Detecting cis-regulatory binding sites for cooperatively binding proteins
van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves
2008-01-01
Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778
Middendorf, Thomas R.
2017-01-01
A critical but often overlooked question in the study of ligands binding to proteins is whether the parameters obtained from analyzing binding data are practically identifiable (PI), i.e., whether the estimates obtained from fitting models to noisy data are accurate and unique. Here we report a general approach to assess and understand binding parameter identifiability, which provides a toolkit to assist experimentalists in the design of binding studies and in the analysis of binding data. The partial fraction (PF) expansion technique is used to decompose binding curves for proteins with n ligand-binding sites exactly and uniquely into n components, each of which has the form of a one-site binding curve. The association constants of the PF component curves, being the roots of an n-th order polynomial, may be real or complex. We demonstrate a fundamental connection between binding parameter identifiability and the nature of these one-site association constants: all binding parameters are identifiable if the constants are all real and distinct; otherwise, at least some of the parameters are not identifiable. The theory is used to construct identifiability maps from which the practical identifiability of binding parameters for any two-, three-, or four-site binding curve can be assessed. Instructions for extending the method to generate identifiability maps for proteins with more than four binding sites are also given. Further analysis of the identifiability maps leads to the simple rule that the maximum number of structurally identifiable binding parameters (shown in the previous paper to be equal to n) will also be PI only if the binding curve line shape contains n resolved components. PMID:27993951
Suppavorasatit, Inthawoot; Cadwallader, Keith R
2012-08-15
The effect of the enzymatic deamidation by protein-glutaminase (PG) on flavor-binding properties of soy protein isolate (SPI) under aqueous conditions was evaluated by a modified equilibrium dialysis (ultrafiltration) technique. Binding parameters, such as number of binding sites (n) and binding constants (K), were derived from Klotz plots. The partial deamidation of SPI by PG (43.7% degree of deamidation) decreased overall flavor-binding affinity (nK) at 25 °C for both vanillin and maltol by approximately 9- and 4-fold, respectively. The thermodynamic parameters of binding indicated that the flavor-protein interactions were spontaneous (negative ΔG°) and that the driving force of the interactions shifted from entropy to enthalpy driven as a result of deamidation. Deamidation of soy protein caused a change in the mechanism of binding from hydrophobic interactions or covalent bonding (Schiff base formation) to weaker van der Waals forces or hydrogen bonding.
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.
2013-01-01
Binding free energy calculations offer a thermodynamically rigorous method to compute protein-ligand binding, and they depend on empirical force fields with hundreds of parameters. We examined the sensitivity of computed binding free energies to the ligand’s electrostatic and van der Waals parameters. Dielectric screening and cancellation of effects between ligand-protein and ligand-solvent interactions reduce the parameter sensitivity of binding affinity by 65%, compared with interaction strengths computed in the gas-phase. However, multiple changes to parameters combine additively on average, which can lead to large changes in overall affinity from many small changes to parameters. Using these results, we estimate that random, uncorrelated errors in force field nonbonded parameters must be smaller than 0.02 e per charge, 0.06 Å per radius, and 0.01 kcal/mol per well depth in order to obtain 68% (one standard deviation) confidence that a computed affinity for a moderately-sized lead compound will fall within 1 kcal/mol of the true affinity, if these are the only sources of error considered. PMID:24015114
Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.
2015-01-01
Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208
Analyzing Thioflavin T Binding to Amyloid Fibrils by an Equilibrium Microdialysis-Based Technique
Kuznetsova, Irina M.; Sulatskaya, Anna I.; Uversky, Vladimir N.; Turoverov, Konstantin K.
2012-01-01
A new approach for the determination of the amyloid fibril – thioflavin T (ThT) binding parameters (the number of binding modes, stoichiometry, and binding constants of each mode) is proposed. This approach is based on the absorption spectroscopy determination of the concentration of free and bound to fibril dye in solutions, which are prepared by equilibrium microdialysis. Furthermore, the proposed approach allowed us, for the first time, to determine the absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to fibril by each binding modes. This approach is universal and can be used for determining the binding parameters of any dye interaction with a receptor, such as ANS binding to proteins in the molten globule state or to protein amorphous aggregates. PMID:22383971
Analyzing thioflavin T binding to amyloid fibrils by an equilibrium microdialysis-based technique.
Kuznetsova, Irina M; Sulatskaya, Anna I; Uversky, Vladimir N; Turoverov, Konstantin K
2012-01-01
A new approach for the determination of the amyloid fibril - thioflavin T (ThT) binding parameters (the number of binding modes, stoichiometry, and binding constants of each mode) is proposed. This approach is based on the absorption spectroscopy determination of the concentration of free and bound to fibril dye in solutions, which are prepared by equilibrium microdialysis. Furthermore, the proposed approach allowed us, for the first time, to determine the absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to fibril by each binding modes. This approach is universal and can be used for determining the binding parameters of any dye interaction with a receptor, such as ANS binding to proteins in the molten globule state or to protein amorphous aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun
2008-08-01
Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c =more » 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.« less
González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro
2012-03-01
Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.
Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.
Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur
2016-04-06
Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.
Solomentsev, Gleb; Diehl, Carl; Akke, Mikael
2018-03-06
FKBP12 (FK506 binding protein 12 kDa) is an important drug target. Nuclear magnetic resonance (NMR) order parameters, describing amplitudes of motion on the pico- to nanosecond time scale, can provide estimates of changes in conformational entropy upon ligand binding. Here we report backbone and methyl-axis order parameters of the apo and FK506-bound forms of FKBP12, based on 15 N and 2 H NMR relaxation. Binding of FK506 to FKBP12 results in localized changes in order parameters, notably for the backbone of residues E54 and I56 and the side chains of I56, I90, and I91, all positioned in the binding site. The order parameters increase slightly upon FK506 binding, indicating an unfavorable entropic contribution to binding of TΔ S = -18 ± 2 kJ/mol at 293 K. Molecular dynamics simulations indicate a change in conformational entropy, associated with all dihedral angles, of TΔ S = -26 ± 9 kJ/mol. Both these values are significant compared to the total entropy of binding determined by isothermal titration calorimetry and referenced to a reactant concentration of 1 mM ( TΔ S = -29 ± 1 kJ/mol). Our results reveal subtle differences in the response to ligand binding compared to that of the previously studied rapamycin-FKBP12 complex, despite the high degree of structural homology between the two complexes and their nearly identical ligand-FKBP12 interactions. These results highlight the delicate dependence of protein dynamics on drug interactions, which goes beyond the view provided by static structures, and reinforce the notion that protein conformational entropy can make important contributions to the free energy of ligand binding.
Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study
NASA Astrophysics Data System (ADS)
Singh, T. Sanjoy; Mitra, Sivaprasad
2011-03-01
Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.
NASA Astrophysics Data System (ADS)
Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.
2001-03-01
Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.
Spectral Changes of Erythrosin B Luminescence Upon Binding to Bovine Serum Albumin
NASA Astrophysics Data System (ADS)
Sablin, N. V.; Gerasimova, M. A.; Nemtseva, E. V.
2016-04-01
Changes in absorption, fluorescence, phosphorescence, and delayed fluorescence spectra of erythrosin B are studied in the presence of bovine serum albumin at room temperature. Spectral and chronoscopic characteristics of the observed photophysical processes are defined. The binding of erythrosin B with the protein followed by spectral changes is demonstrated. Absorption and fluorescence spectra of the dye in the bound state are described, the binding mechanism is analyzed. The binding parameters of the dye-protein complex are estimated.
NASA Astrophysics Data System (ADS)
Böhm, Hans-Joachim
1998-07-01
A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.
Influence of the physical state of phospholipid monolayers on protein binding.
Boisselier, Élodie; Calvez, Philippe; Demers, Éric; Cantin, Line; Salesse, Christian
2012-06-26
Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state.
NASA Astrophysics Data System (ADS)
Yang, Sun; Shi-Sheng, Sun; Ying-Yong, Zhao; Jun, Fan
2012-07-01
In this study, we compared different binding interactions of TBMS2 with proteins both in hepatocarcinoma HepG2 cells and in normal embryo hepatic L02 cells by using fluorescence, absorption, and CD spectroscopy. The fluorescence data revealed that the fluorescence intensity of proteins in the HepG2 and L02 cells decreased in the presence of TBMS2 by 30.79% and 12.01%, respectively. Binding constants and thermodynamic parameters were obtained for systems of TBMS2 with the two kinds of cell proteins. The results indicated that HepG2 cell proteins had a higher TBMS2 binding activity than those in the L02 cells. Analysis of the TBMS2 cytotoxic activities showed that TBMS2 could selectively induce apoptosis of HepG2 cells by binding to them, while its apoptotic effect on L02 cells was relatively weaker.
Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi
2010-05-01
The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq-RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq-RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 A, while the type 2 Hfq-RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 A. Diffraction data were collected to a resolution of 2.20 A from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis.
Ali, Neserin; Mattsson, Karin; Rissler, Jenny; Karlsson, Helen Marg; Svensson, Christian R.; Gudmundsson, Anders; Lindh, Christian H.; Jönsson, Bo A. G.; Cedervall, Tommy; Kåredal, Monica
2016-01-01
Abstract Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona. PMID:26186033
On the interaction of luminol with human serum albumin: Nature and thermodynamics of ligand binding
NASA Astrophysics Data System (ADS)
Moyon, N. Shaemningwar; Mitra, Sivaprasad
2010-09-01
The mechanism and thermodynamic parameters for the binding of luminol (LH 2) with human serum albumin was explored by steady state and picosecond time-resolved fluorescence spectroscopy. It was shown that out of two possible LH 2 conformers present is solution, only one is accessible for binding with HSA. The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated by performing the experiment at different temperatures. The ligand replacement experiment with bilirubin confirms that LH 2 binds into the sub-domain IIA of the protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gourinath, S., E-mail: sgourinath@mail.jnu.ac.in; Padhan, Narendra; Alam, Neelima
2005-04-01
Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca{sup 2+}-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown usingmore » MPD as a precipitant. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 Å, β = 116.7°. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 Å, β = 92.8°. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 Å, β = 97.9°.« less
Optically degradable dendrons for temporary adhesion of proteins to DNA.
Kostiainen, Mauri A; Kotimaa, Juha; Laukkanen, Marja-Leena; Pavan, Giovanni M
2010-06-18
Experimental studies and molecular dynamics modeling demonstrate that multivalent dendrons can be used to temporarily glue proteins and DNA together with high affinity. We describe N-maleimide-cored polyamine dendrons that can be conjugated with free cysteine residues on protein surfaces through 1,4-conjugate addition to give one-to-one protein-polymer conjugates. We used a genetically engineered cysteine mutant of class II hydrophobin (HFBI) and a single-chain Fragment variable (scFv) antibody as model proteins for the conjugation reactions. The binding affinity of the protein-dendron conjugates towards DNA was experimentally assessed by using the ethidium bromide displacement assay. The binding was found to depend on the generation of the dendron, with the second generation having a stronger affinity than the first generation. Thermodynamic parameters of the binding were obtained from molecular dynamics modeling, which showed that the high binding affinity for each system is almost completely driven by a strong favorable binding enthalpy that is opposed by unfavorable binding entropy. A short exposure to UV (lambda approximately 350 nm) can cleave the photolabile o-nitrobenzyl-linked binding ligands from the surface of the dendron, which results in loss of the multivalent binding interactions and triggers the release of the DNA and protein. The timescale of the release is very rapid and the binding partners can be efficiently released after 3 min of UV exposure.
Expression, purification and crystallization of a human protein SH3BGRL at atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Lei; Zhu, De-Yu; Yang, Na
2005-04-01
The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The crystals diffract to 0.88 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 28.8886, b = 34.9676, c = 98.0016 Å. Preliminary analysis indicates that the asymmetric unit contains one molecule and has a solvent content of about 34%.
Prediction of kinase-inhibitor binding affinity using energetic parameters
Usha, Singaravelu; Selvaraj, Samuel
2016-01-01
The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052
Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi
2010-01-01
The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq–RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq–RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 Å, while the type 2 Hfq–RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 Å. Diffraction data were collected to a resolution of 2.20 Å from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis. PMID:20445260
Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.
Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard
2014-09-01
The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.
Sulatskaya, Anna I; Kuznetsova, Irina M; Turoverov, Konstantin K
2011-10-06
The fluorescence of the benzothiazole dye thioflavin T (ThT) is a well-known test for amyloid fibril formation. It has now become evident that ThT can also be used for structural investigations of amyloid fibrils and even for the treatment of amyloid diseases. In this case, one of the most urgent problems is an accurate determination of ThT-amyloid fibril binding parameters: the number of binding modes, stoichiometry, and binding constant for each mode. To obtain information concerning the ThT-amyloid fibril binding parameters, we propose to use absorption spectrophotometry of solutions prepared by equilibrium microdialysis. This approach is inherently designed for the determination of dye-receptor binding parameters. However, it has been very rarely used in the study of dye-protein interactions and has never been used to study the binding parameters of ThT or its analogues to amyloid fibrils. We showed that, when done in corpore, this approach enables the determination of not only binding parameters but also the absorption spectrum and molar extinction coefficient of ThT bound to sites of different binding modes. The proposed approach was used for the examination of lysozyme amyloid fibrils. Two binding modes were found for the ThT-lysozyme amyloid fibril interaction. These binding modes have significantly different binding constants (K(b1) = 7.5 × 10(6) M(-1), K(b2) = 5.6 × 10(4) M(-1)) and a different number of dye binding sites on the amyloid fibrils per protein molecule (n(1) = 0.11, n(2) = 0.24). The absorption spectra of ThT bound to sites of different modes differ from each other (ε(b1,max) = 5.1 × 10(4) M(-1) cm(-1), ε(b2,max) = 6.7 × 10(4) M(-1)cm(-1), λ(max) = 449 nm) and significantly differ from that of free ThT in aqueous solution (ε(max) = 3.2 × 10(4) M(-1)cm(-1), λ(max) = 412 nm). © 2011 American Chemical Society
Ligand Residence Time at G-protein-Coupled Receptors-Why We Should Take Our Time To Study It.
Hoffmann, C; Castro, M; Rinken, A; Leurs, R; Hill, S J; Vischer, H F
2015-09-01
Over the past decade the kinetics of ligand binding to a receptor have received increasing interest. The concept of drug-target residence time is becoming an invaluable parameter for drug optimization. It holds great promise for drug development, and its optimization is thought to reduce off-target effects. The success of long-acting drugs like tiotropium support this hypothesis. Nonetheless, we know surprisingly little about the dynamics and the molecular detail of the drug binding process. Because protein dynamics and adaptation during the binding event will change the conformation of the protein, ligand binding will not be the static process that is often described. This can cause problems because simple mathematical models often fail to adequately describe the dynamics of the binding process. In this minireview we will discuss the current situation with an emphasis on G-protein-coupled receptors. These are important membrane protein drug targets that undergo conformational changes upon agonist binding to communicate signaling information across the plasma membrane of cells. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Solubilization of phencyclidine receptors from rat cerebral cortex in an active ligand binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVittie, L.D.; Sibley, D.R.
1989-01-01
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either (/sup 3/H)-N-(1-(2-thienyl)cyclohexyl)piperidine ((/sup 3/H)TCP) or (/sup 3/H)MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4/degrees/C. In the presence of detergent, (/sup 3/H)TCP binding exhibitsmore » a K/sub d/ of 250 nM, a B/sub max/ of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor (/sup 3/H)TCP binding: K/sub d/ = 48 nM, M/sub max/ = 1.13 pmol/mg protein.« less
Zubrienė, Asta; Matulienė, Jurgita; Baranauskienė, Lina; Jachno, Jelena; Torresan, Jolanta; Michailovienė, Vilma; Cimmperman, Piotras; Matulis, Daumantas
2009-01-01
The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC) and thermal shift assay (TSA) is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90αN) and the binding of ethoxzolamide to human carbonic anhydrase (hCAII) were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90αN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding. PMID:19582223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villarreal, Oscar D.; Yu, Lili; Department of Laboratory Medicine, Yancheng Vocational Institute of Health Sciences, Yancheng, Jiangsu 224006
Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions. These errors propagate to the final results of the computed binding affinities even if we were able to perfectly implement the statistical mechanicsmore » of all the processes relevant to a given problem. And they are actually amplified to various degrees even in the mature, sophisticated computational approaches. In particular, the free energy perturbation (alchemical) approaches amplify the errors in the force field parameters because they rely on extracting the small differences between similarly large numbers. In this paper, we develop a hybrid steered molecular dynamics (hSMD) approach to the difficult binding problems of a ligand buried deep inside a protein. Sampling the transition along a physical (not alchemical) dissociation path of opening up the binding cavity- -pulling out the ligand- -closing back the cavity, we can avoid the problem of error amplifications by not relying on small differences between similar numbers. We tested this new form of hSMD on retinol inside cellular retinol-binding protein 1 and three cases of a ligand (a benzylacetate, a 2-nitrothiophene, and a benzene) inside a T4 lysozyme L99A/M102Q(H) double mutant. In all cases, we obtained binding free energies in close agreement with the experimentally measured values. This indicates that the force field parameters we employed are accurate and that hSMD (a brute force, unsophisticated approach) is free from the problem of error amplification suffered by many sophisticated approaches in the literature.« less
NASA Astrophysics Data System (ADS)
Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil
2014-03-01
The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.
Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar
2013-07-01
The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.
The DINGO dataset: a comprehensive set of data for the SAMPL challenge
NASA Astrophysics Data System (ADS)
Newman, Janet; Dolezal, Olan; Fazio, Vincent; Caradoc-Davies, Tom; Peat, Thomas S.
2012-05-01
Part of the latest SAMPL challenge was to predict how a small fragment library of 500 commercially available compounds would bind to a protein target. In order to assess the modellers' work, a reasonably comprehensive set of data was collected using a number of techniques. These included surface plasmon resonance, isothermal titration calorimetry, protein crystallization and protein crystallography. Using these techniques we could determine the kinetics of fragment binding, the energy of binding, how this affects the ability of the target to crystallize, and when the fragment did bind, the pose or orientation of binding. Both the final data set and all of the raw images have been made available to the community for scrutiny and further work. This overview sets out to give the parameters of the experiments done and what might be done differently for future studies.
NASA Astrophysics Data System (ADS)
Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.
2016-11-01
An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.
Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
Okimoto, Noriaki; Suenaga, Atsushi; Taiji, Makoto
2017-11-01
In computational drug design, ranking a series of compound analogs in a manner that is consistent with experimental affinities remains a challenge. In this study, we evaluated the prediction of protein-ligand binding affinities using steered molecular dynamics simulations. First, we investigated the appropriate conditions for accurate predictions in these simulations. A conic harmonic restraint was applied to the system for efficient sampling of work values on the ligand unbinding pathway. We found that pulling velocity significantly influenced affinity predictions, but that the number of collectable trajectories was less influential. We identified the appropriate pulling velocity and collectable trajectories for binding affinity predictions as 1.25 Å/ns and 100, respectively, and these parameters were used to evaluate three target proteins (FK506 binding protein, trypsin, and cyclin-dependent kinase 2). For these proteins using our parameters, the accuracy of affinity prediction was higher and more stable when Jarzynski's equality was employed compared with the second-order cumulant expansion equation of Jarzynski's equality. Our results showed that steered molecular dynamics simulations are effective for predicting the rank order of ligands; thus, they are a potential tool for compound selection in hit-to-lead and lead optimization processes.
Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza
2015-09-01
Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Detection of Z DNA binding proteins in tissue culture cells.
Leith, I R; Hay, R T; Russell, W C
1988-01-01
A gel electrophoresis DNA binding assay to detect Z DNA binding proteins has been developed utilising [32P] labelled poly [d(G-C)] which was converted to the Z form by incubation in 100 microM Co(NH3)6Cl3. The parameters of the assay were established using a Z DNA antibody as a model system and then applied to extracts of Hela and BHK21 cells. Using an anti-Z DNA antibody conditions were established which allowed resolution of antibody-DNA complexes and free DNA in the presence of 100 microM Co(NH3)6Cl3. The inclusion of unlabelled complementary homopolymers eliminated non-specific binding to the labelled Z-DNA probe. Competition experiments demonstrated that the assay was highly specific for double stranded non-B DNA. Application of the technique to extracts of mammalian cells demonstrated that human and hamster cells contain Z-DNA binding proteins; further characterisation by a blotting technique indicated that a 56,000 molecular weight cell protein preferentially binds Z-DNA. Images PMID:3419919
Shi, Biyun; Zuo, Guanghong; Xiu, Peng; Zhou, Ruhong
2013-04-04
With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The π-π stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.
Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji
2015-12-01
Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.
Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil
2014-01-01
The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.
Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology.
Steffen, Philipp A; Fonseca, João P; Ringrose, Leonie
2012-10-01
How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins. Copyright © 2012 WILEY Periodicals, Inc.
Computational Design of Ligand Binding Proteins with High Affinity and Selectivity
Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David
2014-01-01
The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320
Rahaman, Obaidur; Estrada, Trilce P.; Doren, Douglas J.; Taufer, Michela; Brooks, Charles L.; Armen, Roger S.
2011-01-01
The performance of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for “step 2 discrimination” were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only “interacting” ligand atoms as the “effective size” of the ligand, and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and five-fold cross validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new dataset (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ dataset where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand efficiencies is most relevant to real-world drug design efforts. PMID:21644546
Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S
2011-09-26
The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand efficiencies is most relevant to real-world drug design efforts.
Smith, Lorna J; Gunsteren, Wilfred F Van; Allison, Jane R
2013-01-01
Molecular dynamics simulations have been used to characterise the binding of the fatty acid ligand palmitate in the barley lipid transfer protein 1 (LTP) internal cavity. Two different palmitate binding modes (1 and 2), with similar protein-ligand interaction energies, have been identified using a variety of simulation strategies. These strategies include applying experimental protein-ligand atom-atom distance restraints during the simulation, or protonating the palmitate ligand, or using the vacuum GROMOS 54B7 force-field parameter set for the ligand during the initial stages of the simulations. In both the binding modes identified the palmitate carboxylate head group hydrogen bonds with main chain amide groups in helix A, residues 4 to 19, of the protein. In binding mode 1 the hydrogen bonds are to Lys 11, Cys 13, and Leu 14 and in binding mode 2 to Thr 15, Tyr 16, Val 17, Ser 24 and also to the OH of Thr 15. In both cases palmitate binding exploits irregularity of the intrahelical hydrogen-bonding pattern in helix A of barley LTP due to the presence of Pro 12. Simulations of two variants of barley LTP, namely the single mutant Pro12Val and the double mutant Pro12Val Pro70Val, show that Pro 12 is required for persistent palmitate binding in the LTP cavity. Overall, the work identifies key MD simulation approaches for characterizing the details of protein-ligand interactions in complexes where NMR data provide insufficient restraints. Copyright © 2012 The Protein Society.
Clinical role of protein binding of quinolones.
Bergogne-Bérézin, Eugénie
2002-01-01
Protein binding of antibacterials in plasma and tissues has long been considered a component of their pharmacokinetic parameters, playing a potential role in distribution, excretion and therapeutic effectiveness. Since the beginning of the 'antibacterial era', this factor has been extensively analysed for all antibacterial classes, showing that wide variations of the degree of protein binding occur even in the same antibacterial class, as with beta-lactams. As the understanding of protein binding grew, the complexity of the binding system was increasingly perceived and its dynamic character described. Studies of protein binding of the fluoroquinolones have shown that the great majority of these drugs exhibit low protein binding, ranging from approximately 20 to 40% in plasma, and that they are bound predominantly to albumin. The potential role in pharmacokinetics-pharmacodynamics of binding of fluoroquinolones to plasma, tissue and intracellular proteins has been analysed, but it has not been established that protein binding has any significant direct or indirect impact on therapeutic effectiveness. Regarding the factors influencing the tissue distribution of antibacterials, physicochemical characteristics and the small molecular size of fluoroquinolones permit a rapid penetration into extravascular sites and intracellularly, with a rapid equilibrium being established between intravascular and extravascular compartments. The high concentrations of these drugs achieved in tissues, body fluids and intracellularly, in addition to their wide antibacterial spectrum, mean that fluoroquinolones have therapeutic effectiveness in a large variety of infections. The tolerability of quinolones has generally been reported as good, based upon long experience in using pefloxacin, ciprofloxacin and ofloxacin in clinical practice. Among more recently developed molecules, good tolerability has been reported for levofloxacin, moxifloxacin and gatifloxacin, but certain other new compounds have been removed from the market because of renal, hepatic and cardiac toxicity. To what extent the protein binding of fluoroquinolones can play a role in their tolerability is unclear. In terms of drug-drug interactions, the role of protein binding is questionable: several drug combinations can be responsible for toxicity, such as with beta-lactams, metronidazole, theophylline, nonsteroidal anti-inflammatory agents or a series of drugs used for cardiac diseases, but protein binding does not seem to be involved in these interactions. In conclusion, protein binding of fluoroquinolones appears to be a complex phenomenon, but has no clear role in therapeutic effectiveness or toxicity.
Structure of a new crystal form of human Hsp70 ATPase domain.
Osipiuk, J; Walsh, M A; Freeman, B C; Morimoto, R I; Joachimiak, A
1999-05-01
Hsp70 proteins are highly conserved proteins induced by heat shock and other stress conditions. An ATP-binding domain of human Hsp70 protein has been crystallized in two major morphological forms at pH 7.0 in the presence of PEG 8000 and CaCl2. Both crystal forms belong to the orthorhombic space group P212121, but show no resemblance in unit-cell parameters. Analysis of the crystal structures for both forms shows a 1-2 A shift of one of the subdomains of the protein. This conformational change could reflect a 'natural' flexibility of the protein which might be relevant to ATP binding and may facilitate the interaction of other proteins with Hsp70 protein.
ProMateus—an open research approach to protein-binding sites analysis
Neuvirth, Hani; Heinemann, Uri; Birnbaum, David; Tishby, Naftali; Schreiber, Gideon
2007-01-01
The development of bioinformatic tools by individual labs results in the abundance of parallel programs for the same task. For example, identification of binding site regions between interacting proteins is done using: ProMate, WHISCY, PPI-Pred, PINUP and others. All servers first identify unique properties of binding sites and then incorporate them into a predictor. Obviously, the resulting prediction would improve if the most suitable parameters from each of those predictors would be incorporated into one server. However, because of the variation in methods and databases, this is currently not feasible. Here, the protein-binding site prediction server is extended into a general protein-binding sites research tool, ProMateus. This web tool, based on ProMate's infrastructure enables the easy exploration and incorporation of new features and databases by the user, providing an evaluation of the benefit of individual features and their combination within a set framework. This transforms the individual research into a community exercise, bringing out the best from all users for optimized predictions. The analysis is demonstrated on a database of protein protein and protein-DNA interactions. This approach is basically different from that used in generating meta-servers. The implications of the open-research approach are discussed. ProMateus is available at http://bip.weizmann.ac.il/promate. PMID:17488838
Borana, Mohanish S; Mishra, Pushpa; Pissurlenkar, Raghuvir R S; Hosur, Ramakrishna V; Ahmad, Basir
2014-03-01
Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
Jozwiak, Krzysztof; Plazinska, Anita; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W.
2011-01-01
The β2 adrenergic receptor (β2-AR) is a model system for studying the ligand recognition process in G-protein coupled receptors. Fenoterol (FEN) is a β2-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent Van’t Hoff analysis shows very different thermodynamics of binding depending on the stereoconfiguration of the molecule. The binding of (S,x’)-isomers is almost entirely enthalpy controlled whereas binding of (R,x’)-isomers is purely entropy driven. Stereochemistry of FEN molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R’)-FEN was shown to selectively activate Gs protein signaling while the (S,R’)- isomer activated both Gi and Gs protein. The overall data demonstrate that the chirality at the two chiral centers of the FEN molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site and the global mechanism of β2-AR activation. Differences in thermodynamic parameters and non-uniform G-protein coupling suggest a mechanism of chiral recognition in which observed enantioselectivities arise from the interaction of the (R,x’)-FEN stereoisomers with a different receptor conformation than the one with which the (S,x’)-isomer interacts. PMID:21618615
Jozwiak, Krzysztof; Plazinska, Anita; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W
2011-01-01
The β(2) adrenergic receptor (β(2)-AR) is a model system for studying the ligand recognition process in G protein-coupled receptors. Fenoterol (FEN) is a β(2)-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent Van't Hoff analysis shows very different thermodynamics of binding depending on the stereoconfiguration of the molecule. The binding of (S,x')-isomers is almost entirely enthalpy controlled whereas binding of (R,x')-isomers is purely entropy driven. Stereochemistry of FEN molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R')-FEN was shown to selectively activate G(s) protein signaling while the (S,R')-isomer activated both G(i) and G(s) protein. The overall data demonstrate that the chirality at the two chiral centers of the FEN molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site, and the global mechanism of β(2)-AR activation. Differences in thermodynamic parameters and nonuniform G-protein coupling suggest a mechanism of chiral recognition in which observed enantioselectivities arise from the interaction of the (R,x')-FEN stereoisomers with a different receptor conformation than the one with which the (S,x')-isomer interacts. Copyright © 2011 Wiley-Liss, Inc.
Chakroun, Maissa
2014-01-01
Bacillus thuringiensis vegetative insecticidal proteins (Vip3A) have been recently introduced in important crops as a strategy to delay the emerging resistance to the existing Cry toxins. The mode of action of Vip3A proteins has been studied in Spodoptera frugiperda with the aim of characterizing their binding to the insect midgut. Immunofluorescence histological localization of Vip3Aa in the midgut of intoxicated larvae showed that Vip3Aa bound to the brush border membrane along the entire apical surface. The presence of fluorescence in the cytoplasm of epithelial cells seems to suggest internalization of Vip3Aa or a fragment of it. Successful radiolabeling and optimization of the binding protocol for the 125I-Vip3Aa to S. frugiperda brush border membrane vesicles (BBMV) allowed the determination of binding parameters of Vip3A proteins for the first time. Heterologous competition using Vip3Ad, Vip3Ae, and Vip3Af as competitor proteins showed that they share the same binding site with Vip3Aa. In contrast, when using Cry1Ab and Cry1Ac as competitors, no competitive binding was observed, which makes them appropriate candidates to be used in combination with Vip3A proteins in transgenic crops. PMID:25002420
Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment
Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert
2016-01-01
In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217
Maucuer, Alexandre; Desforges, Bénédicte; Joshi, Vandana; Boca, Mirela; Kretov, Dmitry; Hamon, Loic; Bouhss, Ahmed; Curmi, Patrick A; Pastré, David
2018-05-04
Liquid-liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 and FUS due to their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here we developed a method to analyze the mixing:demixing of two different phases in a cellular context. The principle is the following: mRNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA binding proteins, HuR, G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing:demixing behavior of RNA-binding proteins in cells. Altogether we show that microtubules can be used as platforms to understand the mechanisms underlying liquid-liquid phase separation and their deregulation in human diseases. © 2018. Published by The Company of Biologists Ltd.
Interactions of tea tannins and condensed tannins with proteins.
Frazier, Richard A; Deaville, Eddie R; Green, Rebecca J; Stringano, Elisabetta; Willoughby, Ian; Plant, John; Mueller-Harvey, Irene
2010-01-20
Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins, and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M(-1) and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of < or =10(3)M(-1) for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4)M(-1) for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linke, Christian, E-mail: clin180@ec.auckland.ac.nz; Caradoc-Davies, Tom T.; Australian Synchrotron, Clayton, Victoria 3168
2008-02-01
The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to themore » monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.« less
Tang, Yat T; Marshall, Garland R
2011-02-28
Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable scoring function was an objective of this study, the main focus was evaluation of the use of high-resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal titration calorimetry for scoring function development. With the increasing application of structure-based methods in molecular design, this study suggests that using high-resolution crystal structures, separating enthalpy and entropy contributions to binding free energy, and including descriptors to better capture entropic contributions may prove to be effective strategies toward rapid and accurate calculation of binding affinity.
Lea, Wendy A.; Naik, Subhashchandra; Chaudhri, Tapan; Machen, Alexandra J.; O’Neil, Pierce T.; McGinn-Straub, Wesley; Tischer, Alexander; Auton, Matthew T.; Burns, Joshua R.; Baldwin, Michael R.; Khar, Karen R.; Karanicolas, John; Fisher, Mark T.
2017-01-01
Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy to decrease disease pathologies brought on by protein folding defects or deleterious kinetic transitions. Current methods of examining ligand binding to these marginally stable native states are limited, because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, multi-domain) and metastable proteins (e.g. low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant-pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein immobilized on a BLI biosensor to increasing denaturant concentrations (urea or GnHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remain is detected by increased GroEL binding. Since this kinetic denaturant pulse is brief, the amplitude of the GroEL binding to the immobilized protein depends on the duration of exposure to denaturant, the concentration of denaturant, wash times, and the underlying protein unfolding/refolding kinetics; fixing all other parameters and plotting GroEL binding amplitude versus denaturant pulse concentration results in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein is manifested by a decreased GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules/solution conditions that can stabilize or destabilize thermally stable proteins, multi-domain proteins, oligomeric proteins, and most importantly, aggregation prone metastable proteins. PMID:27505032
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.
2013-06-15
At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used asmore » diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses. • Plasma APAP-protein adducts are diagnostically useful, but interpret with care.« less
Carballo, J; Mota, N; Barreto, G; Colmenero, F J
1995-01-01
A little-studied procedure for adjusting the properties of low-fat products is to use the influence that both composition and certain processing factors exert on these properties. The object of the present work was to assess the effects of protein level (P, ranging from 10% to 16%), fat level (F, ranging from 10.1% to 22%) and cooking temperature (HT, ranging from 77 °C to 105 °C) on the binding properties and colour of meat emulsions. Protein content was the variable that most influenced total expressible fluid (TEF) and purge loss. Heating rate had scarcely any effect on the binding properties of Bologna sausages. Analysis of variance indicated that the regression models for parameters L, a and b were not significant.
NASA Astrophysics Data System (ADS)
Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander
2016-04-01
Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.
Patel, Neal M.; Kinzer-Ursem, Tamara L.
2017-01-01
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. PMID:29107982
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Neil G., E-mail: neison@chem.gla.ac.uk; Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.
2006-07-01
The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γmore » = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.« less
Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas
2014-01-01
The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428
NASA Astrophysics Data System (ADS)
Thapa, Mahendra Bahadur
Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters, also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.
Hatami, Mehdi; Farhadi, Khalil
2012-07-01
A hollow fiber liquid-phase microextraction technique coupled with high-performance liquid chromatography with fluorescence detection was employed for determination and evaluation of the binding characteristics of drugs to bovine serum albumin (BSA). Enantiomers of guaifenesin (an expectorant drug) were investigated as a model system. After optimization of some influencing parameters on microextraction, the proposed method was used for calculation of the target drug distribution coefficient between n-octanol and the buffer solution as well as study of drug-BSA binding in physiological conditions. The developed method shows a new, improved and simple procedure for determination of free drug concentration in biological fluids and the extent of drug-protein binding. Copyright © 2011 John Wiley & Sons, Ltd.
Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael
2009-11-15
Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. 2009 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtsuki, Takayuki; Ohshima, Shigeru; Uchida, Akira, E-mail: auchida@biomol.sci.toho-u.ac.jp
2007-09-01
A water-soluble chlorophyll-binding protein with photoconvertibility from C. album was extracted, purified and crystallized in a darkroom. The crystal diffracted to around 2.0 Å resolution. A water-soluble chlorophyll-binding protein (WSCP) with photoconvertibility from Chenopodium album was extracted, purified and crystallized in a darkroom. Green crystals suitable for data collection appeared in about 10 d. A native data set was collected to 2.0 Å resolution at 100 K. The space group of the crystal was determined to be orthorhombic I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.13, b = 60.59, c = 107.21 Å. Preliminary analysis ofmore » the X-ray data indicated that there is one molecule per asymmetric unit.« less
NASA Astrophysics Data System (ADS)
Żurawska-Płaksej, Ewa; Rorbach-Dolata, Anna; Wiglusz, Katarzyna; Piwowar, Agnieszka
2018-01-01
Albumin, the major serum protein, plays a variety of functions, including binding and transporting endogenous and exogenous ligands. Its molecular structure is sensitive to different environmental modifiers, among which glucose is one of the most significant. In vivo albumin glycation occurs under physiological conditions, but it is increased in diabetes. Since bovine serum albumin (BSA) may serve as a model protein in in vitro experiments, we aimed to investigate the impact of glucose-mediated BSA glycation on the binding capacity towards gliclazide, as well as the ability of this drug to prevent glycation of the BSA molecule. To reflect normo- and hyperglycemia, the conditions of the glycation process were established. Structural changes of albumin after interaction with gliclazide (0-14 μM) were determined using fluorescence quenching and circular dichroism spectroscopy. Moreover, thermodynamic parameters as well as energy transfer parameters were determined. Calculated Stern-Volmer quenching constants, as well as binding constants for the BSA-gliclazide complex, were lower for the glycated form of albumin than for the unmodified protein. The largest, over 2-fold, decrease in values of binding parameters was observed for the sample with 30 mM of glucose, reflecting the poorly controlled diabetic state, which indicates that the degree of glycation had a critical influence on binding with gliclazide. In contrast to significant changes in the tertiary structure of BSA upon binding with gliclazide, only slight changes in the secondary structure were observed, which was reflected by about a 3% decrease of the α-helix content of glycated BSA (regardless of glucose concentration) in comparison to unmodified BSA. The presence of gliclazide during glycation did not affect its progress. The results of this study indicate that glycation significantly changed the binding ability of BSA towards gliclazide and the scale of these changes depended on glucose concentration. It may have a direct impact on the free drug fraction and its pharmacokinetic behavior, including the risk of hypoglycemic episodes or unexpected interactions with other ligands. The use of BSA in examining binding effects upon glycation seems to be good model for preliminary research and may be used to identify a potential drug response in a diabetic state.
Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie
2014-11-01
The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.
Jurasekova, Zuzana; Marconi, Giancarlo; Sanchez-Cortes, Santiago; Torreggiani, Armida
2009-11-01
Luteolin (LUT) is a polyphenolic compound, found in a variety of fruits, vegetables, and seeds, which has a variety of pharmacological properties. In the present contribution, binding of LUT to human serum albumin (HSA), the most abundant carrier protein in the blood, was investigated with the aim of describing the binding mode and parameters of the interaction. The application of circular dichroism, UV-Vis absorption, fluorescence, Raman and surface-enhanced Raman scattering spectroscopy combined with molecular modeling afforded a clear picture of the association mode of LUT to HSA. Specific interactions with protein amino acids were evidenced. LUT was found to be associated in subdomain IIA where an interaction with Trp-214 is established. Hydrophobic and electrostatic interactions are the major acting forces in the binding of LUT to HSA. The HSA conformations were slightly altered by the drug complexation with reduction of alpha-helix and increase of beta-turns structures, suggesting a partial protein unfolding. Also the configuration of at least two disulfide bridges were altered. Furthermore, the study of molecular modeling afforded the binding geometry. 2009 Wiley Periodicals, Inc.
Allosteric Control of Icosahedral Capsid Assembly
Lazaro, Guillermo R.
2017-01-01
During the lifecycle of a virus, viral proteins and other components self-assemble to form an ordered protein shell called a capsid. This assembly process is subject to multiple competing constraints, including the need to form a thermostable shell while avoiding kinetic traps. It has been proposed that viral assembly satisfies these constraints through allosteric regulation, including the interconversion of capsid proteins among conformations with different propensities for assembly. In this article we use computational and theoretical modeling to explore how such allostery affects the assembly of icosahedral shells. We simulate assembly under a wide range of protein concentrations, protein binding affinities, and two different mechanisms of allosteric control. We find that, above a threshold strength of allosteric control, assembly becomes robust over a broad range of subunit binding affinities and concentrations, allowing the formation of highly thermostable capsids. Our results suggest that allostery can significantly shift the range of protein binding affinities that lead to successful assembly, and thus should be accounted for in models that are used to estimate interaction parameters from experimental data. PMID:27117092
Schwarz-Schilling, Matthaeus; Dupin, Aurore; Chizzolini, Fabio; Krishnan, Swati; Mansy, Sheref S; Simmel, Friedrich C
2018-04-11
Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-02-06
Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-09-01
Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth.
Brehm, A; Nielsen, S J; Miska, E A; McCance, D J; Reid, J L; Bannister, A J; Kouzarides, T
1999-05-04
E7 is the main transforming protein of human papilloma virus type 16 (HPV16) which is implicated in the formation of cervical cancer. The transforming activity of E7 has been attributed to its interaction with the retinoblastoma (Rb) tumour suppressor. However, Rb binding is not sufficient for transformation by E7. Mutations within a zinc finger domain, which is dispensable for Rb binding, also abolish E7 transformation functions. Here we show that HPV16 E7 associates with histone deacetylase in vitro and in vivo, via its zinc finger domain. Using a genetic screen, we identify Mi2beta, a component of the recently identified NURD histone deacetylase complex, as a protein that binds directly to the E7 zinc finger. A zinc finger point mutant which is unable to bind Mi2beta and histone deacetylase but is still able to bind Rb fails to overcome cell cycle arrest in osteosarcoma cells. Our results suggest that the binding to a histone deacetylase complex is an important parameter for the growthpromoting activity of the human papilloma virus E7 protein. This provides the first indication that viral oncoproteins control cell proliferation by targeting deacetylation pathways.
Binding of ring-substituted indole-3-acetic acids to human serum albumin.
Soskić, Milan; Magnus, Volker
2007-07-01
The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.
Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A
2017-01-23
Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.
Pan, Jiongwei; Ye, Zaiting; Cai, Xiaoping; Wang, Liangxing; Cao, Zhuo
2012-12-01
The interaction of ceftriaxone sodium (CS), a cephalosporin antibiotic, with the major transport protein, bovine serum albumin (BSA), was investigated using different spectroscopic techniques such as fluorescence, circular dichroism (CD), and UV-vis spectroscopy. Values of binding parameters for BSA-CS interaction in terms of binding constant and number of binding sides were found to be 9.00 × 10(3), 3.24 × 10(3), and 2.30 × 10(3) M(-1) at 281, 301, and 321 K, respectively. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was spontaneous and was primarily mediated by van der Waals force or hydrogen bonding. CS binding to BSA caused secondary structural alterations in the protein as revealed by CD results. The distance between CS and Trp of BSA was determined as 3.23 nm according to the Förster resonance energy transfer theory. © 2012 Wiley Periodicals, Inc.
Zubini, Paola; Zambelli, Barbara; Musiani, Francesco; Ciurli, Stefano; Bertolini, Paolo; Baraldi, Elena
2009-01-01
PR-10 proteins are a family of pathogenesis-related (PR) allergenic proteins playing multifunctional roles. The peach (Prunus persica) major allergen, Pru p 1.01, and its isoform, Pru p 1.06D, were found highly expressed in the fruit skin at the pit hardening stage, when fruits transiently lose their susceptibility to the fungal pathogen Monilinia spp. To investigate the possible role of the two Pru p 1 isoforms in plant defense, the recombinant proteins were expressed in Escherichia coli and purified. Light scattering experiments and circular dichroism spectroscopy showed that both proteins are monomers in solution with secondary structures typical of PR-10 proteins. Even though the proteins do not display direct antimicrobial activity, they both act as RNases, a function possibly related to defense. The RNase activity is different for the two proteins, and only that of Pru p 1.01 is affected in the presence of the cytokinin zeatin, suggesting a physiological correlation between Pru p 1.01 ligand binding and enzymatic activity. The binding of zeatin to Pru p 1.01 was evaluated using isothermal titration calorimetry, which provided information on the stoichiometry and on the thermodynamic parameters of the interaction. The structural architecture of Pru p 1.01 and Pru p 1.06D was obtained by homology modeling, and the differences in the binding pockets, possibly accounting for the observed difference in binding activity, were evaluated. PMID:19474212
Novel aminobenzanthrone dyes for amyloid fibril detection
NASA Astrophysics Data System (ADS)
Vus, Kateryna; Trusova, Valeriya; Gorbenko, Galyna; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Kinnunen, Paavo
2012-04-01
A series of novel fluorescent aminobenzanthrone dyes have been tested for their ability to identify and characterize the oligomeric and fibrillar aggregates of lysozyme. The parameters of the dye binding to native, oligomeric and fibrillar protein have been calculated from the results of fluorimetric titration. Furthermore, several additional quantities reflecting the preference of the probe to either pre-fibrillar or fibrillar protein aggregates, have been evaluated. Based on the comparative analysis of the recovered parameters, AM4 was recommended for selective detection of protein pre-fibrillar assemblies, while the dyes AM1, AM2, AM3 were selected as the most prospective amyloid tracers.
Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.
Eble, Johannes A
2018-02-15
The dissociation constant describes the interaction between two partners in the binding equilibrium and is a measure of their affinity. It is a crucial parameter to compare different ligands, e.g., competitive inhibitors, protein isoforms and mutants, for their binding strength to a binding partner. Dissociation constants are determined by plotting concentrations of bound versus free ligand as binding curves. In contrast, titration curves, in which a signal that is proportional to the concentration of bound ligand is plotted against the total concentration of added ligand, are much easier to record. The signal can be detected spectroscopically and by enzyme-linked immunosorbent assay (ELISA). This is exemplified in a protocol for a titration ELISA that measures the binding of the snake venom-derived rhodocetin to its immobilized target domain of α2β1 integrin. Titration ELISAs are versatile and widely used. Any pair of interacting proteins can be used as immobilized receptor and soluble ligand, provided that both proteins are pure, and their concentrations are known. The difficulty so far has been to determine the dissociation constant from a titration curve. In this study, a mathematical function underlying titration curves is introduced. Without any error-prone graphical estimation of a saturation yield, this algorithm allows processing of the raw data (signal intensities at different concentrations of added ligand) directly by mathematical evaluation via non-linear regression. Thus, several titration curves can be recorded simultaneously and transformed into a set of characteristic parameters, among them the dissociation constant and the concentration of binding-active receptor, and they can be evaluated statistically. When combined with this algorithm, titration ELISAs gain the advantage of directly presenting the dissociation constant. Therefore, they may be used more efficiently in the future.
Theoretical Analysis of Allosteric and Operator Binding for Cyclic-AMP Receptor Protein Mutants
NASA Astrophysics Data System (ADS)
Einav, Tal; Duque, Julia; Phillips, Rob
2018-02-01
Allosteric transcription factors undergo binding events both at their inducer binding sites as well as at distinct DNA binding domains, and it is often difficult to disentangle the structural and functional consequences of these two classes of interactions. In this work, we compare the ability of two statistical mechanical models - the Monod-Wyman-Changeux (MWC) and the Koshland-N\\'emethy-Filmer (KNF) models of protein conformational change - to characterize the multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its operator, and finally investigate the ability of CRP to activate gene expression. In light of these models, we examine data from a beautiful recent experiment that created a single-chain version of the CRP homodimer, thereby enabling each subunit to be mutated separately. Using this construct, six mutants were created using all possible combinations of the wild type subunit, a D53H mutant subunit, and an S62F mutant subunit. We demonstrate that both the MWC and KNF models can explain the behavior of all six mutants using a small, self-consistent set of parameters. In comparing the results, we find that the MWC model slightly outperforms the KNF model in the quality of its fits, but more importantly the parameters inferred by the MWC model are more in line with structural knowledge of CRP. In addition, we discuss how the conceptual framework developed here for CRP enables us to not merely analyze data retrospectively, but has the predictive power to determine how combinations of mutations will interact, how double mutants will behave, and how each construct would regulate gene expression.
Larabell, Carolyn A.; Le Gros, Mark A.; McQueen, David M.; Peskin, Charles S.
2014-01-01
In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process. PMID:23955281
NASA Astrophysics Data System (ADS)
Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim
2016-03-01
DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions. Electronic supplementary information (ESI) available: DNA sequences and nomenclature (Table 1S); SDS-PAGE assay of IHF stock solution (Fig. 1S); determination of the concentration of IHF stock solution by Bradford assay (Fig. 2S); equilibrium binding isotherm fitting results of other DNA sequences (Table 2S); calculation of dissociation constants (Fig. 3S, 4S; Table 2S); geometric model for quantitation of DNA bending angle induced by specific IHF binding (Fig. 4S); customized flow cell assembly (Fig. 5S); real-time measurement of average fluorophore height change by SSFM (Fig. 6S); summary of binding parameters obtained from additive isotherm model fitting (Table 3S); average surface densities of 10 dsDNA spots and bound IHF at equilibrium (Table 4S); effects of surface densities on the binding and bending of dsDNA (Tables 5S, 6S and Fig. 7S-10S). See DOI: 10.1039/c5nr06785e
Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin
NASA Astrophysics Data System (ADS)
Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea
2018-02-01
A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.
Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris
2016-04-15
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.
Maurer, Manuela; de Beer, Stephanie B. A.; Oostenbrink, Chris
2018-01-01
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480
Kuvshinoff, B W; Brodish, R J; McFadden, D W; Fischer, J E
1993-01-01
OBJECTIVE: This study determined whether there are any laboratory or other features that will enable prediction of spontaneous closure in patients with gastrointestinal cutaneous fistulas. SUMMARY BACKGROUND DATA: Although the anatomic criteria for spontaneous closure of gastrointestinal cutaneous fistulas have been presented by several authors, less than 50% of such fistulas tend to close, even in the most recent series. METHODS: A group of patients with gastrointestinal cutaneous fistulas with anatomical features favorable to study were investigated with respect to a series of parameters including the usual demographic parameters, plus fistula output, number of blood transfusions, presence of sepsis, as well as metabolic parameters including serum transferrin, retinol-binding protein, thyroxin-binding prealbumin, and serum albumin. RESULTS: Of 79 patients with 116 fistulas, 16 (20.3%) died. Causes of death were uncontrolled sepsis in eight patients and cancer in five patients. Postoperative fistulas constituted 80% of the group. The presence of local sepsis, systemic sepsis, remote sepsis (such as pneumonia or line sepsis), the number of fistulas, fistula output, and the number of blood transfusions were not predictive of spontaneous closure, whereas serum transferrin was predictive of spontaneous closure. Serum transferrin, retinol-binding protein, and thyroxin-binding prealbumin were predictive of mortality. CONCLUSIONS: Serum transferrin does not appear to be an entirely independent variable, but seems to identify those patients with significant remote sepsis, systemic sepsis, and neoplasia in whom these processes are clinically significant. The results, if confirmed, and provided that nutritional needs are met, suggest that short-turnover proteins, particularly serum transferrin, might be useful in predicting which patients with gastrointestinal cutaneous fistulas should undergo surgery despite anatomic criteria favorable for spontaneous closure. PMID:8507110
NASA Astrophysics Data System (ADS)
Zoete, V.; Michielin, O.; Karplus, M.
2003-12-01
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SAS bur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, ΔGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC 50 without reparametrization.
Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding
NASA Astrophysics Data System (ADS)
Sarvazyan, Noune A.; Neubig, Richard R.
1998-05-01
We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.
Karow, Anne R; Theissen, Bettina; Klostermeier, Dagmar
2007-01-01
RNA helicases mediate structural rearrangements of RNA or RNA-protein complexes at the expense of ATP hydrolysis. Members of the DEAD box helicase family consist of two flexibly connected helicase domains. They share nine conserved sequence motifs that are involved in nucleotide binding and hydrolysis, RNA binding, and helicase activity. Most of these motifs line the cleft between the two helicase domains, and extensive communication between them is required for RNA unwinding. The two helicase domains of the Bacillus subtilis RNA helicase YxiN were produced separately as intein fusions, and a functional RNA helicase was generated by expressed protein ligation. The ligated helicase binds adenine nucleotides with very similar affinities to the wild-type protein. Importantly, its intrinsically low ATPase activity is stimulated by RNA, and the Michaelis-Menten parameters are similar to those of the wild-type. Finally, ligated YxiN unwinds a minimal RNA substrate to an extent comparable to that of the wild-type helicase, confirming authentic interdomain communication.
NASA Astrophysics Data System (ADS)
Smiatek, Jens
2017-06-01
Ionic liquids (ILs) are used in a variety of technological and biological applications. Recent experimental and simulation results reveal the influence of aqueous ionic liquids on the stability of protein and enzyme structures. Depending on different parameters like the concentration and the ion composition, one can observe distinct stabilization or denaturation mechanisms for various ILs. In this review, we summarize the main findings and discuss the implications with regard to molecular theories of solutions and specific ion effects. A preferential binding model is introduced in order to discuss protein-IL effects from a statistical mechanics perspective. The value of the preferential binding coefficient determines the strength of the ion influence and indicates a shift of the chemical equilibrium either to the native or the denatured state of the protein. We highlight the role of water in order to explain the self-association behavior of the IL species and discuss recent experimental and simulation results in the light of the observed binding effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Mototsugu, E-mail: mototsugu-yamada@meiji.co.jp; Watanabe, Takashi; Baba, Nobuyoshi
The selenomethionyl-substituted transpeptidase domain of penicillin-binding protein (PBP) 2B from S. pneumoniae was isolated from a limited proteolysis digest of the soluble form of recombinant PBP 2B and then crystallized. MAD data were collected to 2.4 Å resolution. Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 86.39,more » c = 143.27 Å. Diffraction data were collected to 2.4 Å resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delfosse, Vanessa; Hugonnet, Jean-Emmanuel; Sougakoff, Wladimir
The crystallization of a hypothetical penicillin-binding protein from the archaeon P. abyssi in space group C2 by hanging-drop vapour diffusion is reported. The genome of the hyperthermophilic archaeon Pyrococcus abyssi contains a gene (pab0087) encoding a penicillin-binding protein (PBP) homologue. This sequence consists of 447 residues and shows significant sequence similarity to low-molecular-weight PBPs and class C β-lactamases. The Pab0087 protein was overexpressed, purified and crystallized. Diffraction data from two different crystal forms were collected to 2.7 and 2.0 Å resolution. Both crystals belong to space group C2, with unit-cell parameters a = 160.59, b = 135.74, c = 113.02more » Å, β = 117.36° and a = 166.97, b = 131.25, c = 189.39 Å, β = 113.81°, respectively. The asymmetric unit contains four and eight molecules, respectively, with fourfold non-crystallographic symmetry.« less
Energy design for protein-protein interactions
Ravikant, D. V. S.; Elber, Ron
2011-01-01
Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951
Altered G Protein Coupling in Olfactory Neuroepithelial Cells From Patients With Schizophrenia
Borgmann-Winter, Karin E.; Wang, Hoau-Yan; Ray, Rabindranath; Willis, Brooke R.; Moberg, Paul J.; Rawson, Nancy E.; Gur, Raquel E.; Turetsky, Bruce I.; Hahn, Chang-Gyu
2016-01-01
Increasing evidence suggests that olfactory dysfunction is an endophenotype of schizophrenia, and thus the olfactory system can be studied both in relation to this sensory dysfunction and also as a means of examining pathophysiologic mechanisms of schizophrenia. In this study, we examined human olfactory neuroepithelial (ON) biopsy tissues and their in vitro culture cells for ligand-induced guanine nucleotide-binding protein (G protein) activation and downstream signaling. We assessed the binding of a nonhydrolyzable GTP analogue [35S]GTPγS binding to specific G protein subtypes in response to odorants, dopamine, or serotonin in ON cell membranes from matched schizophrenia-control subjects. In response to odorant mixtures, we found decreased [35S]GTPγS binding to Gαs/olf in schizophrenia patients. These changes were not mediated by mRNA expression of key molecules of G protein coupling, including adenylate cyclase III (ACIII), protein kinase A (PKA), protein kinase Cγ (PKCγ), or Gαs or Gαolf in ON cells or ON biopsy tissues. In contrast, dopamine (DA)- and serotonin (5HT)-induced S35-GTPγS binding to Gαs/olf and Gαq/11 were significantly increased in schizophrenia cases, while these parameters were strikingly reduced by in vitro treatment with antipsychotics. Patients with schizophrenia exhibit increases in electrolfactogram (EOG) recordings, suggesting enhanced odorant-induced activation. Our results of decreased odorant-induced G protein activation may point further downstream for underlying mechanisms for increased EOG measures. Increased G protein activation in response to DA and 5HT may suggest increased postreceptor DA or 5HT signaling as an additional mechanism of dopaminergic or serotonergic dysregulation in schizophrenia. PMID:26373539
Grøftehauge, Morten K; Hajizadeh, Nelly R; Swann, Marcus J; Pohl, Ehmke
2015-01-01
Over the last decades, a wide range of biophysical techniques investigating protein-ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.
Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA
Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; van Raaij, Mark J.
2007-01-01
The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals. PMID:17565188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, Rafael; González, Ana; Moscoso, Miriam
2007-09-01
The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-qualitymore » orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.« less
Bharmoria, Pankaj; Kumar, Arvind
2016-05-01
While a number of reports appear on ionic liquids-proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented. Isothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry. Ionic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL-protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique. Net stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs-Helmholtz equation (ΔG=ΔH-TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL-protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. Copyright © 2015 Elsevier B.V. All rights reserved.
Ajmal, Mohammad Rehan; Zaidi, Nida; Alam, Parvez; Nusrat, Saima; Siddiqi, Mohd Khursheed; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan
2017-01-01
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 10 4 M -1 , and with the increase in temperature, Stern-Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV-visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug-albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (R o ) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.
Population pharmacokinetics of phenytoin in critically ill children.
Hennig, Stefanie; Norris, Ross; Tu, Quyen; van Breda, Karin; Riney, Kate; Foster, Kelly; Lister, Bruce; Charles, Bruce
2015-03-01
The objective was to study the population pharmacokinetics of bound and unbound phenytoin in critically ill children, including influences on the protein binding profile. A population pharmacokinetic approach was used to analyze paired protein-unbound and total phenytoin plasma concentrations (n = 146 each) from 32 critically ill children (0.08-17 years of age) who were admitted to a pediatric hospital, primarily intensive care unit. The pharmacokinetics of unbound and bound phenytoin and the influence of possible influential covariates were modeled and evaluated using visual predictive checks and bootstrapping. The pharmacokinetics of protein-unbound phenytoin was described satisfactorily by a 1-compartment model with first-order absorption in conjunction with a linear partition coefficient parameter to describe the binding of phenytoin to albumin. The partitioning coefficient describing protein binding and distribution to bound phenytoin was estimated to be 8.22. Nonlinear elimination of unbound phenytoin was not supported in this patient group. Weight, allometrically scaled for clearance and volume of distribution for the unbound and bound compartments, and albumin concentration significantly influenced the partition coefficient for protein binding of phenytoin. The population model can be applied to estimate the fraction of unbound phenytoin in critically ill children given an individual's albumin concentration. © 2014, The American College of Clinical Pharmacology.
Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme
NASA Astrophysics Data System (ADS)
Ghosh, Kalyan Sundar; Sahoo, Bijaya Ketan; Dasgupta, Swagata
2008-02-01
Various reported antibacterial activities of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea prompted us to study its binding with lysozyme. This has been investigated by fluorescence, circular dichroism (CD) and protein-ligand docking. The binding parameters were determined using a modified Stern-Volmer equation. The thermodynamic parameters are indicative of an initial hydrophobic association. The complex is, however, held together predominantly by van der Waals interactions and hydrogen bonding. CD studies do not indicate any significant changes in the secondary structure of lysozyme. Docking studies revealed that specific interactions are observed with residues Trp 62 and Trp 63.
Fenton, Aron W.; Williams, Rachel; Trewhella, Jill
2010-01-01
Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M1-PYK). In the absence of substrate (phosphoenolpyruvate; PEP), SAXS-monitored conformational changes in M1-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M1-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under the current assay conditions, these small amino acids bind to the protein, but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, it can be concluded that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M1-PYK/small-amino-acid complexes (i.e. the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme vs. the M1-PYK/small-amino-acid complexes. PMID:20712377
Pyrene maleimide as a probe of microenvironmental and dynamics properties of protein binding sites
NASA Astrophysics Data System (ADS)
Benci, S.; Vaccari, S.; Schianchi, G.; Locatelli, Donata; Vaghi, P.; Bottiroli, Giovanni F.
1995-01-01
N-(1-Pyrene)maleimide is highly fluorescent upon covalent binding with sulfhydryl and amino groups of the proteins. Multiexponential fluorescence decays were observed for the dye bound to different proteins even when a single binding site is involved. The lack of information about the fluorescence decay of free dye does not allow to define the variations of fluorescence parameter following the conjugation and their correlation with the binding properties of the fluorophore. In this work, a study of the fluorescence of the probe, free in solution, bound to different antibodies and to the antigen-antibody complex both in solution and in cell, has been performed. The experimental results showed that chemico-physical properties of the medium influence the fluorescence decay of the probe in both the free and bound forms, although to a different extent. The variations of fluorescence decay and anisotropy of the bound probe are related to the electronic characteristics of microenvironment and show an increased stabilization of the probe binding site with the increasing complexity of the substrate. The sensitivity of the fluorescence properties of the probe to the binding site environment opens interesting perspectives concerning the application of Py- maleimide fluorochromization to assess the degree of specificity of immunocytochemical labelling.
The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth.
Brehm, A; Nielsen, S J; Miska, E A; McCance, D J; Reid, J L; Bannister, A J; Kouzarides, T
1999-01-01
E7 is the main transforming protein of human papilloma virus type 16 (HPV16) which is implicated in the formation of cervical cancer. The transforming activity of E7 has been attributed to its interaction with the retinoblastoma (Rb) tumour suppressor. However, Rb binding is not sufficient for transformation by E7. Mutations within a zinc finger domain, which is dispensable for Rb binding, also abolish E7 transformation functions. Here we show that HPV16 E7 associates with histone deacetylase in vitro and in vivo, via its zinc finger domain. Using a genetic screen, we identify Mi2beta, a component of the recently identified NURD histone deacetylase complex, as a protein that binds directly to the E7 zinc finger. A zinc finger point mutant which is unable to bind Mi2beta and histone deacetylase but is still able to bind Rb fails to overcome cell cycle arrest in osteosarcoma cells. Our results suggest that the binding to a histone deacetylase complex is an important parameter for the growthpromoting activity of the human papilloma virus E7 protein. This provides the first indication that viral oncoproteins control cell proliferation by targeting deacetylation pathways. PMID:10228159
Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.
Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel
2017-11-01
We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).
Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei
2015-02-10
Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.
Wieczorek, Andrew S; Martin, Vincent J J
2012-12-15
The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Stone, Melani C.; Borman, Jon; Ferreira, Gisela
2017-01-01
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 PMID:28884511
Iyaguchi, Daisuke; Yao, Min; Tanaka, Isao; Toyota, Eiko
2009-01-01
Adenylate/uridylate-rich elements (AREs), which are found in the 3′-untranslated region (UTR) of many mRNAs, influence the stability of cytoplasmic mRNA. HuR (human antigen R) binds to AREs and regulates various genes. In order to reveal the RNA-recognition mechanism of HuR protein, an RNA-binding region of human HuR containing two N-terminal RNA-recognition motif domains bound to an 11-base RNA fragment has been crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 42.4, b = 44.9, c = 91.1 Å. X-ray diffraction data were collected to 1.8 Å resolution. PMID:19255485
Pan, Fang; Xu, Tianci; Yang, Lijun; Jiang, Xiaoqing; Zhang, Lei
2014-11-11
Bisphenol F (BPF) as an endocrine disrupting compounds (EDCs) pollutant in the environment poses a great threat to human health. To evaluate the toxicity of BPF at the protein level, the effects of BPF on human serum albumin (HSA) were investigated at three temperatures 283, 298, and 308 K by multiple spectroscopic techniques. The experimental results showed that BPF effectively quenched the intrinsic fluorescence of HSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and the binding subdomain were measured, and indicated that BPF could spontaneously bind with HSA on subdomain IIA through H-bond and van der Waals interactions. Furthermore, the conformation of HSA was demonstrably changed in the presence of BPF. The work provides accurate and full basic data for clarifying the binding mechanisms of BPF with HSA in vivo and is helpful for understanding its effect on protein function during its transportation and distribution in blood. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90
Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas
2012-01-01
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030
Muegge, I; Martin, Y C
1999-03-11
A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach presented here lies in its generality as no knowledge about measured binding affinities is needed to derive atomic interaction potentials. The use of the new scoring function in docking studies is outlined.
Novel benzanthrone probes for membrane and protein studies
NASA Astrophysics Data System (ADS)
Ryzhova, Olga; Vus, Kateryna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Gorbenko, Galyna; Kinnunen, Paavo
2016-09-01
The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.
Probing protein-lipid interactions by FRET between membrane fluorophores
NASA Astrophysics Data System (ADS)
Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai
2016-09-01
Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.
Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.
Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas
2016-04-01
Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.
Paz, Yakov; Shimoni, Eyal; Weiss, Meira; Pick, Uri
2007-01-01
Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe3+ ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability. PMID:17513481
New perspective on glycoside hydrolase binding to lignin from pretreated corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth
Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less
New perspective on glycoside hydrolase binding to lignin from pretreated corn stover
Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...
2015-12-18
Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less
Čolak, Emina; Žorić, Lepša; Radosavljević, Aleksandra; Ignjatović, Svetlana
2018-05-01
Age-related macular degeneration (AMD) is the leading cause of the irreversible central visual loss among the elderly in the developed countries. Iron is considered a potent generator of the oxidative damage whose levels increase with age, potentially exacerbating the age-related diseases. The aim of this study was to assess the serum values of iron, and iron-binding proteins (transferrin, ferritin, and haptoglobin) in patients with AMD along with the parameters of the antioxidant defense: superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase, and total antioxidant status (TAS), in order to analyze the possible impact of iron and iron-binding proteins to the development of oxidative stress in AMD patients, and the association of the selected parameters with the AMD. In addition, the aim was to examine the gender differences and calculate the cutoff points of tested parameters that could be associated with AMD. A cross-sectional study included 55 AMD patients aged 71.7 ± 7.36 years and 65 aged-matched control subjects aged 70.25 ± 6.46 years. Significantly lower ferritin (P = 0.025), SOD (P = 0.026), GPx (P = 0.019), and TAS (P < 0.004) values were found in patients with AMD compared to the controls (P < 0.05). Significant association of GPx < 27 U/gHb (odds ratio [OR]: 1.13; 95% confidence interval [CI] 0.78-2.10; P = 0.049), TAS < 1.25 mmol/L (OR: 5.77; 95% CI 0.98-367.0; P < 0.000), ferritin < 84.8 pg/mL (OR: 2.52; 95% CI 1.37-4.62; P = 0.002), and haptoglobin<1.51 g/L (OR: 1.94; 95% CI 1.05-3.56; P = 0.031) was found with the AMD. According to receiver operating characteristic curve analysis, ferritin concentration <84.8 pg/L, GPx < 27 U/gHb, and TAS < 1.25 mmol/L have sufficient predictive ability for AMD. Significantly reduced capacity of the antioxidant defense system and iron-binding storage proteins (ferritin) found in AMD could have an important role in the development of increase oxidative stress in AMD patients.
Patt, Marianne; Becker, Georg A; Grossmann, Udo; Habermann, Bernd; Schildan, Andreas; Wilke, Stephan; Deuther-Conrad, Winnie; Graef, Susanne; Fischer, Steffen; Smits, René; Hoepping, Alexander; Wagenknecht, Gudrun; Steinbach, Jörg; Gertz, Hermann-Josef; Hesse, Swen; Schönknecht, Peter; Brust, Peter; Sabri, Osama
2014-07-01
(-)-[(18)F]Flubatine is a PET tracer with high affinity and selectivity for the nicotinic acetylcholine α4β2 receptor subtype. A clinical trial assessing the availability of this subtype of nAChRs was performed. From a total participant number of 21 Alzheimer's disease (AD) patients and 20 healthy controls (HCs), the following parameters were determined: plasma protein binding, metabolism and activity distribution between plasma and whole blood. Plasma protein binding and fraction of unchanged parent compound were assessed by ultracentrifugation and HPLC, respectively. The distribution of radioactivity (parent compound+metabolites) between plasma and whole blood was determined ex vivo at different time-points after injection by gamma counting after separation of whole blood by centrifugation into the cellular and non-cellular components. In additional experiments in vitro, tracer distribution between these blood components was assessed for up to 90min. A fraction of 15%±2% of (-)-[(18)F]Flubatine was found to be bound to plasma proteins. Metabolic degradation of (-)-[(18)F]Flubatine was very low, resulting in almost 90% unchanged parent compound at 90min p.i. with no significant difference between AD and HC. The radioactivity distribution between plasma and whole blood changed in vivo only slightly over time from 0.82±0.03 at 3min p.i. to 0.87±0.03 at 270min p.i. indicating the contribution of only a small amount of metabolites. In vitro studies revealed that (-)-[(18)F]Flubatine was instantaneously distributed between cellular and non-cellular blood parts. (-)-[(18)F]Flubatine exhibits very favourable characteristics for a PET radiotracer such as slow metabolic degradation and moderate plasma protein binding. Equilibrium of radioactivity distribution between plasma and whole blood is reached instantaneously and remains almost constant over time allowing both convenient sample handling and facilitated fractional blood volume contribution assessment. Copyright © 2014 Elsevier Inc. All rights reserved.
Fuller, Jonathan C.; Jackson, Richard M.; Edwards, Thomas A.; Wilson, Andrew J.; Shirts, Michael R.
2012-01-01
The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix. PMID:22916232
MDB: the Metalloprotein Database and Browser at The Scripps Research Institute
Castagnetto, Jesus M.; Hennessy, Sean W.; Roberts, Victoria A.; Getzoff, Elizabeth D.; Tainer, John A.; Pique, Michael E.
2002-01-01
The Metalloprotein Database and Browser (MDB; http://metallo.scripps.edu) at The Scripps Research Institute is a web-accessible resource for metalloprotein research. It offers the scientific community quantitative information on geometrical parameters of metal-binding sites in protein structures available from the Protein Data Bank (PDB). The MDB also offers analytical tools for the examination of trends or patterns in the indexed metal-binding sites. A user can perform interactive searches, metal-site structure visualization (via a Java applet), and analysis of the quantitative data by accessing the MDB through a web browser without requiring an external application or platform-dependent plugin. The MDB also has a non-interactive interface with which other web sites and network-aware applications can seamlessly incorporate data or statistical analysis results from metal-binding sites. The information contained in the MDB is periodically updated with automated algorithms that find and index metal sites from new protein structures released by the PDB. PMID:11752342
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family
Soufari, Heddy
2017-01-01
Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515
From the Cover: Visualization of maltose uptake in living yeast cells by fluorescent nanosensors
NASA Astrophysics Data System (ADS)
Fehr, Marcus; Frommer, Wolf B.; Lalonde, Sylvie
2002-07-01
Compartmentation of metabolic reactions and thus transport within and between cells can be understood only if we know subcellular distribution based on nondestructive dynamic monitoring. Currently, methods are not available for in vivo metabolite imaging at cellular or subcellular levels. Limited information derives from methods requiring fixation or fractionation of tissue (1, 2). We thus developed a flexible strategy for designing protein-based nanosensors for a wide spectrum of solutes, allowing analysis of changes in solute concentration in living cells. We made use of bacterial periplasmic binding proteins (PBPs), where we show that, on binding of the substrate, PBPs transform their hinge-bend movement into increased fluorescence resonance energy transfer (FRET) between two coupled green fluorescent proteins. By using the maltose-binding protein as a prototype, nanosensors were constructed allowing in vitro determination of FRET changes in a concentration-dependent fashion. For physiological applications, mutants with different binding affinities were generated, allowing dynamic in vivo imaging of the increase in cytosolic maltose concentration in single yeast cells. Control sensors allow the exclusion of the effect from other cellular or environmental parameters on ratio imaging. Thus the myriad of PBPs recognizing a wide spectrum of different substrates is suitable for FRET-based in vivo detection, providing numerous scientific, medical, and environmental applications.
Hühn, Jonas; Fedeli, Chiara; Zhang, Qian; Masood, Atif; Del Pino, Pablo; Khashab, Niveen M; Papini, Emanuele; Parak, Wolfgang J
2016-06-01
Protein adsorption to nanoparticles is described as a chemical reaction in which proteins attach to binding sites on the nanoparticle surface. This process is defined by a dissociation coefficient, which tells how many proteins are adsorbed per nanoparticle in dependence of the protein concentration. Different techniques to experimentally determine dissociation coefficients of protein adsorption to nanoparticles are reviewed. Results of more than 130 experiments in which dissociation coefficients have been determined are compared. Data show that different methods, nanoparticle systems, and proteins can lead to significantly different dissociation coefficients. However, we observed a clear tendency of smaller dissociation coefficients upon less negative towards more positive zeta potentials of the nanoparticles. The zeta potential thus is a key parameter influencing protein adsorption to the surface of nanoparticles. Our analysis highlights the importance of the characterization of the parameters governing protein-nanoparticle interaction for quantitative evaluation and objective literature comparison. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detecting Coevolution in and among Protein Domains
Yeang, Chen-Hsiang; Haussler, David
2007-01-01
Correlated changes of nucleic or amino acids have provided strong information about the structures and interactions of molecules. Despite the rich literature in coevolutionary sequence analysis, previous methods often have to trade off between generality, simplicity, phylogenetic information, and specific knowledge about interactions. Furthermore, despite the evidence of coevolution in selected protein families, a comprehensive screening of coevolution among all protein domains is still lacking. We propose an augmented continuous-time Markov process model for sequence coevolution. The model can handle different types of interactions, incorporate phylogenetic information and sequence substitution, has only one extra free parameter, and requires no knowledge about interaction rules. We employ this model to large-scale screenings on the entire protein domain database (Pfam). Strikingly, with 0.1 trillion tests executed, the majority of the inferred coevolving protein domains are functionally related, and the coevolving amino acid residues are spatially coupled. Moreover, many of the coevolving positions are located at functionally important sites of proteins/protein complexes, such as the subunit linkers of superoxide dismutase, the tRNA binding sites of ribosomes, the DNA binding region of RNA polymerase, and the active and ligand binding sites of various enzymes. The results suggest sequence coevolution manifests structural and functional constraints of proteins. The intricate relations between sequence coevolution and various selective constraints are worth pursuing at a deeper level. PMID:17983264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivian, J. P.; Porter, C.; Wilce, J. A.
2006-11-01
A preparation of replication terminator protein (RTP) of B. subtilis and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. The replication terminator protein (RTP) of Bacillus subtilis binds to specific DNA sequences that halt the progression of the replisome in a polar manner. These terminator complexes flank a defined region of the chromosome into which they allow replication forks to enter but not exit. Forcing the fusion of replication forks in a specific zone is thought to allow the coordination of post-replicative processes. The functional terminator complex comprises two homodimers each of 29more » kDa bound to overlapping binding sites. A preparation of RTP and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. A data set to 3.9 Å resolution with 97.0% completeness and an R{sub sym} of 12% was collected from a single flash-cooled crystal using synchrotron radiation. The diffraction data are consistent with space group P622, with unit-cell parameters a = b = 118.8, c = 142.6 Å.« less
Wafer, Lucas N.; Streicher, Werner W.; McCallum, Scott A.; Makhatadze, George I.
2012-01-01
S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2 and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, these peptides were screened against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone 1H and 15N were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic Kon rate constants observed in this study, Kon ≥1×107 M-1s-1, suggest that S100B utilizes a “fly casting mechanism” in the recognition of these peptide targets. PMID:22913742
Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro
2016-12-15
Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blum, R. A.; Schentag, J. J.; Gardner, M. J.; Wilner, K. D.
1995-01-01
1 The effects of tenidap sodium 120 mg day-1 at steady state and placebo on the plasma protein binding and pharmacokinetics of phenytoin were compared in this randomised, double-blind, placebo-controlled, parallel-group study, involving 12 healthy young men, conducted over 34 days. 2 Single oral doses of phenytoin 200 mg were given on days 1-3 and 29-31, and intravenous phenytoin, 250 mg infused over 20 min, was given on days 4 and 32. Tenidap (120 mg day-1), or matching placebo, was administered as single oral daily doses from days 8 to 34 inclusive. 3 The plasma protein binding of phenytoin was determined immediately before oral phenytoin administration on days 1 and 29. Pharmacokinetic parameters were estimated from the serum phenytoin concentration-time curves derived on days 4 and 32 following the phenytoin infusions. The differences between the pre- and post-treatment mean percentage of unbound plasma phenytoin and mean pharmacokinetic parameters were compared between treatment groups. 4 Tenidap sodium 120 mg day-1, at steady state, increased the percentage of unbound phenytoin in plasma by approximately 25%, but did not significantly affect AUC(0,48h) or Cmax. 5 Since tenidap increases the percentage of unbound phenytoin in plasma, when monitoring phenytoin plasma concentrations free concentrations of phenytoin should be considered. 6 Tenidap was well tolerated throughout the study. PMID:7547092
Probing receptor-ligand interactions by sedimentation equilibrium
NASA Astrophysics Data System (ADS)
Philo, John S.
1997-05-01
While sedimentation equilibrium is most commonly used to characterize the molecular weight and state of association of single proteins, this technique is also a very powerful tool for probing the interactions between two or more different proteins, and can characterize both the binding stoichiometry and the equilibrium constants. To resolve the complex binding interactions that can occur in such systems, it is crucial to globally fit data from many experiments to a common binding model, including samples made with different mixing ratios and a wide range of total concentration. It is often also essential to constrain the parameters during fitting so that the fits correctly reproduce the molar ratio of proteins used in making each sample. We have applied this methodology to probe mechanisms of receptor activation for a number of hematopoietic receptors and their cognate ligands, using receptor extracellular domains expressed as soluble proteins. Such data can potentially help in the design of improved or new protein therapeutics, as well as in efforts to create small- molecular mimetics of protein hormones through structure- based drug design. Sedimentation equilibrium has shown that stem cell factor, erythropoietin, and granulocyte-colony stimulating factor can each dimerize their respective receptors in solution, but the mechanism of ligand-induced receptor dimerization for these three systems are strikingly different.
De novo design and engineering of functional metal and porphyrin-binding protein domains
NASA Astrophysics Data System (ADS)
Everson, Bernard H.
In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.
Baugreet, Sephora; Kerry, Joseph P; Brodkorb, André; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth M
2018-08-01
With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S
2016-12-01
We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.
Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T
2013-03-01
Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.
Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David
2012-01-01
Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2′ pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO− reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2′ pocket, and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding. PMID:22894131
Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets
Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude
2017-01-01
Abstract We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA–ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9). PMID:28570103
Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J
2009-01-01
Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.
Qiu, Chaoying; Wang, Yong; Teng, Yinglai; Zhao, Mouming
2017-04-15
Gliadin is a main composition of wheat storage protein with unique characteristics. Polyphenol with health benefits tends to form complex with protein. In this study, glycosylation of deamidated wheat gliadin (gliadin) was carried out. Fluorescence quenching was applied to evaluate their binding mechanisms with resveratrol. Results showed that glycosylation could increase the solubility and decrease the surface hydrophobicity of gliadin. Both gliadin and glycosylated gliadin have strong affinity with resveratrol. The thermodynamic parameters of binding process indicated that complexation of resveratrol with gliadin was mainly driven by hydrophobic interaction, while by hydrogen bonds with glycosylated gliadin. The hydrosolubility of resveratrol was dramatically increased especially in the presence of glycosylated gliadin. This was consistent with the higher binding constant of glycosylated gliadin with resveratrol. Therefore, gliadin and glycosylated gliadin are both effective to carry resveratrol or other bioactive compounds, and their binding mechanisms are different due to structural difference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Constrained Analysis of Fluorescence Anisotropy Decay:Application to Experimental Protein Dynamics
Feinstein, Efraim; Deikus, Gintaras; Rusinova, Elena; Rachofsky, Edward L.; Ross, J. B. Alexander; Laws, William R.
2003-01-01
Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay. PMID:12524313
Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A
2009-09-01
A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.
Patil, Hemangi; Cho, Kyoung-in; Lee, James; Yang, Yi; Orry, Andrew; Ferreira, Paulo A
2013-03-27
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein-protein and protein-phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBD(n = 1-4)) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure-function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260,000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68
Feracci, Mikael; Foot, Jaelle N.; Grellscheid, Sushma N.; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N. Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C.; Elliott, David J.; Dominguez, Cyril
2016-01-01
Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. PMID:26758068
Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68.
Feracci, Mikael; Foot, Jaelle N; Grellscheid, Sushma N; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C; Elliott, David J; Dominguez, Cyril
2016-01-13
Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.
Volumetrically Derived Thermodynamic Profile of Interactions of Urea with a Native Protein.
Son, Ikbae; Chalikian, Tigran V
2016-11-29
We report the first experimental characterization of the full thermodynamic profile for binding of urea to a native protein. We measured the volumetric parameters of lysozyme at pH 7.0 as a function of urea within a temperature range of 18-45 °C. At neutral pH, lysozyme retains its native conformation between 0 and 8 M urea over the entire range of temperatures studied. Consequently, our measured volumetric properties reflect solely the interactions of urea with the native protein and do not involve contributions from urea-induced conformational transitions. We analyzed our data within the framework of a statistical thermodynamic analytical model in which urea-protein interactions are viewed as solvent exchange in the vicinity of the protein. The analysis produced the equilibrium constant, k, for an elementary reaction of urea-protein binding with a change in standard state free energy (ΔG° = -RT ln k) at each experimental temperature. We used the van't Hoff equation to compute from the temperature dependence of the equilibrium constant, k, changes in enthalpy, ΔH°, and entropy, ΔS°, accompanying binding. The thermodynamic profile of urea-protein interactions, in conjunction with published molecular dynamics simulation results, is consistent with the picture in which urea molecules, being underhydrated in the bulk, form strong, enthalpically favorable interactions with the surface protein groups while paying a high entropic price. We discuss ramifications of our results for providing insights into the combined effects of urea, temperature, and pressure on the conformational preferences of proteins.
Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.
Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka
2015-02-17
Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bolel, Priyanka; Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu
2012-08-30
Formation of ion pair between charged molecule and protein can lead to interesting biochemical phenomena. We report the evolution of thermodynamics of the binding of tartrazine, a negatively charged azo colorant, and serum albumins with salt. The dye binds predominantly electrostatically in low buffer strengths; however, on increasing salt concentration, affinity decreases considerably. The calculated thermodynamic parameters in high salt indicate manifestation of nonelectrostatic interactions, namely, van der Waals force and hydrogen bonding. Site-marker competitive binding studies and docking simulations indicate that the dye binds with HSA in the warfarin site and with BSA at the interface of warfarin and ibuprofen binding sites. The docked poses indicate nearby amino acid positive side chains, which are possibly responsible for electrostatic interaction. Using the Debye-Hückel interionic attraction theory for binding equilibria, it is shown that, for electrostatic binding the calculated free energy change increases linearly with square root of ionic strength. Also UV-vis, fluorescence, CD data indicate a decrease of interaction with salt concentration. This study quantitatively relates how ionic strength modulates the strength of the protein-ligand electrostatic interaction. The binding enthalpy and entropy have been found to compensate one another. The enthalpy-entropy compensation (EEC), general property of weak intermolecular interactions, has been discussed.
NASA Astrophysics Data System (ADS)
Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.
2010-06-01
Fluorescence studies on furosemide (FUR) binding to bovine serum albumin (BSA) showed the existence of three or four binding sites in the tertiary structure of the protein. Two of them are located in subdomain IIA, while the others in subdomains IB and/or IIIA. Furosemide binding in subdomain IB is postulated on the basis of run of Stern-Volmer plot indicating the existence of two populations of tryptophans involved in the interaction with FUR. In turn, the significant participation of tyrosil residues in complex formation leads to the consideration of the subdomain IIIA as furosemide low-affinity binding site. The effect of increasing concentration of fatty acid on FUR binding in all studied binding sites was also investigated and compared with the previous results obtained for human serum albumin (HSA). For BSA the lesser impact of fatty acid on affinity between drug and albumin was observed. This is probably a result of more significant role of tyrosines in the complex formation and different polarity of microenvironment of the fluorophores when compared HSA and BSA. The most distinct differences between FUR-BSA and FUR-HSA binding parameters are observed when third fatty acid molecule is bound with the protein and rotation of domains I and II occurs. However these structural changes mostly affect FUR low affinity binding sites.
Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki
2014-01-01
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Clarke, David J; Northey, Christopher G; Mack, Lynsey A; McNae, Iain W; Alexeev, Dmitriy; Sawyer, Lindsay; Campopiano, Dominic J
2004-11-01
Single-stranded DNA-binding (SSB) proteins stabilize single-stranded DNA, which is exposed by separation of the duplex during DNA replication, recombination and repair. The SSB protein from the hyperthermophile Aquifex aeolicus has been overexpressed in Escherichia coli, purified and characterized and crystals of the full-length protein (147 amino acids; M(r) 17 131.20) have been grown by vapour diffusion from ammonium sulfate pH 7.5 in both the absence and presence of ssDNA [dT(pT)(68)]. All crystals diffract to around 2.9 A resolution and those without bound DNA (native) belong to space group P2(1), with two tetramers in the asymmetric unit and unit-cell parameters a = 80.97, b = 73.40, c = 109.76 A, beta = 95.11 degrees . Crystals containing DNA have unit-cell parameters a = 108.65, b = 108.51, c = 113.24 A and could belong to three closely related space groups (I222, I2(1)2(1)2(1) or I4(1)) with one tetramer in the asymmetric unit. Electrospray mass spectrometry of the crystals confirmed that the protein was intact. Molecular replacement with a truncated E. coli SSB structure has revealed the position of the molecules in the unit cell and refinement of both native and DNA-bound forms is under way.
Goubran-Botros, H; Nanak, E; Abdul Nour, J; Birkenmeir, G; Vijayalakshmi, M A
1992-04-24
Immobilized metal ion affinity electrophoresis (IMA-Elec) is one among the many methods derived from the immobilized metal ion affinity chromatography. Two approaches for incorporating the metal ligand, were studied. One was in the form of insoluble particulate material based on Sepharose 6B and the other in the form of soluble polymer based on polyethylene glycol (PEG) 5000. Both the polymers coupled with iminodiacetate and metallized with copper or zinc were used as ligands, incorporated into soluble agarose as the electrophoretic gel. Several histidine-containing model proteins were studied with both the systems and their metal binding strengths were determined as the dissociation constants, Kd. The results clearly demonstrated that the mechanism of protein recognition by immobilized copper or zinc via the accessible histidyl residues was maintained in the IMA-Elec system. Proteins with increasing numbers of histidine residues showed increasing binding strength (lower Kd values). While this basic mechanism was conserved, the supporting polymers (Sepharose 6B and the PEG 5000) showed significant differences in the metal binding to the protein. The polysaccharide Sepharose 6B enhanced the binding strength compared with PEG 5000. The optimum electrophoretic parameters were determined to be current intensities up to 20 mA and pH ca. 7.0. At pH greater than 8.0, a significant decrease in the affinity was observed, this decrease being greater with PEG 5000 than Sepharose 6B as supporting material.
Prediction of binding hot spot residues by using structural and evolutionary parameters.
Higa, Roberto Hiroshi; Tozzi, Clésio Luis
2009-07-01
In this work, we present a method for predicting hot spot residues by using a set of structural and evolutionary parameters. Unlike previous studies, we use a set of parameters which do not depend on the structure of the protein in complex, so that the predictor can also be used when the interface region is unknown. Despite the fact that no information concerning proteins in complex is used for prediction, the application of the method to a compiled dataset described in the literature achieved a performance of 60.4%, as measured by F-Measure, corresponding to a recall of 78.1% and a precision of 49.5%. This result is higher than those reported by previous studies using the same data set.
Prediction Of pKa From Chemical Structure Using Free And Open-Source Tools
The ionization state of a chemical, reflected in pKa values, affects lipophilicity, solubility, protein binding and the ability of a chemical to cross the plasma membrane. These properties govern the pharmacokinetic parameters such as absorption, distribution, metabolism, excreti...
NASA Astrophysics Data System (ADS)
Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric
2016-09-01
The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase
Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N.; Jiang, Hualiang
2013-01-01
Drug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development. PMID:23440190
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase.
Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N; Jiang, Hualiang
2013-03-12
Drug-target residence time (t = 1/k(off), where k(off) is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, k(off) and activation free energy of dissociation (ΔG(off)≠). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer's disease drug (-)-Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (-)-Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
Tan, Jing; Song, Xinmi; Fu, Xiaobin; Wu, Fan; Hu, Fuliang; Li, Hongliang
2018-08-05
In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH < 0, ΔS > 0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K A ) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. Copyright © 2018 Elsevier B.V. All rights reserved.
The ClusPro web server for protein-protein docking
Kozakov, Dima; Hall, David R.; Xia, Bing; Porter, Kathryn A.; Padhorny, Dzmitry; Yueh, Christine; Beglov, Dmitri; Vajda, Sandor
2017-01-01
The ClusPro server (https://cluspro.org) is a widely used tool for protein-protein docking. The server provides a simple home page for basic use, requiring only two files in Protein Data Bank format. However, ClusPro also offers a number of advanced options to modify the search that include the removal of unstructured protein regions, applying attraction or repulsion, accounting for pairwise distance restraints, constructing homo-multimers, considering small angle X-ray scattering (SAXS) data, and finding heparin binding sites. Six different energy functions can be used depending on the type of proteins. Docking with each energy parameter set results in ten models defined by centers of highly populated clusters of low energy docked structures. This protocol describes the use of the various options, the construction of auxiliary restraints files, the selection of the energy parameters, and the analysis of the results. Although the server is heavily used, runs are generally completed in < 4 hours. PMID:28079879
Virtual screening using molecular simulations.
Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu
2011-06-01
Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.
Okada, Kyle S; Lee, Youngsoo
2017-07-01
The effects of formulation and processing parameters on sodium availability in a model lipid/protein-based emulsion gel were studied for purposes of sodium reduction. Heat-set model gels were prepared with varying levels of protein, lipid, and NaCl contents and high pressure homogenization treatments. Single quantum and double quantum-filtered 23 Na NMR spectroscopy experiments were used to characterize sodium mobility, structural order around "bound" (restricted mobility) sodium, and sodium binding, which have been correlated to saltiness perception in food systems previously. Total sodium mobility was lower in gels with higher protein or fat content, and was not affected by changes in homogenization pressure. The gels with increased protein, fat, or homogenization pressure had increased structure surrounding "bound" sodium and more relative "bound" sodium due to increased interfacial protein interactions. The data obtained in this study provide information on factors affecting sodium availability, which can be applied towards sodium reduction in lipid/protein-based foods. © 2017 Institute of Food Technologists®.
20180318 - Prediction Of pKa From Chemical Structure Using Free And Open-Source Tools (ACS Spring)
The ionization state of a chemical, reflected in pKa values, affects lipophilicity, solubility, protein binding and the ability of a chemical to cross the plasma membrane. These properties govern the pharmacokinetic parameters such as absorption, distribution, metabolism, excreti...
Cutsforth, G A; Koppaka, V; Krishnaswamy, S; Wu, J R; Mann, K G; Lentz, B R
1996-01-01
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule. Images FIGURE 5 PMID:8744332
Kohout, Susy C.; Corbalán-García, Senena; Gómez-Fernández, Juan C.; Falke, Joseph J.
2013-01-01
The C2 domain is a conserved signaling motif that triggers membrane docking in a Ca2+-dependent manner, but the membrane docking surfaces of many C2 domains have not yet been identified. Two extreme models can be proposed for the docking of the protein kinase Cα (PKCα) C2 domain to membranes. In the parallel model, the membrane-docking surface includes the Ca2+ binding loops and an anion binding site on β-strands 3–4, such that the β-strands are oriented parallel to the membrane. In the perpendicular model, the docking surface is localized to the Ca2+ binding loops and the β-strands are oriented perpendicular to the membrane surface. The present study utilizes site-directed fluorescence and spin-labeling to map out the membrane docking surface of the PKCα C2 domain. Single cysteine residues were engineered into 18 locations scattered over all regions of the protein surface, and were used as attachment sites for spectroscopic probes. The environmentally sensitive fluorescein probe identified positions where Ca2+ activation or membrane docking trigger measurable fluorescence changes. Ca2+ binding was found to initiate a global conformational change, while membrane docking triggered the largest fluorescein environmental changes at labeling positions on the three Ca2+ binding loops (CBL), thereby localizing these loops to the membrane docking surface. Complementary EPR power saturation measurements were carried out using a nitroxide spin probe to determine a membrane depth parameter, Φ, for each spin-labeled mutant. Positive membrane depth parameters indicative of membrane insertion were found for three positions, all located on the Ca2+ binding loops: N189 on CBL 1, and both R249 and R252 on CBL 3. In addition, EPR power saturation revealed that five positions near the anion binding site are partially protected from collisions with an aqueous paramagnetic probe, indicating that the anion binding site lies at or near the surface of the headgroup layer. Together, the fluorescence and EPR results indicate that the Ca2+ first and third Ca2+ binding loops insert directly into the lipid headgroup region of the membrane, and that the anion binding site on β-strands 3–4 lies near the headgroups. The data support a model in which the β-strands are tilted toward the parallel orientation relative to the membrane surface. PMID:12564928
Al cation induces aggregation of serum proteins.
Chanphai, P; Kreplak, L; Tajmir-Riahi, H A
2017-07-15
Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.
Aamir, Mohd; Singh, Vinay K.; Meena, Mukesh; Upadhyay, Ram S.; Gupta, Vijai K.; Singh, Surendra
2017-01-01
The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial flanking sequences also get involved in binding. In contrast, the SlWRKY3 made interaction with RKYGQK along with the residues from zinc finger motifs. Protein-protein interactions studies were done using STRING version 10.0 to explore all the possible protein partners involved in associative functional interaction networks. The Gene ontology enrichment analysis revealed the functional dimension and characterized the identified WRKYs based on their functional annotation. PMID:28611792
Wei, Qing; La, David; Kihara, Daisuke
2017-01-01
Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .
Folding-unfolding transitions of Rv3221c on the pressure-temperature plane
NASA Astrophysics Data System (ADS)
Somkuti, Judit; Jain, Sriyans; Ramachandran, Srinivasan; ászló Smeller, L.
2013-06-01
Rv3221c is a biotin-binding protein found in Mycobacterium tuberculosis. It has been reported that an elevated temperature is needed for it to adopt a folded conformation. We determined the complete pressure-temperature phase diagram, and determined the thermodynamical parameters of the denaturation. The phase diagram follows well the Hawley theory. The secondary structure of the protein was found to contain predominantly beta sheet. The pressure unfolding was partially reversible, resulting in pressure-sensitive aggregates, besides the correctly refolded and biotin-bound fraction of proteins.
Oshiro, Satoshi; Honda, Shinya
2014-04-18
Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.
Sun, Hanwen; He, Pan
2009-06-01
The binding of doxycycline to HSA under simulated physiological conditions (pH 7.4, 67 mM phosphate, I=0.17, drug concentration 100 microM, HSA concentration up to 475 microM, 36.5 degrees C) was studied by CE-frontal analysis. The number of primary binding sites, binding constant and physiological protein-binding percentage were 1.9, 1.51 x 10(3) M(-1) and 59.80%, respectively. In addition, the thermodynamic parameters including enthalpy change (DeltaH), entropy change (DeltaS) and free energy change (DeltaG) of the reaction were obtained in order to characterize the acting forces between doxycycline and HSA. Furthermore, to better understand the nature of doxycycline-HSA binding and to get information about potential interaction with other drugs, displacement experiments were performed. The results showed that doxycycline binds at site II of HSA.
Molecular modelling study of changes induced by netropsin binding to nucleosome core particles.
Pérez, J J; Portugal, J
1990-01-01
It is well known that certain sequence-dependent modulators in structure appear to determine the rotational positioning of DNA on the nucleosome core particle. That preference is rather weak and could be modified by some ligands as netropsin, a minor-groove binding antibiotic. We have undertaken a molecular modelling approach to calculate the relative energy of interaction between a DNA molecule and the protein core particle. The histones particle is considered as a distribution of positive charges on the protein surface that interacts with the DNA molecule. The molecular electrostatic potentials for the DNA, simulated as a discontinuous cylinder, were calculated using the values for all the base pairs. Computing these parameters, we calculated the relative energy of interaction and the more stable rotational setting of DNA. The binding of four molecules of netropsin to this model showed that a new minimum of energy is obtained when the DNA turns toward the protein surface by about 180 degrees, so a new energetically favoured structure appears where netropsin binding sites are located facing toward the histones surface. The effect of netropsin could be explained in terms of an induced change in the phasing of DNA on the core particle. The induced rotation is considered to optimize non-bonded contacts between the netropsin molecules and the DNA backbone. PMID:2165249
Ohvo-Rekilä, Henna; Mattjus, Peter
2011-01-01
The glycolipid transfer protein (GLTP) is a protein capable of binding and transferring glycolipids. GLTP is cytosolic and it can interact through its FFAT-like (two phenylalanines in an acidic tract) motif with proteins localized on the surface of the endoplasmic reticulum. Previous in vitro work with GLTP has focused mainly on the complete transfer reaction of the protein, that is, binding and subsequent removal of the glycolipid from the donor membrane, transfer through the aqueous environment, and the final release of the glycolipid to an acceptor membrane. Using bilayer vesicles and surface plasmon resonance spectroscopy, we have now, for the first time, analyzed the binding and lipid removal capacity of GLTP with a completely label-free technique. This technique is focused on the initial steps in GLTP-mediated transfer and the parameters affecting these steps can be more precisely determined. We used the new approach for detailed structure-function studies of GLTP by examining the glycolipid transfer capacity of specific GLTP tryptophan mutants. Tryptophan 96 is crucial for the transfer activity of the protein and tryptophan 142 is an important part of the proteins membrane interacting domain. Further, we varied the composition of the used lipid vesicles and gained information on the effect of membrane properties on GLTP activity. GLTP prefers to interact with more tightly packed membranes, although GLTP-mediated transfer is faster from more fluid membranes. This technique is very useful for the study of membrane-protein interactions and lipid-transfer rates and it can easily be adapted to other membrane-interacting proteins. Copyright © 2010 Elsevier B.V. All rights reserved.
Escher, Beate I; Cowan-Ellsberry, Christina E; Dyer, Scott; Embry, Michelle R; Erhardt, Susan; Halder, Marlies; Kwon, Jung-Hwan; Johanning, Karla; Oosterwijk, Mattheus T T; Rutishauser, Sibylle; Segner, Helmut; Nichols, John
2011-07-18
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity. © 2011 American Chemical Society
Functional assignment to JEV proteins using SVM.
Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep
2008-01-01
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).
Functional assignment to JEV proteins using SVM
Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep
2008-01-01
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658
Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef
2014-09-01
Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.
Parameterization of Ca+2-protein interactions for molecular dynamics simulations.
Project, Elad; Nachliel, Esther; Gutman, Menachem
2008-05-01
Molecular dynamics simulations of Ca+2 ions near protein were performed with three force fields: GROMOS96, OPLS-AA, and CHARMM22. The simulations reveal major, force-field dependent, inconsistencies in the interaction between the Ca+2 ions with the protein. The variations are attributed to the nonbonded parameterizations of the Ca+2-carboxylates interactions. The simulations results were compared to experimental data, using the Ca+2-HCOO- equilibrium as a model. The OPLS-AA force field grossly overestimates the binding affinity of the Ca+2 ions to the carboxylate whereas the GROMOS96 and CHARMM22 force fields underestimate the stability of the complex. Optimization of the Lennard-Jones parameters for the Ca+2-carboxylate interactions were carried out, yielding new parameters which reproduce experimental data. Copyright 2007 Wiley Periodicals, Inc.
Prediction of binding hot spot residues by using structural and evolutionary parameters
2009-01-01
In this work, we present a method for predicting hot spot residues by using a set of structural and evolutionary parameters. Unlike previous studies, we use a set of parameters which do not depend on the structure of the protein in complex, so that the predictor can also be used when the interface region is unknown. Despite the fact that no information concerning proteins in complex is used for prediction, the application of the method to a compiled dataset described in the literature achieved a performance of 60.4%, as measured by F-Measure, corresponding to a recall of 78.1% and a precision of 49.5%. This result is higher than those reported by previous studies using the same data set. PMID:21637529
NASA Astrophysics Data System (ADS)
Dahiya, Vandana; Pal, Samanwita
2018-05-01
Serum Albumin is a major carrier protein and its binding with drugs is important to examine the change in pharmacokinetic properties due to interaction amongst drugs. In the present study we have attempted to understand the relevant drug-drug interaction (DDI) between two common drugs viz, paracetamol, an anti-inflammatory and fluorouracil, an anti-cancer drug. In-vitro spectroscopic methods viz., fluorescence quenching and UV-vis absorption have been employed for the drug-bovine serum albumin (BSA) complexes studies. The binding parameters and quenching constants have been determined for BSA-Paracetamol and BSA-5Fluorouracil complex according to literature models. It is also predicted from the quenching studies that BSA-5Fluorouracil is a stronger complex than BSA-Paracetamol. On the other hand paracetamol can alter binding affinity of 5Fluorouracil towards BSA. Hence it becomes clear that although the drugs could be administered simultaneously but they influence each other's binding with protein in a concentration dependent fashion. Further these results also indicate that availability of free 5Fluorouracil in blood may increase in presence of paracetamol.
21 CFR 866.5765 - Retinol-binding protein immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...
21 CFR 866.5765 - Retinol-binding protein immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...
21 CFR 866.5765 - Retinol-binding protein immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...
21 CFR 866.5765 - Retinol-binding protein immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...
Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A
2016-03-01
Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David
2015-10-01
The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.
On the relationship between NMR-derived amide order parameters and protein backbone entropy changes
Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua
2015-01-01
Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366
On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.
Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua
2015-05-01
Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.
Denari, Daniela; Ceballos, Nora R
2006-07-01
Glucocorticoids (GC) are the hormonal mediators of stress. In mammals, high levels of GC have negative effects on reproductive physiology. For instance, GC can inhibit testicular testosterone synthesis by acting via glucocorticoid receptors (GR), the extent of the inhibition being dependent on GC levels. However, the effect of GC on testicular function and even the presence of GR in amphibians are still unclear. The purpose of this work was to characterise testicular cytosolic GR in Bufo arenarum, determining the seasonal changes in its binding parameters as well as the intratesticular localisation. The binding assays were performed in testis cytosol with [3H]dexamethasone (DEX) and [3H]corticosterone (CORT). Binding kinetics of DEX and CORT fitted to a one-site model. Results were expressed as means +/- standard error. Apparent number of binding sites (Bapp) was similar for both steroids (Bapp DEX = 352.53 +/- 72.08 fmol/mg protein; Bapp CORT = 454.24 +/- 134.97 fmol/mg protein) suggesting that both hormones bind to the same site. Competition studies with different steroids showed that the order of displacement of [3H]DEX and [3H]CORT specific binding is: DEX approximately RU486 approximately deoxycorticosterone (DOC) > CORT > aldosterone > RU28362 > progesterone > 11-dehydroCORT. The affinity of GR for DEX (Kd = 11.2 +/- 1.5 nM) remained constant throughout the year while circulating CORT clearly increased during the reproductive season. Therefore, testis sensitivity to GC action would depend mainly on inactivating mechanisms (11beta-hydroxysteroid dehydrogenase type 2) and CORT plasma levels. Since total and free CORT are higher in the reproductive than in the non-reproductive period, the magnitude of GC actions could be higher during the breeding season. The intratesticular localisation of the GR was determined after separation of cells by a Percoll density gradient followed by binding assays in each fraction. DEX binds to two different fractions corresponding to Leydig and Sertoli cells. In conclusion, in the testis of B. arenarum GC could regulate the function of both cellular types particularly during breeding when CORT reaches the highest plasma concentration.
McBride, Devin W.; Rodgers, Victor G. J.
2013-01-01
The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733
Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro
2014-09-01
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Forest, Valérie; Pourchez, Jérémie
2017-01-01
The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.
Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji
2012-01-01
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.
A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders
Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba
2012-01-01
Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637
Direct protein detection with a nano-interdigitated array gate MOSFET.
Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent
2009-08-15
A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.
Sachleben, Joseph R.; McElroy, Craig A.; Gollnick, Paul; Foster, Mark P.
2010-01-01
Anti-TRAP (AT) is a small zinc-binding protein that regulates tryptophan biosynthesis in Bacillus subtilis by binding to tryptophan-bound trp RNA-binding attenuation protein (TRAP), thereby preventing it from binding RNA, and allowing transcription and translation of the trpEDCFBA operon. Crystallographic and sedimentation studies have shown that AT can homooligomerize to form a dodecamer, AT12, composed of a tetramer of trimers, AT3. Structural and biochemical studies suggest that only trimeric AT is active for binding to TRAP. Our chromatographic and spectroscopic data revealed that a large fraction of recombinantly overexpressed AT retains the N-formyl group (fAT), presumably due to incomplete N-formyl-methionine processing by peptide deformylase. Hydrodynamic parameters from NMR relaxation and diffusion measurements showed that fAT is exclusively trimeric (AT3), while (deformylated) AT exhibits slow exchange between both trimeric and dodecameric forms. We examined this equilibrium using NMR spectroscopy and found that oligomerization of active AT3 to form inactive AT12 is linked to protonation of the amino terminus. Global analysis of the pH dependence of the trimer-dodecamer equilibrium revealed a near physiological pKa for the N-terminal amine of AT and yielded a pH-dependent oligomerization equilibrium constant. Estimates of excluded volume effects due to molecular crowding suggest the oligomerization equilibrium may be physiologically important. Because deprotonation favors “active” trimeric AT and protonation favors “inactive” dodecameric AT, our findings illuminate a possible mechanism for sensing and responding to changes in cellular pH. PMID:20713740
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu
2013-09-13
Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less
DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks
Tse, Margaret J.; Chu, Brian K.; Roy, Mahua; Read, Elizabeth L.
2015-01-01
Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. PMID:26488666
The IGF-I/IGFBP-3 system in gingival crevicular fluid and dependence on application of fixed force.
Toia, M; Galazzo, R; Maioli, C; Granata, R; Scarlatti, F
2005-12-01
During application of orthodontic force on the tooth, various molecular parameters associated with tissue remodeling are changed. IGF-I is a regulatory protein produced during periodontal regeneration. IGF binding proteins-3 (IGFBP-3), a specific IGF-I binding protein, is the major regulatory factor of IGF-I activity. We tested the hypothesis that changes in the IGF-I/ IGFBP-3 system occur during fixed force application to the tooth and that these changes are detectable in the gingival crevicular fluid (GCF). IGFBP-3 and IGF-I secretion into gingival crevicular fluid (GCF) was analyzed by Western blotting and immunoradiometric assay (IRMA), respectively, in GCF of 6 healthy subjects just prior to and during orthodontics treatment using fixed appliances. We observed a significant time-dependent decrease of IGFBP-3 content in GCF during orthodontic treatment (4 h and 10 days). Reduction in levels of intact, glycosylated 47 kDa form of IGFBP-3 was associated with its degradation and the appearance of intermediate breakdown products. IGF-I levels were significantly increased 4 h after application of orthodontic force, while they were significantly reduced 10 days after the start of treatment. IGFBP-3 secretion into GCF and its molecular structure are modified by the fixed force of orthodontic treatment. Alterations in IGFBP-3 appear to be unrelated to the binding to IGF-I, suggesting an IGF-independent role of this binding protein in tooth movement.
Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.
Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre
2014-12-24
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.
Monoclonal antibodies to human vitamin D-binding protein.
Pierce, E A; Dame, M C; Bouillon, R; Van Baelen, H; DeLuca, H F
1985-01-01
Monoclonal antibodies to vitamin D-binding protein isolated from human serum have been produced. The antibodies obtained have been shown to be specific for human vitamin D-binding protein by three independent assays. The antibodies recognize human vitamin D-binding protein specifically in an enzyme-linked immunosorbent assay. Human vitamin D-binding protein is detected specifically in both pure and crude samples by a radiometric immunosorbent assay (RISA) and by an immunoprecipitation assay. The anti-human vitamin D-binding protein antibodies cross-react with monkey and pig vitamin D-binding protein, but not with vitamin D-binding protein from rat, mouse, or chicken, as determined by the RISA and immunoprecipitation assays. Images PMID:3936035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selezneva, Anna I.; Cavigiolio, Giorgio; Theil, Elizabeth C.
Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe-4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe-4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase.more » The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe-S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P21, with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 {angstrom}, = 92.0{sup o}. Native data sets have been collected from several crystals with resolution extending to 2.8 {angstrom} and the structure has been solved by molecular replacement.« less
Zhang, Jian; Gao, Bo; Chai, Haiting; Ma, Zhiqiang; Yang, Guifu
2016-08-26
DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.
Jiang, Wei; Roux, Benoît
2010-07-01
Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.
Strzelak, Kamil; Rybkowska, Natalia; Wiśniewska, Agnieszka; Koncki, Robert
2017-12-01
The Multicommutated Flow Analysis (MCFA) system for the estimation of clinical iron parameters: Serum Iron (SI), Unsaturated Iron Binding Capacity (UIBC) and Total Iron Binding Capacity (TIBC) has been proposed. The developed MCFA system based on simple photometric detection of iron with chromogenic agent (ferrozine) enables a speciation of transferrin (determination of free and Fe-bound protein) in human serum. The construction of manifold was adapted to the requirements of measurements under changing conditions. In the course of studies, a different effect of proteins on SI and UIBC determination has been proven. That was in turn the reason to perform two kinds of calibration methods. For measurements in acidic medium for SI/holotransferrin determination, the calibration curve method was applied, characterized by limit of determination and limit of quantitation on the level of 3.4 μmol L -1 and 9.1 μmol L -1 , respectively. The determination method for UIBC parameter (related to apotransferrin level) in physiological medium of pH 7.4 forced the use of standard addition method due to the strong influence of proteins on obtaining analytical signals. These two different methodologies, performed in the presented system, enabled the estimation of all three clinical iron/transferrin parameters in human serum samples. TIBC corresponding to total transferrin level was calculated as a sum of SI and UIBC. Copyright © 2017 Elsevier B.V. All rights reserved.
Konuma, Tsuyoshi; Lee, Young-Ho; Goto, Yuji; Sakurai, Kazumasa
2013-01-01
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple-ligand-binding system, determining quantitative parameters such as a dissociation constant (K(d) ) is difficult. Here, we used a method we named CS-PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β-lactoglobulin (βLG) and 1-anilinonaphthalene-8-sulfonate (ANS), which is a multiple-ligand-binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG-ANS complexes for each binding site. In addition, we determined the K(d) values as 3.42 × 10⁻⁴ M² and 2.51 × 10⁻³ M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable K(d) values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS-PCA was confirmed to provide not only the positions and the K(d) values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein-ligand interactions. Copyright © 2012 Wiley Periodicals, Inc.
Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms*
Radnai, László; Rapali, Péter; Hódi, Zsuzsa; Süveges, Dániel; Molnár, Tamás; Kiss, Bence; Bécsi, Bálint; Erdödi, Ferenc; Buday, László; Kardos, József; Kovács, Mihály; Nyitray, László
2010-01-01
LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with Kd values of 9 and 40 μm, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: Kd values of 37 and 3.5 nm for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent Kd value (3 μm). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network. PMID:20889982
Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E
2016-11-01
Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.
[Effect of aceclofenac on thyroid hormone binding and thyroid function].
Nadler, K; Buchinger, W; Semlitsch, G; Pongratz, R; Rainer, F
2000-01-01
Influences of non-steroidal anti-inflammatory drugs (NSAID) on concentrations of thyroid hormones are known for a long time. These effects could be explained with interference between NSAIDs and thyroid hormone binding. We investigated the effects of a single dose of aceclofenac on thyroid function and thyroid hormone binding in 18 healthy volunteers. Serum levels of free thyroid hormones (FT3, FT4) and thyrotropin (TSH) were measured with commercial available kids and thyroid hormone binding was estimated with a specially modified horizontal argarose-gel-electrophoresis prior to and 2 hours after receiving a single dose of aceclofenac. We found a significant decrease in T3 binding on TBG and a significant increase of albumin-bound T3. All other investigated thyroid hormone binding parameters, FT3 and FT4, showed no significant changes. We conclude that aceclofenac leads to a significant redistribution of T3 protein binding. These effects seem to be explained by T3 displacement from TBG induced by aceclofenac.
Kashefolgheta, Sadra; Vila Verde, Ana
2017-08-09
We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.
Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki
2017-01-01
Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. PMID:27927989
Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki
2017-01-20
Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
Gapsys, Vytautas; de Groot, Bert L
2017-12-12
Nucleotide-sequence-dependent interactions between proteins and DNA are responsible for a wide range of gene regulatory functions. Accurate and generalizable methods to evaluate the strength of protein-DNA binding have long been sought. While numerous computational approaches have been developed, most of them require fitting parameters to experimental data to a certain degree, e.g., machine learning algorithms or knowledge-based statistical potentials. Molecular-dynamics-based free energy calculations offer a robust, system-independent, first-principles-based method to calculate free energy differences upon nucleotide mutation. We present an automated procedure to set up alchemical MD-based calculations to evaluate free energy changes occurring as the result of a nucleotide mutation in DNA. We used these methods to perform a large-scale mutation scan comprising 397 nucleotide mutation cases in 16 protein-DNA complexes. The obtained prediction accuracy reaches 5.6 kJ/mol average unsigned deviation from experiment with a correlation coefficient of 0.57 with respect to the experimentally measured free energies. Overall, the first-principles-based approach performed on par with the molecular modeling approaches Rosetta and FoldX. Subsequently, we utilized the MD-based free energy calculations to construct protein-DNA binding profiles for the zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally determined binding profiles. The software automating the structure and topology setup for alchemical calculations is a part of the pmx package; the utilities have also been made available online at http://pmx.mpibpc.mpg.de/dna_webserver.html .
Gokara, Mahesh; Narayana, Vidadala V; Sadarangani, Vineet; Chowdhury, Shatabdi Roy; Varkala, Sreelaxmi; Ramachary, Dhevalapally B; Subramanyam, Rajagopal
2017-08-01
In this study, molecular binding affinity was investigated for Nefopam analogues (NFs), a functionalized benzoxazocine, with human serum albumin (HSA), a major transport protein in the blood. Its binding affinity and concomitant changes in its conformation, binding site and simulations were also studied. Fluorescence data revealed that the fluorescence quenching of HSA upon binding of NFs analogues is based on a static mechanism. The three analogues of NFs binding constants (K A ) are in the order of NF3 > NF2 > NF1 with values of 1.53 ± .057 × 10 4 , 2.16 ± .071 × 10 4 and 3.6 ± .102 × 10 5 M -1 , respectively. Concurrently, thermodynamic parameters indicate that the binding process was spontaneous, and the complexes were stabilized mostly by hydrophobic interactions, except for NF2 has one hydrogen bond stabilizes it along with hydrophobic interactions. Circular dichroism (CD) studies revealed that there is a decrease in α-helix with an increase in β-sheets and random coils signifying partial unfolding of the protein upon binding of NFs, which might be due to the formation of NFs-HSA complexes. Further, molecular docking studies showed that NF1, NF2 and NF3 bound to subdomains IIIA, IB and IIA through hydrophobic interactions. However, NF1 have additionally formed a single hydrogen bond with LYS 413. Furthermore, molecular simulations unveiled that NFs binding was in support with the structural perturbation observed in CD, which is evident from the root mean square deviation and R g fluctuations. We hope our insights will provide ample scope for engineering new drugs based on the resemblances with NFs for enhanced efficacy with HSA.
Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus
Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji
2012-01-01
Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597
Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response
USDA-ARS?s Scientific Manuscript database
Transcription factors C-repeat/dehydration-responsive element binding proteins (CBF/DREB) play an important role in plant response to abiotic stresses. Over-expression of various CBF/DREB genes in diverse plants have been reported, but inconsistency of gene donor, recipient genus, parameters used i...
Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua
2014-10-01
Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.
Campos Moreno, Eduardo; Merino Sanjuán, Matilde; Merino, Virginia; Nácher, Amparo; Martín Algarra, Rafael V; Casabó, Vicente G
2007-02-01
The objective of this paper was to characterize the disposition phase of AM in rats, after different high doses and modalities of i.v. administration. Three fitting programs, WINNONLIN, ADAPT II and NONMEM were employed. The two-stage fitting methods led to different results, none of which can adequately explain amiodarone's behaviour, although a great amount of data per subject is available. The non-linear mixed effect modelling approach allows satisfactory estimation of population pharmacokinetic parameters, and their respective variability. The best model to define the AM pharmacokinetic profile is a two-compartment model, with saturable and dynamic plasma protein binding and linear tissular depot dynamic binding. These results indicate that peripheral tissues act as depots, causing an important fall in AM plasma levels in the first moment after dosing. Later, the return of the drug from these depots causes a slow increase in serum concentration whenever the dose is reduced.
Insights into in vitro binding of parecoxib to human serum albumin by spectroscopic methods.
Shang, Shujun; Liu, Qingling; Gao, Jiandong; Zhu, Yulin; Liu, Jingying; Wang, Kaiyan; Shao, Wei; Zhang, Shudong
2014-10-01
Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three-dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern-Volmer quenching constants K(SV) and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 10(4) M(-1) at 298 K. It can be seen from far-UV CD spectra that the α-helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giulliani, S. E.; Frank, A. E.; Collart, F. R.
2008-12-08
We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity andmore » to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families.« less
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
Ahluwalia, Arti; De Rossi, Danilo; Giusto, Giuseppe; Chen, Oren; Papper, Vladislav; Likhtenshtein, Gertz I
2002-06-15
A fluorescent-photochrome method of quantifying the orientation and surface density of solid phase antibodies is described. The method is based on measurements of quenching and rates of cis-trans photoisomerization and photodestruction of a stilbene-labeled hapten by a quencher in solution. These experimental parameters enable a quantitative description of the order of binding sites of antibodies immobilized on a surface and can be used to characterize the microviscosity and steric hindrance in the vicinity of the binding site. Furthermore, a theoretical method for the determination of the depth of immersion of the fluorescent label in a two-phase system was developed. The model exploits the concept of dynamic interactions and is based on the empirical dependence of parameters of static exchange interactions on distances between exchangeable centers. In the present work, anti-dinitrophenyl (DNP) antibodies and stilbene-labeled DNP were used to investigate three different protein immobilization methods: physical adsorption, covalent binding, and the Langmuir-Blodgett technique. Copyright 2002 Elsevier Science (USA).
dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ling; Xiong, Yi; Gao, Hongyun
Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less
dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions
Liu, Ling; Xiong, Yi; Gao, Hongyun; ...
2018-04-02
Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less
Stern, M; Gellermann, B
1988-01-01
To study maturational changes of food protein and lectin binding to rat small intestinal microvillus membranes (MVM), MVM were prepared from newborn and adult animals by a modified CaCl2 precipitation technique. Radiolabeled cow's milk proteins [alpha-lactalbumin, alpha-casein, beta-lactoglobulin, bovine serum albumin (BSA)] and the lectin concanavalin A (Con A) were used for incubations. Binding assays were done using miniature ultracentrifugation for separation of unbound material. Binding of Con A to MVM from newborn and adult rats was strong, specific, and saturable. Binding of Con A was inhibited by cold Con A and by the sugar ligand polymer mannan. Adult MVM bound more Con A than newborn preparations. Unlike Con A, binding of cow's milk proteins by MVM was weak, nonspecific, and noninhibitable. Newborn MVM bound more cow's milk proteins than adult controls. This was true for all the proteins tested (p less than 0.001). Binding rose with decreased molecular weight of cow's milk proteins, but molecular weight was not the only determining factor for binding. Trypsin treatment of MVM caused a marked increase of BSA binding in adult but not in newborn preparations. This finding indicated the importance of protein components of MVM for cow's milk protein binding. Maturational changes in protein-lipid interactions and membrane fluidity possibly influence nonspecific cow's milk protein binding to MVM. Differences in binding between newborns and adults were not directly related to maturational shifts in membrane glycosylation that are indicated by differential Con A binding. Increased cow's milk protein binding in newborn individuals might increase the potential risk to develop an adverse reaction to food proteins.
Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.
Miao, Yinglong; McCammon, J Andrew
2018-03-20
Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.
Multivariate Analysis of Conformational Changes Induced by Macromolecular Interactions
NASA Astrophysics Data System (ADS)
Mitra, Indranil; Alexov, Emil
2009-11-01
Understanding protein-protein binding and associated conformational changes is critical for both understanding thermodynamics of protein interactions and successful drug discovery. Our study focuses on computational analysis of plausible correlations between induced conformational changes and set of biophysical characteristics of interacting monomers. It was done by comparing 3D structures of unbound and bound monomers to calculate the RMSD which is used as measure of the structural changed induced by the binding. We correlate RMSD with volumetric and interfacial charge of the monomers, the amino acid composition, the energy of binding, and type of amino acids at the interface. as predictors. The data set was analyzed with SVM in R & SPSS which is trained on a combination of a new robust evolutionary conservation signal with the monomeric properties to predict the induced RMSD. The goal of this study is to undergo parametric tests and heirchiacal cluster and discriminant multivariate analysis to find key predictors which will be used to develop algorithm to predict the magnitude of conformational changes provided by the structure of interacting monomers. Results indicate that the most promising predictor is the net charge of the monomers, however, other parameters as the type of amino acids at the interface have significant contribution as well.
NASA Astrophysics Data System (ADS)
Abdelhameed, Ali Saber; Ajmal, Mohammad Rehan; Ponnusamy, Kalaiarasan; Subbarao, Naidu; Khan, Rizwan Hasan
2016-07-01
A comprehensive study of the interaction of the newly approved tyrosine kinase inhibitor, Nintedanib (NTB) and Alpha-1 Acid Glycoprotein (AAG) has been carried out by utilizing UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, dynamic light scattering and molecular docking techniques. The obtained results showed enhancement of the UV-Vis peak of the protein upon binding to NTB with the fluorescence intensity of AAG is being quenched by NTB via the formation of ground state complex (i.e. Static quenching). Forster distance (Ro) obtained from fluorescence resonance energy transfer (FRET) is found to be 2.3 nm. The calculated binding parameters from the modified Stern-Volmer equation showed that NTB binds to AAG with a binding constant in the order of 103. Conformational alteration of the protein upon its binding to NTB was confirmed by the circular dichroism. Dynamic light scattering results showed that the binding interaction of NTB leads to the reduction in hydrodynamic radii of AAG. Dynamic molecular docking results showed that the NTB fits into the central binding cavity in AAG and hydrophobic interaction played the key role in the binding process also the docking studies were performed with methotrexate and clofarabine drugs to look into the common binding regions of these drugs on AAG molecule, it was found that five amino acid residues namely Phe 113, Arg 89, Tyr 126, Phe 48 and Glu 63 were common among the binding regions of three studied drugs this phenomenon of overlapping binding regions may influence the drug transport by the carrier molecule in turn affecting the metabolism of the drug and treatment outcome.
On optima: the case of myoglobin-facilitated oxygen diffusion.
Wittenberg, Jonathan B
2007-08-15
The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.
A tool for calculating binding-site residues on proteins from PDB structures.
Hu, Jing; Yan, Changhui
2009-08-03
In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.
Interaction entropy for protein-protein binding
NASA Astrophysics Data System (ADS)
Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.
2017-03-01
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Interaction entropy for protein-protein binding.
Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H
2017-03-28
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C
2002-02-22
Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.
The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...
Effects of salts on protein-surface interactions: applications for column chromatography.
Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu
2007-07-01
Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.
Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies
NASA Astrophysics Data System (ADS)
Śliwińska-Hill, Urszula
2017-02-01
Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph + CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 105 M- 1. The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn2 + and Ca2 + strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.
Koulgi, Shruti; Achalere, Archana; Sonavane, Uddhavesh; Joshi, Rajendra
2015-01-01
The tp53 gene is found to be mutated in 50% of all the cancers. The p53 protein, a product of tp53 gene, is a multi-domain protein. It consists of a core DNA binding domain (DBD) which is responsible for its binding and transcription of downstream target genes. The mutations in p53 protein are responsible for creating cancerous conditions and are found to be occurring at a high frequency in the DBD region of p53. Some of these mutations are also known to be temperature sensitive (ts) in nature. They are known to exhibit partial or strong binding with DNA in the temperature range (298–306 K). Whereas, at 310 K and above they show complete loss in binding. We have analyzed the changes in binding and conformational behavior at 300 K and 310 K for three of the ts-mutants viz., V143A, R249S and R175H. QM-MM simulations have been performed on the wild type and the above mentioned ts-mutants for 30 ns each. The optimal estimate of free energy of binding for a particular number of interface hydrogen bonds was calculated using the maximum likelihood method as described by Chodera et. al (2007). This parameter has been observed to be able to mimic the binding affinity of the p53 ts-mutants at 300 K and 310 K. Thus the correlation between MM-GBSA free energy of binding and hydrogen bonds formed by the interface residues between p53 and DNA has revealed the temperature dependent nature of these mutants. The role of main chain dihedrals was obtained by performing dihedral principal component analysis (PCA). This analysis, suggests that the conformational variations in the main chain dihedrals (ϕ and ψ) of the p53 ts-mutants may have caused reduction in the overall stability of the protein. The solvent exposure of the side chains of the interface residues were found to hamper the binding of the p53 to the DNA. Solvent Accessible Surface Area (SASA) also proved to be a crucial property in distinguishing the conformers obtained at 300 K and 310 K for the three ts-mutants from the wild type at 300 K. PMID:26579714
Smirnov, Alexey; Zubrienė, Asta; Manakova, Elena; Gražulis, Saulius
2018-01-01
The structure-thermodynamics correlation analysis was performed for a series of fluorine- and chlorine-substituted benzenesulfonamide inhibitors binding to several human carbonic anhydrase (CA) isoforms. The total of 24 crystal structures of 16 inhibitors bound to isoforms CA I, CA II, CA XII, and CA XIII provided the structural information of selective recognition between a compound and CA isoform. The binding thermodynamics of all structures was determined by the analysis of binding-linked protonation events, yielding the intrinsic parameters, i.e., the enthalpy, entropy, and Gibbs energy of binding. Inhibitor binding was compared within structurally similar pairs that differ by para- or meta-substituents enabling to obtain the contributing energies of ligand fragments. The pairs were divided into two groups. First, similar binders—the pairs that keep the same orientation of the benzene ring exhibited classical hydrophobic effect, a less exothermic enthalpy and a more favorable entropy upon addition of the hydrophobic fragments. Second, dissimilar binders—the pairs of binders that demonstrated altered positions of the benzene rings exhibited the non-classical hydrophobic effect, a more favorable enthalpy and variable entropy contribution. A deeper understanding of the energies contributing to the protein-ligand recognition should lead toward the eventual goal of rational drug design where chemical structures of ligands could be designed based on the target protein structure. PMID:29503769
Ballester, Pedro J; Mitchell, John B O
2010-05-01
Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of molecular docking, which in turn is an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterize the complex, which also include parameters fitted to experimental or simulation data and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score's performance was shown to improve dramatically with training set size and hence the future availability of more high-quality structural and interaction data is expected to lead to improved versions of RF-Score. pedro.ballester@ebi.ac.uk; jbom@st-andrews.ac.uk Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Fang, Qing; Wang, Yirun; Hu, Taoying; Liu, Ying
2017-02-01
The interaction of minocyeline (MNC) with extracelluar protein (lysozyme, LYSO) or intracellular protein (bovine hemoglobin, BHb) was investigated using multi-spectral techniques and molecular docking in vitro. Fluorescence studies suggested that MNC quenched LYSO/BHb fluorescence in a static mode with binding constants of 2.01 and 0.26 × 104 L•mol-1 at 298 K, respectively. The LYZO-MNC system was more easily influenced by temperature (298 and 310 K) than the BHb-MNC system. The thermodynamic parameters demonstrated that hydrogen bonds and van der Waals forces played the major role in the binding process. Based on the Förster theory of nonradiative energy transfer, the binding distances between MNC and the inner tryptophan residues of LYSO and BHb were calculated to be 4.34 and 3.49 nm, respectively. Furthermore, circular dichroism spectra (CD), Fourier transforms infrared (FTIR), UV-vis, and three-dimensional fluorescence spectra results indicated the secondary structures of LYSO and BHb were partially destroyed by MNC with the α-helix percentage of LYZO-MNC increased (17.8-28.6%) while that of BHb-MNC was decreased (41.6-39.6%). UV-vis spectral results showed these binding interactions could cause conformational and some micro-environmental changes of LYSO and BHb. In accordance with the results of molecular docking, In LYZO-MNC system, MNC was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located, and in MNC-BHb system, MNC was close to the subunit α 1 of BHb, molecular docking analysis supported the thermodynamic results well. The work contributes to clarify the mechanism of MNC with two proteins at molecular level.
Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie
2015-06-21
Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.
Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.
Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver
2018-06-15
It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.
Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment.
Larsen, Jannik B; Kennard, Celeste; Pedersen, Søren L; Jensen, Knud J; Uline, Mark J; Hatzakis, Nikos S; Stamou, Dimitrios
2017-09-19
Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sogabe, Satoshi; Sakamoto, Kotaro; Kamada, Yusuke
Keap1 constitutively binds to the transcription factor Nrf2 to promote its degradation, resulting in negative modulation of genes involved in cellular protection against oxidative stress. Keap1 is increasingly recognized as an attractive target for treating diseases involving oxidative stress, including cancer, atherosclerosis, diabetes, arthritis, and neurodegeneration. We used phage-display peptide screening to identify a tetrapeptide showing moderate binding affinity, which inhibits the interaction between Nrf2 and Keap1. The tetrapeptide does not include an ETGE motif, which is a commonly found consensus sequence in known peptidic inhibitors. In addition to affinity parameters, IC{sub 50}, K{sub D}, and thermodynamic parameters, the crystalmore » structure of the complex was determined to elucidate the binding conformation. The binding interactions resemble those of known small-molecule inhibitors as opposed to those of substrates and peptidic inhibitors. Although the tetrapeptide's affinity is not very high, our results may help facilitate the designing of small-molecule inhibitors during lead generation in drug discovery. - Highlights: • Keap1 inhibitory tetrapeptide with moderate affinity was discovered. • Crystal structure of the complex showed the unique binding mode. • Structural information gives a valuable insight for design of therapeutic compounds.« less
NASA Astrophysics Data System (ADS)
Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.
2010-01-01
The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.
OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry
2014-01-01
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-01-01
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-07-16
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.
Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction
NASA Astrophysics Data System (ADS)
Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim
2017-09-01
Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.
Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael
2007-01-01
The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952
Moorman, Veronica R.; Valentine, Kathleen G.; Bédard, Sabrina; Kasinath, Vignesh; Dogan, Jakob; Love, Fiona M.; Wand, A. Joshua
2014-01-01
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type GTPase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21 activated kinase 3 (PAK3) is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation were measured to investigate the dynamical changes in activated GMPPCP•Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with a sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately −10 kcal mol−1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs become more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring become more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding. PMID:25109462
Sequence-Based Prediction of RNA-Binding Residues in Proteins.
Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena
2017-01-01
Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.
A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.
Mandal, Paulami; Bardhan, Munmun; Ganguly, Tapan
2010-05-03
UV-vis, time-resolved fluorescence and circular dichroism spectroscopic investigations have been made to reveal the nature of the interactions between xanthene dye Rhodamine 6G and the well known protein hemoglobin. From the analysis of the steady-state and time-resolved fluorescence quenching of Rhodamine 6G in aqueous solutions in presence of hemoglobin, it is revealed that the quenching is static in nature. The primary binding pattern between Rhodamine and hemoglobin has been interpreted as combined effect of hydrophobic association and electrostatic interaction. The binding constants, number of binding sites and thermodynamic parameters at various pH of the environment have been computed. The binding average distance between the energy donor Rhodamine and acceptor hemoglobin has been determined from the Forster's theory. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Walcott, Sam
2013-03-01
Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.
2010-01-01
Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600
Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N
2010-10-27
Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.
Understanding curcumin-induced modulation of protein aggregation.
Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P
2017-07-01
Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.
On the Minimization of Fluctuations in the Response Times of Autoregulatory Gene Networks
Murugan, Rajamanickam; Kreiman, Gabriel
2011-01-01
The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery. PMID:21943410
Torres, Jaume; Maheswari, Uma; Parthasarathy, Krupakar; Ng, Lifang; Liu, Ding Xiang; Gong, Xiandi
2007-01-01
The coronavirus responsible for the severe acute respiratory syndrome (SARS-CoV) contains a small envelope protein, E, with putative involvement in host cell apoptosis and virus morphogenesis. It has been suggested that E protein can form a membrane destabilizing transmembrane (TM) hairpin, or homooligomerize to form a regular TM α-helical bundle. We have shown previously that the topology of the α-helical putative TM domain of E protein (ETM), flanked by two lysine residues at C and N termini to improve solubility, is consistent with a regular TM α-helix, with orientational parameters in lipid bilayers that are consistent with a homopentameric model. Herein, we show that this peptide, reconstituted in lipid bilayers, shows sodium conductance. Channel activity is inhibited by the anti-influenza drug amantadine, which was found to bind our preparation with moderate affinity. Results obtained from single or double mutants indicate that the organization of the transmembrane pore is consistent with our previously reported pentameric α-helical bundle model. PMID:17766393
Fahie, Monifa; Chisholm, Christina; Chen, Min
2015-02-24
Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.
Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin
2016-04-01
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
[Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].
Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang
2013-02-01
To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.
Kolk, A; Jubitz, N; Mengele, K; Mantwill, K; Bissinger, O; Schmitt, M; Kremer, M; Holm, P S
2011-12-06
Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC.
Kolk, A; Jubitz, N; Mengele, K; Mantwill, K; Bissinger, O; Schmitt, M; Kremer, M; Holm, P S
2011-01-01
Background: Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). Methods: We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Results: Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Conclusion: Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC. PMID:22095225
Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin
2007-12-01
Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less
Alternate binding modes for a ubiquitin-SH3 domain interaction studied by NMR spectroscopy.
Korzhnev, Dmitry M; Bezsonova, Irina; Lee, Soyoung; Chalikian, Tigran V; Kay, Lewis E
2009-02-20
Surfaces of many binding domains are plastic, enabling them to interact with multiple targets. An understanding of how they bind and recognize their partners is therefore predicated on characterizing such dynamic interfaces. Yet, these interfaces are difficult to study by standard biophysical techniques that often 'freeze' out conformations or that produce data averaged over an ensemble of conformers. In this study, we used NMR spectroscopy to study the interaction between the C-terminal SH3 domain of CIN85 and ubiquitin that involves the 'classical' binding sites of these proteins. Notably, chemical shift titration data of one target with another and relaxation dispersion data that report on millisecond time scale exchange processes are both well fit to a simple binding model in which free protein is in equilibrium with a single bound conformation. However, dissociation constants and chemical shift differences between free and bound states measured from both classes of experiment are in disagreement. It is shown that the data can be reconciled by considering three-state binding models involving two distinct bound conformations. By combining titration and dispersion data, kinetic and thermodynamic parameters of the three-state binding reaction are obtained along with chemical shifts for each state. A picture emerges in which one bound conformer has increased entropy and enthalpy relative to the second and chemical shifts similar to that of the free state, suggesting a less packed interface. This study provides an example of the interplay between entropy and enthalpy to fine-tune molecular interactions involving the same binding surfaces.
Biophysical Fitness Landscapes for Transcription Factor Binding Sites
Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.
2014-01-01
Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228
Isolation and characterizations of oxalate-binding proteins in the kidney
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roop-ngam, Piyachat; Chaiyarit, Sakdithep; Pongsakul, Nutkridta
Highlights: Black-Right-Pointing-Pointer The first large-scale characterizations of oxalate-binding kidney proteins. Black-Right-Pointing-Pointer The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. Black-Right-Pointing-Pointer 38 forms of 26 unique oxalate-binding kidney proteins were identified. Black-Right-Pointing-Pointer 25/26 (96%) of identified proteins had 'L-x(3,5)-R-x(2)-[AGILPV]' domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) tomore » resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed 'L-x(3,5)-R-x(2)-[AGILPV]' as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone modulators.« less
NASA Astrophysics Data System (ADS)
Chaves, Otávio A.; Jesus, Catarina S. H.; Cruz, Pedro F.; Sant'Anna, Carlos M. R.; Brito, Rui M. M.; Serpa, Carlos
2016-12-01
Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new insights on localized protein (un)folding processes that occur within the nanosecond to microsecond time scale. To generate the fast pH jump needed to fast-trigger a protein conformational event, a photo-triggered acid generator as o-nitrobenzaldehyde (o-NBA) can be conveniently used. In order to detect potential specific or nonspecific interactions between o-NBA and BSA, we have performed ligand-binding studies using fluorescence spectroscopy, saturation transfer difference (STD) NMR, molecular docking and semi-empirical calculations. Fluorescence quenching indicates the formation of a non-fluorescent complex in the ground-state between the fluorophore and the quencher, but o-NBA does not bind much effectively to the protein (Ka 4.34 × 103 M- 1) and thus can be considered a relatively weak binder. The corresponding thermodynamic parameters: ΔG°, ΔS° and ΔH° showed that the binding process is spontaneous and entropy driven. Results of 1H STD-NMR confirm that the photo-acid and BSA interact, and the relative intensities of the signals in the STD spectra show that all o-NBA protons are equally involved in the binding process, which should correspond to a nonspecific interaction. Molecular docking and semi-empirical calculations suggest that the o-NBA binds preferentially to the Trp-212-containing site of BSA (FA7), interacting via hydrogen bonds with Arg-217 and Tyr-149 residues.
Chaves, Otávio A; Jesus, Catarina S H; Cruz, Pedro F; Sant'Anna, Carlos M R; Brito, Rui M M; Serpa, Carlos
2016-12-05
Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new insights on localized protein (un)folding processes that occur within the nanosecond to microsecond time scale. To generate the fast pH jump needed to fast-trigger a protein conformational event, a photo-triggered acid generator as o-nitrobenzaldehyde (o-NBA) can be conveniently used. In order to detect potential specific or nonspecific interactions between o-NBA and BSA, we have performed ligand-binding studies using fluorescence spectroscopy, saturation transfer difference (STD) NMR, molecular docking and semi-empirical calculations. Fluorescence quenching indicates the formation of a non-fluorescent complex in the ground-state between the fluorophore and the quencher, but o-NBA does not bind much effectively to the protein (Ka~4.34×10(3)M(-1)) and thus can be considered a relatively weak binder. The corresponding thermodynamic parameters: ΔG°, ΔS° and ΔH° showed that the binding process is spontaneous and entropy driven. Results of (1)H STD-NMR confirm that the photo-acid and BSA interact, and the relative intensities of the signals in the STD spectra show that all o-NBA protons are equally involved in the binding process, which should correspond to a nonspecific interaction. Molecular docking and semi-empirical calculations suggest that the o-NBA binds preferentially to the Trp-212-containing site of BSA (FA7), interacting via hydrogen bonds with Arg-217 and Tyr-149 residues. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.
Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T.more » maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.« less
Carrizo, Maria E; Irazoqui, Fernando J; Lardone, Ricardo D; Nores, Gustavo A; Curtino, Juan A; Capaldi, Stefano; Perduca, Massimiliano; Monaco, Hugo L
2004-04-01
The lectin from the common edible mushroom Agaricus bisporus (ABL) belongs to the group of proteins that have the property of binding the Thomsen-Friedenreich antigen (T-antigen) selectively and with high affinity, but does not show any sequence similarity to the other proteins that share this property. The ABL sequence is instead similar to those of members of the saline-soluble fungal lectins, a protein family with pesticidal properties. The presence of different isoforms has been reported. It has been found that in order to be able to grow diffraction-quality crystals of the lectin, it is essential to separate the isoforms, which was performed by preparative isoelectric focusing. Using standard procedures, it was possible to crystallize the most basic of the forms by either vapour diffusion or equilibrium dialysis, but attempts to grow crystals of the other more acidic forms were unsuccessful. The ABL crystals belong to the orthorhombic space group C222(1), with unit-cell parameters a = 93.06, b = 98.16, c = 76.38 A, and diffract to a resolution of 2.2 A on a conventional source at room temperature. It is expected that the solution of this structure will yield further valuable information on the differences in the T-antigen-binding folds and will perhaps help to clarify the details of the ligand binding to the protein.
Nucleosome stability and accessibility of its DNA to proteins.
Prinsen, Peter; Schiessel, Helmut
2010-12-01
In this paper we present a theoretical description of the accessibility of nucleosomal DNA to proteins. We reassess the classical analysis of Polach and Widom (1995) who demonstrated that proteins (in their case restriction enzymes) gain access to buried binding sites inside a nucleosome through spontaneous unwrapping of DNA from the protein spool. We introduce a straightforward nucleosome model the predictions of which show good agreement with experimental data. By fitting the model to the data we obtain the values of two quantities: the adsorption energy to the histone octamer per length of DNA and the extra length that the DNA needs to unwrap beyond the binding site of an enzyme before the enzyme can act as effectively as on bare DNA. Our results indicate that the effective binding energy is surprisingly low which suggests that the nucleosomal parameters are tuned such that two large energies, the DNA bending energy and the pure adsorption energy, nearly cancel. This paper is based on a lecture presented at the summer school "DNA and Chromosomes 2009: Physical and Biological Applications". We follow the lecture as closely as possible which is why we spend more time than usual on issues that are already well-known in the field, and why we discuss some well-known results from a different perspective. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W
2016-10-20
RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.
Global Low Frequency Protein Motions in Long-Range Allosteric Signaling
NASA Astrophysics Data System (ADS)
McLeish, Tom; Rogers, Thomas; Townsend, Philip; Burnell, David; Pohl, Ehmke; Wilson, Mark; Cann, Martin; Richards, Shane; Jones, Matthew
2015-03-01
We present a foundational theory for how allostery can occur as a function of low frequency dynamics without a change in protein structure. Elastic inhomogeneities allow entropic ``signalling at a distance.'' Remarkably, many globular proteins display just this class of elastic structure, in particular those that support allosteric binding of substrates (long-range co-operative effects between the binding sites of small molecules). Through multi-scale modelling of global normal modes we demonstrate negative co-operativity between the two cAMP ligands without change to the mean structure. Crucially, the value of the co-operativity is itself controlled by the interactions around a set of third allosteric ``control sites.'' The theory makes key experimental predictions, validated by analysis of variant proteins by a combination of structural biology and isothermal calorimetry. A quantitative description of allostery as a free energy landscape revealed a protein ``design space'' that identified the key inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, by analyzing naturally occurring CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. The methodology establishes the means to engineer allosteric mechanisms that are driven by low frequency dynamics.
NASA Technical Reports Server (NTRS)
Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.
2000-01-01
Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.
Exploiting protein flexibility to predict the location of allosteric sites
2012-01-01
Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors. PMID:23095452
Exploiting protein flexibility to predict the location of allosteric sites.
Panjkovich, Alejandro; Daura, Xavier
2012-10-25
Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein
NASA Astrophysics Data System (ADS)
Filikov, Anton V.; James, Thomas L.
1998-05-01
A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with peptidic and peptidomimetic linkers. The linkers were refined by varying the length and side chains of the linking residues, carrying out BPMC simulations, and evaluation of the binding free energy for the best energy conformation. The dissociation constant of the best ligand designed is estimated to be in the low- to mid-nanomolar range.
Identification of AOSC-binding proteins in neurons
NASA Astrophysics Data System (ADS)
Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu
2008-11-01
Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.
Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404
Jiang, Wei; Luo, Yun; Maragliano, Luca; Roux, Benoît
2012-11-13
An extremely scalable computational strategy is described for calculations of the potential of mean force (PMF) in multidimensions on massively distributed supercomputers. The approach involves coupling thousands of umbrella sampling (US) simulation windows distributed to cover the space of order parameters with a Hamiltonian molecular dynamics replica-exchange (H-REMD) algorithm to enhance the sampling of each simulation. In the present application, US/H-REMD is carried out in a two-dimensional (2D) space and exchanges are attempted alternatively along the two axes corresponding to the two order parameters. The US/H-REMD strategy is implemented on the basis of parallel/parallel multiple copy protocol at the MPI level, and therefore can fully exploit computing power of large-scale supercomputers. Here the novel technique is illustrated using the leadership supercomputer IBM Blue Gene/P with an application to a typical biomolecular calculation of general interest, namely the binding of calcium ions to the small protein Calbindin D9k. The free energy landscape associated with two order parameters, the distance between the ion and its binding pocket and the root-mean-square deviation (rmsd) of the binding pocket relative the crystal structure, was calculated using the US/H-REMD method. The results are then used to estimate the absolute binding free energy of calcium ion to Calbindin D9k. The tests demonstrate that the 2D US/H-REMD scheme greatly accelerates the configurational sampling of the binding pocket, thereby improving the convergence of the potential of mean force calculation.
Detection and characterization of protein interactions in vivo by a simple live-cell imaging method.
Gallego, Oriol; Specht, Tanja; Brach, Thorsten; Kumar, Arun; Gavin, Anne-Claude; Kaksonen, Marko
2013-01-01
Over the last decades there has been an explosion of new methodologies to study protein complexes. However, most of the approaches currently used are based on in vitro assays (e.g. nuclear magnetic resonance, X-ray, electron microscopy, isothermal titration calorimetry etc). The accurate measurement of parameters that define protein complexes in a physiological context has been largely limited due to technical constrains. Here, we present PICT (Protein interactions from Imaging of Complexes after Translocation), a new method that provides a simple fluorescence microscopy readout for the study of protein complexes in living cells. We take advantage of the inducible dimerization of FK506-binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain to translocate protein assemblies to membrane associated anchoring platforms in yeast. In this assay, GFP-tagged prey proteins interacting with the FRB-tagged bait will co-translocate to the FKBP-tagged anchor sites upon addition of rapamycin. The interactions are thus encoded into localization changes and can be detected by fluorescence live-cell imaging under different physiological conditions or upon perturbations. PICT can be automated for high-throughput studies and can be used to quantify dissociation rates of protein complexes in vivo. In this work we have used PICT to analyze protein-protein interactions from three biological pathways in the yeast Saccharomyces cerevisiae: Mitogen-activated protein kinase cascade (Ste5-Ste11-Ste50), exocytosis (exocyst complex) and endocytosis (Ede1-Syp1).
Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim
2017-09-01
To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O 2 , including K D , k on , and k off , of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The K D (NO) and K D (CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Exploring DNA-binding Proteins with In Vivo Chemical Cross-linking and Mass Spectrometry
Qiu, Haibo; Wang, Yinsheng
2009-01-01
DNA-binding proteins are very important constituents of proteomes of all species and play crucial roles in transcription, DNA replication, recombination, repair and other activities associated with DNA. Although a number of DNA-binding proteins have been identified, many proteins involved in gene regulation and DNA repair are likely still unknown because of their dynamic and/or weak interactions with DNA. In this report, we described an approach for the comprehensive identification of DNA-binding proteins with in vivo formaldehyde cross-linking and LC-MS/MS. DNA-binding proteins could be purified via the isolation of DNA-protein complexes and released from the complexes by reversing the cross-linking. By using this method, we were able to identify more than one hundred DNA-binding proteins, such as proteins involved in transcription, gene regulation, DNA replication and repair, and a large number of proteins which are potentially associated with DNA and DNA-binding proteins. This method should be generally applicable to the investigation of other nucleic acid-binding proteins, and hold great potential in the comprehensive study of gene regulation, DNA damage response and repair, as well as many other critical biological processes at proteomic level. PMID:19714816
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demura, T.; Driscoll, W.J.; Lee, Y.C.
1991-01-01
Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less
Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.
Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L
2016-05-10
Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.
Ververis, J; Ku, L; Delafontaine, P
1994-02-01
Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hee-Jung; Gross, Julia C.; Pokutta, Sabine
2009-11-18
Plakoglobin and {beta}-catenin are homologous armadillo repeat proteins found in adherens junctions, where they interact with the cytoplasmic domain of classical cadherins and with {alpha}-catenin. Plakoglobin, but normally not {beta}-catenin, is also a structural constituent of desmosomes, where it binds to the cytoplasmic domains of the desmosomal cadherins, desmogleins and desmocollins. Here, we report structural, biophysical, and biochemical studies aimed at understanding the molecular basis of selective exclusion of {beta}-catenin and {alpha}-catenin from desmosomes. The crystal structure of the plakoglobin armadillo domain bound to phosphorylated E-cadherin shows virtually identical interactions to those observed between {beta}-catenin and E-cadherin. Trypsin sensitivity experimentsmore » indicate that the plakoglobin arm domain by itself is more flexible than that of {beta}-catenin. Binding of plakoglobin and {beta}-catenin to the intracellular regions of E-cadherin, desmoglein1, and desmocollin1 was measured by isothermal titration calorimetry. Plakoglobin and {beta}-catenin bind strongly and with similar thermodynamic parameters to E-cadherin. In contrast, {beta}-catenin binds to desmoglein-1 more weakly than does plakoglobin. {beta}-Catenin and plakoglobin bind with similar weak affinities to desmocollin-1. Full affinity binding of desmoglein-1 requires sequences C-terminal to the region homologous to the catenin-binding domain of classical cadherins. Although pulldown assays suggest that the presence of N- and C-terminal {beta}-catenin 'tails' that flank the armadillo repeat region reduces the affinity for desmosomal cadherins, calorimetric measurements show no significant effects of the tails on binding to the cadherins. Using purified proteins, we show that desmosomal cadherins and {alpha}-catenin compete directly for binding to plakoglobin, consistent with the absence of {alpha}-catenin in desmosomes.« less
Ruddock, L. W.; Freedman, R. B.; Klappa, P.
2000-01-01
Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. PMID:10794419
Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism
Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue
2015-01-01
Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773
Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar
2013-01-01
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.
Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar
2013-01-01
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608
Chakraborty, Chiranjib; Mallick, Bidyut; Sharma, Ashish Ranjan; Sharma, Garima; Jagga, Supriya; Doss, C George Priya; Nam, Ju-Suk; Lee, Sang-Soo
2017-01-01
Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals'+H-bond+desolvo energy (E VHD ) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.
Huang, Yongdong; Bi, Jingxiu; Zhao, Lan; Ma, Guanghui; Su, Zhiguo
2010-12-01
Ion-exchange chromatography (IEC) using commercial ionic absorbents is a widely used technique for protein purification. Protein adsorption onto ion-exchange adsorbents often involves a multipoint adsorption. In IEC of multimeric proteins or "soft" proteins, the intense multipoint binding would make the further desorption difficult, even lead to the destruction of protein structure and the loss of its biological activity. In this paper, DEAE Sepharose FF adsorbents with controllable ligand densities from 0.020 to 0.183 mmol/ml were synthesized, and then the effect of ligand density on the static ion-exchange adsorption of bovine serum albumin (BSA) onto DEAE Sepharose FF was studied by batch adsorption technique. Steric mass-action (SMA) model was employed to analyze the static adsorption behavior. The results showed that the SMA model parameters, equilibrium constant (K(a)), characteristic number of binding sites (υ) and steric factor (σ), increased gradually with ligand density. Thus, it was feasible to regulate BSA multipoint adsorption by modulating the ligand density of ion-exchange adsorbent. Furthermore, IEC of hepatitis B surface antigen (HBsAg) using DEAE Sepharose FF adsorbents with different ligand densities was carried out, and the activity recovery of HBsAg was improved from 42% to 67% when the ligand density was decreased from 0.183 to 0.020 mmol/ml. Taking the activity recovery of HBsAg, the purification factor and the binding capacity into account, DEAE Sepharose FF with a ligand density of 0.041 mmol/ml was most effective for the purification of HBsAg. Such a strategy may also be beneficial for the purification of macromolecules and multimeric proteins. Copyright © 2010 Elsevier Inc. All rights reserved.
Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa.
Nijs, Martine; Creemers, Eva; Cox, Annemie; Janssen, Mia; Vanheusden, Elke; Castro-Sanchez, Yovanna; Thijs, Herbert; Ombelet, Willem
2009-08-01
Mature human spermatozoa have at least three specific hyaluronic acid (HA) binding proteins present on their sperm membrane. These receptors play a role in the acrosome reaction, hyaluronidase activity, hyaluronan-mediated motility and sperm-zona and sperm-oolemmal binding. Cryopreservation of spermatozoa can cause ultrastructural and even molecular damage. The aim of this study was to investigate if HA binding receptors of human spermatozoa remain functional after freeze-thawing. Forty patients were enrolled in the study. Semen samples were analysed before and after cryopreservation. Parameters analysed included concentration, motility, morphology and hyaluronan binding. Samples were frozen in CBS straws using a glycerol-glucose-based cryoprotectant. HA binding was studied using the sperm-hyaluronan binding assay. Freeze-thawing resulted in a significant decline in motility: the percentage of motile spermatozoa reduced from 50.6 to 30.3% (P < 0.001). HA binding properties of frozen-thawed spermatozoa remained unchanged after the freeze-thawing process: 68.5 +/- 17.1% spermatozoa of the neat sample were bound to HA, as were 71.3 +/- 20.4 of the frozen-thawed sample. This study indicates that freeze-thawing did not alter the functional hyaluronan binding sites of mature motile spermatozoa, and therefore will not alter their fertilizing potential.
[Glutamate-binding membrane proteins from human platelets].
Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A
1991-09-01
Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.
NASA Astrophysics Data System (ADS)
Dominguez Medina, Sergio
When nanoparticles come in contact with biological fluids they become coated with a mixture of proteins present in the media, forming what is known as the nanoparticle-protein 'corona'. This corona changes the nanoparticles' original surface properties and plays a central role in how these get screened by cellular receptors. In the context of biomedical research, this presents a bottleneck for the transition of nanoparticles from research laboratories to clinical settings. It is therefore fundamental to probe these nanoparticle-protein interactions in order to understand the different physico-chemical mechanisms involved. This thesis is aimed to investigate the exposure of colloidal gold nanoparticles to model serum proteins, particularly serum albumin, the main transporter of molecular compounds in the bloodstream of mammals. A set of experimental tools based on optical microscopy and spectroscopy were developed in order to probe these interactions in situ. First, the intrinsic photoluminescence and elastic scattering of individual gold nanoparticles were investigated in order to understand its physical origin. These optical signals were then used to measure the size of the nanoparticles while in Brownian diffusion using fluctuation correlation spectroscopy. This spectroscopic tool was then applied to detect the binding of serum albumin onto the nanoparticle surface, increasing its hydrodynamic size. By performing a binding isotherm as a function of protein concentration, it was determined that serum albumin follows an anti-cooperative binding mechanism on negatively charged gold nanoparticles. This protein monolayer substantially enhanced the stability of the colloid, preventing their aggregation in saline solutions with ionic strength higher than biological media. Cationic gold nanoparticles in contrast, aggregated when serum albumin was present at a low protein-to-nanoparticle ratio, but prevented aggregation if exposed in excess. Single-molecule fluorescence microscopy revealed that under low protein-to-nanoparticle binding ratios, serum albumin irreversibly unfolds upon adsorption and spreads across the available nanoparticle surface area. Unfolded proteins then interact with one another, triggering nanoparticle aggregation. Fibrinogen and globulin also triggered aggregation when exposed to cationic nanoparticles. In an effort to relate these physico-chemical observations to relevant biological parameters, the uptake of protein coated gold nanoparticles by a model cancer cell line was investigated under different incubation conditions. Those nanoparticles pre-incubated with bovine serum albumin before fetal bovine serum were found to be uptaken three times more than those only incubated in serum.
Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
Klocek, Gabriela; Schulthess, Therese; Shai, Yechiel; Seelig, Joachim
2009-03-31
Lipid membranes act as catalysts for protein folding. Both alpha-helical and beta-sheet structures can be induced by the interaction of peptides or proteins with lipid surfaces. Melittin, the main component of bee venom, is a particularly well-studied example for the membrane-induced random coil-to-alpha-helix transition. Melittin in water adopts essentially a random coil conformation. The cationic amphipathic molecule has a high affinity for neutral and anionic lipid membranes and exhibits approximately 50-65% alpha-helix conformation in the membrane-bound state. At higher melittin concentrations, the peptide forms aggregates or pores in the membrane. In spite of the long-standing interest in melittin-lipid interactions, no systematic thermodynamic study is available. This is probably caused by the complexity of the binding process. Melittin binding to lipid vesicles is fast and occurs within milliseconds, but the binding process involves at least four steps, namely, (i) the electrostatic attraction of the cationic peptide to an anionic membrane surface, (ii) the hydrophobic insertion into the lipid membrane, (iii) the conformational change from random coil to alpha-helix, and (iv) peptide aggregation in the lipid phase. We have combined microelectrophoresis (measurement of the zeta potential), isothermal titration calorimetry, and circular dichroism spectroscopy to provide a thermodynamic analysis of the individual binding steps. We have compared melittin with a synthetic analogue, [D]-V(5,8),I(17),K(21)-melittin, for which alpha-helix formation is suppressed and replaced by beta-structure formation. The comparison reveals that the thermodynamic parameters for the membrane-induced alpha-helix formation of melittin are identical to those observed earlier for other peptides with an enthalpy h(helix) of -0.7 kcal/mol and a free energy g(helix) of -0.2 kcal/mol per peptide residue. These thermodynamic parameters hence appear to be of general validity for lipid-induced membrane folding. As g(helix) is negative, it further follows that helix formation leads to an enhanced membrane binding for the peptides or proteins involved. In this study, melittin binds by approximately 2 orders of magnitude better to the lipid membrane than [D]-V(5,8),I(17),K(21)-melittin which cannot form an alpha-helix. We also found conditions under which the isothermal titration experiment reports only the aggregation process. Melittin aggregation is an entropy-driven process with an endothermic heat of reaction (DeltaH(agg)) of approximately 2 kcal/mol and an aggregation constant of 20-40 M(-1).
Boldt, Lynda; Yellowlees, David; Leggat, William
2012-01-01
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences. PMID:23112815
Protein Binding: Do We Ever Learn?▿
Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula
2011-01-01
Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013
Doxey, Andrew C; Cheng, Zhenyu; Moffatt, Barbara A; McConkey, Brendan J
2010-08-03
Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.
Purification, crystallization and preliminary X-ray diffraction of human S100A15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boeshans, Karen M.; Wolf, Ronald; Voscopoulos, Christopher
2006-05-01
S100 proteins are differentially expressed during epithelial cell maturation, tumorigenesis and inflammation. The novel human S100A15 protein has been cloned, expressed, purified and crystallized in two crystal forms, a triclinic and a monoclinic form, which diffract to 1.7 and 2.0 Å, respectively. Human S100A15 is a novel member of the S100 family of EF-hand calcium-binding proteins and was recently identified in psoriasis, where it is significantly upregulated in lesional skin. The protein is implicated as an effector in calcium-mediated signal transduction pathways. Although its biological function is unclear, the association of the 11.2 kDa S100A15 with psoriasis suggests that itmore » contributes to the pathogenesis of the disease and could provide a molecular target for therapy. To provide insight into the function of S100A15, the protein was crystallized to visualize its structure and to further the understanding of how the many similar calcium-binding mediator proteins in the cell distinguish their cognate target molecules. The S100A15 protein has been cloned, expressed and purified to homogeneity and produced two crystal forms. Crystals of form I are triclinic, with unit-cell parameters a = 33.5, b = 44.3, c = 44.8 Å, α = 71.2, β = 68.1, γ = 67.8° and an estimated two molecules in the asymmetric unit, and diffract to 1.7 Å resolution. Crystals of form II are monoclinic, with unit-cell parameters a = 82.1, b = 33.6, c = 52.2 Å, β = 128.2° and an estimated one molecule in the asymmetric unit, and diffract to 2.0 Å resolution. This structural analysis of the human S100A15 will further aid in the phylogenic comparison between the other members of the S100 protein family, especially the highly homologous paralog S100A7.« less
Pinheiro, Glaucia M S; Amorim, Gisele C; Iqbal, Anwar; Ramos, C H I; Almeida, Fabio C L
2018-04-30
Protein folding in the cell is usually aided by molecular chaperones, from which the Hsp70 (Hsp = heat shock protein) family has many important roles, such as aiding nascent folding and participating in translocation. Hsp70 has ATPase activity which is stimulated by binding to the J-domain present in co-chaperones from the Hsp40 family. Hsp40s have many functions, as for instance the binding to partially folded proteins to be delivered to Hsp70. However, the presence of the J-domain characterizes Hsp40s or, by this reason, as J-proteins. The J-domain alone can stimulate Hsp70 ATPase activity. Apparently, it also maintains the same conformation as in the whole protein although structural information on full J-proteins is still missing. This work reports the 1 H, 15 N and 13 C resonance assignments of the J-domain of a Hsp40 from Saccharomyces cerevisiae, named Sis1. Secondary structure and order parameter prediction from chemical shifts are also reported. Altogether, the data show that Sis1 J-domain is highly structured and predominantly formed by α-helices, results that are in very good agreement with those previously reported for the crystallographic structure.
Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K
2009-05-01
Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.
Burroughs, Nigel J.; Köhler, Karsten; Miloserdov, Vladimir; Dustin, Michael L.; van der Merwe, P. Anton; Davis, Daniel M.
2011-01-01
Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell∶cell communication and cell signalling, governing protein interactions and protein aggregation. PMID:21829338
In Situ Protein Binding Assay Using Fc-Fusion Proteins.
Padmanabhan, Nirmala; Siddiqui, Tabrez J
2017-01-01
This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.
Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides
Choe, Weonu; Durgannavar, Trishaladevi A.; Chung, Sang J.
2016-01-01
The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed. PMID:28774114
21 CFR 866.5765 - Retinol-binding protein immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system...
Biotransformation reduces the extent to which environmental contaminants accumulate in fish and other aquatic biota. Unfortunately, the tendency for compounds to be metabolized is not easily predicted from physico-chemical properties (e.g., octanol:water partitioning) or an exam...
Helledie, T; Antonius, M; Sorensen, R V; Hertzel, A V; Bernlohr, D A; Kølvraa, S; Kristiansen, K; Mandrup, S
2000-11-01
Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty acids are activated to CoA esters, which bind with high affinity to the acyl-CoA-binding protein (ACBP). Thus, the availability of known and potential PPAR ligands may be regulated by lipid-binding proteins. In this report we show by transient transfection of CV-1 cells that coexpression of ACBP and adipocyte lipid-binding protein (ALBP) exerts a ligand- and PPAR subtype-specific attenuation of PPAR-mediated trans-activation, suggesting that lipid-binding proteins, when expressed at high levels, may function as negative regulators of PPAR activation by certain ligands. Expression of ACBP, ALBP, and keratinocyte lipid-binding protein (KLBP) is induced during adipocyte differentiation, a process during which PPARgamma plays a prominent role. We present evidence that endogenous ACBP, ALBP, and KLBP not only localize to the cytoplasm but also exhibit a prominent nuclear localization in 3T3-L1 adipocytes. In addition, forced expression of ACBP, ALBP, and KLBP in CV-1 cells resulted in a substantial accumulation of all three proteins in the nucleus. These results suggest that lipid-binding proteins, contrary to the general assumption, may exert their action in the nucleus as well as in the cytoplasm.
Unconventional RNA-binding proteins: an uncharted zone in RNA biology.
Albihlal, Waleed S; Gerber, André P
2018-06-16
RNA-binding proteins play essential roles in the post-transcriptional regulation of gene expression. While hundreds of RNA-binding proteins can be predicted computationally, the recent introduction of proteome-wide approaches has dramatically expanded the repertoire of proteins interacting with RNA. Besides canonical RNA-binding proteins that contain characteristic RNA-binding domains, many proteins that lack such domains but have other well-characterised cellular functions were identified; including metabolic enzymes, heat shock proteins, kinases, as well as transcription factors and chromatin-associated proteins. In the context of these recently published RNA-protein interactome datasets obtained from yeast, nematodes, flies, plants and mammalian cells, we discuss examples for seemingly evolutionary conserved "unconventional" RNA-binding proteins that act in central carbon metabolism, stress response or regulation of transcription. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model.
Escribano, Begoña M; Medina-Fernández, Francisco J; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijoo, Montserrat; Garcia-Maceira, Fe I; Lillo, Rafael; Vieyra-Reyes, Patricia; Giraldo, Ana I; Luque, Evelio; Drucker-Colín, René; Túnez, Isaac
2017-01-01
Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.
Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J
2000-08-01
The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.
Subrahmanyam, S; Cronan, J E
1999-01-21
We report an efficient and flexible in vitro method for the isolation of genomic DNA sequences that are the binding targets of a given DNA binding protein. This method takes advantage of the fact that binding of a protein to a DNA molecule generally increases the rate of migration of the protein in nondenaturing gel electrophoresis. By the use of a radioactively labeled DNA-binding protein and nonradioactive DNA coupled with PCR amplification from gel slices, we show that specific binding sites can be isolated from Escherichia coli genomic DNA. We have applied this method to isolate a binding site for FadR, a global regulator of fatty acid metabolism in E. coli. We have also isolated a second binding site for BirA, the biotin operon repressor/biotin ligase, from the E. coli genome that has a very low binding efficiency compared with the bio operator region.
Engineered proteins as specific binding reagents.
Binz, H Kaspar; Plückthun, Andreas
2005-08-01
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Cakir, Evrim; Ozbek, Mustafa; Sahin, Mustafa; Cakal, Erman; Gungunes, Askin; Ginis, Zeynep; Demirci, Taner; Delibasi, Tuncay
2012-12-18
Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR), triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT) levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients.
Odorant-binding proteins from a primitive termite.
Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S
2002-09-01
Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths.
Roles of Copper-Binding Proteins in Breast Cancer.
Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla
2017-04-20
Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.
Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat.
Nakagawa, S; Kawashima, Y; Hirose, A; Kozuka, H
1994-01-01
Regulation of the hepatic level of fatty-acid-binding protein (FABP) by hormones and p-chlorophenoxyisobutyric acid (clofibric acid) was studied. The hepatic level of FABP, measured as the oleic acid-binding capacity of the cytosolic FABP fraction, was decreased in streptozotocin-diabetic rats. The level of FABP was markedly increased in adrenalectomized rats, and the elevation was prevented by the administration of dexamethasone. Hypothyroidism decreased the level of FABP and hyperthyroidism increased it. A high correlation between the incorporation of [14C]oleic acid in vivo into hepatic triacylglycerol and the level of FABP was found for normal, diabetic and adrenalectomized rats. The level of FABP was increased by administration of clofibric acid to rats in any altered hormonal states, as was microsomal 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, a peroxisome-proliferator-responsive parameter. These results suggest that the hepatic level of FABP is under regulation by multiple hormones and that clofibric acid induces FABP and 1-acyl-GPC acyltransferase by a mechanism which may be distinct from that by which hormones regulate the level of FABP. PMID:8110197
Patsalo, Vadim; Raleigh, Daniel P.; Green, David F.
2011-01-01
Cyanovirin-N (CVN) is an 11-kDa pseudo-symmetric cyanobacterial lectin that has been shown to inhibit infection by the Human Immunodeficiency Virus (HIV) by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work we describe rationally-designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson–Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 m of GuaHCl against chemical denaturation, relative to a previously-characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations, and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding. PMID:22032696
Sengupta, Priti; Sardar, Pinki Saha; Roy, Pritam; Dasgupta, Swagata; Bose, Adity
2018-06-01
The binding interaction of Rutin, a flavonoid, with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), were investigated using different spectroscopic techniques, such as fluorescence, time-resolved single photon counting (TCSPC) and circular dichroism (CD) spectroscopy as well as molecular docking method. The emission studies revealed that the fluorescence quenching of BSA/HSA by Rutin occurred through a simultaneous static and dynamic quenching process, and we have evaluated both the quenching constants individually. The binding constants of Rutin-BSA and Rutin-HSA system were found to be 2.14 × 10 6 M -1 and 2.36 × 10 6 M -1 at 298 K respectively, which were quite high. Further, influence of some biologically significant metal ions (Ca 2+ , Zn 2+ and Mg 2+ ) on binding of Rutin to BSA and HSA were also investigated. Thermodynamic parameters justified the involvement of hydrogen bonding and weak van der Waals forces in the interaction of Rutin with both BSA and HSA. Further a site-marker competitive experiment was performed to evaluate Rutin binding site in the albumins. Additionally, the CD spectra of BSA and HSA revealed that the secondary structure of the proteins was perturbed in the presence of Rutin. Finally protein-ligand docking studies have also been performed to determine the probable location of the ligand molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
Ma, Jun; Wu, Kaiming; Zhao, Zhenxian; Miao, Rong; Xu, Zhe
2017-03-01
Esophageal squamous cell carcinoma is one of the most aggressive malignancies worldwide. Special AT-rich sequence binding protein 1 is a nuclear matrix attachment region binding protein which participates in higher order chromatin organization and tissue-specific gene expression. However, the role of special AT-rich sequence binding protein 1 in esophageal squamous cell carcinoma remains unknown. In this study, western blot and quantitative real-time polymerase chain reaction analysis were performed to identify differentially expressed special AT-rich sequence binding protein 1 in a series of esophageal squamous cell carcinoma tissue samples. The effects of special AT-rich sequence binding protein 1 silencing by two short-hairpin RNAs on cell proliferation, migration, and invasion were assessed by the CCK-8 assay and transwell assays in esophageal squamous cell carcinoma in vitro. Special AT-rich sequence binding protein 1 was significantly upregulated in esophageal squamous cell carcinoma tissue samples and cell lines. Silencing of special AT-rich sequence binding protein 1 inhibited the proliferation of KYSE450 and EC9706 cells which have a relatively high level of special AT-rich sequence binding protein 1, and the ability of migration and invasion of KYSE450 and EC9706 cells was distinctly suppressed. Special AT-rich sequence binding protein 1 could be a potential target for the treatment of esophageal squamous cell carcinoma and inhibition of special AT-rich sequence binding protein 1 may provide a new strategy for the prevention of esophageal squamous cell carcinoma invasion and metastasis.
A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats
NASA Technical Reports Server (NTRS)
Safadi, F.; Reddy, V. S.; Reddy, A. S.
2000-01-01
Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.
Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A
2013-06-14
Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.
Erythropoietin binding protein from mammalian serum
Clemons, Gisela K.
1997-01-01
Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.
Erythropoietin binding protein from mammalian serum
Clemons, G.K.
1997-04-29
Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.
Johnson, T N; Whitaker, M J; Keevil, B; Ross, R J
2018-01-01
The assessment absolute bioavailability of oral hydrocortisone is complicated by its saturable binding to cortisol binding globulin (CBG). Previous assessment of bioavailability used a cortisol radioimmunoassay which has cross reactivity with other steroids. Salivary cortisone is a measure of free cortisol and LC-MS/MS is the gold standard method for measuring steroids. We here report the absolute bioavailability of hydrocortisone calculated using serum cortisol and salivary cortisone measured by LC-MS/MS. 14 healthy male dexamethasone suppressed volunteers were administered 20 mg hydrocortisone either intravenously or orally by tablet. Samples of serum and saliva were taken and measured for cortisol and cortisone by LC-MS/MS. Serum cortisol was corrected for saturable binding using published data and pharmacokinetic parameters derived using the program WinNonlin. The mean (95% CI) bioavailability of oral hydrocortisone calculated from serum cortisol, unbound serum cortisol and salivary cortisone was 1.00 (0.89-1.14); 0.88 (0.75-1.05); and 0.93 (0.83-1.05), respectively. The data confirm that, after oral administration, hydrocortisone is completely absorbed. The data derived from serum cortisol corrected for protein binding, and that from salivary cortisone, are similar supporting the concept that salivary cortisone reflects serum free cortisol levels and that salivary cortisone can be used as a non-invasive method for measuring the pharmacokinetics of hydrocortisone.
Impact of germline and somatic missense variations on drug binding sites.
Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R
2017-03-01
Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect the binding of any drug in the database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valley, Cary T.; Porter, Douglas F.; Qiu, Chen
2012-06-28
mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less
Hsiao, Hao-Ching; Gonzalez, Kim L.; Catanese, Daniel J.; Jordy, Kristopher E.; Matthews, Kathleen S.; Bondos, Sarah E.
2014-01-01
Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues. PMID:25286318
Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S
1988-01-01
The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996
CXCL4 is a novel nickel-binding protein and augments nickel allergy.
Kuroishi, T; Bando, K; Tanaka, Y; Shishido, K; Kinbara, M; Ogawa, T; Muramoto, K; Endo, Y; Sugawara, S
2017-08-01
Nickel (Ni) is the most frequent metal allergen and induces a TH 1 -dependent type-IV allergy. Although Ni 2+ is considered to bind to endogenous proteins, it currently remains unclear whether these Ni-binding proteins are involved in Ni allergy in vivo. We previously reported the adjuvant effects of lipopolysaccharide (LPS) in a Ni allergy mouse model. As LPS induces a number of inflammatory mediators, we hypothesized that Ni-binding protein(s) are also induced by LPS. The objective of this study was to purify and identify Ni-binding protein(s) from serum taken from LPS-injected mice (referred as LPS serum) and examined the augmenting effects of these Ni-binding protein(s) on Ni allergy in an in vivo model. BALB/cA mice were sensitized with an i.p. injection of NiCl 2 and LPS. Ten days after sensitization, mice were challenged with NiCl 2 by an i.d. injection into ear pinnae. Ni-binding protein(s) were purified by Ni-affinity column chromatography and gel filtration. Lipopolysaccharide serum, but not serum taken from saline-injected mice, augmented ear swelling induced by Ni-allergic inflammation. Ni-binding, but not non-binding fraction, purified from LPS serum augmented Ni-allergic inflammation. Mass spectrometry and Western blotting detected CXCL4 in the active fraction. A batch analysis with Ni-sepharose and a surface plasmon resonance analysis revealed direct binding between CXCL4 and Ni 2+ . Recombinant CXCL4 augmented Ni-allergic inflammation and exerted adjuvant effects at the sensitization phase. These results indicate that CXCL4 is a novel Ni-binding protein that augments Ni allergy at the elicitation and sensitization phases. This is the first study to demonstrate that the Ni-binding protein augments Ni allergy in vivo. © 2017 John Wiley & Sons Ltd.
Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes
Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.
2005-01-01
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465
Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography
NASA Technical Reports Server (NTRS)
Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.
2000-01-01
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.
Hu, S; Brady, S R; Kovar, D R; Staiger, C J; Clark, G B; Roux, S J; Muday, G K
2000-10-01
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.
Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.
2008-08-19
Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to themore » lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.« less
Ruiz, Federico M; Scholz, Barbara A; Buzamet, Eliza; Kopitz, Jürgen; André, Sabine; Menéndez, Margarita; Romero, Antonio; Solís, Dolores; Gabius, Hans-Joachim
2014-03-01
Natural amino acid substitution by single-site nucleotide polymorphism can become a valuable tool for structure-activity correlations, especially if evidence for association to disease parameters exists. Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of this family of cellular effectors. We apply a strategically combined set of structural and cell biological techniques for comparing properties of the wild-type and variant proteins. The overall hydrodynamic behavior of the full-length protein and of the separate N-domain is not noticeably altered, but displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further comparison of the influence on proliferation, the variant proved to be more active as growth regulator in the six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle structural change identified here thus has functional implications in vitro, encouraging further analysis in autoimmune regulation and, in a broad context, in work with other natural single-site variants, using the documented combined strategy. The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein Data Bank. © 2014 FEBS.
Stern, M; Gellermann, B; Wieser, H
1990-10-01
To investigate postnatal maturational profiles of functional and biochemical properties of rat small intestinal microvillus membranes (MVM), we did a longitudinal study in rats from birth to the age of 12 weeks. In parallel, we studied binding of cow's milk proteins and of the wheat gliadin peptide B 3142, as well as MVM proteins (SDS-PAGE). Changes in MVM fluidity and lipid composition exhibited early (0-4 weeks) and intermediate and late (6-12 weeks) patterns, as has been published earlier. Postnatal changes of food protein and peptide binding occurred early during the observation period, not related to weaning. There was not much further change in binding after 6-8 weeks. Developmental profiles of MVM protein and some lipid changes resembled, but did not equal, changes in food protein binding. We conclude that changes in MVM biochemical composition affect MVM binding characteristics. In particular, high molecular weight MVM proteins (susceptible to trypsin treatment) appear to play a role in postnatal maturational differences in MVM food protein binding.
Size-dependent protein segregation at membrane interfaces
Schmid, Eva M; Bakalar, Matthew H; Choudhuri, Kaushik; Weichsel, Julian; Ann, HyoungSook; Geissler, Phillip L; Dustin, Michael L; Fletcher, Daniel A
2016-01-01
Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles. PMID:27980602
Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2013-09-17
Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.
Do, Hackwon; Lee, Jun Hyuck; Lee, Sung Gu; Kim, Hak Jun
2012-07-01
Ice growth in a cold environment is fatal for polar organisms, not only because of the physical destruction of inner cell organelles but also because of the resulting chemical damage owing to processes such as osmotic shock. The properties of ice-binding proteins (IBPs), which include antifreeze proteins (AFPs), have been characterized and IBPs exhibit the ability to inhibit ice growth by binding to specific ice planes and lowering the freezing point. An ice-binding protein (FfIBP) from the Gram-negative bacterium Flavobacterium frigoris PS1, which was isolated from the Antarctic, has recently been overexpressed. Interestingly, the thermal hysteresis activity of FfIBP was approximately 2.5 K at 50 µM, which is ten times higher than that of the moderately active IBP from Arctic yeast (LeIBP). Although FfIBP closely resembles LeIBP in its amino-acid sequence, the antifreeze activity of FfIBP appears to be much greater than that of LeIBP. In an effort to understand the reason for this difference, an attempt was made to solve the crystal structure of FfIBP. Here, the crystallization and X-ray diffraction data of FfIBP are reported. FfIBP was crystallized using the hanging-drop vapour-diffusion method with 0.1 M sodium acetate pH 4.4 and 3 M sodium chloride as precipitant. A complete diffraction data set was collected to a resolution of 2.9 Å. The crystal belonged to space group P4(1)22, with unit-cell parameters a = b = 69.4, c = 178.2 Å. The asymmetric unit contained one monomer.
Ding, Junjie; Wang, Yi; Lin, Weiwei; Wang, Changlian; Zhao, Limei; Li, Xingang; Zhao, Zhigang; Miao, Liyan; Jiao, Zheng
2015-03-01
Valproic acid (VPA) follows a non-linear pharmacokinetic profile in terms of protein-binding saturation. The total daily dose regarding VPA clearance is a simple power function, which may partially explain the non-linearity of the pharmacokinetic profile; however, it may be confounded by the therapeutic drug monitoring effect. The aim of this study was to develop a population pharmacokinetic model for VPA based on protein-binding saturation in pediatric patients with epilepsy. A total of 1,107 VPA serum trough concentrations at steady state were collected from 902 epileptic pediatric patients aged from 3 weeks to 14 years at three hospitals. The population pharmacokinetic model was developed using NONMEM(®) software. The ability of three candidate models (the simple power exponent model, the dose-dependent maximum effect [DDE] model, and the protein-binding model) to describe the non-linear pharmacokinetic profile of VPA was investigated, and potential covariates were screened using a stepwise approach. Bootstrap, normalized prediction distribution errors and external evaluations from two independent studies were performed to determine the stability and predictive performance of the candidate models. The age-dependent exponent model described the effects of body weight and age on the clearance well. Co-medication with carbamazepine was identified as a significant covariate. The DDE model best fitted the aim of this study, although there were no obvious differences in the predictive performances. The condition number was less than 500, and the precision of the parameter estimates was less than 30 %, indicating stability and validity of the final model. The DDE model successfully described the non-linear pharmacokinetics of VPA. Furthermore, the proposed population pharmacokinetic model of VPA can be used to design rational dosage regimens to achieve desirable serum concentrations.
Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y
1997-02-01
Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie
2010-10-08
Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa
The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.
Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe
2015-06-01
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.
Hou, Tingjun; Wang, Junmei; Li, Youyong; Wang, Wei
2011-01-24
The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
Fractal dimension of microbead assemblies used for protein detection.
Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul
2014-11-10
We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Wei-Kang; Deng, Rui-Cheng; Wang, Peng-Fei; Yue, Qin-Qin; Liu, Qi; Ding, Kun-Ling; Yang, Mei-Hui; Zhang, Hong-Yu; Gong, Si-Hua; Deng, Min; Liu, Wen-Run; Feng, Qiu-Ju; Xiao, Zhu-Ping; Zhu, Hai-Liang
2016-10-01
Helicobacter pylori urease is involved in several physiologic responses such as stomach and duodenal ulcers, adenocarcinomas and stomach lymphomas. Thus, inhibition of urease is taken for a good chance to treat H. pylori-caused infections, we have therefore focused our efforts on seeking novel urease inhibitors. Here, a series of arylpropionylhydroxamic acids were synthesized and evaluated for urease inhibition. Out of these compounds, 3-(2-benzyloxy-5-chlorophenyl)-3-hydroxypropionylhydroxamic acid (d24) was the most active inhibitor with IC50 of 0.15±0.05μM, showing a mixed inhibition with both competitive and uncompetitive aspects. Non-linear fitting of kinetic data gives kinetics parameters of 0.13 and 0.12μg·mL(-1) for Ki and Ki', respectively. The plasma protein binding assays suggested that d24 exhibited moderate binding to human and rabbit plasma proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isolation of copper-binding proteins from activated sludge culture.
Fukushi, K; Kato, S; Antsuki, T; Omura, T
2001-01-01
Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).
Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying
2015-01-01
Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.
2015-01-01
Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xueqing; Chang, Bianca W.; Mans, Ben J.
Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus,more » a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.« less
Cooley, Anne E; Riley, Sean P; Kral, Keith; Miller, M Clarke; DeMoll, Edward; Fried, Michael G; Stevenson, Brian
2009-07-13
Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted.
Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger
2017-01-01
Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570
MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.
Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R
2016-07-08
Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
van der Vaart, Arjan
2015-05-01
Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
RNA-binding proteins in plants: the tip of an iceberg?
NASA Technical Reports Server (NTRS)
Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)
2002-01-01
RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.
Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins
NASA Technical Reports Server (NTRS)
Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.
2003-01-01
Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.
Kinetic operational models of agonism for G-protein-coupled receptors.
Hoare, Samuel R J; Pierre, Nicolas; Moya, Arturo Gonzalez; Larson, Brad
2018-06-07
The application of kinetics to research and therapeutic development of G-protein-coupled receptors has become increasingly valuable. Pharmacological models provide the foundation of pharmacology, providing concepts and measurable parameters such as efficacy and potency that have underlain decades of successful drug discovery. Currently there are few pharmacological models that incorporate kinetic activity in such a way as to yield experimentally-accessible drug parameters. In this study, a kinetic model of pharmacological response was developed that provides a kinetic descriptor of efficacy (the transduction rate constant, k τ ) and allows measurement of receptor-ligand binding kinetics from functional data. The model assumes: (1) receptor interacts with a precursor of the response ("Transduction potential") and converts it to the response. (2) The response can decay. Familiar response vs time plots emerge, depending on whether transduction potential is depleted and/or response decays. These are the straight line, the "association" exponential curve, and the rise-and-fall curve. Convenient, familiar methods are described for measuring the model parameters and files are provided for the curve-fitting program Prism (GraphPad Software) that can be used as a guide. The efficacy parameter k τ is straightforward to measure and accounts for receptor reserve; all that is required is measurement of response over time at a maximally-stimulating concentration of agonist. The modular nature of the model framework allows it to be extended. Here this is done to incorporate antagonist-receptor binding kinetics and slow agonist-receptor equilibration. In principle, the modular framework can incorporate other cellular processes, such as receptor desensitization. The kinetic response model described here can be applied to measure kinetic pharmacological parameters than can be used to advance the understanding of GPCR pharmacology and optimize new and improved therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Functions of Intracellular Retinoid Binding-Proteins.
Napoli, Joseph L
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
SCOWLP classification: Structural comparison and analysis of protein binding regions
Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa
2008-01-01
Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical classification of PBRs is implemented into the SCOWLP database and extends the SCOP classification with three additional family sub-levels: Binding Region, Interface and Contacting Domains. SCOWLP contains 9,334 binding regions distributed within 2,561 families. In 65% of the cases we observe families containing more than one binding region. Besides, 22% of the regions are forming complex with more than one different protein family. Conclusion The current SCOWLP classification and its web application represent a framework for the study of protein interfaces and comparative analysis of protein family binding regions. This comparison can be performed at atomic level and allows the user to study interactome conservation and variability. The new SCOWLP classification may be of great utility for reconstruction of protein complexes, understanding protein networks and ligand design. SCOWLP will be updated with every SCOP release. The web application is available at . PMID:18182098
The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.
Catalá, A
1984-10-01
Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.
Nagano, Yukio; Furuhashi, Hirofumi; Inaba, Takehito; Sasaki, Yukiko
2001-01-01
Complementary DNA encoding a DNA-binding protein, designated PLATZ1 (plant AT-rich sequence- and zinc-binding protein 1), was isolated from peas. The amino acid sequence of the protein is similar to those of other uncharacterized proteins predicted from the genome sequences of higher plants. However, no paralogous sequences have been found outside the plant kingdom. Multiple alignments among these paralogous proteins show that several cysteine and histidine residues are invariant, suggesting that these proteins are a novel class of zinc-dependent DNA-binding proteins with two distantly located regions, C-x2-H-x11-C-x2-C-x(4–5)-C-x2-C-x(3–7)-H-x2-H and C-x2-C-x(10–11)-C-x3-C. In an electrophoretic mobility shift assay, the zinc chelator 1,10-o-phenanthroline inhibited DNA binding, and two distant zinc-binding regions were required for DNA binding. A protein blot with 65ZnCl2 showed that both regions are required for zinc-binding activity. The PLATZ1 protein non-specifically binds to A/T-rich sequences, including the upstream region of the pea GTPase pra2 and plastocyanin petE genes. Expression of the PLATZ1 repressed those of the reporter constructs containing the coding sequence of luciferase gene driven by the cauliflower mosaic virus (CaMV) 35S90 promoter fused to the tandem repeat of the A/T-rich sequences. These results indicate that PLATZ1 is a novel class of plant-specific zinc-dependent DNA-binding protein responsible for A/T-rich sequence-mediated transcriptional repression. PMID:11600698
Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.
Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B
2006-07-01
alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.
NASA Astrophysics Data System (ADS)
Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li
2011-10-01
The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.
How perfect can protein interactomes be?
Levy, Emmanuel D; Landry, Christian R; Michnick, Stephen W
2009-03-03
Any engineered device should certainly not contain nonfunctional components, for this would be a waste of energy and money. In contrast, evolutionary theory tells us that biological systems need not be optimized and may very well accumulate nonfunctional elements. Mutational and demographic processes contribute to the cluttering of eukaryotic genomes and transcriptional networks with "junk" DNA and spurious DNA binding sites. Here, we question whether such a notion should be applied to protein interactomes-that is, whether these protein interactomes are expected to contain a fraction of nonselected, nonfunctional protein-protein interactions (PPIs), which we term "noisy." We propose a simple relationship between the fraction of noisy interactions expected in a given organism and three parameters: (i) the number of mutations needed to create and destroy interactions, (ii) the size of the proteome, and (iii) the fitness cost of noisy interactions. All three parameters suggest that noisy PPIs are expected to exist. Their existence could help to explain why PPIs determined from large-scale studies often lack functional relationships between interacting proteins, why PPIs are poorly conserved across organisms, and why the PPI space appears to be immensely large. Finally, we propose experimental strategies to estimate the fraction of evolutionary noise in PPI networks.
Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis
Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; ...
2015-12-24
Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less
Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco
Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less
Ma, Xin; Guo, Jing; Sun, Xiao
2016-01-01
DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.
Predicting protein-binding regions in RNA using nucleotide profiles and compositions.
Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook
2017-03-14
Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful features than nucleotide compositions in finding protein-binding regions in RNA sequences. But, a slight performance gain was obtained when using the sequence profiles along with nucleotide compositions. These are preliminary results of ongoing research, but demonstrate the potential of our approach as a powerful predictor of protein-binding regions in RNA. The program and supporting data are available at http://bclab.inha.ac.kr/RBPbinding .
Efficient identification of tubby-binding proteins by an improved system of T7 phage display.
Caberoy, Nora B; Zhou, Yixiong; Jiang, Xiaoyu; Alvarado, Gabriela; Li, Wei
2010-01-01
Mutation in the tubby gene causes adult-onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby-like protein 1 (Tulp1), whose C-terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N-terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N-terminus (tubby-N) as bait to identify unknown binding proteins with open-reading-frame (ORF) phage display. T7 phage display was engineered with three improvements: high-quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait-binding proteins in as fast as approximately 4-7 days. While phage display with conventional cDNA libraries identifies high percentage of out-of-frame unnatural short peptides, all 28 tubby-N-binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two-hybrid assay and protein pull-down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby-specific binding protein. These data suggest that tubby-N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly-engineered ORF phage display is a powerful technology to identify unknown protein-protein interactions. (c) 2009 John Wiley & Sons, Ltd.
Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin
2017-08-01
Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.
High-throughput kinase assays with protein substrates using fluorescent polymer superquenching.
Rininsland, Frauke; Stankewicz, Casey; Weatherford, Wendy; McBranch, Duncan
2005-05-31
High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Using a modified QTL Lightspeed assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP), Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1). Phosphorylation of the proteins was detected by Protein Kinase Calpha (PKCalpha) and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4). Enzyme inhibition yielded IC50 values that were comparable to those obtained using peptide substrates. Statistical parameters that are used in the high-throughput community to determine assay robustness (Z'-value) demonstrate the suitability of this format for high-throughput screening applications for detection of inhibitors of enzyme activity. The QTL Lightspeed protein detection system provides a simple mix and measure "turn on" assay for the detection of kinase activity using natural protein substrates. The platform is robust and allows for identification of inhibitors of kinase activity.
Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding.
Hudson, Eliara Acipreste; de Paula, Hauster Maximiler Campos; Ferreira, Guilherme Max Dias; Ferreira, Gabriel Max Dias; Hespanhol, Maria do Carmo; da Silva, Luis Henrique Mendes; Pires, Ana Clarissa Dos S
2018-03-01
Bovine serum albumin (BSA)/curcumin binding and dye photodegradation stability were evaluated. BSA/curcumin complex showed 1:1 stoichiometry, but the thermodynamic binding parameters depended on the technique used and BSA conformation. The binding constant was of the order of 10 5 L·mol -1 by fluorescence and microcalorimetric, and 10 3 and 10 4 L·mol -1 by surface plasmon resonance (steady-state equilibrium and kinetic experiments, respectively). For native BSA/curcumin, fluorescence indicated an enthalpic and entropic driven process based on the standard enthalpy change (ΔH ○ F =-8.67kJ·mol -1 ), while microcalorimetry showed an entropic driven binding process (ΔH ○ cal =29.11kJ·mol -1 ). For the unfolded BSA/curcumin complex, it was found thatp ΔH ○ F =-16.12kJ·mol -1 and ΔH ○ cal =-42.63kJ·mol -1 . BSA (mainly native) increased the curcumin photodegradation stability. This work proved the importance of using different techniques to characterize the protein-ligand binding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J
1998-01-01
Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226
Measles virus fusion machinery activated by sialic acid binding globular domain.
Talekar, Aparna; Moscona, Anne; Porotto, Matteo
2013-12-01
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.
Chowdhury, Trinath; Sarkar, Manas; Chaudhuri, Biswadeep; Chattopadhyay, Brajadulal; Halder, Umesh Chandra
2015-07-01
A unique protein, bioremediase (UniProt Knowledgebase Accession No.: P86277), isolated from a hot spring bacterium BKH1 (GenBank Accession No.: FJ177512), has shown to exhibit silica leaching activity when incorporated to prepare bio-concrete material. Matrix-assisted laser desorption ionization mass spectrometry analysis suggests that bioremediase is 78% homologous to bovine carbonic anhydrase II though it does not exhibit carbonic anhydrase-like activity. Bioinformatics study is performed for understanding the various physical and chemical parameters of the protein which predicts the involvement of zinc encircled by three histidine residues (His94, His96 and His119) at the active site of the protein. Isothermal titration calorimetric-based thermodynamic study on diethyl pyrocarbonate-modified protein recognizes the presence of Zn(2+) in the enzyme moiety. Exothermic to endothermic transition as observed during titration of the protein with Zn(2+) discloses that there are at least two binding sites for zinc within the protein moiety. Addition of Zn(2+) regains the activity of EDTA chelated bioremediase confirming the presence of extra binding site of Zn(2+) in the protein moiety. Revival of folding pattern of completely unfolded urea-treated protein by Zn(2+) explains the participatory role of zinc in structural stability of the protein. Restoration of the λ max in intrinsic fluorescence emission study of the urea-treated protein by Zn(2+) similarly confirms the involvement of Zn in the refolding of the protein. The utility of bioremediase for silica nanoparticles preparation is observed by field emission scanning electron microscopy.
Howard, Jeffrey C.; Heinemann, Christine; Thatcher, Bradley J.; Martin, Brian; Gan, Bing Siang; Reid, Gregor
2000-01-01
Biosurfactants produced by Lactobacillus fermentum RC-14, L. rhamnosus GR-1 and 36, and L. casei Shirota were found to contain proteins that bind to both collagen types III and VI, as determined by surface-enhanced laser desorption/ionization (SELDI)–time of flight mass spectrometry. Both collagen types III and VI immobilized on SELDI preactivated ProteinChip arrays detected several different sizes (2 to 48 kDa) of collagen-binding proteins. Overall, the RC-14-produced biosurfactant contained the greatest number of collagen-binding proteins (RC-14 > GR-1 > 36 > Shirota), including the mature form of a previously cloned 29-kDa collagen-binding protein (referred to in its mature 26-kDa form). Although biosurfactants isolated from L. casei Shirota and L. rhamnosus 36 and GR-1 also contain several collagen-binding proteins, they do not contain the 26-kDa collagen-binding protein. Together, these results demonstrate the utility of the SELDI system as a means of rapidly characterizing clinically important but complex biosurfactant solutions. PMID:11010889
Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian
2016-12-15
In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hanski, E; Caparon, M
1992-07-01
Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.
Hoffman, Elizabeth A.; Zaidi, Hussain; Shetty, Savera J.; Bekiranov, Stefan; Auble, David T.
2018-01-01
Formaldehyde crosslinking is widely used in combination with chromatin immunoprecipitation (ChIP) to measure the locations along DNA and relative levels of transcription factor (TF)-DNA interactions in vivo. However, the measurements that are typically made do not provide unambiguous information about the dynamic properties of these interactions. We have developed a method to estimate binding kinetic parameters from time-dependent formaldehyde crosslinking data, called crosslinking kinetics (CLK) analysis. Cultures of yeast cells are crosslinked with formaldehyde for various periods of time, yielding the relative ChIP signal at particular loci. We fit the data using the mass-action CLK model to extract kinetic parameters of the TF-chromatin interaction, including the on- and off-rates and crosslinking rate. From the on- and off-rate we obtain the occupancy and residence time. The following protocol is the second iteration of this method, CLKv2, updated with improved crosslinking and quenching conditions, more information about crosslinking rates, and systematic procedures for modeling the observed kinetic regimes. CLKv2 analysis has been applied to investigate the binding behavior of the TATA-binding protein (TBP), and a selected subset of other TFs. The protocol was developed using yeast cells, but may be applicable to cells from other organisms as well. PMID:29682595
Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity
SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.
2016-01-01
SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280
Budryn, Grażyna; Pałecz, Bartłomiej; Rachwał-Rosiak, Danuta; Oracz, Joanna; Zaczyńska, Donata; Belica, Sylwia; Navarro-González, Inmaculada; Meseguer, Josefina María Vegara; Pérez-Sánchez, Horacio
2015-02-01
The aim of the study was to characterise the interactions of hydroxycinnamic and chlorogenic acids (CHAs) from green coffee, with isolates of proteins from egg white (EWP), whey (WPC) and soy (SPI), depending on pH and temperature. The binding degree was determined by liquid chromatography coupled to a diode array detector and an ultrahigh resolution hybrid quadruple-time-of-flight mass spectrometer with ESI source (LC-QTOF-MS/MS). As a result of binding, the concentration of CHAs in proteins ranged from 9.44-12.2, 11.8-13.1 and 12.1-14.4g/100g for SPI, WPC and EWP, respectively. Thermodynamic parameters of protein-ligand interactions were determined by isothermal titration calorimetry (ITC) and energetics of interactions at the atomic level by molecular modelling. The amount of CHAs released during proteolytic digestion was in the range 0.33-2.67g/100g. Inclusion of CHAs with β-cyclodextrin strongly limited these interactions to a level of 0.03-0.06g/100g. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ion Binding Energies Determining Functional Transport of ClC Proteins
NASA Astrophysics Data System (ADS)
Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping
2014-06-01
The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.
GenProBiS: web server for mapping of sequence variants to protein binding sites.
Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka
2017-07-03
Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia
2001-05-01
The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.
2015-01-01
Despite decades of investigations, the principal mechanisms responsible for the high affinity and specificity of proteins for key physiological cations K+, Na+, and Ca2+ remain a hotly debated topic. At the core of the debate is an apparent need (or lack thereof) for an accurate description of the electrostatic response of the charge distribution in a protein to the binding of an ion. These effects range from partial electronic polarization of the directly ligating atoms to long-range effects related to partial charge transfer and electronic delocalization effects. While accurate modeling of cation recognition by metalloproteins warrants the use of quantum-mechanics (QM) calculations, the most popular approximations used in major biomolecular simulation packages rely on the implicit modeling of electronic polarization effects. That is, high-level QM computations for ion binding to proteins are desirable, but they are often unfeasible, because of the large size of the reactive-site models and the need to sample conformational space exhaustively at finite temperature. Several solutions to this challenge have been proposed in the field, ranging from the recently developed Drude polarizable force-field for simulations of metalloproteins to approximate tight-binding density functional theory (DFTB). To delineate the usefulness of different approximations, we examined the accuracy of three recent and commonly used theoretical models and numerical algorithms, namely, CHARMM C36, the latest developed Drude polarizable force fields, and DFTB3 with the latest 3OB parameters. We performed MD simulations for 30 cation-selective proteins with high-resolution X-ray structures to create ensembles of structures for analysis with different levels of theory, e.g., additive and polarizable force fields, DFTB3, and DFT. The results from DFT computations were used to benchmark CHARMM C36, Drude, and DFTB3 performance. The explicit modeling of quantum effects unveils the key electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca2+. PMID:26574284
Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya
2014-07-01
Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Ratrie, H. III; Datta, A.K.
E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less
Quantitative determination of testosterone levels with biolayer interferometry.
Zhang, Hao; Li, Wei; Luo, Hong; Xiong, Guangming; Yu, Yuanhua
2017-10-01
Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10 -9 M and 2.750 × 10 -8 M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein could be used to rapidly and quantitatively determine environmental testosterone levels by the biolayer interferometry technique. Copyright © 2017 Elsevier B.V. All rights reserved.
Diaz, Suraya A; Martin, Stephen R; Howell, Steven A; Grainger, Munira; Moon, Robert W; Green, Judith L; Holder, Anthony A
2016-01-01
Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity.
Structure and Function of Lipopolysaccharide Binding Protein
NASA Astrophysics Data System (ADS)
Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.
1990-09-01
The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.
Liu, He; Lin, Qiang; Xie, Yixian; Shu, Huoming; Li, Bo; Gao, Ge; Xiao, Kai; Yao, Xiaojun; Dong, Runcong; Liu, Yanlin; He, Mengxiong; Wu, Luyong; Sun, Zhenfan; He, Wenying
2016-11-01
1-(4-Bromophenyl)-5-phenyl-1H-1,2,3-triazole (BPT) was a newly synthesized compound. The acute toxicities of BPT to mice by intragastric administration have been determined and the result indicates that the intragastric administration of BPT did not produce any significant toxic effect on Kunming strain mice. It is also evaluated for the antimicrobial activity of BPT against three kinds of plant mycoplasma, Fusarium Wilt (race 4), Colletotrichum gloeosporioides Penz. and Xanthomonas oryzae by different method in vitro. The compound exhibited distinct inhibitory activities against Fusarium Wilt (race 4) and Colletotrichum gloeosporioides Penz. by mycelium growth rate test and the values of EC 50 were 29.34 and 12.53μg/mL respectively. And BPT had also the most potent inhibitory activities against Xanthomonas oryzae when compared with that of control drugs by the agar well diffusion method. In addition, the structural and photophysical properties of BPT including ionization energy, electron affinities, and theoretical spectrum was studied by quantum-chemical methods. Then the interaction of BPT with two kinds of globular proteins, human immunoglobulin (HIg) and bovine hemoglobin (BHg) was investigated by using UV-vis absorption spectra, synchronous fluorescence, 3D fluorescence spectra, and fluorescence titration in combination with molecular modeling. UV-vis absorption, 3D and synchronous fluorescence measurements show that BPT has influence on the microenvironment surrounding HIg or BHg in aqueous solution and the fluorescence experiments show that BPT quenches the fluorescence intensity of HIg or BHg through a static mechanism. The binding parameters including the binding constants, the number of binding site and average binding distance between BPT and HIg or BHg at different temperatures were calculated. The thermodynamic parameters suggest that the hydrophobic interaction is the predominant intermolecular forces in stabilizing the BPT-HIg or BPT-BHg complex. Molecular docking was performed to reveal that the BPT moiety binds to the hydrophobic cavity of HIg or BHg and they are in good agreement with the spectroscopic measurements. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jinlan; Li, Xiaolu; Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
2012-06-22
Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGEmore » after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .« less
Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.
Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi
2018-09-15
Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.
Consequences of inducing intrinsic disorder in a high-affinity protein-protein interaction.
Papadakos, Grigorios; Sharma, Amit; Lancaster, Lorna E; Bowen, Rebecca; Kaminska, Renata; Leech, Andrew P; Walker, Daniel; Redfield, Christina; Kleanthous, Colin
2015-04-29
The kinetic and thermodynamic consequences of intrinsic disorder in protein-protein recognition are controversial. We address this by inducing one partner of the high-affinity colicin E3 rRNase domain-Im3 complex (K(d) ≈ 10(-12) M) to become an intrinsically disordered protein (IDP). Through a variety of biophysical measurements, we show that a single alanine mutation at Tyr507 within the hydrophobic core of the isolated colicin E3 rRNase domain causes the enzyme to become an IDP (E3 rRNase(IDP)). E3 rRNase(IDP) binds stoichiometrically to Im3 and forms a structure that is essentially identical to the wild-type complex. However, binding of E3 rRNase(IDP) to Im3 is 4 orders of magnitude weaker than that of the folded rRNase, with thermodynamic parameters reflecting the disorder-to-order transition on forming the complex. Critically, pre-steady-state kinetic analysis of the E3 rRNase(IDP)-Im3 complex demonstrates that the decrease in affinity is mostly accounted for by a drop in the electrostatically steered association rate. Our study shows that, notwithstanding the advantages intrinsic disorder brings to biological systems, this can come at severe kinetic and thermodynamic cost.
Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations
Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro
2015-01-01
Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039
Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.
Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro
2015-01-01
Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.
Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure
Bajpai, Gaurav; Jain, Ishutesh; Inamdar, Mandar M.; Das, Dibyendu; Padinhateeri, Ranjith
2017-01-01
Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure—a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions. PMID:28135276
Cang, Zixuan; Wei, Guo-Wei
2018-02-01
Protein-ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein-ligand binding affinities is vital to rational drug design and the understanding of protein-ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology-based machine-learning paradigm outperforms other existing methods in protein-ligand binding affinity predictions. ESPH reveals protein-ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein-ligand hydrophobic interactions are extended to 40Å away from the binding site, which has a significant ramification to drug and protein design. Copyright © 2017 John Wiley & Sons, Ltd.
Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael
2011-09-01
Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design.
Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
NASA Astrophysics Data System (ADS)
Selwa, Edithe; Martiny, Virginie Y.; Iorga, Bogdan I.
2016-09-01
The D3R Grand Challenge 2015 was focused on two protein targets: Heat Shock Protein 90 (HSP90) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). We used a protocol involving a preliminary analysis of the available data in PDB and PubChem BioAssay, and then a docking/scoring step using more computationally demanding parameters that were required to provide more reliable predictions. We could evidence that different docking software and scoring functions can behave differently on individual ligand datasets, and that the flexibility of specific binding site residues is a crucial element to provide good predictions.
Marsh, Lorraine
2015-01-01
Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.
Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins
NASA Astrophysics Data System (ADS)
Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin
2009-04-01
The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4- N, N, N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.
Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.
Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin
2009-04-01
The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4-N,N,N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.
Ogawara, Hiroshi
2016-09-01
PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.
Gleiter, H M; Haag, E; Shen, J R; Eaton-Rye, J J; Inoue, Y; Vermaas, W F; Renger, G
1994-10-11
Several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions or a single-site mutation within the large, lumen-exposed loop (loop E) of the chlorophyll a-binding photosystem II core protein, CP47, are analyzed for their functional properties by measuring the flash-induced pattern of thermoluminescence, oxygen yield, and fluorescence quantum yield. A physiological and biochemical characterization of these mutant strains has been given in two previous reports [Eaton-Rye, J.J., & Vermaas, W.F.J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J.J., Renger, G., & Vermaas, S. F.J. (1993) Biochemistry 32, 4444-4454]. The results of the present study show that deletion of charged and conserved amino acids in a region roughly located between residues 370 and 390 decreases the binding affinity of the extrinsic PS II-O protein to photosystem II. Marked differences with PSII-O deletion mutants are observed with respect to Ca2+ requirement and the flash-induced pattern of oxygen evolution. Under conditions where a sufficient light activation is provided, the psbB mutants assayed in this study reveal normal S-state parameters and lifetimes. The results bear two basic implications: (i) the manganese involved in water oxidation can still be bound in a functionally normal or only slightly distorted manner, and (ii) the binding of the extrinsic PS II-O protein to photosystem II is impaired in mutants carrying a deletion in the domain between residues 370 and 390, but the presence of the PS II-O protein is still of functional relevance for the PS II complex, e.g., for maintenance of a high-affinity binding site for Ca2+ and/or involvement during the process of photoactivation.
Assah, Enock; Goh, Walter; Zheng, Xin Ting; Lim, Ting Xiang; Li, Jun; Lane, David; Ghadessy, Farid; Tan, Yen Nee
2018-05-05
The tumor suppressor protein p53 plays a central role in preventing cancer through interaction with DNA response elements (REs) to regulate target gene expression in cells. Due to its significance in cancer biology, relentless efforts have been directed toward understanding p53-DNA interactions for the development of cancer therapeutics and diagnostics. In this paper, we report a rapid, label-free and versatile colorimetric assay to detect wildtype p53 DNA-binding function in complex solutions. The assay design is based on a concept that alters interparticle-distances between RE-AuNPs from a crosslinking effect induced through tetramerization of wildtype p53 protein (p53-WT) upon binding to canonical DNA motifs modified on gold nanoparticles (RE-AuNPs). This leads to a visible solution color change from red to blue, which is quantifiable by the UV- visible absorption spectra with a detection limit of 5 nM. Contrastingly, no color change was observed for the binding-deficient p53 mutants and non-specific proteins due to their inability to crosslink RE-AuNPs. Based on this sensing principle, we further demonstrate its utility for fast detection of drug-induced DNA binding function to cancer-associated Y220C mutant p53 protein using well-established reactivating compounds. By exploiting the dominant-negative property of mutant p53 over p53-WT and interactions with RE-AuNPs, this assay is configurable to detect low numbers of mutant p53 expressing cells in miniscule sample fractions obtained from typical core needle biopsy-sized tissues without signal attrition, alluding to the potential for biopsy sampling in cancer diagnostics or for defining cancer margins. This nanogold enabled colorimetric assay provides a facile yet robust method for studying important parameters influencing p53-DNA interactions with great promises for clinically pertinent applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation
NASA Astrophysics Data System (ADS)
Scharfman, Helen E.; Schwartzkroin, Philip A.
1989-10-01
Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.
Zhang, Xirui; Daaboul, George G; Spuhler, Philipp S; Dröge, Peter; Ünlü, M Selim
2016-03-14
DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A
Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate
2015-01-01
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate
2015-01-01
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.
Sequence-Based Prediction of RNA-Binding Residues in Proteins
Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena
2017-01-01
Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829
Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.
Grange, T; de Sa, C M; Oddos, J; Pictet, R
1987-01-01
We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805
Wilkinson, T C; Wilton, D C
1986-01-01
Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946
Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal
2010-01-01
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772
Update of KDBI: Kinetic Data of Bio-molecular Interaction database
Kumar, Pankaj; Han, B. C.; Shi, Z.; Jia, J.; Wang, Y. P.; Zhang, Y. T.; Liang, L.; Liu, Q. F.; Ji, Z. L.; Chen, Y. Z.
2009-01-01
Knowledge of the kinetics of biomolecular interactions is important for facilitating the study of cellular processes and underlying molecular events, and is essential for quantitative study and simulation of biological systems. Kinetic Data of Bio-molecular Interaction database (KDBI) has been developed to provide information about experimentally determined kinetic data of protein–protein, protein–nucleic acid, protein–ligand, nucleic acid–ligand binding or reaction events described in the literature. To accommodate increasing demand for studying and simulating biological systems, numerous improvements and updates have been made to KDBI, including new ways to access data by pathway and molecule names, data file in System Biology Markup Language format, more efficient search engine, access to published parameter sets of simulation models of 63 pathways, and 2.3-fold increase of data (19 263 entries of 10 532 distinctive biomolecular binding and 11 954 interaction events, involving 2635 proteins/protein complexes, 847 nucleic acids, 1603 small molecules and 45 multi-step processes). KDBI is publically available at http://bidd.nus.edu.sg/group/kdbi/kdbi.asp. PMID:18971255
Jaiswal, Rahul; Singh, Samarendra K; Bastia, Deepak; Escalante, Carlos R
2015-04-01
The Reb1 protein from Schizosaccharomyces pombe is a member of a family of proteins that control programmed replication termination and/or transcription termination in eukaryotic cells. These events occur at naturally occurring replication fork barriers (RFBs), where Reb1 binds to termination (Ter) DNA sites and coordinates the polar arrest of replication forks and transcription approaching in opposite directions. The Reb1 DNA-binding and replication-termination domain was expressed in Escherichia coli, purified and crystallized in complex with a 26-mer DNA Ter site. Batch crystallization under oil was required to produce crystals of good quality for data collection. Crystals grew in space group P2₁, with unit-cell parameters a = 68.9, b = 162.9, c = 71.1 Å, β = 94.7°. The crystals diffracted to a resolution of 3.0 Å. The crystals were mosaic and required two or three cycles of annealing. This study is the first to yield structural information about this important family of proteins and will provide insights into the mechanism of replication and transcription termination.
Molecular tweezers modulate 14-3-3 protein-protein interactions
NASA Astrophysics Data System (ADS)
Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian
2013-03-01
Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.
Zumoffen, C M; Gil, R; Caille, A M; Morente, C; Munuce, M J; Ghersevich, S A
2013-05-01
Is lactoferrin (LF) (detected in oviductal secretion) able to bind to oocytes and sperm and modulate gamete interaction? LF binds to zona pellucida (ZP) and spermatozoa (depending upon the capacitation stage and acrosome status) and inhibits gamete interaction in vitro. Proteins from human oviductal tissue secretion modulate gamete interaction and parameters of sperm function in vitro and some of them bind to sperm, but they remain to be isolated and identified. Proteins were isolated from human oviductal tissue secretion using their sperm membrane binding ability. One of the isolated proteins was identified as human LF and immunolocalized in tubal tissues. LF expression was analyzed in native oviductal fluid and oviduct epithelial cells (at different phases of the menstrual cycle: proliferative, periovulatory and secretory). In addition, the LF binding sites on spermatozoa (at different capacitation and acrosome reaction stages) and on ZP and the dose-dependent effect of LF on gamete interaction were investigated. All experiments were performed at least three times. Tubal tissues obtained from premenopausal patients (scheduled for hysterectomy, n = 23) were cultured in DMEM/Ham's F12 medium and conditioned media (CM) were collected. Motile spermatozoa were obtained by swim-up from normozoospermic semen samples from healthy donors (n = 4). An affinity chromatography with sperm membrane extracts was used to isolate proteins from CM. Isolated proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophresis and further identified by nano liquid chromatography tandem mass spectrometry peptide sequencing. The presence of LF in oviductal tissue was investigated by immunohistochemistry and immunofluorescence and was detected in native oviductal fluid and oviduct epithelial cells homogenates by western blot. LF binding sites on gametes were investigated by incubating gametes with the protein coupled to fluorescein isothiocyanate (FITC). The acrosome reaction was assessed with Pisum sativum agglutinin conjugated with rhodamine. The effect of increasing concentrations of LF (0.1-100 µg/ml) on gamete interaction was evaluated by a sperm-ZP binding assay, using human oocytes donated by women undergoing IVF procedures. A protein isolated by the affinity column was identified as human LF. LF was immunolocalized in human oviductal tissue and detected in oviductal fluid and oviduct epithelial cell homogenates. In the latter case, LF expression was highest at the periovulatory phase of the menstrual cycle (P < 0.01). Different LF binding patterns were observed on spermatozoa depending upon capacitation stage and if the acrosome reaction had occurred. Unstained sperm were most prevalent before capacitation, but after incubation for 6 h under capacitating conditions and in acrosome-reacted sperm LF binding was observed, mainly localized in the equatorial segment and post-acrosomal region of the sperm head. LF binding studies on ZP showed homogenous staining. LF caused a dose-dependent significant inhibition of sperm-ZP interaction, and the effect was already significant (P < 0.01) with the lowest LF concentration used. This study has investigated the effect of LF only on human gamete interaction in vitro and thus has some limitations. Further investigations of the potential mechanisms involved in LF action both on gamete function in vitro and in vivo in animal models are needed to confirm the role of this protein in the reproductive process. The present data indicate that human oviductal LF expression is cycle dependent and inhibited gamete interaction in vitro. No previous data were available about potential direct effects of LF on gamete interaction. It could be thought that the protein is involved in the regulation of the reproductive process, perhaps contributing to prevent polyspermy. Thus, further research is needed to clarify the potential role of LF in the regulation of the fertilization process. This study was supported by grants from FONCYT (PICT 01095, S.A.G., M.J.M) and SECyT UNR (PIDBIO238, S.A.G). The authors have no conflict of interest to declare.
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L
2006-07-01
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.
A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein.
Banasik, Michał; Sachadyn, Paweł
2016-09-01
A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.
Nada, H; Furukawa, Y
2011-11-28
A molecular dynamics simulation was conducted to investigate the growth kinetics at the ice prismatic interface to which a spruce budworm antifreeze protein was bound. Two initial binding conformations of the protein at the interface--one energetically stable and the other energetically unstable--were examined. For both binding conformations, the growth of ice was observed around the protein. A sharp decrease in the rate of ice growth was observed around the protein that initially had the energetically stable binding conformation. Simulation results suggest that the observed decrease in the ice growth rate was attributable to melting point depression caused by the Gibbs-Thomson effect. The protein that initially had the energetically unstable binding conformation markedly relaxed so as to stably bind to the prismatic plane interface of the grown ice; thereafter, a decrease in the ice growth rate was observed as well. However, the binding conformation that the protein approached during the relaxation was different from that of the protein that initially had the energetically stable binding conformation. Thus, the simulation indicates the existence of two binding conformations for inducing a decrease in the ice growth rate. The results are possibly related to the hyperactivity of a spruce budworm antifreeze protein in real systems.
CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.
Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar
2017-09-01
Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.
Wang, Wei; Liu, Juan; Sun, Lin
2016-07-01
Protein-DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double-stranded DNA-binding proteins (DSBs) and single-stranded DNA-binding proteins (SSBs) in protein-DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA). Proteins 2016; 84:979-989. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calculations of the binding affinities of protein-protein complexes with the fast multipole method
NASA Astrophysics Data System (ADS)
Kim, Bongkeun; Song, Jiming; Song, Xueyu
2010-09-01
In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.
Rocchia, W; Neshich, G
2007-10-05
STING and Java Protein Dossier provide a collection of physical-chemical parameters, describing protein structure, stability, function, and interaction, considered one of the most comprehensive among the available protein databases of similar type. Particular attention in STING is paid to the electrostatic potential. It makes use of DelPhi, a well-known tool that calculates this physical-chemical quantity for biomolecules by solving the Poisson Boltzmann equation. In this paper, we describe a modification to the DelPhi program aimed at integrating it within the STING environment. We also outline how the "amino acid electrostatic potential" and the "surface amino acid electrostatic potential" are calculated (over all Protein Data Bank (PDB) content) and how the corresponding values are made searchable in STING_DB. In addition, we show that the STING and Java Protein Dossier are also capable of providing these particular parameter values for the analysis of protein structures modeled in computers or being experimentally solved, but not yet deposited in the PDB. Furthermore, we compare the calculated electrostatic potential values obtained by using the earlier version of DelPhi and those by STING, for the biologically relevant case of lysozyme-antibody interaction. Finally, we describe the STING capacity to make queries (at both residue and atomic levels) across the whole PDB, by looking at a specific case where the electrostatic potential parameter plays a crucial role in terms of a particular protein function, such as ligand binding. BlueStar STING is available at http://www.cbi.cnptia.embrapa.br.
Root-Bernstein, Robert; Root-Bernstein, Meredith
2016-05-21
We have proposed that the ribosome may represent a missing link between prebiotic chemistries and the first cells. One of the predictions that follows from this hypothesis, which we test here, is that ribosomal RNA (rRNA) must have encoded the proteins necessary for ribosomal function. In other words, the rRNA also functioned pre-biotically as mRNA. Since these ribosome-binding proteins (rb-proteins) must bind to the rRNA, but the rRNA also functioned as mRNA, it follows that rb-proteins should bind to their own mRNA as well. This hypothesis can be contrasted to a "null" hypothesis in which rb-proteins evolved independently of the rRNA sequences and therefore there should be no necessary similarity between the rRNA to which rb-proteins bind and the mRNA that encodes the rb-protein. Five types of evidence reported here support the plausibility of the hypothesis that the mRNA encoding rb-proteins evolved from rRNA: (1) the ubiquity of rb-protein binding to their own mRNAs and autogenous control of their own translation; (2) the higher-than-expected incidence of Arginine-rich modules associated with RNA binding that occurs in rRNA-encoded proteins; (3) the fact that rRNA-binding regions of rb-proteins are homologous to their mRNA binding regions; (4) the higher than expected incidence of rb-protein sequences encoded in rRNA that are of a high degree of homology to their mRNA as compared with a random selection of other proteins; and (5) rRNA in modern prokaryotes and eukaryotes encodes functional proteins. None of these results can be explained by the null hypothesis that assumes independent evolution of rRNA and the mRNAs encoding ribosomal proteins. Also noteworthy is that very few proteins bind their own mRNAs that are not associated with ribosome function. Further tests of the hypothesis are suggested: (1) experimental testing of whether rRNA-encoded proteins bind to rRNA at their coding sites; (2) whether tRNA synthetases, which are also known to bind to their own mRNAs, are encoded by the tRNA sequences themselves; (3) and the prediction that archaeal and prokaryotic (DNA-based) genomes were built around rRNA "genes" so that rRNA-related sequences will be found to make up an unexpectedly high proportion of these genomes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Abriata, Luciano A.; Dal Peraro, Matteo
2015-01-01
Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027
A global benchmark study using affinity-based biosensors
Rich, Rebecca L.; Papalia, Giuseppe A.; Flynn, Peter J.; Furneisen, Jamie; Quinn, John; Klein, Joshua S.; Katsamba, Phini S.; Waddell, M. Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P.; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D’Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M.; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S.; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J.; Myszka, David G.
2013-01-01
To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. PMID:19133223
Ali, Mohd Sajid; Altaf, Mohammad; Al-Lohedan, Hamad A
2017-08-01
Biogenic silver nanoparticles (AgNPs) have been synthesized by using Solanum tuberosum (potato) extract (PE) as a reducing as well as stabilizing agent which is reasonably cheaper, non-toxic and easily available material. The green synthesis of silver nanoparticles has been carried out by very simple method and the nanoparticles were characterized by surface plasmon band as well as TEM measurements. The PE-AgNPs were highly dispersed in the solution and found to be spherical with around 10nm in size. Interaction of these nanoparticles was studied with plasma protein HSA by means of various spectroscopies, such as, UV-visible, fluorescence, DLS, CD and FTIR spectroscopies. The HSA was found to form the protein "corona" around the starch-capped PE-AgNPs. Absorption spectroscopy revealed that the interaction between HSA and PE-AgNPs resulted in the ground state complex formation. Due to the strong absorption of PE-AgNPs, the inner filter effect was corrected for the fluorescence data. PE-AgNPs were found to quench the fluorescence of HSA with a small blue shift attributed to the increase in the hydrophobicity near tryptophan residue due to the presence of amylopectin and amylose units in the starch. The value of n, Hill's constant, was found to be >1 which determines the existence of a cooperative binding between nanoparticle and albumin. Several parameters such as Stern-Volmer and binding constants in addition to the thermodynamic parameters have been analyzed and discussed which established that the complex formation has taken place via static quenching mechanism and the corona formation between albumin and PE-AgNPs was entropy driven process. Binding of biogenic PE-AgNPs to the HSA slightly affected the secondary structure of latter with a small decrease in α-helical contents resulting in the partial unfolding of the protein, though the structural motif remained the same. Molecular docking simulations revealed various possible binding modes between PE-AgNPs and albumin. Copyright © 2017 Elsevier B.V. All rights reserved.
Concerted formation of macromolecular Suppressor–mutator transposition complexes
Raina, Ramesh; Schläppi, Michael; Karunanandaa, Balasulojini; Elhofy, Adam; Fedoroff, Nina
1998-01-01
Transposition of the maize Suppressor–mutator (Spm) transposon requires two element-encoded proteins, TnpA and TnpD. Although there are multiple TnpA binding sites near each element end, binding of TnpA to DNA is not cooperative, and the binding affinity is not markedly affected by the number of binding sites per DNA fragment. However, intermolecular complexes form cooperatively between DNA fragments with three or more TnpA binding sites. TnpD, itself not a sequence-specific DNA-binding protein, binds to TnpA and stabilizes the TnpA–DNA complex. The high redundancy of TnpA binding sites at both element ends and the protein–protein interactions between DNA-bound TnpA complexes and between these and TnpD imply a concerted transition of the element from a linear to a protein crosslinked transposition complex within a very narrow protein concentration range. PMID:9671711
The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins.
Filchenkov, Gennady N; Popoff, Eugene H; Naumov, Alexander D
2014-01-01
The paper deals with effects of the ionising radiation (γ-IR, 0.5 Gy) upon serum testosterone (T), characteristics of testosterone-binding globulin (TeBG) and androgen receptor (AR) in parallel with observation of androgen (A) responsive enzyme activity - hexokinase (HK). The interdependence or relationships of T-levels with parameters of the proteins that provide androgenic regulation are consequently analyzed in post-IR dynamics. The IR-stress adjustment data reveal expediency of TeBG- and AR-cooperativity measurements for more precise assessments of endocrine A-control at appropriate emergencies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kouvatsos, Nikolaos; Meldrum, Jill K; Searle, Mark S; Thomas, Neil R
2006-11-28
We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.
Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.
Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter
2015-01-01
Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.
Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S
2015-12-01
Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.
Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer
2008-01-01
Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids. PMID:18477694
Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K
2010-08-16
Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.
Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.
2010-01-01
Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434
Conformational Changes of Blood ACE in Chronic Uremia
Petrov, Maxim N.; Shilo, Valery Y.; Tarasov, Alexandr V.; Schwartz, David E.; Garcia, Joe G. N.; Kost, Olga A.; Danilov, Sergei M.
2012-01-01
Background The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy. PMID:23166630
The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.
Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M
2016-09-07
Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako; Kuwata, Shigeru
2016-04-01
A biotin-binding protein with a low isoelectric point (pI), which minimizes electrostatic non-specific binding to substances other than biotin, is potentially valuable. To obtain such a protein, we screened hundreds of mushrooms, and detected strong biotin-binding activity in the fruit bodies of Lentinula edodes, shiitake mushroom. Two cDNAs, each encoding a protein of 152 amino acids, termed lentiavidin 1 and lentiavidin 2 were cloned from L. edodes. The proteins shared sequence identities of 27%-49% with other biotin-binding proteins, and many residues that directly associate with biotin in streptavidin were conserved in lentiavidins. The pI values of lentiavidin 1 and lentiavidin 2 were 3.9 and 4.4, respectively; the former is the lowest pI of the known biotin-binding proteins. Lentiavidin 1 was expressed as a tetrameric protein with a molecular mass of 60 kDa in an insect cell-free expression system and showed biotin-binding activity. Lentiavidin 1, with its pI of 3.9, has a potential for broad applications as a novel biotin-binding protein. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Catalá, A; Avanzati, B
1983-11-01
Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.
Frey, W; Brink, J; Schief, W R; Chiu, W; Vogel, V
1998-01-01
Coordination of individual histidine residues located on a protein surface to metal-chelated lipid monolayers is a potentially general method for crystallizing proteins in two dimensions. It was shown recently by Brewster angle microscopy (BAM) that the model protein streptavidin binds via its surface histidines to Cu-DOIDA lipid monolayers, and aggregates into regularly shaped domains that have the appearance of crystals. We have used electron microscopy to confirm that the domains are indeed crystalline with lattice parameters similar to those of the same protein crystallized beneath biotinylated lipid monolayers. Although BAM demonstrates that the two-dimensional protein crystals grown via metal chelation are distinct from the biotin-bound crystals in both microscopic shape and thermodynamic behavior, the two crystal types show similar density projections and the same plane group symmetry. PMID:9591691
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-01-01
Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-04-21
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Huaying, E-mail: zhaoh3@mail.nih.gov; Schuck, Peter, E-mail: zhaoh3@mail.nih.gov
2015-01-01
Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysicalmore » techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.« less
Using the MWC model to describe heterotropic interactions in hemoglobin
Rapp, Olga
2017-01-01
Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329
Protein docking prediction using predicted protein-protein interface.
Li, Bin; Kihara, Daisuke
2012-01-10
Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.
Bentley, Marvin; Decker, Helena; Luisi, Julie
2015-01-01
Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations. PMID:25624392
Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.
Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu
2017-09-01
Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.
RNA binding properties of the US11 protein from four primate simplexviruses.
Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto
2011-11-03
The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.
RNA binding properties of the US11 protein from four primate simplexviruses
2011-01-01
Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255
Multivalent DNA-binding properties of the HMG-1 proteins.
Maher, J F; Nathans, D
1996-01-01
HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884
Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick
2016-01-01
The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.
Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E
2007-04-01
The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.
Kitai, Takeshi; Kim, Yong-Hyun; Kiefer, Kathryn; Morales, Rommel; Borowski, Allen G; Grodin, Justin L; Tang, W H Wilson
2017-06-01
Venous congestion has become increasingly recognized as a potential contributor to end-organ dysfunction in heart failure. Elevated I-FABP, which is excreted specifically from damaged intestinal epithelial cells, has been found in patients with abdominal hypertension and intestinal ischemia. We hypothesize that elevated intestinal fatty acid-binding protein (I-FABP) levels would identify patients with more advanced heart failure who have venous and intestinal congestion. Baseline serum I-FABP levels were measured in 69 acute decompensated heart failure (ADHF) patients admitted to the intensive care unit for invasive hemodynamic monitoring and tailored medical therapy. Comprehensive echocardiography examinations were performed in all study patients, and clinical outcomes (death, cardiac transplant or left ventricular assist device placement) were assessed. The median circulating I-FABP level was 853pg/ml (interquartile range: 533 to 1448pg/ml). Age, gender, race, and baseline comorbidities were comparable between patients with low and high I-FABP levels. Although there were no significant correlations between I-FABP levels and invasively-measured hemodynamic parameters nor echocardiographic parameters, patients with higher I-FABP levels (≥853g/ml) had significantly worse clinical outcomes compared to those with lower I-FABP levels (<853pg/ml, P=0.025). Circulating I-FABP levels had no association with invasively-measured hemodynamic parameters, but were associated with adverse clinical outcomes in patients with ADHF with systolic dysfunction. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Thermostabilisation of membrane proteins for structural studies
Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.
2017-01-01
The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713
Pathways for virus assembly around nucleic acids
Perlmutter, Jason D; Perkett, Matthew R
2014-01-01
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288
Predicting permanent and transient protein-protein interfaces.
La, David; Kong, Misun; Hoffman, William; Choi, Youn Im; Kihara, Daisuke
2013-05-01
Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. Copyright © 2013 Wiley Periodicals, Inc.
The promiscuous protein binding ability of erythrosine B studied by metachromasy (metachromasia).
Ganesan, Lakshmi; Buchwald, Peter
2013-04-01
The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein-protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50 ) in the 5- to 30-μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd ) and stoichiometry (nb ) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5-6 and 8-9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. Copyright © 2013 John Wiley & Sons, Ltd.
The Promiscuous Protein Binding Ability of Erythrosine B Studied by Metachromasy (Metachromasia)
Ganesan, Lakshmi; Buchwald, Peter
2013-01-01
The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPI) with a remarkably consistent median inhibitory concentration (IC50) in the 5–30 µM range. Because ErB exhibits metachromasy, i.e., color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 µM for BSA and CD40L, respectively) were in good agreement with that expected from the protein–protein interaction (PPI) inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively) indicating the possibility of nonspecific binding of the flat an rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. PMID:23456742
Yazicioglu, Mustafa N.; Monaldini, Luca; Chu, Kirk; Khazi, Fayaz R.; Murphy, Samuel L.; Huang, Heshu; Margaritis, Paris; High, Katherine A.
2013-01-01
The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins. PMID:23873930
TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael
2012-03-04
Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
Predicting a small molecule-kinase interaction map: A machine learning approach
2011-01-01
Background We present a machine learning approach to the problem of protein ligand interaction prediction. We focus on a set of binding data obtained from 113 different protein kinases and 20 inhibitors. It was attained through ATP site-dependent binding competition assays and constitutes the first available dataset of this kind. We extract information about the investigated molecules from various data sources to obtain an informative set of features. Results A Support Vector Machine (SVM) as well as a decision tree algorithm (C5/See5) is used to learn models based on the available features which in turn can be used for the classification of new kinase-inhibitor pair test instances. We evaluate our approach using different feature sets and parameter settings for the employed classifiers. Moreover, the paper introduces a new way of evaluating predictions in such a setting, where different amounts of information about the binding partners can be assumed to be available for training. Results on an external test set are also provided. Conclusions In most of the cases, the presented approach clearly outperforms the baseline methods used for comparison. Experimental results indicate that the applied machine learning methods are able to detect a signal in the data and predict binding affinity to some extent. For SVMs, the binding prediction can be improved significantly by using features that describe the active site of a kinase. For C5, besides diversity in the feature set, alignment scores of conserved regions turned out to be very useful. PMID:21708012
NASA Astrophysics Data System (ADS)
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-01-01
Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH 7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site ( 103 M- 1, 310 K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH0), entropy change (ΔS0) and Gibbs free energy change (ΔG0) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR).
Robert, L; Migne, J; Santonja, R; Zini, R; Schmid, K; Tillement, J P
1983-06-01
The binding of nicergoline, an alpha-blocking drug, by human plasma proteins was studied using gel filtration, polyacrylamide gel electrophoresis, and equilibrium dialysis techniques. 3H-labeled nicergoline added to plasma was eluted together with two major protein fractions, one containing mainly serum albumin, the other glycoproteins such as alpha 1-acid glycoprotein (alpha 1-AG). Equilibrium dialysis experiments with pure human serum albumin and alpha 1-AG as well as with its chemically modified forms, desialylated, carboxymethylated, and both desialylated and carboxymethylated alpha 1-AG gave the following results: nicergoline has about a 4-fold higher affinity for alpha 1-AG than for serum albumin. There are two binding sites per molecule on serum albumin and one on alpha 1-AG. The binding parameters of alpha 1-AG were not significantly modified by desialylation or carboxymethylation. Only desialylated and carboxymethylated alpha 1-AG showed a decreased binding for nicergoline, suggesting conformational modifications induced by these combined treatments. The fact that desialylated alpha 1-AG keeps its affinity for nicergoline suggests the possibility of a selective introduction of this drug in cells possessing the Ashwell-type specific receptor for desialylated alpha 1-AG, for instance hepatocytes. Increased serum alpha 1-AG concentration induced by inflammatory reactions will also modify the distribution of bound nicergoline between serum albumin and alpha 1-AG and as a consequence its half-life and cell distribution.
New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein
Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven
2012-01-01
A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609
Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael
2011-01-01
Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design. PMID:21693557
A brave new world of RNA-binding proteins.
Hentze, Matthias W; Castello, Alfredo; Schwarzl, Thomas; Preiss, Thomas
2018-05-01
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Definition of IgG- and albumin-binding regions of streptococcal protein G.
Akerström, B; Nielsen, E; Björck, L
1987-10-05
Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.
NASA Astrophysics Data System (ADS)
Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene
1991-08-01
THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.
Lu, Keyu; Gu, Yuqing; Liu, Xiaoping; Lin, Yi; Yu, Xiao-Qiang
2017-03-15
Cry toxins are insecticidal toxin proteins produced by a spore-forming Gram-positive bacterium Bacillus thuringiensis. Interactions between the Cry toxins and the receptors from midgut brush border membrane vesicles (BBMVs), such as cadherin, alkaline phosphatase, and aminopeptidase, are key steps for the specificity and insecticidal activity of Cry proteins. However, little is known about the midgut juice proteins that may interfere with Cry binding to the receptors. To validate the hypothesis that there exist Cry-binding proteins that can interfere with the insecticidal process of Cry toxins, we applied Cry1Ab1-coupled Sepharose beads to isolate Cry-binding proteins form midgut juice of Plutella xylostella and Spodoptera exigua. Trypsin-like serine proteases and Dorsal were found to be Cry1Ab1-binding proteins in the midgut juice of P. xylostella. Peroxidase-C (POX-C) was found to be the Cry1Ab1-binding protein in the midgut juice of S. exigua. We proposed possible insecticidal mechanisms of Cry1Ab1 mediated by the two immune-related proteins: Dorsal and POX-C. Our results suggested that there exist, in the midgut juice, Cry-binding proteins, which are different from BBMV-specific receptors.
Phage display selection of peptides that target calcium-binding proteins.
Vetter, Stefan W
2013-01-01
Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.
Sakumi, K; Sekiguchi, M
1989-01-20
The Ada protein of Escherichia coli catalyzes transfer of methyl groups from methylated DNA to its own molecule, and the methylated form of Ada protein promotes transcription of its own gene, ada. Using an in vitro reconstituted system, we found that both the sigma factor and the methylated Ada protein are required for transcription of the ada gene. To elucidate molecular mechanisms involved in the regulation of the ada transcription, we investigated interactions of the non-methylated and methylated forms of Ada protein and the RNA polymerase holo enzyme (the core enzyme and sigma factor) with a DNA fragment carrying the ada promoter region. Footprinting analyses revealed that the methylated Ada protein binds to a region from positions -63 to -31, which includes the ada regulatory sequence AAAGCGCA. No firm binding was observed with the non-methylated Ada protein, although some DNase I-hypersensitive sites were produced in the promoter by both types of Ada protein. RNA polymerase did bind to the promoter once the methylated Ada protein had bound to the upstream sequence. To correlate these phenomena with the process in vivo, we used the DNAs derived from promoter-defective mutants. No binding of Ada protein nor of RNA polymerase occurred with a mutant DNA having a C to G substitution at position -47 within the ada regulatory sequence. In the case of a -35 box mutant with a T to A change at position -34, the methylated Ada protein did bind to the ada regulatory sequence, yet there was no RNA polymerase binding. Thus, the binding of the methylated Ada protein to the upstream region apparently facilitates binding of the RNA polymerase to the proper region of the promoter. The Ada protein possesses two known methyl acceptor sites, Cys69 and Cys321. The role of methylation of each cysteine residue was investigated using mutant forms of the Ada protein. The Ada protein with the cysteine residue at position 69 replaced by alanine was incapable of binding to the ada promoter even when the cysteine residue at position 321 of the protein was methylated. When the Ada protein with alanine at position 321 was methylated, it acquired the potential to bind to the ada promoter. These results are compatible with the notion that methylation of the cysteine residue at position 69 causes a conformational change of the Ada protein, thereby facilitating binding of the protein to the upstream regulatory sequence.
Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin
2015-11-01
The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.
Doppelt-Azeroual, Olivia; Delfaud, François; Moriaud, Fabrice; de Brevern, Alexandre G
2010-04-01
Ligand-protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects.
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R
2013-10-01
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.
2013-01-01
Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130
Doppelt-Azeroual, Olivia; Delfaud, François; Moriaud, Fabrice; de Brevern, Alexandre G
2010-01-01
Ligand–protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects. PMID:20162627
NASA Technical Reports Server (NTRS)
Reddy, A. S.; Reddy, V. S.; Golovkin, M.
2000-01-01
Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.
Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.
Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin
2017-09-14
U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.
ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.
Konc, Janez; Janežič, Dušanka
2014-07-01
The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Isolation and characterization of target sequences of the chicken CdxA homeobox gene.
Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A
1993-01-01
The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943