Science.gov

Sample records for protein c inhibitor

  1. Protein C and its inhibitor in malignancy.

    PubMed

    Suzuki, Koji; Hayashi, Tatsuya

    2007-10-01

    Activated protein C (APC) and protein C inhibitor (PCI) are the major components of the anticoagulant protein C pathway. Recently, APC and PCI have been demonstrated to play many roles not only in the regulation of hemostasis but also in cell inflammation, proliferation, apoptosis, tumor cell migration, invasion, and metastasis. Here we summarize the role of APC and PCI in malignancy. APC increases migration of ovarian cancer cells and choriocarcinoma cells in a Transwell invasion assay in the presence of plasminogen activator inhibitor (PAI)-1; this finding suggests that APC stimulates urokinase-type plasminogen activator (uPA) by forming a complex with PAI-1 leading to activation of extracellular matrix proteases and increased invasion. It was recently reported that APC, independent of PAI-1, may increase invasion and chemotaxis of breast cancer cells by activating specific signaling pathways through endothelial protein C receptor (EPCR) and protease-activated receptor (PAR)-1. APC also increased proliferation of vascular endothelial cells and angiogenesis by EPCR-mediated activation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and endothelial nitric oxide synthase (eNOS) pathways. On the other hand, we have previously reported that both uPA and PCI are synthesized in renal proximal tubular epithelial cells (RPTECs) and that PCI expression in RPTEC-derived tumor cells is significantly decreased compared with normal RPTECs. The RPTEC-derived renal carcinoma cell line Caki-1 also showed decreased expression of PCI. PCI inhibited in vitro invasive activity of Caki-1 and breast cancer cells by its protease inhibitory activity. However, PCI was found to inhibit the growth and metastatic potential of breast cancer cells independent of its protease inhibitory activity in severe combined immunodeficient mice. PCI can also inhibit angiogenesis in vivo and in vitro assays independent of its protease inhibitory activity. Overall, these

  2. Structural investigation of protein kinase C inhibitors.

    PubMed

    Barak, D; Shibata, M; Rein, R

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  3. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  4. Novel protein kinase C inhibitors: alpha-terthiophene derivatives.

    PubMed

    Kim, D S; Ashendel, C L; Zhou, Q; Chang, C T; Lee, E S; Chang, C J

    1998-10-06

    A series of alpha-terthiophene derivatives were prepared and their protein kinase C inhibitory activity were evaluated. The aldehyde derivatives were most potent inhibitors (IC50 < 1 microM). alpha-Terthiophene monoaldehyde was inactive in the inhibitions of protein kinase A, mitogen activated protein kinase and protein tyrosine kinase.

  5. A novel protein C inhibitor gene mutation in pediatric stroke patients after bone marrow transplantation.

    PubMed

    Torun, Didem; Deda, Gülhis; Ertem, Mehmet; Uysal, Zümrüt; Yılmaz, Erkan; Akar, Nejat

    2013-09-01

    Protein C inhibitor is a heparin dependent serine protease inhibitor found in human plasma, urine and other body fluids. It was originally identified as an inhibitor of activated protein C. Stroke is an important cause of morbidity and mortality in the pediatric age group. In this study we analyzed the protein C inhibitor gene mutations in Turkish pediatric stroke patients. We found a missense mutation of G to A at nucleotide 6760 in exon 2, resulting in a transition serine to asparagine (p.Ser188Asp) and in a child and his father and also we found same alteration in exon 2 in an another pediatric stroke case following bone marrow transplantation.

  6. ATP competitive protein kinase C inhibitors demonstrate distinct state-dependent inhibition.

    PubMed

    Smith, Ida M; Hoshi, Naoto

    2011-01-01

    We previously reported that some ATP competitive protein kinase C (PKC) inhibitors are either competitive or uncompetitive inhibitors with respect to substrate peptides. In this report, we demonstrate how the interactions between PKC and inhibitors change PKC activation kinetics. A substrate competitive inhibitor, bisindolylmaleimide I, targets activated PKC and stabilizes PKC in the activated conformation. This leads to transient activation and prolonged deactivation of PKC in the presence of bisindolylmaleimide I. In contrast, an uncompetitive substrate inhibitor, bisindolylmaleimide IV, targets quiescent PKC and stabilizes PKC in the quiescent conformation, which generates slower activation and suppressed translocation upon activation of PKC.

  7. Active site inhibitors protect protein kinase C from dephosphorylation and stabilize its mature form.

    PubMed

    Gould, Christine M; Antal, Corina E; Reyes, Gloria; Kunkel, Maya T; Adams, Ryan A; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C

    2011-08-19

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.

  8. Novel protein kinase C inhibitors: synthesis and PKC inhibition of beta-substituted polythiophene derivatives.

    PubMed

    Xu, W C; Zhou, Q; Ashendel, C L; Chang, C T; Chang, C J

    1999-08-02

    A series of beta-substituted polythiophene derivatives was synthesized through palladium-catalyzed coupling reaction. Their structure-protein kinase C (PKC) inhibitory activity relationship was studied. The carboxaldehyde and hydroxymethyl derivatives of alpha-terthiophene were potent PKC inhibitors (IC50 = 10(-7) M).

  9. Novel, potent and selective inhibitors of protein kinase C show oral anti-inflammatory activity.

    PubMed

    Nixon, J S; Bishop, J; Bradshaw, D; Davis, P D; Hill, C H; Elliott, L H; Kumar, H; Lawton, G; Lewis, E J; Mulqueen, M

    1991-01-01

    Clarification of the precise role of protein kinase C (PKC) in cellular functional responses has been hampered by a lack of potent, selective inhibitors. The structural lead provided by staurosporine, a potent but non-selective protein kinase (PK) inhibitor, was used to derive a series of bis(indolyl)maleimides of which the most potent, Ro 31-8425 (I50: PKC = 8 nM) showed 350-fold selectivity for PKC over cAMP-dependent protein kinase. Ro 31-8425 antagonised cellular processes triggered by phorbol esters (potent, specific PKC activators) and inhibited the allogeneic mixed lymphocyte reaction, suggesting a role for PKC in T-cell activation. Methylation of the primary amine in Ro 31-8425 produced an analogue. Ro 31-8830 which, when administered orally, produced a dose-dependent inhibition of a phorbol ester-induced paw oedema in mice (minimum effective dose = 15 mg/kg). Ro 31-8830 also selectively inhibited the secondary inflammation in a developing adjuvant arthritis model in the rat. The results presented here suggest that these selective inhibitors of PKC may have therapeutic value in the treatment of T-cell-mediated autoimmune diseases.

  10. Reversible and irreversible acetylcholinesterase inhibitors cause changes in neuronal amyloid precursor protein processing and protein kinase C level in vitro.

    PubMed

    Pakaski, M; Rakonczay, Z; Kasa, P

    2001-03-01

    The alternative routes of cleavage of the amyloid precursor protein (APP) result in the generation and secretion of both soluble APP and beta-amyloid, the latter being the main component of the amyloid deposits in the brains of individuals with Alzheimer's disease (AD). This study examined the question of whether acetylcholinesterase (AChE) inhibitors can alter the processing of APP and the level of protein kinase C (PKC) in primary rat basal forebrain cultures. Western blotting was used to test two AChE inhibitors (reversible and irreversible) for their ability to enhance the release of APP and PKC content. These inhibitors were ambenonium (AMB) and metrifonate (MTF), at different concentrations. A significant increase was found in the cell-associated APP level in a basal forebrain neuronal culture, and there was an elevation of the APP release into the medium. Increases were similarly observed in the PKC levels after AMB or MTF treatment. The results suggest that these AChE inhibitors promote the non-amyloidogenic route of APP processing, which may be due to their stimulatory effects on PKC. The PKC activation may enhance the alpha-secretase activity and consequently the production of the N-terminal APP. Since both a decreased level of APP secretion and a low activity and level of PKC may be involved in the pathogenesis of AD, it is concluded that the administration of AChE inhibitors to AD patients may facilitate the memory processes and exert a neuroprotective effect.

  11. Protein Kinase C Inhibitors Sensitize GNAQ Mutant Uveal Melanoma Cells to Ionizing Radiation

    PubMed Central

    Cerne, Jasmina Ziva; Hartig, Sean Michael; Hamilton, Mark Patrick; Chew, Sue Anne; Mitsiades, Nicholas; Poulaki, Vassiliki; McGuire, Sean Eric

    2014-01-01

    Purpose. Uveal melanoma (UM) tumors require large doses of radiation therapy (RT) to achieve tumor ablation, which frequently results in damage to adjacent normal tissues, leading to vision-threatening complications. Approximately 50% of UM patients present with activating somatic mutations in the gene encoding for G protein αq-subunit (GNAQ), which lead to constitutive activation of downstream pathways, including protein kinase C (PKC). In this study, we investigated the impact of small-molecule PKC inhibitors bisindolylmaleimide I (BIM) and sotrastaurin (AEB071), combined with ionizing radiation (IR), on survival in melanoma cell lines. Methods. Cellular radiosensitivity was determined by using a combination of proliferation, viability, and clonogenic assays. Cell-cycle effects were measured by flow cytometry. Transcriptomic and proteomic profiling were performed by quantitative real-time PCR, reverse-phase protein array analysis, and immunofluorescence. Results. We found that the PKC inhibitors combined with IR significantly decreased the viability, proliferation, and clonogenic potential of GNAQmt, but not GNAQwt/BRAFmt cells, compared with IR alone. Combined treatment increased the antiproliferative and proapoptotic effects of IR in GNAQmt cells through delayed DNA-damage resolution and enhanced induction of proteins involved in cell-cycle arrest, cell-growth arrest, and apoptosis. Conclusions. Our preclinical results suggest that combined modality treatment may allow for reductions in the total RT dose and/or fraction size, which may lead to better functional organ preservation in the treatment of primary GNAQmt UM. These findings suggest future clinical trials combining PKC inhibitors with RT in GNAQmt UM warrant consideration. PMID:24595385

  12. Elucidating the Mechanism of Gain of Toxic Function from Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0506 TITLE: Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary...Inhibitor Proteins in Hereditary Angioedema 5b. GRANT NUMBER W81XWH-14-1-0506 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Bruce Zuraw, M.D. 5d...HAE is autosomal dominant. Cells, heterozygous for the SERPING1 mutation, express both mutant and WT C1INH proteins . HAE is clearly a loss-of

  13. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    PubMed

    Prohaska, Thomas A; Wahlmüller, Felix C; Furtmüller, Margareta; Geiger, Margarethe

    2012-01-01

    The serine protease inhibitor protein C inhibitor (PCI) is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP) is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4) M(-1) s(-1). Low molecular weight (LMWH) and unfractionated heparin (UFH) slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition) value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml). By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  14. Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts.

    PubMed Central

    Jordan, N. J.; Watson, M. L.; Yoshimura, T.; Westwick, J.

    1996-01-01

    1. Rheumatoid arthritis is associated with the accumulation and activation of selected populations of inflammatory cells within the arthritic joint. One putative signal for this process is the production, by resident cells, of a group of inflammatory mediators known as the chemokines. 2. The chemokines interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated on activation normal T-cell expressed and presumably secreted) are target-cell specific chemoattractants produced by synovial fibroblasts in response to stimulation with interleukin-1 alpha (IL-1 alpha) or tumour necrosis factor alpha (TNF alpha). The signalling pathways involved in their production are not well defined. We therefore used four different protein kinase C inhibitors to investigate the role of this kinase in the regulation of chemokine mRNA and protein expression in human cultured synovial fibroblasts. 3. The non-selective PKC inhibitor, staurosporine (1-300 nM) significantly increased the production of IL-1 alpha-induced IL-8 mRNA and protein. A specific PKC inhibitor, chelerythrine chloride (0.1-3 microM), also caused a small concentration-dependent increase in IL-8 mRNA and protein production. In contrast, 3-[1-[3-(amidinothio)propyl]-3-indoly]-4-(1-methyl-3-indolyl )- 1H-pyrrole-2,5-dione methanesulphonate (Ro 31-8220) and 2[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3- yl)-maleimide (GF 109203X), two selective PKC inhibitors of the substituted bisindolylmaleimide family had a concentration-dependent biphasic effect on IL-1 alpha or TNF alpha-induced chemokine expression. At low concentrations they caused a stimulation in chemokine production, which was especially evident at the mRNA level. At higher concentrations both inhibited IL-1 alpha or TNF alpha-induced chemokine mRNA and protein production. Ro 31-8220 was 10 fold more potent than GF 109203X, with an IC50 of 1.6 +/- 0.08 microM (mean +/- s.e.mean, n = 4) for IL-1 alpha induced IL-8 production. Ro 31

  15. Virtual screening of protein kinase C inhibitors from natural product library to modulate general anaesthetic effects.

    PubMed

    Zhao, Junhui; Zhou, Chuixian

    2015-01-01

    Protein kinase C (PKC) plays a key role in neurotransmission in the central nervous system, and targeting PKC domain is considered as a strategy to modulate the anaesthetic effects. In this study, we described a synthetic pipeline to perform high-throughput virtual screening against a large library of 3D structural natural products released recently in order to discover those potential PKC modulators. A total of 100 natural products with top scores were raised, from which 12 promising candidates were tested to determine their inhibitory potencies against PKC. As might be expected, the promiscuous kinase inhibitor staurosporine showed a high PKC inhibitory activity (IC50 = 64 nM), and other two tested compounds, i.e. fisetin and tetrahydropapaverine, were also highly potent with their activities at nanomolar level (IC50 = 370 and 190, respectively).

  16. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in concert with

  17. Protein Kinase C Inhibitors as Modulators of Vascular Function and their Application in Vascular Disease.

    PubMed

    Khalil, Raouf A

    2013-01-01

    Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca(2+) concentration ([Ca(2+)]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca(2+)-dependent and Ca(2+)-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca(2+)]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinase (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  18. Enzastaurin (LY317615), a Protein Kinase C Beta Selective Inhibitor, Enhances Antiangiogenic Effect of Radiation

    SciTech Connect

    Willey, Christopher D.; Xiao Dakai; Tu Tianxiang; Kim, Kwang Woon; Moretti, Luigi; Niermann, Kenneth J.; Tawtawy, Mohammed N.; Quarles, Chad C. Ph.D.; Lu Bo

    2010-08-01

    Purpose: Angiogenesis has generated interest in oncology because of its important role in cancer growth and progression, particularly when combined with cytotoxic therapies, such as radiotherapy. Among the numerous pathways influencing vascular growth and stability, inhibition of protein kinase B(Akt) or protein kinase C(PKC) can influence tumor blood vessels within tumor microvasculature. Therefore, we wanted to determine whether PKC inhibition could sensitize lung tumors to radiation. Methods and Materials: The combination of the selective PKC{beta} inhibitor Enzastaurin (ENZ, LY317615) and ionizing radiation were used in cell culture and a mouse model of lung cancer. Lung cancer cell lines and human umbilical vascular endothelial cells (HUVEC) were examined using immunoblotting, cytotoxic assays including cell proliferation and clonogenic assays, and Matrigel endothelial tubule formation. In vivo, H460 lung cancer xenografts were examined for tumor vasculature and proliferation using immunohistochemistry. Results: ENZ effectively radiosensitizes HUVEC within in vitro models. Furthermore, concurrent ENZ treatment of lung cancer xenografts enhanced radiation-induced destruction of tumor vasculature and proliferation by IHC. However, tumor growth delay was not enhanced with combination treatment compared with either treatment alone. Analysis of downstream effectors revealed that HUVEC and the lung cancer cell lines differed in their response to ENZ and radiation such that only HUVEC demonstrate phosphorylated S6 suppression, which is downstream of mTOR. When ENZ was combined with the mTOR inhibitor, rapamycin, in H460 lung cancer cells, radiosensitization was observed. Conclusion: PKC appears to be crucial for angiogenesis, and its inhibition by ENZ has potential to enhance radiotherapy in vivo.

  19. [Proteasome degradation of protein C and plasmin inhibitor mutants: molecular mechanism of congenital protein deficiency].

    PubMed

    Nishio, Miwako; Koyama, Takatoshi; Hirosawa, Shinsaku

    2009-08-01

    In many inherited disorders, protein deficiency is one of the major aetiologies, but the molecular and cellular mechanisms remain unclear. We investigated the intracellular degradation of mutant proteins, using naturally occurring PC and PI mutants that lead to congenital deficiencies. We have shown that proteasomes are very important for the degradation of PC and PI mutants, irrespective of the presence or absence of N-glycosylation moieties. Furthermore, mannose trimming after glucose removal is very important for initiation of the degradation. Inhibition of glucose trimming of the mutant proteins accelerated degradation by the proteasomes, and initiation of the degradation occurs after mannose trimming of the middle chain of N-linked glycosylation by mannosidase I. The binding of molecular chaperons influenced by the presence of N-glycosylation moieties may affect the efficient degradation of the mutant proteins. Cotransfection of endoplasmic reticulum (ER) degradation enhancing alpha-mannosidase like protein (EDEM) accelerated the degradation of N-glycosylated PC. The mutant PC or PI molecules were ubiquitin-independently degraded by proteasomes. Autophagy does not appear to contribute to the degradation of PC and PI mutants. These findings might help to elucidate the molecular mechanisms and potential treatments of congenital deficiencies of proteins in a system of coagulation and fibrinolysis.

  20. New functional assays to selectively quantify the activated protein C- and tissue factor pathway inhibitor-cofactor activities of protein S in plasma.

    PubMed

    Alshaikh, N A; Rosing, J; Thomassen, M C L G D; Castoldi, E; Simioni, P; Hackeng, T M

    2017-02-17

    Essentials Protein S is a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI). There are no assays to quantify separate APC and TFPI cofactor activities of protein S in plasma. We developed assays to measure the APC- and TFPI-cofactor activities of protein S in plasma. The assays were sensitive to protein S deficiency, and not affected by the Factor V Leiden mutation.

  1. Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    DTIC Science & Technology

    2015-10-01

    in Hereditary Angioedema PRINCIPAL INVESTIGATOR: Dr. Bruce Zuraw, M.D. CONTRACTING: ORGANIZATION Veterans Medical Research Foundation San...C1 Inhibitor 5a. CONTRACT NUMBER Proteins in Hereditary Angioedema 5b. GRANT NUMBER W81XWH-14-1-0506 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...hypothesis that unique structural characteristics of C1INH make it more susceptible to GOTF than other serpins. 15. SUBJECT TERMS Hereditary

  2. Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor.

    PubMed

    Pluskey, S; Mahroof-Tahir, M; Crans, D C; Lawrence, D S

    1997-01-15

    Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavandate is a competitive inhibitor (Ki = 1.8 +/- 0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366 +/- 10 microM. However, in this case V4+ appears to bind to the Mg(2+)-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 microM, with concentrations above 100 microM being markedly inhibitory. However, even at the optimal 100 microM V4+ concentration, the Vmax and K(m) values (for kemptide) are significantly less favourable than those obtained in the presence of 100 microM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA.

  3. Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor.

    PubMed Central

    Pluskey, S; Mahroof-Tahir, M; Crans, D C; Lawrence, D S

    1997-01-01

    Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavandate is a competitive inhibitor (Ki = 1.8 +/- 0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366 +/- 10 microM. However, in this case V4+ appears to bind to the Mg(2+)-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 microM, with concentrations above 100 microM being markedly inhibitory. However, even at the optimal 100 microM V4+ concentration, the Vmax and K(m) values (for kemptide) are significantly less favourable than those obtained in the presence of 100 microM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA. PMID:9020863

  4. Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase-inhibitor complex crystal structure data and potential therapeutics for preterm labour.

    PubMed

    Shao, Qing-Chun; Zhang, Cui-Juan; Li, Jie

    2014-10-14

    The protein kinase C (PKC) is a family of serine/threonine kinases with a broad range of cellular targets. Members of the PKC family participate at the diverse biological events involved in cellular proliferation, differentiation and survival. The PKC isoform zeta (PKCζ) is an atypical member that has recently been found to play an essential role in promoting human uterine contractility and thus been raised as a new target for treating preterm labour and other tocolytic diseases. In this study, an integrative protocol was described to graft hundreds of inhibitor ligands from their complex crystal structures with cognate kinases into the active pocket of PKCζ and, based on the modeled structures, to evaluate the binding strength of these inhibitors to the non-cognate PKCζ receptor by using a consensus scoring strategy. A total of 32 inhibitors with top score were compiled, and eight out of them were tested for inhibitory potency against PKCζ. Consequently, five compounds, i.e. CDK6 inhibitor fisetin, PIM1 inhibitor myricetin, CDK9 inhibitor flavopiridol and PknB inhibitor mitoxantrone as well as the promiscuous kinase inhibitor staurosporine showed high or moderate inhibitory activity on PKCζ, with IC50 values of 58 ± 9, 1.7 ± 0.4, 108 ± 17, 280 ± 47 and 0.019 ± 0.004 μM, respectively, while other three compounds, including two marketed drugs dasatinib and sunitinib as well as the Rho inhibitor fasudil, have not been detected to possess observable activity. Next, based on the modeled structure data we modified three flavonoid kinase inhibitors, i.e. fisetin, myricetin and flavopiridol, to generate a number of more potential molecular entities, two of which were found to have a moderately improved activity as compared to their parent compounds.

  5. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    PubMed Central

    Mirza, Muhammad Usman; Ghori, Noor-Ul-Huda; Ikram, Nazia; Adil, Abdur Rehman; Manzoor, Sadia

    2015-01-01

    Hepatitis C virus (HCV) is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B) which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. PMID:25848219

  6. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors.

    PubMed

    Mirza, Muhammad Usman; Ghori, Noor-Ul-Huda; Ikram, Nazia; Adil, Abdur Rehman; Manzoor, Sadia

    2015-01-01

    Hepatitis C virus (HCV) is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B) which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties.

  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  8. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  9. Protein kinase C inhibitors prevent induction and continued expression of cell memory in Hermissenda type B photoreceptors.

    PubMed Central

    Farley, J; Schuman, E

    1991-01-01

    Injections of cAMP-dependent, Ca2+/calmodulin-dependent, or Ca2+/phospholipid-dependent protein kinases into Hermissenda crassicornis type B photoreceptors are sufficient to induce many of the changes in B-cell excitability produced by associative conditioning. We report that inhibitors of Ca2+/phospholipid-dependent protein kinases, but not inhibitors of cyclic nucleotide- or Ca2+/calmodulin-dependent protein kinases, prevent the induction as well as continued expression of learning-produced changes in type-B-cell excitability: reductions of voltage-dependent and Ca2(+)-activated K+ currents. Our results represent a direct demonstration of long-term (days) experientially induced modulation of ion-channel activity that is dependent upon persistent kinase activity. Images PMID:2000409

  10. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  11. Steady-state concentrations of mRNA encoding two inhibitors of protein kinase C in ovine luteal tissue.

    PubMed

    Juengel, J L; Melner, M H; Clapper, J A; Turzillo, A M; Moss, G E; Nett, T M; Niswender, G D

    1998-07-01

    Prostaglandin F2 alpha (PGF2 alpha) decreases secretion of progesterone from the corpus luteum in domestic ruminants. However, it is less effective during the early part of the oestrous cycle (Louis et al., 1973) and at the time of maternal recognition of pregnancy (Silvia and Niswender, 1984; Lacroix and Kann, 1986). Decreased luteal responsiveness may be due to failure of PGF2 alpha to activate fully its normal second messenger system, protein kinase C (PKC). Alternatively, increased resistance of the corpus luteum to PGF2 alpha might be attributable to greater concentrations of recently identified biological inhibitors of PKC. These possibilities were addressed by measuring steady-state concentrations of mRNA encoding PGF2 alpha receptor and two inhibitors of PKC, protein kinase C inhibitor-1 (PKCI-1) and kinase C inhibitor protein-1 (KCIP-1, brain 14-3-3 protein), in corpora lutea collected from ewes on days 4, 10 and 15 of the oestrous cycle (n = 5 per day) and day 15 of pregnancy (n = 7). There were no differences in mean concentrations of mRNA encoding PGF2 alpha receptor among the groups. However, concentrations of mRNA encoding both inhibitors of PKC were higher (P < 0.01) on day 4 of the oestrous cycle compared with the other groups. Treatment of ewes with a luteolytic dose of PGF2 alpha, which activates PKC, did not change concentrations of mRNA encoding either PKCI-1 or KCIP-I up to 24 h later. Luteal expression of mRNA encoding the PKC inhibitors and PGF2 alpha receptor was also examined in ewes treated with oestradiol in vivo for 16 h in the midluteal phase. High concentrations of oestradiol in serum (20 and 70 pg ml-1) did not influence quantities of any of the mRNAs examined. Therefore, an increase in PKC inhibitors may be involved in resistance of the corpus luteum to PGF2 alpha during the early part of the oestrous cycle but does not appear to mediate the increased resistance of the corpus luteum to PGF2 alpha during maternal recognition of

  12. Screening of a Library of FDA-Approved Drugs Identifies Several Enterovirus Replication Inhibitors That Target Viral Protein 2C

    PubMed Central

    Ulferts, Rachel; de Boer, S. Matthijn; van der Linden, Lonneke; Bauer, Lisa; Lyoo, Hey Rhyoung; Maté, Maria J.; Lichière, Julie; Canard, Bruno; Lelieveld, Daphne; Omta, Wienand; Egan, David; Coutard, Bruno

    2016-01-01

    Enteroviruses (EVs) represent many important pathogens of humans. Unfortunately, no antiviral compounds currently exist to treat infections with these viruses. We screened the Prestwick Chemical Library, a library of approved drugs, for inhibitors of coxsackievirus B3, identified pirlindole as a potent novel inhibitor, and confirmed the inhibitory action of dibucaine, zuclopenthixol, fluoxetine, and formoterol. Upon testing of viruses of several EV species, we found that dibucaine and pirlindole inhibited EV-B and EV-D and that dibucaine also inhibited EV-A, but none of them inhibited EV-C or rhinoviruses (RVs). In contrast, formoterol inhibited all enteroviruses and rhinoviruses tested. All compounds acted through the inhibition of genome replication. Mutations in the coding sequence of the coxsackievirus B3 (CV-B3) 2C protein conferred resistance to dibucaine, pirlindole, and zuclopenthixol but not formoterol, suggesting that 2C is the target for this set of compounds. Importantly, dibucaine bound to CV-B3 protein 2C in vitro, whereas binding to a 2C protein carrying the resistance mutations was reduced, providing an explanation for how resistance is acquired. PMID:26856848

  13. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments

    PubMed Central

    Becker, Daniel; Kaczmarska, Zuzanna; Arkona, Christoph; Schulz, Robert; Tauber, Carolin; Wolber, Gerhard; Hilgenfeld, Rolf; Coll, Miquel; Rademann, Jörg

    2016-01-01

    Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme–inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases. PMID:27677239

  14. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments.

    PubMed

    Becker, Daniel; Kaczmarska, Zuzanna; Arkona, Christoph; Schulz, Robert; Tauber, Carolin; Wolber, Gerhard; Hilgenfeld, Rolf; Coll, Miquel; Rademann, Jörg

    2016-09-28

    Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.

  15. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Kaczmarska, Zuzanna; Arkona, Christoph; Schulz, Robert; Tauber, Carolin; Wolber, Gerhard; Hilgenfeld, Rolf; Coll, Miquel; Rademann, Jörg

    2016-09-01

    Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.

  16. Development of in vitro PIK3C3/VPS34 complex protein assay for autophagy-specific inhibitor screening.

    PubMed

    Kim, Tae-Mi; Baek, Jong-Hyuk; Kim, Jeong Hee; Oh, Myung Sook; Kim, Joungmok

    2015-07-01

    Autophagy is an important catabolic program to respond to a variety of cellular stresses by forming a double membrane vesicle, autophagosome. Autophagy plays key roles in various cellular functions. Accordingly, dysregulation of autophagy is closely associated with diseases such as diabetes, neurodegenerative diseases, cardiomyopathy, and cancer. In this sense, autophagy is emerging as an important therapeutic target for disease control. Among the autophagy machineries, PIK3C3/VPS34 complex functions as an autophagy-triggering kinase to recruit the subsequent autophagy protein machineries on the phagophore membrane. Accumulating evidence showing that inhibition of PIK3C3/VPS34 complex successfully inhibits autophagy makes the complex an attractive target for developing autophagy inhibitors. However, one concern about PIK3C3/VPS34 complex is that many different PIK3C3/VPS34 complexes have distinct cellular functions. In this study, we have developed an in vitro PIK3C3/VPS34 complex monitoring assay for autophagy inhibitor screening in a high-throughput assay format instead of targeting the catalytic activity of the PIK3C3/VPS34 complex, which shuts down all PIK3C3/VPS34 complexes. We performed in vitro reconstitution of an essential autophagy-promoting PIK3C3/VPS34 complex, Vps34-Beclin1-ATG14L complex, in a microwell plate (96-well format) and successfully monitored the complex formation in many different conditions. This PIK3C3/VPS34 complex protein assay would provide a reliable tool for the screening of autophagy-specific inhibitors.

  17. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  18. Activated protein C-protein C inhibitor complex in patients with abdominal aortic aneurysms: is it associated with diameter and growth rate?

    PubMed

    Kölbel, Tilo; Strandberg, Karin; Donath, Tobias; Mattiasson, Ingrid; Stenflo, Johan; Lindblad, Bengt

    2008-01-01

    Increased thrombin activation was documented in patients with abdominal aortic aneurysm (AAA). Activated protein C-protein C inhibitor (APC-PCI) complex, a new biological marker of thrombin generation, was measured in a population of 232 patients with AAA and a control group, and the association between aneurysm size, growth rate, and APC-PCI was studied. The patients were divided into cohorts according to AAA diameter and compared with a control group. APC-PCI was significantly higher in all AAA cohorts (n = 232; median, 0.36 microg/L; 10th to 90th percentile, 0.18-1.01) compared with the control group (n = 41; median, 0.19 microg/L; 10th to 90th percentile, 0.11-0.31; P < or = .001). APC-PCI correlated with AAA diameter (r = .22; P = .001), body mass index (r = -.19; P = .004), and age (r = .19; P = .004). APC-PCI did not correlate with AAA growth rate (r = .11; P = .14).

  19. Involvement of Lys 62(217) and Lys 63(218) of human anticoagulant protein C in heparin stimulation of inhibition by the protein C inhibitor.

    PubMed

    Shen, L; Villoutreix, B O; Dahlbäck, B

    1999-07-01

    Inhibition of activated protein C (APC) by protein C inhibitor (PCI) is stimulated by heparin, whereas inhibition by alpha1-antitrypsin (AAT) is heparin-independent. Three lysine residues located in a positively charged cluster in the serine protease domain of protein C (PC) were mutated to probe their involvement in the heparin stimulation of inhibition by PCI. These mutations were selected after analysis of the three-dimensional structure of APC and of molecular models for PCI and the APC-PCI complex. A double mutant, K62[217]N/K63[218]D, a single mutant, K86[241]S, and wild-type PC were expressed in embryonic human kidney 293 cells. Heparin stimulated the rate of inhibition of wt-APC by PCI approximately 400-fold, with second order rate constants (k2) in the absence and presence of heparin of 0.72 x 10(3) M(-1)s(-1) and 2.87 x 10(5) M(-1)s(-1), respectively. In contrast, heparin only yielded a 52-fold stimulation of the rate of inhibition of the double mutant APC by PCI as the rate constants in the absence and presence of heparin were k2 = 2.44 x 10(3) M(-1)s(-1) and k2 = 1.26 x 10(5)M(-1)s(-1), respectively. The double mutant K62N/K63D eluted at approximately 10% lower NaCl concentration from a heparin Sepharose column than the K86S mutant or wt-APC. These data suggest K62 and K63 in APC to be part of a heparin binding site which is important for heparin-mediated stimulation of inhibition of APC by PCI.

  20. A Novel Interaction between Complement Inhibitor C4b-binding Protein and Plasminogen That Enhances Plasminogen Activation*

    PubMed Central

    Agarwal, Vaibhav; Talens, Simone; Grandits, Alexander M.; Blom, Anna M.

    2015-01-01

    The complement, coagulation, and fibrinolytic systems are crucial for the maintenance of tissue homeostasis. To date numerous interactions and cross-talks have been identified between these cascades. In line with this, here we propose a novel, hitherto unknown interaction between the complement inhibitor C4b-binding protein (C4BP) and plasminogen of the fibrinolytic pathway. Binding of C4BP to Streptococcus pneumoniae is a known virulence mechanism of this pathogen and it was increased in the presence of plasminogen. Interestingly, the acute phase variant of C4BP lacking the β-chain and protein S binds plasminogen much stronger than the main isoform containing the β-chain and protein S. Indeed, the complement control protein (CCP) 8 domain of C4BP, which would otherwise be sterically hindered by the β-chain, primarily mediates this interaction. Moreover, the lysine-binding sites in plasminogen kringle domains facilitate the C4BP-plasminogen interaction. Furthermore, C4BP readily forms complexes with plasminogen in fluid phase and such complexes are present in human serum and plasma. Importantly, whereas the presence of plasminogen did not affect the factor I cofactor activity of C4BP, the activation of plasminogen by urokinase-type plasminogen activator to active plasmin was significantly augmented in the presence of C4BP. Taken together, our data demonstrate a novel interaction between two proteins of the complement and fibrinolytic system. Most complexes might be formed during the acute phase of inflammation and have an effect on the homeostasis at the site of injury or acute inflammation. PMID:26067271

  1. C1-transport in gastric micorsomes. An ATP-dependent influx sensitive to membrane potential and to protein kinase inhibitor.

    PubMed

    Soumarmon, A; Abastado, M; Bonfils, S; Lewin, M J

    1980-12-25

    Uptakes of radioactive C1- or 1- by gastric microsomal vesicles were stimulated 2- to 8-fold by AtP. The sensitivity of those uptakes to a C1- in equilibrium OH- ionophore and to osmotic swelling suggested they were due to transport rather than to binding. The ATP effect was labile, but dithiothreitol and methanol improved its stability. The stimulation of anion transport required magnesium; GTP and UTP were less potent than ATP whereas ADP and AMP had no effect. The apparent Km for ATP was estimated to be 2 X 10(-4) M at 22 degrees C. The rate of the ATP-dependent transport showed saturation-type kinetics, with half-maximal uptake at 10 mM for I- and 15 mM for C1-. Nonradioactive C1-, I-, and SCN- competed with 125I- uptake while SO42- did not. K+ valinomycin increased the ATP-dependent C1- uptake. The thermostable inhibitor of cAMP-dependent protein kinases inhibited the effect of ATP. These results suggest the existence of an anion conductance, permeant to C1-, I-, and SCN- and nonpermeant to SO42-, which could be linked to a cAMP-dependent protein kinase.

  2. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    PubMed Central

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  3. Bisindolylmaleimide protein-kinase-C inhibitors delay the decline in DNA synthesis in mouse hair follicle organ cultures.

    PubMed

    Harmon, C S; Nevins, T D; Ducote, J; Lutz, D

    1997-01-01

    We have used a series of bisindolylmaleimide selective protein-kinase C (PKC) inhibitors to investigate the role of this enzyme in the regulation of cell proliferation in mouse hair follicle organ cultures. Mouse whisker follicles were isolated by microdissection, and rates of DNA synthesis during culture were determined from 3H-thymidine incorporation. The bisindolylmaleimides Ro 31-7549, Ro 31-8161, Ro 31-8425 and Ro 31-8830 inhibit isolated brain PKC with IC50 values of 8-80 nM, are > 60-fold less potent against protein kinase A, and inhibit PKC-mediated protein phosphorylation in platelets with IC50 values in the range 0.25-4.4 microM. These PKC inhibitors were found to increase levels of mouse hair follicle DNA synthesis, with EC50 values in the range 1-4 microM and maximal levels in the range 151-197% of control. Ro 31-7549 had an IC50 value 50-fold lower than that of minoxidil, while the maximal level of DNA synthesis for the PKC inhibitor was 86% higher. Incubation of mouse hair follicles with Ro 31-7549 resulted in a delay of approximately 24 h in the onset of decline in follicular DNA synthesis rates. Ro 31-6045 and Ro 31-7208, bisindolylmaleimides without activity in the platelet PKC assay, did not affect mouse hair follicle DNA synthesis rates. Taken together, these findings show that PKC mediates, at least in part, the rapid loss of proliferative activity that occurs in mouse whisker follicles in culture, and provide further evidence that PKC plays a role as a negative proliferative signal in hair follicles.

  4. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  5. Synthesis and biological evaluation of C-ring truncated deguelin derivatives as heat shock protein 90 (HSP90) inhibitors.

    PubMed

    Kim, Ho Shin; Hong, Mannkyu; Ann, Jihyae; Yoon, Suyoung; Nguyen, Cong-Truong; Lee, Su-Chan; Lee, Ho-Young; Suh, Young-Ger; Seo, Ji Hae; Choi, Hoon; Kim, Jun Yong; Kim, Kyu-Won; Kim, Joohwan; Kim, Young-Myeong; Park, So-Jung; Park, Hyun-Ju; Lee, Jeewoo

    2016-11-15

    Based on the lead compound L-80 (compound 2), a potent heat shock protein 90 (HSP90) inhibitor, a series of C-ring truncated deguelin analogs were designed, synthesized and evaluated for Hypoxia Inducible Factor-1α (HIF-1α) inhibition as a primary screening method. Their structure-activity relationship was investigated in a systematic manner by varying the A/B ring, linker and D/E ring, respectively. Among the synthesized inhibitors, compound 5 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in human non-small cell lung carcinoma (H1299), with better activities than L-80. It also inhibited in vitro hypoxia-mediated angiogenic processes in human retinal microvascular endothelial cells (HRMEC). The docking study of 5 showed a similar binding mode as L-80: it occupied the C-terminal ATP-binding pocket of HSP90, indicating that the anticancer and antiangiogenic activities of 5 were derived from HIF-1α destabilization by inhibiting the C-terminal ATP-binding site of hHSP90. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sensitivity of Roberts Syndrome Cells to gamma radiation, mitomycin C, and protein synthesis inhibitors

    SciTech Connect

    Van Den Berg, D.J.; Francke, U. )

    1993-07-01

    Roberts syndrome (RS) is a rare autosomal recessive disorder characterized by pre- and postnatal growth retardation, limb reduction abnormalities, and craniofacial anomalies. Mitotic chromosomes from RS individuals display repulsion of heterochromatin regions or centromere splitting, leading to a railroad-track appearance of mitotic chromosomes. Abnormalities in metaphase duration, anaphase progression, nuclear morphology, and increased frequency of micronucleation have been reported in RS cells. Cells from RS heterozygotes are normal in these respects, and in vitro complementation of the defects in somatic cell hybrids has been reported. Therefore, in preparation for the isolation of cDNAs that complement the RS defect, the authors investigated various drug treatments to identify an agent that specifically involves the growth of RS cells. Based on the cytogenetic and cell biologic findings, they chose agents that increase micronucleation or inhibit protein synthesis. They found that RS cells are hypersensitive to gamma radiation, mitomycin C, G418 and hygromycin B, but not to colcemid or streptonigrin when compared to normal cells. DNA content and cell viability analysis confirmed that the sensitivity to gamma irradiation was primarily due to increased cell death.

  7. Identification of a Tetrahydroquinoline Analog as a Pharmacological Inhibitor of the cAMP-binding Protein Epac*

    PubMed Central

    Courilleau, Delphine; Bisserier, Malik; Jullian, Jean-Christophe; Lucas, Alexandre; Bouyssou, Pascal; Fischmeister, Rodolphe; Blondeau, Jean-Paul; Lezoualc'h, Frank

    2012-01-01

    The cAMP-binding protein Epac is a therapeutic target for the treatment of various diseases such as cardiac hypertrophy and tumor invasion. This points out the importance to develop Epac inhibitors to better understand the involvement of these cAMP sensors in physiology and pathophysiology. Here, we have developed a functional fluorescence-based high-throughput assay with a Z′ value around 0.7 for screening Epac-specific antagonists. We identified an Epac1 inhibitor compound named CE3F4 that blocked Epac1 guanine nucleotide exchange activity toward its effector Rap1 both in cell-free systems and in intact cells. CE3F4 is a tetrahydroquinoline analog that fails to influence protein kinase A holoenzyme activity. CE3F4 inhibited neither the interaction of Rap1 with Epac1 nor directly the GDP exchange on Rap1. The kinetics of inhibition by CE3F4 indicated that this compound did not compete for binding of agonists to Epac1 and suggested an uncompetitive inhibition mechanism with respect to Epac1 agonists. A structure-activity study showed that the formyl group on position 1 and the bromine atom on position 5 of the tetrahydroquinoline skeleton were important for CE3F4 to exert its inhibitory activity. Finally, CE3F4 inhibited Rap1 activation in living cultured cells, following Epac activation by either 8-(4-chlorophenylthio)-2′-O-methyl-cAMP, an Epac-selective agonist, or isoprenaline, a non-selective β-adrenergic receptor agonist. Our study shows that CE3F4 and related compounds may serve as a basis for the development of new therapeutic drugs. PMID:23139415

  8. The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases.

    PubMed Central

    Bányai, L.; Patthy, L.

    1999-01-01

    Using homology search, structure prediction, and structural characterization methods we show that the C-terminal domains of (1) netrins, (2) complement proteins C3, C4, C5, (3) secreted frizzled-related proteins, and (4) type I procollagen C-proteinase enhancer proteins (PCOLCEs) are homologous with the N-terminal domains of (5) tissue inhibitors of metalloproteinases (TIMPs). The proteins harboring this netrin module (NTR module) fulfill diverse biological roles ranging from axon guidance, regulation of Wnt signaling, to the control of the activity of metalloproteases. With the exception of TIMPs, it is not known at present what role the NTR modules play in these processes. In view of the fact that the NTR modules of TIMPs are involved in the inhibition of matrixin-type metalloproteases and that the NTR module of PCOLCEs is involved in the control of the activity of the astacin-type metalloprotease BMP1, it seems possible that interaction with metzincins could be a shared property of NTR modules and could be critical for the biological roles of the host proteins. PMID:10452607

  9. H-7, a protein kinase C inhibitor, inhibits spontaneous tone and spasmogenic responses in normal and sensitized guinea pig trachea.

    PubMed

    de Diego, A; Cortijo, J; Villagrasa, V; Perpina, M; Morcillo, E J

    1995-12-01

    1. H-7, a protein kinase C inhibitor, fully inhibited the spontaneous and stimulated (KCl 20 mM or histamine 0.5 mM) tone of trachea from normal and sensitized guinea pig. 2. H-7 depressed the concentration-contraction curves to KCl, histamine or 5-hydroxytryptamine in epithelium-denuded, indomethacin-treated, trachea from normal and sensitized guinea pigs while responses to CaCl2 (in Ca2+ -free, K+ -depolarized tissues) and acetylcholine were not affected. 3. H-7 (100 microM did not depress Ca2+ (20 microM-induced contraction of Triton X-100 skinned trachea. 4. These results suggest the involvement of PKC in the maintenance of spontaneous tone and spasmogenic responses of guinea pig trachea.

  10. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models.

    PubMed

    Pereira, M; Siba, I P; Chioca, L R; Correia, D; Vital, M A B F; Pizzolatti, M G; Santos, A R S; Andreatini, R

    2011-08-15

    Myricitrin is a nitric oxide (NO) and protein kinase C (PKC) inhibitor that has central nervous system activity, including anxiolytic-like action. Nitric oxide inhibitors blocked the behavioral effects of apomorphine, suggesting an antipsychotic-like effect. Furthermore, PKC inhibition reduced psychotic symptoms in acute mania patients and blocked amphetamine-induced hyperlocomotion, suggesting a potential antipsychotic-like effect. The present study evaluated the effects of myricitrin in animal models that assess antipsychotic-like effects (apomorphine-induced stereotypy and climbing and the paw test) and extrapyramidal side effects (catalepsy test and paw test). Olanzapine was used as a positive control. 7-Nitroindazole (7-NI), a NOS inhibitor, and l-arginine, a NO precursor, were used to evaluate nitrergic modulation, and tamoxifen was used to test the effect of PKC inhibition. In mice, myricitrin dose-dependently and olanzapine blocked the stereotypy and climbing induced by apomorphine at doses that did not induce catalepsy. 7-Nitroindazole also blocked apomorphine-induced stereotypy and climbing, which were reversed by l-arginine pretreatment. l-arginine only attenuated the effects of myricitrin on apomorphine's effects. Tamoxifen also blocked apomorphine-induced stereotypy and climbing. In the paw test in rats, myricitrin and olanzapine increased hindlimb retraction time at doses that did not affect forelimb reaction time, whereas haloperidol affected both parameters at the same dose. Myricitrin did not induce catalepsy in the bar test. Tamoxifen did not affect hindlimb retraction time or forelimb retraction time, whereas 7-NI significantly increased hindlimb reaction time. Thus, myricitrin exhibited an antipsychotic-like profile at doses that did not induce catalepsy, and this effect may be related to nitrergic action. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Regulation of carcinoma cell invasion by protein C inhibitor whose expression is decreased in renal cell carcinoma.

    PubMed

    Wakita, Toshiaki; Hayashi, Tatsuya; Nishioka, Junji; Tamaru, Hiroshi; Akita, Nobuyuki; Asanuma, Kunihiro; Kamada, Haruhiko; Gabazza, Esteban C; Ido, Masaru; Kawamura, Juichi; Suzuki, Koji

    2004-02-10

    Protein C inhibitor (PCI), a member of the serine protease inhibitor family, is produced in various human tissues, including the liver, kidney and testis. In addition to inhibiting the anticoagulant protein C pathway, PCI also inhibits urinary plasminogen activator (uPA), which is a well-known mediator of tumor cell invasion. In the present study, to clarify the biologic significance of PCI in the kidney, we compared the expression of PCI between human renal cell carcinoma (RCC) tissue and nontumor kidney tissue. The PCI antigen level in RCC tissue was found to be significantly lower than in nontumor kidney tissue, and expression of PCI mRNA was detected in normal renal proximal tubular epithelial cells (RPTEC), but not in RCC or in an RCC cell line (Caki-1 cells). No differences were detected between the nucleotide sequence of the major cis-elements in the promoter region of the PCI gene from nontumor kidney and RCC tissues, RPTEC and Caki-1 cells, an RPTEC-derived RCC cell line. The in vitro invasiveness of Caki-1 cells transfected with a PCI expression vector was significantly decreased compared to mock-transfected Caki-1 cells, and it was blocked in the presence of anti-PCI antibody. Since PCI itself did not affect the proliferation rate of Caki-1 cells or cell expression of uPA in vitro, the effect of uPA, PCI, heat-inactivated PCI and plasminogen activator inhibitor (PAI)-1 on the invasive potential of cultured RCC cells was evaluated. The in vitro invasiveness of Caki-1 cells, which express uPA, was significantly enhanced by the addition of uPA, and it was inhibited by anti-uPA antibody, PCI and PAI-1, but not by heat-inactivated PCI. In addition, uPA activity was significantly decreased and uPA-PCI complex level was significantly increased in the culture medium of PCI expression vector-transfected Caki-1 cells as compared to mock-transfected Caki-1 cells. These findings strongly suggest that PCI regulates the invasive potential of RCC cells by inhibiting u

  12. Paeciloquinones A, B, C, D, E and F: new potent inhibitors of protein tyrosine kinases produced by Paecilomyces carneus. I. Taxonomy, fermentation, isolation and biological activity.

    PubMed

    Petersen, F; Fredenhagen, A; Mett, H; Lydon, N B; Delmendo, R; Jenny, H B; Peter, H H

    1995-03-01

    Paeciloquinones A to F as well as versiconol have been isolated as inhibitors of protein tyrosine kinase from the culture broth of the fungus Paecilomyces carneus P-177. The novel anthraquinones inhibit epidermal growth factor receptor protein tyrosine kinase in the micromolar range. Two compounds, paeciloquinones A and C, are potent and selective inhibitors of the v-abl protein tyrosine kinase with an IC50 of 0.4 microM. Dependent on the fermentation conditions, partially different sets of paeciloquinones may be produced. An HPLC method allows separation of all major active components.

  13. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation.

    PubMed

    Park, Hee-Young; Lee, Jin; González, Salvador; Middelkamp-Hup, Maritza A; Kapasi, Sameer; Peterson, Shaun; Gilchrest, Barbara A

    2004-01-01

    To determine whether inhibition of PKC-beta activity decreases pigmentation, paired cultures of primary human melanocytes were first pretreated with bisindolylmaleimide (Bis), a selective PKC inhibitor, or vehicle alone for 30 min, and then treated with TPA for an additional 90 min to activate PKC in the presence of Bis. Bis blocked the expected induction of tyrosinase activity by activation of PKC. Addition of a peptide corresponding to amino acids 501-511 of tyrosinase containing its PKC-beta phosphorylation site, a presumptive PKC-beta pseudosubstrate, gave similar results. To determine whether Bis reduces pigmentation in vivo, the backs of four shaved and depilated pigmented guinea pigs were UV irradiated with a solar simulator for 2 wk excluding weekends. Compared to vehicle alone, Bis (300 microM), applied twice daily to paired sites for various periods encompassing the irradiation period, decreased tanning. Bis also, although less strikingly, reduced basal epidermal melanin when topically applied twice daily, 5 d per wk, for 3 wk to shaved and depilated unirradiated skin. Moreover, topical application of Bis (100 microM) once daily for 9 d to the freshly depilated backs of 8-wk-old mice markedly lightened the color of regrowing hair. These results demonstrate that inhibiting PKC activity in vivo selectively blocks tanning and reduces basal pigmentation in the epidermis and in anagen hair shafts.

  14. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  15. Zinc-deficient culture medium and protein kinase C inhibitors impair phytohemagglutinin-induced proliferation of murine splenocytes

    SciTech Connect

    Schroeder, J.J.; Cousins, R.J. )

    1991-03-15

    Zinc deficiency inhibits mitogen-induced proliferation of T-lymphocytes. The role of protein kinase C (PKC) in this process is being evaluated by culturing splenocytes from C57Bl/6 mice in medium containing 5% Chelex-treated fetal bovine serum and the T-cell mitogen, phytohemagglutinin (PHA). PHA induces proliferation measured by ({sup 3}H)thymidine incorporation in a concentration-dependent manner with a maximal induction at 2.5 {mu}g/ml. The PKC inhibitors staurosporine and H-7 inhibit PHA-stimulated proliferation in concentration-dependent manners with IC{sub 50} values of 2.6 nM and 15 {mu}M, respectively. PHA has little or not effect on proliferation of cells cultured in medium containing 0.8 {mu}M zinc. However, increasing the medium zinc concentration to 16 {mu}M dramatically increases PHA-stimulated proliferation over control cultures. The results suggest that PHA-induced proliferation of murine T-cells is mediated by PKC. It is hypothesized that zinc deficiency inhibits mitogen-stimulated proliferation by preventing PKC coupling to plasma membranes. The results of these studies may provide a mechanism to explain impaired immunocompetence and other clinical problems associated with zinc deficiency.

  16. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model.

    PubMed

    Grant, Stephan; Tran, Phong; Zhang, Qin; Zou, Aihua; Dinh, Dac; Jensen, Jordan; Zhou, Sue; Kang, Xiaolin; Zachwieja, Joseph; Lippincott, John; Liu, Kevin; Johnson, Sarah Ludlum; Scales, Stephanie; Yin, Chunfeng; Nukui, Seiji; Stoner, Chad; Prasanna, Ganesh; Lafontaine, Jennifer; Wells, Peter; Li, Hui

    2010-02-10

    Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.

  17. Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C.

    PubMed

    Chattopadhyay, Debasish; Swingle, Mark R; Salter, Edward A; Wood, Eric; D'Arcy, Brandon; Zivanov, Catherine; Abney, Kevin; Musiyenko, Alla; Rusin, Scott F; Kettenbach, Arminja; Yet, Larry; Schroeder, Chad E; Golden, Jennifer E; Dunham, Wade H; Gingras, Anne-Claude; Banerjee, Surajit; Forbes, David; Wierzbicki, Andrzej; Honkanen, Richard E

    2016-06-01

    Cantharidin is a natural toxin and an active constituent in a traditional Chinese medicine used to treat tumors. Cantharidin acts as a semi-selective inhibitor of PPP-family ser/thr protein phosphatases. Despite sharing a common catalytic mechanism and marked structural similarity with PP1C, PP2AC and PP5C, human PP4C was found to be insensitive to the inhibitory activity of cantharidin. To explore the molecular basis for this selectivity, we synthesized and tested novel C5/C6-derivatives designed from quantum-based modeling of the interactions revealed in the co-crystal structures of PP5C in complex with cantharidin. Structure-activity relationship studies and analysis of high-resolution (1.25Å) PP5C-inhibitor co-crystal structures reveal close contacts between the inhibitor bridgehead oxygen and both a catalytic metal ion and a non-catalytic phenylalanine residue, the latter of which is substituted by tryptophan in PP4C. Quantum chemistry calculations predicted that steric clashes with the bulkier tryptophan side chain in PP4C would force all cantharidin-based inhibitors into an unfavorable binding mode, disrupting the strong coordination of active site metal ions observed in the PP5C co-crystal structures, thereby rendering PP4C insensitive to the inhibitors. This prediction was confirmed by inhibition studies employing native human PP4C. Mutation of PP5C (F446W) and PP1C (F257W), to mimic the PP4C active site, resulted in markedly suppressed sensitivity to cantharidin. These observations provide insight into the structural basis for the natural selectivity of cantharidin and provide an avenue for PP4C deselection. The novel crystal structures also provide insight into interactions that provide increased selectivity of the C5/C6 modifications for PP5C versus other PPP-family phosphatases.

  18. The commonly used cGMP-dependent protein kinase type I (cGKI) inhibitor Rp-8-Br-PET-cGMPS can activate cGKI in vitro and in intact cells.

    PubMed

    Valtcheva, Nadejda; Nestorov, Peter; Beck, Alexander; Russwurm, Michael; Hillenbrand, Matthias; Weinmeister, Pascal; Feil, Robert

    2009-01-02

    Small-molecule modulators of cGMP signaling are of interest to basic and clinical research. The cGMP-dependent protein kinase type I (cGKI) is presumably a major mediator of cGMP effects, and the cGMP analogue Rp-8-Br-PET-cGMPS (Rp-PET) (chemical name: beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer) is currently considered one of the most permeable, selective, and potent cGKI inhibitors available for intact cell studies. Here, we have evaluated the properties of Rp-PET using cGKI-expressing and cGKI-deficient primary vascular smooth muscle cells (VSMCs), purified cGKI isozymes, and an engineered cGMP sensor protein. cGKI activity in intact VSMCs was monitored by cGMP/cGKI-stimulated cell growth and phosphorylation of vasodilator-stimulated phosphoprotein. Unexpectedly, Rp-PET (100 microm) did not efficiently antagonize activation of cGKI by the agonist 8-Br-cGMP (100 microm) in intact VSMCs. Moreover, in the absence of 8-Br-cGMP, Rp-PET (100 microm) stimulated cell growth in a cGKIalpha-dependent manner. Kinase assays with purified cGKI isozymes confirmed the previously reported inhibition of the cGMP-stimulated enzyme by Rp-PET in vitro. However, in the absence of the agonist cGMP, Rp-PET partially activated the cGKIalpha isoform. Experiments with a fluorescence resonance energy transfer-based construct harboring the cGMP binding sites of cGKI suggested that binding of Rp-PET induces a conformational change similar to the agonist cGMP. Together, these findings indicate that Rp-PET is a partial cGKIalpha agonist that under certain conditions stimulates rather than inhibits cGKI activity in vitro and in intact cells. Data obtained with Rp-PET as cGKI inhibitor should be interpreted with caution and not be used as sole evidence to dissect the role of cGKI in signaling processes.

  19. Relationship between angiotensinogen, alpha 1-protease inhibitor elastase complex, antithrombin III and C-reactive protein in septic ARDS.

    PubMed

    Hilgenfeldt, U; Kellermann, W; Kienapfel, G; Jochum, M

    1990-01-01

    The time-course of plasma angiotensinogen (Ao), elastase-alpha 1-protease inhibitor complex (EL alpha 1PI), antithrombin III (AT III) and C-reactive protein (CRP) have been investigated of six patients suffering from adult respiratory distress syndrome (ARDS). The total plasma Ao level (active and inactive Ao) varied in individuals but was increased up to five-fold. An increasing amount of inactive Ao is found. From the beginning of their stay in the intensive care unit up to five days half of the patients displayed a positive correlation between the plasma CRP and Ao level. The CRP and Ao values were either not or were negatively correlated with the AT III values. In contrast plasma Ao and AT III levels in all patients were positively correlated during a particular period in the subsequent phase of the disease, where there was no or a negative correlation with CRP. The two acute phase reactants CRP and EL alpha 1PI were only correlated in two patients at the beginning of the disease. The markedly increased plasma level at the beginning of the inflammatory disease indicates that Ao is an acute phase reactant, and this is supported by the parallel changes in plasma CRP and Ao levels during the early days of ARDS. The relationship between the plasma levels of Ao and AT III for more than fourteen days suggests similar regulation of these members of the serpin family after termination of the acute-phase.

  20. Phase II study of paclitaxel plus the protein kinase C inhibitor bryostatin-1 in advanced pancreatic carcinoma.

    PubMed

    Lam, Anthony P; Sparano, Joseph A; Vinciguerra, Vincent; Ocean, Allyson J; Christos, Paul; Hochster, Howard; Camacho, Fernando; Goel, Sanjay; Mani, Sridhar; Kaubisch, Andreas

    2010-04-01

    To determine the efficacy and toxicity of the protein kinase C inhibitor bryostatin-1 plus paclitaxel in patients with advanced pancreatic carcinoma. Each treatment cycle consisted of paclitaxel 90 mg/m by intravenous infusion over 1 hour on days 1, 8, and 16, plus bryostatin 25 mcg/m as a 1-hour intravenous infusion on days 2, 9, and 15, given every 28 days. Patients were evaluated for response after every 2 treatment cycles, and continued therapy until disease progression or prohibitive toxicity. The primary objective was to determine whether the combination produced a response rate of at least 30%. Nineteen patients with locally advanced or metastatic pancreatic adenocarcinoma received a total of 52 cycles of therapy (range: 1-10). Patients received the combination as first-line therapy for advanced disease (N = 5) or after prior chemotherapy used alone or in combination with local therapy. No patients had a confirmed objective response. The median time to treatment failure was 1.9 months (95% confidence intervals: 1.2, 2.6 months). Reasons for discontinuing therapy included progressive disease or death in 14 patients (74%) or because of adverse events or patient choice in 5 patients (26%). The most common grade 3 to 4 toxicities included leukopenia in 26%, anemia in 11%, myalgias in 11%, gastrointestinal bleeding in 11%, infection in 10%, and thrombosis in 10%. The combination of weekly paclitaxel and bryostatin-1 is not an effective therapy for patients with advanced pancreatic carcinoma.

  1. Effects of the selective protein kinase C inhibitor, Ro 31-7549, on the proliferation of cultured mouse epidermal keratinocytes.

    PubMed

    Bollag, W B; Ducote, J; Harmon, C S

    1993-03-01

    We have investigated the effects of Ro 31-7549, a selective protein kinase C (PKC) inhibitor, on DNA synthesis and proliferation in two primary mouse epidermal keratinocyte culture systems. In differentiating keratinocytes incubated in medium containing 10% serum and high calcium (approximately 0.5 mM), Ro 31-7549 blocked the inhibitory effect of the phorbol ester 12-0-tetradecanoyl-13-acetate (TPA) (a PKC activator) on keratinocyte DNA synthesis at 24 h [50% maximal response concentration (EC50) = 1 microM], consistent with inhibition of PKC-mediated differentiation. Continuous treatment of the differentiative culture system with the PKC inhibitor resulted in a marked (fourfold) stimulation of [3H]thymidine incorporation at day 7 of exposure, with an EC50 of 0.25 microM. The potencies of these effects of Ro 31-7549 are comparable to that reported for inhibition of TPA-induced platelet 47-kD protein phosphorylation [50% inhibitory concentration (IC50) = 4.4 microM]. The time course of [3H]thymidine incorporation indicated that Ro 31-7549 did not directly stimulate DNA synthesis but instead prevented the loss of proliferative capacity associated with continued culture in this medium. Maximal stimulation (2.6 times) of DNA synthesis was observed on day 4, whereas DNA synthesis at day 1 was unaffected. In a highly proliferative culture system using serum-free medium containing 25 microM calcium, TPA dose-dependently inhibited proliferation with an IC50 of approximately 0.3 mM. This antiproliferative effect of TPA was largely reversed by 0.1 microM Ro 31-7549. In the proliferative culture system, 0.75 microM Ro 31-7549 also essentially reversed the inhibition of proliferation caused by switching to high (1.0 mM) calcium. These results suggest that the loss of proliferative capacity in differentiating epidermal keratinocyte cultures may be mediated, at least in part, by PKC.

  2. Anti-tumor properties of the cGMP/protein kinase G inhibitor DT3 in pancreatic adenocarcinoma.

    PubMed

    Soltek, Sabine; Karakhanova, Svetlana; Golovastova, Marina; D'Haese, Jan G; Serba, Susanne; Nachtigall, Ines; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2015-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Therefore, new therapeutic options are urgently needed to improve the survival of PDAC patients. Protein kinase G (PKG) conducts the interlude of cGMP signaling which is important for healthy as well as for cancer cells. DT3 is a specific inhibitor of PKG, and it has been shown to possess an anti-tumor cytotoxic activity in vitro. The main aim of this work was to investigate anti-tumor effects of DT3 upon PDAC in vivo.Expression of PKG was assessed with real-time PCR analysis in the normal and tumor pancreatic cells. In vitro cell viability, proliferation, apoptosis, necrosis, migration, and invasion of the murine PDAC cell line Panc02 were assessed after DT3 treatment. In vivo anti-tumor effects of DT3 were investigated in the murine Panc02 orthotopic model of PDAC. Western blot analysis was used to determine the phosphorylation state of the proteins of interest.Functional PKGI is preferentially expressed in PDAC cells. DT3 was capable to reduce viability, proliferation, and migration of murine PDAC cells in vitro. At the same time, DT3 treatment did not change the viability of normal epithelial cells of murine liver. In vivo, DT3 treatment reduced the tumor volume and metastases in PDAC-bearing mice, but it was ineffective to prolong the survival of the tumor-bearing animals. In addition, DT3 treatment decreased phosphorylation of GSK-3, P38, and CREB in murine PDAC.Inhibition of PKG could be a potential therapeutic strategy for PDAC treatment which should be carefully validated in future pre-clinical studies.

  3. Proteasome inhibitors induce peroxisome proliferator-activated receptor transactivation through RXR accumulation and a protein kinase C-dependent pathway

    SciTech Connect

    Tsao, W.-C.; Wu, H.-M.; Chi, K.-H.; Chang, Y.-H.; Lin, W.-W. . E-mail: wwl@ha.mc.ntu.edu.tw

    2005-03-10

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of nuclear hormone receptors, forms a heterodimeric DNA binding complex with retinoid X receptor (RXR) and serves as a transcriptional regulator of gene expression. In this study, using luciferase assay of a reporter gene containing PPAR response element (PPRE), we found PPRE transactivity was additively induced by PPAR{gamma} activator (15dPGJ{sub 2}) and RXR activator (9-cis retinoic acid, 9-cis RA). Proteasome inhibitors MG132 and MG262 also stimulate PPRE transactivity in a concentration-dependent manner, and this effect is synergistic to 15dPGJ{sub 2} and 9-cis RA. PKC activation by 12-myristate 13-acetate (PMA) and ingenol 3,20-dibenzoate (IDB) also led to an increased PPRE activation, and this action was additive to PPAR{gamma} activators and 9-cis RA, but not to proteasome inhibitors. Results indicate that the PPAR{gamma} enhancing effect of proteasome inhibitors was attributed to redox-sensitive PKC activation. Western blot analysis showed that the protein level of RXR{alpha}, but not PPAR{gamma}, RXR{beta}, or PKC isoforms, was accumulated in the presence of proteasome inhibitors. Taken together, we conclude that proteasome inhibitors can upregulate PPRE activity through RXR{alpha} accumulation and a PKC-dependent pathway. The former is due to inhibition of RXR{alpha} degradation through ubiquitin-dependent proteasome system, while the latter is mediated by reactive oxygen species (ROS) production.

  4. Effect of a peptide inhibitor of protein kinase C on G-protein-mediated increase in myofilament Ca(2+)-sensitivity in rabbit arterial skinned muscle.

    PubMed Central

    Itoh, T.; Suzuki, A.; Watanabe, Y.

    1994-01-01

    1. To investigate the role of protein kinase C in the increase mediated by guanosine 5'-triphosphate (GTP)-binding proteins (G-proteins) in the sensitivity of the contractile proteins to Ca2+ in vascular smooth muscle, the effect of a novel peptide inhibitor of protein kinase C (PKC19-36) on Ca(2+)-induced contraction and myosin light chain (MLC) phosphorylation was studied in the presence and absence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in beta-escin-skinned smooth muscle strips of rabbit mesenteric artery. For comparison, the effects were also observed of PKC19-36 on the action of phorbol 12,13-dibutylate (PDBu, an activator of PKC) on the two Ca(2+)-induced responses. 2. In beta-escin-skinned strips treated with ionomycin, Ca2+ (0.1-3 microM) concentration-dependently produced contraction in parallel with an increase in MLC-phosphorylation. GTP gamma S (10 microM) and PDBu (0.1 microM) each shifted both the Ca(2+)-force and Ca(2+)-MLC-phosphorylation relationships to the left without a significant change in either maximum response. The relationship between force and MLC-phosphorylation was not modified by either GTP gamma S or PDBu, indicating that the sensitivity of MLC-phosphorylation to Ca2+ is enhanced by both GTP gamma S and PDBu. 3. PKC19-36 itself modified neither the contraction nor MLC-phosphorylation induced by Ca2+ but it did block the PDBu-induced enhancement of these two Ca(2+)-induced responses. By contrast, PKC19-36 did not modify the GTP gamma S-induced enhancement of the two Ca(2+)-induced responses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8012712

  5. An Ultra-High-Throughput Screen for Catalytic Inhibitors of Serine/Threonine Protein Phosphatases Types 1 and 5 (PP1C and PP5C).

    PubMed

    Swingle, Mark; Volmar, Claude-Henry; Saldanha, S Adrian; Chase, Peter; Eberhart, Christina; Salter, Edward A; D'Arcy, Brandon; Schroeder, Chad E; Golden, Jennifer E; Wierzbicki, Andrzej; Hodder, Peter; Honkanen, Richard E

    2017-01-01

    Although there has been substantial success in the development of specific inhibitors for protein kinases, little progress has been made in the identification of specific inhibitors for their protein phosphatase counterparts. Inhibitors of PP1 and PP5 are desired as probes for research and to test their potential for drug development. We developed and miniaturized (1536-well plate format) nearly identical homogeneous, fluorescence intensity (FLINT) enzymatic assays to detect inhibitors of PP1 or PP5. The assays were used in an ultra-high-throughput screening (uHTS) campaign, testing >315,000 small-molecule compounds. Both assays demonstrated robust performance, with a Z' of 0.92 ± 0.03 and 0.95 ± 0.01 for the PP1 and PP5 assays, respectively. Screening the same library with both assays aided the identification of class inhibitors and assay artifacts. Confirmation screening and hit prioritization assays used [(32)P/(33)P]-radiolabel protein substrates, revealing excellent agreement between the FLINT and radiolabel assays. This screening campaign led to the discovery of four novel unrelated small-molecule inhibitors of PP1 and ~30 related small-molecule inhibitors of PP5. The results suggest that this uHTS approach is suitable for identifying selective chemical probes that inhibit PP1 or PP5 activity, and it is likely that similar assays can be developed for other PPP-family phosphatases.

  6. Subtilisin protein inhibitor from potato tubers.

    PubMed

    Revina, T A; Speranskaya, A S; Kladnitskaya, G V; Shevelev, A B; Valueva, T A

    2004-10-01

    A protein with molecular weight of 21 kD denoted as PKSI has been isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii). The isolation procedure includes precipitation with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion-exchange chromatography on CM-Sepharose CL-6B. The protein effectively inhibits the activity of subtilisin Carlsberg (Ki = 1.67 +/- 0.2 nM) by stoichiometric complexing with the enzyme at the molar ratio of 1 : 1. The inhibitor has no effect on trypsin, chymotrypsin, and the cysteine proteinase papain. The N-terminal sequence of the protein consists of 19 amino acid residues and is highly homologous to sequences of the known inhibitors from group C of the subfamily of potato Kunitz-type proteinase inhibitors (PKPIs-C). By cloning PCR products from the genomic DNA of potato, a gene denoted as PKPI-C2 was isolated and sequenced. The N-terminal sequence (residues from 15 to 33) of the protein encoded by the PKPI-C2 gene is identical to the N-terminal sequence (residues from 1 to 19) of the isolated protein PKSI. Thus, the inhibitor PKSI is very likely encoded by this gene.

  7. Metabolism of the c-Fos/activator protein-1 inhibitor T-5224 by multiple human UDP-glucuronosyltransferase isoforms.

    PubMed

    Uchihashi, Shinsuke; Fukumoto, Hiroyuki; Onoda, Makoto; Hayakawa, Hiroyoshi; Ikushiro, Shin-ichi; Sakaki, Toshiyuki

    2011-05-01

    We developed 3-{5-[4-(cyclopentyloxy)-2-hydroxybenzoyl]-2-[(3-hydroxy-1,2-benzisoxazol-6-yl)methoxy]phenyl} propionic acid (T-5224) as a novel inhibitor of the c-Fos/activator protein-1 for rheumatoid arthritis therapy. We predicted the metabolism of T-5224 in humans by using human liver microsomes (HLM), human intestinal microsomes (HIM), recombinant human cytochrome P450 (P450), and UDP-glucuronosyltransferases (UGTs). T-5224 was converted to its acyl O-glucuronide (G2) by UGT1A1 and UGT1A3 and to its hydroxyl O-glucuronide (G3) by several UGTs, but it was not metabolized by the P450s. A comparison of the intrinsic clearances (CL(int)) between HLM and HIM suggested that the glucuronidation of T-5224 occurs predominantly in the liver. UGT1A1 showed a higher k(cat)/K(m) value than UGT1A3 for G2 formation, but a lower k(cat)/K(m) value than UGT1A3 for G3 formation. A high correlation was observed between G2 formation activity and UGT1A1-specific activity (β-estradiol 3-glucuronidation) in seven individual HLM. A high correlation was also observed between G2 formation activity and UGT1A1 content in the HLM. These results strongly suggest that UGT1A1 is responsible for G2 formation in human liver. In contrast, no such correlation was observed with G3 formation, suggesting that multiple UGT isoforms, including UGT1A1 and UGT1A3, are involved in G3 formation. G2 is also observed in rat and monkey liver microsomes as a major metabolite of T-5224, suggesting that G2 is not a human-specific metabolite. In this study, we obtained useful information on the metabolism of T-5224 for its clinical use.

  8. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    SciTech Connect

    Zeng, Ke-Wu; Li, Jun; Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei; Tu, Peng-Fei

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  9. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    PubMed

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  10. Hereditary angioedema with normal C1 inhibitor.

    PubMed

    Bork, Konrad

    2013-11-01

    Until recently it was assumed that hereditary angioedema was a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity, and protein in plasma were described. Since then, numerous patients and families with that condition have been reported. Most of the patients were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. In some families mutations in the coagulation factor XII (Hageman factor) gene were detected.

  11. Small Molecule Inhibitors to Disrupt Protein-protein Interactions of Heat Shock Protein 90 Chaperone Machinery.

    PubMed

    Seo, Young Ho

    2015-03-01

    Heat shock protein 90 (Hsp90) is an adenosine triphosphate dependent molecular chaperone in eukaryotic cells that regulates the activation and maintenance of numerous regulatory and signaling proteins including epidermal growth factor receptor, human epidermal growth factor receptor 2, mesenchymal-epithelial transition factor, cyclin-dependent kinase-4, protein kinase B, hypoxia-inducible factor 1α, and matrix metalloproteinase-2. Since many of Hsp90 clients are oncogenic proteins, Hsp90 has become an attractive therapeutic target for treatment of cancer. To discover small molecule inhibitors targeting Hsp90 chaperone machinery, several strategies have been employed, which results in three classes of inhibitors such as N-terminal inhibitors, C-terminal inhibitors, and inhibitors disrupting protein-protein interactions of Hsp90 chaperone machinery. Developing small molecule inhibitors that modulate protein-protein interactions of Hsp90 is a challenging task, although it offers many alternative opportunities for therapeutic intervention. The lack of well-defined binding pocket and starting points for drug design challenges medicinal chemists to discover small molecule inhibitors disrupting protein-protein interactions of Hsp90. The present review will focus on the current studies on small molecule inhibitors disrupting protein-protein interactions of Hsp90 chaperone machinery, provide biological background on the structure, function and mechanism of Hsp90's protein-protein interactions, and discuss the challenges and promise of its small molecule modulations.

  12. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  13. In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors.

    PubMed

    Filppula, Anne M; Neuvonen, Pertti J; Backman, Janne T

    2014-07-01

    Previous studies have shown that several protein kinase inhibitors are time-dependent inhibitors of cytochrome P450 (CYP) 3A. We screened 14 kinase inhibitors for time-dependent inhibition of CYP2C8 and CYP3A. Amodiaquine N-deethylation and midazolam 1'-hydroxylation were used as marker reactions for CYP2C8 and CYP3A activity, respectively. A screening, IC50 shift, and mechanism-based inhibition were assessed with human liver microsomes. In the screening, bosutinib isomer 1, crizotinib, dasatinib, erlotinib, gefitinib, lestaurtinib, nilotinib, pazopanib, saracatinib, sorafenib, and sunitinib exhibited an increased inhibition of CYP3A after a 30-min preincubation with NADPH, as compared with no preincubation. Axitinib and vandetanib tested negative for time-dependent inhibition of CYP3A and CYP2C8, and bosutinib was the only inhibitor causing time-dependent inhibition of CYP2C8. The inhibitory mechanism by bosutinib was consistent with weak mechanism-based inhibition, and its inactivation variables, inhibitor concentration that supports half-maximal rate of inactivation (KI) and maximal inactivation rate (kinact), were 54.8 µM and 0.018 1/min. As several of the tested inhibitors were reported to cause mechanism-based inactivation of CYP3A4 during the progress of this work, detailed experiments with these were not completed. However, lestaurtinib and saracatinib were identified as mechanism-based inhibitors of CYP3A. The KI and kinact of lestaurtinib and saracatinib were 30.7 µM and 0.040 1/min, and 12.6 µM and 0.096 1/min, respectively. Inhibition of CYP2C8 by bosutinib was predicted to have no clinical relevance, whereas therapeutic lestaurtinib and saracatinib concentrations were predicted to increase the plasma exposure to CYP3A-dependent substrates by ≥2.7-fold. The liability of kinase inhibitors to affect CYP enzymes by time-dependent inhibition may have long-lasting consequences and result in clinically relevant drug-drug interactions. Copyright © 2014

  14. Small-molecule inhibitors of hepatitis C virus (HCV) non-structural protein 5A (NS5A): a patent review (2010-2015).

    PubMed

    Ivanenkov, Yan A; Aladinskiy, Vladimir A; Bushkov, Nikolay A; Ayginin, Andrey A; Majouga, Alexander G; Ivachtchenko, Alexandre V

    2017-04-01

    Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor). Areas covered: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors. Expert opinion: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.

  15. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  16. A high throughput system for the evaluation of protein kinase C inhibitors based on Elk1 transcriptional activation in human astrocytoma cells.

    PubMed

    Sharif, T R; Sharif, M

    1999-02-01

    Protein kinase C (PKC) designates a family of kinases that regulate many essential functions including cell growth and differentiation. The tight regulation of PKC activity is crucial for maintaining normal cellular proliferation and excessive activity leads to abnormal or uncontrolled cell growth. Recent reports indicate that malignant glioma cell lines express 100 to 1000-fold higher PKC activity when compared to non-neoplastic astrocytes. This high activity correlates well with the proliferation of tumor cells in vitro. We recently reported on the anti-proliferative properties of selective PKC inhibitors on the growth of U-373MG human astrocytoma cell line, and their ability to block mitogen-activated protein (MAP) kinase pathway activated by substance P (SP) neuropeptide receptor signaling via a PKC-dependent mechanism. Therefore, inhibiting PKC activity by selective PKC inhibitors may present a promising approach for improving astroglial brain tumor therapy. For this purpose, we constructed a high throughput model cell system to evaluate the efficacy of PKC inhibitors. This system is based on the measurement of light production in U-373MG cells stably transfected with the luciferase reporter gene whose expression depends on the transcriptional activation of GAL4-Elk1 fusion protein by enzyme components of the MAP kinase pathway and the upstream activation of PKC (PKC activation-->MAP kinases-->GAL4-Elk1 phosphorylation-->luciferase expression-->luciferase activity). In brief, we have demonstrated that the PKC activator 12-O-tetradecanoyl phorbol 13-acetate (TPA)-induced luciferase activity in this cell system is mediated via the MAP kinase pathway and can be blocked in the presence of MEK1 selective inhibitors (PD 098059 or U0126). We also demonstrated that TPA-induced luciferase activity in U-373MG stable clones can be blocked by PKC inhibitors (CGP 41251, Go 6976, and GF 109203X) in a concentration dependent manner. In contrast, epidermal growth factor (EGF

  17. The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2.

    PubMed

    Varfolomeev, Eugene; Wayson, Sarah M; Dixit, Vishva M; Fairbrother, Wayne J; Vucic, Domagoj

    2006-09-29

    The inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans. All members of the IAP family have at least one baculovirus IAP repeat (BIR) motif that is essential for their anti-apoptotic activity. The t(11, 18)(q21;q21) translocation fuses the BIR domains of c-IAP2 with the paracaspase/MALT1 (mucosa-associated lymphoid tissue) protein, a critical mediator of T cell receptor-stimulated activation of NF-kappaB. The c-IAP2.MALT1 fusion protein constitutively activates the NF-kappaB pathway, and this is considered critical to malignant B cell transformation and lymphoma progression. The BIR domains of c-IAP1 and c-IAP2 interact with tumor necrosis factor receptor-associated factors 1 and 2 (TRAF1 and TRAF2). Here we investigated the importance of TRAF1 and TRAF2 for c-IAP2.MALT1-stimulated NF-kappaB activation. We identified a novel epitope within the BIR1 domains of c-IAP1 and c-IAP2 that is crucial for their physical interaction with TRAF1 and TRAF2. The c-IAP2.MALT1 fusion protein associates with TRAF1 and TRAF2 using the same binding site. We explored the functional relevance of this interaction and established that binding to TRAF1 and TRAF2 is not required for c-IAP2.MALT1-stimulated NF-kappaB activation. Furthermore, gene ablation of TRAF2 or combined down-regulation of TRAF1 and TRAF2 did not affect c-IAP2.MALT1-stimulated signaling. However, TRAF1/2-binding mutants of c-IAP2.MALT1 still oligomerize and activate NF-kappaB, suggesting that oligomerization might be important for signaling of the fusion protein. Therefore, the t(11, 18)(q21;q21) translocation creating the c-IAP2.MALT1 fusion protein activates NF-kappaB and contributes to human malignancy in the absence of signaling adaptors that might otherwise regulate its activity.

  18. High Affinity Small Protein Inhibitors of Human Chymotrypsin C (CTRC) Selected by Phage Display Reveal Unusual Preference for P4′ Acidic Residues*

    PubMed Central

    Szabó, András; Héja, Dávid; Szakács, Dávid; Zboray, Katalin; Kékesi, Katalin A.; Radisky, Evette S.; Sahin-Tóth, Miklós; Pál, Gábor

    2011-01-01

    Human chymotrypsin C (CTRC) is a pancreatic protease that participates in the regulation of intestinal digestive enzyme activity. Other chymotrypsins and elastases are inactive on the regulatory sites cleaved by CTRC, suggesting that CTRC recognizes unique sequence patterns. To characterize the molecular determinants underlying CTRC specificity, we selected high affinity substrate-like small protein inhibitors against CTRC from a phage library displaying variants of SGPI-2, a natural chymotrypsin inhibitor from Schistocerca gregaria. On the basis of the sequence pattern selected, we designed eight inhibitor variants in which amino acid residues in the reactive loop at P1 (Met or Leu), P2′ (Leu or Asp), and P4′ (Glu, Asp, or Ala) were varied. Binding experiments with CTRC revealed that (i) inhibitors with Leu at P1 bind 10-fold stronger than those with P1 Met; (ii) Asp at P2′ (versus Leu) decreases affinity but increases selectivity, and (iii) Glu or Asp at P4′ (versus Ala) increase affinity 10-fold. The highest affinity SGPI-2 variant (KD 20 pm) bound to CTRC 575-fold tighter than the parent molecule. The most selective inhibitor variant exhibited a KD of 110 pm and a selectivity ranging from 225- to 112,664-fold against other human chymotrypsins and elastases. Homology modeling and mutagenesis identified a cluster of basic amino acid residues (Lys51, Arg56, and Arg80) on the surface of human CTRC that interact with the P4′ acidic residue of the inhibitor. The acidic preference of CTRC at P4′ is unique among pancreatic proteases and might contribute to the high specificity of CTRC-mediated digestive enzyme regulation. PMID:21515688

  19. Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity.

    PubMed Central

    Al-Murrani, S W; Woodgett, J R; Damuni, Z

    1999-01-01

    Transient expression of I2PP2A, a potent inhibitor of protein phosphatase 2A (PP2A), in HEK-293 cells increased the concentration and DNA binding of the proto-oncogene c-Jun. In contrast, expression of the catalytic subunit of PP2A (PP2AC) markedly decreased the concentration and DNA binding of c-Jun. Expression of I2PP2A also increased the transcriptional activity of activator protein-1, and this effect was diminished in a dose-dependent manner by expression of PP2AC. Densitometric analysis following Western blotting of extracts with antibodies specific for phospho-Ser63 and Ser73 suggests that the effects of I2PP2A and PP2AC expression might be mediated, in part, by changes in the phosphorylation of c-Jun at Ser63. The results indicate that I2PP2A elicits effects that are consistent with it acting as an inhibitor of PP2A in intact cells, and suggest that PP2A might exhibit site selectivity with respect to c-Jun phosphorylation. PMID:10393085

  20. Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity.

    PubMed

    Al-Murrani, S W; Woodgett, J R; Damuni, Z

    1999-07-15

    Transient expression of I2PP2A, a potent inhibitor of protein phosphatase 2A (PP2A), in HEK-293 cells increased the concentration and DNA binding of the proto-oncogene c-Jun. In contrast, expression of the catalytic subunit of PP2A (PP2AC) markedly decreased the concentration and DNA binding of c-Jun. Expression of I2PP2A also increased the transcriptional activity of activator protein-1, and this effect was diminished in a dose-dependent manner by expression of PP2AC. Densitometric analysis following Western blotting of extracts with antibodies specific for phospho-Ser63 and Ser73 suggests that the effects of I2PP2A and PP2AC expression might be mediated, in part, by changes in the phosphorylation of c-Jun at Ser63. The results indicate that I2PP2A elicits effects that are consistent with it acting as an inhibitor of PP2A in intact cells, and suggest that PP2A might exhibit site selectivity with respect to c-Jun phosphorylation.

  1. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase.

    PubMed

    Beltman, J; McCormick, F; Cook, S J

    1996-10-25

    The role of protein kinase C (PKC) in inflammation, mitogenesis, and differentiation has been deduced in part through the use of a variety of PKC inhibitors. Two widely used inhibitors are the structurally related compounds GF109203X and Ro-31-8220, both of which potently inhibit PKC activity and are believed to be highly selective. While using GF109203X and Ro-31-8220 to address the role of PKC in immediate early gene expression, we observed striking differential effects by each of these two compounds. Growth factors induce the expression of the immediate early gene products MAP kinase phosphatase-1 (MKP-1), c-Fos and c-Jun. Ro-31-8220 inhibits growth factor-stimulated expression of MKP-1 and c-Fos but strongly stimulated c-Jun expression, even in the absence of growth factors. GF109203X displays none of these properties. These data suggest that Ro-31-8220 may have other pharmacological actions in addition to PKC inhibition. Indeed, Ro-31-8220 strongly stimulates the stress-activated protein kinase, JNK1. Furthermore, Ro-31-8220 apparently activates JNK in a PKC-independent manner. Neither the down-regulation of PKC by phorbol esters nor the inhibition of PKC by GF109203X affected the ability of Ro-31-8220 to activate JNK1. These data suggest that, in addition to potently inhibiting PKC, Ro-31-8220 exhibits novel pharmacological properties which are independent of its ability to inhibit PKC.

  2. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.

  3. Selective peptide inhibitors of antiapoptotic cellular and viral Bcl-2 proteins lead to cytochrome c release during latent Kaposi's sarcoma-associated herpesvirus infection.

    PubMed

    Burrer, Christine M; Foight, Glenna W; Keating, Amy E; Chan, Gary C

    2016-01-04

    Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with B-cell lymphomas including primary effusion lymphoma and multicentric Castleman's disease. KSHV establishes latency within B cells by modulating or mimicking the antiapoptotic Bcl-2 family of proteins to promote cell survival. Our previous BH3 profiling analysis, a functional assay that assesses the contribution of Bcl-2 proteins towards cellular survival, identified two Bcl-2 proteins, cellular Mcl-1 and viral KsBcl-2, as potential regulators of mitochondria polarization within a latently infected B-cell line, Bcbl-1. In this study, we used two novel peptide inhibitors identified in a peptide library screen that selectively bind KsBcl-2 (KL6-7_Y4eK) or KsBcl-2 and Mcl-1 (MS1) in order to decipher the relative contribution of Mcl-1 and KsBcl-2 in maintaining mitochondrial membrane potential. We found treatment with KL6-7_Y4eK and MS1 stimulated a similar amount of cytochrome c release from mitochondria isolated from Bcbl-1 cells, indicating that inhibition of KsBcl-2 alone is sufficient for mitochondrial outer membrane permiabilzation (MOMP) and thus apoptosis during a latent B cell infection. In turn, this study also identified and provides a proof-of-concept for the further development of novel KsBcl-2 inhibitors for the treatment of KSHV-associated B-cell lymphomas via the targeting of latently infected B cells.

  4. Unmasking Heavily O-Glycosylated Serum Proteins Using Perchloric Acid: Identification of Serum Proteoglycan 4 and Protease C1 Inhibitor as Molecular Indicators for Screening of Breast Cancer

    PubMed Central

    Lee, Cheng-Siang; Taib, Nur Aishah Mohd; Ashrafzadeh, Ali; Fadzli, Farhana; Harun, Faizah; Rahmat, Kartini; Hoong, See Mee; Abdul-Rahman, Puteri Shafinaz; Hashim, Onn Haji

    2016-01-01

    Heavily glycosylated mucin glycopeptides such as CA 27.29 and CA 15–3 are currently being used as biomarkers for detection and monitoring of breast cancer. However, they are not well detected at the early stages of the cancer. In the present study, perchloric acid (PCA) was used to enhance detection of mucin-type O-glycosylated proteins in the serum in an attempt to identify new biomarkers for early stage breast cancer. Sensitivity and specificity of an earlier developed sandwich enzyme-linked lectin assay were significantly improved with the use of serum PCA isolates. When a pilot case-control study was performed using the serum PCA isolates of normal participants (n = 105) and patients with stage 0 (n = 31) and stage I (n = 48) breast cancer, higher levels of total O-glycosylated proteins in sera of both groups of early stage breast cancer patients compared to the normal control women were demonstrated. Further analysis by gel-based proteomics detected significant inverse altered abundance of proteoglycan 4 and plasma protease C1 inhibitor in both the early stages of breast cancer patients compared to the controls. Our data suggests that the ratio of serum proteoglycan 4 to protease C1 inhibitor may be used for screening of early breast cancer although this requires further validation in clinically representative populations. PMID:26890881

  5. Protein farnesyltransferase inhibitors and progeria.

    PubMed

    Meta, Margarita; Yang, Shao H; Bergo, Martin O; Fong, Loren G; Young, Stephen G

    2006-10-01

    Genetic mutations that lead to an accumulation of farnesyl-prelamin A cause progeroid syndromes, including Hutchinson-Gilford progeria syndrome. It seemed possible that the farnesylated form of prelamin A might be toxic to mammalian cells, accounting for all the disease phenotypes that are characteristic of progeria. This concept led to the hypothesis that protein farnesyltransferase inhibitors (FTIs) might ameliorate the disease phenotypes of progeria in mouse models. Thus far, two different mouse models of progeria have been examined. In both models, FTIs improved progeria-like disease phenotypes. Here, prelamin A post-translational processing is discussed and several mutations underlying human progeroid syndromes are described. In addition, recent data showing that FTIs ameliorate disease phenotypes in a pair of mouse models of progeria are discussed.

  6. Surface-plasmon-resonance-based biosensor with immobilized bisubstrate analog inhibitor for the determination of affinities of ATP- and protein-competitive ligands of cAMP-dependent protein kinase.

    PubMed

    Viht, Kaido; Schweinsberg, Sonja; Lust, Marje; Vaasa, Angela; Raidaru, Gerda; Lavogina, Darja; Uri, Asko; Herberg, Friedrich W

    2007-03-15

    Interactions between adenosine-oligoarginine conjugates (ARC), bisubstrate analog inhibitors of protein kinases, and catalytic subunits of cAMP-dependent protein kinase (cAPK Calpha) were characterized with surface-plasmon-resonance-based biosensors. ARC-704 bound to the immobilized kinase with subnanomolar affinity. The immobilization of ARC-704 to the chip surface via streptavidin-biotin complex yielded a high-affinity surface (K(D)=16nM). The bisubstrate character of ARC-704 was demonstrated with various ligands targeted to ATP-binding pocket (ATP and inhibitors H89 and H1152P) and protein-substrate-binding domain of Calpha (RIIalpha and GST-PKIalpha) in competition assays. The experiments performed on surfaces with different immobilization levels of ARC-704 produced similar results. The closeness of the obtained affinities of the tested compounds to the inhibitory potencies and affinities of the compounds measured with other methods demonstrates the applicability of the chip with the immobilized biligand inhibitor for the characterization of both ATP- and substrate protein-competitive ligands of basophilic protein kinases.

  7. Identification of inhibitors of α2β1 integrin, members of C-lectin type proteins, in Echis sochureki venom

    SciTech Connect

    Jakubowski, Piotr; Calvete, Juan J.; Eble, Johannes A.; Lazarovici, Philip; Marcinkiewicz, Cezary

    2013-05-15

    Snake venom antagonists of α2β1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2β1 integrin and binding of isolated α2β1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally, sochicetin-B and sochicetin-C are typical heterodimeric αβ CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αβ){sub 3} in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system. - Highlights: • Isolation of three novel snake venom CLPs inhibiting α2β1 integrin • Reporting hexameric CLP, sochicetin-A with anti-collagen receptor activity • CLPs antagonize the interaction of glioma cells with collagen matrix. • Sochicetin-A does not support glioma cell spreading.

  8. A classical PKA inhibitor increases the oncolytic effect of M1 virus via activation of exchange protein directly activated by cAMP 1

    PubMed Central

    Zhang, Haipeng; Xiao, Xiao; Tan, Yaqian; Cai, Jing; Zhu, Wenbo; Xing, Fan; Hu, Jun; Yan, Guangmei

    2016-01-01

    Oncolytic virotherapy is an emerging and promising treatment modality that uses replicating viruses as selective antitumor agents. Here, we report that a classical protein kinase A (PKA) inhibitor, H89, synergizes with oncolytic virus M1 in various cancer cells through activation of Epac1 (exchange protein directly activated by cAMP 1). H89 substantially increases viral replication in refractory cancer cells, leading to unresolvable Endoplasmic Reticulum stress, and cell apoptosis. Microarray analysis indicates that H89 blunts antiviral response in refractory cancer cells through retarding the nuclear translocation of NF-κB. Importantly, in vivo studies show significant antitumor effects during M1/H89 combination treatment. Overall, this study reveals a previously unappreciated role for H89 and demonstrates that activation of the Epac1 activity can improve the responsiveness of biotherapeutic agents for cancer. PMID:27374176

  9. Differential expression of cyclin G2, cyclin-dependent kinase inhibitor 2C and peripheral myelin protein 22 genes during adipogenesis.

    PubMed

    Zhang, J; Suh, Y; Choi, Y M; Ahn, J; Davis, M E; Lee, K

    2014-05-01

    Increase of fat cells (FCs) in adipose tissue is attributed to proliferation of preadipocytes or immature adipocytes in the early stage, as well as adipogenic differentiation in the later stage of adipose development. Although both events are involved in the FC increase, they are contrary to each other, because the former requires cell cycle activity, whereas the latter requires cell cycle withdrawal. Therefore, appropriate regulation of cell cycle inhibition is critical to adipogenesis. In order to explore the important cell cycle inhibitors and study their expression in adipogenesis, we adopted a strategy combining the Gene Expression Omnibus (GEO) database available on the NCBI website and the results of quantitative real-time PCR (qPCR) data in porcine adipose tissue. Three cell cycle inhibitors - cyclin G2 (CCNG2), cyclin-dependent kinase inhibitor 2C (CDKN2C) and peripheral myelin protein (PMP22) - were selected for study because they are relatively highly expressed in adipose tissue compared with muscle, heart, lung, liver and kidney in humans and mice based on two GEO DataSets (GDS596 and GDS3142). In the latter analysis, they were found to be more highly expressed in differentiating/ed preadipocytes than in undifferentiated preadipocytes in human and mice as shown respectively by GDS2366 and GDS2743. In addition, GDS2659 also suggested increasing expression of the three cell cycle inhibitors during differentiation of 3T3-L1 cells. Further study with qPCR in Landrace pigs did not confirm the high expression of these genes in adipose tissue compared with other tissues in market-age pigs, but confirmed higher expression of these genes in FCs than in the stromal vascular fraction, as well as increasing expression of these genes during in vitro adipogenic differentiation and in vivo development of adipose tissue. Moreover, the relatively high expression of CCNG2 in adipose tissue of market-age pigs and increasing expression during development of adipose tissue

  10. Tissue Factor Pathway Inhibitor, Activated Protein C Resistance, and Risk of Coronary Heart Disease Due To Combined Estrogen Plus Progestin Therapy.

    PubMed

    Johnson, Karen C; Aragaki, Aaron K; Jackson, Rebecca; Reiner, Alex; Sandset, Per Morten; Rosing, Jan; Dahm, Anders E A; Rosendaal, Frits; Manson, JoAnn E; Martin, Lisa W; Liu, Simin; Kuller, Lewis H; Cushman, Mary; Rossouw, Jacques E

    2016-02-01

    To examine whether tissue factor pathway inhibitor or acquired activated protein C (APC) resistance influences the increased risk of coronary heart disease (CHD) due to estrogen plus progestin therapy. Prospective nested case-control study of 205 cases of CHD and 481 matched controls in the Women's Health Initiative randomized trial of estrogen plus progestin therapy. After multivariable covariate adjustment, both baseline tissue factor pathway activity (P=0.01) and APC resistance (P=0.004) were associated positively with CHD risk. Baseline tissue factor pathway activity and APC resistance singly or jointly did not significantly modify the effect of estrogen plus progestin on CHD risk. Compared with placebo, estrogen plus progestin decreased tissue factor pathway inhibitor activity and increased APC resistance but these changes did not seem to modify or mediate the effect of estrogen plus progestin on CHD risk. Tissue factor pathway inhibitor activity and APC resistance are related to CHD risk in women, but may not explain the increased CHD risk due to estrogen plus progestin therapy. The data from this study do not support the clinical use of measuring these hemostatic factors to help stratify risk before hormone therapy. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00000611. © 2015 American Heart Association, Inc.

  11. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria.

    PubMed

    Wang, Bing; Nguyen, Mai; Breckenridge, David G; Stojanovic, Marina; Clemons, Paul A; Kuppig, Stephan; Shore, Gordon C

    2003-04-18

    BAP31 is a polytopic integral protein of the endoplasmic reticulum membrane and, like BID, is a preferred substrate of caspase-8. Upon Fas/CD95 stimulation, BAP31 is cleaved within its cytosolic domain, generating proapoptotic p20 BAP31. In human KB epithelial cells expressing the caspase-resistant mutant crBAP31, Fas stimulation resulted in cleavage of BID and insertion of BAX into mitochondrial membrane, but subsequent oligomerization of BAX and BAK, egress of cytochrome c to the cytosol, and apoptosis were impaired. Bap31-null mouse cells expressing crBAP31 cannot generate the endogenous p20 BAP31 cleavage product, yet crBAP31 conferred resistance to cellular condensation and cytochrome c release in response to activation of ectopic FKBPcasp8 by FK1012z. Full-length BAP31, therefore, is a direct inhibitor of these caspase-8-initiated events, acting independently of its ability to sequester p20, with which it interacts. Employing a novel split ubiquitin yeast two-hybrid screen for BAP31-interacting membrane proteins, the putative ion channel protein of the endoplasmic reticulum, A4, was detected and identified as a constitutive binding partner of BAP31 in human cells. Ectopic A4 that was introduced into A4-deficient cells cooperated with crBAP31 to resist Fas-induced egress of cytochrome c from mitochondria and cytoplasmic apoptosis.

  12. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1

    PubMed Central

    LI, ZHI-QIANG; LIU, YING-LONG; LI, GANG; LI, BIN; LIU, YANG; LI, XIAO-FENG; LIU, AI-JUN

    2015-01-01

    The present study aimed to investigate the effect of C-type natriuretic peptide (CNP) on the function of cardiac fibroblasts (CFs). Western blotting was used to investigate the expression of myofibroblast marker proteins: α-smooth muscle actin (α-SMA), extra domain-A fibronectin, collagen I and collagen III, and the activity of extracellular signal-regulated kinase 1/2 (ERK1/2). Immunofluorescence was used to examine the morphological changes; a transwell assay was used to analyze migration, and reverse transcription-quantitative polymerase chain reaction and ELISA were employed to determine the mRNA expression and protein secretion of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). The results demonstrated that CNP significantly reduced the protein expression of α-SMA, fibronectin, collagen I and collagen III, and suppressed the migratory ability of CFs. Additionally, the mRNA and protein expression of MCP-1 and PAI-1 was inhibited under the CNP treatment; and this effect was mediated by the inhibition of the ERK1/2 activity. In conclusion, CNP inhibited cardiac fibroblast differentiation and migration, and reduced the secretion of MCP-1 and PAI-1, which demonstrates novel mechanisms to explain the antifibrotic effect of CNP. PMID:25352084

  13. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  14. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  15. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  16. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  17. (D)-Amino acid analogues of DT-2 as highly selective and superior inhibitors of cGMP-dependent protein kinase Ialpha.

    PubMed

    Nickl, Christian K; Raidas, Shiv Kumar; Zhao, Hong; Sausbier, Matthias; Ruth, Peter; Tegge, Werner; Brayden, Joseph E; Dostmann, Wolfgang R

    2010-03-01

    The cGMP-dependent protein kinase type I (PKG I) is an essential regulator of cellular function in blood vessels throughout the body. DT-2, a peptidic inhibitor of PKG, has played a central role in determining the molecular mechanisms of vascular control involving PKG and its signaling partners. Here, we report the development of (d)-amino acid DT-2 derivatives, namely the retro-inverso ri-(d)-DT-2 and the all (d)-amino acid analog, (d)-DT-2. Both peptide analogs were potent PKG Ialpha inhibitors with K(i) values of 5.5 nM (ri-(d)-DT-2) and 0.8 nM ((d)-DT-2) as determined using a hyperbolic mixed-type inhibition model. Also, both analogs were proteolytically stable in vivo, showed elevated selectivity, and displayed enhanced membrane translocation properties. Studies on isolated arteries from the resistance vasculature demonstrated that intraluminally perfused (d)-DT-2 significantly inhibited vasodilation induced by 8-Br-cGMP. Furthermore, in vivo application of (d)-DT-2 established a uniform translocation pattern in the resistance vasculature, with exception of the brain. Thus, (d)-DT-2 caused significant increases in mean arterial blood pressure in unrestrained, awake mice. Further, mesenteric arteries isolated from (d)-DT-2 treated animals showed a markedly reduced dilator response to 8-Br-cGMP in vitro. Our results clearly demonstrate that (d)-DT-2 is a superior inhibitor of PKG Ialpha and its application in vivo leads to sustained inhibition of PKG in vascular smooth muscle cells. The discovery of (d)-DT-2 may help our understanding of how blood vessels constrict and dilate and may also aid the development of new strategies and therapeutic agents targeted to the prevention and treatment of vascular disorders such as hypertension, stroke and coronary artery disease. Copyright 2009 Elsevier B.V. All rights reserved.

  18. C1 inhibitor: quantification and purification.

    PubMed

    Varga, Lilian; Dobó, József

    2014-01-01

    C1 inhibitor is a multipotent serpin capable of inhibiting the classical and the lectin pathways of complement, the fibrinolytic system, and contact/kinin system of coagulation. Deficiency of C1 inhibitor manifest as hereditary angioedema (HAE), an autosomal dominant hereditary disease. Measuring the C1 inhibitor level is of vital importance for the diagnosis of HAE and also for monitoring patients receiving C1 inhibitor for therapy. Determination of the antigenic C1 inhibitor level by the radial immunodiffusion (RID) technique is described in detail in this chapter. The presented purification method of plasma C1 inhibitor is primarily based on its high carbohydrate content and its affinity to the lectin jacalin.

  19. Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins.

    PubMed

    Chen, Amy; Muzzio, Isabel A; Malleret, Gaël; Bartsch, Dusan; Verbitsky, Miguel; Pavlidis, Paul; Yonan, Amanda L; Vronskaya, Svetlana; Grody, Michael B; Cepeda, Ivan; Gilliam, T Conrad; Kandel, Eric R

    2003-08-14

    To examine the role of C/EBP-related transcription factors in long-term synaptic plasticity and memory storage, we have used the tetracycline-regulated system and expressed in the forebrain of mice a broad dominant-negative inhibitor of C/EBP (EGFP-AZIP), which preferentially interacts with several inhibiting isoforms of C/EBP. EGFP-AZIP also reduces the expression of ATF4, a distant member of the C/EBP family of transcription factors that is homologous to the Aplysia memory suppressor gene ApCREB-2. Consistent with the removal of inhibitory constraints on transcription, we find an increase in the pattern of gene transcripts in the hippocampus of EGFP-AZIP transgenic mice and both a reversibly enhanced hippocampal-based spatial memory and LTP. These results suggest that several proteins within the C/EBP family including ATF4 (CREB-2) act to constrain long-term synaptic changes and memory formation. Relief of this inhibition lowers the threshold for hippocampal-dependent long-term synaptic potentiation and memory storage in mice.

  20. KU135, a Novel Novobiocin-Derived C-Terminal Inhibitor of the 90-kDa Heat Shock Protein, Exerts Potent Antiproliferative Effects in Human Leukemic Cells

    PubMed Central

    Shelton, Shary N.; Shawgo, Mary E.; Matthews, Shawna B.; Lu, Yuanming; Donnelly, Alison C.; Szabla, Kristen; Tanol, Mehmet; Vielhauer, George A.; Rajewski, Roger A.; Matts, Robert L.; Blagg, Brian S. J.

    2009-01-01

    The 90-kDa heat shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Consequently, there is considerable interest in developing chemotherapeutic drugs that specifically disrupt the function of Hsp90. Here, we investigated the extent to which a novel novobiocin-derived C-terminal Hsp90 inhibitor, designated KU135, induced antiproliferative effects in Jurkat T-lymphocytes. The results indicated that KU135 bound directly to Hsp90, caused the degradation of known Hsp90 client proteins, and induced more potent antiproliferative effects than the established N-terminal Hsp90 inhibitor 17-allylamino-demethoxygeldanamycin (17-AAG). Closer examination of the cellular response to KU135 and 17-AAG revealed that only 17-AAG induced a strong up-regulation of Hsp70 and Hsp90. In addition, KU135 caused wild-type cells to undergo G2/M arrest, whereas cells treated with 17-AAG accumulated in G1. Furthermore, KU135 but not 17-AAG was found to be a potent inducer of mitochondria-mediated apoptosis as evidenced, in part, by the fact that cell death was inhibited to a similar extent by Bcl-2/Bcl-xL overexpression or the depletion of apoptotic protease-activating factor-1 (Apaf-1). Together, these data suggest that KU135 inhibits cell proliferation by regulating signaling pathways that are mechanistically different from those targeted by 17-AAG and as such represents a novel opportunity for Hsp90 inhibition. PMID:19741006

  1. Molecular mechanism underlying the pharmacological interactions of the protein kinase Cinhibitor enzastaurin and erlotinib in non-small cell lung cancer cells.

    PubMed

    Steen, Nele Van Der; Potze, Lisette; Giovannetti, Elisa; Cavazzoni, Andrea; Ruijtenbeek, Rob; Rolfo, Christian; Pauwels, Patrick; Peters, Godefridus J

    2017-01-01

    Erlotinib is commonly used as a second line treatment in non-small cell lung cancer patients with sensitizing EGFR mutations. In EGFR-wild type patients, however the results are limited. Therefore we evaluated whether the combination of the Protein kinase Cinhibitor enzastaurin with erlotinib could enhance the effect in the A549 and H1650 cell lines. Cytotoxicity of erlotinib, enzastaurin and their 72-h simultaneous combination was assessed with the MTT assay. The pharmacologic interaction was studied using the method of Chou and Talalay, cell cycle perturbations were assessed by flow cytometry and modulation of ERK1/2 and AKT phosphorylation was determined with ELISA. For protein phosphorylation of GSK3β we performed Western Blot analysis and a Pamgene phosphorylation array, while RT-PCR was used to investigate VEGF and VEGFR-2 expression before and after drug treatments. A synergistic interaction was found in both cell lines with mean CI of 0.58 and 0.63 in A549 and H1650 cells, respectively. Enzastaurin alone and in combination with erlotinib increased the percentage of cells in S and G2M phase, mostly in H1650 cells, while AKT, ERK1/2 and GSK3β phosphorylation were reduced in both cell lines. VEGF expression decreased 5.0 and 6.9 fold in A549 cells after enzastaurin alone and with erlotinib, respectively, while in H1650 only enzastaurin caused a relevant reduction in VEGF expression. The array showed differential phosphorylation of EGFR, GSK3β, EphA1 and MK14. In conclusion, enzastaurin is a protein kinase Cβ inhibitor, working on several cellular signaling pathways that are involved in proliferation, apoptosis and angiogenesis. These features make it a good compound for combination therapy. In the present study the combination of enzastaurin and erlotinib gives synergistic results, warranting further investigation.

  2. Design, synthesis, and investigation of protein kinase C inhibitors: total syntheses of (+)-calphostin D, (+)-phleichrome, cercosporin, and new photoactive perylenequinones.

    PubMed

    Morgan, Barbara J; Dey, Sangeeta; Johnson, Steven W; Kozlowski, Marisa C

    2009-07-08

    The total syntheses of the PKC inhibitors (+)-calphostin D, (+)-phleichrome, cercosporin, and 10 novel perylenequinones are detailed. The highly convergent and flexible strategy developed employed an enantioselective oxidative biaryl coupling and a double cuprate epoxide opening, allowing the selective syntheses of all the possible stereoisomers in pure form. In addition, this strategy permitted rapid access to a broad range of analogues, including those not accessible from the natural products. These compounds provided a powerful means for evaluation of the perylenequinone structural features necessary to PKC activity. Simpler analogues were discovered with superior PKC inhibitory properties and superior photopotentiation in cancer cell lines relative to the more complex natural products.

  3. Computational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein

    PubMed Central

    Xue, Weiwei; Yang, Ying; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state), while the truncated apo protein adopts an open conformation (active state). Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors. PMID:24586263

  4. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  5. The Phosphoinositide 3-Kinaseα Selective Inhibitor, BYL719, Enhances the Effect of the Protein Kinase C Inhibitor, AEB071, in GNAQ/GNA11 Mutant Uveal Melanoma Cells

    PubMed Central

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K.

    2014-01-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-Kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (Sotrastaurin) and PI3k/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11 mutant cells with AEB071 versus no activity in WT cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of MARCKS, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal anti-proliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11 mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ and GNA11 mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ mutant model. These findings suggest a new therapy treatment option for G-protein mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy. PMID:24563540

  6. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the...

  7. Molecular genetics of C1 inhibitor.

    PubMed

    Tosi, M

    1998-08-01

    More than 100 different C1 inhibitor gene mutations have been described in hereditary angioedema (HAE) patients. Sixty-nine mutations have been reported in patients with the quantitative C1 inhibitor defect (type 1 HAE) in two recent large-scale studies. These changes were found distributed over all exons and exon/intron boundaries. The molecular defects can be divided as follows: Alu-repeat-mediated deletions or duplications (accounting for 21% of all cases), missense mutations (> 36%), frameshifts (14%), Stop codon mutations (10%), promoter variants (4%), splice site mutations (7-10%), deletions of a few amino acids (less than 3%). Several recent studies indicate that up to 25% of these changes are found in patients without a family history of angioedema and represent de novo mutations. Pathogenic amino acid substitutions were found distributed over the entire length of the coding sequence, except for the 100 amino-acid-long glycosylated amino-terminal extension, whose sequence tolerates extensive variation, as indicated by comparisons across species. Functional studies have been carried out only on a fraction of these amino acid substitutions and indicate that defects affecting intracellular transport are often at the basis of type 1 hereditary angioedema. An interesting promoter variant (a C to T transition at position -103) was found in an exceptional family with recessive transmission of the disease. Regulatory elements in the promoter region and in intron 1 were revealed by their sequence conservation in mouse and man and by functional studies. C1 inhibitor "minigene" constructs directing correct mRNA and protein synthesis in transgenic mice have provided valuable information on hormonal control and cell-type specificity of gene expression.

  8. Diphenylpyrazoles as Replication Protein A inhibitors

    DOE PAGES

    Waterson, Alex G.; Kennedy, J. Phillip; Patrone, James D.; ...

    2014-11-11

    Replication Protein A is the primary eukaryotic ssDNA binding protein that has a central role in initiating the cellular response to DNA damage. RPA recruits multiple proteins to sites of DNA damage via the N-terminal domain of the 70 kDa subunit (RPA70N). Here we describe the optimization of a diphenylpyrazole carboxylic acid series of inhibitors of these RPA–protein interactions. Lastly, we evaluated substituents on the aromatic rings as well as the type and geometry of the linkers used to combine fragments, ultimately leading to submicromolar inhibitors of RPA70N protein–protein interactions.

  9. Diphenylpyrazoles as Replication Protein A inhibitors

    SciTech Connect

    Waterson, Alex G.; Kennedy, J. Phillip; Patrone, James D.; Pelz, Nicholas F.; Feldkamp, Michael D.; Frank, Andreas O.; Vangamudi, Bhavatarini; Souza-Fagundes, Elaine M.; Rossanese, Olivia W.; Chazin, Walter J.; Fesik, Stephen W.

    2014-11-11

    Replication Protein A is the primary eukaryotic ssDNA binding protein that has a central role in initiating the cellular response to DNA damage. RPA recruits multiple proteins to sites of DNA damage via the N-terminal domain of the 70 kDa subunit (RPA70N). Here we describe the optimization of a diphenylpyrazole carboxylic acid series of inhibitors of these RPA–protein interactions. Lastly, we evaluated substituents on the aromatic rings as well as the type and geometry of the linkers used to combine fragments, ultimately leading to submicromolar inhibitors of RPA70N protein–protein interactions.

  10. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    PubMed Central

    Akimitsu, Nobuyoshi

    2013-01-01

    Currently, hepatitis C virus (HCV) infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs) against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir) have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin). The new therapy has significantly improved sustained virologic response (SVR); however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors. PMID:24282816

  11. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac.

    PubMed

    Zhou, L; Ma, S L; Yeung, P K K; Wong, Y H; Tsim, K W K; So, K F; Lam, L C W; Chung, S K

    2016-09-06

    Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1(-/-)) or Epac2 (Epac2(-/-)) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2(-/-) mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2(-/-) mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2(-/-) mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis.

  12. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac

    PubMed Central

    Zhou, L; Ma, S L; Yeung, P K K; Wong, Y H; Tsim, K W K; So, K F; Lam, L C W; Chung, S K

    2016-01-01

    Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1−/−) or Epac2 (Epac2−/−) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2−/− mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2−/− mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2−/− mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis. PMID:27598965

  13. X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis.

    PubMed

    Cao, Zipeng; Zhang, Ruowen; Li, Jingxia; Huang, Haishan; Zhang, Dongyun; Zhang, Jingjie; Gao, Jimin; Chen, Jingyuan; Huang, Chuanshu

    2013-07-12

    The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target.

  14. Development of the C-Terminal Inhibitors of Heat Shock Protein 90 in the Treatment of Prostate Cancer

    DTIC Science & Technology

    2008-10-01

    has applications for other disease states such as Alzheimers but toxicity through inhibition is something desirable for cancer studies. Therefore...remains limited2, 3. Prostate cancer remains a heterogeneous disease with multiple contributing pathways, and future treatment strategies...protein expression (Figure 2B) while Hsp90 expression was moderately increased following 72 hours F-4 treament . HIF-1α appeared to be more sensitive

  15. The phosphoinositide 3-kinase α selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells.

    PubMed

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K

    2014-05-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (sotrastaurin) and PI3K/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11-mutant cells with AEB071 versus no activity in wild-type cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of myristoylated alanine-rich C-kinase substrate, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal antiproliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11-mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ- and GNA11-mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ-mutant model. These findings suggest a new therapy treatment option for G-protein-mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy.

  16. Effects of C-reactive protein on the expression of matrix metalloproteinases and their inhibitors via Fcγ receptors on 3T3-L1 adipocytes.

    PubMed

    Nakai, Kumiko; Tanaka, Hideki; Yamanaka, Kazuhiro; Takahashi, Yumi; Murakami, Fumiko; Matsuike, Rieko; Sekino, Jumpei; Tanabe, Natsuko; Morita, Toyoko; Yamazaki, Yoji; Kawato, Takayuki; Maeno, Masao

    2017-01-01

    The association between obesity and inflammation is well documented in epidemiological studies. Proteolysis of extracellular matrix (ECM) proteins is involved in adipose tissue enlargement, and matrix metalloproteinases (MMPs) collectively cleave all ECM proteins. Here, we examined the effects of C-reactive protein (CRP), an inflammatory biomarker, on the expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are natural inhibitors of MMPs, in adipocyte-differentiated 3T3-L1 cells. We analyzed the expression of Fcγ receptor (FcγR) IIb and FcγRIII, which are candidates for CRP receptors, and the effects of anti-CD16/CD32 antibodies, which can act as FcγRII and FcγRIII blockers on CRP-induced alteration of MMP and TIMP expression. Moreover, we examined the effects of CRP on the activation of mitogen-activated protein kinase (MAPK) signaling, which is involved in MMP and TIMP expression, in the presence or absence of anti-CD16/CD32 antibodies. Stimulation with CRP increased MMP-1, MMP-3, MMP-9, MMP-11, MMP-14, and TIMP-1 expression but did not affect MMP-2, TIMP-2, and TIMP-4 expression; TIMP-3 expression was not detected. Adipocyte-differentiated 3T3-L1cells expressed FcγRIIb and FcγRIII; this expression was upregulated on stimulation with CRP. Anti-CD16/CD32 antibodies inhibited CRP-induced expression of MMPs, except MMP-11, and TIMP-1. CRP induced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK but did not affect SAPK/JNK phosphorylation, and Anti-CD16/CD32 attenuated the CRP-induced phosphorylation of p38 MAPK, but not that of ERK1/2. These results suggest that CRP facilitates ECM turnover in adipose tissue by increasing the production of multiple MMPs and TIMP-1 in adipocytes. Moreover, FcγRIIb and FcγRIII are involved in the CRP-induced expression of MMPs and TIMP-1 and the CRP-induced phosphorylation of p38, whereas the FcγR-independent pathway may regulate the CRP-induced MMP-11 expression

  17. Stimulation of cleavage of membrane proteins by calmodulin inhibitors.

    PubMed Central

    Díaz-Rodríguez, E; Esparís-Ogando, A; Montero, J C; Yuste, L; Pandiella, A

    2000-01-01

    The ectodomain of several membrane-bound proteins can be shed by proteolytic cleavage. The activity of the proteases involved in shedding is highly regulated by several intracellular second messenger pathways, such as protein kinase C (PKC) and intracellular Ca(2+). Recently, the shedding of the adhesion molecule L-selectin has been shown to be regulated by the interaction of calmodulin (CaM) with the cytosolic tail of L-selectin. Prevention of CaM-L-selectin interaction by CaM inhibitors or mutation of a CaM binding site in L-selectin induced L-selectin ectodomain shedding. Whether this action of CaM inhibitors also affects other membrane-bound proteins is not known. In the present paper we show that CaM inhibitors also stimulate the cleavage of several other transmembrane proteins, such as the membrane-bound growth factor precursors pro-transforming growth factor-alpha and pro-neuregulin-alpha2c, the receptor tyrosine kinase, TrkA, and the beta-amyloid precursor protein. Cleavage induced by CaM inhibitors was a rapid event, and resulted from the activation of a mechanism that was independent of PKC or intracellular Ca(2+) increases, but was highly sensitive to hydroxamic acid-based metalloprotease inhibitors. Mutational analysis of the intracellular domain of the TrkA receptor indicated that CaM inhibitors may stimulate membrane-protein ectodomain cleavage by mechanisms independent of CaM-substrate interaction. PMID:10677354

  18. Solution structure analysis of the conformational changes that occur upon the binding of the protein kinase inhibitor peptide to the catalytic subunit of the cAMP dependent protein kinase

    SciTech Connect

    Mitchell, R.D.; Walsh, D.A.; Olah, G.A.; Sosnick, T.R.; Trewhella, J.

    1994-10-01

    Fourier transform infrared (FTIR) spectroscopy and small-angle x-ray scattering experiments have been used to examine both the secondary structure content and overall conformation, respectively, of the catalytic subunit of the cAMP-dependent protein kinase and to characterize the structural change that occurs upon binding of the protein kinase inhibitor peptide, PKI(5-22)amide. While the secondary structure of the enzyme is unaltered by the binding of PKI(5-22)amide, a large overall conformational change occurs resulting in a compaction of the enzyme that is characterized by a 2{angstrom} decrease in radius of gyration, Rg, and an 11{angstrom} decrease in the maximum linear dimension, d{sub max}. We have modeled the conformational change as a simple rotation of the upper and lower lobes of the kinase by 39{degrees} about a molecular hinge defined by Glyl25, resulting in a closure of the cleft between the two lobes of the kinase. These data are evaluated with respect to recent x-ray crystallographic studies of the cAMP-dependent protein kinase, CDK2 protein kinase, and the MAP kinase ERK2. In addition, the implications that these findings have for the remainder of the protein kinase family are discussed.

  19. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  20. Small-molecule inhibitors of myosin proteins

    PubMed Central

    Bond, Lisa M; Tumbarello, David A; Kendrick-Jones, John; Buss, Folma

    2014-01-01

    Advances in screening and computational methods have enhanced recent efforts to discover/design small-molecule protein inhibitors. One attractive target for inhibition is the myosin family of motor proteins. Myosins function in a wide variety of cellular processes, from intracellular trafficking to cell motility, and are implicated in several human diseases (e.g., cancer, hypertrophic cardiomyopathy, deafness and many neurological disorders). Potent and selective myosin inhibitors are, therefore, not only a tool for understanding myosin function, but are also a resource for developing treatments for diseases involving myosin dysfunction or overactivity. This review will provide a brief overview of the characteristics and scientific/therapeutic applications of the presently identified small-molecule myosin inhibitors before discussing the future of myosin inhibitor and activator design. PMID:23256812

  1. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump

    DOE PAGES

    Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.; ...

    2016-10-21

    Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less

  2. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump

    SciTech Connect

    Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.; Chaney, Julie L.; Green, Adam T.; Wolloscheck, David; Walker, John K.; Rybenkov, Valentin V.; Baudry, Jerome; Smith, Jeremy C.; Zgurskaya, Helen I.

    2016-10-21

    Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump, change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.

  3. Regulation of mitogen-stimulated human T-cell proliferation, interleukin-2 production, and interleukin-2 receptor expression by protein kinase C inhibitor, H-7

    SciTech Connect

    Atluru, D.; Polam, S.; Atluru, S. ); Woloschak, G.E. )

    1990-01-01

    Recently published reports suggest that the activation of protein kinase C (PKC) plays an important role in the activation pathway of many cell types. In this study, the authors examined the role of PKC in human T-cell proliferation, IL-2 production, and IL-2R expression, when cultured with the mitogen PHA, the PKC inhibitor H-7, and H-7 control HA1004. H-7 inhibited the PHA-simulated ({sup 3}H)thymidine uptake, IL-2production, and IL-2R expression in a dose-related manner. Further, they found H-7 inhibited T-cell proliferation, IL-2 production, and IL-2mRNA from PHA plus PMA-stimulated cultures. They also found that H-7 inhibited the early-stage activation of PHA-stimulated cells. The presence of exogenous purified human IL-2 or rIL-4 partly reversed the immunosuppression caused by H-7. In contrast, HA1004 had no effect on cell proliferation, IL-2 production, or IL-2R expression. The results demonstrate that PKC activation is one major pathway through which T-cells become activated.

  4. Inhibition of development of experimental abdominal aortic aneurysm by c-jun N-terminal protein kinase inhibitor combined with lysyl oxidase gene modified smooth muscle progenitor cells.

    PubMed

    Chen, Feng; Zhang, ZhenDong; Zhu, XianHua

    2015-11-05

    Chronic inflammation, imbalance between the extracellular matrix synthesis and degradation, and loss of vascular smooth muscle cells (SMCs) contribute to the development of abdominal aortic aneurysm (AAA). The purpose of this study was to investigate the effect of the therapy with periaortic incubation of c-Jun N-terminal protein kinase inhibitor SP600125 infused from an osmotic pump and subadventitial injection of lysyl oxidase (LOX) gene modified autologous smooth muscle progenitor cells (SPCs) on treatment of AAA in a rabbit model. Obvious dilation of the abdominal aorta in the control group was caused by periaortic incubation of calcium chloride and elastase. But the progression of aortic dilation was significantly decreased after the treatment with SP600125 and LOX gene modified SPCs compared to the treatment with phosphate-buffered saline. This therapy could inhibit matrix metalloproteinases expression, enhance elastin synthesis, improve preservation of elastic laminar integrity, benefit SPCs survival and restore SMCs population. It seemed that this method might provide a novel therapeutic strategy to treat AAA.

  5. Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein-Ligand X-ray Crystal Structure

    PubMed Central

    Ghosh, Arun K.; Chapsal, Bruno D.; Parham, Garth L.; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2011-01-01

    We report the design, synthesis, biological evaluation, and the X-ray crystal structure of a novel inhibitor-bound HIV-1 protease. Various C3-functionalized cyclopentanyltetrahydrofurans (Cp-THF) were designed to interact with the flap Gly48 carbonyl or amide NH in the S2-subsite of the HIV-1 protease. We investigated the potential of those functionalized ligands in combination with hydroxyethyl sulfonamide isosteres. Inhibitor 26 containing a 3-(R)-hydroxyl group on the Cp-THF core, displayed the most potent enzyme inhibitory and antiviral activity. Our studies revealed a preference for the 3-(R)-configuration over the corresponding 3-(S)-derivative. Inhibitor 26 exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray structure of 26-bound HIV-1 protease revealed important molecular insight into the ligand-binding site interactions. PMID:21800876

  6. Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein-Ligand X-ray Crystal Structure

    SciTech Connect

    Ghosh, Arun K; Chapsal, Bruno D; Parham, Garth L; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2011-11-07

    We report the design, synthesis, biological evaluation, and the X-ray crystal structure of a novel inhibitor bound to the HIV-1 protease. Various C3-functionalized cyclopentanyltetrahydrofurans (Cp-THF) were designed to interact with the flap Gly48 carbonyl or amide NH in the S2-subsite of the HIV-1 protease. We investigated the potential of those functionalized ligands in combination with hydroxyethylsulfonamide isosteres. Inhibitor 26 containing a 3-(R)-hydroxyl group on the Cp-THF core displayed the most potent enzyme inhibitory and antiviral activity. Our studies revealed a preference for the 3-(R)-configuration over the corresponding 3-(S)-derivative. Inhibitor 26 exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray structure of 26-bound HIV-1 protease revealed important molecular insight into the ligand-binding site interactions.

  7. HCV796: A selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity in vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus.

    PubMed

    Kneteman, Norman M; Howe, Anita Y M; Gao, Tiejun; Lewis, Jamie; Pevear, Dan; Lund, Gary; Douglas, Donna; Mercer, David F; Tyrrell, D Lorne J; Immermann, Frederick; Chaudhary, Inder; Speth, John; Villano, Stephen A; O'Connell, John; Collett, Marc

    2009-03-01

    Anti-hepatitis C virus (HCV) drug development has been challenged by a lack of experience with inhibitors inclusive of in vitro, animal model, and clinical study. This manuscript outlines activity and correlation across such a spectrum of models and into clinical trials with a novel selective nonstructural protein 5B (NS5B) polymerase inhibitor, HCV796. Enzyme assays yielded median inhibitory concentration (IC(50)) values of 0.01 to 0.14 microM for genotype 1, with half maximal effective concentration (EC(50)s) of 5 nM and 9 nM against genotype 1a and 1b replicons. In the chimeric mouse model, a 2.02 +/- 0.55 log reduction in HCV titer was seen with monotherapy, whereas a suboptimal dose of 30 mg/kg three times per day in combination with interferon demonstrated a 2.44 log reduction (P = 0.001 versus interferon alone) Clinical outcomes in combination with pegylated interferon and ribavirin have revealed additive efficacy in treatment naïve patients. Abnormal liver function test results were observed in 8% of HCV-796 patients treated for over 8 weeks, resulting in suspension of further trial activity. The RNA-dependent RNA polymerase inhibitor HCV796 demonstrated potent anti-HCV activity consistently through enzyme inhibition assays, subgenomic replicon, and chimeric mouse studies. Strong correlations of outcomes in the mouse model were seen with subsequent clinical trials, including a plateau in dose-related antiviral activity and additive impact from combination therapy with interferon. These outcomes demonstrate the utility of the range of in vitro and in vivo models now available for anti-HCV drug development and support the potential utility of polymerase inhibitors in future combination therapies for HCV treatment.

  8. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  9. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  10. The protein kinase C inhibitor 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H-7) disinhibits CA1 pyramidal cells in rat hippocampal slices.

    PubMed Central

    Corradetti, R.; Pugliese, A. M.; Ropert, N.

    1989-01-01

    1. The effects of the protein kinase C (PKC) inhibitor 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H-7) on evoked synaptic potentials were investigated in the CA1 region of rat hippocampal slices by use of extracellular and intracellular recording techniques. 2. Extracellular recordings showed that superfusion with H-7 (10-100 microM) increased the amplitude of the population spike and the initial slope of the dendritic field e.p.s.p. H-7 also produced the appearance of multiple population spikes in the somatic region and in the dendritic field e.p.s.p. 3. H-7 (30 microM) induced the disappearance of intracellularly recorded inhibitory potentials elicited by orthodromic stimulation of CA1 pyramidal cells. At this concentration H-7 had no effect on resting membrane potential, input membrane resistance, and spike threshold. In voltage-clamped neurones H-7 blocked the antidromically evoked inhibitory currents and the spontaneous miniature inhibitory currents. 4. The hyperpolarizing effect of bath applied gamma-aminobutyric acid (GABA, 500 microM) or isoguvacine (30 microM) was not affected by 30 microM H-7. 5. Neither the PKC activity regulator sphingosine (10-40 microM) nor the H-7 analogue N-(2-guanidinoethyl)-5-isoquinolinesulphonamide (HA-1004, 20-50 microM) which is devoid of activity on PKC at these concentrations, affected the extracellularly recorded dendritic field e.p.s.p. or population spike. 6. It is concluded that the disinhibitory effect produced by H-7 is due to the block of a H-7-sensitive PKC which is involved in the spontaneous and evoked release of GABA. PMID:2611497

  11. Visible-Light-Triggered Activation of a Protein Kinase Inhibitor.

    PubMed

    Wilson, Danielle; Li, Jason W; Branda, Neil R

    2017-02-20

    A photoresponsive small molecule undergoes a ring-opening reaction when exposed to visible light and becomes an active inhibitor of the enzyme protein kinase C. This "turning on" of enzyme inhibition with light puts control into the hands of the user, creating the opportunity to regulate when and where enzyme catalysis takes place.

  12. Analysis of Imatinib and Sorafenib Binding to p38 Compared with c-Abl and b-Raf Provides Structural Insights for Understanding the Selectivity of Inhibitors Targeting the DFG-Out Form of Protein Kinases

    SciTech Connect

    Namboodiri, H.; Bukhtiyarova, M; Ramcharan, J; Karpusas, M; Lee, Y; Springman, E

    2010-01-01

    Protein kinases c-Abl, b-Raf, and p38{alpha} are recognized as important targets for therapeutic intervention. c-Abl and b-Raf are major targets of marketed oncology drugs Imatinib (Gleevec) and Sorafenib (Nexavar), respectively, and BIRB-796 is a p38{alpha} inhibitor that reached Phase II clinical trials. A shared feature of these drugs is the fact that they bind to the DFG-out forms of their kinase targets. Although the discovery of this class of kinase inhibitors has increased the level of emphasis on the design of DFG-out inhibitors, the structural determinants for their binding and stabilization of the DFG-out conformation remain unclear. To improve our understanding of these determinants, we determined cocrystal structures of Imatinib and Sorafenib with p38{alpha}. We also conducted a detailed analysis of Imatinib and Sorafenib binding to p38{alpha} in comparison with BIRB-796, including binding kinetics, binding interactions, the solvent accessible surface area (SASA) of the ligands, and stabilization of key structural elements of the protein upon ligand binding. Our results yield an improved understanding of the structural requirements for stabilizing the DFG-out form and a rationale for understanding the genesis of ligand selectivity among DFG-out inhibitors of protein kinases.

  13. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  14. Small Molecule Inhibitors of Protein Arginine Methyltransferases

    PubMed Central

    Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George

    2016-01-01

    Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238

  15. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  16. Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and c-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice.

    PubMed

    Withey, Sarah L; Hill, Rob; Lyndon, Abigail; Dewey, William L; Kelly, Eamonn; Henderson, Graeme

    2017-04-01

    Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine.

  17. Tau protein and tau aggregation inhibitors.

    PubMed

    Bulic, Bruno; Pickhardt, Marcus; Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2010-01-01

    Alzheimer disease is characterized by pathological aggregation of two proteins, tau and Abeta-amyloid, both of which are considered to be toxic to neurons. In this review we summarize recent advances on small molecule inhibitors of protein aggregation with emphasis on tau, with activities mediated by the direct interference of self-assembly. The inhibitors can be clustered in several compound classes according to their chemical structure, with subsequent description of the structure-activity relationships, showing that hydrophobic interactions are prevailing. The description is extended to the pharmacological profile of the compounds in order to evaluate their drug-likeness, with special attention to toxicity and bioavailability. The collected data indicate that following the improvements of the in vitro inhibitory potencies, the consideration of the in vivo pharmacokinetics is an absolute prerequisite for the development of compounds suitable for a transfer from bench to bedside.

  18. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-ι.

    PubMed

    Sajan, Mini P; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C Ronald; Fields, Alan P; Braun, Ursula; Leitges, Michael; Farese, Robert V

    2012-04-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PB1-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that

  19. Discovery of Wild-type and Y181C Mutant Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors Using Virtual Screening with Multiple Protein Structures

    PubMed Central

    Nichols, Sara E.; Domaoal, Robert A.; Thakur, Vinay V.; Tirado-Rives, Julian; Anderson, Karen S.; Jorgensen, William L.

    2009-01-01

    In order to discover non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) that are effective against both wild-type (WT) virus and variants that encode the clinically troublesome Tyr181Cys (Y181C) RT mutation, virtual screening by docking was carried out using three RT structures and more than 2 million commercially available compounds. Two of the structures are for WT-virus with different conformations of Tyr181, while the third structure incorporates the Y181C modification. Eventually nine compounds were purchased and assayed. Three of the compounds show low-micromolar anti-viral activity towards either or both the wild-type and Y181C HIV-1 strains. The study illustrates a viable protocol to seek anti-HIV agents with enhanced resistance profiles. PMID:19374380

  20. Definition of an 18-mer Synthetic Peptide Derived from the GB virus C E1 Protein as a New HIV-1 Entry Inhibitor.

    PubMed

    Gómara, M J; Sánchez-Merino, V; Paús, A; Merino-Mansilla, A; Gatell, J M; Yuste, E; Haro, I

    2016-06-01

    A slower progression of AIDS and increased survival in GBV-C positive individuals, compared with GBV-C negative individuals has been demonstrated; while the loss of GBV-C viremia was closely associated with a rise in mortality and increased progression of AIDS. Following on from the previous reported studies that support the thesis that GBV-C E2 interferes with HIV-1 entry, in this work we try to determine the role of the GBV-C E1 protein in HIV-1 inhibition. The present work involves the construction of several overlapping peptide libraries scanning the GBV-C E1 protein and the evaluation of their anti-HIV activity. Specifically, an 18-mer synthetic peptide from the GBV-C E1 protein, E1(139-156), showed similar antiviral activity against HIVs from viruses from clades A, B, C, D and AE. Competitive ELISA using specific gp41-targeting mAbs, fluorescence resonance energy transfer as well as haemolysis assays demonstrated that this E1 peptide sequence interacts with the highly conserved N-terminal region of the HIV-1 gp41 (the fusion peptide) which is essential for viral entry. We have defined a novel peptide lead compound and described the inhibitory role of a highly conserved fragment of the E1 protein. The results together allow us to consider the non-pathogenic E1 GBV-C protein as an attractive source of peptides for the development of novel anti-HIV therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Progress in c-di-GMP inhibitors].

    PubMed

    Xiang, Xuwen; Liu, Xingyu; Tao, Hui; Cui, Zining; Zhang, Lianhui

    2017-09-25

    The cyclic dinucleotide c-di-GMP is known as an important second messenger in bacteria, which controls various important cellular processes, such as cell differentiation, biofilm formation and virulence factors production. It is extremely vital for the development of new antibacterial agents by virtue of blocking c-di-GMP signal conduction. Current research indicates that there are three potential targets for discovering new antibacterial agents based on c-di-GMP regulated signal pathway, which are c-di-GMP synthases, c-di-GMP degrading enzymes and c-di-GMP receptors. Herein, we review small molecules that have been developed to inhibit c-di-GMP related enzymes and indicate perspectives of c-di-GMP inhibitors.

  2. Peptide aldehyde inhibitors of hepatitis A virus 3C proteinase.

    PubMed

    Malcolm, B A; Lowe, C; Shechosky, S; McKay, R T; Yang, C C; Shah, V J; Simon, R J; Vederas, J C; Santi, D V

    1995-06-27

    Picornaviral 3C proteinases are a group of closely related thiol proteinases responsible for processing of the viral polyprotein into its component proteins. These proteinases adopt a chymotrypsin-like fold [Allaire et al. (1994) Nature 369, 72-77; Matthews et al. (1994) Cell 77, 761-771] and a display an active-site configuration like those of the serine proteinases. Peptide-aldehydes based on the preferred peptide substrates for hepatitis A virus (HAV) 3C proteinase were synthesized by reduction of a thioester precursor. Acetyl-Leu-Ala-Ala-(N,N'-dimethylglutaminal) was found to be a reversible, slow-binding inhibitor for HAV 3C with a Ki* of (4.2 +/- 0.8) x 10(-8) M. This inhibitor showed 50-fold less activity against the highly homologous human rhinovirus (strain 14) 3C proteinase, whose peptide substrate specificity is slightly different, suggesting a high degree of selectivity. NMR spectrometry of the adduct of the 13C-labeled inhibitor with the HAV-3C proteinase indicate that a thiohemiacetal is formed between the enzyme and the aldehyde carbon as previously noted for peptide-aldehyde inhibitors of papain [Lewis & Wolfenden (1977) Biochemistry 16,4890-4894; Gamcsik et al. (1983) J. Am. Chem. Soc. 105, 6324-6325]. The adduct can also be observed by electrospray mass spectrometry.

  3. Pro-oncogenic Roles of HLXB9 Protein in Insulinoma Cells through Interaction with Nono Protein and Down-regulation of the c-Met Inhibitor Cblb (Casitas B-lineage Lymphoma b).

    PubMed

    Desai, Shruti S; Kharade, Sampada S; Parekh, Vaishali I; Iyer, Sucharitha; Agarwal, Sunita K

    2015-10-16

    Pancreatic islet β-cells that lack the MEN1-encoded protein menin develop into tumors. Such tumors express the phosphorylated isoform of the β-cell differentiation transcription factor HLXB9. It is not known how phospho-HLXB9 acts as an oncogenic factor in insulin-secreting β-cell tumors (insulinomas). In this study we investigated the binding partners and target genes of phospho-HLXB9 in mouse insulinoma MIN6 β-cells. Co-immunoprecipitation coupled with mass spectrometry showed a significant association of phospho-HLXB9 with the survival factor p54nrb/Nono (54-kDa nuclear RNA-binding protein, non-POU-domain-containing octamer). Endogenous phospho-HLXB9 co-localized with endogenous Nono in the nucleus. Overexpression of HLXB9 decreased the level of overexpressed Nono but not endogenous Nono. Anti-phospho-HLXB9 chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) identified the c-Met inhibitor, Cblb, as a direct phospho-HLXB9 target gene. Phospho-HLXB9 occupied the promoter of Cblb and reduced the expression of Cblb mRNA. Cblb overexpression or HLXB9 knockdown decreased c-Met protein and reduced cell migration. Also, increased phospho-HLXB9 coincided with reduced Cblb and increased c-Met in insulinomas of two mouse models of menin loss. These data provide mechanistic insights into the role of phospho-HLXB9 as a pro-oncogenic factor by interacting with a survival factor and by promoting the oncogenic c-Met pathway. These mechanisms have therapeutic implications for reducing β-cell proliferation in insulinomas by inhibiting phospho-HLXB9 or its interaction with Nono and modulating the expression of its direct (Cblb) or indirect (c-Met) targets. Our data also implicate the use of pro-oncogenic activities of phospho-HLXB9 in β-cell expansion strategies to alleviate β-cell loss in diabetes.

  4. The Specific Protein Kinase R (PKR) Inhibitor C16 Protects Neonatal Hypoxia-Ischemia Brain Damages by Inhibiting Neuroinflammation in a Neonatal Rat Model

    PubMed Central

    Xiao, Jinglei; Tan, Yongchang; Li, Yinjiao; Luo, Yan

    2016-01-01

    Background Brain injuries induced by hypoxia-ischemia in neonates contribute to increased mortality and lifelong neurological dysfunction. The specific PKR inhibitor C16 has been previously demonstrated to exert a neuroprotective role in adult brain injuries. However, there is no recent study available concerning its protective role in hypoxia-ischemia-induced immature brain damage. Therefore, we investigated whether C16 protects against neonatal hypoxia-ischemia injuries in a neonatal rat model. Material/Methods Postnatal day 7 (P7) rats were used to establish classical hypoxia-ischemia animal models, and C16 postconditioning with 100 ug/kg was performed immediately after hypoxia. Western blot analysis was performed to quantify the phosphorylation of the PKR at 0 h, 3 h, 6 h, 12 h, 24 h, and phosphorylation of NF-κB 24h after hypoxia exposure. The TTC stain for infarction area and TUNEL stain for apoptotic cells were assayed 24 h after the brain hypoxia. Gene expression of IL-1β, IL-6, and TNF-α was performed at 3 h, 6 h, 12 h, and 24 h. Results The level of PKR autophosphorylation was increased dramatically, especially at 3 h (C16 group vs. HI group, P<0.01). Intraperitoneal C16 administration reduced the infarct volume and apoptosis ratio after this insult (C16 group vs. HI group<0.01), and C16 reduced proinflammatory cytokines mRNA expression, partly through inhibiting NF-κB activation (C16 group vs. HI group<0.05). Conclusions C16 can protect immature rats against hypoxia-ischemia-induced brain damage by modulating neuroinflammation. PMID:28008894

  5. INHIBITOR OF APOPTOSIS PROTEINS AS INTRACELLULAR SIGNALING INTERMEDIATES

    PubMed Central

    Kocab, Andrew J.; Duckett, Colin S.

    2015-01-01

    The inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early studies describing their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving for the vital roles played by the IAPs as transduction intermediates in a diverse set of signaling cascades that have been associated with functions ranging from the innate immune response to cell migration to cell cycle regulation. In this review, we discuss the functions of the IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in the TNF receptor superfamily signaling cascades, which include the activation of the NF-κB transcription factor family. Since these receptors can modulate cell proliferation and cell death, the roles of the c-IAPs in these pathways provide additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may impact c-IAP activity in intracellular signaling. Collectively, the multifaceted functions and complex regulation of the c-IAPs illustrate the importance of the c-IAPs as intracellular signaling intermediates. PMID:26462035

  6. The INHIBITOR OF MERISTEM ACTIVITY (IMA) protein

    PubMed Central

    Sicard, Adrien; Hernould, Michel

    2008-01-01

    The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene from tomato regulates the processes of flower and ovule development. 1 IMA encodes a Mini Zinc Finger (MIF) protein that is characterized by a very short sequence containing an unusual zinc-finger domain. IMA acts as a repressor of WUSCHEL expression which controls the meristem organizing centre and the determinacy of the nucellus during ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and participates in the initiation of ovule primordia by activating D-type gene expression. In addition IMA is involved in a multiple hormonal signalling pathway like its Arabidopsis homolog MIF1.2 We thus propose that IMA, as a representative of this new family of zinc finger proteins, is an important effector in the regulatory pathway controlling meristem activity linking cell division, differentiation and hormonal control of development. PMID:19704478

  7. Inhibitor of apoptosis proteins as intracellular signaling intermediates.

    PubMed

    Kocab, Andrew J; Duckett, Colin S

    2016-01-01

    Inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early reports that described their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving regarding the vital roles played by IAPs as transduction intermediates in a diverse set of signaling cascades associated with functions ranging from the innate immune response to cell migration to cell-cycle regulation. In this review, we discuss the functions of IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in tumor necrosis factor receptor superfamily signaling cascades, which include activation of the NF-κB transcription factor family. As these receptors modulate cell proliferation and cell death, the involvement of the c-IAPs in these pathways provides an additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP-binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may affect c-IAP activity in intracellular signaling. Collectively, the multi-faceted functions and complex regulation of the c-IAPs illustrate their importance as intracellular signaling intermediates.

  8. Peptidyl aldehydes as reversible covalent inhibitors of protein tyrosine phosphatases.

    PubMed

    Fu, Hua; Park, Junguk; Pei, Dehua

    2002-08-27

    Protein tyrosine phosphatases (PTPs) are a large family of enzymes that catalyze the hydrolytic removal of the phosphoryl group from phosphotyrosyl (pY) proteins. PTP inhibitors provide potential treatment of human diseases/conditions such as diabetes and obesity as well as useful tools for studying the function of PTPs in signaling pathways. In this work, we have shown that certain aryl-substituted aldehydes act as reversible, slow-binding inhibitors of modest potency against PTP1B, SHP-1, and a dual-specificity phosphatase, VHR. Attachment of the tripeptide Gly-Glu-Glu to the para position of cinnamaldehyde resulted in an inhibitor (Cinn-GEE) of substantially increased potency against all three enzymes (e.g., K(I) = 5.4 microM against PTP1B). The mechanism of inhibition was investigated using Cinn-GEE specifically labeled with (13)C at the aldehyde carbon and (1)H-(13)C heteronuclear single-quantum coherence spectroscopy. While Cinn-GEE alone showed a single cross-peak at delta 9.64 ((1)H) and delta 201 ((13)C), the PTP1B/Cinn-GEE complex showed three distinct cross-peaks at delta 7.6-7.8 ((1)H) and 130-137 ((13)C). Mutation of the catalytic cysteine (Cys-215 in PTP1B) into alanine had no effect on the cross-peaks, whereas mutation of a conserved active-site arginine (Arg-221 in PTP1B) to alanine abolished all three cross-peaks. Similar experiments with Cinn-GEE that had been labeled with (13)C at the benzylic position revealed a change in the hybridization state (from sp(2) to sp(3)) for the benzylic carbon as a result of binding to PTP1B. These results rule out the possibility of a free aldehyde, aldehyde hydrate, or hemithioacetal as the enzyme-bound inhibitor form. Instead, the data are consistent with the formation of an enamine between the aldehyde group of the inhibitor and the guanidine group of Arg-221 in the PTP1B active site. These aldehydes may provide a general core structure that can be further developed into highly potent and specific PTP

  9. Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C [Formula: see text] and poly (ADP-ribose) polymerase-1 (PARP-1).

    PubMed

    Chadha, Navriti; Silakari, Om

    2016-08-01

    Current clinical studies have revealed that diabetic complications are multifactorial disorders that target two or more pathways. The majority of drugs in clinical trial target aldose reductase and protein kinase C ([Formula: see text]), while recent studies disclosed a significant role played by poly (ADP-ribose) polymerase-1 (PARP-1). In light of this, the current study was aimed to identify novel dual inhibitors of [Formula: see text] and PARP-1 using a pharmaco-informatics methodology. Pharmacophore-based 3D QSAR models for these two targets were generated using HypoGen and used to screen three commercially available chemical databases to identify dual inhibitors of [Formula: see text] and PARP-1. Overall, 18 hits were obtained from the screening process; the hits were filtered based on their drug-like properties and predicted binding affinities (docking analysis). Important amino acid residues were predicted by developing a fingerprint of the active site using alanine-scanning mutagenesis and molecular dynamics. The stability of the complexes (18 hits with both proteins) and their final binding orientations were investigated using molecular dynamics simulations. Thus, novel hits have been predicted to have good binding affinities for [Formula: see text] and PARP-1 proteins, which could be further investigated for in vitro/in vivo activity.

  10. Delaying aging in Caenorhabditis elegans with protein aggregation inhibitors.

    PubMed

    Cuanalo-Contreras, Karina; Park, Kyung-Won; Mukherjee, Abhisek; Millán-Pérez Peña, Lourdes; Soto, Claudio

    2017-01-01

    Recent evidence suggests that during aging there is widespread accumulation of aggregated insoluble proteins, even in the absence of pathological conditions. Pharmacological manipulation of protein aggregation might be helpful to unveil the involvement of protein aggregates during aging, as well as to develop novel strategies to delay aging. Here we investigated the effect of known protein aggregation inhibitors on the lifespan and health-span of Caenorhabditis elegans. For this purpose, we selected various structurally diverse anti-aggregation compounds and screened them in liquid and solid medium for their ability to alter the rate of aging in vivo. Our results show that treatment of C. elegans with diverse aggregation inhibitors significantly increases the animal lifespan and health-span. These findings indicate that protein misfolding and aggregation may play an important role in cellular dysfunction during aging, opening a novel approach to increase longevity and enhance the quality of life during aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Genotypic and phenotypic analysis of variants resistant to hepatitis C virus nonstructural protein 5A replication complex inhibitor BMS-790052 in humans: in vitro and in vivo correlations.

    PubMed

    Fridell, Robert A; Wang, Chunfu; Sun, Jin-Hua; O'Boyle, Donald R; Nower, Peter; Valera, Lourdes; Qiu, Dike; Roberts, Susan; Huang, Xin; Kienzle, Bernadette; Bifano, Marc; Nettles, Richard E; Gao, Min

    2011-12-01

    The NS5A replication complex inhibitor, BMS-790052, inhibits hepatitis C virus (HCV) replication with picomolar potency in preclinical assays. This potency translated in vivo to a substantial antiviral effect in a single-ascending dose study and a 14-day multiple-ascending dose (MAD) monotherapy study. However, HCV RNA remained detectable in genotype 1a-infected patients at the end of the MAD study. In contrast, viral breakthrough was observed less often in patients infected with genotype 1b, and, in several patients, HCV RNA declined and remained below the level of quantitation (<25 IU/mL) through the duration of treatment. Here, we report on the results of the genotypic and phenotypic analyses of resistant variants in 24 genotype 1-infected patients who received BMS-790052 (1, 10, 30, 60, and 100 mg, once-daily or 30 mg twice-daily) in the 14-day MAD study. Sequence analysis was performed on viral complementary DNA isolated from serum specimens collected at baseline and days 1 (4, 8, and 12 hours), 2, 4, 7, and 14 postdosing. Analyses of the sequence variants (1) established a correlation between resistant variants emerging in vivo with BMS-790052 treatment and those observed in the in vitro replicon system (major substitutions at residues 28, 30, 31, and 93 for genotype 1a and residues 31 and 93 for genotype 1b); (2) determined the prevalence of variants at baseline and the emergence of resistance at different times during dosing; and (3) revealed the resistance profile and replicative ability (i.e., fitness) of the variants. Although resistance emerged during monotherapy with BMS-790052, the substantial anti-HCV effect of this compound makes it an excellent candidate for effective combination therapy. Copyright © 2011 American Association for the Study of Liver Diseases.

  12. Interaction of Protein Inhibitor of Activated STAT (PIAS) Proteins with the TATA-binding Protein, TBP*

    PubMed Central

    Prigge, Justin R.; Schmidt, Edward E.

    2007-01-01

    Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP coimmunopreciptated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBPCORE and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors. PMID:16522640

  13. C1 inhibitor functional deficiency in systemic lupus erythematosus (SLE).

    PubMed Central

    Jazwinska, E C; Gatenby, P A; Dunckley, H; Serjeantson, S W

    1993-01-01

    C1 inhibitor (C1-inh) was assayed in eight SLE patients presenting with consistently low levels of intact C4. C1-inh antigenic levels were normal in all patients; however, the function of the C1-inh tested against C1s and C1r was variable and outside the normal functional range in seven of the eight patients. The molecular weight of patients' C1-inh protein was 105 kD, corresponding to the size of the intact molecule. The C1-inh gene was analysed in all patients. Restriction fragments generated with TaqI, PstI and HgiAI gave no indication of a major C1-inh gene rearrangement. Direct genomic sequencing of exon VIII revealed three polymorphic point mutations, but there were no changes from the normal gene in or around the reactive-centre residue of C1-inh. Furthermore, we found no evidence for a C1-inh autoantibody in patients which could affect normal C1-inh function in vitro. These results indicate that the etiology of C1-inh dysfunction in SLE is heterogeneous and distinct from that reported in either hereditary or acquired angioedema. PMID:8485912

  14. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists.

    PubMed

    Ye, Jianjiang; Gradoville, Lyndle; Daigle, Derek; Miller, George

    2007-09-01

    The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle

  15. Calyculins and Related Marine Natural Products as Serine-Threonine Protein Phosphatase PP1 and PP2A Inhibitors and Total Syntheses of Calyculin A, B, and C

    PubMed Central

    Fagerholm, Annika E.; Habrant, Damien; Koskinen, Ari M. P.

    2010-01-01

    Calyculins, highly cytotoxic polyketides, originally isolated from the marine sponge Discodermia calyx by Fusetani and co-workers, belong to the lithistid sponges group. These molecules have become interesting targets for cell biologists and synthetic organic chemists. The serine/threonine protein phosphatases play an essential role in the cellular signalling, metabolism, and cell cycle control. Calyculins express potent protein phosphatase 1 and 2A inhibitory activity, and have therefore become valuable tools for cellular biologists studying intracellular processes and their control by reversible phosphorylation. Calyculins might also play an important role in the development of several diseases such as cancer, neurodegenerative diseases, and type 2-diabetes mellitus. The fascinating structures of calyculins have inspired various groups of synthetic organic chemists to develop total syntheses of the most abundant calyculins A and C. However, with fifteen chiral centres, a cyano-capped tetraene unit, a phosphate-bearing spiroketal, an anti, anti, anti dipropionate segment, an α-chiral oxazole, and a trihydroxylated γ-amino acid, calyculins reach versatility that only few natural products can surpass, and truly challenge modern chemists’ asymmetric synthesis skills. PMID:20161975

  16. Plasma levels of C1- inhibitor complexes and cleaved C1- inhibitor in patients with hereditary angioneurotic edema.

    PubMed Central

    Cugno, M; Nuijens, J; Hack, E; Eerenberg, A; Frangi, D; Agostoni, A; Cicardi, M

    1990-01-01

    C1- inhibitor (C1(-)-Inh) catabolism in plasma of patients with hereditary angioneurotic edema (HANE) was assessed by measuring the complexes formed by C1(-)-Inh with its target proteases (C1-s, Factor XIIa, and kallikrein) and a modified (cleaved) inactive form of C1(-)-Inh (iC1(-)-Inh). This study was performed in plasma from 18 healthy subjects and 30 patients with HANE in remission: 20 with low antigen concentration (type I) and 10 (from 5 different kindreds) with dysfunctional protein (type II). Both type-I and type-II patients had increased C1(-)-C1(-)-Inh complexes (P less than 0.0001), which in type I inversely correlated with the levels of C1(-)-Inh (P less than 0.001). iC1(-)-Inh was normal in all type-I patients and in type-II patients from three families with increased C1(-)-Inh antigen, whereas iC1(-)-Inh was higher than 20 times the normal values in patients from the remaining two families with C1(-)-Inh antigen in the normal range. None of the subjects had an increase of either Factor XIIa-C1(-)-Inh or kallikrein-C1(-)-Inh complexes. This study shows that the hypercatabolism of C1(-)-Inh in HANE patients at least in part occurs via the formation of complexes with C1- and that genetically determined differences in catabolism of dysfunctional C1(-)-Inh proteins are present in type-II patients. Images PMID:2318974

  17. Characterization of C1 inhibitor binding to neutrophils.

    PubMed Central

    Chang, N S; Boackle, R J; Leu, R W

    1991-01-01

    In a previous study we have isolated neutrophil membrane proteins that non-covalently bind to native C1-INH (105,000 MW) and a non-functional, degraded C1-INH (88,000 MW; C1-INH-88). To further characterize the binding nature, we have designed a novel kinetic C1 titration assay which enables not only a quantification of the removal of fluid-phase C1-INH by neutrophils, but also a concomitant measure of residual C1-INH function. Native C1-INH, when adsorbed to EDTA-pretreated neutrophils, lost its function in the inhibition of fluid-phase C1. The non-functional C1-INH-88, which is probably devoid of a reactive centre, was found to block the binding of native C1-INH to neutrophils. Pretreatment of neutrophils with serine esterase inhibitors did not abrogate binding capacity of the cells for C1-INH, whereas the binding affinity for C1-INH was lost when the cells were pretreated with trypsin. An array of human peripheral blood leucocytes and several lymphoid cell lines has surface binding sites for C1-INH, but not on human erythrocytes and U937 cells. Binding was further confirmed using (i) C1-INH-microsphere beads to neutrophils, in which the binding was blocked when pretreating neutrophils with excess C1-INH or with trypsin, and (ii) radiolabelled C1-INH to neutrophils, which was competitively blocked by unlabelled non-functional C1-INH-88. Desialylation of C1-INH significantly reduced its binding affinity for neutrophils, indicating that the membrane receptor sites on neutrophils could be specific for the binding of sialic acid residues on C1-INH. Overall, our studies indicate that neutrophils or other leucocytes possess specific surface binding sites for the sialic acid-containing portion of C1-INH. PMID:2045131

  18. Endogenous C1-inhibitor production and expression in the heart after acute myocardial infarction.

    PubMed

    Emmens, Reindert W; Baylan, Umit; Juffermans, Lynda J M; Karia, Rashmi V; Ylstra, Bauke; Wouters, Diana; Zeerleder, Sacha; Simsek, Suat; van Ham, Marieke; Niessen, Hans W M; Krijnen, Paul A J

    2016-01-01

    Complement activation contributes significantly to inflammation-related damage in the heart after acute myocardial infarction. Knowledge on factors that regulate postinfraction complement activation is incomplete however. In this study, we investigated whether endogenous C1-inhibitor, a well-known inhibitor of complement activation, is expressed in the heart after acute myocardial infarction. C1-inhibitor and complement activation products C3d and C4d were analyzed immunohistochemically in the hearts of patients who died at different time intervals after acute myocardial infarction (n=28) and of control patients (n=8). To determine putative local C1-inhibitor production, cardiac transcript levels of the C1-inhibitor-encoding gene serping1 were determined in rats after induction of acute myocardial infarction (microarray). Additionally, C1-inhibitor expression was analyzed (fluorescence microscopy) in human endothelial cells and rat cardiomyoblasts in vitro. C1-inhibitor was found predominantly in and on jeopardized cardiomyocytes in necrotic infarct cores between 12h and 5days old. C1-inhibitor protein expression coincided in time and colocalized with C3d and C4d. In the rat heart, serping1 transcript levels were increased from 2h up until 7days after acute myocardial infarction. Both endothelial cells and cardiomyoblasts showed increased intracellular expression of C1-inhibitor in response to ischemia in vitro (n=4). These observations suggest that endogenous C1-inhibitor is likely involved in the regulation of complement activity in the myocardium following acute myocardial infarction. Observations in rat and in vitro suggest that C1-inhibitor is produced locally in the heart after acute myocardial infarction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers.

    PubMed

    Noveck, Robert; Stroes, Erik S G; Flaim, JoAnn D; Baker, Brenda F; Hughes, Steve; Graham, Mark J; Crooke, Rosanne M; Ridker, Paul M

    2014-07-10

    C-reactive protein (CRP) binds to damaged cells, activates the classical complement pathway, is elevated in multiple inflammatory conditions, and provides prognostic information on risk of future atherosclerotic events. It is controversial, however, as to whether inhibiting CRP synthesis would have any direct anti-inflammatory effects in humans. A placebo-controlled study was used to evaluate the effects of ISIS 329993 (ISIS-CRPR x) on the acute-phase response after endotoxin challenge in 30 evaluable subjects. Healthy adult males were randomly allocated to receive 6 injections over a 22-day period of placebo or active therapy with ISIS 329993 at 400- or 600-mg doses. Eligible subjects were subsequently challenged with a bolus of endotoxin (2 ng/kg). Inflammatory and hematological biomarkers were measured before and serially after the challenge. ISIS-CRPR x was well tolerated with no serious adverse events. Median CRP levels increased more than 50-fold from baseline 24 hours after endotoxin challenge in the placebo group. In contrast, the median increase in CRP levels was attenuated by 37% (400 mg) and 69% (600 mg) in subjects pretreated with ISIS-CRPR x (P<0.05 vs. placebo). All other aspects of the acute inflammatory response were similar between treatment groups. Pretreatment of subjects with ISIS-CRPR x selectively reduced the endotoxin-induced increase in CRP levels in a dose-dependent manner, without affecting other components of the acute-phase response. These data demonstrate the specificity of antisense oligonucleotides and provide an investigative tool to further define the role of CRP in human pathological conditions. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression.

    PubMed

    Dean, N; McKay, R; Miraglia, L; Howard, R; Cooper, S; Giddings, J; Nicklin, P; Meister, L; Ziel, R; Geiger, T; Muller, M; Fabbro, D

    1996-08-01

    A 20-mer phosphorothioate oligodeoxynucleotide (ISIS 3521) designed to hybridize sequences in the 3'-untranslated region of human protein kinase C-alpha (PKC-alpha) mRNA has been shown to inhibit the expression of PKC-alpha in multiple human cell lines. In human bladder carcinoma (T-24) cells, inhibition of PKC-alpha was both concentration dependent and oligonucleotide sequence specific. ISIS 3521 had a IC50 of 50-100 nM for PKC-alpha mRNA reduction and was without effect on the expression of other members of the PKC family of genes (PKC-eta and zeta). Toxicity studies in mice revealed that the oligodeoxynucleotide was well tolerated at repeat doses of 100 mg/kg i.v. for up to 14 days, with no acute toxicity apparent. The oligodeoxynucleotide was found to also inhibit the growth of three different human tumor cell lines, the T-24 bladder, human lung carcinoma (A549), and Colo 205 colon carcinoma grown in nude mice. The inhibition was dose dependent with ID50 values for the growth inhibition between 0.06 and 0.6 mg/kg daily when given i.v., depending on the cell line examined. Three control phosphorothioate oligodeoxynucleotides not targeting human PKC-alpha were without effect on the growth of the tumors at doses as high as 6 mg/kg. Recovery of ISIS 3521 from tumor tissue and resolution by capillary gel electrophoresis revealed that 24 It after the final dose of oligodeoxynucleotide, intact, full-length 20-mer material was present as well as some apparent exonuclease degradation products (e.g., n-1 and n-2 mers). These studies demonstrate the in vivo antitumor effects of an antisense oligodeoxynucleotide targeting PKC-alpha and suggest that this compound may be of value as a chemotherapeutic agent in the treatment of human cancers.

  1. Reduction of Brain β-Amyloid (Aβ) by Fluvastatin, a Hydroxymethylglutaryl-CoA Reductase Inhibitor, through Increase in Degradation of Amyloid Precursor Protein C-terminal Fragments (APP-CTFs) and Aβ Clearance*

    PubMed Central

    Shinohara, Mitsuru; Sato, Naoyuki; Kurinami, Hitomi; Takeuchi, Daisuke; Takeda, Shuko; Shimamura, Munehisa; Yamashita, Toshihide; Uchiyama, Yasuo; Rakugi, Hiromi; Morishita, Ryuichi

    2010-01-01

    Epidemiological studies suggest that statins (hydroxymethylglutaryl-CoA reductase inhibitors) could reduce the risk of Alzheimer disease. Although one possible explanation is through an effect on β-amyloid (Aβ) metabolism, its effect remains to be elucidated. Here, we explored the molecular mechanisms of how statins influence Aβ metabolism. Fluvastatin at clinical doses significantly reduced Aβ and amyloid precursor protein C-terminal fragment (APP-CTF) levels among APP metabolites in the brain of C57BL/6 mice. Chronic intracerebroventricular infusion of lysosomal inhibitors blocked these effects, indicating that up-regulation of the lysosomal degradation of endogenous APP-CTFs is involved in reduced Aβ production. Biochemical analysis suggested that this was mediated by enhanced trafficking of APP-CTFs from endosomes to lysosomes, associated with marked changes of Rab proteins, which regulate endosomal function. In primary neurons, fluvastatin enhanced the degradation of APP-CTFs through an isoprenoid-dependent mechanism. Because our previous study suggests additive effects of fluvastatin on Aβ metabolism, we examined Aβ clearance rates by using the brain efflux index method and found its increased rates at high Aβ levels from brain. As LRP1 in brain microvessels was increased, up-regulation of LRP1-mediated Aβ clearance at the blood-brain barrier might be involved. In cultured brain microvessel endothelial cells, fluvastatin increased LRP1 and the uptake of Aβ, which was blocked by LRP1 antagonists, through an isoprenoid-dependent mechanism. Overall, the present study demonstrated that fluvastatin reduced Aβ level by an isoprenoid-dependent mechanism. These results have important implications for the development of disease-modifying therapy for Alzheimer disease as well as understanding of Aβ metabolism. PMID:20472556

  2. Induction of Apoptosis and Cell Cycle Arrest by Flavokawain C on HT-29 Human Colon Adenocarcinoma via Enhancement of Reactive Oxygen Species Generation, Upregulation of p21, p27, and GADD153, and Inactivation of Inhibitor of Apoptosis Proteins.

    PubMed

    Phang, Chung-Weng; Karsani, Saiful Anuar; Abd Malek, Sri Nurestri

    2017-07-01

    treated with flavokawain C caused downregulation of XIAP, c-IAP1, and c-IAP2, and upregulation of GADD153. Abbreviations used: FKC: Flavokawain C; SRB: Sulforhodamine B; ROS: Reactive oxygen species; SOD: Superoxide dismutase; PARP: Poly(ADP-ribose) polymerase; ER: Endoplasmic reticulum; IAPs: Inhibitor of apoptosis proteins; TUNEL: Transferase dUTP nick end labeling; Annexin V-FITC: Annexin V conjugated with fluorescein isothicyanate.

  3. HIV-associated thromboembolic phenomenon due to protein C deficiency.

    PubMed

    Goyal, Anmol; Shah, Ira

    2014-01-01

    HIV-infected individuals are at a high risk of developing arterial and venous thromboembolism. Opportunistic infections, protease inhibitors, low CD4 count, antiphospholipid antibodies, protein S, and protein C deficiencies are some important risk factors associated with it. However, thromboembolic phenomenon due to protein C deficiency has been rarely reported. We report a case of a 12-year-old girl with facial palsy due to middle cerebral artery infarct because of HIV infection and associated protein C deficiency.

  4. Chemical inhibitors of c-Met receptor tyrosine kinase stimulate osteoblast differentiation and bone regeneration.

    PubMed

    Kim, Jung-Woo; Nam Lee, Mi; Jeong, Byung-Chul; Oh, Sin-Hye; Kook, Min-Suk; Koh, Jeong-Tae

    2017-03-16

    The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been recently introduced to negatively regulate bone morphogenetic protein (BMP)-induced osteogenesis. However, the effect of chemical inhibitors of c-Met receptor on osteoblast differentiation process has not been examined, especially the applicability of c-Met chemical inhibitors on in vivo bone regeneration. In this study, we demonstrated that chemical inhibitors of c-Met receptor tyrosine kinase, SYN1143 and SGX523, could potentiate the differentiation of precursor cells to osteoblasts and stimulate regeneration in calvarial bone defects of mice. Treatment with SYN1143 or SGX523 inhibited HGF-induced c-Met phosphorylation in MC3T3-E1 and C3H10T1/2 cells. Cell proliferation of MC3T3-E1 or C3H10T1/2 was not significantly affected by the concentrations of these inhibitors. Co-treatment with chemical inhibitor of c-Met and osteogenic inducing media enhanced osteoblast-specific genes expression and calcium nodule formation accompanied by increased Runx2 expression via c-Met receptor-dependent but Erk-Smad signaling independent pathway. Notably, the administration of these c-Met inhibitors significantly repaired critical-sized calvarial bone defects. Collectively, our results suggest that chemical inhibitors of c-Met receptor tyrosine kinase might be used as novel therapeutics to induce bone regeneration.

  5. Interfacial inhibitors of protein-nucleic acid interactions.

    PubMed

    Pommier, Yves; Marchand, Christophe

    2005-07-01

    This essay develops the paradigm of "Interfacial Inhibitors" (Pommier and Cherfils, TiPS, 2005, 28: 136) for inhibitory drugs beside orthosteric (competitive or non-competitive) and allosteric inhibitors. Interfacial inhibitors bind with high selectivity to a binding site involving two or more macromolecules within macromolecular complexes undergoing conformational changes. Interfacial binding traps (generally reversibly) a transition state of the complex, resulting in kinetic inactivation. The exemplary case of interfacial inhibitor of protein-DNA interface is camptothecin and its clinical derivatives. We will also provide examples generalizing the interfacial inhibitor concept to inhibitors of topoisomerase II (anthracyclines, ellipticines, epipodophyllotoxins), gyrase (quinolones, ciprofloxacin, norfloxacin), RNA polymerases (alpha-amanitin and actinomycin D), and ribosomes (antibiotics such as streptomycin, hygromycin B, tetracycline, kirromycin, fusidic acid, thiostrepton, and possibly cycloheximide). We discuss the implications of the interfacial inhibitor concept for drug discovery.

  6. Data in support of a central role of plasminogen activator inhibitor-2 polymorphism in recurrent cardiovascular disease risk in the setting of high HDL cholesterol and C-reactive protein using Bayesian network modeling.

    PubMed

    Corsetti, James P; Salzman, Peter; Ryan, Dan; Moss, Arthur J; Zareba, Wojciech; Sparks, Charles E

    2016-09-01

    Data is presented that was utilized as the basis for Bayesian network modeling of influence pathways focusing on the central role of a polymorphism of plasminogen activator inhibitor-2 (PAI-2) on recurrent cardiovascular disease risk in patients with high levels of HDL cholesterol and C-reactive protein (CRP) as a marker of inflammation, "Influences on Plasminogen Activator Inhibitor-2 Polymorphism-Associated Recurrent Cardiovascular Disease Risk in Patients with High HDL Cholesterol and Inflammation" (Corsetti et al., 2016; [1]). The data consist of occurrence of recurrent coronary events in 166 post myocardial infarction patients along with 1. clinical data on gender, race, age, and body mass index; 2. blood level data on 17 biomarkers; and 3. genotype data on 53 presumptive CVD-related single nucleotide polymorphisms. Additionally, a flow diagram of the Bayesian modeling procedure is presented along with Bayesian network subgraphs (root nodes to outcome events) utilized as the data from which PAI-2 associated influence pathways were derived (Corsetti et al., 2016; [1]).

  7. Albumin-conjugated C34 Peptide HIV-1 Fusion Inhibitor

    PubMed Central

    Stoddart, Cheryl A.; Nault, Geneviève; Galkina, Sofiya A.; Thibaudeau, Karen; Bakis, Peter; Bousquet-Gagnon, Nathalie; Robitaille, Martin; Bellomo, Maryanne; Paradis, Véronique; Liscourt, Patricia; Lobach, Alexandra; Rivard, Marie-Ève; Ptak, Roger G.; Mankowski, Marie K.; Bridon, Dominique; Quraishi, Omar

    2008-01-01

    Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant (“DIV”) virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567–12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry. PMID:18809675

  8. LpxC inhibitors: a patent review (2010-2016).

    PubMed

    Kalinin, Dmitrii V; Holl, Ralph

    2017-08-04

    The Zn(2+)-dependent deacetylase LpxC is an essential enzyme of lipid A biosynthesis in Gram-negative bacteria and a promising target for the development of antibiotics selectively combating Gram-negative pathogens. Researchers from industry and academia have synthesized structurally diverse LpxC inhibitors, exhibiting different LpxC inhibitory and antibacterial activities. Areas covered: A brief introduction into the structure and function of LpxC, showing its suitability as antibacterial target, along with the structures of several reported LpxC inhibitors, is given. The article reviews patents (reported between 2010 and 2016) and related research publications on novel small-molecule LpxC inhibitors. Emphasis is placed on structure-activity relationships within the reported series of LpxC inhibitors. Expert opinion: The performed analysis of patents revealed that the current search for novel LpxC inhibitors is focused on small molecules, sharing common structural features like a Zn(2+)-chelating group as well as a highly lipophilic side-chain. However, despite the promising preclinical data of many of the reported compounds, besides the recently withdrawn clinical candidate ACHN-975, no other LpxC inhibitor has entered clinical trials. The lack of clinical candidates might be related with undesired effects caused by the common structural elements of the LpxC inhibitors.

  9. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics.

    PubMed

    Wang, Shaomeng; Bai, Longchuan; Lu, Jianfeng; Liu, Liu; Yang, Chao-Yie; Sun, Haiying

    2012-12-01

    Apoptosis resistance is a hallmark of human cancer. Research in the last two decades has identified key regulators of apoptosis, including inhibitor of apoptosis proteins (IAPs). These critical apoptosis regulators have been targeted for the development of new cancer therapeutics. In this article, we will discuss three members of IAP proteins, namely XIAP, cIAP1 and cIAP2, as cancer therapeutic targets and the progress made in developing new cancer therapeutic agents to target these IAP proteins.

  10. Inhibition of activated protein C by platelets.

    PubMed Central

    Jane, S M; Mitchell, C A; Hau, L; Salem, H H

    1989-01-01

    Activated protein C (APC), an anticoagulant that acts by inactivating Factors Va and VIIIa, is dependent on a suitable surface for its action. In this study we examined the ability of human platelets to provide this surface and support APC-mediated anticoagulant effects. The activity of APC was examined in three systems: the Factor Xa recalcification time of Al(OH)3 adsorbed plasma, studies of thrombin generation in recalcified plasma, and assessment of the rate of inactivation of purified Factor Va. In comparison with phospholipid, intact platelets required significantly greater concentrations of APC to achieve a similar degree of anticoagulation. When washed platelet membranes were substituted for intact platelets, adequate support of APC was observed and the anticoagulant effect was similar to that obtained with phospholipid. Platelet releasate obtained by stimulation of platelets with thrombin and epinephrine contained an inhibitor that interfered with the ability of phospholipid and washed platelet membranes to catalyze the anticoagulant effects of APC. A noncompetitive inhibition was suggested by Dixon plot analysis of the interaction between platelet releasate and APC. The activity of the platelet APC inhibitor was immediate and was not enhanced by heparin, distinguishing it from the circulating protein C inhibitor. The presence of this inhibitor in the platelet and its release with platelet stimulation emphasizes the procoagulant role of this cell. PMID:2910909

  11. Human inhibitor of the first component of complement, C1: characterization of cDNA clones and localization of the gene to chromosome 11.

    PubMed Central

    Davis, A E; Whitehead, A S; Harrison, R A; Dauphinais, A; Bruns, G A; Cicardi, M; Rosen, F S

    1986-01-01

    C1 inhibitor is a heavily glycosylated plasma protein that regulates the activity of the first component of complement (C1) by inactivation of the serine protease subcomponents, C1r and C1s. C1 inhibitor cDNA clones have been isolated, and one of these (pC1INH1, 950 base pairs) has been partially sequenced. Sequence analysis demonstrates that the C1 inhibitor is a member of the serpin "superfamily" of protease inhibitors. In the region sequenced, C1 inhibitor has 22% identity with antithrombin III, 26% with alpha 1-antitrypsin and alpha 1-antichymotrypsin, and 18% with human angiotensinogen. C1 inhibitor has a larger amino-terminal extension than do the other plasma protease inhibitors. In addition, inspection of residues that are invariant among the other protease inhibitors shows that C1 inhibitor differs at 14 of 41 of these positions. Thus, it appears that C1 inhibitor diverged from the group relatively early in evolution, although probably after the divergence of angiotensinogen. Southern blot analysis of BamHI-digested DNA from normal individuals and from rodent-human somatic cell hybrid cell lines (that contain a limited but varied human chromosome complement) was used to localize the human C1 inhibitor gene to chromosome 11. Images PMID:3458172

  12. Isolation and Characterization of a High Affinity Peptide Inhibitor of ClC-2 Chloride Channels*

    PubMed Central

    Thompson, Christopher H.; Olivetti, Pedro R.; Fuller, Matthew D.; Freeman, Cody S.; McMaster, Denis; French, Robert J.; Pohl, Jan; Kubanek, Julia; McCarty, Nael A.

    2009-01-01

    The ClC protein family includes voltage-gated chloride channels and chloride/proton exchangers. In eukaryotes, ClC proteins regulate membrane potential of excitable cells, contribute to epithelial transport, and aid in lysosomal acidification. Although structure/function studies of ClC proteins have been aided greatly by the available crystal structures of a bacterial ClC chloride/proton exchanger, the availability of useful pharmacological tools, such as peptide toxin inhibitors, has lagged far behind that of their cation channel counterparts. Here we report the isolation, from Leiurus quinquestriatus hebraeus venom, of a peptide toxin inhibitor of the ClC-2 chloride channel. This toxin, GaTx2, inhibits ClC-2 channels with a voltage-dependent apparent KD of ∼20 pm, making it the highest affinity inhibitor of any chloride channel. GaTx2 slows ClC-2 activation by increasing the latency to first opening by nearly 8-fold but is unable to inhibit open channels, suggesting that this toxin inhibits channel activation gating. Finally, GaTx2 specifically inhibits ClC-2 channels, showing no inhibitory effect on a battery of other major classes of chloride channels and voltage-gated potassium channels. GaTx2 is the first peptide toxin inhibitor of any ClC protein. The high affinity and specificity displayed by this toxin will make it a very powerful pharmacological tool to probe ClC-2 structure/function. PMID:19574231

  13. Towards a Green Hydrate Inhibitor: Imaging Antifreeze Proteins on Clathrates

    PubMed Central

    Gordienko, Raimond; Ohno, Hiroshi; Singh, Vinay K.; Jia, Zongchao; Ripmeester, John A.; Walker, Virginia K.

    2010-01-01

    The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs) possess the ability to modify structure II (sII) tetrahydrofuran (THF) hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP). The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors. PMID:20161789

  14. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    PubMed

    Gordienko, Raimond; Ohno, Hiroshi; Singh, Vinay K; Jia, Zongchao; Ripmeester, John A; Walker, Virginia K

    2010-02-11

    The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs) possess the ability to modify structure II (sII) tetrahydrofuran (THF) hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP). The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  15. Diarylthiophenes as inhibitors of the pore-forming protein perforin

    PubMed Central

    Miller, Christian K.; Huttunen, Kristiina M.; Denny, William A.; Jaiswal, Jagdish K.; Ciccone, Annette; Browne, Kylie A.; Trapani, Joseph A.; Spicer, Julie A.

    2016-01-01

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure–activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class. PMID:26711151

  16. Evaluation of Molecular Inhibitors of the c-Myc Oncoprotein

    DTIC Science & Technology

    2008-02-01

    Hammoudeh D, Wang H, Prochownik EV, Metallo SJ. Binding of small- moleculae inhibitors to local sequence sites on the intrinsically disordered c-Myc...Viacava Follis A, Hammoudeh D, Wang H, Prochownik EV, Metallo SJ. Binding of small- moleculae inhibitors to local sequence sites on the intrinsically

  17. Determination of Rottlerin, a Natural Protein Kinases C Inhibitor, in Pancreatic Cancer Cells and Mouse Xenografts by RP-HPLC Method

    PubMed Central

    Lu, Qing-Yi; Zhang, Lifeng; Lugea, Aurelia; Moro, Aune; Edderkaoui, Mouad; Eibl, Guido; Pandol, Stephen J.; Go, Vay-Liang W

    2014-01-01

    Rottlerin is a natural polyphenolic ketone isolated from the pericarps of Mallotus phillippinensis. In previous studies we showed that parenteral administration of rottlerin reduced tumor growth in murine xenograft models of pancreatic cancer. The aim of this study was to develop a simple and validated method for the quantitative determination of rottlerin in plasma and tumor tissues of mice fed a rottlerin diet. A xenograft model of pancreatic cancer was prepared by injection of 2×106 HPAF-II cells subcutaneously into nude mice. One week before tumor implantation, mice were randomly allocated to standard diet (AIN76A) and standard diet supplement with 0.012% rottlerin (n=6 per group). Mice were sacrificed after 6 weeks on diets. Rottlerin was extracted from the plasma and tissues using protein precipitation-extraction and analyzed by reverse-phase HPLC-DAD method. The same HPLC method was also applied to determine rottlerin levels in conditioned culture media and in cell lysates from HPAF-II cells exposed to 25 µM concentration of rottlerin. A substantial amount of rottlerin was detected in tumor (2.11 ± 0.25 nmol/g tissue) and plasma (2.88 ± 0.41 µM) in mice fed rottlerin diet. In addition, significant levels of rottlerin (57.4 ± 5.4 nmol/mg protein) were detected in cell lysates from rottlerin-treated HPAF-II cells. These data indicate that rottlerin is efficiently absorbed in cells and tissues both in vivo and in vitro and suggest a strong potential for rottlerin as a preventive or adjuvant supplement for pancreatic cancer. PMID:24482742

  18. Developing irreversible inhibitors of the protein kinase cysteinome

    PubMed Central

    Liu, Qingsong; Sabnis, Yogesh; Zhao, Zheng; Zhang, Tinghu; Buhrlage, Sara J.; Jones, Lyn H.; Gray, Nathanael S.

    2013-01-01

    Protein kinases are a large family of approximately 530 highly conserved enzymes that transfer a γ-phosphate group from ATP to a variety of amino acid residues such as tyrosine, serine and threonine which serves as a ubiquitous mechanism for cellular signal transduction. The clinical success of a number of kinase-directed drugs and the frequent observation of disease causing mutations in protein kinases suggest that a large number of kinases may represent therapeutically relevant targets. To-date the majority of clinical and preclinical kinase inhibitors are ATP-competitive, non-covalent inhibitors that achieve selectivity through recognition of unique features of particular protein kinases. Recently there has been renewed interest in the development of irreversible inhibitors that form covalent bonds with cysteine or other nucleophilic residues in the ATP-binding pocket. Irreversible kinase inhibitors have a number of potential advantages including prolonged pharmacodynamics, suitability for rational design, high potency and ability to validate pharmacological specificity through mutation of the reactive cysteine residue. Here we review recent efforts to develop cysteine-targeted irreversible protein kinase inhibitors and discuss their modes of recognizing the ATP-binding pocket and their biological activity profiles. In addition, we provided an informatics assessment of the potential ‘kinase-cysteinome’ and discuss strategies for the efficient development of new covalent inhibitors. PMID:23438744

  19. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A.

    PubMed

    Li, M; Makkinje, A; Damuni, Z

    1996-05-10

    Two potent heat-stable protein phosphatase 2A (PP2A) inhibitor proteins designated I1PP2A and I2PP2A have been purified to apparent homogeneity from extracts of bovine kidney (Li, M., Guo, H., and Damuni, Z. (1995) Biochemistry 34, 1988-1996). N-terminal and internal amino acid sequencing indicated that I2PP2A was a truncated form of SET, a largely nuclear protein that is fused to nucleoporin Nup214 in acute non-lymphocytic myeloid leukemia. Experiments using purified preparations of recombinant human SET confirmed that this protein inhibited PP2A. Half-maximal inhibition of the phosphatase occurred at about 2 nM SET. By contrast, SET (up to 20 nM) did not affect the activities of purified preparations of protein phosphatases 1, 2B, and 2C. The results indicate that SET is a potent and specific inhibitor of PP2A and suggest that impaired regulation of PP2A may contribute to acute myeloid leukemogenesis.

  20. Development of a selective inhibitor of Protein Arginine Deiminase 2.

    PubMed

    Muth, Aaron; Subramanian, Venkataraman; Beaumont, Edward; Nagar, Mitesh; Kerry, Philip; McEwan, Paul; Srinath, Hema; Clancy, Kathleen Wanda; Parelkar, Sangram S; Thompson, Paul R

    2017-03-22

    Protein arginine deiminase 2 (PAD2) plays a key role in the onset and progression of multiple sclerosis, rheumatoid arthritis and breast cancer. To date, no PAD2-selective inhibitor has been developed. Such a compound will be critical for elucidating the biological roles of this isozyme and may ultimately be useful for treating specific diseases in which PAD2 activity is dysregulated. To achieve this goal, we synthesized a series of benzimidazole-based derivatives of Cl-amidine, hypothesizing that this scaffold would allow access to a series of PAD2-selective inhibitors with enhanced cellular efficacy. Herein, we demonstrate that substitutions at both the N-terminus and C-terminus of Cl-amidine result in >100-fold increases in PAD2 potency and selectivity (30a, 41a, and 49a) as well as cellular efficacy 30a. Notably, these compounds use the far less reactive fluoroacetamidine warhead. In total, we predict that 30a will be a critical tool for understanding cellular PAD2 function and sets the stage for treating diseases in which PAD2 activity is dysregulated.

  1. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  2. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    PubMed Central

    2011-01-01

    Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions. PMID:21569443

  3. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  4. Detailed Structural Characterization of Unbound Protein Phosphatase 1 Inhibitors

    PubMed Central

    Dancheck, Barbara; Nairn, Angus C.; Peti, Wolfgang

    2009-01-01

    Protein Phosphatase 1 (PP1) is an essential and ubiquitous serine/threonine protein phosphatase that is regulated by more than 100 known inhibitor and targeting proteins. It is currently unclear how protein inhibitors distinctly and specifically regulate PP1 to enable rapid responses to cellular alterations. We demonstrate that two PP1 inhibitors, I-2 and DARPP-32, belong to the class of intrinsically unstructured proteins (IUPs). We show that both inhibitors have distinct preferences for transient local and long range structure. These preferences are likely their structural signature for their interaction with PP1. Furthermore, we show that upon phosphorylation of Thr34 in DARPP-32, which turns DARPP-32 into a potent inhibitor of PP1, neither local nor long range structure of DARPP-32 is altered. Therefore, our data suggests a role for these transient 3-dimensional topologies in binding mechanisms that enable extensive contacts with PP1's invariant surfaces. Together, these interactions enable potent and selective inhibition of PP1. PMID:18954090

  5. Hereditary and acquired C1-inhibitor-dependent angioedema: from pathophysiology to treatment.

    PubMed

    Zeerleder, Sacha; Levi, Marcel

    2016-01-01

    Uncontrolled generation of bradykinin (BK) due to insufficient levels of protease inhibitors controlling contact phase (CP) activation, increased activity of CP proteins, and/or inadequate degradation of BK into inactive peptides increases vascular permeability via BK-receptor 2 (BKR2) and results in subcutaneous and submucosal edema formation. Hereditary and acquired angioedema due to C1-inhibitor deficiency (C1-INH-HAE and -AAE) are diseases characterized by serious and potentially fatal attacks of subcutaneous and submucosal edemas of upper airways, facial structures, abdomen, and extremities, due to inadequate control of BK generation. A decreased activity of C1-inhibitor is the hallmark of C1-INH-HAE (types 1 and 2) due to a mutation in the C1-inhibitor gene, whereas the deficiency in C1-inhibitor in C1-INH-AAE is the result of autoimmune phenomena. In HAE with normal C1-inhibitor, a significant percentage of patients have an increased activity of factor XIIa due to a FXII mutation (FXII-HAE). Treatment of C1-inhibitor-dependent angioedema focuses on restoring control of BK generation by inhibition of CP proteases by correcting the balance between CP inhibitors and BK breakdown or by inhibition of BK-mediated effects at the BKR2 on endothelial cells. This review will address the pathophysiology, clinical picture, diagnosis and available treatment in C1-inhibitor-dependent angioedema focusing on BK-release and its regulation. Key Messages Inadequate control of bradykinin formation results in the formation of characteristic subcutaneous and submucosal edemas of the skin, upper airways, facial structures, abdomen and extremities as seen in hereditary and acquired C1-inhibitor-dependent angioedema. Diagnosis of hereditary and acquired C1-inhibitor-dependent angioedema may be troublesome as illustrated by the fact that there is a significant delay in diagnosis; a certain grade of suspicion is therefore crucial for quick diagnosis. Submucosal edema formation in

  6. The protein kinase C family.

    PubMed

    Azzi, A; Boscoboinik, D; Hensey, C

    1992-09-15

    Protein kinase C represents a structurally homologous group of proteins similar in size, structure and mechanism of activation. They can modulate the biological function of proteins in a rapid and reversible manner. Protein kinase C participates in one of the major signal transduction systems triggered by the external stimulation of cells by various ligands including hormones, neurotransmitters and growth factors. Hydrolysis of membrane inositol phospholipids by phospholipase C or of phosphatidylcholine, generates sn-1,2-diacylglycerol, considered the physiological activator of this kinase. Other agents, such as arachidonic acid, participate in the activation of some of these proteins. Activation of protein kinase C by phorbol esters and related compounds is not physiological and may be responsible, at least in part, for their tumor-promoting activity. The cellular localization of the different calcium-activated protein kinases, their substrate and activator specificity are dissimilar and thus their role in signal transduction is unlike. A better understanding of the exact cellular function of the different protein kinase C isoenzymes requires the identification and characterization of their physiological substrates.

  7. HIV proteinase inhibitors target the Ddi1-like protein of Leishmania parasites

    PubMed Central

    White, Rhian E.; Powell, David J.; Berry, Colin

    2011-01-01

    HIV proteinase inhibitors reduce the levels of Leishmania parasites in vivo and in vitro, but their biochemical target is unknown. We have identified an ortholog of the yeast Ddi1 protein as the only member of the aspartic proteinase family in Leishmania parasites, and in this study we investigate this protein as a potential target for the drugs. To date, no enzyme assay has been developed for the Ddi1 proteins, but Saccharomyces cerevisiae lacking the DDI1 gene secrete high levels of protein into the medium. We developed an assay in which these knockout yeast were functionally complemented to low secretion by introduction of genes encoding Ddi1 orthologs from Leishmania major or humans. Plasmid alone controls gave no complementation. Treatment of the Ddi1 transformants with HIV proteinase inhibitors showed differential effects dependent on the origin of the Ddi1. Dose responses allowed calculation of IC50 values; e.g., for nelfinavir, of 3.4 μM (human Ddi1) and 0.44 μM (Leishmania Ddi1). IC50 values with Leishmania constructs mirror the potency of inhibitors against parasites. Our results show that Ddi1 proteins are targets of HIV proteinase inhibitors and indicates the Leishmania Ddi1 as the likely target for these drugs and a potential target for antiparasitic therapy.—White, R. E., Powell, D. J., Berry, C. HIV proteinase inhibitors target the Ddi1-Like protein of Leishmania parasites. PMID:21266539

  8. Comparing protein VEGF inhibitors: In vitro biological studies

    SciTech Connect

    Yu, Lanlan; Liang, Xiao Huan; Ferrara, Napoleone

    2011-05-06

    Highlights: {yields} VEGF is a mediator of angiogenesis. {yields} VEGF inhibitors have clinical applications in cancer and eye disorders. {yields} Five protein VEGF inhibitors were compared for their ability to inhibit. {yields} VEGF-induced activities in cultured endothelial cells. -- Abstract: VEGF inhibitors are widely used as a therapy for tumors and intravascular neovascular disorders, but limited and conflicting data regarding their relative biological potencies are available. The purpose of the study is to compare different protein VEGF inhibitors for their ability to inhibit VEGF-stimulated activities. We tested ranibizumab, the full-length variant of ranibizumab (Mab Y0317), bevacizumab, the VEGF-TrapR1R2 and Flt(1-3)-IgG in bioassays measuring VEGF-stimulated proliferation of bovine retinal microvascular endothelial cells or chemotaxis of human umbilical vein endothelial cells (HUVEC). The inhibitors were also compared for their ability to inhibit MAP kinase activation in HUVECs following VEGF addition. Ranibizumab, VEGF-TrapR1R2 and Flt(1-3)-IgG had very similar potencies in the bioassays tested. Bevacizumab was over 10-fold less potent than these molecules. Mab Y0317 was over 30-fold more potent than bevacizumab. The findings reported in this manuscript describe important intrinsic characteristics of several VEGF inhibitors that may be useful to design and interpret preclinical or clinical studies.

  9. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  10. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  11. Synthesis, biological activity and structure-activity relationships of new benzoic acid-based protein tyrosine phosphatase inhibitors endowed with insulinomimetic effects in mouse C2C12 skeletal muscle cells.

    PubMed

    Ottanà, Rosaria; Maccari, Rosanna; Mortier, Jérémie; Caselli, Anna; Amuso, Simona; Camici, Guido; Rotondo, Archimede; Wolber, Gerhard; Paoli, Paolo

    2014-01-01

    Insulin resistance is a complex altered metabolic condition characterized by impaired insulin signaling and implicated in the pathogenesis of serious human diseases, such as diabetes, obesity, neurodegenerative pathologies. In pursuing our aim to identify new agents able to improve cellular insulin sensitivity, we have synthesized new 4-[(5-arylidene-4-oxo-2-phenylimino/oxothiazolidin-3-yl)methyl]benzoic acids (5, 8) and evaluated their inhibitory activity towards human protein tyrosine phosphatases PTP1B, LMW-PTP and TCPTP, enzymes which are involved in the development of insulin resistance. Compounds 5 and 8 showed from moderate to significant selectivity toward PTP1B over both the highly homologous TCPTP and the two isoforms of human LMW-PTP. In addition, most of the tested compounds selectively inhibited LMW-PTP IF1 over the isoform IF2. Docking studies into the active sites of PTP1B and LMW-PTP aided the rationalization of the observed PTP inhibitory profile. Moreover, most tested compounds were capable to induce the insulin metabolic pathway in mouse C2C12 skeletal muscle cells by remarkably stimulating both IRβ phosphorylation and 2-deoxyglucose cellular uptake. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds.

  13. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study.

    PubMed

    Koyama, Kansuke; Madoiwa, Seiji; Nunomiya, Shin; Koinuma, Toshitaka; Wada, Masahiko; Sakata, Asuka; Ohmori, Tsukasa; Mimuro, Jun; Sakata, Yoichi

    2014-01-13

    Current criteria for early diagnosis of coagulopathy in sepsis are limited. We postulated that coagulopathy is already complicated with sepsis in the initial phase, and severe coagulopathy or disseminated intravascular coagulation (DIC) becomes overt after progressive consumption of platelet and coagulation factors. To determine early diagnostic markers for severe coagulopathy, we evaluated plasma biomarkers for association with subsequent development of overt DIC in patients with sepsis. A single-center, prospective observational study was conducted in an adult ICU at a university hospital. Plasma samples were obtained from patients with sepsis at ICU admission. Fourteen biomarkers including global markers (platelet count, prothrombin time, activated partial thromboplastin time, fibrinogen and fibrin degradation product (FDP)); markers of thrombin generation (thrombin-antithrombin complex (TAT) and soluble fibrin); markers of anticoagulants (protein C (PC) and antithrombin); markers of fibrinolysis (plasminogen, α2-plasmin inhibitor (PI), plasmin-α2-PI complex, and plasminogen activator inhibitor (PAI)-1); and a marker of endothelial activation (soluble E-selectin) were assayed. Patients who had overt DIC at baseline were excluded, and the remaining patients were followed for development of overt DIC in 5 days, and for mortality in 28 days. A total of 77 patients were enrolled, and 37 developed overt DIC within the following 5 days. Most patients demonstrated hemostatic abnormalities at baseline with 98.7% TAT, 97.4% FDP and 88.3% PC. Most hemostatic biomarkers at baseline were significantly associated with subsequent development of overt DIC. Notably, TAT, PAI-1 and PC discriminated well between patients with and without developing overt DIC (area under the receiver operating characteristic curve (AUROC), 0.77 (95% confidence interval, 0.64 to 0.86); 0.87 (0.78 to 0.92); 0.85 (0.76 to 0.91), respectively), and using the three together, significantly improved

  14. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study

    PubMed Central

    2014-01-01

    Introduction Current criteria for early diagnosis of coagulopathy in sepsis are limited. We postulated that coagulopathy is already complicated with sepsis in the initial phase, and severe coagulopathy or disseminated intravascular coagulation (DIC) becomes overt after progressive consumption of platelet and coagulation factors. To determine early diagnostic markers for severe coagulopathy, we evaluated plasma biomarkers for association with subsequent development of overt DIC in patients with sepsis. Methods A single-center, prospective observational study was conducted in an adult ICU at a university hospital. Plasma samples were obtained from patients with sepsis at ICU admission. Fourteen biomarkers including global markers (platelet count, prothrombin time, activated partial thromboplastin time, fibrinogen and fibrin degradation product (FDP)); markers of thrombin generation (thrombin-antithrombin complex (TAT) and soluble fibrin); markers of anticoagulants (protein C (PC) and antithrombin); markers of fibrinolysis (plasminogen, α2-plasmin inhibitor (PI), plasmin-α2-PI complex, and plasminogen activator inhibitor (PAI)-1); and a marker of endothelial activation (soluble E-selectin) were assayed. Patients who had overt DIC at baseline were excluded, and the remaining patients were followed for development of overt DIC in 5 days, and for mortality in 28 days. Results A total of 77 patients were enrolled, and 37 developed overt DIC within the following 5 days. Most patients demonstrated hemostatic abnormalities at baseline with 98.7% TAT, 97.4% FDP and 88.3% PC. Most hemostatic biomarkers at baseline were significantly associated with subsequent development of overt DIC. Notably, TAT, PAI-1 and PC discriminated well between patients with and without developing overt DIC (area under the receiver operating characteristic curve (AUROC), 0.77 (95% confidence interval, 0.64 to 0.86); 0.87 (0.78 to 0.92); 0.85 (0.76 to 0.91), respectively), and using the three

  15. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.

    PubMed

    Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  16. Eliminating Anti-Nutritional Plant Food Proteins: The Case of Seed Protease Inhibitors in Pea

    PubMed Central

    Clemente, Alfonso; Arques, Maria C.; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G.; Lawson, David M.; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  17. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  18. Protein Aggregation Inhibitors for ALS Therapy

    DTIC Science & Technology

    2013-07-01

    C. P. Multiple antioxidants in the prevention and treatment of Alzheimer disease: analysis of biologic rationale. Clin. Neuropharmacol. 2000, 23, 2...E.; Pfeiffer, E.; Jin, S.; Gamst, A.; Grundman, M.; Thomas, R.; Thal, L. J. Estrogen replacement therapy for treatment of mild to moderate Alzheimer ...general, exhibit a significant increased risk of developing ALS. There is no effective treatment for ALS; riluzole, the only FDA-approved drug for ALS

  19. Potent stimulation of large-conductance Ca2+-activated K+ channels by rottlerin, an inhibitor of protein kinase C-delta, in pituitary tumor (GH3) cells and in cortical neuronal (HCN-1A) cells.

    PubMed

    Wu, Sheng-Nan; Wang, Ya-Jean; Lin, Ming-Wei

    2007-03-01

    The effects of rottlerin, a known inhibitor of protein kinase C-delta activation, on ion currents were investigated in pituitary tumor (GH3) cells. Rottlerin (0.3-100 microM) increased the amplitude of Ca2+-activated K+ current (I K(Ca)) in a concentration-dependent manner with an EC50 value of 1.7 microM. In intracellular perfusion with rottlerin (1 microM) or staurosporine (10 microM), phorbol 12-myristate 13-acetate-induced inhibition of I K(Ca) in these cells was abolished. In cell-attached mode, rottlerin applied on the extracellular side of the membrane caused activation of large-conductance Ca2+-activated K+ (BK(Ca)) channels, and a further application of BAPTA-AM (10 microM) to the bath had no effect on rottlerin-stimulated channel activity. When cells were exposed to rottlerin, the activation curve of these channels was shifted to less positive potential with no change in the slope factor. Rottlerin increased BK(Ca)-channel activity in outside-out patches. Its change in kinetic behavior of BK(Ca) channels is primarily due to an increase in mean open time. With the aid of minimal kinetic scheme, a quantitative description of rottlerin stimulation on BK(Ca) channels in GH3 cells was also provided. Under current-clamp configuration, rottlerin (1 microM) decreased the firing of action potentials. I K(Ca) elicited by simulated action potential waveforms was enhanced by this compound. In human cortical HCN-1A cells, rottlerin (1 microM) could also interact with the BK(Ca) channel to stimulate I K(Ca). Therefore, rottlerin may directly activate BK(Ca) channels in neurons or endocrine cells.

  20. Pharmacokinetics and anticoagulant properties of the factor VIIa-tissue factor inhibitor recombinant Nematode Anticoagulant Protein c2 following subcutaneous administration in man. Dependence on the stoichiometric binding to circulating factor X.

    PubMed

    Vlasuk, George P; Bradbury, Annette; Lopez-Kinninger, Lily; Colón, Sonia; Bergum, Peter W; Maki, Steven; Rote, William E

    2003-11-01

    Recombinant Nematode Anticoagulant Protein c2 (rNAPc2) is a potent (K(i) =10 pM), inhibitor of the factor VIIa/tissue factor (fVIIa/TF) complex that requires the prerequisite binding to zymogen or activated factor X (fX). In two double blind, place-bo-controlled, sequential dose-escalation phase I studies, rNAPc2 was found to be safe and well tolerated following single and repeat subcutaneous administrations in healthy human male volunteers at doses ranging from 0.3 to 5 micro g/kg. There was a dose-dependent elevation of the prothrombin time reaching almost 4-fold above the baseline value in the highest dose group that directly correlated with rNAPc2 plasma concentration. In contrast, there was little or no effect on the activated partial thromboplastin time, thrombin time or template bleeding time. The pharmacokinetic behavior of rNAPc2 revealed a dose-independent and prolonged elimination half-life (t(1/2)beta) with a mean of >50 hours. A high affinity interaction between rNAPc2 and plasma fX was shown to be essential for the prolonged t(1/2)beta in man using crossed immunoelectrophoresis and was confirmed by exploiting the considerably weaker interaction between rNAPc2 and bovine fX which resulted in an attenuated t(1/2)beta of approximately 1.5 hours in calves. The accumulated data suggests that rNAPc2 is safe and well tolerated following repeat subcutaneous administrations at doses up to 5 micro g/kg in healthy volunteers. In addition, the in vivo fate of rNAPc2 in man appears to be governed by its high affinity interaction with circulating fX. This data supports the continued development of this novel anticoagulant for the prevention and treatment of acute thrombotic disorders.

  1. New mutations in C1 esterase inhibitor (SERPING1) in a German family with hereditary angioedema.

    PubMed

    El-Meguid, Aly M A; Aslanidis, Charalampos; Schimanski, Seven; Schambeck, Christian; Schmitz, Gerd

    2008-01-01

    Hereditary angioedema (HAE) is a genetically dominant clinical disorder characterized by recurrent, acute oedema of the skin or mucosa, usually involving the extremities, face, larynx and gastrointestinal tract. C1 inhibitor (C1inh) deficiency is linked to the development of HAE, either by decrease of its plasma level or presence of a dysfunctional protein. The purpose of this study was to identify the genetic abnormality of C1inh in three patients with HAE (mother and her two children). Analysis was carried out using PCR, and direct sequencing of genomic DNA obtained from whole peripheral blood. DNA sequencing of the eight exons of the C1 esterase inhibitor gene (SERPING1) revealed one mutation and one polymorphism in the mother and the two children. The polymorphism was a heterozygous GTG 458 ATG (Val 458 Met) in exon 8 and the mutation was a one-nucleotide deletion in codon 456 in Exon 8. This frameshift mutation (CTC456(power)TC) leads to a 45 amino acid larger protein with altered protein sequence and should be regarded as the causative defect in the patients. It is concluded, that heterozygous frameshift mutation at exon 8 alters the protein sequence of the C1 esterase inhibitor, leading to inactive protein in all three patients analyzed.

  2. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  3. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  4. The Pepper Extracellular Xyloglucan-Specific Endo-β-1,4-Glucanase Inhibitor Protein Gene, CaXEGIP1, Is Required for Plant Cell Death and Defense Responses1[C][W][OA

    PubMed Central

    Choi, Hyong Woo; Kim, Nak Hyun; Lee, Yeon Kyeong; Hwang, Byung Kook

    2013-01-01

    Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants. PMID:23093361

  5. Heat shock protein 90 inhibitors repurposed against Entamoeba histolytica

    PubMed Central

    Shahinas, Dea; Debnath, Anjan; Benedict, Christan; McKerrow, James H.; Pillai, Dylan R.

    2015-01-01

    Hsp90 is an essential chaperone responsible for trafficking a vast array of client proteins, which are substrates that Hsp90 regulates in eukaryotic cells under stress conditions. The ATP-binding N-terminal domain of Hsp90 (also known as a GHKL type ATPase domain) can serve as a specific drug target, because sufficient structural diversity in the ATP-binding pocket of Hsp90 allows for ortholog selectivity of Hsp90 inhibitors. The primary objective of this study is to identify inhibitors specific for the ATP-binding domain of Entamoeba histolytica Hsp90 (EhHsp90). An additional aim, using a combination of site-directed mutagenesis and a protein in vitro assay, is to show that the antiparasitic activity of Hsp90 inhibitors is dependent on specific residues within the ATP-binding domain. Here, we tested the activity of 43 inhibitors of Hsp90 that we previously identified using a high-throughput screen. Of the 43 compounds tested, 19 competed for binding of the EhHsp90 ATP-binding domain. Five out of the 19 EhHsp90 protein hits demonstrated activity against E. histolytica in vitro culture: rifabutin, rutilantin, cetylpyridinium chloride, pararosaniline pamoate and gentian violet. These five top E. histolytica Hsp90 inhibitors showed 30–100% inhibition of E. histolytica in culture in the micromolar range. These data suggest that E. histolytica-specific Hsp90 inhibitors are possible to identify and provide important lead compounds for the development of novel antiamebic drugs. PMID:26029171

  6. Discovery of 14-3-3 protein-protein interaction inhibitors that sensitize multidrug-resistant cancer cells to doxorubicin and the Akt inhibitor GSK690693.

    PubMed

    Mori, Mattia; Vignaroli, Giulia; Cau, Ylenia; Dinić, Jelena; Hill, Richard; Rossi, Matteo; Colecchia, David; Pešić, Milica; Link, Wolfgang; Chiariello, Mario; Ottmann, Christian; Botta, Maurizio

    2014-05-01

    14-3-3 is a family of highly conserved adapter proteins that is attracting much interest among medicinal chemists. Small-molecule inhibitors of 14-3-3 protein-protein interactions (PPIs) are in high demand, both as tools to increase our understanding of 14-3-3 actions in human diseases and as leads to develop innovative therapeutic agents. Herein we present the discovery of novel 14-3-3 PPI inhibitors through a multidisciplinary strategy combining molecular modeling, organic synthesis, image-based high-content analysis of reporter cells, and in vitro assays using cancer cells. Notably, the two most active compounds promoted the translocation of c-Abl and FOXO pro-apoptotic factors into the nucleus and sensitized multidrug-resistant cancer cells to apoptotic inducers such as doxorubicin and the pan-Akt inhibitor GSK690693, thus becoming valuable lead candidates for further optimization. Our results emphasize the possible role of 14-3-3 PPI inhibitors in anticancer combination therapies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.

  8. Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors.

    PubMed

    Butterworth, Michael B; Zhang, Liang; Liu, Xiaoning; Shanks, Robert M; Thibodeau, Patrick H

    2014-01-01

    The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  9. Anchor-based classification and type-C inhibitors for tyrosine kinases

    PubMed Central

    Hsu, Kai-Cheng; Sung, Tzu-Ying; Lin, Chih-Ta; Chiu, Yi-Yuan; Hsu, John T.-A.; Hung, Hui-Chen; Sun, Chung-Ming; Barve, Indrajeet; Chen, Wen-Liang; Huang, Wen-Chien; Huang, Chin-Ting; Chen, Chun-Hwa; Yang, Jinn-Moon

    2015-01-01

    Tyrosine kinases regulate various biological processes and are drug targets for cancers. At present, the design of selective and anti-resistant inhibitors of kinases is an emergent task. Here, we inferred specific site-moiety maps containing two specific anchors to uncover a new binding pocket in the C-terminal hinge region by docking 4,680 kinase inhibitors into 51 protein kinases, and this finding provides an opportunity for the development of kinase inhibitors with high selectivity and anti-drug resistance. We present an anchor-based classification for tyrosine kinases and discover two type-C inhibitors, namely rosmarinic acid (RA) and EGCG, which occupy two and one specific anchors, respectively, by screening 118,759 natural compounds. Our profiling reveals that RA and EGCG selectively inhibit 3% (EGFR and SYK) and 14% of 64 kinases, respectively. According to the guide of our anchor model, we synthesized three RA derivatives with better potency. These type-C inhibitors are able to maintain activities for drug-resistant EGFR and decrease the invasion ability of breast cancer cells. Our results show that the type-C inhibitors occupying a new pocket are promising for cancer treatments due to their kinase selectivity and anti-drug resistance. PMID:26077136

  10. Modulation of the Epithelial Sodium Channel (ENaC) by Bacterial Metalloproteases and Protease Inhibitors

    PubMed Central

    Butterworth, Michael B.; Zhang, Liang; Liu, Xiaoning; Shanks, Robert M.; Thibodeau, Patrick H.

    2014-01-01

    The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions. PMID:24963801

  11. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors

    PubMed Central

    Du, Yi; Yamaguchi, Hirohito; Wei, Yongkun; Hsu, Jennifer L.; Wang, Hung-Ling; Hsu, Yi-Hsin; Lin, Wan-Chi; Yu, Wen-Hsuan; Leonard, Paul G.; Lee, Gilbert R.; Chen, Mei-Kuang; Nakai, Katsuya; Hsu, Ming-Chuan; Chen, Chun-Te; Sun, Ye; Wu, Yun; Chang, Wei-Chao; Huang, Wen-Chien; Liu, Chien-Liang; Chang, Yuan-Ching; Chen, Chung-Hsuan; Park, Morag; Jones, Philip; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as promising therapeutics for many diseases, including cancer, in clinical trials1. One PARP inhibitor, olaparib (Lynparza™, AstraZeneca), was recently approved by the FDA to treat ovarian cancer with BRCA mutations. BRCA1 and BRCA2 play essential roles in repairing DNA double strand breaks, and a deficiency of BRCA proteins sensitizes cancer cells to PARP inhibition2,3. Here we show that receptor tyrosine kinase c-Met associates with and phosphorylates PARP1 at Tyr907. Phosphorylation of PARP1 Tyr907 increases PARP1 enzymatic activity and reduces binding to a PARP inhibitor, thereby rendering cancer cells resistant to PARP inhibition. Combining c-Met and PARP1 inhibitors synergized to suppress growth of breast cancer cells in vitro and xenograft tumor models. Similar synergistic effects were observed in a lung cancer xenograft tumor model. These results suggest that PARP1 pTyr907 abundance may predict tumor resistance to PARP inhibitors, and that treatment with a combination of c-Met and PARP inhibitors may benefit patients bearing tumors with high c-Met expression who do not respond to PARP inhibition alone. PMID:26779812

  12. Bacithrocins A, B and C, novel thrombin inhibitors.

    PubMed

    Kamiyama, T; Umino, T; Nakamura, Y; Itezono, Y; Sawairi, S; Satoh, T; Yokose, K

    1994-09-01

    Novel thrombin inhibitors, bacithrocins A, B and C, have been isolated from the culture broth of Bacillus laterosporus Laubach NR 2988. The structures of these inhibitors have been determined to be N-acyl-L-phenylalanyl-DL-arginal by the 2D-NMR experiments on their oxidation products and by amino acid analysis. Bacithrocin A inhibits thrombin, factor Xa and trypsin with IC50s of 48, 13 and 0.65 microM, respectively, which are similar to those of bacithrocins B and C. Bacithrocins prolong the clotting time induced by thrombin and factor Xa.

  13. Diagnosis and treatment of hereditary angioedema with normal C1 inhibitor

    PubMed Central

    2010-01-01

    Until recently it was assumed that hereditary angioedema is a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity and protein in plasma were described. Since then numerous patients and families with that condition have been reported. Most of the patients by far were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. Recently, in some families mutations in the coagulation factor XII (Hageman factor) gene were detected in the affected persons. PMID:20667118

  14. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  15. A Novel Inhibitor of the Obesity-Related Protein FTO.

    PubMed

    Qiao, Yan; Zhou, Bin; Zhang, Meizi; Liu, Weijia; Han, Zhifu; Song, Chuanjun; Yu, Wenquan; Yang, Qinghua; Wang, Ruiyong; Wang, Shaomin; Shi, Shuai; Zhao, Renbin; Chai, Jijie; Chang, Junbiao

    2016-03-15

    Fe(II) and α-ketoglutarate-dependent fat mass and obesity associated protein (FTO)-dependent demethylation of m⁶A is important for regulation of mRNA splicing and adipogenesis. Developing FTO-specific inhibitors can help probe the biology of FTO and unravel novel therapeutic targets for treatment of obesity or obesity-associated diseases. In the present paper, we have identified that 4-chloro-6-(6'-chloro-7'-hydroxy-2',4',4'-trimethyl-chroman-2'-yl)benzene-1,3-diol (CHTB) is an inhibitor of FTO. The crystal structure of CHTB complexed with human FTO reveals that the novel small molecule binds to FTO in a specific manner. The identification of the novel small molecule offers opportunities for further development of more selective and potent FTO inhibitors.

  16. Plant protein inhibitors of cell wall degrading enzymes.

    PubMed

    Juge, Nathalie

    2006-07-01

    Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.

  17. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  18. Small molecule inhibitors targeting activator protein 1 (AP-1).

    PubMed

    Ye, Na; Ding, Ye; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2014-08-28

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases.

  19. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    SciTech Connect

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-02-20

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  20. The food colorant erythrosine is a promiscuous protein-protein interaction inhibitor.

    PubMed

    Ganesan, Lakshmi; Margolles-Clark, Emilio; Song, Yun; Buchwald, Peter

    2011-03-15

    Following our observation that erythrosine B (FD&C Red No. 3) is a relatively potent inhibitor of the TNF-R-TNFα and CD40-CD154 protein-protein interactions, we investigated whether this inhibitory activity extends to any other protein-protein interactions (PPI) as well as whether any other approved food colors possess such inhibitory activity. We found erythrosine, a poly-iodinated xanthene dye, to be a non-specific promiscuous inhibitor of a number of PPIs within the tumor necrosis factor superfamily (TNF-R-TNFα, CD40-CD154, BAFF-R-BAFF, RANK-RANKL, OX40-OX40L, 4-1BB-4-1BBL) as well as outside of it (EGF-R-EGF) with a remarkably consistent median inhibitory concentration (IC(50)) in the 2-20 μM (approximately 2-20mg/L) range. In agreement with this, erythrosine also showed cellular effects including clear cytotoxic effects around this concentration range (IC₅₀≈50 μM). Among the seven FDA-approved food colorants, only erythrosine showed consistent PPI inhibitory activity in the sub-100 μM range, which might also explain (at least partially) why it also has the lowest approved acceptable daily intake (ADI) (0.1 mg/kg body weight/day). Among a number of xanthene structural analogs of erythrosine tested for activity, rose Bengal, a food colorant approved in Japan, showed similar, maybe even more pronounced, promiscuous inhibitory activity, whereas fluorescein was inactive and gallein, phloxine, and eosin were somewhat active in some of the assays.

  1. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.

    PubMed

    Arumugasamy, Karthiga; Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    The homology of the inhibitor binding site regions on the surface of cyclin-dependent kinases (CDKs) makes actual CDK inhibitors unable to bind specifically to their molecular targets. Most of them are ATP competitive inhibitors with low specificity that also affect the phosphorylation mechanisms of other nontarget kinases giving rise to harmful side effects. So, the search of specific and potent inhibitors able to bind to the desired CDK target is still a pending issue. Structure based drug design minimized the erroneous binding and increased the affinity of the inhibitor interaction. In the case of CDKs their activation and regulation mechanisms mainly depend on protein-protein interactions (PPIs). The design of drugs targeting these PPIs makes feasible and promising towards the discovery of new and specific CDK inhibitors. Development of peptide inhibitors for a target protein is an emerging approach in computer aided drug designing. This chapter describes in detail methodology for use of the VitAL-Viterbi algorithm for de novo peptide design of CDK2 inhibitors.

  2. C-5a-substituted validamine type glycosidase inhibitors.

    PubMed

    Schalli, Michael; Wolfsgruber, Andreas; Gonzalez Santana, Andres; Tysoe, Christina; Fischer, Roland; Stütz, Arnold E; Thonhofer, Martin; Withers, Stephen G

    2017-02-22

    A series of N-alkyl derivatives of the D-galactosidase inhibitor 1,4-di-epi-validamine featuring lipophilic substituents at position C-5a was prepared and screened for their glycosidase inhibitory properties. Products turned out selective for β-galactosidases as well as β-glucosidases.

  3. 13C NMR studies of carboxylate inhibitor binding to cobalt(II) carboxypeptidase A.

    PubMed

    Bertini, I; Monnanni, R; Pellacani, G C; Sola, M; Vallee, B L; Auld, D S

    1988-01-01

    Both 13C NMR and electronic absorption spectral studies on cobalt(II) carboxypeptidase A in the presence of acetate and phenylacetate provide evidence for two binding sites for each of these agents. The transverse relaxation rate T2-1 for the 13C-enriched carboxyl groups of the inhibitors is significantly increased when bound to the paramagnetic cobalt carboxypeptidase as compared to the diamagnetic zinc enzyme. The acetate concentration dependence of T2p-1 shows two inflections indicative of sequential binding of two inhibitor molecules. The cobalt-13C distances, calculated by means of the Solomon equation, indicate that the second acetate molecule binds directly to the metal ion while the first acetate molecule binds to a protein group at a distance 0.5-0.8 nm for the metal ion, consistent with it binding to one or more of the arginyl residues (Arg-145, Arg-127, or Arg-71). In the case of phenylacetate, perturbation of the cobalt electronic absorption spectrum shows that binding occurs stepwise. 13C NMR distance measurements indicate that one of the two phenylacetates is bound to the metal in the EI2 complex. These binding sites may correspond to those identified previously by kinetic means (one of which is competitive, the other noncompetitive) with peptide binding. The studies further indicate that it should be possible to map the protein interactions of the carbonyl groups of both substrate and noncompetitive inhibitors during catalysis by means of 13C NMR studies with suitably labeled substrates and inhibitors.

  4. Hypervalent Organochalcogenanes as Inhibitors of Protein Tyrosine Phosphatases

    PubMed Central

    Piovan, Leandro; Wu, Li; Zhang, Zhong-Yin; Andrade, Leandro H.

    2011-01-01

    A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes. PMID:21240419

  5. Targeting activated protein C to treat hemophilia

    PubMed Central

    Polderdijk, Stéphanie G.I.; Baglin, Trevor P.; Huntington, James A.

    2017-01-01

    Purpose of review Hemophilia is a debilitating disease, marked by frequent, painful bleeding events, joint deterioration and early death. All current treatments consist of i.v. infusions of replacement factor or other procoagulant factors, and are incompletely effective, due in part to the short half-lives of the proteins. An alternative approach is to rebalance hemostasis by inhibiting natural anticoagulant mechanisms. In this article, we explain why activated protein C (APC) is an appropriate and safe target for the treatment of hemophilia. Recent findings A serpin (serine protease inhibitor) was engineered to specifically inhibit APC and was found to rescue hemostasis in a hemophilia mouse model, even after a severe tail clip injury. However, APC is also anti-inflammatory and has cytoprotective activities, raising safety concerns over the use of an APC inhibitor to treat hemophilia. We summarize the molecular basis of the anticoagulant and signaling activities of APC to assess the potential impact of targeting APC. Summary We conclude that the signaling and anticoagulant functions of APC are in spatially and kinetically distinct compartments, and that it is possible to specifically inhibit the anticoagulant activity of APC. Targeting APC with a serpin is remarkably effective and may be safe for long-term prophylactic use in the treatment of hemophilia. PMID:28632502

  6. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    PubMed

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%.

  7. Approaches to hepatitis C treatment and cure using NS5A inhibitors

    PubMed Central

    Kohler, James J; Nettles, James H; Amblard, Franck; Hurwitz, Selwyn J; Bassit, Leda; Stanton, Richard A; Ehteshami, Maryam; Schinazi, Raymond F

    2014-01-01

    Recent progress in the understanding of hepatitis C virus (HCV) biology and the availability of in vitro models to study its replication have facilitated the development of direct-acting antiviral agents (DAAs) that target specific steps in the viral replication cycle. Currently, there are three major classes of DAA in clinical development: NS3/4A protease inhibitors, NS5B polymerase inhibitors, and NS5A directed inhibitors. Several compounds thought to bind directly with NS5A are now in various clinical trial phases, including the most advanced, daclatasvir (BMS-790052), ledipasvir (GS-5885), and ABT-267. While many NS5A-targeted compounds demonstrate picomolar potency, the exact mechanism(s) of their action is still unclear. In the clinic, NS5A HCV inhibitors show promise as important components in DAA regimens and have multifunctionality. In addition to inhibiting viral replication, they may synergize with other DAAs, possibly by modulating different viral proteins, to help suppress the emergence of resistant viruses. Structure-based models have identified target interaction domains and spatial interactions that explain drug resistance for mutations at specific positions (eg, residues 93 and 31) within NS5A and potential binding partners. This review provides, insights into the unique complexity of NS5A as a central platform for multiple viral/host protein interactions, and possible mechanism(s) for the NS5A inhibitors currently undergoing clinical trials that target this nonstructural viral protein. PMID:24623983

  8. Structural dynamics and inhibitor searching for Wnt-4 protein using comparative computational studies

    PubMed Central

    Hammad, Mirza A; Azam, Syed Sikander

    2015-01-01

    Wnt-4 (wingless mouse mammary tumor virus integration site-4) protein is involved in many crucial embryonic pathways regulating essential processes. Aberrant Wnt-4 activity causes various anomalies leading to gastric, colon, or breast cancer. Wnt-4 is a conserved protein in structure and sequence. All Wnt proteins contain an unusual fold comprising of a thumb (or N-terminal domain) and index finger (or C-terminal domain) bifurcated by a palm domain. The aim of this study was to identify the best inhibitors of Wnt-4 that not only interact with Wnt-4 protein but also with the covalently bound acyl group to inhibit aberrant Wnt-4 activity. A systematic computational approach was used to analyze inhibition of Wnt-4. Palmitoleic acid was docked into Wnt-4 protein, followed by ligand-based virtual screening of nearly 209,847 compounds; conformer generation of 271 compounds resulted from extensive virtual screening and comparative docking of 10,531 conformers of 271 unique compounds through GOLD (Genetic Optimization for Ligand Docking), AutoDock-Vina, and FRED (Fast Rigid Exhaustive Docking) was subsequently performed. Linux scripts was used to handle the libraries of compounds. The best compounds were selected on the basis of having maximum interactions to protein with bound palmitoleic acid. These represented lead inhibitors in further experiments. Palmitoleic acid is important for efficient Wnt activity, but aberrant Wnt-4 expression can be inhibited by designing inhibitors interacting with both protein and palmitoleic acid. PMID:25995617

  9. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  10. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  11. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    SciTech Connect

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S.

    2012-09-17

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  12. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens.

    PubMed

    Hast, Michael A; Nichols, Connie B; Armstrong, Stephanie M; Kelly, Shannon M; Hellinga, Homme W; Alspaugh, J Andrew; Beese, Lorena S

    2011-10-07

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  13. Flunitrazepam rapidly reduces GABAA receptor subunit protein expression via a protein kinase C-dependent mechanism

    PubMed Central

    Johnston, Jonathan D; Price, Sally A; Bristow, David R

    1998-01-01

    Acute flunitrazepam (1 μM) exposure for 1 h reduced GABAA receptor α1 (22±4%, mean±s.e.mean) and β2/3 (21±4%) subunit protein levels in cultured rat cerebellar granule cells. This rapid decrease in subunit proteins was completely prevented by bisindolymaleimide 1 (1 μM), an inhibitor of protein kinase C, but not by N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89, 4.8 μM), an inhibitor of protein kinases A and G. These results suggest the existence of a benzodiazepine-induced mechanism to rapidly alter GABAA receptor protein expression, that appears to be dependent on protein kinase C activity. PMID:9723942

  14. A retroviral-derived peptide phosphorylates protein kinase D/protein kinase Cmu involving phospholipase C and protein kinase C.

    PubMed

    Luangwedchakarn, Voravich; Day, Noorbibi K; Hitchcock, Remi; Brown, Pam G; Lerner, Danica L; Rucker, Rajivi P; Cianciolo, George J; Good, Robert A; Haraguchi, Soichi

    2003-05-01

    CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.

  15. Molecular modeling of G-protein coupled receptor kinase 2: docking and biochemical evaluation of inhibitors.

    PubMed

    Kassack, M U; Högger, P; Gschwend, D A; Kameyama, K; Haga, T; Graul, R C; Sadée, W

    2000-01-01

    G-protein coupled receptor kinase 2 (GRK2) regulates the activity of many receptors. Because potent inhibitors of GRK2 are thus far limited to polyanionic compounds like heparin, we searched for new inhibitors with the aid of a molecular model of GRK2. We used the available crystal structure of cAMP dependent protein kinase (cAPK) as a template to construct a 3D homology model of GRK2. Known cAPK and GRK2 inhibitors were docked into the active sites of GRK2 and cAPK using DOCK v3.5. H8 docked into the hydrophobic pocket of the adenosine 5'-triphosphate (ATP) binding site of cAPK, consistent with its known competitive cAPK inhibition relative to ATP. Similarly, 3 of 4 known GRK2 inhibitors docked into the ATP binding pocket of GRK2 with good scores. Screening the Fine Chemicals Directory (FCD, containing the 3D structures of 13,000 compounds) for docking into the active sites of GRK2 identified H8 and the known GRK2 inhibitor trifluoperazine as candidates. Whereas H8 indeed inhibited light-dependent phosphorylation of rhodopsin by GRK2, but with low potency, 3 additional FCD compounds with promising GRK2 scores failed to inhibit GRK2. This result demonstrates limitations of the GRK2 model in predicting activity among diverse chemical structures. Docking suramin, an inhibitor of protein kinase C (not present in FCD) yielded a good fit into the ATP binding site of GRK2 over cAPK. Suramin did inhibit GRK2 with IC50 32 microM (pA26.39 for competitive inhibition of ATP). Suramin congeners with fewer sulfonic acid residues (NF062, NF503 [IC50 14 microM]) or representing half of the suramin molecule (NF520) also inhibited GRK2 as predicted by docking. In conclusion, suramin and analogues are lead compounds in the development of more potent and selective inhibitors of GRK2.

  16. Nanomolar Inhibitors of AmpC [beta]-Lactamase

    SciTech Connect

    Morandi, Federica; Caselli, Emilia; Morandi, Stefania; Focia, Pamela J.; Blazquez, Jesus; Shoichet, Brian K.; Prati, Fabio

    2010-03-08

    {beta}-lactamases are the most widespread resistance mechanism to {beta}-lactam antibiotics, such as the penicillins and the cephalosporins. In an effort to combat these enzymes, a combination of stereoselective organic synthesis, enzymology, microbiology, and X-ray crystallography was used to design and evaluate new carboxyphenyl-glycylboronic acid transition-state analogue inhibitors of the class C {beta}-lactamase AmpC. The new compounds improve inhibition by over 2 orders of magnitude compared to analogous glycylboronic acids, with K{sub i} values as low as 1 nM. On the basis of the differential binding of different analogues, the introduced carboxylate alone contributes about 2.1 kcal/mol in affinity. This carboxylate corresponds to the ubiquitous C3(4)' carboxylate of {beta}-lactams, and this energy represents the first thermodynamic measurement of the importance of this group in molecular recognition by class C {beta}-lactamases. The structures of AmpC in complex with two of these inhibitors were determined by X-ray crystallography at 1.72 and 1.83 {angstrom} resolution. These structures suggest a structural basis for the high affinity of the new compounds and provide templates for further design. The highest affinity inhibitor was 5 orders of magnitude more selective for AmpC than for characteristic serine proteases, such as chymotrypsin. This inhibitor reversed the resistance of clinical pathogens to the third generation cephalosporin ceftazidime; it may serve as a lead compound for drug discovery to combat bacterial resistance to {beta}-lactam antibiotics.

  17. Selected C7-substituted chromone derivatives as monoamine oxidase inhibitors.

    PubMed

    Legoabe, Lesetja J; Petzer, Anél; Petzer, Jacobus P

    2012-12-01

    A series of C7-substituted chromone (1-benzopyran-4-one) derivatives were synthesized and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The chromones are structurally related to a series of C7-functionalized coumarin (1-benzopyran-2-one) derivatives which has been reported to act as potent MAO inhibitors. The results of the current study document that the chromones are highly potent reversible inhibitors of MAO-B with IC(50) values ranging from 0.008 to 0.370 μM. While the chromone derivatives also exhibit affinities for MAO-A, with IC(50) values ranging from 0.495 to 8.03 μM, they are selective for the MAO-B isoform. Structure-activity relationships (SAR) show that 7-benzyloxy substitution of chromone is suitable for MAO-B inhibition with tolerance for a variety of substituents and substitution patterns on the benzyloxy ring. It may be concluded that 7-benzyloxychromones are appropriate lead compounds for the design of reversible and selective MAO-B inhibitors. With the aid of modeling studies, potential binding orientations and interactions of selected chromone derivatives in the MAO-A and -B active sites are examined. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Potent triazolothione inhibitor of heat-shock protein-90.

    PubMed

    Feldman, Richard I; Mintzer, Bob; Zhu, Daguang; Wu, James M; Biroc, Sandra L; Yuan, Shendong; Emayan, Kumar; Chang, Zheng; Chen, Deborah; Arnaiz, Damian O; Bryant, Judi; Ge, Xue Snow; Whitlow, Marc; Adler, Marc; Polokoff, Mark A; Li, Wei-Wei; Ferrer, Mike; Sato, Takashi; Gu, Jian-Ming; Shen, Jun; Tseng, Jih-Lie; Dinter, Harald; Buckman, Brad

    2009-07-01

    Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.

  19. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.

    PubMed

    Jenwitheesuk, Ekachai; Samudrala, Ram

    2005-01-01

    Emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. Here we focus on resistance to HIV-1 protease inhibitors (PIs) at a molecular level, which can be analysed genotypically or phenotypically. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are problematic because of the numerous mutations and mutational patterns that confer drug resistance. Phenotypic resistance or susceptibility can be experimentally evaluated by measuring the amount of free drug bound to HIV-1 protease molecules, but this procedure is expensive and time-consuming. To overcome these problems, we have developed a docking protocol that takes protein-inhibitor flexibility into account to predict phenotypic drug resistance. For six FDA-approved Pls and a total of 1792 HIV-1 protease sequence mutants, we used a combination of inhibitor flexible docking and molecular dynamics (MD) simulations to calculate protein-inhibitor binding energies. Prediction results were expressed as fold changes of the calculated inhibitory constant (Ki), and the samples predicted to have fold-increase in calculated Ki above the fixed cut-off were defined as drug resistant. Our combined docking and MD protocol achieved accuracies ranging from 72-83% in predicting resistance/susceptibility for five of the six drugs evaluated. Evaluating the method only on samples where our predictions concurred with established knowledge-based methods resulted in increased accuracies of 83-94% for the six drugs. The results suggest that a physics-based approach, which is readily applicable to any novel PI and/or mutant, can be used judiciously with knowledge-based approaches that require experimental training data to devise accurate models of HIV-1 Pl resistance prediction.

  20. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  1. Hot spot-based design of small-molecule inhibitors for protein-protein interactions.

    PubMed

    Guo, Wenxing; Wisniewski, John A; Ji, Haitao

    2014-06-01

    Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This Digest discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Protein-Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays.

    PubMed

    Na, Zhenkun; Pan, Sijun; Uttamchandani, Mahesh; Yao, Shao Q

    2017-01-01

    Microarray screening technology has transformed the life sciences arena over the last decade. The platform is widely used in the area of mapping interaction networks, to molecular fingerprinting and small molecular inhibitor discovery. The technique has significantly impacted both basic and applied research. The microarray platform can likewise enable high-throughput screening and discovery of protein-protein interaction (PPI) inhibitors. Herein we demonstrate the application of microarray-guided PPI inhibitor discovery, using human BRCA1 as an example. Mutations in BRCA1 have been implicated in ~50 % of hereditary breast cancers. By targeting the (BRCT)2 domain, we showed compound 15a and its prodrug 15b inhibited BRCA1 activities in tumor cells. Unlike previously reported peptide-based PPI inhibitors of BRCA1, the compounds identified could be directly administered to tumor cells, thus making them useful in targeting BRCA1/PARP-related pathways involved in DNA damage and repair response, for cancer therapy.

  3. The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway.

    PubMed

    Pyriochou, Anastasia; Zhou, Zongmin; Koika, Vasiliki; Petrou, Christos; Cordopatis, Paul; Sessa, William C; Papapetropoulos, Andreas

    2007-04-01

    cGMP-degrading pathways have received little attention in the context of angiogenesis. In the present study we set out to determine whether cGMP-specific phosphodiesterase 5 (PDE5) inhibition affects new blood vessel growth. Incubation of chicken chorioallantoic membranes (CAMs) in vivo with sildenafil increased vascular length in a dose-dependent manner. Moreover, incubation of cultured endothelial cells (ECs) with the PDE5 inhibitor promoted proliferation, migration, and organization into tube-like structures. The effects of sildenafil on the angiogenesis-related properties of EC could be blocked by pre-treatment with the soluble guanylyl cyclase (sGC) inhibitor ODQ or the protein kinase G (PKG) I inhibitor DT-3. In addition, over-expression of sGC in EC led to an enhanced growth and migratory response to sildenafil. To study the signaling pathways implicated in the sildenafil-stimulated angiogenic responses we determined the phosphorylation status of mitogen-activated protein kinase (MAPK) members. Incubation of cells with sildenafil increased both extracellular signal regulated kinase 1/2 (ERK1/2) and p38 phosphorylation in a time-dependent manner. Inhibition of MEK by PD98059 and p38 with SB203580 blocked sildenafil-induced proliferation and migration, respectively, suggesting that these MAPK members are downstream of PDE5 and mediate the angiogenic effects of sildenafil. PDE5 inhibitors could, thus, be used in disease states where neo-vessel growth is desired. (c) 2007 Wiley-Liss, Inc.

  4. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes

    SciTech Connect

    Downs, S.M. )

    1990-11-01

    The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors (CX, emetine (EM), and puromycin (PUR)) each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.

  5. Phosphorylation of the BRCA1 C Terminus (BRCT) Repeat Inhibitor of hTERT (BRIT1) Protein Coordinates TopBP1 Protein Recruitment and Amplifies Ataxia Telangiectasia-mutated and Rad3-related (ATR) Signaling*

    PubMed Central

    Zhang, Bo; Wang, Edward; Dai, Hui; Shen, Jianfeng; Hsieh, Hui-Ju; Lu, Xiongbin; Peng, Guang

    2014-01-01

    The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase functions as a central node in the DNA damage response signaling network. The mechanisms by which ATR activity is amplified and/or maintained are not understood. Here we demonstrate that BRIT1/microcephalin (MCPH1), a human disease-related protein, is dispensable for the initiation but essential for the amplification of ATR signaling. BRIT1 interacts with and recruits topoisomerase-binding protein 1 (TopBP1), a key activator of ATR signaling, to the sites of DNA damage. Notably, replication stress-induced ataxia telangiectasia-mutated or ATR-dependent BRIT1 phosphorylation at Ser-322 facilitates efficient TopBP1 recruitment. These results reveal a mechanism that ensures the continuation of ATR-initiated DNA damage signaling. Our study uncovers a previously unknown regulatory axis of ATR signaling in maintaining genomic integrity, which may provide mechanistic insights into the perturbation of ATR signaling in human diseases such as neurodevelopmental defects and cancer. PMID:25301947

  6. Biomimicry of surfactant protein C

    PubMed Central

    Brown, Nathan J.; Johansson, Jan; Barron, Annelise E.

    2012-01-01

    CONSPECTUS Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned towards the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C’s seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C’s molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable poly-valine helix is replaced with a structurally stable, poly-leucine helix and includes a well placed positive charge to prevent aggregation. SP-C33 is both structurally stable and eliminates the association propensity of the native protein. The second approach

  7. Distinct folding pathways of two homologous disulfide proteins: bovine pancreatic trypsin inhibitor and tick anticoagulant peptide.

    PubMed

    Chang, Jui-Yoa

    2011-01-01

    The folding pathways of disulfide proteins vary substantially (Arolas et al., Trends Biochem Sci 31: 292-301, 2006). The diversity is mainly manifested by (a) the extent of heterogeneity of folding intermediates, (b) the extent of presence of native-like intermediates, and (c) the variation of folding kinetics. Even among structurally similar proteins, the difference can be enormous. This is demonstrated in this concise review with two structurally homologous kunitz-type protease inhibitors, bovine pancreatic trypsin inhibitor and tick anticoagulant peptide, as well as a group of cystine knot proteins. The diversity of their folding mechanisms is illustrated with two different folding techniques: (a) the conventional method of disulfide oxidation (oxidative folding), and (b) the novel method of disulfide scrambling (Chang, J Biol Chem 277: 120-126, 2002). This review also highlights the convergence of folding models concluded form the conventional conformational folding and those obtained by oxidative folding.

  8. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer.

    PubMed

    Pierre, Fabrice; Chua, Peter C; O'Brien, Sean E; Siddiqui-Jain, Adam; Bourbon, Pauline; Haddach, Mustapha; Michaux, Jerome; Nagasawa, Johnny; Schwaebe, Michael K; Stefan, Eric; Vialettes, Anne; Whitten, Jeffrey P; Chen, Ta Kung; Darjania, Levan; Stansfield, Ryan; Anderes, Kenna; Bliesath, Josh; Drygin, Denis; Ho, Caroline; Omori, May; Proffitt, Chris; Streiner, Nicole; Trent, Katy; Rice, William G; Ryckman, David M

    2011-01-27

    Herein we chronicle the discovery of CX-4945 (25n), a first-in-class, orally bioavailable ATP-competitive inhibitor of protein kinase CK2 in clinical trials for cancer. CK2 has long been considered a prime cancer drug target because of the roles of deregulated and overexpressed CK2 in cancer-promoting prosurvival and antiapoptotic pathways. These biological properties as well as the suitability of CK2's small ATP binding site for the design of selective inhibitors, led us to fashion novel therapeutic agents for cancer. The optimization leading to 25n (K(i) = 0.38 nM) was guided by molecular modeling, suggesting a strong binding of 25n resulting from a combination of hydrophobic interactions, an ionic bridge with Lys68, and hydrogen bonding with the hinge region. 25n was found to be highly selective, orally bioavailable across species (20-51%) and efficacious in xenograft models. The discovery of 25n will allow the therapeutic targeting of CK2 in humans for the first time.

  9. Effects of a new microbial α-amylase inhibitor protein on Helicoverpa armigera larvae.

    PubMed

    Zeng, Fanrong; Wang, Xiaojing; Cui, Jinjie; Ma, Yan; Li, Qiannan

    2013-03-06

    A new microbial α-amylase inhibitor gene was cloned and characterized. The encoded, recombinant, α-amylase inhibitor protein was induced and expressed by isopropyl β-d-1-thiogalactopyranoside (IPTG) in Escherichia coli M15 cells. The effects of the α-amylase inhibitor protein on Helicoverpa armigera larvae were studied. Compared to the control, the weight of H. armigera larvae fed the diet with recombinant α-amylase inhibitor protein added at a concentration of 20 μg/g was reduced by 49.8%. The total soluble protein of H. armigera larvae fed the diet with the α-amylase inhibitor protein added was also reduced by 36.8% compared to the control. The recombinant α-amylase inhibitor protein showed inhibition activity against α-amylase of H. armigera. These results suggested that this α-amylase inhibitor protein may be a promising bioinsecticide candidate for controlling H. armigera.

  10. Therapeutic management of hereditary angioedema due to C1 inhibitor deficiency.

    PubMed

    Zanichelli, Andrea; Mansi, Marta; Periti, Giulia; Cicardi, Marco

    2013-05-01

    Hereditary angioedema (HAE) due to C1 inhibitor (C1-INH) deficiency is a rare genetic disease characterized by recurrent swellings of the subcutaneous and submucosal tissues that can manifest as cutaneous edema, abdominal pain and laryngeal edema with airway obstruction. These symptoms have a significant impact on patients' quality of life. The reduction in C1-INH function leads to uncontrolled activation of the contact system and generation of bradykinin, the mediator of increased vascular permeability and edema formation. In the past, few treatment options were available; however, several new therapies with proven efficacy have recently become available to treat and prevent HAE attacks, such as plasma-derived and recombinant C1-INHs that replace the deficient protein, bradykinin receptor antagonist (icatibant) that blocks bradykinin activity and kallikrein inhibitor (ecallantide) that prevents bradykinin release. Such therapies can improve disease outcome. This article reviews the therapeutic management of HAE, which involves the treatment of acute attacks and prophylaxis.

  11. Optimization of rhodanine scaffold for the development of protein-protein interaction inhibitors.

    PubMed

    Ferro, Stefania; De Luca, Laura; Agharbaoui, Fatima Ezzahra; Christ, Frauke; Debyser, Zeger; Gitto, Rosaria

    2015-07-01

    Searching for novel protein-protein interactions inhibitors (PPIs) herein we describe the identification of a new series of rhodanine derivatives. The selection was performed by means virtual-screening, docking studies, Molecular Dynamic (MD) simulations and synthetic approaches. All the new obtained compounds were tested in order to evaluate their ability to inhibit the interaction between the HIV-1 integrase (IN) enzyme and the nuclear protein lens epithelium growth factor LEDGF/p75.

  12. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  13. Influence of oxidative browning inhibitors and isolation techniques on sweet potato protein recovery and composition.

    PubMed

    Arogundade, Lawrence A; Mu, Tai-Hua

    2012-10-01

    Effects of oxidative browning inhibitors on sweet potato protein (SPP) recovery and quality were studied. Oxidative browning inhibitors successfully decreased sweet potato oxidative browning, but reduced both SPP extractability and recovery. Ultrafiltration/diafiltration processed sweet potato (UDSP) protein (at pH 4, 6 and 7) showed significantly (p<0.05) higher yield, purity, solubility, thermal stability and amino acid constituents than that of isoelectrically precipitated sweet potato (IPSP) protein (at pH 4). The yield of UDSP proteins was more than twice that of IPSP protein. Denaturation temperature (Td), enthalpy change (ΔH) and solubility (at pH 3 and 8) of UDSP proteins were in the ranges 82.89-90.29 °C, 6.34-11.35 (J/g) and 71.4-94.2%, respectively, while that of IPSP protein were 85.27 °C, 2.35 (J/g) 31.2% and 55.5%, respectively. Ratio of SPP essential amino acid to the total amino acid ratio ranged from 0.49 to 0.51. SPP in vitro digestibility and digestibility-corrected amino acid score (PDCAAS) ranged 70-80.7% and 44.79-51.08%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Protease-inhibitor interaction predictions: Lessons on the complexity of protein-protein interactions.

    PubMed

    Fortelny, Nikolaus; Butler, Georgina S; Overall, Christopher Mark; Pavlidis, Paul

    2017-04-06

    Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features. Thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions

  15. Investigational BET bromodomain protein inhibitors in early stage clinical trials for acute myelogenous leukemia (AML).

    PubMed

    Braun, Thorsten; Gardin, Claude

    2017-07-01

    Acute myelogenous leukemia (AML) is a heterogeneous group of malignancies driven by genetic mutations and deregulated epigenetic control. Relapse/refractory disease remains frequent in younger patients and even more so in older patients, including treatment with epigenetic drugs in this age group, mainly with hypomethylating agents. New treatment strategies are urgently needed. The recent discovery that epigenetic readers of the bromodomain (BRD) and extraterminal (BET) protein family, are crucial for AML maintenance by transcription of oncogenic c-MYC lead to rapid development of BET inhibitors entering clinical trials. Areas covered: We provide a critical overview using main sources for the use of BET inhibitors in AML treatment. Limits of this treatment approach including resistance mechanisms and future directions including development of new generation BET inhibitors and combination strategies with other drugs are detailed. Expert opinion: BET inhibitors were expected to overcome limits of conventional treatment in patients as impressive in vitro data emerged recently in well-characterized AML subsets, including those associated with poor risk characteristics in the clinic. Nevertheless single activity of BET inhibitors appears to be modest and resistance mechanisms were already identified. BET inhibitors with alternative mechanisms of action and/or combination strategies with epigenetic drugs should be tested.

  16. Specific inhibition of AGC protein kinases by antibodies against C-terminal epitopes.

    PubMed

    Traincard, François; Giacomoni, Véronique; Veron, Michel

    2004-08-13

    The sequences contributing to the catalytic site of protein kinases are not all comprised within the highly conserved catalytic core. Thus, in mammalian cAMP-dependent protein kinase (PKA), the C-terminal sequence participates in substrate binding. Using synthetic peptides mimicking the FxxF motif present at most C-termini of AGC kinases, we have raised highly specific antibodies which are potent and specific inhibitors of the catalytic activity of the cognate protein kinase. Taking into account the structure of PKA, these results point to the potential of the C-terminal region of protein kinases as a target for designing specific protein kinase inhibitors.

  17. An in vivo platform for identifying inhibitors of protein aggregation

    PubMed Central

    Mahood, Rachel A.; Jackson, Matthew P.; Revill, Charlotte H.; Foster, Richard J.; Smith, D. Alastair; Ashcroft, Alison E.; Brockwell, David J.; Radford, Sheena E.

    2015-01-01

    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of IAPP aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation. PMID:26656088

  18. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    PubMed

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  19. C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury

    PubMed Central

    Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang

    2016-01-01

    The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713

  20. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors.

    PubMed

    Trabocchi, Andrea; Pala, Nicolino; Krimmelbein, Ilga; Menchi, Gloria; Guarna, Antonio; Sechi, Mario; Dreker, Tobias; Scozzafava, Andrea; Supuran, Claudiu T; Carta, Fabrizio

    2015-06-01

    The protein arginine deiminase 4 (PAD4) is a calcium-dependent enzyme, which catalyses the irreversible conversion of peptidyl-arginines into peptidyl-citrullines and plays an important role in several diseases such as in the rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, Creutzfeldt-Jacob's disease and cancer. In this study, we report the inhibition profiles and computational docking toward the PAD4 enzyme of a series of 1,2,3-triazole peptidomimetic-based derivatives incorporating the β-phenylalanine and guanidine scaffolds. Several effective, low micromolar PAD4 inhibitors are reported in this study.

  1. Evans Blue and other dyes as protein tyrosine phosphatase inhibitors.

    PubMed

    Shrestha, Suja; Shim, Yi Sup; Kim, Ki Chul; Lee, Keun-Hyeung; Cho, Hyeongjin

    2004-04-19

    Commonly used dyes including Evans Blue and Trypan Blue were examined for their inhibitory activities against protein tyrosine phosphatases (PTPases), all of them showed inhibition of PTPases with different potencies. Of the 13 dyes tested, four exhibited IC(50) value of less than 10 microM, Evans Blue lowest IC(50) of 1.3 microM against PTP1B. Care must be taken in the use of dyes for clinical or biochemical experiments to avoid unwanted side effects. Some of the low molecular weight dyes might be useful as lead compounds for the development of potent and selective PTPase inhibitors.

  2. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  3. Structure-based discovery of LpxC inhibitors.

    PubMed

    Zhang, Jing; Chan, Audrey; Lippa, Blaise; Cross, Jason B; Liu, Christopher; Yin, Ning; Romero, Jan Antoinette C; Lawrence, Jonathan; Heney, Ryan; Herradura, Prudencio; Goss, Jennifer; Clark, Cynthia; Abel, Cassandra; Zhang, Yanzhi; Poutsiaka, Katherine M; Epie, Felix; Conrad, Mary; Mahamoon, Azard; Nguyen, Kien; Chavan, Ajit; Clark, Edward; Li, Tong-Chuan; Cheng, Robert K; Wood, Michael; Andersen, Ole A; Brooks, Mark; Kwong, Jason; Barker, John; Parr, Ian Barrie; Gu, Yugui; Ryan, M Dominic; Coleman, Scott; Metcalf, Chester A

    2017-04-15

    The emergence and spread of multidrug-resistant (MDR) Gram negative bacteria presents a serious threat for public health. Novel antimicrobials that could overcome the resistance problems are urgently needed. UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) is a cytosolic zinc-based deacetylase that catalyzes the first committed step in the biosynthesis of lipid A, which is essential for the survival of Gram-negative bacteria. Our efforts toward the discovery of novel LpxC inhibitors are presented herein.

  4. NFκB-regulation of c-FLIP promotes TNFα-mediated RAF inhibitor resistance in melanoma

    PubMed Central

    Shao, Yongping; Le, Kaitlyn; Cheng, Hanyin; Aplin, Andrew E.

    2015-01-01

    Targeted inhibitors elicit heterogeneous clinical responses in genetically stratified groups of patients. While most studies focus on tumor intrinsic properties, factors in the tumor microenvironment were recently found to modulate the response to inhibitors. Here, we show that in cutaneous BRAF V600E melanoma, the cytokine TNFα blocks RAF-inhibitor-induced apoptosis via activation of nuclear factor κB (NFκB). Several NFκB-dependent factors are up-regulated following TNFα and RAF inhibitor treatment. Of these factors, we show that death receptor inhibitor cellular caspase 8 (FLICE)-like inhibitory protein (c-FLIP) is required for TNFα-induced protection against RAF inhibitor. Overexpression of c-FLIP_S or c-FLIP_L isoform decreased RAF inhibitor-induced apoptosis in the absence of TNFα. Importantly, targeting NFκB enhances response to RAF inhibitor in vitro and in vivo. Together, our results show mechanistic evidence for cytokine-mediated resistance to RAF inhibitor and provide a preclinical rationale for the strategy of co-targeting the RAF-MEK-ERK1/2 pathway and the TNFα/NFκB axis to treat mutant BRAF melanomas. PMID:25751672

  5. Protein flexibility oriented virtual screening strategy for JAK2 inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao; Yuan, Haoliang; Zhang, Yanmin; Xu, Jinxing; Ran, Ting; Liu, Haichun; Lu, Shuai; Xu, Anyang; Li, Hongmei; Jiang, Yulei; Lu, Tao; Chen, Yadong

    2015-10-01

    JAK2 has been considered as an important target for the development of anti-cancer agents. In this study, considering the flexibility of its binding site, an integrated strategy combining Bayesian categorization modeling and ensemble docking was established. Four representative crystal structures were selected for ensemble docking by the hierarchical clustering of 34 crystal structures according to the volume overlaps of each structure. A retrospective virtual screening was performed to validate this integrated strategy. As the preliminary filtration, the Bayesian model enhanced the ratio of actives by reducing the large amount of decoys. After docking the remaining compounds, the comparison between the ensemble and individual results showed that the enrichment of ensemble docking improved significantly. The results of analysis on conformational changes of two top ranked active inhibitors when docking into different proteins indicated that compounds with flexible conformations well fitted the different binding site shapes were more likely to be potential JAK2 inhibitors. This high efficient strategy will facilitate virtual screening for novel JAK2 inhibitors and could be even applied in drug discovery against other targets.

  6. Entry inhibitors and future treatment of hepatitis C.

    PubMed

    Fofana, Isabel; Jilg, Nikolaus; Chung, Raymond T; Baumert, Thomas F

    2014-04-01

    Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Furthermore, HCV-induced liver disease is the leading indication for liver transplantation. The recent introduction of direct-acting antivirals (DAAs) has revolutionized HCV treatment by making possible the cure of the majority of patients. However, their efficacy and safety in difficult-to-treat patients such as patients receiving immunosuppression, those with advanced liver disease, co-morbidity and HIV/HCV-co-infection remain to be determined. Furthermore, prevention of liver graft infection remains a pressing issue. HCV entry inhibitors target the very first step of the HCV life cycle and efficiently inhibit cell-cell transmission - a key prerequisite for viral spread. Because of their unique mechanism of action on cell-cell transmission they may provide a promising and simple perspective for prevention of liver graft infection. A high genetic barrier to resistance and complementary mechanism of action compared to DAAs makes entry inhibitors attractive as a new strategy for treatment of multi-resistant or difficult-to-treat patients. Clinical studies are needed to determine the future role of entry inhibitors in the arsenal of antivirals to combat HCV infection. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication." Copyright © 2014. Published by Elsevier B.V.

  7. Proteolytic inactivation of plasma C1- inhibitor in sepsis.

    PubMed Central

    Nuijens, J H; Eerenberg-Belmer, A J; Huijbregts, C C; Schreuder, W O; Felt-Bersma, R J; Abbink, J J; Thijs, L G; Hack, C E

    1989-01-01

    Activation of both the complement system and the contact system of intrinsic coagulation is implicated in the pathophysiology of sepsis. Because C1 inhibitor (C1-Inh) regulates the activation of both cascade systems, we studied the characteristics of plasma C1-Inh in 48 patients with severe sepsis on admission to the Intensive Care Unit at the Free University of Amsterdam. The ratio between the level of functional and antigenic C1-Inh (functional index) was significantly reduced in the patients with sepsis compared with healthy volunteers (P = 0.004). The assessment of modified (cleaved), inactive C1-Inh (iC1-Inh), and complexed forms of C1-Inh (nonfunctional C1-Inh species) revealed that the reduced functional index was mainly due to the presence of iC1-Inh. On SDS-PAGE, iC1-Inh species migrated with a lower apparent molecular weight (Mr 98,000, 91,000, and 86,000) than native C1-Inh (Mr 110,000). Elevated iC1-Inh levels (greater than or equal to 0.13 microM) were found in 81% of all patients, sometimes up to 1.6 microM. Levels of iC1-Inh on admission appeared to be of prognostic value: iC1-Inh was higher in 27 patients who died than in 21 patients who survived (P = 0.003). The mortality in 15 patients with iC1-Inh levels up to 0.2 microM was 27%, but in 12 patients with plasma iC1-Inh exceeding 0.44 microM, the mortality was 83%. The overall mortality in the patients with sepsis was 56%. We propose that the cleavage of C1-Inh in patients with sepsis reflects processes that play a major role in the development of fatal complications during sepsis. Images PMID:2668333

  8. Primary Structure of a Trypsin Inhibitor (Copaifera langsdorffii Trypsin Inhibitor-1) Obtained from C. langsdorffii Seeds

    PubMed Central

    Silva, José A.; Pompeu, Dávia G.; Smolka, Marcus B.; Gozzo, Fabio C.; Comar, Moacyr; Eberlin, Marcos N.; Marangoni, Sérgio

    2015-01-01

    In this study, the aim was to determine the complete sequence of the Copaifera langsdorffii trypsin inhibitor (CTI)-1 using 2-dimensional (2D)-PAGE, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), and quadrupole time-of-flight (QTOF) spectrometry. Spots A (CTI-1) and F (CTI-2) were submitted to enzymatic digestions with trypsin, SV8, and clostripain. The accurate mass of the peptide obtained from each digest was determined by mass spectrometry (MS) using MALDI-TOF. The most abundant peptides were purified and sequenced in a liquid chromatograph connected to an electrospray ionization-QTOF MS. When the purified trypsin inhibitor was submitted to 2D electrophoresis, different spots were observed, suggesting that the protein is composed of 2 subunits with microheterogeneity. Isoelectric points of 8.0, 8.5, and 9.0 were determined for the 11 kDa subunit and of 4.7, 4.6, and 4.3 for the 9 kDa subunit. The primary structure of CTI-1, determined from the mass of the peptide of the enzymatic digestions and the sequence obtained by MS, indicated 180 shared amino acid residues and a high degree of similarity with other Kunitz (KTI)-type inhibitors. The peptide also contained an Arg residue at the reactive site position. Its 3-dimensional structure revealed that this is because the structural discrepancies do not affect the canonical conformation of the reactive loop of the peptide. Results demonstrate that a detailed investigation of the structural particularities of CTI-1 could provide a better understanding of the mechanism of action of these proteins, as well as clarify its biologic function in the seeds. CTI-1 belongs to the KTI family and is composed of 2 polypeptide chains and only 1 disulfide bridge. PMID:26207098

  9. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  10. Recombinant replacement therapy for hereditary angioedema due to C1 inhibitor deficiency.

    PubMed

    Moldovan, Dumitru; Bernstein, Jonathan A; Cicardi, Marco

    2015-01-01

    Hereditary angioedema is a rare genetic condition transmitted as an autosomal dominant trait and characterized most commonly by the production of either inadequate or nonfunctioning C1 esterase inhibitor (C1-INH), a blood protein that regulates proteases in the complement, fibrinolytic and contact systems. Patients with hereditary angioedema suffer from episodic, unpredictable manifestations of edema affecting multiple anatomical locations, including the GI tract, facial tissue, the upper airway, oropharynx, urogenital region and/or the arms and legs. A rational approach to treatment is replacement of C1-INH protein, to normalize the levels of C1-INH activity and halt the progression of the biochemical activation processes underlying the edema formation. Ruconest is a highly purified recombinant human C1-INH. This article will focus on the results of ten clinical studies demonstrating the efficacy and safety of Ruconest(®) (Pharming Group NV, Leiden, the Netherlands), which is now approved for use in Europe, Israel and the USA.

  11. The specificities of protein kinase inhibitors: an update.

    PubMed Central

    Bain, Jenny; McLauchlan, Hilary; Elliott, Matthew; Cohen, Philip

    2003-01-01

    We have previously examined the specificities of 28 commercially available compounds, reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases [Davies, Reddy, Caivano and Cohen (2000) Biochem. J. 351, 95-105]. In the present study, we have extended this analysis to a further 14 compounds. Of these, indirubin-3'-monoxime, SP 600125, KT 5823 and ML-9 were found to inhibit a number of protein kinases and conclusions drawn from their use in cell-based assays are likely to be erroneous. Kenpaullone, Alsterpaullone, Purvalanol, Roscovitine, pyrazolopyrimidine 1 (PP1), PP2 and ML-7 were more specific, but still inhibited two or more protein kinases with similar potency. Our results suggest that the combined use of Roscovitine and Kenpaullone may be useful for identifying substrates and physiological roles of cyclin-dependent protein kinases, whereas the combined use of Kenpaullone and LiCl may be useful for identifying substrates and physiological roles of glycogen synthase kinase 3. The combined use of SU 6656 and either PP1 or PP2 may be useful for identifying substrates of Src family members. Epigallocatechin 3-gallate, one of the main polyphenolic constituents of tea, inhibited two of the 28 protein kinases in the panel, dual-specificity, tyrosine-phosphorylated and regulated kinase 1A (DYRK1A; IC(50)=0.33 microM) and p38-regulated/activated kinase (PRAK; IC(50)=1.0 microM). PMID:12534346

  12. Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.

    ERIC Educational Resources Information Center

    Richardson, Michael

    1981-01-01

    Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)

  13. Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.

    ERIC Educational Resources Information Center

    Richardson, Michael

    1981-01-01

    Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)

  14. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  15. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  16. Discovery and optimization of antibacterial AccC inhibitors.

    PubMed

    Cheng, Cliff C; Shipps, Gerald W; Yang, Zhiwei; Sun, Binyuan; Kawahata, Noriyuki; Soucy, Kyle A; Soriano, Aileen; Orth, Peter; Xiao, Li; Mann, Paul; Black, Todd

    2009-12-01

    The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS).(1) The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC(50) of 20 nM and a MIC of 0.8 microg/mL against a sensitized strain of Escherichia coli (HS294 E. coli).

  17. Discovery and optimization of antibacterial AccC inhibitors

    SciTech Connect

    Cheng, Cliff C.; Shipps, Jr., Gerald W.; Yang, Zhiwei; Sun, Binyuan; Kawahata, Noriyuki; Soucy, Kyle A.; Soriano, Aileen; Orth, Peter; Xiao, Li; Mann, Paul; Black, Todd

    2010-09-17

    The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS). The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC{sub 50} of 20 nM and a MIC of 0.8 {micro}g/mL against a sensitized strain of Escherichia coli (HS294 E. coli).

  18. Dimeric Macrocyclic Antagonists of Inhibitor of Apoptosis Proteins for the Treatment of Cancer

    PubMed Central

    2015-01-01

    A series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue 11, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound 11 demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule. PMID:26191364

  19. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions

    PubMed Central

    Laraia, Luca; McKenzie, Grahame; Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J.

    2015-01-01

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  20. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.

    PubMed

    Laraia, Luca; McKenzie, Grahame; Spring, David R; Venkitaraman, Ashok R; Huggins, David J

    2015-06-18

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.

  1. c-Abl Inhibitors Enable Insights into the Pathophysiology and Neuroprotection in Parkinson’s Disease

    PubMed Central

    Lindholm, Dan; Pham, Dan D.; Cascone, Annunziata; Eriksson, Ove; Wennerberg, Krister; Saarma, Mart

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder causing movement disabilities and several non-motor symptoms in afflicted patients. Recent studies in animal models of PD and analyses of brain specimen from PD patients revealed an increase in the level and activity of the non-receptor tyrosine kinase Abelson (c-Abl) in dopaminergic neurons with phosphorylation of protein substrates, such as α-synuclein and the E3 ubiquitin ligase, Parkin. Most significantly inhibition of c-Abl kinase activity by small molecular compounds used in the clinic to treat human leukemia have shown promising neuroprotective effects in cell and animal models of PD. This has raised hope that similar beneficial outcome may also be observed in the treatment of PD patients by using c-Abl inhibitors. Here we highlight the background for the current optimism, reviewing c-Abl and its relationship to pathophysiological pathways prevailing in PD, as well as discussing issues related to the pharmacology and safety of current c-Abl inhibitors. Clearly more rigorously controlled and well-designed trials are needed before the c-Abl inhibitors can be used in the neuroclinic to possibly benefit an increasing number of PD patients. PMID:27833551

  2. Cyclophilin inhibitors: an emerging class of therapeutics for the treatment of chronic hepatitis C infection.

    PubMed

    Hopkins, Sam; Gallay, Philippe

    2012-10-29

    The advent of the replicon system together with advances in cell culture have contributed significantly to our understanding of the function of virally-encoded structural and nonstructural proteins in the replication cycle of the hepatitis C virus. In addition, in vitro systems have been used to identify several host proteins whose expression is critical for supporting such diverse activities as viral entry, RNA replication, particle assembly, and the release of infectious virions. Among all known host proteins that participate in the HCV replication cycle, cyclophilins are unique because they constitute the only host target that has formed the basis of pharmaceutical drug discovery and drug development programs. The introduction of the nonimmunosuppressive cyclophilin inhibitors into clinical testing has confirmed the clinical utility of CsA-based inhibitors for the treatment of individuals with chronic hepatitis C infection and has yielded new insights into their mechanism(s) of action. This review describes the biochemical evidence for the potential roles played by cyclophilins in supporting HCV RNA replication and summarizes clinical trial results obtained with the first generation of nonimmunosuppressive cyclophilin inhibitors.

  3. Cyclophilin Inhibitors: An Emerging Class of Therapeutics for the Treatment of Chronic Hepatitis C Infection

    PubMed Central

    Hopkins, Sam; Gallay, Philippe

    2012-01-01

    The advent of the replicon system together with advances in cell culture have contributed significantly to our understanding of the function of virally-encoded structural and nonstructural proteins in the replication cycle of the hepatitis C virus. In addition, in vitro systems have been used to identify several host proteins whose expression is critical for supporting such diverse activities as viral entry, RNA replication, particle assembly, and the release of infectious virions. Among all known host proteins that participate in the HCV replication cycle, cyclophilins are unique because they constitute the only host target that has formed the basis of pharmaceutical drug discovery and drug development programs. The introduction of the nonimmunosuppressive cyclophilin inhibitors into clinical testing has confirmed the clinical utility of CsA-based inhibitors for the treatment of individuals with chronic hepatitis C infection and has yielded new insights into their mechanism(s) of action. This review describes the biochemical evidence for the potential roles played by cyclophilins in supporting HCV RNA replication and summarizes clinical trial results obtained with the first generation of nonimmunosuppressive cyclophilin inhibitors. PMID:23202494

  4. The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria

    PubMed Central

    Marini, E S; Giampietri, C; Petrungaro, S; Conti, S; Filippini, A; Scorrano, L; Ziparo, E

    2015-01-01

    Components of the death receptor-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well-known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering was decreased in c-FLIP−/− mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4. PMID:25501600

  5. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex.

    PubMed

    Prévost, Grégoire P; Lonchampt, Marie O; Holbeck, Susan; Attoub, Samir; Zaharevitz, Daniel; Alley, Mike; Wright, John; Brezak, Marie C; Coulomb, Hélène; Savola, Ann; Huchet, Marion; Chaumeron, Sophie; Nguyen, Quang-Dé; Forgez, Patricia; Bruyneel, Erik; Bracke, Mark; Ferrandis, Eric; Roubert, Pierre; Demarquay, Danièle; Gespach, Christian; Kasprzyk, Philip G

    2006-09-15

    A large number of hormones and local agonists activating guanine-binding protein-coupled receptors (GPCR) play a major role in cancer progression. Here, we characterize the new imidazo-pyrazine derivative BIM-46174, which acts as a selective inhibitor of heterotrimeric G-protein complex. BIM-46174 prevents the heterotrimeric G-protein signaling linked to several GPCRs mediating (a) cyclic AMP generation (Galphas), (b) calcium release (Galphaq), and (c) cancer cell invasion by Wnt-2 frizzled receptors and high-affinity neurotensin receptors (Galphao/i and Galphaq). BIM-46174 inhibits the growth of a large panel of human cancer cell lines, including anticancer drug-resistant cells. Exposure of cancer cells to BIM-46174 leads to caspase-3-dependent apoptosis and poly(ADP-ribose) polymerase cleavage. National Cancer Institute COMPARE analysis for BIM-46174 supports its novel pharmacologic profile compared with 12,000 anticancer agents. The growth rate of human tumor xenografts in athymic mice is significantly reduced after administration of BIM-46174 combined with either cisplatin, farnesyltransferase inhibitor, or topoisomerase inhibitors. Our data validate the feasibility of targeting heterotrimeric G-protein functions downstream the GPCRs to improve anticancer chemotherapy.

  6. Genetics Home Reference: protein C deficiency

    MedlinePlus

    ... Management Genetic Testing (1 link) Genetic Testing Registry: Thrombophilia, hereditary, due to protein C deficiency, autosomal dominant ... my area? Other Names for This Condition hereditary thrombophilia due to protein C deficiency PROC deficiency Related ...

  7. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    PubMed

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  8. Reviewing the current classification of inhibitor of growth family proteins

    PubMed Central

    Unoki, Motoko; Kumamoto, Kensuke; Takenoshita, Seiichi; Harris, Curtis C.

    2009-01-01

    Inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors for more than a decade. Recent emerging results using siRNA and knockout mice are expanding the previous understanding of this protein family. The results of ING1 knockout mouse experiments revealed that ING1 has a protective effect on apoptosis. Our recent results showed that ING2 is overexpressed in colorectal cancer, and induces colon cancer cell invasion through an MMP13-dependent pathway. Knockdown of ING2 by siRNA induces premature senescence in normal human fibroblast cells, and apoptosis or cell cycle arrest in various adherent cancer cells. Taken together, these results suggest that ING2 may also have roles in cancer progression and/or malignant transformation under some conditions. Additionally, knockdown of ING4 and ING5 by siRNA shows an inhibitory effect on the transition from G2/M to G1 phase and DNA replication, respectively, suggesting that these proteins may play roles during cell proliferation in some context. ING family proteins may play dual roles, similar to transforming growth factor-β, which has tumor suppressor-like functions in normal epithelium and also oncogenic functions in invasive metastatic cancers. In the present article, we briefly review ING history and propose a possible interpretation of discrepancies between past and recent data. PMID:19432890

  9. Development of a Capillary Electrophoresis Platform for Identifying Inhibitors of Protein-Protein Interactions

    PubMed Central

    Rauch, Jennifer N.; Nie, Jing; Buchholz, Tonia J.; Gestwicki, Jason E.; Kennedy, Robert T.

    2013-01-01

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound to free ratio. The method was used to screen a library of 3,443 compounds and results compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that reconfirmed in subsequent testing suggesting greater specificity. This finding was attributed to use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens but at the current stage of development it is attractive as a secondary screen to test hits found by higher throughput methods. PMID:24060167

  10. Development of a capillary electrophoresis platform for identifying inhibitors of protein-protein interactions.

    PubMed

    Rauch, Jennifer N; Nie, Jing; Buchholz, Tonia J; Gestwicki, Jason E; Kennedy, Robert T

    2013-10-15

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 are separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound-to-free ratio. The method was used to screen a library of 3443 compounds, and the results were compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that were reconfirmed in subsequent testing, suggesting greater specificity. This finding was attributed to the use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens, but at the current stage of development it is attractive as a secondary screen to test hits found by higher-throughput methods.

  11. Activated protein C resistance testing for factor V Leiden.

    PubMed

    Kadauke, Stephan; Khor, Bernard; Van Cott, Elizabeth M

    2014-12-01

    Activated protein C resistance assays can detect factor V Leiden with high accuracy, depending on the method used. Factor Xa inhibitors such as rivaroxaban and direct thrombin inhibitors including dabigatran, argatroban, and bivalirudin can cause falsely normal results. Lupus anticoagulants can cause incorrect results in most current assays. Assays that include dilution into factor V-deficient plasma are needed to avoid interference from factor deficiencies or elevations, which can arise from a wide variety of conditions such as warfarin, liver dysfunction, or pregnancy. The pros and cons of the currently available assays are discussed. © 2014 Wiley Periodicals, Inc.

  12. Protein synthesis inhibitors attenuate water flow in vasopressin-stimulated toad urinary bladder

    SciTech Connect

    Hoch, B.S.; Ast, M.B.; Fusco, M.J.; Jacoby, M.; Levine, S.D. )

    1988-01-01

    Vasopressin stimulates the introduction of aggregated particles, which may represent pathways for water flow, into the luminal membrane of toad urinary bladder. It is not known whether water transport pathways are degraded on removal from membrane or whether they are recycled. The authors examined the effect of the protein synthesis inhibitors cycloheximide and puromycin using repeated 30-min cycles of vasopressin followed by washout of vasopressin, all in the presence of an osmotic gradient, a protocol that maximizes aggregate turnover. High dose cycloheximide inhibited flow immediately. Low dose cycloheximide did not affect initial flow. In the absence of vasopressin, inhibition did not develop. Despite the inhibition of flow in vasopressin-treated tissues, the cAMP-dependent protein kinase ratio was elevated in cycloheximide-treated tissues, suggesting modulation at a distal site in the stimulatory cascade. ({sup 14}C)urea permeability was not inhibited by cycloheximide. Puromycin also inhibited water flow by the fourth challenge with vasopressin. The data suggest that protein synthesis inhibitors attenuate flow at a site that is distal to cAMP-dependent protein kinase. However, the reversal of inhibition in MIX-treated tissues suggests that the water pathway can be fully manifested given suitable stimulation. They conclude that either large stores of the transport system are available or that the transport system is extensively recycled on retrieval from the membrane.

  13. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors?

    PubMed

    Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs

    2009-05-01

    Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.

  14. The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent.

    PubMed

    Liu, Xiaona; Chhipa, Rishi Raj; Nakano, Ichiro; Dasgupta, Biplab

    2014-03-01

    AMP-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor important for cell growth, proliferation, survival, and metabolic regulation. Active AMPK inhibits biosynthetic enzymes like mTOR and acetyl CoA carboxylase (required for protein and lipid synthesis, respectively) to ensure that cells maintain essential nutrients and energy during metabolic crisis. Despite our knowledge about this incredibly important kinase, no specific chemical inhibitors are available to examine its function. However, one small molecule known as compound C (also called dorsomorphin) has been widely used in cell-based, biochemical, and in vivo assays as a selective AMPK inhibitor. In nearly all these reports including a recent study in glioma, the biochemical and cellular effects of compound C have been attributed to its inhibitory action toward AMPK. While examining the status of AMPK activation in human gliomas, we observed that glioblastomas express copious amount of active AMPK. Compound C effectively reduced glioma viability in vitro both by inhibiting proliferation and inducing cell death. As expected, compound C inhibited AMPK; however, all the antiproliferative effects of this compound were AMPK independent. Instead, compound C killed glioma cells by multiple mechanisms, including activation of the calpain/cathepsin pathway, inhibition of AKT, mTORC1/C2, cell-cycle block at G2-M, and induction of necroptosis and autophagy. Importantly, normal astrocytes were significantly less susceptible to compound C. In summary, compound C is an extremely potent antiglioma agent but we suggest that caution should be taken in interpreting results when this compound is used as an AMPK inhibitor.

  15. Targeting inhibitor 2 of protein phosphatase 2A as a therapeutic strategy for prostate cancer treatment

    PubMed Central

    Mukhopadhyay, Archana; Tabanor, Kayann; Chaguturu, Rathnam; Aldrich, Jane V

    2013-01-01

    Inhibitor 2 of protein phosphatase 2A (I2PP2A), a biological inhibitor of the cellular serine/threonine protein phosphatase PP2A, is associated with numerous cellular processes that often lead to the formation and progression of cancer. In this study we hypothesized that targeting the inhibition of I2PP2A’s multiple functions in prostate cancer cells might prevent cancer progression. We have investigated the effect of the small chain C6-ceramide, known to be a bioactive tumor suppressor lipid, on I2PP2A function, thereby affecting c-Myc signaling and histone acetylation in cells. Our data indicated that C6-ceramide treatment of prostate cancer cells induces cell death in PC-3, DU145, and LNCaP cells, but not normal prostate epithelial cells. C6-ceramide was able to disrupt the association between PP2A and I2PP2A. C6-ceramide inhibits I2PP2A’s upregulation of c-Myc and downregulation of histone acetylation in prostate cancer cells. Our data indicated that targeting cancer related signaling pathways through I2PP2A using ceramide as an anti-I2PP2A agent could have beneficial effects as a therapeutic approach to prevent prostate cancer. PMID:24025258

  16. Targeting inhibitor 2 of protein phosphatase 2A as a therapeutic strategy for prostate cancer treatment.

    PubMed

    Mukhopadhyay, Archana; Tabanor, Kayann; Chaguturu, Rathnam; Aldrich, Jane V

    2013-10-01

    Inhibitor 2 of protein phosphatase 2A (I2PP2A), a biological inhibitor of the cellular serine/threonine protein phosphatase PP2A, is associated with numerous cellular processes that often lead to the formation and progression of cancer. In this study we hypothesized that targeting the inhibition of I2PP2A's multiple functions in prostate cancer cells might prevent cancer progression. We have investigated the effect of the small chain C6-ceramide, known to be a bioactive tumor suppressor lipid, on I2PP2A function, thereby affecting c-Myc signaling and histone acetylation in cells. Our data indicated that C6-ceramide treatment of prostate cancer cells induces cell death in PC-3, DU145, and LNCaP cells, but not normal prostate epithelial cells. C6-ceramide was able to disrupt the association between PP2A and I2PP2A. C6-ceramide inhibits I2PP2A's upregulation of c-Myc and downregulation of histone acetylation in prostate cancer cells. Our data indicated that targeting cancer related signaling pathways through I2PP2A using ceramide as an anti-I2PP2A agent could have beneficial effects as a therapeutic approach to prevent prostate cancer.

  17. Protein C deficiency: summary of the 1995 database update.

    PubMed Central

    Reitsma, P H

    1996-01-01

    The coagulation cascade is controlled by several anticoagulant safeguards that avoid excessive clot formation. Disorders of these anticoagulant mechanisms are an important health problem, as they lead to increased risk of thromboembolism. Protein C deficiency is probably the most extensively studied abnormality in natural anticoagulants. Under the auspices of the Subcommittee on Plasma Coagulation Inhibitors of the Scientific and Standardization Committee of the International Society of Thrombosis and Haemostasis a working party of researchers maintains a database of mutations that have been characterized in the protein C gene. The 1995 update of this database comprises 331 entries that describe 160 unique mutational events. Here essential features of the database are reviewed. PMID:8594568

  18. Design and synthesis of irreversible inhibitors of foot-and-mouth disease virus 3C protease.

    PubMed

    Roqué Rosell, Núria R; Mokhlesi, Ladan; Milton, Nicholas E; Sweeney, Trevor R; Zunszain, Patricia A; Curry, Stephen; Leatherbarrow, Robin J

    2014-01-15

    Foot-and-mouth disease virus (FMDV) causes a highly infectious and economically devastating disease of livestock. The FMDV genome is translated as a single polypeptide precursor that is cleaved into functional proteins predominantly by the highly conserved viral 3C protease, making this enzyme an attractive target for antiviral drugs. A peptide corresponding to an optimal substrate has been modified at the C-terminus, by the addition of a warhead, to produce irreversible inhibitors that react as Michael acceptors with the enzyme active site. Further investigation highlighted key structural determinants for inhibition, with a positively charged P2 being particularly important for potency.

  19. A carboxypeptidase inhibitor from the medical leech Hirudo medicinalis. Isolation, sequence analysis, cDNA cloning, recombinant expression, and characterization.

    PubMed

    Reverter, D; Vendrell, J; Canals, F; Horstmann, J; Avilés, F X; Fritz, H; Sommerhoff, C P

    1998-12-04

    A novel metallocarboxypeptidase inhibitor was isolated from the medical leech Hirudo medicinalis. Amino acid sequence analysis provided a nearly complete primary structure. which was subsequently verified and completed by cDNA cloning using reverse transcriptase-polymerase chain reaction/rapid amplification of cDNA end techniques. The inhibitor, called LCI (leech carboxypeptidase inhibitor), is a cysteine-rich polypeptide composed of 66 amino acid residues. It does not show sequence similarity to any other protein except at its C-terminal end. In this region, the inhibitor shares the amino acid sequence -Thr-Cys-X-Pro-Tyr-Val-X with Solanacea carboxypeptidase inhibitors, suggesting a similar mechanism of inhibition where the C-terminal tail of the inhibitor interacts with the active center of metallocarboxypeptidases in a substrate-like manner. This hypothesis is supported by the hydrolytic release of the C-terminal glutamic acid residue of LCI after binding to the enzyme. Heterologous overexpression of LCI in Escherichia coli, either into the medium or as an intracellular thioredoxin fusion protein, yields a protein with full inhibitory activity. Both in the natural and recombinant forms, LCI is a tightly binding, competitive inhibitor of different types of pancreatic-like carboxypeptidases, with equilibrium dissociation constants Ki of 0.2-0.4 x 10(-9) M for the complexes with the pancreatic enzymes A1, A2, and B and plasma carboxypeptidase B. Circular dichroism and nuclear magnetic resonance spectroscopy analysis indicate that recombinant LCI is a compactly folded globular protein, stable to a wide range of pH and denaturing conditions.

  20. Gyrase B Inhibitor Impairs HIV-1 Replication by Targeting Hsp90 and the Capsid Protein*

    PubMed Central

    Vozzolo, Luciano; Loh, Belinda; Gane, Paul J.; Tribak, Maryame; Zhou, Lihong; Anderson, Ian; Nyakatura, Elisabeth; Jenner, Richard G.; Selwood, David; Fassati, Ariberto

    2010-01-01

    Chemical genetics is an emerging approach to investigate the biology of host-pathogen interactions. We screened several inhibitors of ATP-dependent DNA motors and detected the gyrase B inhibitor coumermycin A1 (C-A1) as a potent antiretroviral. C-A1 inhibited HIV-1 integration and gene expression from acutely infected cell, but the two activities mapped to distinct targets. Target discovery identified Hsp90 as the C-A1 target affecting viral gene expression. Chromatin immunoprecipitation revealed that Hsp90 associates with the viral promoter and may directly regulate gene expression. Molecular docking suggested that C-A1 binds to two novel pockets at the C terminal domain of Hsp90. C-A1 inhibited Hsp90 dimer formation, suggesting that it impairs viral gene expression by preventing Hsp90 dimerization at the C terminus. The inhibition of HIV-1 integration imposed by C-A1 was independent of Hsp90 and mapped to the capsid protein, and a point mutation at residue 105 made the virus resistant to this block. HIV-1 susceptibility to the integration block mediated by C-A1 was influenced by cyclophilin A. Our chemical genetic approach revealed an unexpected function of capsid in HIV-1 integration and provided evidence for a role of Hsp90 in regulating gene expression in mammalian cells. Both activities were amenable to inhibition by small molecules and represent novel antiretroviral drug targets. PMID:20937817

  1. Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer.

    PubMed

    Janghorban, Mahnaz; Farrell, Amy S; Allen-Petersen, Brittany L; Pelz, Carl; Daniel, Colin J; Oddo, Jessica; Langer, Ellen M; Christensen, Dale J; Sears, Rosalie C

    2014-06-24

    The transcription factor c-MYC is stabilized and activated by phosphorylation at serine 62 (S62) in breast cancer. Protein phosphatase 2A (PP2A) is a critical negative regulator of c-MYC through its ability to dephosphorylate S62. By inactivating c-MYC and other key signaling pathways, PP2A plays an important tumor suppressor function. Two endogenous inhibitors of PP2A, I2PP2A, Inhibitor-2 of PP2A (SET oncoprotein) and cancerous inhibitor of PP2A (CIP2A), inactivate PP2A and are overexpressed in several tumor types. Here we show that SET is overexpressed in about 50-60% and CIP2A in about 90% of breast cancers. Knockdown of SET or CIP2A reduces the tumorigenic potential of breast cancer cell lines both in vitro and in vivo. Treatment of breast cancer cells in vitro or in vivo with OP449, a novel SET antagonist, also decreases the tumorigenic potential of breast cancer cells and induces apoptosis. We show that this is, at least in part, due to decreased S62 phosphorylation of c-MYC and reduced c-MYC activity and target gene expression. Because of the ubiquitous expression and tumor suppressor activity of PP2A in cells, as well as the critical role of c-MYC in human cancer, we propose that activation of PP2A (here accomplished through antagonizing endogenous inhibitors) could be a novel antitumor strategy to posttranslationally target c-MYC in breast cancer.

  2. Progress of antibody-based inhibitors of the HGF–cMET axis in cancer therapy

    PubMed Central

    Kim, Ki-Hyun; Kim, Hyori

    2017-01-01

    Dysregulated receptor tyrosine kinase signaling in human cancer cells leads to tumor progression, invasion and metastasis. The receptor tyrosine kinase cMET is frequently overexpressed in cancer tissue, and activation of cMET signaling is related to drug resistance and the processes of carcinogenesis, invasion and metastasis. For that reason, cMET and its ligand, hepatocyte growth factor (HGF), are considered prime targets for the development of anticancer drugs. At least eight anti-cMET and four anti-HGF antibodies have been tested or are being tested in clinical trials. However, to date none of these HGF/cMET inhibitors have shown significant efficacy in clinical trials. Furthermore, no receptor tyrosine kinase inhibitors primarily targeting cMET have been approved. Given that neutralization of HGF or cMET does not cause significant adverse effects, inhibition of the HGF/cMET signaling pathway appears to be safe. In this review, we summarized the completed and ongoing clinical trials testing antibody- or protein-based anticancer drugs targeting cMET and HGF. PMID:28336955

  3. Progress of antibody-based inhibitors of the HGF-cMET axis in cancer therapy.

    PubMed

    Kim, Ki-Hyun; Kim, Hyori

    2017-03-24

    Dysregulated receptor tyrosine kinase signaling in human cancer cells leads to tumor progression, invasion and metastasis. The receptor tyrosine kinase cMET is frequently overexpressed in cancer tissue, and activation of cMET signaling is related to drug resistance and the processes of carcinogenesis, invasion and metastasis. For that reason, cMET and its ligand, hepatocyte growth factor (HGF), are considered prime targets for the development of anticancer drugs. At least eight anti-cMET and four anti-HGF antibodies have been tested or are being tested in clinical trials. However, to date none of these HGF/cMET inhibitors have shown significant efficacy in clinical trials. Furthermore, no receptor tyrosine kinase inhibitors primarily targeting cMET have been approved. Given that neutralization of HGF or cMET does not cause significant adverse effects, inhibition of the HGF/cMET signaling pathway appears to be safe. In this review, we summarized the completed and ongoing clinical trials testing antibody- or protein-based anticancer drugs targeting cMET and HGF.

  4. C1 inhibitor deficiency: 2014 United Kingdom consensus document

    PubMed Central

    Longhurst, H J; Tarzi, M D; Ashworth, F; Bethune, C; Cale, C; Dempster, J; Gompels, M; Jolles, S; Seneviratne, S; Symons, C; Price, A; Edgar, D

    2015-01-01

    C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organization. PMID:25605519

  5. C1 inhibitor deficiency: 2014 United Kingdom consensus document.

    PubMed

    Longhurst, H J; Tarzi, M D; Ashworth, F; Bethune, C; Cale, C; Dempster, J; Gompels, M; Jolles, S; Seneviratne, S; Symons, C; Price, A; Edgar, D

    2015-06-01

    C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organization.

  6. Interaction of Bothrops jararaca venom metalloproteinases with protein inhibitors.

    PubMed

    Asega, Amanda F; Oliveira, Ana K; Menezes, Milene C; Neves-Ferreira, Ana Gisele C; Serrano, Solange M T

    2014-03-01

    Snake venom metalloproteinases (SVMPs) play important roles in the local and systemic hemorrhage observed upon envenomation. In a previous study on the structural elements important for the activities of HF3 (highly hemorrhagic, P-III-SVMP), bothropasin (hemorrhagic, P-III-SVMP) and BJ-PI (non-hemorrhagic, P-I-SVMP), from Bothrops jararaca, it was demonstrated that they differ in their proteolysis profile of plasma and extracellular matrix proteins. In this study, we evaluated the ability of proteins DM43 and α2-macroglobulin to interfere with the proteolytic activity of these SVMPs on fibrinogen and collagen VI and with their ability to induce hemorrhage. DM43 inhibited the proteolytic activity of bothropasin and BJ-PI but not that of HF3, and was not cleaved the three proteinases. On the other hand, α2-macroglobulin did not inhibit any of the proteinases and was rather cleaved by them. In agreement with these findings, binding analysis showed interaction of bothropasin and BJ-PI but not HF3 to DM43 while none of the proteinases bound to α2-macroglobulin. Moreover, DM43 promoted partial inhibition of the hemorrhagic activity of bothropasin but not that of HF3. Our results demonstrate that metalloproteinases of B. jararaca venom showing different domain composition, glycosylation level and hemorrhagic potency show variable susceptibilities to protein inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.

    PubMed

    Dounay, A B; Forsyth, C J

    2002-11-01

    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  8. Characterization and Inhibitor Screening of Plateau Zokor Lactate Dehydrogenase C4.

    PubMed

    He, Qinghua; Zhang, Qinglian; Huang, Lin; Ma, Jinhu

    2016-07-01

    Lactate dehydrogenase C4 (LDH-C4) is considered to be a target protein for the development of contraceptives. In this work, the characterization of plateau zokor LDH-C4 and the screening of a series of N-substituted oxamic acids as inhibitors against zokor LDH-C4 were reported. The cDNA of zokor LDH-C gene was cloned and expressed in Escherichia coli, from which the protein was purified and further characterized. The protein was a tetramer (LDH-C4) and thermally stable up to 62 °C with a K m of 63.9 μM for pyruvate and with optimal pH values of 7.95 and 10.1 for the forward and backward reactions respectively. Virtual and in vitro screening against zokor LDH-C4 revealed eight N-substituted oxamic acids with IC50s ranging from 198 to 2513 μM, higher than that of oxamic acid (150 μM) and (ethylamino)(oxo)acetic acid (59 μM). The inhibition potencies of N-substituted oxamic acids tested are in the micromolar range, and the increase in the length of substituting chain seems not to increase inhibition potency.

  9. Cell death in leukemia: passenger protein regulation by topoisomerase inhibitors.

    PubMed

    Jahnke, Ulrike; Higginbottom, Karen; Newland, Adrian C; Cotter, Finbarr E; Allen, Paul D

    2007-10-05

    Etoposide is a potent inducer of mitotic catastrophe; a type of cell death resulting from aberrant mitosis. It is important in p53 negative cells where p53 dependent apoptosis and events at the G1 and G2 cell cycle checkpoints are compromised. Passenger proteins regulate many aspects of mitosis and siRNA interference or direct inhibition of Aurora B kinase results in mitotic catastrophe. However, there is little available data of clinical relevance in leukaemia models. Here, in p53 negative K562 myeloid leukemia cells, etoposide-induced mitotic catastrophe is shown to be time and/or concentration dependent. Survivin and Aurora remained bound to chromosomes. Survivin and Aurora were also associated with Cdk1 and were shown to form complexes, which in pull down experiments, included INCENP. There was no evidence of Aurora B kinase suppression. These data suggests etoposide will complement Aurora B kinase inhibitors currently in clinical trials for cancer.

  10. Atomic Analysis of Protein-Protein Interfaces with Known Inhibitors: The 2P2I Database

    PubMed Central

    Bourgeas, Raphaël; Basse, Marie-Jeanne

    2010-01-01

    Background In the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins. Inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market in the next decade. However, in silico design of such compounds still remains challenging. Methodology/Principal Findings Here we describe this particular PPI chemical space through the presentation of 2P2IDB, a hand-curated database dedicated to the structure of PPIs with known inhibitors. We have analyzed protein/protein and protein/inhibitor interfaces in terms of geometrical parameters, atom and residue properties, buried accessible surface area and other biophysical parameters. The interfaces found in 2P2IDB were then compared to those of representative datasets of heterodimeric complexes. We propose a new classification of PPIs with known inhibitors into two classes depending on the number of segments present at the interface and corresponding to either a single secondary structure element or to a more globular interacting domain. 2P2IDB complexes share global shape properties with standard transient heterodimer complexes, but their accessible surface areas are significantly smaller. No major conformational changes are seen between the different states of the proteins. The interfaces are more hydrophobic than general PPI's interfaces, with less charged residues and more non-polar atoms. Finally, fifty percent of the complexes in the 2P2IDB dataset possess more hydrogen bonds than typical protein-protein complexes. Potential areas of study for the future are proposed, which include a new classification system consisting of specific families and the identification of PPI targets with high druggability potential based on key descriptors of the interaction. Conclusions 2P2I database stores structural information about PPIs with known inhibitors and

  11. Detection of C1 inhibitor mutations in patients with hereditary angioedema.

    PubMed

    Zuraw, B L; Herschbach, J

    2000-03-01

    Hereditary angioedema (HAE) results from a deficiency in the functional level of C1 inhibitor caused by mutations in the C1 inhibitor gene. The mutations responsible for HAE have been shown to be heterogeneous. Because the identification of C1 inhibitor mutations may depend, in part, on the technique used to screen for mutations, we screened the entire C1 inhibitor coding region to identify mutations in a cohort of patients with HAE. By using single-stranded conformational polymorphism analysis, 24 subjects with HAE from 16 different kindreds were screened for C1 inhibitor polymorphisms. C1 inhibitor mutations were identified by sequencing the exons containing identified polymorphisms. All 24 subjects with HAE had identifiable polymorphisms, involving exons 2, 3, 4, 5, or 8. Fourteen different C1 inhibitor mutations were identified: 8 missense, 1 nonsense, 4 frameshift, and 1 small deletion mutations. No large deletions or duplications were found. Nine of the 14 mutations represent newly recognized C1 inhibitor mutations, 6 of which involve exon 4. Single-stranded conformational polymorphism is an effective approach for identifying new mutations in HAE. Elucidation of the range of C1 inhibitor mutations causing HAE is important for both defining which residues are required for C1 inhibitor secretion or function and providing the basis for future studies to define the relationship between the C1 inhibitor genotype and disease severity.

  12. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  13. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases.

    PubMed

    Comess, Kenneth M; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R; Gum, Rebecca J; Borhani, David W; Argiriadi, Maria; Groebe, Duncan R; Jia, Yong; Clampit, Jill E; Haasch, Deanna L; Smith, Harriet T; Wang, Sanyi; Song, Danying; Coen, Michael L; Cloutier, Timothy E; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H; Stoll, Vincent; Ng, Teresa I; Banach, David; Marcotte, Doug; Burns, David J; Calderwood, David J; Hajduk, Philip J

    2011-03-18

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38α (involved in the formation of TNFα and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional (1)H/(13)C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38α both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 si

  14. Modular mutagenesis of human placental ribonuclease inhibitor, a protein with leucine-rich repeats.

    PubMed Central

    Lee, F S; Vallee, B L

    1990-01-01

    Human placental ribonuclease inhibitor (PRI) is a potent protein inhibitor of pancreatic ribonucleases and the homologous blood vessel-inducing protein angiogenin. Although inhibition by PRI occurs with a 1:1 stoichiometry, its primary structure is composed predominantly of seven internal leucine-rich repeats. These internal repeats were systematically deleted either singly or in combination by "modular" mutagenesis. Deletion of repeat units 3 plus 4 or repeat unit 6 results in mutants that both bind to and inhibit ribonuclease A. Therefore, the angiogenin/ribonuclease binding site in PRI must reside primarily or entirely in repeats 1, 2, 5, or 7, the short N- or C-terminal segments, or a combination of these. Deletion of repeat units 3-5, 5-6, or 5 alone results in mutants that exhibit only binding activity. Hence, the binding site cannot reside exclusively in repeat 5. Other internal deletions or N- or C-terminal deletions of 6-86% of the protein all abolish activity. These results suggest that PRI has a modular structure, with one primary structural repeat constituting one module. The approach taken may be applicable to other proteins with repeat structures. Images PMID:2408043

  15. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    PubMed Central

    Qvit, Nir; Schechtman, Deborah; Pena, Darlene Aparecida; Berti, Denise Aparecida; Soares, Chrislaine Oliveira; Miao, Qianqian; Liang, Liying (Annie); Baron, Lauren A.; Teh-Poot, Christian; Martínez-Vega, Pedro; Ramirez-Sierra, Maria Jesus; Churchill, Eric; Cunningham, Anna D.; Malkovskiy, Andrey V.; Federspiel, Nancy A.; Gozzo, Fabio Cesar; Torrecilhas, Ana Claudia; Manso Alves, Maria Julia; Jardim, Armando; Momar, Ndao; Dumonteil, Eric; Mochly-Rosen, Daria

    2016-01-01

    Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosomareceptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. PMID:27054066

  16. Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery.

    PubMed

    Huang, Renjie; Leung, Ivanhoe K H

    2016-07-16

    Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.

  17. Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    PubMed Central

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O.; Sperandio, Olivier

    2010-01-01

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is

  18. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

    PubMed Central

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-01-01

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes. DOI: http://dx.doi.org/10.7554/eLife.20352.001 PMID:27805565

  19. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer.

    PubMed

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-11-02

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.

  20. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  1. Features of Protein-Protein Interactions that Translate into Potent Inhibitors: Topology, Surface Area and Affinity

    PubMed Central

    Smith, Matthew C.; Gestwicki, Jason E.

    2013-01-01

    Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, may influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of “druggable” protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favor discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets. PMID:22831787

  2. Reversal of c-MET-mediated Resistance to Cytotoxic Anticancer Drugs by a Novel c-MET Inhibitor TAS-115.

    PubMed

    Kunii, Eiji; Ozasa, Hiroaki; Oguri, Tetsuya; Maeno, Ken; Fukuda, Satoshi; Uemura, Takehiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Niimi, Akio

    2015-10-01

    The cellular N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) protein is the receptor tyrosine kinase for hepatocyte growth factor. We recently found that c-MET protein expression and activation were enhanced in the majority of small cell lung cancer cell lines with cytotoxic anticancer drug resistance, and that down-regulation of c-MET reduced resistance to these drugs. Expression of c-MET was studied in three non-small cell lung cancer (NSCLC) cell lines, including six resistant cell strains to cytotoxic anticancer drugs. To assess the effect of c-MET activation on drug resistance, we studied drug sensitivity in the presence of a novel c-MET inhibitor TAS-115. c-MET expression and activation are also enhanced in some cytotoxic anticancer drug-resistant NSCLC cell lines, and inhibition of c-MET activation by TAS-115 reduced resistance of these cell lines to anticancer drugs. The mechanism of cellular resistance to anticancer drugs via hepatocyte growth factor/c-MET signal activation is not restricted to small cell lung cancer cell lines, and TAS-115 might be able to reverse the drug resistance of these cancer cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus.

    PubMed

    Ebert, Gregor; Preston, Simon; Allison, Cody; Cooney, James; Toe, Jesse G; Stutz, Michael D; Ojaimi, Samar; Scott, Hamish W; Baschuk, Nikola; Nachbur, Ueli; Torresi, Joseph; Chin, Ruth; Colledge, Danielle; Li, Xin; Warner, Nadia; Revill, Peter; Bowden, Scott; Silke, John; Begley, C Glenn; Pellegrini, Marc

    2015-05-05

    Hepatitis B virus (HBV) infection can result in a spectrum of outcomes from immune-mediated control to disease progression, cirrhosis, and liver cancer. The host molecular pathways that influence and contribute to these outcomes need to be defined. Using an immunocompetent mouse model of chronic HBV infection, we identified some of the host cellular and molecular factors that impact on infection outcomes. Here, we show that cellular inhibitor of apoptosis proteins (cIAPs) attenuate TNF signaling during hepatitis B infection, and they restrict the death of infected hepatocytes, thus allowing viral persistence. Animals with a liver-specific cIAP1 and total cIAP2 deficiency efficiently control HBV infection compared with WT mice. This phenotype was partly recapitulated in mice that were deficient in cIAP2 alone. These results indicate that antagonizing the function of cIAPs may promote the clearance of HBV infection.

  4. CYP17 inhibitors--abiraterone, C17,20-lyase inhibitors and multi-targeting agents.

    PubMed

    Yin, Lina; Hu, Qingzhong

    2014-01-01

    As the first in class steroid 17α-hydroxylase/C17,20-lyase (CYP17) inhibitor, abiraterone acetate (of which the active metabolite is abiraterone) has been shown to improve overall survival in patients with castration-resistant prostate cancer (CRPC)--in those who are chemotherapy-naive and those previously treated with docetaxel. Furthermore, the clinical success of abiraterone demonstrated that CRPC, which has previously been regarded as an androgen-independent disease, is still driven, at least in part, by androgens. More importantly, abiraterone is a 'promiscuous' drug that interacts with a number of targets, which dictate its clinical benefits and adverse effects profile. Besides CYP17 inhibition, abiraterone acts as an antagonist to the androgen receptor and inhibits 3β-hydroxysteroid dehydrogenase--two effects that potentially contribute to its antitumour effects. However, the inhibition of the 17α-hydroxylase activity of CYP17, CYP11B1 and a panel of hepatic CYP enzymes leads to adverse effects and toxicities that include secondary mineralocorticoid excess. Abiraterone is also associated with increased incidence of cardiac disorders. Under such circumstances, development of new CYP17 inhibitors as an additional line of defence is urgently needed. To achieve enhanced clinical benefits, new strategies are being explored that include selective inhibition of the C17,20-lyase activity of CYP17 and multi-targeting strategies that affect androgen synthesis and signalling at different points. Some of these strategies-including the drugs orteronel, VT-464 and galeterone--are supported by preclinical data and are being explored in the clinic.

  5. A Molecular Insight into Complement Evasion by the Staphylococcal Complement Inhibitor Protein Family1

    PubMed Central

    Ricklin, Daniel; Tzekou, Apostolia; Garcia, Brandon L.; Hammel, Michal; McWhorter, William J.; Sfyroera, Georgia; Wu, You-Qiang; Holers, V. Michael; Herbert, Andrew P.; Barlow, Paul N.; Geisbrecht, Brian V.; Lambris, John D.

    2010-01-01

    Staphylococcus aureus possesses an impressive arsenal of complement evasion proteins that help the bacterium escape attack of the immune system. The staphylococcal complement inhibitor (SCIN) protein exhibits a particularly high potency and was previously shown to block complement by acting at the level of the C3 convertases. However, many details about the exact binding and inhibitory mechanism remained unclear. In this study, we demonstrate that SCIN directly binds with nanomolar affinity to a functionally important area of C3b that lies near the C terminus of its β-chain. Direct competition of SCIN with factor B for C3b slightly decreased the formation of surface-bound convertase. However, the main inhibitory effect can be attributed to an entrapment of the assembled convertase in an inactive state. Whereas native C3 is still able to bind to the blocked convertase, no generation and deposition of C3b could be detected in the presence of SCIN. Furthermore, SCIN strongly competes with the binding of factor H to C3b and influences its regulatory activities: the SCIN-stabilized convertase was essentially insensitive to decay acceleration by factor H and the factor I- and H-mediated conversion of surface-bound C3b to iC3b was significantly reduced. By targeting a key area on C3b, SCIN is able to block several essential functions within the alternative pathway, which explains the high potency of the inhibitor. Our findings provide an important insight into complement evasion strategies by S. aureus and may act as a base for further functional studies. PMID:19625656

  6. Involvement of histone phosphorylation in thymocyte apoptosis by protein phosphatase inhibitors.

    PubMed

    Lee, E; Nakatsuma, A; Hiraoka, R; Ishikawa, E; Enomoto, R; Yamauchi, A

    1999-07-01

    Incubation of rat thymocytes with the inhibitors of protein phosphatase such as calyculin A and okadaic acid resulted in an increase in DNA fragmentation. These effects were dependent on the concentration of the inhibitors and the incubation time. Analyses of the fragmented DNA revealed the production of approximately 50 kbp of DNA and a 180 bp DNA ladder. In addition, a laser scanning-microscopic analysis showed that these compounds caused nuclear condensation. Thus, these results demonstrated that protein phosphatase inhibitors induced thymocyte apoptosis. The inhibitors of protein phosphatase increased the phosphorylation of proteins of approximately 15 kDa. The phosphorylation of proteins preceded the DNA fragmentation induced by these inhibitors. Judging from acetic acid-urea-Triton X-100 gel electrophoresis, the phosphorylated proteins were histone H1 and H2A/H3. Therefore, these results suggest that phosphorylation of histones triggers the DNA fragmentation of thymocytes undergoing apoptosis.

  7. Brainstorming: weighted voting prediction of inhibitors for protein targets.

    PubMed

    Plewczynski, Dariusz

    2011-09-01

    The "Brainstorming" approach presented in this paper is a weighted voting method that can improve the quality of predictions generated by several machine learning (ML) methods. First, an ensemble of heterogeneous ML algorithms is trained on available experimental data, then all solutions are gathered and a consensus is built between them. The final prediction is performed using a voting procedure, whereby the vote of each method is weighted according to a quality coefficient calculated using multivariable linear regression (MLR). The MLR optimization procedure is very fast, therefore no additional computational cost is introduced by using this jury approach. Here, brainstorming is applied to selecting actives from large collections of compounds relating to five diverse biological targets of medicinal interest, namely HIV-reverse transcriptase, cyclooxygenase-2, dihydrofolate reductase, estrogen receptor, and thrombin. The MDL Drug Data Report (MDDR) database was used for selecting known inhibitors for these protein targets, and experimental data was then used to train a set of machine learning methods. The benchmark dataset (available at http://bio.icm.edu.pl/∼darman/chemoinfo/benchmark.tar.gz ) can be used for further testing of various clustering and machine learning methods when predicting the biological activity of compounds. Depending on the protein target, the overall recall value is raised by at least 20% in comparison to any single machine learning method (including ensemble methods like random forest) and unweighted simple majority voting procedures.

  8. Fluorescent biosensors for high throughput screening of protein kinase inhibitors.

    PubMed

    Prével, Camille; Pellerano, Morgan; Van, Thi Nhu Ngoc; Morris, May C

    2014-02-01

    High throughput screening assays aim to identify small molecules that interfere with protein function, activity, or conformation, which can serve as effective tools for chemical biology studies of targets involved in physiological processes or pathways of interest or disease models, as well as templates for development of therapeutics in medicinal chemistry. Fluorescent biosensors constitute attractive and powerful tools for drug discovery programs, from high throughput screening assays, to postscreen characterization of hits, optimization of lead compounds, and preclinical evaluation of candidate drugs. They provide a means of screening for inhibitors that selectively target enzymatic activity, conformation, and/or function in vitro. Moreover, fluorescent biosensors constitute useful tools for cell- and image-based, multiplex and multiparametric, high-content screening. Application of fluorescence-based sensors to screen large and complex libraries of compounds in vitro, in cell-based formats or whole organisms requires several levels of optimization to establish robust and reproducible assays. In this review, we describe the different fluorescent biosensor technologies which have been applied to high throughput screens, and discuss the prerequisite criteria underlying their successful application. Special emphasis is placed on protein kinase biosensors, since these enzymes constitute one of the most important classes of therapeutic targets in drug discovery.

  9. Anti-Inflammatory Effects of Protein Kinase Inhibitor Pyrrol Derivate

    PubMed Central

    Yena, Maryna S.; Kotlyar, Iryna P.; Ogloblya, Olexandr V.; Rybalchenko, Volodymyr K.

    2016-01-01

    In our previous studies we showed antitumor and anti-inflammatory activities of protein kinases inhibitor pyrrol derivate 1-(4-Cl-benzyl)-3-Cl-4-(CF3-fenylamino)-1H-pyrrol-2,5-dione (MI-1) on rat colon cancer model. Therefore anti-inflammatory effect of MI-1 on rat acetic acid induced ulcerative colitis (UC) model was aimed to be discovered. The anti-inflammatory effects of MI-1 (2.7 mg/kg daily) compared to reference drug Prednisolone (0.7 mg/kg daily) after 14-day usage were evaluated on macro- and light microscopy levels and expressed in 21-grade scale. Redox status of bowel mucosa was also estimated. It was shown that in UC group the grade of total injury (GTI) was equal to 9.6 (GTIcontrol = 0). Increase of malonic dialdehyde (MDA) by 89% and protein carbonyl groups (PCG) by 60% and decrease of superoxide dismutase (SOD) by 40% were also observed. Prednisolone decreased GTI to 3 and leveled SOD activity, but MDA and PCG remained higher than control ones by 52% and 42%, respectively. MI-1 restored colon mucosa integrity and decreased mucosa inflammation down to GTI = 0.5 and leveled PCG and SOD. Thus, MI-1 possessed anti-inflammatory properties, which were more expressed that Prednisolone ones, as well as normalized mucosa redox balance, and so has a prospect for correction of inflammatory processes. PMID:28101521

  10. Anti-Inflammatory Effects of Protein Kinase Inhibitor Pyrrol Derivate.

    PubMed

    Kuznietsova, Halyna M; Yena, Maryna S; Kotlyar, Iryna P; Ogloblya, Olexandr V; Rybalchenko, Volodymyr K

    2016-01-01

    In our previous studies we showed antitumor and anti-inflammatory activities of protein kinases inhibitor pyrrol derivate 1-(4-Cl-benzyl)-3-Cl-4-(CF3-fenylamino)-1H-pyrrol-2,5-dione (MI-1) on rat colon cancer model. Therefore anti-inflammatory effect of MI-1 on rat acetic acid induced ulcerative colitis (UC) model was aimed to be discovered. The anti-inflammatory effects of MI-1 (2.7 mg/kg daily) compared to reference drug Prednisolone (0.7 mg/kg daily) after 14-day usage were evaluated on macro- and light microscopy levels and expressed in 21-grade scale. Redox status of bowel mucosa was also estimated. It was shown that in UC group the grade of total injury (GTI) was equal to 9.6 (GTIcontrol = 0). Increase of malonic dialdehyde (MDA) by 89% and protein carbonyl groups (PCG) by 60% and decrease of superoxide dismutase (SOD) by 40% were also observed. Prednisolone decreased GTI to 3 and leveled SOD activity, but MDA and PCG remained higher than control ones by 52% and 42%, respectively. MI-1 restored colon mucosa integrity and decreased mucosa inflammation down to GTI = 0.5 and leveled PCG and SOD. Thus, MI-1 possessed anti-inflammatory properties, which were more expressed that Prednisolone ones, as well as normalized mucosa redox balance, and so has a prospect for correction of inflammatory processes.

  11. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions.

    PubMed

    Wang, Meining; Shen, Aijun; Zhang, Chi; Song, Zilan; Ai, Jing; Liu, Hongchun; Sun, Liping; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2016-06-23

    Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.

  12. A protein-farnesyl transferase inhibitor interferes with the serum-induced conversion of Candida albicans from a cellular yeast form to a filamentous form.

    PubMed

    McGeady, Paul; Logan, David A; Wansley, Daniel L

    2002-07-16

    A commercially available, cell permeable, protein-farnesyl transferase inhibitor interfered with the serum-induced morphological change in Candida albicans from a cellular yeast form to a filamentous form. The inhibitor has a negligible effect on the growth of C. albicans cells in the cellular yeast form, at the levels used to interfere with the morphological change. Conversion of C. albicans from the yeast form to filamentous form is associated with pathogenicity and hence protein-farnesyl transferase inhibitors are potentially of therapeutic value against C. albicans infection.

  13. Irreversible inhibitors of c-Src kinase that target a non-conserved cysteine

    PubMed Central

    Kwarcinski, Frank E.; Fox, Christel C.; Steffey, Michael E.; Soellner, Matthew B.

    2012-01-01

    We have developed the first irreversible inhibitors of wild-type c-Src kinase. We demonstrate that our irreversible inhibitors display improved potency and selectivity relative to their reversible counterparts. Our strategy involves modifying a promiscuous kinase inhibitor with an electrophile to generate covalent inhibitors of c-Src. We applied this methodology to two inhibitor scaffolds that exhibit increased cellular efficacy when rendered irreversible. In addition, we have demonstrated the utility of irreversible inhibitors in studying the conformation of an important loop in kinases that can control inhibitor selectivity and cause drug resistance. Together, we have developed a general and robust framework for generating selective irreversible inhibitors from reversible, promiscuous inhibitor scaffolds. PMID:22928736

  14. A web server for predicting inhibitors against bacterial target GlmU protein

    PubMed Central

    2011-01-01

    Background The emergence of drug resistant tuberculosis poses a serious concern globally and researchers are in rigorous search for new drugs to fight against these dreadful bacteria. Recently, the bacterial GlmU protein, involved in peptidoglycan, lipopolysaccharide and techoic acid synthesis, has been identified as an important drug target. A unique C-terminal disordered tail, essential for survival and the absence of gene in host makes GlmU a suitable target for inhibitor design. Results This study describes the models developed for predicting inhibitory activity (IC50) of chemical compounds against GlmU protein using QSAR and docking techniques. These models were trained on 84 diverse compounds (GlmU inhibitors) taken from PubChem BioAssay (AID 1376). These inhibitors were docked in the active site of the C-terminal domain of GlmU protein (2OI6) using the AutoDock. A QSAR model was developed using docking energies as descriptors and achieved maximum correlation of 0.35/0.12 (r/r2) between actual and predicted pIC50. Secondly, QSAR models were developed using molecular descriptors calculated using various software packages and achieved maximum correlation of 0.77/0.60 (r/r2). Finally, hybrid models were developed using various types of descriptors and achieved high correlation of 0.83/0.70 (r/r2) between predicted and actual pIC50. It was observed that some molecular descriptors used in this study had high correlation with pIC50. We screened chemical libraries using models developed in this study and predicted 40 potential GlmU inhibitors. These inhibitors could be used to develop drugs against Mycobacterium tuberculosis. Conclusion These results demonstrate that docking energies can be used as descriptors for developing QSAR models. The current work suggests that docking energies based descriptors could be used along with commonly used molecular descriptors for predicting inhibitory activity (IC50) of molecules against GlmU. Based on this study an open source

  15. Protein kinase C as a tumor suppressor.

    PubMed

    Newton, Alexandra C

    2017-05-02

    Protein kinase C (PKC) has historically been considered an oncoprotein. This stems in large part from the discovery in the early 1980s that PKC is directly activated by tumor-promoting phorbol esters. Yet three decades of clinical trials using PKC inhibitors in cancer therapies not only failed, but in some cases worsened patient outcome. Why has targeting PKC in cancer eluded successful therapies? Recent studies looking at the disease for insight provide an explanation: cancer-associated mutations in PKC are generally loss-of-function (LOF), supporting an unexpected function as tumor suppressors. And, contrasting with LOF mutations in cancer, germline mutations that enhance the activity of some PKC isozymes are associated with degenerative diseases such as Alzheimer's disease. This review provides a background on the diverse mechanisms that ensure PKC is only active when, where, and for the appropriate duration needed and summarizes recent findings converging on a paradigm reversal: PKC family members generally function by suppressing, rather than promoting, survival signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rational Design of Protein C Activators

    PubMed Central

    Barranco-Medina, Sergio; Murphy, Mary; Pelc, Leslie; Chen, Zhiwei; Di Cera, Enrico; Pozzi, Nicola

    2017-01-01

    In addition to its procoagulant and proinflammatory functions mediated by cleavage of fibrinogen and PAR1, the trypsin-like protease thrombin activates the anticoagulant protein C in a reaction that requires the cofactor thrombomodulin and the endothelial protein C receptor. Once in the circulation, activated protein C functions as an anticoagulant, anti-inflammatory and regenerative factor. Hence, availability of a protein C activator would afford a therapeutic for patients suffering from thrombotic disorders and a diagnostic tool for monitoring the level of protein C in plasma. Here, we present a fusion protein where thrombin and the EGF456 domain of thrombomodulin are connected through a peptide linker. The fusion protein recapitulates the functional and structural properties of the thrombin-thrombomodulin complex, prolongs the clotting time by generating pharmacological quantities of activated protein C and effectively diagnoses protein C deficiency in human plasma. Notably, these functions do not require exogenous thrombomodulin, unlike other anticoagulant thrombin derivatives engineered to date. These features make the fusion protein an innovative step toward the development of protein C activators of clinical and diagnostic relevance. PMID:28294177

  17. Development of potent inhibitors of the coxsackievirus 3C protease

    SciTech Connect

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon; Rho, Seong Hwan; Im, Isak; Yang, Sung Tae; Sellamuthu, Saravanan; Lee, Yong Jae; Kwon, Sun Jae; Park, Ohkmae K.; Jeon, Eun-Seok; Park, Woo Jin . E-mail: wjpark@gist.ac.kr; Kim, Yong-Chul . E-mail: yongchul@gist.ac.kr

    2007-06-22

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.

  18. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B

    PubMed Central

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A. M.; Imhoff, Johannes F.

    2017-01-01

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B (1) contains an additional phenolic hydroxy function at C-6 and exhibits an IC50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin (2) did not show any inhibition of this enzymatic activity. Asperentin B (1) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness. PMID:28635658

  19. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    PubMed

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillussydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B (1) contains an additional phenolic hydroxy function at C-6 and exhibits an IC50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin (2) did not show any inhibition of this enzymatic activity. Asperentin B (1) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  20. High-throughput screening and rapid inhibitor triage using an infectious chimeric Hepatitis C virus.

    PubMed

    Wichroski, Michael J; Fang, Jie; Eggers, Betsy J; Rose, Ronald E; Mazzucco, Charles E; Pokornowski, Kevin A; Baldick, Carl J; Anthony, Monique N; Dowling, Craig J; Barber, Lauren E; Leet, John E; Beno, Brett R; Gerritz, Samuel W; Agler, Michele L; Cockett, Mark I; Tenney, Daniel J

    2012-01-01

    The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.

  1. Suppression of hepatitis C virus replication by cyclin-dependent kinase inhibitors.

    PubMed

    Munakata, Tsubasa; Inada, Makoto; Tokunaga, Yuko; Wakita, Takaji; Kohara, Michinori; Nomoto, Akio

    2014-08-01

    Hepatitis C virus (HCV) is a causative agent of chronic hepatitis. Although the standard therapy for HCV-infected patients consists of pegylated interferon plus ribavirin, this treatment is associated with serious side effects and high costs, and fails in some patients infected with specific HCV genotypes. To address this problem, we are developing small-molecule inhibitors of cyclin-dependent kinases (CDKs) as novel anti-HCV drug candidates. Previous data showed that HCV replication is inhibited by retinoblastoma protein, which is itself inactivated by CDK-mediated phosphorylation. Here, we report that CDK inhibitors suppress HCV replication in vitro and in vivo, and that CDK4 is required for efficient HCV replication. These findings shed light on the development of novel anti-HCV drugs that target host factors.

  2. Pathway illuminated: visualizing protein kinase C signaling.

    PubMed

    Violin, Jonathan D; Newton, Alexandra C

    2003-12-01

    Protein kinase C has been at the center of cell signaling since the discovery 25 years ago that it transduces signals that promote phospholipid hydrolysis. In recent years, the use of genetically encoded fluorescent reporters has enabled studies of the regulation of protein kinase C signaling in living cells. Advances in imaging techniques have unveiled unprecedented detail of the signal processing mechanics of protein kinase C, from the second messengers calcium and diacylglycerol that regulate protein kinase C activity, to the locations and kinetics of different protein kinase C isozymes, to the spatial and temporal dynamics of substrate phosphorylation by this key enzyme. This review discusses how fluorescence imaging studies have illuminated the fidelity with which protein kinase C transduces rapidly changing extracellular information into intracellular phosphorylation signals.

  3. Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance

    PubMed Central

    Silke, John; Kratina, Tobias; Chu, Diep; Ekert, Paul G.; Day, Catherine L.; Pakusch, Miha; Huang, David C. S.; Vaux, David L.

    2005-01-01

    Inhibitor of apoptosis (IAP) proteins, which bind to caspases via their baculoviral IAP repeat domains, also bear RING domains that enable them to promote ubiquitylation of themselves and other interacting proteins. Here we show that the RING domain of cIAP1 allows it to bind directly to the RING of X-linked IAP, causing its ubiquitylation and degradation by the proteasome, thus revealing a mechanism by which IAPs can regulate their abundance. Expression of a construct containing the RING of cellular IAP1 was able to deplete melanoma cells of endogenous X-linked IAP, promoted apoptosis, and also markedly reduced their clonogenicity when treated with cisplatin. Cross control of protein levels by RING domains may therefore enable their levels to be manipulated therapeutically. PMID:16263936

  4. The Mitogen Activated Protein Kinase Pathway Facilitates Resistance to the Src Inhibitor, Dasatinib, in Thyroid Cancer

    PubMed Central

    Beadnell, Thomas C.; Mishall, Katie M.; Zhou, Qiong; Riffert, Stephen M.; Wuensch, Kelsey E.; Kessler, Brittelle E.; Corpuz, Maia L.; Jing, Xia; Kim, Jihye; Wang, Guoliang; Tan, Aik Choon; Schweppe, Rebecca E.

    2016-01-01

    Advanced stages of papillary and anaplastic thyroid cancer represent a highly aggressive subset, in which there are currently few effective therapies. We and others have recently demonstrated that c-Src is a key mediator of growth, invasion, and metastasis, and therefore represents a promising therapeutic target in thyroid cancer. However clinically, Src inhibitor efficacy has been limited, and therefore further insights are needed to define resistance mechanisms and determine rational combination therapies. We have generated four thyroid cancer cell lines with a greater than 30-fold increase in acquired resistance to the Src inhibitor, dasatinib. Upon acquisition of dasatinib-resistance, the two RAS-mutant cell lines acquired the c-Src gatekeeper mutation (T341M), whereas the two BRAF-mutant cell lines did not. Accordingly, Src signaling was refractory to dasatinib treatment in the RAS-mutant dasatinib-resistant cell lines. Interestingly, activation of the Mitogen Activated Protein (MAP) Kinase pathway was increased in all four of the dasatinib-resistant cell lines, likely due to B-Raf and c-Raf dimerization. Furthermore, MAP2K1/MAP2K2 (MEK1/2) inhibition restored sensitivity in all four of the dasatinib-resistant cell lines, and overcome acquired resistance to dasatinib in the RAS-mutant Cal62 cell line, in vivo. Together, these studies demonstrate that acquisition of the c-Src gatekeeper mutation and MAP Kinase pathway signaling play important roles in promoting resistance to the Src inhibitor, dasatinib. We further demonstrate that up-front combined inhibition with dasatinib and MEK1/2 or ERK1/2 inhibitors drives synergistic inhibition of growth and induction of apoptosis, indicating that combined inhibition may overcome mechanisms of survival in response to single agent inhibition. PMID:27222538

  5. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  6. PUGNAc induces protein ubiquitination in C2C12 myotube cells.

    PubMed

    Park, Ja-Hye; Lee, Jeong-Eun; Moon, Pyong-Gon; Baek, Moon-Chang

    2015-12-01

    O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O-GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O-GlcNAcylation. Here, using adenosine 5'-triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O-GlcNAcase inhibitor, O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide-binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin-activating enzyme E1, proteasome subunit 20S, cullin-associated NEDD8-dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O-GlcNAc, and PUGNAc in the future. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  8. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  9. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria.

    PubMed

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-04-10

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates.

  10. Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production.

    PubMed

    Poksay, Karen S; Sheffler, Douglas J; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E; Cosford, Nicholas D P; John, Varghese

    2017-01-01

    Alzheimer's disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds - identified here using cells and tissues expressing wt human APP - in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects.

  11. Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production

    PubMed Central

    Poksay, Karen S.; Sheffler, Douglas J.; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E.; Cosford, Nicholas D. P.; John, Varghese

    2017-01-01

    Alzheimer’s disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds – identified here using cells and tissues expressing wt human APP – in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects. PMID:28261092

  12. Discovery of Protein–Protein Interaction Inhibitors of Replication Protein A

    PubMed Central

    2013-01-01

    Replication protein A (RPA) is a ssDNA binding protein that is essential for DNA replication and repair. The initiation of the DNA damage response by RPA is mediated by protein–protein interactions involving the N-terminal domain of the 70 kDa subunit with partner proteins. Inhibition of these interactions increases sensitivity toward DNA damage and replication stress and may therefore be a potential strategy for cancer drug discovery. Toward this end, we have discovered two lead series of compounds, derived from hits obtained from a fragment-based screen, that bind to RPA70N with low micromolar affinity and inhibit the binding of an ATRIP-derived peptide to RPA. These compounds may offer a promising starting point for the discovery of clinically useful RPA inhibitors. PMID:23914285

  13. [The heat shock protein 90 inhibitor induces apoptosis and differentiation of Kasumi-1 and its mechanisms].

    PubMed

    Yu, Wen-juan; Rao, Qing; Wang, Min; Tian, Zheng; Liu, Xiang-rong; Lin, Dong; Wang, Jian-xiang

    2005-12-01

    To explore the effect of 17-allylamide-17-demethoxygeldanamycin (17AAG), a heat shock protein 90 (HSP90) inhibitor, on the growth, differentiation and apoptosis of leukemic Kasumi-1 cells. Kasumi-1 cells were treated with 17AAG at different concentrations in suspension culture. Cell proliferation was analysed by MTT assay, expression of myeloid-specific differentiation antigen and cell cycle by flow cytometry, cell apoptosis by annexin V staining, agarose gel electrophoresis and flow cytometry. KIT protein was analysed by Western blot and c-kit mRNA by RT-PCR. 17AAG treatment caused a dose-dependent inhibition of the cell proliferation with the IC(50) of 0.62 micromol/L. A dose-dependent increase in early apoptosis occurred at 24 hours treatment and in late apoptosis at 48 hours treatment. 17AAG induced a time- and dose-dependent increase in expression of myeloid cell surface protein CD11b and CD15, a progressive decline in S-phase cell fraction and an increase in G(0)/G(1) cells. When Kasumi-1 cells were incubated with 1 micromol/L of 17AAG, KIT protein began to decrease at 2 hours and KIT protein could hardly be detected at 20 hours, but c-kit mRNA was not decreased. 17AAG treatment of Kasumi-1 cells could lower KIT protein expression, inhibit cell proliferation, induce cell partial differentiation, apoptosis and accumulation in G(0)/G(1) phase.

  14. Molecular Basis for Complement Recognition and Inhibition Determined by Crystallographic Studies of the Staphylococcal Complement Inhibitor (SCIN) Bound to C3c and C3b

    SciTech Connect

    Garcia, Brandon L.; Ramyar, Kasra X.; Tzekou, Apostolia; Ricklin, Daniel; McWhorter, William J.; Lambris, John D.; Geisbrecht, Brian V.

    2010-10-22

    The human complement system plays an essential role in innate and adaptive immunity by marking and eliminating microbial intruders. Activation of complement on foreign surfaces results in proteolytic cleavage of complement component 3 (C3) into the potent opsonin C3b, which triggers a variety of immune responses and participates in a self-amplification loop mediated by a multi-protein assembly known as the C3 convertase. The human pathogen Staphylococcus aureus has evolved a sophisticated and potent complement evasion strategy, which is predicated upon an arsenal of potent inhibitory proteins. One of these, the staphylococcal complement inhibitor (SCIN), acts at the level of the C3 convertase (C3bBb) and impairs downstream complement function by trapping the convertase in a stable but inactive state. Previously, we have shown that SCIN binds C3b directly and competitively inhibits binding of human factor H and, to a lesser degree, that of factor B to C3b. Here, we report the co-crystal structures of SCIN bound to C3b and C3c at 7.5 and 3.5 {angstrom} limiting resolution, respectively, and show that SCIN binds a critical functional area on C3b. Most significantly, the SCIN binding site sterically occludes the binding sites of both factor H and factor B. Our results give insight into SCIN binding to activated derivatives of C3, explain how SCIN can recognize C3b in the absence of other complement components, and provide a structural basis for the competitive C3b-binding properties of SCIN. In the future, this may suggest templates for the design of novel complement inhibitors based upon the SCIN structure.

  15. Protein kinase C activation inhibits eosinophil degranulation through stimulation of intracellular cAMP production.

    PubMed

    Ezeamuzie, Charles I; Taslim, Najla

    2004-11-01

    The mechanism of inhibition of eosinophil degranulation by protein kinase C (PKC) was investigated in complement C5a (C5a)-stimulated degranulation of highly purified human eosinophils using the specific PKC activator - phorbol 12-myristate 13-acetate (PMA). C5a-induced release of eosinophil peroxidase and eosinophil cationic protein was potently inhibited in a concentration-dependent manner by PMA (IC(50): 3 and 5 nM, respectively). The inhibition by PMA, but not histamine, was significantly reversed by the specific, but isoform nonselective, PKC inhibitor Ro 31-8220 (1 microM). In the presence of phosphodiesterase inhibitor rolipram (5 microM), PMA stimulated a pronounced concentration-dependent increase in intracellular cAMP, with a potency 400 times that of histamine (EC(50): 55 nM vs 22.5 microM). The inactive PMA analogue, 4alpha-PMA, had no such effect. The cAMP production by PMA, but not histamine, was significantly reversed by Ro 31-8220 (1 microM) and the selective inhibitor of the novel PKCdelta, rottlerin (1-3 microM), but not the selective inhibitor of the classical PKC isoforms, Gö 6976 (0.01-0.1 microM). Western blot analysis revealed the presence of six PKC isoforms (alpha, betaI, betaII, delta, iota and zeta) in isolated eosinophils. Chelation of internal or external calcium had no effect on PMA-induced cAMP response, but abolished that induced by histamine. There was a good correlation between increase in intracellular cAMP and inhibition of degranulation. These results show, for the first time, that in human eosinophils, PMA, via activation of PKCdelta isoform, can stimulate cAMP production, and that this may be the basis for its potent anti-degranulatory effect.

  16. Protein kinase C activation inhibits eosinophil degranulation through stimulation of intracellular cAMP production

    PubMed Central

    Ezeamuzie, Charles I; Taslim, Najla

    2004-01-01

    The mechanism of inhibition of eosinophil degranulation by protein kinase C (PKC) was investigated in complement C5a (C5a)-stimulated degranulation of highly purified human eosinophils using the specific PKC activator – phorbol 12-myristate 13-acetate (PMA). C5a-induced release of eosinophil peroxidase and eosinophil cationic protein was potently inhibited in a concentration-dependent manner by PMA (IC50: 3 and 5 nM, respectively). The inhibition by PMA, but not histamine, was significantly reversed by the specific, but isoform nonselective, PKC inhibitor Ro 31-8220 (1 μM). In the presence of phosphodiesterase inhibitor rolipram (5 μM), PMA stimulated a pronounced concentration-dependent increase in intracellular cAMP, with a potency 400 times that of histamine (EC50: 55 nM vs 22.5 μM). The inactive PMA analogue, 4α-PMA, had no such effect. The cAMP production by PMA, but not histamine, was significantly reversed by Ro 31-8220 (1 μM) and the selective inhibitor of the novel PKCδ, rottlerin (1–3 μM), but not the selective inhibitor of the classical PKC isoforms, Gö 6976 (0.01–0.1 μM). Western blot analysis revealed the presence of six PKC isoforms (α, βI, βII, δ, ι and ζ) in isolated eosinophils. Chelation of internal or external calcium had no effect on PMA-induced cAMP response, but abolished that induced by histamine. There was a good correlation between increase in intracellular cAMP and inhibition of degranulation. These results show, for the first time, that in human eosinophils, PMA, via activation of PKCδ isoform, can stimulate cAMP production, and that this may be the basis for its potent anti-degranulatory effect. PMID:15504748

  17. Oligo-aspartic acid conjugates with benzo[c][2,6]naphthyridine-8-carboxylic acid scaffold as picomolar inhibitors of CK2.

    PubMed

    Vahter, Jürgen; Viht, Kaido; Uri, Asko; Enkvist, Erki

    2017-02-28

    Structurally diverse inhibitors of the protein kinase CK2 are required for regulation of this ubiquitous protein to establish biological roles of the enzyme which catalyzes the phosphorylation of a vast number of substrate proteins. In this article we disclose a series of new bisubstrate inhibitors of CK2 that are structurally represented by the oligo(l-Asp) peptide conjugates of benzo[c][2,6]naphthyridine-8-carboxylic acid. This fragment originated from CX-4945, the first in class inhibitor taken to clinical trials. The most potent conjugates possessed two-digit picomolar affinity and clear selectivity for CK2α in a panel of 140 protein kinases. Labeling of the inhibitors with a fluorescent dye yielded probes for a fluorescence anisotropy-based binding/displacement assay which can be used for analysis of CK2 and precise determination of affinity of the highly potent (tight-binding) CK2-targeting inhibitors.

  18. Piperazinobenzopyranones and phenalkylaminobenzopyranones: potent inhibitors of breast cancer resistance protein (ABCG2).

    PubMed

    Boumendjel, Ahcène; Nicolle, Edwige; Moraux, Thomas; Gerby, Bastien; Blanc, Madeleine; Ronot, Xavier; Boutonnat, Jean

    2005-11-17

    In continuing research that led us to identify chromanone derivatives (J. Med. Chem. 2003, 46, 2125) as P-glycoprotein inhibitors, we obtained analogues able to modulate multidrug resistance (MDR) mediated by the breast cancer resistance protein (BCRP). The linkage of 5-hydroxybenzopyran-4-one to piperazines or phenalkylamines affords highly potent inhibitors of BCRP. By using sensitive (HCT116) and resistant colon cancer cells expressing BCRP, we evaluated the effect of 14 benzopyranone (chromone) derivatives on the accumulation and the cytotoxic effect of the anticancer drug, mitoxantrone. At 10 microM, three compounds increased both intracellular accumulation and cytotoxicity of mitoxantrone in HCT116/R cells with a comparable rate as fumitremorgin C and Gleevec used as reference inhibitors. The most potent molecules 5b and 5c are still active at 1 microM, whereas FTC shows weak inhibition. These molecules do not induce cell death as shown by the cell cycle distribution study, which makes them potential candidates for in vivo studies.

  19. Characterization of a ranavirus inhibitor of the antiviral protein kinase PKR

    PubMed Central

    2011-01-01

    Background Ranaviruses (family Iridoviridae) are important pathogens of lower vertebrates. However, little is known about how they circumvent the immune response of their hosts. Many ranaviruses contain a predicted protein, designated vIF2α, which shows homology with the eukaryotic translation initiation factor 2α. In analogy to distantly related proteins found in poxviruses vIF2α might act as an inhibitor of the antiviral protein kinase PKR. Results We have characterized the function of vIF2α from Rana catesbeiana virus Z (RCV-Z). Multiple sequence alignments and secondary structure prediction revealed homology of vIF2α with eIF2α throughout the S1-, helical- and C-terminal domains. Genetic and biochemical analyses showed that vIF2α blocked the toxic effects of human and zebrafish PKR in a heterologous yeast system. Rather than complementing eIF2α function, vIF2α acted in a manner comparable to the vaccinia virus (VACV) K3L protein (K3), a pseudosubstrate inhibitor of PKR. Both vIF2α and K3 inhibited human PKR-mediated eIF2α phosphorylation, but not PKR autophosphorylation on Thr446. In contrast the E3L protein (E3), another poxvirus inhibitor of PKR, inhibited both Thr446 and eIF2α Ser51 phosphorylation. Interestingly, phosphorylation of eIF2α by zebrafish PKR was inhibited by vIF2α and E3, but not by K3. Effective inhibition of PKR activity coincided with increased PKR expression levels, indicative of relieved autoinhibition of PKR expression. Experiments with vIF2α deletion constructs, showed that both the N-terminal and helical domains were sufficient for inhibition of PKR, whereas the C-terminal domain was dispensable. Conclusions Our results show that RCV-Z vIF2α is a functional inhibitor of human and zebrafish PKR, and probably functions in similar fashion as VACV K3. This constitutes an important step in understanding the interaction of ranaviruses and the host innate immune system. PMID:21418572

  20. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of triton X-100 models of sea urchin and starfish spermatozoa

    PubMed Central

    1982-01-01

    A fraction obtained from detergent-extract of sea urchin or starfish spermatozoa using DEAE-cellulose chromatography reactivated Triton X- 100 models of the spermatozoa in a cAMP-dependent manner. The DEAE fraction contained cAMP-dependent protein kinase with a high level of specific activity. Rabbit muscle inhibitor protein highly specific for cAMP-dependent protein kinases inhibited the ability of the deae fraction to induce reactivation of Triton X-100 models.l This inhibition paralleled inhibition of cAMP-dependent protein kinase activity of the DEAE fraction, suggesting participation of the enzyme in the cAMP-dependent reactivation of Triton X-100 models. However, cAMP-dependent protein kinase further purified from the DEAE fraction was incapable of reactivating these models by itself. A protein factor which was separated from the protein kinase in the course of purification of the enzyme was found to also be necessary for the reactivation. When cAMP-dependent protein kinase was pretreated with protein kinase inhibitor before addition of the protein factor, the reactivation of Triton X-100 models was no longer detected. However, after the protein factor had been incubated with cAMP and cAMP- dependent protein kinase, protein kinase inhibitor did not repress reactivation of Triton X-100 models. We propose that the reactivation needs phosphorylation of the protein factor by cAMP-dependent protein kinase. PMID:6282892

  1. Macrocyclic Hepatitis C Virus NS3/4A Protease Inhibitors: An Overview of Medicinal Chemistry.

    PubMed

    Pillaiyar, Thanigaimalai; Namasivayam, Vigneshwaran; Manickam, Manoj

    2016-01-01

    Hepatitis C virus (HCV) is a causative agent of hepatitis C infectious disease that primarily affects the liver, ranging in severity from a mild illness lasting a few weeks to a lifelong illness. The 9.6 kb RNA genome of HCV encodes approximately 3000 amino acid polyprotein that must be processed by host and viral proteases into both structural (S) and non-structural (NS) proteins, respectively. Targeting the serine protease NS3 with an activating factor NS4A, i.e., NS3/4A has been considered as one of the most attractive targets for the development of anti-HCV therapy. Although there is no vaccine available, antiviral medicines cure approximately 90% of the persons with hepatitis C infection. On the other hand, efficacy of these medications can be hampered due to the rapid drug and cross resistances. To date, all developed HCV NS3/4A inhibitors are mainly peptide-based compounds derived from the cleavage products of substrate. Specifically macrocyclic peptidomimetics have rapidly emerged as a classical NS3/4A protease inhibitors for treating the HCV infection. This review highlights the development of macrocyclic anti-HCV NS3/4A protease, as well as clinically important inhibitors developed from linear peptides, discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, virtual screening and structure-based molecular docking studies. We emphasize the rationale behind the design, study of structure-activity relationships, and mechanism of inhibitions and cellular effect of the macrocyclic inhibitors.

  2. Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells

    PubMed Central

    Evans, Ian M.; Bagherzadeh, Azadeh; Charles, Mark; Raynham, Tony; Ireson, Chris; Boakes, Alexandra; Kelland, Lloyd; Zachary, Ian C.

    2010-01-01

    VEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells). The activity of the isoforms PKD1 and PKD2 were blocked by this inhibitor as indicated by reduced phosphorylation, at Ser916 and Ser876 respectively, after VEGF stimulation. The VEGF-induced phosphorylation of three PKD substrates, histone deacetylase 5, CREB (cAMP-response-element-binding protein) and HSP27 (heat-shock protein 27) at Ser82, was also inhibited by CRT5. In contrast, CRT6, an inactive analogue of CRT5, had no effect on PKD or HSP27 Ser82 phosphorylation. Furthermore, phosphorylation of HSP27 at Ser78, which occurs solely via the p38 MAPK (mitogen-activated protein kinase) pathway, was also unaffected by CRT5. In vitro kinase assays show that CRT5 did not significantly inhibit several PKC isoforms expressed in endothelial cells. CRT5 also decreased VEGF-induced endothelial migration, proliferation and tubulogenesis, similar to effects seen when the cells were transfected with PKD siRNA (small interfering RNA). CRT5, a novel specific PKD inhibitor, will greatly facilitate the study of the role of PKD signalling mechanisms in angiogenesis. PMID:20497126

  3. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex.

    PubMed

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L; Jakob, Clarissa G; Zhu, Haizhong; Comess, Kenneth M; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M; Cheng, Dong; Klinge, Kelly L; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C; Petros, Andrew M; Sweis, Ramzi F; Torrent, Maricel; Bigelow, Lance J; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J; Lindley, David J; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G; Arrowsmith, Cheryl H; Chiang, Gary G; Sun, Chaohong; Pappano, William N

    2017-04-01

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  4. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs

    PubMed Central

    Scott, Latanya M.; Chen, Liwei; Daniel, Kenyon G.; Brooks, Wesley H.; Guida, Wayne C.; Lawrence, Harshani R.; Sebti, Said M.; Lawrence, Nicholas J.; Wu, Jie

    2010-01-01

    Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17- phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triperpenoids, enoxolone and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors. PMID:21193311

  5. Binding profiles of cholesterol ester transfer protein with current inhibitors: a look at mechanism and drawback.

    PubMed

    Yang, Zhiwei; Cao, Yang; Hao, Dongxiao; Yuan, Xiaohui; Zhang, Lei; Zhang, Shengli

    2017-08-20

    Although the pharmacological inhibition of cholesterol ester transport protein (CETP) has been proposed as a method of preventing and treating cardiovascular disease (CVD), the adverse effects of current inhibitors have cast doubt on the interaction mechanisms of inhibitors and CETP. In response, a molecular dynamics simulation was used to investigate their interaction and shed light on the lipid exchange mechanism of CETP. Results showed that torcetrapib, anacetrapib, and evacetrapib can induce the incremental rigidity of CETP, yet decrease the stability of Helix X and the hydrophobic tunnel of CETP, with passable binding abilities (ΔGbind, -61.08, -64.23, and -61.57 kcal mol(-1)). During their binding processes, Van der Waals components (ΔEvdw + ΔGSA) play a dominant role, and the inhibitory effects closely correlated with residues Cys13, Val198, Gln199, Ser230, His232, and Phe263, which could reduce the flexibility of N- and C- termini and Helix X, as well as the stability of hydrophobic tunnel, into which the three inhibitors could enter and promote the formation of intramolecular H-bonds such as Thr138-Asn192 and Arg37-Glu186. Additionally, the three inhibitors could restrain the formation of an opening at the CETP N-terminal, which given the other findings suggests the tunneling mechanism of CETP transfer. The paper closes with an explanation of conceivable causes of the insufficient efficacy of the inhibitors, and puts forward the rationality in targeting the CETP distal end for CVD therapies.

  6. Hepatitis C virus infection protein network.

    PubMed

    de Chassey, B; Navratil, V; Tafforeau, L; Hiet, M S; Aublin-Gex, A; Agaugué, S; Meiffren, G; Pradezynski, F; Faria, B F; Chantier, T; Le Breton, M; Pellet, J; Davoust, N; Mangeot, P E; Chaboud, A; Penin, F; Jacob, Y; Vidalain, P O; Vidal, M; André, P; Rabourdin-Combe, C; Lotteau, V

    2008-01-01

    A proteome-wide mapping of interactions between hepatitis C virus (HCV) and human proteins was performed to provide a comprehensive view of the cellular infection. A total of 314 protein-protein interactions between HCV and human proteins was identified by yeast two-hybrid and 170 by literature mining. Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HCV are enriched in highly central and interconnected proteins. A global analysis on the basis of functional annotation highlighted the enrichment of cellular pathways targeted by HCV. A network of proteins associated with frequent clinical disorders of chronically infected patients was constructed by connecting the insulin, Jak/STAT and TGFbeta pathways with cellular proteins targeted by HCV. CORE protein appeared as a major perturbator of this network. Focal adhesion was identified as a new function affected by HCV, mainly by NS3 and NS5A proteins.

  7. Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy

    DTIC Science & Technology

    2014-04-01

    lead compound to clinical testing . Since percent tumor development was lower than anticipated for C4-2 Control mice in this study, we are performing...preclinical models. Data from this research would identify the most efficacious drug to be further developed in preclinical toxicity testing and clinical...translation of the lead compound to clinical testing . Overall the data supports AR-JunD inhibitors as a new class of agents for further research and

  8. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae

    PubMed Central

    Çakır, Birsen; Tumer, Nilgun E.

    2015-01-01

    Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP), a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1), a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition. PMID:28357275

  9. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  10. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors.

    PubMed

    Liu, Tao; Nair, Somarajan J; Lescarbeau, André; Belani, Jitendra; Peluso, Stéphane; Conley, James; Tillotson, Bonnie; O'Hearn, Patrick; Smith, Sherri; Slocum, Kelly; West, Kip; Helble, Joseph; Douglas, Mark; Bahadoor, Adilah; Ali, Janid; McGovern, Karen; Fritz, Christian; Palombella, Vito J; Wylie, Andrew; Castro, Alfredo C; Tremblay, Martin R

    2012-10-25

    Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.

  11. Development of α-glucosidase inhibitors by room temperature C-C cross couplings of quinazolinones.

    PubMed

    Garlapati, Ramesh; Pottabathini, Narender; Gurram, Venkateshwarlu; Kasani, Kumara Swamy; Gundla, Rambabu; Thulluri, Chiranjeevi; Machiraju, Pavan Kumar; Chaudhary, Avinash B; Addepally, Uma; Dayam, Raveendra; Chunduri, Venkata Rao; Patro, Balaram

    2013-08-07

    Novel quinazolinone based α-glucosidase inhibitors have been developed. For this purpose a virtual screening model has been generated and validated utilizing acarbose as a α-glucosidase inhibitor. Homology modeling, docking, and virtual screening were successfully employed to discover a set of structurally diverse compounds active against α-glucosidase. A search of a 3D database containing 22,500 small molecules using the structure based virtual model yielded ten possible candidates. All ten candidates were N-3-pyridyl-2-cyclopropyl quinazolinone-4-one derivatives, varying at the 6 position. This position was modified by Suzuki-Miyaura cross coupling with aryl, heteroaryl, and alkyl boronic acids. A catalyst screen was performed, and using the best optimal conditions, a series of twenty five compounds was synthesized. Notably, the C-C cross coupling reactions of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one precursor have been accomplished at room temperature. A comparison of the relative reactivities of 6-bromo and 6-chloro-2,3-disubstituted quinazolinones with phenyl boronic acid was conducted. An investigation of pre-catalyst loading for the reaction of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one substrate was also carried out. Finally, we submitted our compounds to biological assays against α-glucosidase inhibitors. Of these, three hits (compounds 4a, 4t and 4r) were potentially active as α-glucosidase inhibitors and showed activity with IC50 values <20 μM. Based on structural novelty and desirable drug-like properties, 4a was selected for structure-activity relationship study, and thirteen analogs were synthesized. Nine out of thirteen analogs acted as α-glucosidase inhibitors with IC50 values <10 μM. These lead compounds have desirable physicochemical properties and are excellent candidates for further optimization.

  12. Cellular prostatic acid phosphatase (cPAcP) serves as a useful biomarker of histone deacetylase (HDAC) inhibitors in prostate cancer cell growth suppression.

    PubMed

    Chou, Yu-Wei; Lin, Fen-Fen; Muniyan, Sakthivel; Lin, Frank C; Chen, Ching-Shih; Wang, Jue; Huang, Chao-Cheng; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cancer death in the United States, and also one of the major cancer-related deaths in Chinese. Androgen deprivation therapy (ADT) is the first line treatment for metastatic PCa. PCa ultimately relapses with subsequent ADT treatment failure and becomes castrate-resistant (CR). It is important to develop effective therapies with a surrogate marker towards CR PCa. Histone deacetylase (HDAC) inhibitors were examined to determine their effects in androgen receptor (AR)/cellular prostatic acid phosphatase (cPAcP)-positive PCa cells, including LNCaP C-33, C-81, C4-2 and C4-2B and MDA PCa2b androgen-sensitive and androgen-independent cells, and AR/cPAcP-negative PCa cells, including PC-3 and DU 145 cells. Cell growth was determined by cell number counting. Western blot analyses were carried out to determine AR, cPAcP and PSA protein levels. cPAcP protein level was increased by HDAC inhibitor treatment. Valproic acid, a HDAC inhibitor, suppressed the growth of AR/cPAcP-positive PCa cells by over 50% in steroid-reduced conditions, higher than on AR/cPAcP-negative PCa cells. Further, HDAC inhibitor pretreatments increased androgen responsiveness as demonstrated by PSA protein level quantitation. Our results clearly demonstrate that HDAC inhibitors can induce cPAcP protein level, increase androgen responsiveness, and exhibit higher inhibitory activities on AR/cPAcP-positive PCa cells than on AR/cPAcP-negative PCa cells. Upon HDAC inhibitor pretreatment, PSA level was greatly elevated by androgens. This data indicates the potential clinical importance of cPAcP serving as a useful biomarker in the identification of PCa patient sub-population suitable for HDAC inhibitor treatment.

  13. Effect of hydroxymethylglutaryl-CoA reductase inhibitors on low-density lipoprotein cholesterol, interleukin-6, and high-sensitivity C-reactive protein in end-stage renal disease.

    PubMed

    Soliemani, Alireza; Nikoueinejad, Hassan; Tabatabaizade, Mashallah; Mianehsaz, Elaheh; Tamadon, Mohamadreza

    2011-01-01

    INTRODUCTION. This study was conducted to determine the effect of statins on the serum levels of interleukin-6 (IL-6), low-density lipoprotein cholesterol (LDLC), and high-sensitivity C-reactive protein (HSCPR). MATERIALS AND METHODS. This randomized clinical trial was carried out on 95 hemodialysis patients divided into three groups of atorvastatin, 10 mg; simvastatin, 20 mg; and lovastatin, 40 mg, daily, administered for 2 months. Levels of serum HSCRP, IL-6, and LDLC were all measured before and after the study period. RESULTS. At baseline, 59% of the hemodialysis patients presented with elevated HSCRP, 46.3% them had increased IL-6, and 26.3% had an increased LDLC level. The three drugs were capable to lower the level of HSCRP, among which atorvastatin had the highest effect size (41.8% reduction, P = .001). Lovastatin stood in the next (37.6% reduction, P = .02), while HSCRP reduction was not significant in the simvastatin group (25% reduction, P = .14). Neither of the drugs significantly reduced IL-6 levels. Effects of atorvastatin and simvastatin on the LDLC levels were significant, while lovastatin had a marginal effect. CONCLUSIONS. Use of statins resulted in CRP reduction in patients on hemodialysis. Atorvastatin was much more effective than lovastatin, while CRP reduction was not significant by simvastatin. However, simvastatin had the greatest impact on LDLC. None of these drugs could reduce IL-6 levels within 2 months.

  14. Small molecule inhibitors of PSD95-nNOS protein-protein interactions as novel analgesics

    PubMed Central

    Lee, Wan-Hung; Xu, Zhili; Ashpole, Nicole M.; Hudmon, Andy; Kulkarni, Pushkar M.; Thakur, Ganesh A.; Lai, Yvonne Y.; Hohmann, Andrea G.

    2015-01-01

    Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 µM) and ZL006 (EC50: 12.88 µM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund’s adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists. PMID:26071110

  15. cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action

    PubMed Central

    Busch, Jennifer L.; Corbin, Jackie D.

    2010-01-01

    To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge. PMID:20716671

  16. Flexibility of the Thrombin-activatable Fibrinolysis Inhibitor Pro-domain Enables Productive Binding of Protein Substrates*

    PubMed Central

    Valnickova, Zuzana; Sanglas, Laura; Arolas, Joan L.; Petersen, Steen V.; Schar, Christine; Otzen, Daniel; Aviles, Francesc X.; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2010-01-01

    We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo. PMID:20880845

  17. [Molecular cloning and analysis of cDNA sequences encoding serine proteinase and Kunitz type inhibitor in venom gland of Vipera nikolskii viper].

    PubMed

    Ramazanova, A S; Fil'kin, S Iu; Starkov, V G; Utkin, Iu N

    2011-01-01

    Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.

  18. Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance.

    PubMed

    Patel, Harun; Pawara, Rahul; Ansari, Azim; Surana, Sanjay

    2017-05-11

    EGFR T790M mutation leads to resistance to most of clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development, which includes osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. On the other hand recently EGFR C797S mutation was reported to be a leading mechanism of resistance to the third-generation inhibitors. The C797S mutation appears to be an ideal target for overcoming the acquired resistance to the third generation inhibitors. This review summarizes the third generation inhibitors, synthesis, their mechanism of resistance and latest development on the discovery of a fourth-generation EGFR TKIs and U to Y allosteric strategies to combat the C797S EGFR resistance problem. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Involvement of protein kinase C, phospholipase C, and protein tyrosine kinase pathways in oxygen radical generation by asbestos-stimulated alveolar macrophage.

    PubMed

    Lim, Y; Kim, S H; Kim, K A; Oh, M W; Lee, K H

    1997-09-01

    Although asbestos stimulates oxygen radical generation in alveolar macrophages, the exact mechanism is still not clear. The purpose of this study was to compare the ability of three asbestos fibers (amosite, chrysotile, and crocidolite) to generate oxygen radicals in macrophages and examine the mechanism of this action. All asbestos fibers were able to induce chemiluminescence but chrysotile induced maximal chemiluminescence at higher concentrations than amosite and crocidolite. Protein kinase C (PKC) inhibitors (sphingosine and staurosporine) suppressed the ability of asbestos to induce oxygen radical generation. Phospholipase C (PLC) inhibitors (U73122 and neomycin) and protein tyrosine kinase (PTK) inhibitors (erbstatin and genistein) decreased oxygen radical generation of asbestos-stimulated alveolar macrophages. Oxygen radical generation was not suppressed by an adenylate cyclase activator (forskolin), a protein kinase A inhibitor (H-8), and a protein serine-threonine phosphatase inhibitor (okadaic acid). PLC and PTK inhibitors suppressed the increment of phosphoinositide turnover by amosite. These results suggest that asbestos fibers induce the generation of oxygen radicals through PTK, PLC, and PKC pathways in a dose-response pattern.

  20. Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein-Protein Interaction.

    PubMed

    Sable, Rushikesh; Durek, Thomas; Taneja, Veena; Craik, David J; Pallerla, Sandeep; Gauthier, Ted; Jois, Seetharama

    2016-08-19

    The interaction between the cell-cell adhesion proteins CD2 and CD58 plays a crucial role in lymphocyte recruitment to inflammatory sites, and inhibitors of this interaction have potential as immunomodulatory drugs in autoimmune diseases. Peptides from the CD2 adhesion domain were designed to inhibit CD2:CD58 interactions. To improve the stability of the peptides, β-sheet epitopes from the CD2 region implicated in CD58 recognition were grafted into the cyclic peptide frameworks of sunflower trypsin inhibitor and rhesus theta defensin. The designed multicyclic peptides were evaluated for their ability to modulate cell-cell interactions in three different cell adhesion assays, with one candidate, SFTI-a, showing potent activity in the nanomolar range (IC50: 51 nM). This peptide also suppresses the immune responses in T cells obtained from mice that exhibit the autoimmune disease rheumatoid arthritis. SFTI-a was resistant to thermal denaturation, as judged by circular dichroism spectroscopy and mass spectrometry, and had a half-life of ∼24 h in human serum. Binding of this peptide to CD58 was predicted by molecular docking studies and experimentally confirmed by surface plasmon resonance experiments. Our results suggest that cyclic peptides from natural sources are promising scaffolds for modulating protein-protein interactions that are typically difficult to target with small-molecule compounds.

  1. Tumor promotion by depleting cells of protein kinase C delta.

    PubMed Central

    Lu, Z; Hornia, A; Jiang, Y W; Zang, Q; Ohno, S; Foster, D A

    1997-01-01

    Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function. PMID:9154841

  2. Hepatitis C virus infection protein network

    PubMed Central

    de Chassey, B; Navratil, V; Tafforeau, L; Hiet, M S; Aublin-Gex, A; Agaugué, S; Meiffren, G; Pradezynski, F; Faria, B F; Chantier, T; Le Breton, M; Pellet, J; Davoust, N; Mangeot, P E; Chaboud, A; Penin, F; Jacob, Y; Vidalain, P O; Vidal, M; André, P; Rabourdin-Combe, C; Lotteau, V

    2008-01-01

    A proteome-wide mapping of interactions between hepatitis C virus (HCV) and human proteins was performed to provide a comprehensive view of the cellular infection. A total of 314 protein–protein interactions between HCV and human proteins was identified by yeast two-hybrid and 170 by literature mining. Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HCV are enriched in highly central and interconnected proteins. A global analysis on the basis of functional annotation highlighted the enrichment of cellular pathways targeted by HCV. A network of proteins associated with frequent clinical disorders of chronically infected patients was constructed by connecting the insulin, Jak/STAT and TGFβ pathways with cellular proteins targeted by HCV. CORE protein appeared as a major perturbator of this network. Focal adhesion was identified as a new function affected by HCV, mainly by NS3 and NS5A proteins. PMID:18985028

  3. IAPs on the move: role of inhibitors of apoptosis proteins in cell migration.

    PubMed

    Oberoi-Khanuja, T K; Murali, A; Rajalingam, K

    2013-09-05

    Inhibitors of Apoptosis Proteins (IAPs) are a class of highly conserved proteins predominantly known for the regulation of caspases and immune signaling. However, recent evidence suggests a crucial role for these molecules in the regulation of tumor cell shape and migration by controlling MAPK, NF-κB and Rho GTPases. IAPs directly control Rho GTPases, thus regulating cell shape and migration. For instance, XIAP and cIAP1 function as the direct E3 ubiquitin ligases of Rac1 and target it for proteasomal degradation. IAPs are differentially expressed in tumor cells and have been targeted by several cancer therapeutic drugs that are currently in clinical trials. Here, we summarize the current knowledge on the role of IAPs in the regulation of cell migration and discuss the possible implications of these observations in regulating tumor cell metastases.

  4. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    SciTech Connect

    Nakatani, Miyuki; Ito, Jumpei; Koyama, Riko; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi; Maturana, Andrés D.

    2016-05-27

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.

  5. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases.

    PubMed

    Kobzar, Oleksandr L; Shevchuk, Michael V; Lyashenko, Alesya N; Tanchuk, Vsevolod Yu; Romanenko, Vadim D; Kobelev, Sergei M; Averin, Alexei D; Beletskaya, Irina P; Vovk, Andriy I; Kukhar, Valery P

    2015-07-21

    α,α-Difluoro-β-ketophosphonated derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases. N-Substituted conjugates of cyclam and cyclen with bioisosteric phosphonate groups displayed good activities toward T-cell protein tyrosine phosphatase with IC50 values in the micromolar to nanomolar range and showed selectivity over PTP1B, CD45, SHP2, and PTPβ. Kinetic studies indicated that the inhibitors can occupy the region of the active site of TC-PTP. This study demonstrates a new approach which employs tetraazamacrocycles as a molecular platform for designing inhibitors of protein tyrosine phosphatases.

  6. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney.

    PubMed

    Li, M; Guo, H; Damuni, Z

    1995-02-14

    Two heat-stable protein inhibitors of protein phosphatase 2A (PP2A), tentatively designated I1PP2A and I2PP2A, have been purified to apparent homogeneity from extracts of bovine kidney. The purified preparations of I1PP2A exhibited an apparent M(r) approximately 30,000 and 250,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-300, respectively. In contrast, the purified preparations of I2PP2A exhibited an apparent M(r) approximately 20,000 and 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-200, respectively. The purified preparations of I1PP2A and I2PP2A inhibited PP2A with 32P-labeled myelin basic protein, 32P-labeled histone H1, 32P-labeled pyruvate dehydrogenase complex, 32P-labeled phosphorylase, and protamine kinase as substrates. By contrast, I1PP2A and I2PP2A exhibited little effect, if any, on the activity of PP2A with 32P-labeled casein, and did not prevent the autodephosphorylation of PP2A in incubations with the autophosphorylation-activated protein kinase [Guo, H., & Damuni, Z. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2500-2504]. The purified preparations of I1PP2A and I2PP2A had little effect, if any, on the activities of protein phosphatase 1, protein phosphatase 2B, protein phosphatase 2C, and pyruvate dehydrogenase phosphatase. With 32P-labeled MBP as a substrate, kinetic analysis according to Henderson showed that I1PP2A and I2PP2A were noncompetitive and displayed a Ki of about 30 and 25 nM, respectively. Following cleavage with Staphylococcus aureus V8 protease, I1PP2A and I2PP2A displayed distinct peptide patterns, indicating that these inhibitor proteins are the products of distinct genes. The N-terminal amino acid sequences of the purified preparations indicate that I1PP2A and I2PP2A are novel proteins.

  7. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B.

    PubMed

    Collins, Ian; Caldwell, John; Fonseca, Tatiana; Donald, Alastair; Bavetsias, Vassilios; Hunter, Lisa-Jane K; Garrett, Michelle D; Rowlands, Martin G; Aherne, G Wynne; Davies, Thomas G; Berdini, Valerio; Woodhead, Steven J; Davis, Deborah; Seavers, Lisa C A; Wyatt, Paul G; Workman, Paul; McDonald, Edward

    2006-02-15

    Structure-based drug design of novel isoquinoline-5-sulfonamide inhibitors of PKB as potential antitumour agents was investigated. Constrained pyrrolidine analogues that mimicked the bound conformation of linear prototypes were identified and investigated by co-crystal structure determinations with the related protein PKA. Detailed variation in the binding modes between inhibitors with similar overall conformations was observed. Potent PKB inhibitors from this series inhibited GSK3beta phosphorylation in cellular assays, consistent with inhibition of PKB kinase activity in cells.

  8. Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors

    PubMed Central

    Calpe, Silvia; Correia, Ana C. P.; Sancho-Serra, Maria del Carmen; Krishnadath, Kausilia K.

    2016-01-01

    ABSTRACT Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications. PMID:26967714

  9. Association of Tenebrio molitor L. alpha-amylase with two protein inhibitors--one monomeric, one dimeric--from wheat flour. Differential scanning calorimetric comparison of heat stabilities.

    PubMed

    Silano, V; Zahnley, J C

    1978-03-28

    Thermal stabilization resulting from protein . protein association between two protein inhibitors (coded as 0.19, a dimer, and 0.28, a monomer) from wheat flour and the alpha-amylase from Tenebrio molitor L. (yellow mealworm) larvae was investigated by differential scanning calorimetry (heating rate 10 degrees C/min). Thermograms (plots of heat flow vs. temperature) for the two inhibitors showed broad endothermic peaks with the same extrema (denaturation temperatures) at 93 degrees C, and equal, small enthalpies of denaturation (2 cal/g). The amylase produced a sharp endotherm at 70.5 degrees C, but a larger enthalpy change on denaturation (6 cal/g). The amylase . inhibitor complexes differed in thermal stability, but both showed significant stabilization relative to free enzyme. The complex formed with monomeric inhibitor 0.28 showed a higher denaturation temperature (85.0 degrees C) than that formed with dimeric inhibitor 0.19 (80.5 degrees C). This order of stabilization agrees with the relative affinities of the inhibitors for the amylase. These thermograms are consistent with previous results which indicated that 1 mol of amylase binds 1 mol of inhibitor 0.19.

  10. Influence of ACE I/D Polymorphism on Circulating Levels of Plasminogen Activator Inhibitor 1, D-Dimer, Ultrasensitive C-Reactive Protein and Transforming Growth Factor β1 in Patients Undergoing Hemodialysis

    PubMed Central

    de Carvalho, Sara Santos; Simões e Silva, Ana Cristina; Sabino, Adriano de Paula; Evangelista, Fernanda Cristina Gontijo; Gomes, Karina Braga; Dusse, Luci Maria SantAna; Rios, Danyelle Romana Alves

    2016-01-01

    Background There is substantial evidence that chronic renal and cardiovascular diseases are associated with coagulation disorders, endothelial dysfunction, inflammation and fibrosis. Angiotensin-Converting Enzyme Insertion/Deletion polymorphism (ACE I/D polymorphism) has also be linked to cardiovascular diseases. Therefore, this study aimed to compare plasma levels of ultrassensible C-reactive protein (usCRP), PAI-1, D-dimer and TGF-β1 in patients undergoing HD with different ACE I/D polymorphisms. Methods The study was performed in 138 patients at ESRD under hemodialysis therapy for more than six months. The patients were divided into three groups according to the genotype. Genomic DNA was extracted from blood cells (leukocytes). ACE I/D polymorphism was investigated by single polymerase chain reaction (PCR). Plasma levels of D-dimer, PAI-1 and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA), and the determination of plasma levels of usCRP was performed by immunonephelometry. Data were analyzed by the software SigmaStat 2.03. Results Clinical characteristics were similar in patients with these three ACE I/D polymorphisms, except for interdialytic weight gain. I allele could be associated with higher interdialytic weight gain (P = 0.017). Patients genotyped as DD and as ID had significantly higher levels of PAI-1 than those with II genotype. Other laboratory parameters did not significantly differ among the three subgroups (P = 0.033). Despite not reaching statistical significance, plasma levels of usCRP were higher in patients carrying the D allele. Conclusion ACE I/D polymorphisms could be associated with changes in the regulation of sodium, fibrinolytic system, and possibly, inflammation. Our data showed that high levels of PAI-1 are detected when D allele is present, whereas greater interdialytic gain is associated with the presence of I allele. However, further studies with different experimental designs are necessary to elucidate the

  11. The covalent structure of the elastase inhibitor from Anemonia sulcata--a "non-classical" Kazal-type protein.

    PubMed

    Tschesche, H; Kolkenbrock, H; Bode, W

    1987-10-01

    The amino-acid sequence of the proteinase inhibitor specific for elastases from the sea anemone Anemonia sulcata was determined from performic-acid oxidized inhibitor and from three cyanogen bromide fragments of reduced and carboxymethylated inhibitor. The molecule consists of a single polypeptide chain formed from 48 amino-acid residues and is stabilized by three intramolecular disulfide bridges. After cyanogen bromide cleavage of the native protein at methionines 10 and 28 followed by chymotryptic cleavage two fragments each containing a single disulfide bridge were isolated. These indicated the location of three intramolecular disulfide linkages between Cys4 and Cys34 (part of A-loop), Cys8 and Cys27 (B-loop) and Cys16 and Cys48 (C-loop). The sequential homology and the disulfide pattern identified the elastase inhibitor as a Kazal-type inhibitor in which, however, not only the CysI-CysII segment is rather short but interestingly the Cys4-Cys34 disulfide anchoring point (i.e. CysI-CysV) in the C-loop is shifted by one turn in the alpha-helical segment towards the C-terminus. Thus, the elastase inhibitor is a non-classical Kazal-type inhibitor with respect to the positioning of the half-cystines. The inhibitor molecule was modelled based on the known three-dimensional structure of the silver pheasant ovomucoid third domain. The shortened amino-terminal segment was arranged in such a manner to allow disulfide bridge formation between the first cysteine Cys4 and the replaced Cys34 under maintenance of a suitable binding loop conformation. The characteristic ovomucoid scaffold consisting of a central alpha-helix, an adjacent three-stranded beta-sheet and the proteinase-binding loop cross-connected through disulfide bridges CysI-CysV and CysIII-CysVI was conserved.

  12. Structural studies of a baboon (Papio sp.) plasma protein inhibitor of cholesteryl ester transferase.

    PubMed

    Buchko, G W; Rozek, A; Kanda, P; Kennedy, M A; Cushley, R J

    2000-08-01

    A 38-residue protein associated with cholesteryl ester transfer inhibition has been identified in baboons (Papio sp.). The cholesteryl ester transfer inhibitor protein (CETIP) corresponds to the N-terminus of baboon apoC-I. Relative to CETIP, baboon apoC-I is a weak inhibitor of baboon cholesteryl ester transferase (CET). To study the structural features responsible for CET inhibition, CETIP was synthesized by solid-phase methods. Using sodium dodecyl sulfate (SDS) to model the lipoprotein environment, the solution structure of CETIP was probed by optical and 1H NMR spectroscopy. Circular dichroism data show that the protein lacks a well-defined structure in water but, upon the addition of SDS, becomes helical (56%). A small blue shift of 8 nm was observed in the intrinsic tryptophan fluorescence of CETIP in the presence of saturating amounts of SDS, suggesting that tryptophan-23 is not buried deeply in the lipid environment. The helical nature of CETIP in the presence of SDS was confirmed by upfield 1Halpha secondary shifts and an average solution structure determined by distance geometry/simulated annealing calculations using 476 NOE-based distance restraints. The backbone (N-Calpha-C=O) root-mean-square deviation of an ensemble of 17 out of 25 calculated structures superimposed on the average structure was 1.06+0.30 A using residues V4-P35 and 0.51+/-0.17 A using residues A7-S32. Although the side-chain orientations fit the basic description of a class A amphipathic helix, both intramolecular salt bridge formation and "snorkeling" of basic side chains toward the polar face play minor, if any, roles in stabilizing the lipid-bound amphipathic structure. Conformational features of the calculated structures for CETIP are discussed relative to models of CETIP inhibition of cholesteryl ester transferase.

  13. cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests.

    PubMed

    Di Gennaro, Simone; Ficca, Anna G; Panichi, Daniela; Poerio, Elia

    2005-04-01

    A cDNA encoding the proteinase inhibitor WSCI (wheat subtilisin/chymotrypsin inhibitor) was isolated by RT-PCR. Degenerate oligonucleotide primers were designed based on the amino acid sequence of WSCI and on the nucleotide sequence of the two homologous inhibitors (CI-2A and CI-2B) isolated from barley. For large-scale production, wsci cDNA was cloned into the E. coli vector pGEX-2T. The fusion protein GST-WSCI was efficiently produced in the bacterial expression system and, as the native inhibitor, was capable of inhibiting bacterial subtilisin, mammalian chymotrypsins and chymotrypsin-like activities present in crude extracts of a number of insect larvae ( Helicoverpa armigera , Plodia interpunctella and Tenebrio molitor ). The recombinant protein produced was also able to interfere with chymotrypsin-like activity isolated from immature wheat caryopses. These findings support a physiological role for this inhibitor during grain maturation.

  14. Modulation of human c-mpl gene expression by thrombopoietin through protein kinase C.

    PubMed

    Sunohara, M; Morikawa, S; Sato, T; Sato, I; Sato, T; Fuse, A

    2003-01-01

    The c-Mpl, thrombopoietin (TPO) receptor specificially controls megakaryocytic growth and differentiation. TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter in the human megakaryoblastic cell line CMK. The maximal promoter activity of c-mpl was obtained 24 hr after pretreatment with TPO for 3 hr and then declined with time. This increase was completely abolished by protein kinase C (PKC) inhibitors (GF109203, calphostin C and H7). Phorbol 12-myristate 13-acetate (PMA) treatment led to an increase in c-mpl promoter activity. These results demonstrate that the promoter activity of c-mpl is modulated by transcription through a PKC-dependent pathway.

  15. Tetrahydrobenzothiophene inhibitors of hepatitis C virus NS5B polymerase.

    PubMed

    Laporte, M G; Lessen, T A; Leister, L; Cebzanov, D; Amparo, E; Faust, C; Ortlip, D; Bailey, T R; Nitz, T J; Chunduru, S K; Young, D C; Burns, C J

    2006-01-01

    A novel series of selective HCV NS5B RNA dependent RNA polymerase inhibitors has been disclosed. These compounds contain an appropriately substituted tetrahydrobenzothiophene scaffold. This communication will detail the SAR and activities of this series.

  16. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors.

    PubMed

    Sable, Rushikesh; Jois, Seetharama

    2015-06-23

    Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.

  17. Regulation of cardiac C-protein phosphorylation

    SciTech Connect

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased (/sup 32/P)phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and (/sup 32/P)phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 ..mu..M Iso and 17% in hearts exposed to Iso plus 1 ..mu..M methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed.

  18. Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins

    PubMed Central

    Ziegler, David S.; Wright, Renee D.; Kesari, Santosh; Lemieux, Madeleine E.; Tran, Mary A.; Jain, Monish; Zawel, Leigh; Kung, Andrew L.

    2008-01-01

    Multiple receptor tyrosine kinases (RTKs), including PDGFR, have been validated as therapeutic targets in glioblastoma multiforme (GBM), yet inhibitors of RTKs have had limited clinical success. As various antiapoptotic mechanisms render GBM cells resistant to chemo- and radiotherapy, we hypothesized that these antiapoptotic mechanisms also confer resistance to RTK inhibition. We found that in vitro inhibition of PDGFR in human GBM cells initiated the intrinsic pathway of apoptosis, as evidenced by mitochondrial outer membrane permeabilization, but downstream caspase activation was blocked by inhibitor of apoptosis proteins (IAPs). Consistent with this, inhibition of PDGFR combined with small molecule inactivation of IAPs induced apoptosis in human GBM cells in vitro and had synergistic antitumor effects in orthotopic mouse models of GBM and in primary human GBM neurospheres. These results demonstrate that concomitant inhibition of IAPs can overcome resistance to RTK inhibitors in human malignant GBM cells, and suggest that blockade of IAPs has the potential to improve treatment outcomes in patients with GBM. PMID:18677408

  19. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions.

    PubMed

    Vargas, Carolyn; Radziwill, Gerald; Krause, Gerd; Diehl, Anne; Keller, Sandro; Kamdem, Nestor; Czekelius, Constantin; Kreuchwig, Annika; Schmieder, Peter; Doyle, Declan; Moelling, Karin; Hagen, Volker; Schade, Markus; Oschkinat, Hartmut

    2014-07-01

    PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Calcineurin inhibitor protein (CAIN) attenuates Group I metabotropic glutamate receptor endocytosis and signaling.

    PubMed

    Ferreira, Lucimar T; Dale, Lianne B; Ribeiro, Fabiola M; Babwah, Andy V; Pampillo, Macarena; Ferguson, Stephen S G

    2009-10-16

    Group I metabotropic glutamate receptors (mGluRs) are coupled via phospholipase Cbeta to the hydrolysis of phosphoinositides and function to modulate neuronal excitability and synaptic transmission at glutamatergic synapses. The desensitization of Group I mGluR signaling is thought to be mediated primarily via second messenger-dependent protein kinases and G protein-coupled receptor kinases. We show here that both mGluR1 and mGluR5 interact with the calcineurin inhibitor protein (CAIN). CAIN is co-immunoprecipitated in a complex with Group I mGluRs from both HEK 293 cells and mouse cortical brain lysates. Purified CAIN and its C-terminal domain specifically interact with glutathione S-transferase fusion proteins corresponding to the second intracellular loop and the distal C-terminal tail domains of mGluR1. The interaction of CAIN with mGluR1 could also be blocked using a Tat-tagged peptide corresponding to the mGluR1 second intracellular loop domain. Overexpression of full-length CAIN attenuates the agonist-stimulated endocytosis of both mGluR1a and mGluR5a in HEK 293 cells, but expression of the CAIN C-terminal domain does not alter mGluR5a internalization. In contrast, overexpression of either full-length CAIN or the CAIN C-terminal domain impairs agonist-stimulated inositol phosphate formation in HEK 293 cells expressing mGluR1a. This CAIN-mediated antagonism of mGluR1a signaling appears to involve the disruption of receptor-Galpha(q/11) complexes. Taken together, these observations suggest that the association of CAIN with intracellular domains involved in mGluR/G protein coupling provides an additional mechanism by which Group I mGluR endocytosis and signaling are regulated.

  1. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis.

    PubMed

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang

    2004-11-01

    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  2. A cotton gene encoding a polygalacturonase inhibitor-like protein is specifically expressed in petals.

    PubMed

    Shi, Haiyan; Zhu, Li; Zhou, Ying; Li, Gang; Chen, Liang; Li, Xuebao

    2009-04-01

    A cDNA encoding a polygalacturonase-inhibitor-like protein (PGIP) was isolated from cotton flower cDNA library. The cDNA, designated GhPS1 (GenBank accession No. ABO47744), encodes a protein with 370 amino acids that shares high similarity with the known plant PGIPs. Fluorescent microscopy indicated that GhPS1 protein localizes on the cell membranes as well as in cytoplasm. Real-time quantitative RT-PCR and Northern blot analyses showed that GhPS1 was specifically expressed in cotton petals. Furthermore, the GhPS1 expression was gradually up-regulated in petal development, and its transcripts were accumulated to the highest level in the petals at anthesis. However, its expression level was declined rapidly in senesced petals after flowering. At low temperature, the GhPS1 gene expression was gradually decreased to very low level in petals. Collectively, our results suggest that GhPS1 gene might be involved in cotton petal development and senescence, and in response to cold stress.

  3. Hereditary angioedema with normal C1 inhibitor: clinical characteristics and treatment response with plasma-derived human C1 inhibitor concentrate (Berinert(®)) in a French cohort.

    PubMed

    Bouillet, Laurence; Boccon-Gibod, Isabelle; Gompel, Anne; Floccard, Bernard; Martin, Ludovic; Blanchard-Delaunay, Claire; Launay, David; Fain, Olivier

    2017-03-01

    Hereditary angioedema (HAE) is a rare genetic disorder characterised by episodes of swelling without urticaria. Berinert® (CSL Behring) is a plasma-derived human C1 inhibitor (C1-INH) concentrate, approved for the treatment of HAE with C1-INH deficiency (C1-INH-HAE), however, it is often used off-label in Europe to treat HAE with normal C1-INH.

  4. Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.

    PubMed

    Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V

    2017-05-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Hereditary angioedema in a Jordanian family with a novel missense mutation in the C1-inhibitor N-terminal domain.

    PubMed

    Jaradat, Saied A; Caccia, Sonia; Rawashdeh, Rifaat; Melhem, Motasem; Al-Hawamdeh, Ali; Carzaniga, Thomas; Haddad, Hazem

    2016-03-01

    Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) is an autosomal dominant disease caused by mutations in the SERPING1 gene. A Jordanian family, including 14 individuals with C1-INH-HAE clinical symptoms, was studied. In the propositus and his parents, SERPING1 had four mutations leading to amino acid substitutions. Two are known polymorphic variants (c.167T>C; p.Val34Ala and c.1438G>A; p.Val458Met), the others are newly described. One (c.203C>T; p.Thr46Ile) is located in the N-terminal domain of the C1-inhibitor protein and segregates with angioedema symptoms in the family. The other (c.800C>T; p.Ala245Val) belongs to the serpin domain, and derives from the unaffected father. DNA from additional 24 family members were screened for c.203C>T mutation in the target gene. All individuals heterozygous for the c.203C>T mutation had antigenic and functional plasma levels of C1-inhibitor below 50% of normal, confirming the diagnosis of type I C1-INH-HAE. Angioedema symptoms were present in 14 of 16 subjects carrier for the c.203T allele. Among these subjects, those carrying the c.800T variation had more severe and frequent symptoms than subjects without this mutation. This family-based study provides the first evidence that multiple amino acid substitutions in SERPING1 could influence C1-INH-HAE phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction

    PubMed Central

    Yang, Chao; Wang, Wanhe; Li, Guo-Dong; Zhong, Hai-Jing; Dong, Zhen-Zhen; Wong, Chun-Yuen; Kwong, Daniel W. J.; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-01

    The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment. PMID:28225008

  7. Protein kinase C and the antiviral effect of human interferon.

    PubMed

    Cernescu, C; Constantinescu, S N; Baltă, F; Popescu, L M; Cajal, N

    1989-01-01

    Protein kinase C (PKC) inhibitors: Hidaka's compounds H-7 (10 microM) and H-8 (20 microM), palmitoyl-carnitine (10 microM) and phloretin (50 microM), did not modify the antiviral effect of human natural or recombinant interferon alpha and of natural interferon beta. The tumor promoter 12-o-tetradecanoyl-phorbol-13-acetate (TPA) (200 nM), known as activator of PKC induced an antiviral state when tested on human embryo fibroblasts challenged with the vesicular stomatitis virus. The battery of PKC inhibitors used inhibited the antiviral effect induced by TPA. Palmitoyl-carnitine (10 microM) exerted a toxic effect that was reversed by interferon treatment (2,000 IU/ml interferon alpha). These results suggest that PKC, possibly activated by interferon-receptor interaction, is not essential for inducing the antiviral effect of interferon, but, probably, mediates the antiviral effect of TPA.

  8. A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation

    PubMed Central

    Schmitz, Anna-Lena; Schrage, Ramona; Gaffal, Evelyn; Charpentier, Thomas H.; Wiest, Johannes; Hiltensperger, Georg; Morschel, Julia; Hennen, Stephanie; Häußler, Daniela; Horn, Velten; Wenzel, Daniela; Grundmann, Manuel; Büllesbach, Katrin M.; Schröder, Ralf; Brewitz, H. Henning; Schmidt, Johannes; Gomeza, Jesús; Galés, Céline; Fleischmann, Bernd K.; Tüting, Thomas; Imhof, Diana; Tietze, Daniel; Gütschow, Michael; Holzgrabe, Ulrike; Sondek, John; Harden, T. Kendall; Mohr, Klaus; Kostenis, Evi

    2015-01-01

    SUMMARY In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be “frozen” pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors. PMID:25036778

  9. Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme.

    PubMed

    Love, Robert A; Parge, Hans E; Yu, Xiu; Hickey, Michael J; Diehl, Wade; Gao, Jingjin; Wriggers, Hilary; Ekker, Anne; Wang, Liann; Thomson, James A; Dragovich, Peter S; Fuhrman, Shella A

    2003-07-01

    The virus-encoded nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase and is absolutely required for replication of the virus. NS5B exhibits significant differences from cellular polymerases and therefore has become an attractive target for anti-HCV therapy. Using a high-throughput screen, we discovered a novel NS5B inhibitor that binds to the enzyme noncompetitively with respect to nucleotide substrates. Here we report the crystal structure of NS5B complexed with this small molecule inhibitor. Unexpectedly, the inhibitor is bound within a narrow cleft on the protein's surface in the "thumb" domain, about 30 A from the enzyme's catalytic center. The interaction between this inhibitor and NS5B occurs without dramatic changes to the structure of the protein, and sequence analysis suggests that the binding site is conserved across known HCV genotypes. Possible mechanisms of inhibition include perturbation of protein dynamics, interference with RNA binding, and disruption of enzyme oligomerization.

  10. Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin.

    PubMed

    Mazumdar, M; Parrack, P K; Mukhopadhyay, K; Bhattacharyya, B

    1992-07-21

    5,5'-Bis[8-(phenylamino)-1-naphthalenesulfonate] (bis-ANS), the fluorescent probe which binds to tubulin, inhibits its assembly into microtubules [Horowitz et al. (1984) J. Biol. Chem. 259, 14647-14650]. The results described in this paper demonstrate that bis-ANS is quite distinct from other well-known microtubule inhibitors in its specificity of action. The inhibitory potentials of bis-ANS and its three structural analogues ANS, Prodan [6-propionyl-2-(dimethylamino)naphthalene], and NSA (naphthalenesulfonic acid) have been compared. It is found that they can be arranged in the following order according to their polymerization inhibitory potentials: bis-ANS approximately equal to Prodan much greater than ANS greater than NSA. Interestingly, the naphthalene nucleus is sufficient to cause inhibition of polymerization. Detailed experiments were carried out to examine the mode of assembly inhibition by aminonaphthalenes at the molecular level, using bis-ANS as a representative. It was found that there was little or no effect of bis-ANS on the assembly of tubulin when polymerization was induced by assembly promoters like taxol, DMSO, or glutamate, or on the assembly of subtilisin-digested protein (tubulin S), for all of which half-maximal inhibition could not be achieved even at 120 microM bis-ANS. On the contrary, bis-ANS acts as an inhibitor in the case of MAP- (MAP2 and tau) and poly(L-lysine)-induced assembly of tubulin, with half-maximal inhibitory concentrations ranging from 1.5 to 7.6 microM. Our results place bis-ANS as a novel inhibitor, which seems to specifically inhibit C-termini-mediated assembly. Of all assembly inhibitors known so far, none exhibits such selection.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Terminal complement complexes and C1/C1 inhibitor complexes in autoimmune thyroid disease.

    PubMed Central

    Weetman, A P; Cohen, S B; Oleesky, D A; Morgan, B P

    1989-01-01

    The potential role of complement activation and the membrane attack complex in the pathogenesis of Graves' disease and Hashimoto's thyroiditis has been investigated by measuring serum concentrations of the C1r-C1s-C1 inhibitor complex (C1/C1-inh) and the terminal complement complex (TCC), and by studying the binding to thyroid tissue of monoclonal and polyclonal antibodies against TCC neoantigens. Serum C1/C1-inh and TCC concentrations were significantly increased in 29 patients with untreated Graves' disease compared with 47 healthy subjects (P less than 0.001 for both), and decreased significantly after carbimazole treatment in 18 of these patients for whom post-treatment samples were available (P less than 0.01 and P less than 0.02, respectively). The serum TCC concentration, but not that of C1/C1-inh, was also significantly increased in 15 patients with Hashimoto's thyroiditis compared with the 47 healthy subjects (P less than 0.001). TCCs were identified by immunohistochemical staining around the thyroid follicles in thyroidectomy specimens from patients with Graves' disease (six out of six) and Hashimoto's thyroiditis (two out of two); normal thyroid tissue from two subjects showed no staining. These results suggest a role for complement, in particular the membrane attack complex in the pathogenesis of autoimmune thyroid disease. Images Fig. 3 PMID:2766576

  12. Preclinical Characterization of BMS-791325, an Allosteric Inhibitor of Hepatitis C Virus NS5B Polymerase

    PubMed Central

    Liu, Mengping; Gentles, Robert G.; Ding, Min; Voss, Stacey; Pelosi, Lenore A.; Wang, Ying-Kai; Rigat, Karen L.; Mosure, Kathleen W.; Bender, John A.; Knipe, Jay O.; Colonno, Richard; Meanwell, Nicholas A.; Kadow, John F.; Santone, Kenneth S.; Roberts, Susan B.; Gao, Min

    2014-01-01

    BMS-791325 is an allosteric inhibitor that binds to thumb site 1 of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. BMS-791325 inhibits recombinant NS5B proteins from HCV genotypes 1, 3, 4, and 5 at 50% inhibitory concentrations (IC50) below 28 nM. In cell culture, BMS-791325 inhibited replication of HCV subgenomic replicons representing genotypes 1a and 1b at 50% effective concentrations (EC50s) of 3 nM and 6 nM, respectively, with similar (3 to 18 nM) values for genotypes 3a, 4a, and 5a. Potency against genotype 6a showed more variability (9 to 125 nM), and activity was weaker against genotype 2 (EC50, 87 to 925 nM). Specificity was demonstrated by the absence of activity (EC50s of >4 μM) against a panel of mammalian viruses, and cytotoxic concentrations (50%) were >3,000-fold above the HCV EC50. Resistance substitutions selected by BMS-791325 in genotype 1 replicons mostly mapped to a single site, NS5B amino acid 495 (P495A/S/L/T). Additive or synergistic activity was observed in combination studies using BMS-791325 with alfa interferon plus ribavirin, inhibitors of NS3 protease or NS5A, and other classes of NS5B inhibitor (palm site 2-binding or nucleoside analogs). Plasma and liver exposures in vivo in several animal species indicated that BMS-791325 has a hepatotropic disposition (liver-to-plasma ratios ranging from 1.6- to 60-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥10-fold above the inhibitor EC50s observed with HCV genotype 1 replicons. These findings support the evaluation of BMS-791325 in combination regimens for the treatment of HCV. Phase 3 studies are ongoing. PMID:24733465

  13. High-throughput fluorescence anisotropy screen for inhibitors of the oncogenic mRNA binding protein, IMP-1.

    PubMed

    Mahapatra, Lily; Mao, Chengjian; Andruska, Neal; Zhang, Chen; Shapiro, David J

    2014-03-01

    Cancer cell proliferation is regulated by oncogenes, such as c-Myc. An alternative approach to directly targeting individual oncogenes is to target IMP-1, an oncofetal protein that binds to and stabilizes messenger RNAs (mRNAs), leading to elevated expression of c-Myc and other oncogenes. Expression of IMP-1 is tightly correlated with a poor prognosis and reduced survival in ovarian, lung, and colon cancer. Small-molecule inhibitors of IMP-1 have not been reported. We established a fluorescence anisotropy/polarization microplate assay (FAMA) for analyzing binding of IMP-1 to a fluorescein-labeled 93 nucleotide c-Myc mRNA target (flMyc), developed the assay as a highly robust (Z' factor = 0.60) FAMA-based high-throughput screen for inhibitors of binding of IMP-1 to flMyc, and carried out a successful pilot screen of 17,600 small molecules. Our studies support rapidly filtering out toxic nonspecific inhibitors using an early cell-based assay in control cells lacking the target protein. The physiologic importance of verified hits from the in vitro high-throughput screen was demonstrated by identification of the first small-molecule IMP-1 inhibitor, a lead compound that selectively inhibits proliferation of IMP-1-positive cancer cells with very little or no effect on proliferation of IMP-1-negative cells.

  14. High-Throughput Fluorescence Anisotropy Screen for Inhibitors of the Oncogenic mRNA-binding Protein, IMP-1

    PubMed Central

    Mahapatra, Lily; Mao, Chengjian; Andruska, Neal; Zhang, Chen; Shapiro, David J.

    2014-01-01

    Cancer cell proliferation is regulated by oncogenes, such as c-Myc. An alternative approach to directly targeting individual oncogenes is to target IMP-1, an oncofetal protein that binds to and stabilizes mRNAs, leading to elevated expression of c-Myc and other oncogenes. Expression of IMP-1 is tightly correlated with a poor prognosis and reduced survival in ovarian, lung and colon cancer. Small molecule inhibitors of IMP-1 have not been reported. We established a fluorescence anisotropy/polarization microplate assay (FAMA) for analyzing binding of IMP-1 to a fluorescein-labeled 93 nucleotide c-Myc mRNA target (flMyc), developed the assay as a highly robust (Z’ factor = 0.60) FAMA-based high throughput screen for inhibitors of binding of IMP-1 to flMyc, and carried out a successful pilot screen of 17,600 small molecules. Our studies support rapidly filtering out toxic non-specific inhibitors using an early cell-based assay in control cells lacking the target protein. The physiologic importance of verified hits from the in vitro high throughput screen was demonstrated by identification of the first small molecule IMP-1 inhibitor; a lead compound that selectively inhibits proliferation of IMP-1 positive cancer cells with very little or no effect on proliferation of IMP-1 negative cells. PMID:24108120

  15. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon

    2012-11-01

    We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.

  16. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease.

    PubMed

    Riebold, Mathias; Kozany, Christian; Freiburger, Lee; Sattler, Michael; Buchfelder, Michael; Hausch, Felix; Stalla, Günter K; Paez-Pereda, Marcelo

    2015-03-01

    One function of the glucocorticoid receptor (GR) in corticotroph cells is to suppress the transcription of the gene encoding proopiomelanocortin (POMC), the precursor of the stress hormone adrenocorticotropin (ACTH). Cushing disease is a neuroendocrine condition caused by partially glucocorticoid-resistant corticotroph adenomas that excessively secrete ACTH, which leads to hypercortisolism. Mutations that impair GR function explain glucocorticoid resistance only in sporadic cases. However, the proper folding of GR depends on direct interactions with the chaperone heat shock protein 90 (HSP90, refs. 7,8). We show here that corticotroph adenomas overexpress HSP90 compared to the normal pituitary. N- and C-terminal HSP90 inhibitors act at different steps of the HSP90 catalytic cycle to regulate corticotroph cell proliferation and GR transcriptional activity. C-terminal inhibitors cause the release of mature GR from HSP90, which promotes its exit from the chaperone cycle and potentiates its transcriptional activity in a corticotroph cell line and in primary cultures of human corticotroph adenomas. In an allograft mouse model, the C-terminal HSP90 inhibitor silibinin showed anti-tumorigenic effects, partially reverted hormonal alterations, and alleviated symptoms of Cushing disease. These results suggest that the pathogenesis of Cushing disease caused by overexpression of heat shock proteins and consequently misregulated GR sensitivity may be overcome pharmacologically with an appropriate HSP90 inhibitor.

  17. Pharmacokinetic/Pharmacodynamic predictors of clinical potency for hepatitis C virus nonnucleoside polymerase and protease inhibitors.

    PubMed

    Reddy, Micaela B; Morcos, Peter N; Le Pogam, Sophie; Ou, Ying; Frank, Karl; Lave, Thierry; Smith, Patrick

    2012-06-01

    This analysis was conducted to determine whether the hepatitis C virus (HCV) viral kinetics (VK) model can predict viral load (VL) decreases for nonnucleoside polymerase inhibitors (NNPolIs) and protease inhibitors (PIs) after 3-day monotherapy studies of patients infected with genotype 1 chronic HCV. This analysis includes data for 8 NNPolIs and 14 PIs, including VL decreases from 3-day monotherapy, total plasma trough concentrations on day 3 (C(min)), replicon data (50% effective concentration [EC(50)] and protein-shifted EC(50) [EC(50,PS)]), and for PIs, liver-to-plasma ratios (LPRs) measured in vivo in preclinical species. VK model simulations suggested that achieving additional log(10) VL decreases greater than one required 10-fold increases in the C(min). NNPolI and PI data further supported this result. The VK model was successfully used to predict VL decreases in 3-day monotherapy for NNPolIs based on the EC(50,PS) and the day 3 C(min). For PIs, however, predicting VL decreases using the same model and the EC(50,PS) and day 3 C(min) was not successful; a model including LPR values and the EC(50) instead of the EC(50,PS) provided a better prediction of VL decrease. These results are useful for designing phase 1 monotherapy studies for NNPolIs and PIs by clarifying factors driving VL decreases, such as the day 3 C(min) and the EC(50,PS) for NNPolIs or the EC(50) and LPR for PIs. This work provides a framework for understanding the pharmacokinetic/pharmacodynamic relationship for other HCV drug classes. The availability of mechanistic data on processes driving the target concentration, such as liver uptake transporters, should help to improve the predictive power of the approach.

  18. Cholesteryl Ester Transfer Protein Inhibitors in the Treatment of Dyslipidemia: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhou, Faying; Chen, Caiyu; Zhou, Liang; Li, Yafei; Liu, Ling; Pei, Fang; Luo, Hao; Hu, Zhangxue; Cai, Jing; Zeng, Chunyu

    2013-01-01

    Cholesteryl ester transfer protein (CETP) inhibitors are gaining substantial research interest for raising high density lipoprotein cholesterol levels. The aim of the research was to estimate the efficacy and safety of cholesteryl ester transfer protein inhibitors as novel lipid modifying drugs. Systematic searches of English literature for randomized controlled trials (RCT) were collected from MEDLINE, EBASE, CENTRAL and references listed in eligible studies. Two independent authors assessed the search results and only included the double-blind RCTs by using cholesteryl ester transfer protein inhibitors as exclusively or co-administrated with statin therapy irrespective of gender in enrolled adult subjects. Two independent authors extracted the data by using predefined data fields. Of 503 studies identified, 14 studies met the inclusion criteria, and 12 studies were included into the final meta-analysis. Our meta-analysis revealed that CETP inhibitors increased the HDL-c levels (n = 2826, p<0.00001, mean difference (MD)  = 20.47, 95% CI [19.80 to 21.15]) and total cholesterol (n = 3423, p = 0.0002, MD = 3.57, 95%CI [1.69 to 5.44] to some extent combined with a reduction in triglyceride (n = 3739, p<0.00001, MD = −10.47, 95% CI [−11.91 to −9.03]) and LDL-c (n = 3159, p<0.00001, MD = −17.12, 95% CI [−18.87 to −15.36]) irrespective of mono-therapy or co-administration with statins. Subgroup analysis suggested that the lipid modifying effects varied according to the four currently available CETP inhibitors. CETP inhibitor therapy did not increase the adverse events when compared with control. However, we observed a slight increase in blood pressure (SBP, n = 2384, p<0.00001, MD = 2.73, 95% CI [2.14 to 3.31], DBP, n = 2384, p<0.00001, MD = 1.16, 95% CI [0.73 to 1.60]) after CETP inhibitor treatment, which were mainly ascribed to the torcetrapib treatment subgroup. CETP inhibitors therapy is associated with

  19. A Bacillus subtilis fusion protein system to produce soybean Bowman-Birk protease inhibitor.

    PubMed

    Vogtentanz, Gudrun; Collier, Katherine D; Bodo, Michael; Chang, Judy H; Day, Anthony G; Estell, David A; Falcon, Brandy C; Ganshaw, Grant; Jarnagin, Alisha S; Kellis, James T; Kolkman, Marc A B; Lai, Cindy S; Meneses, Renato; Miller, Jeffrey V; de Nobel, Hans; Power, Scott; Weyler, Walter; Wong, David L; Schmidt, Brian F

    2007-09-01

    A fusion protein based expression system was developed in the Gram-positive bacterium Bacillus subtilis to produce the soybean Bowman-Birk protease inhibitor (sBBI). The N-terminus of the mature sBBI was fused to the C-terminus of the 1st cellulose binding domain linker (CBD linker) of the BCE103 cellulase (from an alkalophilic Bacillus sp.). The strong aprE promoter was used to drive the transcription of the fusion gene and the AprE signal sequence was fused to the mature BCE103 cellulase for efficient secretion of the fusion protein into the culture medium. It was necessary to use a B. subtilis strain deficient in nine protease genes in order to reduce the proteolytic degradation of the fusion protein during growth. The fusion protein was produced in shake flasks at concentrations >1g/L. After growth, the sBBI was activated by treatment with 2-mercaptoethanol to allow the disulfide bonds to form correctly. An economical and scalable purification process was developed to purify sBBI based on acid precipitation of the fusion protein followed by acid/heat cleavage of the fusion protein at labile Asp-Pro bonds in the CBD linker. If necessary, non-native amino acids at the N- and C-termini were trimmed off using glutamyl endopeptidase I. After purification, an average of 72 mg of active sBBI were obtained from 1L of culture broth representing an overall yield of 21% based on the amount of sBBI activated before purification.

  20. Geminivirus C4 protein alters Arabidopsis development.

    PubMed

    Mills-Lujan, Katherine; Deom, Carl Michael

    2010-03-01

    The C4 protein of beet curly top virus [BCTV-B (US:Log:76)] induces hyperplasia in infected phloem tissue and tumorigenic growths in transgenic plants. The protein offers an excellent model for studying cell cycle control, cell differentiation, and plant development. To investigate the role of the C4 protein in plant development, transgenic Arabidopsis thaliana plants were generated in which the C4 transgene was expressed under the control of an inducible promoter. A detailed analysis of the developmental changes that occur in cotyledons and hypocotyls of seedlings expressing the C4 transgene showed extensive cell division in all tissues types examined, radically altered tissue layer organization, and the absence of a clearly defined vascular system. Induced seedlings failed to develop true leaves, lateral roots, and shoot and root apical meristems, as well as vascular tissue. Specialized epidermis structures, such as stomata and root hairs, were either absent or developmentally impaired in seedlings that expressed C4 protein. Exogenous application of brassinosteroid and abscisic acid weakly rescued the C4-induced phenotype, while induced seedlings were hypersensitive to gibberellic acid and kinetin. These results indicate that ectopic expression of the BCTV C4 protein in A. thaliana drastically alters plant development, possibly through the disruption of multiple hormonal pathways.

  1. Immunogenicity assessment of recombinant human c1-inhibitor: an integrated analysis of clinical studies.

    PubMed

    Hack, C Erik; Mannesse, Maurice; Baboeram, Aartie; Oortwijn, Beatrijs; Relan, Anurag

    2012-10-01

    Recombinant human C1-inhibitor (rhC1INH) is used to treat acute angioedema attacks in hereditary angioedema (HAE) due to a genetic C1INH deficiency. Recombinant proteins in general may induce antibody responses and therefore evaluation of such responses in the target population is an essential step in the clinical development program of a recombinant protein. Here we report the assessment of the immunogenicity of rhC1INH in symptomatic HAE patients. Blood samples collected before and after administration of rhC1INH were tested for antibodies against plasma-derived (pd) or rhC1INH, or against host-related impurities (HRI). Above cut-off screening results were confirmed with displacement assays, and also tested for neutralizing anti-C1INH antibodies. Finally, the relation of antibodies to clinical efficacy and safety of rhC1INH was analyzed. Data from 155 HAE patients who received 424 treatments with rhC1INH were analyzed. 1.5% of all pre-exposure tests and 1.3% of all post-exposure tests were above the cut-off level in the screening assay for anti-C1INH antibodies. Six patients (3.9%) had anti-rhC1INH antibodies positive in the confirmatory assay. In two patients, confirmed antibodies were pre-existing with no increase post-exposure; in three patients, the antibodies occurred on a single occasion post-exposure; and in one patient, on subsequent occasions post-exposure. Neutralizing anti-pdC1INH antibodies were not found. Anti-HRI antibodies in the screening assay occurred in <0.7% of the tests before exposure to rhC1INH, in <1.9% after first exposure and in <3.1% after repeat treatment with rhC1INH. Five patients had anti-HRI antibodies positive in the confirmatory assay. In one patient, the antibodies were pre-existing, whereas in three of the 155 rhC1INH-treated patients (1.9%), confirmed anti-HRI antibodies occurred at more time points. Antibody findings were not associated with altered efficacy of rhC1INH or adverse events. These results indicate a reassuring

  2. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  3. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

    PubMed Central

    Jun, Kyu-Yeon; Kwon, Youngjoo

    2016-01-01

    There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed. PMID:27582553

  4. Novel Pyridazinone Inhibitors for Vascular Adhesion Protein-1 (VAP-1): Old target – New Inhibition Mode

    PubMed Central

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J.; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A.

    2014-01-01

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Though they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors. PMID:24304424

  5. [Characterization and postnatal evolution of an endogenous protein inhibitor of intestinal fucosyltransferase activities].

    PubMed

    Ruggiero-Lopez, D; Martin, A; Louisot, P

    1991-01-01

    An endogenous protein inhibitor was shown to act in vitro on small intestinal fucosyl-transferase activities. In order to support the hypothesis of a physiological role in vivo for this inhibitor in the regulation of the fucosylation process, we characterized this inhibitor and studied its postnatal development. This inhibitor acts differently upon the enzymes of intestinal fucosylation processes. Among the different organs analyzed, the inhibitor was found only in the intestine and the pancreas. Intestinal inhibitory activity decreased 10 fold between the 7th and the 24th day of rat postnatal development; this decrease was inversely correlated with intestinal fucosyl-transferase activities. Two mechanisms of action by which the inhibitor could exert a physiological regulatory role are discussed.

  6. Purification and partial characterization of a protein proteinanse inhibitor isolated from eggplant exocarp.

    PubMed

    Kanamori, M; Ibuki, F; Tashiro, M; Yamada, M; Miyoshi, M

    1976-08-09

    A protein proteinase inhibitor was isolated and purified from eggplant exocarp by heat treatment, ammomium sulfate fractionation, column chromatography on DEAE-cellulose, and gel filtration on Sephadex G-25 and G-50. The final purified preparation of the inhibitor was found homogeneous by electrophoretic analysis. The inhibitor showed strong and stoichiometric inhibition on trypsin whereas it showed weak inhibition on alpha-chymotrypsin. It displayed no inhibiting characteristics on pepsin. The molecular weight of the inhibitor was estimated to be approximately 6000. This finding, with the trypsin inhibition data, suggested that the inhibitor combined trypsin in the molar ratio of 1:1. The amino acid analysis indicated that the inhibitor is rich in half-cystine, glycine and aspartic acid, and contains no tryptophan, histidine, methionine or valine.

  7. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode.

    PubMed

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A

    2013-12-27

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific, and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity, and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Although they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors, and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors.

  8. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor

    SciTech Connect

    Sun Weiyong; Kimura, Hiromichi; Shiota, Kunio . E-mail: ashiota@mail.ecc.u-tokyo.ac.jp

    2006-04-14

    Proliferation related acidic leucine-rich protein PAL31 (PAL31) is expressed in proliferating cells and consists of 272 amino acids with a tandem structure of leucine-rich repeats in the N-terminus and a highly acidic region with a putative nuclear localization signal in the C-terminus. We previously reported that PAL31 is required for cell cycle progression. In the present study, we found that the antisense oligonucleotide of PAL31 induced apoptosis to the transfected Nb2 cells. Stable transfectants, in which PAL31 was regulated by an inducible promoter, were generated to gain further insight into the signaling role of PAL31 in the regulation of apoptosis. Expression of PAL31 resulted in the marked rescue of Rat1 cells from etoposide and UV radiation-induced apoptosis and the cytoprotection was correlated with the levels of PAL31 protein. Thus, cytoprotection from apoptosis is a physiological function of PAL31. PAL31 can suppress caspase-3 activity but not cytochrome c release in vitro, indicating that PAL31 is a direct caspase-3 inhibitor. In conclusion, PAL31 is a multifunctional protein working as a cell cycle progression factor as well as a cell survival factor.

  9. Prevention of Hereditary Angioedema Attacks with a Subcutaneous C1 Inhibitor.

    PubMed

    Longhurst, Hilary; Cicardi, Marco; Craig, Timothy; Bork, Konrad; Grattan, Clive; Baker, James; Li, Huamin H; Reshef, Avner; Bonner, James; Bernstein, Jonathan A; Anderson, John; Lumry, William R; Farkas, Henriette; Katelaris, Constance H; Sussman, Gordon L; Jacobs, Joshua; Riedl, Marc; Manning, Michael E; Hebert, Jacques; Keith, Paul K; Kivity, Shmuel; Neri, Sergio; Levy, Donald S; Baeza, Maria L; Nathan, Robert; Schwartz, Lawrence B; Caballero, Teresa; Yang, William; Crisan, Ioana; Hernandez, María D; Hussain, Iftikhar; Tarzi, Michael; Ritchie, Bruce; Králíčková, Pavlina; Guilarte, Mar; Rehman, Syed M; Banerji, Aleena; Gower, Richard G; Bensen-Kennedy, Debra; Edelman, Jonathan; Feuersenger, Henrike; Lawo, John-Philip; Machnig, Thomas; Pawaskar, Dipti; Pragst, Ingo; Zuraw, Bruce L

    2017-03-23

    Background Hereditary angioedema is a disabling, potentially fatal condition caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein. In a phase 2 trial, the use of CSL830, a nanofiltered C1 inhibitor preparation that is suitable for subcutaneous injection, resulted in functional levels of C1 inhibitor activity that would be expected to provide effective prophylaxis of attacks. Methods We conducted an international, prospective, multicenter, randomized, double-blind, placebo-controlled, dose-ranging, phase 3 trial to evaluate the efficacy and safety of self-administered subcutaneous CSL830 in patients with type I or type II hereditary angioedema who had had four or more attacks in a consecutive 2-month period within 3 months before screening. We randomly assigned the patients to one of four treatment sequences in a crossover design, each involving two 16-week treatment periods: either 40 IU or 60 IU of CSL830 per kilogram of body weight twice weekly followed by placebo, or vice versa. The primary efficacy end point was the number of attacks of angioedema. Secondary efficacy end points were the proportion of patients who had a response (≥50% reduction in the number of attacks with CSL830 as compared with placebo) and the number of times that rescue medication was used. Results Of the 90 patients who underwent randomization, 79 completed the trial. Both doses of CSL830, as compared with placebo, reduced the rate of attacks of hereditary angioedema (mean difference with 40 IU, -2.42 attacks per month; 95% confidence interval [CI], -3.38 to -1.46; and mean difference with 60 IU, -3.51 attacks per month; 95% CI, -4.21 to -2.81; P<0.001 for both comparisons). Response rates were 76% (95% CI, 62 to 87) in the 40-IU group and 90% (95% CI, 77 to 96) in the 60-IU group. The need for rescue medication was reduced from 5.55 uses per month in the placebo group to 1.13 uses per month in the 40-IU group and from 3.89 uses in the placebo group to 0

  10. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors.

    PubMed

    Schepetkin, Igor A; Kirpotina, Liliya N; Khlebnikov, Andrei I; Hanks, Tracey S; Kochetkova, Irina; Pascual, David W; Jutila, Mark A; Quinn, Mark T

    2012-06-01

    In efforts to identify novel small molecules with anti-inflammatory properties, we discovered a unique series of tetracyclic indenoquinoxaline derivatives that inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 activation. Compound IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) was found to be a potent, noncytotoxic inhibitor of pro-inflammatory cytokine [interleukin (IL)-1α, IL-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon-γ, and granulocyte-macrophage colony-stimulating factor] and nitric oxide production by human and murine monocyte/macrophages. Three additional potent inhibitors of cytokine production were identified through further screening of IQ-1 analogs. The sodium salt of IQ-1 inhibited LPS-induced TNF-α and IL-6 production in MonoMac-6 cells with IC(50) values of 0.25 and 0.61 μM, respectively. Screening of 131 protein kinases revealed that derivative IQ-3 [11H-indeno[1,2-b]quinoxalin-11-one-O-(2-furoyl)oxime]was a specific inhibitor of the c-Jun N-terminal kinase (JNK) family, with preference for JNK3. This compound, as well as IQ-1 and three additional oxime indenoquinoxalines, were found to be high-affinity JNK inhibitors with nanomolar binding affinity and ability to inhibit c-Jun phosphorylation. Furthermore, docking studies showed that hydrogen bonding interactions of the active indenoquinoxalines with Asn152, Gln155, and Met149 of JNK3 played an important role in enzyme binding activity. Finally, we showed that the sodium salt of IQ-1 had favorable pharmacokinetics and inhibited the ovalbumin-induced CD4(+) T-cell immune response in a murine delayed-type hypersensitivity model in vivo. We conclude that compounds with an indenoquinoxaline nucleus can serve as specific small-molecule modulators for mechanistic studies of JNKs as well as a potential leads for the development of anti-inflammatory drugs.

  11. Identification and Characterization of a Novel Class of c-Jun N-terminal Kinase Inhibitors

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Hanks, Tracey S.; Kochetkova, Irina; Pascual, David W.; Jutila, Mark A.

    2012-01-01

    In efforts to identify novel small molecules with anti-inflammatory properties, we discovered a unique series of tetracyclic indenoquinoxaline derivatives that inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 activation. Compound IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) was found to be a potent, noncytotoxic inhibitor of pro-inflammatory cytokine [interleukin (IL)-1α, IL-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon-γ, and granulocyte-macrophage colony-stimulating factor] and nitric oxide production by human and murine monocyte/macrophages. Three additional potent inhibitors of cytokine production were identified through further screening of IQ-1 analogs. The sodium salt of IQ-1 inhibited LPS-induced TNF-α and IL-6 production in MonoMac-6 cells with IC50 values of 0.25 and 0.61 μM, respectively. Screening of 131 protein kinases revealed that derivative IQ-3 [11H-indeno[1,2-b]quinoxalin-11-one-O-(2-furoyl)oxime]was a specific inhibitor of the c-Jun N-terminal kinase (JNK) family, with preference for JNK3. This compound, as well as IQ-1 and three additional oxime indenoquinoxalines, were found to be high-affinity JNK inhibitors with nanomolar binding affinity and ability to inhibit c-Jun phosphorylation. Furthermore, docking studies showed that hydrogen bonding interactions of the active indenoquinoxalines with Asn152, Gln155, and Met149 of JNK3 played an important role in enzyme binding activity. Finally, we showed that the sodium salt of IQ-1 had favorable pharmacokinetics and inhibited the ovalbumin-induced CD4+ T-cell immune response in a murine delayed-type hypersensitivity model in vivo. We conclude that compounds with an indenoquinoxaline nucleus can serve as specific small-molecule modulators for mechanistic studies of JNKs as well as a potential leads for the development of anti-inflammatory drugs. PMID:22434859

  12. Nonstructural protein 5B of hepatitis C virus.

    PubMed

    Lee, Jong-Ho; Nam, In Young; Myung, Heejoon

    2006-06-30

    Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, a-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

  13. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins.

    PubMed

    Su, F; Schneider, R J

    1996-07-01

    The HBx protein is a small polypeptide encoded by mammalian hepadnaviruses that is essential for viral infectivity and is thought to play a role in development of hepatocellular carcinoma during chronic hepatitis B virus infection. HBx is a transactivator that stimulates Ras signal transduction pathways in the cytoplasm and certain transcription elements in the nucleus. To better understand the activities of HBx protein and its mechanism of action, we have explored the manner by which HBx activates the transcription factor NF-kappaB during transient expression. We show that HBx induces prolonged formation, in a Ras-dependent manner, of transcriptionally active NF-kappaB DNA-binding complexes, which make up the family of Rel-related proteins, p50, p52, RelA, and c-Rel. HBx was found to activate NF-kappaB through two distinct cytoplasmic pathways by acting on both the 37-kDa IkappaBalpha inhibitor and the 105-kappaDa NF-kappaB1 precursor inhibitor protein, known as p105. HBx induces phosphorylation of IkappaBalpha, a three- to fourfold reduction in IKBalpha stability, and concomitant nuclear accumulation of NF-kappaB DNA-binding complexes, similar to that reported for human T-cell leukemia virus type 1 Tax protein. In addition, HBx mediates a striking reduction in cytoplasmic p105 NF-kappaB1 inhibitor and p50 protein levels and release of RelA protein that was sequestered by the p105 inhibitor, concomitant with nuclear accumulation of NF-kappaB complexes. HBx mediated only a slight reduction in the cytoplasmic levels of NF-kappaB2 p100 protein, an additional precursor inhibitor of NF-kappaB, which is thought to be less efficiently processed or less responsive to release of NF-kappaB. No evidence was found for HBx activation of NF-kappaB by targeting acidic sphingomyelinase- controlled pathways. Studies also suggest that stimulation of NF-kappaB by HBx does not involve activation of Ras via the neutral sphingomyelin-ceramide pathway. Thus, HBx protein is shown to

  14. Identification of Small Molecule Inhibitors of Human Cytochrome c Oxidase That Target Chemoresistant Glioma Cells.

    PubMed

    Oliva, Claudia R; Markert, Tahireh; Ross, Larry J; White, E Lucile; Rasmussen, Lynn; Zhang, Wei; Everts, Maaike; Moellering, Douglas R; Bailey, Shannon M; Suto, Mark J; Griguer, Corinne E

    2016-11-11

    The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.

  15. Bisubstrate fluorescent probes and biosensors in binding assays for HTS of protein kinase inhibitors.

    PubMed

    Uri, Asko; Lust, Marje; Vaasa, Angela; Lavogina, Darja; Viht, Kaido; Enkvist, Erki

    2010-03-01

    Conjugates of adenosine mimics and d-arginine-rich peptides (ARCs) are potent inhibitors of protein kinases (PKs) from the AGC group. Labeling ARCs with fluorescent dyes or immobilizing on chip surfaces gives fluorescent probes (ARC-Photo) and biosensors that can be used for high-throughput screening (HTS) of inhibitors of protein kinases. The bisubstrate character (simultaneous association with both binding sites of the kinase) and high affinity of ARCs allow ARC-based probes and sensors to be used for characterization of inhibitors targeted to either binding site of the kinase with affinities in whole nanomolar to micromolar range. The ability to penetrate cell plasma membrane and bind to the target kinase fused with a fluorescent protein leads to the possibility to use ARC-Photo probes for high content screening (HCS) of inhibitors in cellular milieu with detection of intensity of Förster resonance energy transfer (FRET) between two fluorophores.

  16. Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors.

    PubMed

    Payan, Françoise

    2004-02-12

    Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner. In this review, we discuss the detailed inhibitory mechanism of these enzymes in light of the recent determination of the 3-D structures of pig pancreatic, human pancreatic, and yellow mealworm alpha-amylases in complex with plant protein inhibitors. In most cases, the mechanism of inhibition occurs through the direct blockage of the active center at several subsites of the enzyme. Inhibitors exhibiting "dual" activity against mammalian and insect alpha-amylases establish contacts of the same type in alternative ways.

  17. Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein-protein interactions.

    PubMed

    Thiel, Philipp; Röglin, Lars; Meissner, Nicole; Hennig, Sven; Kohlbacher, Oliver; Ottmann, Christian

    2013-10-04

    We report first non-covalent and exclusively extracellular inhibitors of 14-3-3 protein-protein interactions identified by virtual screening. Optimization by crystal structure analysis and in vitro binding assays yielded compounds capable of disrupting the interaction of 14-3-3σ with aminopeptidase N in a cellular assay.

  18. Oxamic acid analogues as LDH-C4-specific competitive inhibitors.

    PubMed

    Rodríguez-Páez, Lorena; Chena-Taboada, Miguel Angel; Cabrera-Hernández, Arturo; Cordero-Martínez, Joaquín; Wong, Carlos

    2011-08-01

    We performed kinetic studies to determine whether oxamate analogues are selective inhibitors of LDH-C4, owing to their potential usefulness in fertility control and treatment of some cancers. These substances were shown to be competitive inhibitors of LDH isozymes and are able to discriminate among subtle differences that differentiate the active sites of LDH-A4, LDH-B4 and LDH-C4. N-Ethyl oxamate was the most potent inhibitor showing the highest affinity for LDH-C4. However, N-propyl oxamate was the most selective inhibitor showing a high degree of selectivity towards LDH-C4. Non-polar four carbon atoms chains, linear or branched, dramatically diminished the affinity and selectivity towards LDH-C4. N-Propyl oxamate significantly reduced ATP levels, capacitation and mouse sperm motility, in line with results shown by others, suggesting that LDH-C4 plays an essential role in mouse fertility.

  19. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  20. Protein digestion in cereal aphids (Sitobion avenae) as a target for plant defence by endogenous proteinase inhibitors.

    PubMed

    Pyati, Prashant; Bandani, Ali R; Fitches, Elaine; Gatehouse, John A

    2011-07-01

    Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.

  1. Synthesis and Investigation of Tetrahydro-β-carboline Derivatives as Inhibitors of the Breast Cancer Resistance Protein (ABCG2).

    PubMed

    Spindler, Anna; Stefan, Katja; Wiese, Michael

    2016-07-14

    The breast cancer resistance protein (ABCG2) transports chemotherapeutic drugs out of cells, which makes it a major player in mediating multidrug resistance (MDR) of cancer cells. To overcome this mechanism, inhibitors of ABCG2 can be used. Only a few potent and selective ABCG2 inhibitors have been discovered, i.e., fumitremorgin C (FTC), Ko143, and the alkaloid harmine, which contain a tetrahydro-β-carboline or β-carboline backbone, respectively. However, toxicity and or instability prevent their use in vivo. Therefore, there is a need for further potent inhibitors. We synthesized and pharmacologically investigated 37 tetrahydro-β-carboline derivatives. The inhibitory activity of two compounds (51, 52) is comparable to that of Ko143, and they are selective for ABCG2 over ABCB1. Furthermore, they are able to reverse the ABCG2-mediated resistance toward SN-38 and inhibit the ATPase activity. The cytotoxicity data show that their inhibitory effect is substantially higher than their toxicity.

  2. Development of natural product-derived receptor tyrosine kinase inhibitors based on conservation of protein domain fold.

    PubMed

    Kissau, Lars; Stahl, Petra; Mazitschek, Ralph; Giannis, Athannasios; Waldmann, Herbert

    2003-07-03

    Receptor tyrosine kinases (RTKs) such as Tie-2, IGF1R, Her-2/Neu, EGFR, and VEGFR1-3 play crucial roles in the control of cell growth and differentiation. Inhibition of such RTKs has become a major focus of current anticancer drug development, and therefore the discovery of new classes of inhibitors for these signal-transducing proteins is of prime importance. We have recently proposed a novel concept for improving the hit-finding process by employing natural products as biologically validated starting points in structural space for compound library development. In this concept, natural products are regarded as evolutionary chosen ligands for protein domains which are structurally conserved yet genetically mobile. Here we report on the discovery of novel and highly selective VEGFR-2 and -3, Tie-2, and IGF1R inhibitors derived from the naturally occurring Her-2/Neu kinase inhibitor nakijiquinone C and developed on the basis of this concept. Based on the structure of the natural product, a small library (74 members) was synthesized and investigated for inhibition of kinases with highly similar ATP-binding domains. The library yielded inhibitors with IC(50)s in the low micromolar range with high frequency (7 out of 74). In particular, four inhibitors of Tie-2 were found, a kinase critically involved in the formation of new blood vessels from preexisting ones (angiogenesis) and believed to be a new promising target in antitumor therapy. These results support the "domain concept". To advance the development of improved inhibitors, extensive molecular modeling studies were undertaken, including the construction of new homology models for VEGFR-2 and Tie-2. These studies revealed residues in the kinase structure which are crucial to the development of tailor-made receptor tyrosine kinase inhibitors.

  3. Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction.

    PubMed

    Hancock, Rowena; Bertrand, Hélène C; Tsujita, Tadayuki; Naz, Shama; El-Bakry, Ayman; Laoruchupong, Jitnueng; Hayes, John D; Wells, Geoff

    2012-01-15

    Disruption of the interaction between the ubiquitination facilitator protein Keap1 and the cap'n'collar basic-region leucine-zipper transcription factor Nrf2 is a potential strategy to enhance expression of antioxidant and free radical detoxification gene products regulated by Nrf2. Agents that disrupt this protein-protein interaction may be useful pharmacological probes and future cancer-chemopreventive agents. We describe the structure-activity relationships for a series of peptides based upon regions of the Nrf2 Neh2 domain, of varying length and sequence, that interact with the Keap1 Kelch domain and disrupt the interaction with Nrf2. We have also investigated sequestosome-1 (p62) and prothymosin-α sequences that have been reported to interact with Keap1. To achieve this we have developed a high-throughput fluorescence polarization (FP) assay to screen inhibitors. In addition to screening synthetic peptides, we have used a phage display library approach to identify putative peptide ligands