacilli vs coagulase-negative staphylococci.

    PubMed

    Kordek, A

    2011-03-01

    This study was undertaken to determine whether concentrations of procalcitonin in the blood of neonates with nosocomial infections depend on the type of pathogen. Qualification for the study group was based on the clinical signs of infection. We found that infections with Gram-positive (chiefly coagulase-negative staphylococci) and Gram-negative bacteria are accompanied by elevated concentrations of procalcitonin. In the case of Gram-positive bacteria, other laboratory signs of infection studied by us (concentration of C-reactive protein, white blood cell count, immature-to-total neutrophil ratio) were not discriminatory, confirming the diagnostic usefulness of procalcitonin measurements in nosocomial infections of the neonate with Gram-negative or Gram-positive bacteria.

  1. Negative second virial coefficients as predictors of protein crystal growth: evidence from sedimentation equilibrium studies that refutes the designation of those light scattering parameters as osmotic virial coefficients.

    PubMed

    Deszczynski, Marcin; Harding, Stephen E; Winzor, Donald J

    2006-03-20

    The effects of ammonium sulphate concentration on the osmotic second virial coefficient (BAA/MA) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, BAA/MA assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to BAA/MA but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive.

  2. Mosquito La protein binds to the 3' untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells.

    PubMed

    Yocupicio-Monroy, Martha; Padmanabhan, R; Medina, Fernando; del Angel, Rosa M

    2007-01-05

    The untranslated regions (UTRs) of the positive and negative strand RNAs of several viruses are major binding sites for cellular and viral proteins. Human La autoantigen is one of the cellular proteins that interacts with various positive strand RNA viral genomes including that of dengue virus (DEN) within the 5'- and 3'-UTRs of positive (+) and the 3'-UTR of negative strand (-) RNA, and with the nonstructural proteins NS3 and NS5, that form DEN replicase complex. Since DEN replicates in human and mosquito cells, some functional interactions have to be conserved in both hosts. In the present report, we demonstrate that mosquito La protein interacts with the 3'-UTRs of (+) and (-) polarity viral RNAs. The localization of La protein, examined by confocal microscopy, indicates that La protein is redistributed in DEN-infected cells. Furthermore, the presence of La protein in an in vitro replication system inhibited RNA synthesis in a dose-dependent manner, suggesting that La protein plays an important role in dengue virus replicative cycle.

  3. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M; Nichols, Wright W; Malouin, François

    2016-02-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets.

  4. G protein α12 (Gα12) is a negative regulator of kidney injury molecule-1-mediated efferocytosis.

    PubMed

    Ismail, Ola Z; Zhang, Xizhong; Bonventre, Joseph V; Gunaratnam, Lakshman

    2016-04-01

    Kidney injury molecule-1 (KIM-1) is a receptor for the "eat me" signal, phosphatidylserine, on apoptotic cells. The specific upregulation of KIM-1 by injured tubular epithelial cells (TECs) enables them to clear apoptotic cells (also known as efferocytosis), thereby protecting from acute kidney injury. Recently, we uncovered that KIM-1 binds directly to the α-subunit of heterotrimeric G12 protein (Gα12) and inhibits its activation by reactive oxygen species during renal ischemia-reperfusion injury (Ismail OZ, Zhang X, Wei J, Haig A, Denker BM, Suri RS, Sener A, Gunaratnam L. Am J Pathol 185: 1207-1215, 2015). Here, we investigated the role that Gα12 plays in KIM-1-mediated efferocytosis by TECs. We showed that KIM-1 remains bound to Gα12 and suppresses its activity during phagocytosis. When we silenced Gα12 expression using small interefering RNA, KIM-1-mediated engulfment of apoptotic cells was increased significantly; in contrast overexpression of constitutively active Gα12 (QLGα12) resulted in inhibition of efferocytosis. Inhibition of RhoA, a key effector of Gα12, using a chemical inhibitor or expression of dominant-negative RhoA, had the same effect as inhibition of Gα12 on efferocytosis. Consistent with this, silencing Gα12 suppressed active RhoA in KIM-1-expressing cells. Finally, using primary TECs from Kim-1(+/+) and Kim-1(-/-) mice, we confirmed that engulfment of apoptotic cells requires KIM-1 expression and that silencing Gα12 enhanced efferocytosis by primary TECs. Our data reveal a previously unknown role for Gα12 in regulating efferocytosis and that renal TECs require KIM-1 to mediate this process. These results may have therapeutic implications given the known harmful role of Gα12 in acute kidney injury. Copyright © 2016 the American Physiological Society.

  5. Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer.

    PubMed

    Kelkar, Madhura G; Thakur, Bhushan; Derle, Abhishek; Chatterjee, Sushmita; Ray, Pritha; De, Abhijit

    2017-08-01

    Aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) is well documented but the transcription factors (TF) regulating its aberrant expression is poorly known. We identify the presence of three p53 binding sites on the human NIS promoter sequence by conducting genome-wide TF analysis, and further investigate their regulatory role. The differences in transcription and translation were measured by real-time PCR, luciferase reporter assay, site-directed mutagenesis, in vivo optical imaging, and chromatin immunoprecipitation. The relation of NIS and p53 in clinical samples was judged by TCGA data analysis and immunohistochemistry. Overexpression of wild-type p53 as a transgene or pharmacological activation by doxorubicin drug treatment shows significant suppression of NIS transcription in multiple BC cell types which also results in lowered NIS protein content and cellular iodide intake. NIS repression by activated p53 is further confirmed by non-invasive bioluminescence imaging in live cell and orthotropic tumor model. Abrogation of p53-binding sites by directional mutagenesis confirms reversal of transcriptional activity in wild-type p53-positive BC cells. We also observe direct binding of p53 to these sites on the human NIS promoter. Importantly, TCGA data analysis of NIS and p53 co-expression registers an inverse relationship between the two candidates. Our data for the first time highlight the role of p53 as a negative regulator of functional NIS expression in BC, where the latter is a potential targeted radioiodine therapy candidate. Thus, the study provides an important insight into prospective clinical application of this approach that may significantly impact the patient with mutant versus wild-type p53 profile.

  6. Functional disparities among BCL-2 members in tonsillar and leukemic B-cell subsets assessed by BH3-mimetic profiling

    PubMed Central

    Peperzak, Victor; Slinger, Erik; Ter Burg, Johanna; Eldering, Eric

    2017-01-01

    For successful treatment of malignant B-cells it is crucial to understand intrinsic survival requirements in relation to their normal progenitors. Long-lived humoral immunity as well as most B-cell malignancies, originate in the germinal center (GC). Murine GC B-cells depend on pro-survival protein MCL-1, but not BCL-XL. In contrast, naive and memory B-cells depend on BCL-2, but not BCL-XL or MCL-1. For human B-cell subsets, the functional relationships among BCL-2 members are unclear, and also if and how they shift after malignant transformation. We here dissect these aspects in human tonsil and primary leukemia (CLL) cells by single and combined treatment with novel, highly specific BH3-mimetics. We found that MCL-1 expression in GC B-cells is regulated post-translationally and its importance is highlighted by preferential binding to pro-apoptotic BIM. In contrast, BCL-XL is transcriptionally induced and binds solely to weak sensitizer BIK, potentially explaining why BCL-XL is not required for GC B-cell survival. Using novel BH3-mimetics, we found that naive and memory B-cells depend on BCL-2, GC cells predominantly on MCL-1, whereas plasma cells need both BCL-XL and MCL-1 for survival. CLL cells switch from highly sensitive for BCL-2 inhibition to resistant after CD40-stimulation. However, combined inhibition of BCL-2, plus BCL-XL or MCL-1 effectively kills these cells, thus exposing a weakness that may be therapeutically useful. These general principles offer important clues for designing treatment strategies for B-cell malignancies. PMID:27689871

  7. Screening differential expression of serum proteins in AFP-negative HBV-related hepatocellular carcinoma using iTRAQ -MALDI-MS/MS.

    PubMed

    He, X; Wang, Y; Zhang, W; Li, H; Luo, R; Zhou, Y; Li, C; Liao, M; Huang, H; Lv, X; Xie, Z; He, M

    2013-09-20

    Hepatocellular carcinoma (HCC) is serious condition associated with a high morbidity and mortality. Therefore is an urgent need to develop novel noninvasive techniques for early diagnosis, particularly for patients with AFP-negative [AFP(-)] HCC. In this study, iTRAQ-MALDI-MS/MS was used to identify differentially expressed proteins in AFP(-) HBV-related HCC compared with non-cancerous hepatitis B virus (HBV) and healthy controls subjects.Serum was obtained from 18 patients with AFP(-) HBV-related HCC, 18 matched patients with HBV without HCC and 18 healthy control subjects. High abundance proteins were removed from serum and the differentially expressed proteins from the three groups were screened out using iTRAQ-MALDI-MS/MS. The Gene Ontology (GO) function and the interaction networks of differentially expressed proteins were then analyzed. A total of 24 expressed differential proteins associated with AFP(-) HBV-related HCC were screened out, 15 proteins were up-regulated and 9 down-regulated. The most common molecular function of the 24 differentially expressed proteins was enzyme inhibition. Interaction network of the 24 differentially expressed proteins showed that 14 proteins (C5, KNG1, FN1, LRG1, HRG, SERPINC1, CRP, APOB, SAA1, APCS, C4BPA, CFI, CFB and GSN) were central to the functional network. The expression levels of the GSN protein were down-regulated in AFP(-) HBV-related HCC subjects compared with healthy controls and the HBV group (p<0.01), consistent with the iTRAQ results.The 14 proteins from the serum of AFP(-) HBV-related HCC appeared at the fulcrum of the functional network and were differentially expressed compare to HBV and healthy controls suggesting a possible association with HCC progression. Keywords: HCC, AFP Negative, iTRAQ, GSN.

  8. Expression of sarcosine metabolism-related proteins in estrogen receptor negative breast cancer according to the androgen receptor and HER-2 status

    PubMed Central

    Kim, Min Ju; Jung, Woo Hee; Koo, Ja Seung

    2015-01-01

    The aim of this study is to investigate the expression of sarcosine metabolism related proteins according to androgen receptor (AR) and HER-2 status in estrogen receptor (ER) negative breast cancer and to analyze its clinical implications. Tissue microarray was constructed for a total of 334 cases of ER negative breast cancer. Immunohistochemical stain was conducted for sarcosine metabolism related proteins such as glycine N-methyltransferase (GNMT), sarcosine dehydrogenase (SARDH), and l-pipecolic acid oxidase (PIPOX). There were 131 AR positive, 205 AR negative cases and 143 HER-2 positive, 193 HER-2 negative cases. When subdividing into four groups according to AR and HER-2 status, there were 55 AR(+)/HER-2(-) cases, 76 AR(+)/HER-2(+) cases, 67 AR(-)/HER-2(+) cases and 138 AR(-)/HER-2(-) cases. GNMT and PIPOX expression was highest in the AR(+)/HER-2(-) group while expressed lowest in the AR(-)/HER-2(-) group (P<0.001). Stromal PIPOX expression was highest in the AR(-)/HER-2(+) group and lowest in the AR(-)/HER-2(-) group (P=0.010). GNMT and PIPOX expression was higher in the AR positive group compared with those of AR negative group (P=0.001, and P<0.001, respectively), while tumoral and stromal PIPOX expression showed a significant association with HER-2 positivity (P=0.006, and P=0.005, respectively). AR positive group had the highest ratio of low sarcosine type while the AR negative group had the highest ratio of null type (P<0.001). In conclusion, ER negative breast cancer showed different expression of sarcosine metabolism related proteins according to AR and HER-2 status. GNMT and PIPOX expression was high in the AR positive group while tumoral and stromal PIPOX expression was high in the HER-2 positive group. PMID:26339363

  9. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-10-06

    Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017. Published by Elsevier Inc.

  10. The P Protein of Spring Viremia of Carp Virus Negatively Regulates the Fish Interferon Response by Inhibiting the Kinase Activity of TANK-Binding Kinase 1.

    PubMed

    Li, Shun; Lu, Long-Feng; Wang, Zhao-Xi; Lu, Xiao-Bing; Chen, Dan-Dan; Nie, Pin; Zhang, Yong-An

    2016-12-01

    Spring viremia of carp virus (SVCV) is an efficient pathogen causing high mortality in the common carp. Fish interferon (IFN) is a powerful cytokine enabling host cells to establish an antiviral response; therefore, the strategies that SVCV uses to avoid the cellular IFN response were investigated. Here, we report that the SVCV P protein is phosphorylated by cellular TANK-binding kinase 1 (TBK1), which decreases IFN regulatory factor 3 (IRF3) phosphorylation and suppresses IFN production. First, overexpression of P protein inhibited the IFN promoter activation induced by SVCV and the IFN activity activated by the mitochondrial antiviral signaling protein (MAVS) although TBK1 activity was not blocked by P protein. Second, P protein colocalized and interacted with TBK1. Dominant negative experiments suggested that the TBK1 N-terminal kinase domain interacted with P protein and was essential for P protein and IRF3 phosphorylation. Finally, P protein overexpression reduced the IRF3 phosphorylation activated by TBK1 and reduced host cellular ifn transcription. Collectively, our data demonstrated that the SVCV P protein is a decoy substrate for the host phosphokinase TBK1, preventing IFN production and facilitating SVCV replication. TBK1 is a pivotal phosphokinase that activates host IFN production to defend against viral infection; thus, it is a potential target for viruses to negatively regulate IFN response and facilitate viral evasion. We report that the SVCV P protein functions as a decoy substrate for cellular TBK1, leading to the reduction of IRF3 phosphorylation and suppression of IFN expression. These findings reveal a novel immune evasion mechanism of SVCV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Special AT-rich sequence-binding protein 2 acts as a negative regulator of stemness in colorectal cancer cells

    PubMed Central

    Li, Ying; Liu, Yu-Hong; Hu, Yu-Ying; Chen, Lin; Li, Jian-Ming

    2016-01-01

    AIM To find the mechanisms by which special AT-rich sequence-binding protein 2 (SATB2) influences colorectal cancer (CRC) metastasis. METHODS Cell growth assay, colony-forming assay, cell adhesion assay and cell migration assay were used to evaluate the biological characteristics of CRC cells with gain or loss of SATB2. Sphere formation assay was used to detect the self-renewal ability of CRC cells. The mRNA expression of stem cell markers in CRC cells with upregulated or downregulated SATB2 expression was detected by quantitative real-time polymerase chain reaction. Chromatin immunoprecipitation (ChIP) was used to verify the binding loci of SATB2 on genomic sequences of stem cell markers. The Cancer Genome Atlas (TCGA) database and our clinical samples were analyzed to find the correlation between SATB2 and some key stem cell markers. RESULTS Downregulation of SATB2 led to an aggressive phenotype in SW480 and DLD-1 cells, which was characterized by increased migration and invasion abilities. Overexpression of SATB2 suppressed the migration and invasion abilities in SW480 and SW620 cells. Using sequential sphere formation assay to detect the self-renewal abilities of CRC cells, we found more secondary sphere formation but not primary sphere formation in SW480 and DLD-1 cells after SATB2 expression was knocked down. Moreover, most markers for stem cells such as CD133, CD44, AXIN2, MEIS2 and NANOG were increased in cells with SATB2 knockdown and decreased in cells with SATB2 overexpression. ChIP assay showed that SATB2 bound to regulatory elements of CD133, CD44, MEIS2 and AXIN2 genes. Using TCGA database and our clinical samples, we found that SATB2 was correlated with some key stem cell markers including CD44 and CD24 in clinical tissues of CRC patients. CONCLUSION SATB2 can directly bind to the regulatory elements in the genetic loci of several stem cell markers and consequently inhibit the progression of CRC by negatively regulating stemness of CRC cells. PMID

  12. Cell proteins bind to a 67 nucleotide sequence within the 3' noncoding region (NCR) of simian hemorrhagic fever virus (SHFV) negative-strand RNA.

    PubMed

    Hwang, Y K; Brinton, M A

    1998-01-01

    The 3'NCR of the SHFV negative-strand RNA [SHFV 3'(-)NCR RNA] is thought to be the initiation site of full-length and possibly also subgenomic positive-strand RNA and so is likely to contain cis-acting signals for viral RNA replication. Cellular and viral proteins may specifically interact with this region to form replication complexes. When in vitro transcribed SHFV 3'(-)NCR RNA was used as a probe in gel mobility shift assays, two RNA-protein complexes were detected with MA104 S100 cytoplasmic extracts. The specificity of thes RNA-protein interactions was demonstrated by competition gel mobility shift assays. Four MA104 protein (103, 86, 55, and 36 kDa) were detected by UV-induced cross-linking assays and three proteins (103, 55, and 36 kDa) were detected by northwestern blotting assays. The binding sites for these proteins were mapped to the region between nucleotides 117 to 184 on the SHFV 3'(-)NCR RNA. Four cellular proteins with identical molecular masses to those of the proteins that bind to the SHFV 3'(-)NCR RNA were detected by the 3'(-)NCR of another arterivirus, LDV-C, suggesting that divergent arteriviruses utilize the same set of conserved cell protein domains.

  13. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble

    PubMed Central

    2015-01-01

    Background It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. Results In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Conclusions Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg

  14. The reduction rates of DEPC-modified mutant Thermus thermophilus Rieske proteins differ when there is a negative charge proximal to the cluster.

    PubMed

    Karagas, Nicholas E; Jones, Christie N; Osborn, Deborah J; Dzierlenga, Anika L; Oyala, Paul; Konkle, Mary E; Whitney, Emily M; David Britt, R; Hunsicker-Wang, Laura M

    2014-10-01

    Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe-2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV-Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe-2S] cluster in <90 min, whereas L135E requires >15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.

  15. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Gordon, Sarah; Dent, Paul

    2017-01-01

    Phosphodiesterase 5 (PDE5) inhibitors prevent the breakdown of cGMP that results in prolonged protein kinase G activation and the generation of nitric oxide. PDE5 inhibitors enhanced the anti-NSCLC cell effects of the NSCLC therapeutic pemetrexed. [Pemetrexed + sildenafil] activated an eIF2α – ATF4 – CHOP – Beclin1 pathway causing formation of toxic autophagosomes; activated a protective IRE1 – XBP-1 – chaperone induction pathway; and activated a toxic eIF2α – CHOP – DR4 / DR5 / CD95 induction pathway. [Pemetrexed + sildenafil] reduced the expression of c-FLIP-s, MCL-1 and BCL-XL that was blocked in a cell-type -dependent fashion by either over-expression of HSP90 / GRP78 / HSP70 / HSP27 or by blockade of eIF2α-CHOP signaling. Knock down of PKGI/II abolished the ability of sildenafil to enhance pemetrexed toxicity whereas pan-inhibition of NOS using L-NAME or knock down of [iNOS + eNOS] only partially reduced the lethal drug interaction. Pemetrexed reduced the ATPase activities of HSP90 and HSP70 in an ATM-AMPK-dependent fashion that was enhanced by sildenafil signaling via PKGI/II. The drug combination activated an ATM-AMPK-TSC2 pathway that was associated with reduced mTOR S2448 and ULK-1 S757 phosphorylation and increased ULK-1 S317 and ATG13 S318 phosphorylation. These effects were prevented by chaperone over-expression or by expression of an activated form of mTOR that prevented autophagosome formation and reduced cell killing. In two models of NSCLC, sildenafil enhanced the ability of pemetrexed to suppress tumor growth. Collectively we argue that the combination of [pemetrexed + PDE5 inhibitor] should be explored in a new NSCLC phase I trial. PMID:27903966

  16. Inflammation and B-cell Lymphoma-2 Associated X Protein Regulate Zinc-Induced Apoptotic Degeneration of Rat Nigrostriatal Dopaminergic Neurons.

    PubMed

    Chauhan, Amit Kumar; Mittra, Namrata; Kumar, Vinod; Patel, Devendra Kumar; Singh, Chetna

    2016-10-01

    Clinical evidences showing zinc (Zn) accumulation in the post-mortem brain of Parkinson's disease (PD) patients and experimental studies on rodents chronically exposed to Zn suggested its role in PD. While oxidative stress is implicated in Zn-induced neurodegeneration, roles of inflammation and apoptosis in degeneration of the nigrostriatal dopaminergic neurons have yet been elusive. The present study investigated the contribution of the nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and B-cell lymphoma 2 (Bcl-2) family proteins in Zn-induced Parkinsonism. Male Wistar rats were treated with/without zinc sulfate (Zn; 20 mg/kg, intraperitoneally), twice a week, for 2-12 weeks. In a few sets, animals were treated intraperitoneally with a NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC; 100 mg/kg), a TNF-α inhibitor, pentoxyfylline (PTX; 50 mg/kg), and an anti-inflammatory agent, dexamethasone (DEX; 5 mg/kg), prior to Zn exposure along with respective controls. Zn caused neurobehavioral impairments and reduction in dopamine and its metabolites, tyrosine hydroxylase (TH)-positive neurons, catalase activity, and expression of TH, Bcl-2, and NOXA. On the contrary, Zn augmented lipid peroxidation, activity of superoxide dismutase, expression of TNF-α, IL-1β, Bcl-xl, and p53-upregulated modulator of apoptosis (PUMA), and translocation of NF-κB and Bax from the cytosol to the nucleus and mitochondria, respectively, with concomitant increase in the mitochondrial cytochrome c release and activation of procaspase-3 and -9. Pre-treatment with PTX, DEX, or PDTC invariably ameliorated Zn-induced changes in behavioral and neurodegenerative indexes, inflammatory mediators, and apoptosis. Results demonstrate that inflammation regulates Bax expression that subsequently contributes to the nigrostriatal dopaminergic neurodegeneration.

  17. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  18. Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS.

    PubMed

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  19. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  20. An Integrated Molecular Analysis of Lung Adenocarcinomas Identifies Potential Therapeutic Targets among TTF1-Negative Tumors, Including DNA Repair Proteins and Nrf2.

    PubMed

    Cardnell, Robert J G; Behrens, Carmen; Diao, Lixia; Fan, YouHong; Tang, Ximing; Tong, Pan; Minna, John D; Mills, Gordon B; Heymach, John V; Wistuba, Ignacio I; Wang, Jing; Byers, Lauren A

    2015-08-01

    Thyroid transcription factor-1 (TTF1) immunohistochemistry (IHC) is used clinically to differentiate primary lung adenocarcinomas (LUAD) from squamous lung cancers and metastatic adenocarcinomas from other primary sites. However, a subset of LUAD (15%-20%) does not express TTF1, and TTF1-negative patients have worse clinical outcomes. As there are no established targeted agents with activity in TTF1-negative LUAD, we performed an integrated molecular analysis to identify potential therapeutic targets. Using two clinical LUAD cohorts (274 tumors), one from our institution (PROSPECT) and The Cancer Genome Atlas, we interrogated proteomic profiles (by reverse phase protein array, RPPA), gene expression, and mutational data. Drug response data from 74 cell lines were used to validate potential therapeutic agents. Strong correlations were observed between TTF1 IHC and TTF1 measurements by RPPA (Rho = 0.57, P < 0.001) and gene expression (NKX2-1, Rho = 0.61, P < 0.001). Established driver mutations (e.g., BRAF and EGFR) were associated with high TTF1 expression. In contrast, TTF1-negative LUAD had a higher frequency of inactivating KEAP1 mutations (P = 0.001). Proteomic profiling identified increased expression of DNA repair proteins (e.g., Chk1 and the DNA repair score) and suppressed PI3k/mTOR signaling among TTF1-negative tumors, with differences in total proteins confirmed at the mRNA level. Cell line analysis showed drugs targeting DNA repair to be more active in TTF1-low cell lines. Combined genomic and proteomic analyses demonstrated infrequent alteration of validated lung cancer targets (including the absence of BRAF mutations in TTF1-negative LUAD), but identified novel potential targets for TTF1-negative LUAD, including KEAP1/Nrf2 and DNA repair pathways. ©2015 American Association for Cancer Research.

  1. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Song, Junho; Ko, Hyun-suk; Sohn, Eun Jung; Kim, Bonglee; Kim, Jung Hyo; Kim, Hee Jeong; Kim, Chulwoo; Kim, Jai-eun; Kim, Sung-Hoon

    2014-02-15

    Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment.

  2. Hydrogen peroxide-and fetal bovine serum-induced DNA synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms.

    PubMed

    Fiorani, M; Cantoni, O; Tasinato, A; Boscoboinik, D; Azzi, A

    1995-10-19

    Hydrogen peroxide and fetal bovine serum stimulate DNA synthesis in growth-arrested smooth muscle cells with remarkably similar kinetics and cell density dependence. However, while stimulation with fetal bovine serum results in cell proliferation, that by H2O2 is followed by cell death. Depletion of conventional and novel protein kinase C isoforms, resulting from a long treatment with phorbol-12-myristate-13-acetate, further increases H2O2-induced DNA synthesis. On the other hand, the specific protein kinase C inhibitor calphostin C abolished the increased DNA synthesis promoted by fetal bovine serum or H2O2. H2O2 increases protein kinase C activity in smooth muscle cells. This effect is markedly reduced, but not abolished, by down-regulation of the alpha, delta and epsilon protein kinase C isoforms. Thus, the zeta isoform of protein kinase C, which is not down-regulated, may be responsible for the residual H2O2 stimulation of protein kinase C. In conclusion, the results obtained show that H2O2 stimulates protein kinase C activity and DNA synthesis in growth-arrested smooth muscle cells: these events are not followed by cell proliferation but rather by cell death. This H2O2 stimulated DNA synthesis appears to be negatively controlled by alpha, delta and epsilon isoforms and positively controlled by the zeta isoform of protein kinase C.

  3. Positive and negative design for nonconsensus protein-DNA binding affinity in the vicinity of functional binding sites.

    PubMed

    Afek, Ariel; Lukatsky, David B

    2013-10-01

    Recent experiments provide an unprecedented view of protein-DNA binding in yeast and human genomes at single-nucleotide resolution. These measurements, performed over large cell populations, show quite generally that sequence-specific transcription regulators with well-defined protein-DNA consensus motifs bind only a fraction among all consensus motifs present in the genome. Alternatively, proteins in vivo often bind DNA regions lacking known consensus sequences. The rules determining whether a consensus motif is functional remain incompletely understood. Here we predict that genomic background surrounding specific protein-DNA binding motifs statistically modulates the binding of sequence-specific transcription regulators to these motifs. In particular, we show that nonconsensus protein-DNA binding in yeast is statistically enhanced, on average, around functional Reb1 motifs that are bound as compared to nonfunctional Reb1 motifs that are unbound. The landscape of nonconsensus protein-DNA binding around functional CTCF motifs in human demonstrates a more complex behavior. In particular, human genomic regions characterized by the highest CTCF occupancy, show statistically reduced level of nonconsensus protein-DNA binding. Our findings suggest that nonconsensus protein-DNA binding is fine-tuned around functional binding sites using a variety of design strategies. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. CRYPTOCHROME 2 and PHOTOTROPIN 2 regulate resistance protein mediated viral 2 defense by negatively regulating a E3 ubiquitin ligase

    USDA-ARS?s Scientific Manuscript database

    Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, crypt...

  5. Lactosylated PLGA nanoparticles containing ϵ-polylysine for the sustained release and liver-targeted delivery of the negatively charged proteins.

    PubMed

    Zhou, Ping; An, Tong; Zhao, Chuan; Li, Yuan; Li, Rongshan; Yang, Rui; Wang, Yinsong; Gao, Xiujun

    2015-01-30

    The acidic internal pH environment, initial burst release and lack of targeting property are main limitations of poly(lactide-co-glycolide) (PLGA) nanoparticles for carrying proteins. In this study, ϵ-polylysine (ϵ-PL) was used as an anti-acidic agent and a protein protectant to prepare PLGA nanoparticles for the protein delivery. To obtain the liver-targeting capability, lactosylated PLGA (Lac-PLGA) was synthesized by conjugation of lactose acid to PLGA at both ends, and then used to prepare nanoparticles containing ϵ-PL by the nanoprecipitation method. Bovine serumal bumin (BSA), a negatively charged protein, was efficiently loaded into Lac-PLGA/ϵ-PL nanoparticles and exhibited significant decreased burst release in vitro, sustained release in the blood and increased liver distribution in mice after intravenous injections. The enhanced stability of BSA was due to its electrical interaction with ϵ-PL and the neutralized internal environment of nanoparticles. In conclusion, Lac-PLGA/ϵ-PL nanoparticle system can be used as a promising carrier for the negatively charged proteins.

  6. Plasma membrane localization is essential for Oryza sativa Pto-interacting protein 1a-mediated negative regulation of immune signaling in rice.

    PubMed

    Matsui, Hidenori; Fujiwara, Masayuki; Hamada, Satoshi; Shimamoto, Ko; Nomura, Yuko; Nakagami, Hirofumi; Takahashi, Akira; Hirochika, Hirohiko

    2014-09-01

    Oryza sativa Pto-interacting protein 1a (OsPti1a), an ortholog of tomato (Solanum lycopersicum) SlPti1, functions as a negative regulator of innate immunity in rice (Oryza sativa). In ospti1a mutants, the activation of immune responses, including hypersensitive response-like cell death, is caused by loss of the OsPti1a protein; however, it is as yet unclear how OsPti1a suppresses immune responses. Here, we report that OsPti1a localizes to detergent-resistant membrane fractions of the plasma membrane through lipid modification of the protein's amino terminus, which is highly conserved among Pti1 orthologs in several plant species. Importantly, mislocalization of OsPti1a after deletion of its amino terminus reduced its ability to complement the mutant phenotypes, including hypersensitive response-like cell death. Furthermore, complex formation of OsPti1a depends on its amino terminus-mediated membrane localization. Liquid chromatography-tandem mass spectrometry analysis of OsPti1a complex-interacting proteins identified several defense-related proteins. Collectively, these findings indicate that appropriate complex formation by OsPti1a at the plasma membrane is required for the negative regulation of plant immune responses in rice.

  7. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes

    PubMed Central

    Mercante, Virginia; Duarte, Cecilia M.; Sánchez, Cintia M.; Zalguizuri, Andrés; Caetano-Anollés, Gustavo; Lepek, Viviana C.

    2015-01-01

    Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane. PMID:25688250

  8. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes.

    PubMed

    Mercante, Virginia; Duarte, Cecilia M; Sánchez, Cintia M; Zalguizuri, Andrés; Caetano-Anollés, Gustavo; Lepek, Viviana C

    2015-01-01

    Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.

  9. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna

    2006-07-21

    Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.

  10. Screening differential expression of serum proteins in AFP-negative HBV-related hepatocellular carcinoma using iTRAQ -MALDI-MS/MS.

    PubMed

    He, X; Wang, Y; Zhang, W; Li, H; Luo, R; Zhou, Y; Liao, C Li M; Huang, H; Lv, X; Xie, Z; He, M

    2014-01-01

    Hepatocellular carcinoma(HCC) is serious condition associated with a high morbidity and mortality. Therefore is an urgent need to develop novel noninvasive techniques for early diagnosis, particularly for patients with AFP-negative [AFP(-)] HCC. In this study, iTRAQ-MALDI-MS/MS was used to identify differentially expressed proteins in AFP(-) HBV-related HCC compared with non-cancerous hepatitis B virus (HBV) and healthy controls subjects.Serum was obtained from 18 patients with AFP(-) HBV-related HCC, 18 matched patients with HBV without HCC and 18 healthy control subjects. High abundance proteins were removed from serum and the differentially expressed proteins from the three groups were screened out using iTRAQ-MALDI-MS/MS. The Gene Ontology (GO) function and the interaction networks of differentially expressed proteins were then analyzed. A total of 24 expressed differential proteins associated with AFP(-) HBV-related HCC were screened out, 15 proteins were up-regulated and 9 down-regulated. The most common molecular function of the 24 differentially expressed proteins was enzyme inhibition. Interaction network of the 24 differentially expressed proteins showed that 14 proteins (C5, KNG1, FN1, LRG1, HRG, SERPINC1, CRP, APOB, SAA1, APCS, C4BPA, CFI, CFB and GSN) were central to the functional network. The expression levels of the GSN protein were down-regulated in AFP(-) HBV-related HCC subjects compared with healthy controls and the HBV group (p<0.01), consistent with the iTRAQ results.The 14 proteins from the serum of AFP(-) HBV-related HCC appeared at the fulcrum of the functional network and were differentially expressed compare to HBV and healthy controls suggesting a possible association with HCC progression.

  11. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families

    SciTech Connect

    Pinto, Amelia K.; Williams, Graham D.; Szretter, Kristy J.; White, James P.; Proença-Módena, José Luiz; Liu, Gai; Olejnik, Judith; Brien, James D.; Ebihara, Hideki; Mühlberger, Elke; Amarasinghe, Gaya; Diamond, Michael S.; Boon, Adrianus C. M.; Doms, R. W.

    2015-07-08

    Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed 5'-triphosphates (5'-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1 for 5'-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infectedIfit1-/-and wild-type control mice and primary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV], and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack ofIfit1gene expression did not result in increased infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical betweenIfit1-/-and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not inhibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oligonucleotides resembling the 5' ends of IAV gene segments. The affinity for 5'-ppp RNA was approximately 10-fold lower than that for non-2'-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant restriction factor against negative-sense RNA viruses.

    IMPORTANCENegative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly outbreaks in recent history. The host interferon

  12. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families

    PubMed Central

    Pinto, Amelia K.; Williams, Graham D.; Szretter, Kristy J.; White, James P.; Proença-Módena, José Luiz; Liu, Gai; Olejnik, Judith; Brien, James D.; Ebihara, Hideki; Mühlberger, Elke; Amarasinghe, Gaya; Diamond, Michael S.

    2015-01-01

    ABSTRACT Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed 5′-triphosphates (5′-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1 for 5′-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infected Ifit1−/− and wild-type control mice and primary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV], and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack of Ifit1 gene expression did not result in increased infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical between Ifit1−/− and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not inhibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oligonucleotides resembling the 5′ ends of IAV gene segments. The affinity for 5′-ppp RNA was approximately 10-fold lower than that for non-2′-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant restriction factor against negative-sense RNA viruses. IMPORTANCE Negative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly outbreaks in recent history. The host interferon response and induction of antiviral genes contribute to the control of

  13. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families.

    PubMed

    Pinto, Amelia K; Williams, Graham D; Szretter, Kristy J; White, James P; Proença-Módena, José Luiz; Liu, Gai; Olejnik, Judith; Brien, James D; Ebihara, Hideki; Mühlberger, Elke; Amarasinghe, Gaya; Diamond, Michael S; Boon, Adrianus C M

    2015-09-01

    Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed 5'-triphosphates (5'-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1 for 5'-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infected Ifit1(-/-) and wild-type control mice and primary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV], and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack of Ifit1 gene expression did not result in increased infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical between Ifit1(-/-) and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not inhibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oligonucleotides resembling the 5' ends of IAV gene segments. The affinity for 5'-ppp RNA was approximately 10-fold lower than that for non-2'-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant restriction factor against negative-sense RNA viruses. Negative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly outbreaks in recent history. The host interferon response and induction of antiviral genes contribute to the control of infections by these viruses. IFIT1 is

  14. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins.

    PubMed

    Sand, Sverre L; Nissen-Meyer, Jon; Sand, Olav; Haug, Trude M

    2013-02-01

    Lactobacillus plantarum C11 releases plantaricin A (PlnA), a cationic peptide pheromone that has a membrane-permeabilizing, antimicrobial effect. We have previously shown that PlnA may also permeabilize eukaryotic cells, with a potency that differs between cell types. It is generally assumed that cationic antimicrobial peptides exert their effects through electrostatic attraction to negatively charged phospholipids in the membrane. The aim of the present study was to investigate if removal of the negative charge linked to glycosylated proteins at the cell surface reduces the permeabilizing potency of PlnA. The effects of PlnA were tested on clonal rat anterior pituitary cells (GH(4) cells) using patch clamp and microfluorometric techniques. In physiological extracellular solution, GH(4) cells are highly sensitive to PlnA, but the sensitivity was dramatically reduced in solutions that partly neutralize the negative surface charge of the cells, in agreement with the notion that electrostatic interactions are probably important for the PlnA effects. Trypsination of cells prior to PlnA exposure also rendered the cells less sensitive to the peptide, suggesting that negative charges linked to membrane proteins are involved in the permeabilizing action. Finally, pre-exposure of cells to a mixture of enzymes that split carbohydrate residues from the backbone of glycosylated proteins also impeded the PlnA-induced membrane permeabilization. We conclude that electrostatic attraction between PlnA and glycosylated membrane proteins is probably an essential first step before PlnA can interact with membrane phospholipids. Deviating glycosylation patterns may contribute to the variation in PlnA sensitivity of different cell types, including cancerous cells and their normal counterparts.

  15. Regulator of G Protein Signaling 17 as a Negative Modulator of GPCR Signaling in Multiple Human Cancers.

    PubMed

    Hayes, Michael P; Roman, David L

    2016-05-01

    Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling networks by terminating signals produced by active Gα subunits. RGS17, a member of the RZ subfamily of RGS proteins, is typically only expressed in appreciable amounts in the human central nervous system, but previous works have shown that RGS17 expression is selectively upregulated in a number of malignancies, including lung, breast, prostate, and hepatocellular carcinoma. In addition, this upregulation of RGS17 is associated with a more aggressive cancer phenotype, as increased proliferation, migration, and invasion are observed. Conversely, decreased RGS17 expression diminishes the response of ovarian cancer cells to agents commonly used during chemotherapy. These somewhat contradictory roles of RGS17 in cancer highlight the need for selective, high-affinity inhibitors of RGS17 to use as chemical probes to further the understanding of RGS17 biology. Based on current evidence, these compounds could potentially have clinical utility as novel chemotherapeutics in the treatment of lung, prostate, breast, and liver cancers. Recent advances in screening technologies to identify potential inhibitors coupled with increasing knowledge of the structural requirements of RGS-Gα protein-protein interaction inhibitors make the future of drug discovery efforts targeting RGS17 promising. This review highlights recent findings related to RGS17 as both a canonical and atypical RGS protein, its role in various human disease states, and offers insights on small molecule inhibition of RGS17.

  16. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-01-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction. PMID:26304848

  17. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells

    PubMed Central

    Moss Bendtsen, Kristian; Jensen, Mogens H.; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes. PMID:26365394

  18. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells.

    PubMed

    Moss Bendtsen, Kristian; Jensen, Mogens H; Krishna, Sandeep; Semsey, Szabolcs

    2015-09-14

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes.

  19. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways.

    PubMed

    Sacristán-Reviriego, Almudena; Martín, Humberto; Molina, María

    2015-04-01

    The lack of signaling through MAPK pathways leads to a defective cellular response to the corresponding stimulus, but an improper hyperactivation of these routes results in deleterious effects as well. Protein phosphorylation is an activating modification for signal transmission through components of MAPK pathways and thus, protein phosphatases are key negative regulators of these cellular routes by limiting excessive signaling activity. However, in contrast to most of the protein kinases operating in MAPK pathways, protein phosphatases usually exhibit redundancy and promiscuity, which has limited the identification of their function. In order to identify new putative phosphatases operating in Saccharomyces cerevisiae MAPK signaling, we have taken advantage of growth inhibition promoted by overproduction of constitutively active components of the mating and cell wall integrity (CWI) pathways to perform a screen with a collection of 43 protein phosphatases or phosphatase-regulatory proteins. The phosphatases able to alleviate the induced growth inhibition when overproduced were further studied by testing their capacity to downregulate expression of mating and CWI responsive promoters and the consequences of their removal on MAPK signaling. Epistasis analysis placed the Ser/Thr protein phosphatase Ppq1 as a regulator of the mating MAPK module downstream the MAPKKK Ste11. The dual specificity phosphatase Yvh1 was found to be important for the maintenance of cell wall integrity and appropriate signaling through the CWI pathway. Moreover, we have found that Ptc2 and Ptc4 bind to the CWI MAPK Slt2. Together with known phosphatases of the mating and CWI pathway, as Msg5 or Ptp2, other putative negative regulators of both pathways that came up in the screening were Ptc2, Oca2 and Ptp1. We show that Ptp1 physically interacts with Slt2 and the mating MAPK Fus3. Elimination of Ptp1 results in increased signaling through these pathways, suggesting that this tyrosine

  20. Rice RING E3 ligase may negatively regulate gamma-ray response to mediate the degradation of photosynthesis-related proteins.

    PubMed

    Park, Yong Chan; Kim, Jung Ju; Kim, Dong Sub; Jang, Cheol Seong

    2015-05-01

    In this study, our findings regarding the regulation of GA irradiation-induced OsGIRP1 in relation to the levels of photosynthesis-related proteins such as OsrbcL1 and OsrbcS1 and hypersensitive responses of overexpressing plants to GR irradiation provide insight into the molecular functions of OsGIRP1 as a negative regulator in response to the stress of radiation. The RING (Really Interesting New Gene) finger proteins are known to play crucial roles in various abiotic stresses in plants. Here, we report on RING finger E3 ligase, Oryza sativa gamma rays-induced RING finger protein1 gene (OsGIRP1), which is highly induced by gamma rays (GR) irradiation. In vitro ubiquitination assay demonstrated that a single amino acid substitution (OsGIRP1(C196A)) of the RING domain showed no E3 ligase activity, supporting the notion that the activity of most E3s is specified by a RING domain. We isolated at least 6 substrate proteins of OsGIRP1, including 2 Rubisco subunits, OsrbcL1 and OsrbcSl, via yeast two-hybridization and bimolecular fluorescence complementation assays. OsGIRP1 and its partner proteins were targeted to the cytosol and the cytosol or chloroplasts, respectively; however, florescence signals of the complexes with OsGIPR1 were observed in the cytosol. Protein degradation in cell extracts showed that OsGIRP1 mediates proteolysis of 2 substrates, OsrbcS1 and OsrbcL1, via the 26S proteasome degradation pathway. The Arabidopsis plants overexpressing OsGIRP1 clearly exhibited increased sensitivity to GR irradiation. These results might suggest that OsGIRP1 acts as a negative regulator of GR response to mediate the degradation of photosynthesis-related proteins.

  1. Plasma Membrane Localization Is Essential for Oryza sativa Pto-Interacting Protein 1a-Mediated Negative Regulation of Immune Signaling in Rice1[W][OPEN

    PubMed Central

    Matsui, Hidenori; Fujiwara, Masayuki; Hamada, Satoshi; Shimamoto, Ko; Nomura, Yuko; Nakagami, Hirofumi; Takahashi, Akira; Hirochika, Hirohiko

    2014-01-01

    Oryza sativa Pto-interacting protein 1a (OsPti1a), an ortholog of tomato (Solanum lycopersicum) SlPti1, functions as a negative regulator of innate immunity in rice (Oryza sativa). In ospti1a mutants, the activation of immune responses, including hypersensitive response-like cell death, is caused by loss of the OsPti1a protein; however, it is as yet unclear how OsPti1a suppresses immune responses. Here, we report that OsPti1a localizes to detergent-resistant membrane fractions of the plasma membrane through lipid modification of the protein’s amino terminus, which is highly conserved among Pti1 orthologs in several plant species. Importantly, mislocalization of OsPti1a after deletion of its amino terminus reduced its ability to complement the mutant phenotypes, including hypersensitive response-like cell death. Furthermore, complex formation of OsPti1a depends on its amino terminus-mediated membrane localization. Liquid chromatography-tandem mass spectrometry analysis of OsPti1a complex-interacting proteins identified several defense-related proteins. Collectively, these findings indicate that appropriate complex formation by OsPti1a at the plasma membrane is required for the negative regulation of plant immune responses in rice. PMID:24958714

  2. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling.

    PubMed

    Borgal, Lori; Habbig, Sandra; Hatzold, Julia; Liebau, Max C; Dafinger, Claudia; Sacarea, Ilinca; Hammerschmidt, Matthias; Benzing, Thomas; Schermer, Bernhard

    2012-07-20

    Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.

  3. The Ciliary Protein Nephrocystin-4 Translocates the Canonical Wnt Regulator Jade-1 to the Nucleus to Negatively Regulate β-Catenin Signaling*

    PubMed Central

    Borgal, Lori; Habbig, Sandra; Hatzold, Julia; Liebau, Max C.; Dafinger, Claudia; Sacarea, Ilinca; Hammerschmidt, Matthias; Benzing, Thomas; Schermer, Bernhard

    2012-01-01

    Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a “ciliopathy.” The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation. PMID:22654112

  4. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    PubMed

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.

  5. Zea mays Taxilin Protein Negatively Regulates Opaque-2 Transcriptional Activity by Causing a Change in Its Sub-Cellular Distribution

    PubMed Central

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity. PMID:22937104

  6. Ectopic expression of AP-2α transcription factor suppresses glioma progression.

    PubMed

    Su, Wenjing; Xia, Juan; Chen, Xueqin; Xu, Miao; Nie, Ling; Chen, Ni; Gong, Jing; Li, Xinglan; Zhou, Qiao

    2014-01-01

    The transcriptional factor AP-2α is a tumor suppressor gene and is downregulated in various neoplasms including glioma. Although the level of AP-2α is negatively associated with the grade of human glioma, the specific functions of AP-2α in glioma are still unknown. In this study, we experimentally showed that artificial overexpression of AP-2α in glioma T98G and U251 cells significantly downregulated the mRNA levels of Bcl-xl, Bcl-2, c-IAP2 and survivin, together with upregulation of the Hrk mRNA levels. Reintroduction of AP-2α also induced downregulation of the protein levels of survivin and VEGF in glioma cells. In biological assays with T98G and U251 cells, AP-2α reduced tumor cell growth, increased cell death, attenuated cell migration and endothelial tube formation. The AP-2α transcription factor may play an important role in suppressing glioma progression.

  7. The Herpesvirus Associated Ubiquitin Specific Protease, USP7, Is a Negative Regulator of PML Proteins and PML Nuclear Bodies

    PubMed Central

    Sarkari, Feroz; Wang, Xueqi; Nguyen, Tin; Frappier, Lori

    2011-01-01

    The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity. PMID:21305000

  8. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies.