Sample records for protein coding capacity

  1. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similarmore » protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.« less

  2. Non-coding, mRNA-like RNAs database Y2K.

    PubMed

    Erdmann, V A; Szymanski, M; Hochberg, A; Groot, N; Barciszewski, J

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www. man.poznan.pl/5SData/ncRNA/index.html

  3. Non-coding, mRNA-like RNAs database Y2K

    PubMed Central

    Erdmann, Volker A.; Szymanski, Maciej; Hochberg, Abraham; Groot, Nathan de; Barciszewski, Jan

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www.man.poznan.pl/5SData/ncRNA/index.html PMID:10592224

  4. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  5. Transcriptional landscapes of Axolotl (Ambystoma mexicanum).

    PubMed

    Caballero-Pérez, Juan; Espinal-Centeno, Annie; Falcon, Francisco; García-Ortega, Luis F; Curiel-Quesada, Everardo; Cruz-Hernández, Andrés; Bako, Laszlo; Chen, Xuemei; Martínez, Octavio; Alberto Arteaga-Vázquez, Mario; Herrera-Estrella, Luis; Cruz-Ramírez, Alfredo

    2018-01-15

    The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.

    PubMed

    Djordjevic, Michael A; Chen, Han Cai; Natera, Siria; Van Noorden, Giel; Menzel, Christian; Taylor, Scott; Renard, Clotilde; Geiger, Otto; Weiller, Georg F

    2003-06-01

    A proteomic examination of Sinorhizobium meliloti strain 1021 was undertaken using a combination of 2-D gel electrophoresis, peptide mass fingerprinting, and bioinformatics. Our goal was to identify (i) putative symbiosis- or nutrient-stress-specific proteins, (ii) the biochemical pathways active under different conditions, (iii) potential new genes, and (iv) the extent of posttranslational modifications of S. meliloti proteins. In total, we identified the protein products of 810 genes (13.1% of the genome's coding capacity). The 810 genes generated 1,180 gene products, with chromosomal genes accounting for 78% of the gene products identified (18.8% of the chromosome's coding capacity). The activity of 53 metabolic pathways was inferred from bioinformatic analysis of proteins with assigned Enzyme Commission numbers. Of the remaining proteins that did not encode enzymes, ABC-type transporters composed 12.7% and regulatory proteins 3.4% of the total. Proteins with up to seven transmembrane domains were identified in membrane preparations. A total of 27 putative nodule-specific proteins and 35 nutrient-stress-specific proteins were identified and used as a basis to define genes and describe processes occurring in S. meliloti cells in nodules and under stress. Several nodule proteins from the plant host were present in the nodule bacteria preparations. We also identified seven potentially novel proteins not predicted from the DNA sequence. Post-translational modifications such as N-terminal processing could be inferred from the data. The posttranslational addition of UMP to the key regulator of nitrogen metabolism, PII, was demonstrated. This work demonstrates the utility of combining mass spectrometry with protein arraying or separation techniques to identify candidate genes involved in important biological processes and niche occupations that may be intransigent to other methods of gene expression profiling.

  7. Ribonucleoprotein complexes in neurologic diseases.

    PubMed

    Ule, Jernej

    2008-10-01

    Ribonucleoprotein (RNP) complexes regulate the tissue-specific RNA processing and transport that increases the coding capacity of our genome and the ability to respond quickly and precisely to the diverse set of signals. This review focuses on three proteins that are part of RNP complexes in most cells of our body: TAR DNA-binding protein (TDP-43), the survival motor neuron protein (SMN), and fragile-X mental retardation protein (FMRP). In particular, the review asks the question why these ubiquitous proteins are primarily associated with defects in specific regions of the central nervous system? To understand this question, it is important to understand the role of genetic and cellular environment in causing the defect in the protein, as well as how the defective protein leads to misregulation of specific target RNAs. Two approaches for comprehensive analysis of defective RNA-protein interactions are presented. The first approach defines the RNA code or the collection of proteins that bind to a certain cis-acting RNA site in order to lead to a predictable outcome. The second approach defines the RNA map or the summary of positions on target RNAs where binding of a particular RNA-binding protein leads to a predictable outcome. As we learn more about the RNA codes and maps that guide the action of the dynamic RNP world in our brain, possibilities for new treatments of neurologic diseases are bound to emerge.

  8. Non-coding functions of alternative pre-mRNA splicing in development.

    PubMed

    Mockenhaupt, Stefan; Makeyev, Eugene V

    2015-12-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Comparative analysis of human protein-coding and noncoding RNAs between brain and 10 mixed cell lines by RNA-Seq.

    PubMed

    Chen, Geng; Yin, Kangping; Shi, Leming; Fang, Yuanzhang; Qi, Ya; Li, Peng; Luo, Jian; He, Bing; Liu, Mingyao; Shi, Tieliu

    2011-01-01

    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.

  10. Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization.

    PubMed Central

    Bozzoni, I; Beccari, E; Luo, Z X; Amaldi, F

    1981-01-01

    Poly-A+ mRNA from Xenopus laevis oocytes, partially enriched for r-protein coding capacity has been used as starting material for preparing a cDNA bank in plasmid pBR322. The clones containing sequences specific for r-proteins have been selected by translation of the complementary mRNAs. Clones for six different r-proteins have been identified and utilized as probes for studying their genomic organization. Two gene copies per haploid genome were found for r-proteins L1, L14, S19, and four-five for protein S1, S8 and L32. Moreover a population polymorphism has been observed for the genomic regions containing sequences for r-protein S1, S8 and L14. Images PMID:6112733

  11. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  12. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.

    PubMed

    Stevens, Kathleen E; Chang, Diana; Zwack, Erin E; Sebert, Michael E

    2011-01-01

    Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during ribosomal decoding induced competence, while decreasing the error rate repressed competence. This pattern of regulation was promoted by the HtrA protease, which selectively repressed competence when translational fidelity was high but not when accuracy was low. Our findings demonstrate that this organism is able to monitor the accuracy of information used for protein biosynthesis and suggest that errors trigger a response addressing both the immediate challenge of misfolded proteins and, through genetic exchange, upstream coding errors that may underlie protein folding defects. This pathway may represent an evolutionary strategy for maintaining the coding integrity of the genome.

  13. Mitoregulin: A lncRNA-Encoded Microprotein that Supports Mitochondrial Supercomplexes and Respiratory Efficiency.

    PubMed

    Stein, Colleen S; Jadiya, Pooja; Zhang, Xiaoming; McLendon, Jared M; Abouassaly, Gabrielle M; Witmer, Nathan H; Anderson, Ethan J; Elrod, John W; Boudreau, Ryan L

    2018-06-26

    Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca 2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca 2+ . Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca 2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Optimal superdense coding over memory channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadman, Z.; Kampermann, H.; Bruss, D.

    2011-10-15

    We study the superdense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement in the superdense coding capacity.

  15. Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.

    PubMed

    El-Sharif, H F; Yapati, H; Kalluru, S; Reddy, S M

    2015-12-01

    We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our hydrogel-based MIPs for the selective recognition of bovine serum albumin (BSA). Specifically, Co(II)-complex based MIPs exhibited a 66% enhancement (in comparison to our normal MIPs) exhibiting 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/ non-imprinted (NIP) control). The proposed metal-coded MIPs for protein recognition are intended to lead to unprecedented improvement in MIP selectivity and for future biosensor development that rely on an electrochemical redox processes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Molecular cloning, expression and characterization of 100K gene of fowl adenovirus-4 for prevention and control of hydropericardium syndrome.

    PubMed

    Shah, M S; Ashraf, A; Khan, M I; Rahman, M; Habib, M; Qureshi, J A

    2016-01-01

    Fowl adenovirus-4 is an infectious agent causing Hydropericardium syndrome in chickens. Adenovirus are non-enveloped virions having linear, double stranded DNA. Viral genome codes for few structural and non structural proteins. 100K is an important non-structural viral protein. Open reading frame for coding sequence of 100K protein was cloned with oligo histidine tag and expressed in Escherichia coli as a fusion protein. Nucleotide sequence of the gene revealed that 100K gene of FAdV-4 has high homology (98%) with the respective gene of FAdV-10. Recombinant 100K protein was expressed in E. coli and purified by nickel affinity chromatography. Immunization of chickens with recombinant 100K protein elicited significant serum antibody titers. However challenge protection test revealed that 100K protein conferred little protection (40%) to the immunized chicken against pathogenic viral challenge. So it was concluded that 100K gene has 2397 bp length and recombinant 100K protein has molecular weight of 95 kDa. It was also found that the recombinant protein has little capacity to affect the immune response because in-spite of having an important role in intracellular transport & folding of viral capsid proteins during viral replication, it is not exposed on the surface of the virus at any stage. Copyright © 2015 The International Alliance for Biological Standardization. All rights reserved.

  17. Towards defining the role of glycans as hardware in information storage and transfer: basic principles, experimental approaches and recent progress.

    PubMed

    Solís, D; Jiménez-Barbero, J; Kaltner, H; Romero, A; Siebert, H C; von der Lieth, C W; Gabius, H J

    2001-01-01

    The term 'code' in biological information transfer appears to be tightly and hitherto exclusively connected with the genetic code based on nucleotides and translated into functional activities via proteins. However, the recent appreciation of the enormous coding capacity of oligosaccharide chains of natural glycoconjugates has spurred to give heed to a new concept: versatile glycan assembly by the genetically encoded glycosyltransferases endows cells with a probably not yet fully catalogued array of meaningful messages. Enciphered by sugar receptors such as endogenous lectins the information of code words established by a series of covalently linked monosaccharides as letters for example guides correct intra- and intercellular routing of glycoproteins, modulates cell proliferation or migration and mediates cell adhesion. Evidently, the elucidation of the structural frameworks and the recognition strategies within the operation of the sugar code poses a fascinating conundrum. The far-reaching impact of this recognition mode on the level of cells, tissues and organs has fueled vigorous investigations to probe the subtleties of protein-carbohydrate interactions. This review presents information on the necessarily concerted approach using X-ray crystallography, molecular modeling, nuclear magnetic resonance spectroscopy, thermodynamic analysis and engineered ligands and receptors. This part of the treatise is flanked by exemplarily chosen insights made possible by these techniques. Copyright 2001 S. Karger AG, Basel

  18. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    PubMed Central

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  19. Is QR code an optimal data container in optical encryption systems from an error-correction coding perspective?

    PubMed

    Jiao, Shuming; Jin, Zhi; Zhou, Changyuan; Zou, Wenbin; Li, Xia

    2018-01-01

    Quick response (QR) code has been employed as a data carrier for optical cryptosystems in many recent research works, and the error-correction coding mechanism allows the decrypted result to be noise free. However, in this paper, we point out for the first time that the Reed-Solomon coding algorithm in QR code is not a very suitable option for the nonlocally distributed speckle noise in optical cryptosystems from an information coding perspective. The average channel capacity is proposed to measure the data storage capacity and noise-resistant capability of different encoding schemes. We design an alternative 2D barcode scheme based on Bose-Chaudhuri-Hocquenghem (BCH) coding, which demonstrates substantially better average channel capacity than QR code in numerical simulated optical cryptosystems.

  20. Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus

    PubMed Central

    Di, Han; Madden, Joseph C.; Morantz, Esther K.; Tang, Hsin-Yao; Graham, Rachel L.; Baric, Ralph S.

    2017-01-01

    Members of the order Nidovirales express their structural protein ORFs from a nested set of 3′ subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3′ region, but some are in the 5′ ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3′ ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader–body junction sequences. Sg mRNAs encoding E′, GP2, or ORF5a as their 5′ ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses. PMID:29073030

  1. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  2. Neutropenia-associated ELANE mutations disrupting translation initiation produce novel neutrophil elastase isoforms

    PubMed Central

    Tidwell, Timothy; Wechsler, Jeremy; Nayak, Ramesh C.; Trump, Lisa; Salipante, Stephen J.; Cheng, Jerry C.; Donadieu, Jean; Glaubach, Taly; Corey, Seth J.; Grimes, H. Leighton; Lutzko, Carolyn; Cancelas, Jose A.

    2014-01-01

    Hereditary neutropenia is usually caused by heterozygous germline mutations in the ELANE gene encoding neutrophil elastase (NE). How mutations cause disease remains uncertain, but two hypotheses have been proposed. In one, ELANE mutations lead to mislocalization of NE. In the other, ELANE mutations disturb protein folding, inducing an unfolded protein response in the endoplasmic reticulum (ER). In this study, we describe new types of mutations that disrupt the translational start site. At first glance, they should block translation and are incompatible with either the mislocalization or misfolding hypotheses, which require mutant protein for pathogenicity. We find that start-site mutations, instead, force translation from downstream in-frame initiation codons, yielding amino-terminally truncated isoforms lacking ER-localizing (pre) and zymogen-maintaining (pro) sequences, yet retain essential catalytic residues. Patient-derived induced pluripotent stem cells recapitulate hematopoietic and molecular phenotypes. Expression of the amino-terminally deleted isoforms in vitro reduces myeloid cell clonogenic capacity. We define an internal ribosome entry site (IRES) within ELANE and demonstrate that adjacent mutations modulate IRES activity, independently of protein-coding sequence alterations. Some ELANE mutations, therefore, appear to cause neutropenia via the production of amino-terminally deleted NE isoforms rather than by altering the coding sequence of the full-length protein. PMID:24184683

  3. [Neuromuscular system and aging: involutions and implications].

    PubMed

    Paillard, Thierry

    2013-12-01

    In aged human, the number of muscle fibers and motor units decreases. The remaining motor units lose their functionality (decrease of the discharge frequency, greater fluctuation of the discharge) particularly those which contain type II fibers. The renewal of intracellular proteins declines which creates a negative balance between the daily protein losses and the capacities to renew them. The activity of the protein kinase (Akt) that stimulates the synthesis of regulation proteins (mTOR, p70S6, IGFBP-5) declines whereas the factors of degradation of proteins (NF-kappa B) are activated. Besides, the process of activation and proliferation of satellite cells is affected and the production of anabolic hormones and local factors is decreased. After a strength training program, muscle hypertrophy is linked to the protein synthesis at the level of myosin heavy chain (MHC) isoforms in older subjects. However, the transcription of the genes that code the MHC-I (slow form) increases and the transcription of the genes that code the MHC-II (fast form) decreases. Thus, the transition of the phenotype towards a slower form cannot be inverted by strength training during the advanced in age. Moreover, strength training enables to decrease the proportion of fibers containing MHC of hybrid form in the process of evolution. Hence, strength training can engender a stabilization of the muscular phenotype i.e. different isoforms of MHC. In addition, strength training counteracts the noxious effects mentioned above by generating muscular hypertrophy thanks to a reactive increase in the production of anabolic hormones. A program of aerobic training can induce an increase in the synthesis of ARN messengers coding isoforms related to the oxidative metabolism (MHC-I and to a lesser extent MHC-IIa) while the transcribed for the type MHC-IIx decrease.

  4. Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins.

    PubMed

    Bally, Julia; Paget, Eric; Droux, Michel; Job, Claudette; Job, Dominique; Dubald, Manuel

    2008-01-01

    Plant chloroplasts are promising vehicles for recombinant protein production, but the process of protein folding in these organelles is not well understood in comparison with that in prokaryotic systems, such as Escherichia coli. This is particularly true for disulphide bond formation which is crucial for the biological activity of many therapeutic proteins. We have investigated the capacity of tobacco (Nicotiana tabacum) chloroplasts to efficiently form disulphide bonds in proteins by expressing in this plant cell organelle a well-known bacterial enzyme, alkaline phosphatase, whose activity and stability strictly depend on the correct formation of two intramolecular disulphide bonds. Plastid transformants have been generated that express either the mature enzyme, localized in the stroma, or the full-length coding region, including its signal peptide. The latter has the potential to direct the recombinant alkaline phosphatase into the lumen of thylakoids, giving access to this even less well-characterized organellar compartment. We show that the chloroplast stroma supports the formation of an active enzyme, unlike a normal bacterial cytosol. Sorting of alkaline phosphatase to the thylakoid lumen occurs in the plastid transformants translating the full-length coding region, and leads to larger amounts and more active enzyme. These results are compared with those obtained in bacteria. The implications of these findings on protein folding properties and competency of chloroplasts for disulphide bond formation are discussed.

  5. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits.

    PubMed

    Larsson, John; Nylander, Johan Aa; Bergman, Birgitta

    2011-06-30

    Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme proliferation of non-coding nucleotides which is likely to be the result of initial expansion of genomes/gene copy number to gain adaptive potential, followed by a shift to a life-style in a highly specific niche (e.g. symbiosis). This transition results in redundancy of genes and gene families, leading to an increase in junk DNA and eventually to gene loss. A few orthologs can be correlated with specific phenotypes in cyanobacteria, such as filament formation and symbiotic competence; these constitute exciting exploratory targets.

  6. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits

    PubMed Central

    2011-01-01

    Background Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. Results A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. Conclusions The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme proliferation of non-coding nucleotides which is likely to be the result of initial expansion of genomes/gene copy number to gain adaptive potential, followed by a shift to a life-style in a highly specific niche (e.g. symbiosis). This transition results in redundancy of genes and gene families, leading to an increase in junk DNA and eventually to gene loss. A few orthologs can be correlated with specific phenotypes in cyanobacteria, such as filament formation and symbiotic competence; these constitute exciting exploratory targets. PMID:21718514

  7. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †

    PubMed Central

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  8. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  9. Characterization of a fused protein specified by the adenovirus type 2-simian virus 40 hybrid Ad2+ND1 dp2.

    PubMed Central

    Fey, G; Lewis, J B; Grodzicker, T; Bothwell, A

    1979-01-01

    The adenovirus type 2-simian virus 40 (SV40) hybrid virus Ad2+ND1 dp2 (E. Lukanidin, manuscript in preparation) specified two proteins (molecular weights, 24,000 and 23,000) that are, in part, products of an insertion of SV40 early DNA sequences. This was demonstrated by translation in vitro from viral mRNA that had been selected by hybridization to SV40 DNA. These two phosphorylated, nonvirion proteins were produced late in infection in amounts similar to adenovirus 2 structural proteins and were closely related to each other in tryptic peptide composition. The portion of SV40 DNA (map units 0.17 to 0.22 on the SV40 genome) coding for these proteins was joined to sequences coding for the amino-terminal part of the adenovirus type 2 structural protein IV (fiber). The Ad2+ND1 dp2 23,000- and 24,000-molecular-weight proteins were hybrid polypeptides, with about two-thirds of their tryptic peptides contributed by the fiber protein and the remainder contributed by SV40 T-antigen. They shared with T-antigen (molecular weight, 96,000) a carboxy-terminal proline-rich tryptic peptide. Together, the tryptic peptide composition of these proteins and the known SV40 DNA sequences suggested the reading frame for the translation of T-antigen. The carboxy terminus for T-anigen would then be located on the SV40 genome map next to the TAA terminator triplet at position 0.175, 910 bases away from the cleavage site of the restriction endonuclease EcoRI. Seven host range mutants from Ad2+ND1 dp2 were isolated that had lost the capacity to propagate on monkey cells. They did not induce detectable levels of the hybrid proteins. Three of these mutants had lost the SV40 DNA insertion that codes in part for these proteins. Thus, in analogy to the Ad2+ND1 30,000-molecular-weight protein, the presence of these proteins correlates with the presence of the helper function for adenovirus replication on monkey cells. Images PMID:225516

  10. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  11. Recombinant blood group proteins for use in antibody screening and identification tests.

    PubMed

    Seltsam, Axel; Blasczyk, Rainer

    2009-11-01

    The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.

  12. Relating quantum discord with the quantum dense coding capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  13. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  14. Experimental realization of the analogy of quantum dense coding in classical optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhenwei; Sun, Yifan; Li, Pengyun

    2016-06-15

    We report on the experimental realization of the analogy of quantum dense coding in classical optical communication using classical optical correlations. Compared to quantum dense coding that uses pairs of photons entangled in polarization, we find that the proposed design exhibits many advantages. Considering that it is convenient to realize in optical communication, the attainable channel capacity in the experiment for dense coding can reach 2 bits, which is higher than that of the usual quantum coding capacity (1.585 bits). This increased channel capacity has been proven experimentally by transmitting ASCII characters in 12 quaternary digitals instead of the usualmore » 24 bits.« less

  15. Quantum biological channel modeling and capacity calculation.

    PubMed

    Djordjevic, Ivan B

    2012-12-10

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.

  16. Coherent-state constellations and polar codes for thermal Gaussian channels

    NASA Astrophysics Data System (ADS)

    Lacerda, Felipe; Renes, Joseph M.; Scholz, Volkher B.

    2017-06-01

    Optical communication channels are ultimately quantum mechanical in nature, and we must therefore look beyond classical information theory to determine their communication capacity as well as to find efficient encoding and decoding schemes of the highest rates. Thermal channels, which arise from linear coupling of the field to a thermal environment, are of particular practical relevance; their classical capacity has been recently established, but their quantum capacity remains unknown. While the capacity sets the ultimate limit on reliable communication rates, it does not promise that such rates are achievable by practical means. Here we construct efficiently encodable codes for thermal channels which achieve the classical capacity and the so-called Gaussian coherent information for transmission of classical and quantum information, respectively. Our codes are based on combining polar codes with a discretization of the channel input into a finite "constellation" of coherent states. Encoding of classical information can be done using linear optics.

  17. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.

    PubMed

    Raschka, Sebastian; Wolf, Alex J; Bemister-Buffington, Joseph; Kuhn, Leslie A

    2018-04-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  18. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    NASA Astrophysics Data System (ADS)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  19. Picornavirus Modification of a Host mRNA Decay Protein

    PubMed Central

    Rozovics, Janet M.; Chase, Amanda J.; Cathcart, Andrea L.; Chou, Wayne; Gershon, Paul D.; Palusa, Saiprasad; Wilusz, Jeffrey; Semler, Bert L.

    2012-01-01

    ABSTRACT Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5′ noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. PMID:23131833

  20. Correcting quantum errors with entanglement.

    PubMed

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  1. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  2. Capacity of a direct detection optical communication channel

    NASA Technical Reports Server (NTRS)

    Tan, H. H.

    1980-01-01

    The capacity of a free space optical channel using a direct detection receiver is derived under both peak and average signal power constraints and without a signal bandwidth constraint. The addition of instantaneous noiseless feedback from the receiver to the transmitter does not increase the channel capacity. In the absence of received background noise, an optimally coded PPM system is shown to achieve capacity in the limit as signal bandwidth approaches infinity. In the case of large peak to average signal power ratios, an interleaved coding scheme with PPM modulation is shown to have a computational cutoff rate far greater than ordinary coding schemes.

  3. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code.

    PubMed

    Rubini, Marina; Lepthien, Sandra; Golbik, Ralph; Budisa, Nediljko

    2006-07-01

    The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.

  4. A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea.

    PubMed Central

    Reith, M; Munholland, J

    1993-01-01

    Extensive DNA sequencing of the chloroplast genome of the red alga Porphyra purpurea has resulted in the detection of more than 125 genes. Fifty-eight (approximately 46%) of these genes are not found on the chloroplast genomes of land plants. These include genes encoding 17 photosynthetic proteins, three tRNAs, and nine ribosomal proteins. In addition, nine genes encoding proteins related to biosynthetic functions, six genes encoding proteins involved in gene expression, and at least five genes encoding miscellaneous proteins are among those not known to be located on land plant chloroplast genomes. The increased coding capacity of the P. purpurea chloroplast genome, along with other characteristics such as the absence of introns and the conservation of ancestral operons, demonstrate the primitive nature of the P. purpurea chloroplast genome. In addition, evidence for a monophyletic origin of chloroplasts is suggested by the identification of two groups of genes that are clustered in chloroplast genomes but not in cyanobacteria. PMID:12271072

  5. Towards measuring the semantic capacity of a physical medium demonstrated with elementary cellular automata.

    PubMed

    Dittrich, Peter

    2018-02-01

    The organic code concept and its operationalization by molecular codes have been introduced to study the semiotic nature of living systems. This contribution develops further the idea that the semantic capacity of a physical medium can be measured by assessing its ability to implement a code as a contingent mapping. For demonstration and evaluation, the approach is applied to a formal medium: elementary cellular automata (ECA). The semantic capacity is measured by counting the number of ways codes can be implemented. Additionally, a link to information theory is established by taking multivariate mutual information for quantifying contingency. It is shown how ECAs differ in their semantic capacities, how this is related to various ECA classifications, and how this depends on how a meaning is defined. Interestingly, if the meaning should persist for a certain while, the highest semantic capacity is found in CAs with apparently simple behavior, i.e., the fixed-point and two-cycle class. Synergy as a predictor for a CA's ability to implement codes can only be used if context implementing codes are common. For large context spaces with sparse coding contexts synergy is a weak predictor. Concluding, the approach presented here can distinguish CA-like systems with respect to their ability to implement contingent mappings. Applying this to physical systems appears straight forward and might lead to a novel physical property indicating how suitable a physical medium is to implement a semiotic system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Both coding exons of the c-myc gene contribute to its posttranscriptional regulation in the quiescent liver and regenerating liver and after protein synthesis inhibition.

    PubMed Central

    Lavenu, A; Pistoi, S; Pournin, S; Babinet, C; Morello, D

    1995-01-01

    In vivo, the steady-state level of c-myc mRNA is mainly controlled by posttranscriptional mechanisms. Using a panel of transgenic mice in which various versions of the human c-myc proto-oncogene were under the control of major histocompatibility complex H-2Kb class I regulatory sequences, we have shown that the 5' and the 3' noncoding sequences are dispensable for obtaining a regulated expression of the transgene in adult quiescent tissues, at the start of liver regeneration, and after inhibition of protein synthesis. These results indicated that the coding sequences were sufficient to ensure a regulated c-myc expression. In the present study, we have pursued this analysis with transgenes containing one or the other of the two c-myc coding exons either alone or in association with the c-myc 3' untranslated region. We demonstrate that each of the exons contains determinants which control c-myc mRNA expression. Moreover, we show that in the liver, c-myc exon 2 sequences are able to down-regulate an otherwise stable H-2K mRNA when embedded within it and to induce its transient accumulation after cycloheximide treatment and soon after liver ablation. Finally, the use of transgenes with different coding capacities has allowed us to postulate that the primary mRNA sequence itself and not c-Myc peptides is an important component of c-myc posttranscriptional regulation. PMID:7623834

  7. UBXN1 polymorphism and its expression in porcine M. longissimus dorsi are associated with water holding capacity.

    PubMed

    Loan, Huynh Thi Phuong; Muráni, Eduard; Maak, Steffen; Ponsuksili, Siriluck; Wimmers, Klaus

    2014-03-01

    The UBX domain containing protein 1-like gene (UBXN1) promotes the protein degradation that affects meat quality, in particular traits related to water holding capacity. The aim of our study was to identify UBXN1 polymorphisms and to analyse their association with meat quality traits. Moreover, the relationship of UBXN1 polymorphisms and its transcript abundance as well as the link between UBXN1 expression and water holding capacity were addressed. Pigs of the breed German landrace (GL) and the commercial crossbreed of Pietrain × [German large white × GL] (PiF1) were used for this study. In GL, the novel SNP c.355 C > T showed significant association with conductivity and drip loss (P ≤ 0.05). Another SNP at nt 674 of the coding sequence [SNP c.674C>T (p.Thr225Ile)] was associated with drip loss (P ≤ 0.05) and pH1 (P ≤ 0.1). In PiF1, the SNP UBXN1 c.674C>T was associated with conductivity (P ≤ 0.01). Moreover, the haplotype combinations showed effects on conductivity within both commercial populations at P ≤ 0.1. In both populations, high expression of UBXN1 tended to decrease water holding capacity in the early post mortem period. The analysis of triangular relationship of UBXN1 polymorphism, transcript abundance, and water holding capacity evidences the existence of a causal polymorphism in cis-regulatory regions of UBXN1 that influences its expression.

  8. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.

    PubMed

    Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor

    2017-08-30

    Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.

  9. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    PubMed

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  10. CBL-CIPK network for calcium signaling in higher plants

    NASA Astrophysics Data System (ADS)

    Luan, Sheng

    Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.

  11. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat

    PubMed Central

    Hashim, Noor Haza Fazlin; Bharudin, Izwan; Abu Bakar, Mohd Faizal; Huang, Kie Kyon; Alias, Halimah; Lee, Bernard K. B.; Mat Isa, Mohd Noor; Mat-Sharani, Shuhaila; Sulaiman, Suhaila; Tay, Lih Jinq; Zolkefli, Radziah; Muhammad Noor, Yusuf; Law, Douglas Sie Nguong; Abdul Rahman, Siti Hamidah; Md-Illias, Rosli; Abu Bakar, Farah Diba; Najimudin, Nazalan; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad

    2018-01-01

    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival. PMID:29385175

  12. Moderate Deviation Analysis for Classical Communication over Quantum Channels

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco

    2017-11-01

    We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.

  13. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  14. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1

    PubMed Central

    Wu, Yuye; Li, Xianran; Xiang, Wenwen; Zhu, Chengsong; Lin, Zhongwei; Wu, Yun; Li, Jiarui; Pandravada, Satchidanand; Ridder, Dustan D.; Bai, Guihua; Wang, Ming L.; Trick, Harold N.; Bean, Scott R.; Tuinstra, Mitchell R.; Tesso, Tesfaye T.; Yu, Jianming

    2012-01-01

    Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. PMID:22699509

  15. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    PubMed Central

    Flather, Dylan; Semler, Bert L.

    2015-01-01

    The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805

  16. Low-density parity-check codes for volume holographic memory systems.

    PubMed

    Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali

    2003-02-10

    We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.

  17. Biological Information Transfer Beyond the Genetic Code: The Sugar Code

    NASA Astrophysics Data System (ADS)

    Gabius, H.-J.

    In the era of genetic engineering, cloning, and genome sequencing the focus of research on the genetic code has received an even further accentuation in the public eye. In attempting, however, to understand intra- and intercellular recognition processes comprehensively, the two biochemical dimensions established by nucleic acids and proteins are not sufficient to satisfactorily explain all molecular events in, for example, cell adhesion or routing. The consideration of further code systems is essential to bridge this gap. A third biochemical alphabet forming code words with an information storage capacity second to no other substance class in rather small units (words, sentences) is established by monosaccharides (letters). As hardware oligosaccharides surpass peptides by more than seven orders of magnitude in the theoretical ability to build isomers, when the total of conceivable hexamers is calculated. In addition to the sequence complexity, the use of magnetic resonance spectroscopy and molecular modeling has been instrumental in discovering that even small glycans can often reside in not only one but several distinct low-energy conformations (keys). Intriguingly, conformers can display notably different capacities to fit snugly into the binding site of nonhomologous receptors (locks). This process, experimentally verified for two classes of lectins, is termed "differential conformer selection." It adds potential for shifts of the conformer equilibrium to modulate ligand properties dynamically and reversibly to the well-known changes in sequence (including anomeric positioning and linkage points) and in pattern of substitution, for example, by sulfation. In the intimate interplay with sugar receptors (lectins, enzymes, and antibodies) the message of coding units of the sugar code is deciphered. Their recognition will trigger postbinding signaling and the intended biological response. Knowledge about the driving forces for the molecular rendezvous, i.e., contributions of bidentate or cooperative hydrogen bonds, dispersion forces, stacking, and solvent rearrangement, will enable the design of high-affinity ligands or mimetics thereof. They embody clinical applications reaching from receptor localization in diagnostic pathology to cell type-selective targeting of drugs and inhibition of undesired cell adhesion in bacterial/viral infections, inflammation, or metastasis.

  18. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs.

    PubMed

    Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook

    2012-11-20

    A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

    PubMed Central

    Tacchi, Jessica L.; Raymond, Benjamin B. A.; Haynes, Paul A.; Berry, Iain J.; Widjaja, Michael; Bogema, Daniel R.; Woolley, Lauren K.; Jenkins, Cheryl; Minion, F. Chris; Padula, Matthew P.; Djordjevic, Steven P.

    2016-01-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. PMID:26865024

  20. Error suppression via complementary gauge choices in Reed-Muller codes

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Jochym-O'Connor, Tomas

    2017-09-01

    Concatenation of two quantum error-correcting codes with complementary sets of transversal gates can provide a means toward universal fault-tolerant quantum computation. We first show that it is generally preferable to choose the inner code with the higher pseudo-threshold to achieve lower logical failure rates. We then explore the threshold properties of a wide range of concatenation schemes. Notably, we demonstrate that the concatenation of complementary sets of Reed-Muller codes can increase the code capacity threshold under depolarizing noise when compared to extensions of previously proposed concatenation models. We also analyze the properties of logical errors under circuit-level noise, showing that smaller codes perform better for all sampled physical error rates. Our work provides new insights into the performance of universal concatenated quantum codes for both code capacity and circuit-level noise.

  1. The virophage as a unique parasite of the giant mimivirus.

    PubMed

    La Scola, Bernard; Desnues, Christelle; Pagnier, Isabelle; Robert, Catherine; Barrassi, Lina; Fournous, Ghislain; Merchat, Michèle; Suzan-Monti, Marie; Forterre, Patrick; Koonin, Eugene; Raoult, Didier

    2008-09-04

    Viruses are obligate parasites of Eukarya, Archaea and Bacteria. Acanthamoeba polyphaga mimivirus (APMV) is the largest known virus; it grows only in amoeba and is visible under the optical microscope. Mimivirus possesses a 1,185-kilobase double-stranded linear chromosome whose coding capacity is greater than that of numerous bacteria and archaea1, 2, 3. Here we describe an icosahedral small virus, Sputnik, 50 nm in size, found associated with a new strain of APMV. Sputnik cannot multiply in Acanthamoeba castellanii but grows rapidly, after an eclipse phase, in the giant virus factory found in amoebae co-infected with APMV4. Sputnik growth is deleterious to APMV and results in the production of abortive forms and abnormal capsid assembly of the host virus. The Sputnik genome is an 18.343-kilobase circular double-stranded DNA and contains genes that are linked to viruses infecting each of the three domains of life Eukarya, Archaea and Bacteria. Of the 21 predicted protein-coding genes, eight encode proteins with detectable homologues, including three proteins apparently derived from APMV, a homologue of an archaeal virus integrase, a predicted primase-helicase, a packaging ATPase with homologues in bacteriophages and eukaryotic viruses, a distant homologue of bacterial insertion sequence transposase DNA-binding subunit, and a Zn-ribbon protein. The closest homologues of the last four of these proteins were detected in the Global Ocean Survey environmental data set5, suggesting that Sputnik represents a currently unknown family of viruses. Considering its functional analogy with bacteriophages, we classify this virus as a virophage. The virophage could be a vehicle mediating lateral gene transfer between giant viruses.

  2. Identification, molecular and functional characterization of calmodulin gene of Phytomonas serpens 15T that shares high similarity with its pathogenic counterparts Trypanosoma cruzi.

    PubMed

    de Souza, Tatiana de Arruda Campos Brasil; Graça-de Souza, Viviane Krominski; Lancheros, César Armando Contreras; Monteiro-Góes, Viviane; Krieger, Marco Aurélio; Goldenberg, Samuel; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2011-03-01

    In trypanosomatids, Ca²+-binding proteins can affect parasite growth, differentiation and invasion. Due to their importance for parasite maintenance, they become an attractive target for drug discovery and design. Phytomonas serpens 15T is a non-human pathogenic trypanosomatid that expresses important protein homologs of human pathogenic trypanosomatids. In this study, the coding sequence of calmodulin, a Ca²+-binding protein, of P. serpens 15T was cloned and characterized. The encoded polypeptide (CaMP) displayed high amino acid identity to homolog protein of Trypanosoma cruzi and four helix-loop-helix motifs were found. CaMP sequence analysis showed 20 amino acid substitutions compared to its mammalian counterparts. This gene is located on a chromosomal band with estimated size of 1,300 kb and two transcripts were detected by Northern blot analysis. A polyclonal antiserum raised against the recombinant protein recognized a polypeptide with an estimated size of 17 kDa in log-phase promastigote extracts. The recombinant CaMP retains its Ca²+-binding capacity.

  3. 3DFEMWATER/3DLEWASTE: NUMERICAL CODES FOR DELINEATING WELLHEAD PROTECTION AREAS IN AGRICULTURAL REGIONS BASED ON THE ASSIMILATIVE CAPACITY CRITERION

    EPA Science Inventory

    Two related numerical codes, 3DFEMWATER and 3DLEWASTE, are presented sed to delineate wellhead protection areas in agricultural regions using the assimilative capacity criterion. DFEMWATER (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media) ...

  4. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    PubMed

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Capacity, cutoff rate, and coding for a direct-detection optical channel

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1980-01-01

    It is shown that Pierce's pulse position modulation scheme with 2 to the L pulse positions used on a self-noise-limited direct detection optical communication channel results in a 2 to the L-ary erasure channel that is equivalent to the parallel combination of L completely correlated binary erasure channels. The capacity of the full channel is the sum of the capacities of the component channels, but the cutoff rate of the full channel is shown to be much smaller than the sum of the cutoff rates. An interpretation of the cutoff rate is given that suggests a complexity advantage in coding separately on the component channels. It is shown that if short-constraint-length convolutional codes with Viterbi decoders are used on the component channels, then the performance and complexity compare favorably with the Reed-Solomon coding system proposed by McEliece for the full channel. The reasons for this unexpectedly fine performance by the convolutional code system are explored in detail, as are various facets of the channel structure.

  6. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    NASA Astrophysics Data System (ADS)

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-04-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a ``tetraploid-dihaploid-tetraploid'' series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  7. Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

    PubMed

    Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh

    2018-06-03

    Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.

  8. Prediction of plant lncRNA by ensemble machine learning classifiers.

    PubMed

    Simopoulos, Caitlin M A; Weretilnyk, Elizabeth A; Golding, G Brian

    2018-05-02

    In plants, long non-protein coding RNAs are believed to have essential roles in development and stress responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate long non-protein coding gene products for future functional validation. Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the model can be updated as new long non-protein coding transcripts are identified and functionally verified. This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding RNA function.

  9. Lung volumes: measurement, clinical use, and coding.

    PubMed

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  10. QR Code Mania!

    ERIC Educational Resources Information Center

    Shumack, Kellie A.; Reilly, Erin; Chamberlain, Nik

    2013-01-01

    space, has error-correction capacity, and can be read from any direction. These codes are used in manufacturing, shipping, and marketing, as well as in education. QR codes can be created to produce…

  11. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation.

    PubMed

    Salisbury, Joseph P; Sîrbulescu, Ruxandra F; Moran, Benjamin M; Auclair, Jared R; Zupanc, Günther K H; Agar, Jeffrey N

    2015-03-11

    The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a versatile model system for a variety of research areas in neuroscience and biology. The comprehensive information available on the neurophysiology and neuroanatomy of this organism has enabled significant advances in such areas as the study of the neural basis of behavior, the development of adult-born neurons in the central nervous system and their involvement in the regeneration of nervous tissue, as well as brain aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. Here, we report the de novo assembly and annotation of the A. leptorhynchus transcriptome. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered 42,459 unique contigs containing at least a partial protein-coding sequence based on alignment to a reference set of known Actinopterygii sequences. As many as 11,847 of these contigs contained full or near-full length protein sequences, providing broad coverage of the proteome. A variety of non-coding RNA sequences were also identified and annotated, including conserved long intergenic non-coding RNA and other long non-coding RNA observed previously to be expressed in adult zebrafish (Danio rerio) brain, as well as a variety of miRNA, snRNA, and snoRNA. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra was greatly improved by use of the assembly compared to databases of sequences from closely related organisms. The assembly and raw reads have been deposited at DDBJ/EMBL/GenBank under the accession number GBKR00000000. Tandem mass spectrometry data is available via ProteomeXchange with identifier PXD001285. Presented here is the first release of an annotated de novo transcriptome assembly from Apteronotus leptorhynchus, providing a broad overview of RNA expressed in central nervous system tissue. The assembly, which includes substantial coverage of a wide variety of both protein coding and non-coding transcripts, will allow the development of better tools to understand the mechanisms underlying unique characteristics of the knifefish model system, such as their tremendous regenerative capacity and negligible brain senescence.

  12. The Evolution and Expression Pattern of Human Overlapping lncRNA and Protein-coding Gene Pairs.

    PubMed

    Ning, Qianqian; Li, Yixue; Wang, Zhen; Zhou, Songwen; Sun, Hong; Yu, Guangjun

    2017-03-27

    Long non-coding RNA overlapping with protein-coding gene (lncRNA-coding pair) is a special type of overlapping genes. Protein-coding overlapping genes have been well studied and increasing attention has been paid to lncRNAs. By studying lncRNA-coding pairs in human genome, we showed that lncRNA-coding pairs were more likely to be generated by overprinting and retaining genes in lncRNA-coding pairs were given higher priority than non-overlapping genes. Besides, the preference of overlapping configurations preserved during evolution was based on the origin of lncRNA-coding pairs. Further investigations showed that lncRNAs promoting the splicing of their embedded protein-coding partners was a unilateral interaction, but the existence of overlapping partners improving the gene expression was bidirectional and the effect was decreased with the increased evolutionary age of genes. Additionally, the expression of lncRNA-coding pairs showed an overall positive correlation and the expression correlation was associated with their overlapping configurations, local genomic environment and evolutionary age of genes. Comparison of the expression correlation of lncRNA-coding pairs between normal and cancer samples found that the lineage-specific pairs including old protein-coding genes may play an important role in tumorigenesis. This work presents a systematically comprehensive understanding of the evolution and the expression pattern of human lncRNA-coding pairs.

  13. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes.

    PubMed

    Rolland, Norbert; Curien, Gilles; Finazzi, Giovanni; Kuntz, Marcel; Maréchal, Eric; Matringe, Michel; Ravanel, Stéphane; Seigneurin-Berny, Daphné

    2012-01-01

    Plastids are semiautonomous organelles derived from cyanobacterial ancestors. Following endosymbiosis, plastids have evolved to optimize their functions, thereby limiting metabolic redundancy with other cell compartments. Contemporary plastids have also recruited proteins produced by the nuclear genome of the host cell. In addition, many genes acquired from the cyanobacterial ancestor evolved to code for proteins that are targeted to cell compartments other than the plastid. Consequently, metabolic pathways are now a patchwork of enzymes of diverse origins, located in various cell compartments. Because of this, a wide range of metabolites and ions traffic between the plastids and other cell compartments. In this review, we provide a comprehensive analysis of the well-known, and of the as yet uncharacterized, chloroplast/cytosol exchange processes, which can be deduced from what is currently known about compartmentation of plant-cell metabolism.

  14. Run-length encoding graphic rules, biochemically editable designs and steganographical numeric data embedment for DNA-based cryptographical coding system.

    PubMed

    Kawano, Tomonori

    2013-03-01

    There have been a wide variety of approaches for handling the pieces of DNA as the "unplugged" tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given "passwords" and/or secret numbers using DNA sequences. The "passwords" of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original "passwords." The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed.

  15. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.

    PubMed

    Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D

    2017-12-03

    A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first evidence for a significant enrichment of X motifs in the genes of an extant organism. They raise two hypotheses: the X motifs may be evolutionary relics of the primitive codes used for translation, or they may continue to play a functional role in the complex processes of genome decoding and protein synthesis.

  16. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes. PMID:25264628

  17. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.

  18. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1995-01-01

    This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.

  19. Termination and read-through proteins encoded by genome segment 9 of Colorado tick fever virus.

    PubMed

    Mohd Jaafar, Fauziah; Attoui, Houssam; De Micco, Philippe; De Lamballerie, Xavier

    2004-08-01

    Genome segment 9 (Seg-9) of Colorado tick fever virus (CTFV) is 1884 bp long and contains a large open reading frame (ORF; 1845 nt in length overall), although a single in-frame stop codon (at nt 1052-1054) reduces the ORF coding capacity by approximately 40 %. However, analyses of highly conserved RNA sequences in the vicinity of the stop codon indicate that it belongs to a class of 'leaky terminators'. The third nucleotide positions in codons situated both before and after the stop codon, shows the highest variability, suggesting that both regions are translated during virus replication. This also suggests that the stop signal is functionally leaky, allowing read-through translation to occur. Indeed, both the truncated 'termination' protein and the full-length 'read-through' protein (VP9 and VP9', respectively) were detected in CTFV-infected cells, in cells transfected with a plasmid expressing only Seg-9 protein products, and in the in vitro translation products from undenatured Seg-9 ssRNA. The ratios of full-length and truncated proteins generated suggest that read-through may be down-regulated by other viral proteins. Western blot analysis of infected cells and purified CTFV showed that VP9 is a structural component of the virion, while VP9' is a non-structural protein.

  20. Expanding Capacity and Promoting Inclusion in Introductory Computer Science: A Focus on Near-Peer Mentor Preparation and Code Review

    ERIC Educational Resources Information Center

    Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey

    2017-01-01

    A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on…

  1. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  2. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  3. [INVITED] Luminescent QR codes for smart labelling and sensing

    NASA Astrophysics Data System (ADS)

    Ramalho, João F. C. B.; António, L. C. F.; Correia, S. F. H.; Fu, L. S.; Pinho, A. S.; Brites, C. D. S.; Carlos, L. D.; André, P. S.; Ferreira, R. A. S.

    2018-05-01

    QR (Quick Response) codes are two-dimensional barcodes composed of special geometric patterns of black modules in a white square background that can encode different types of information with high density and robustness, correct errors and physical damages, thus keeping the stored information protected. Recently, these codes have gained increased attention as they offer a simple physical tool for quick access to Web sites for advertising and social interaction. Challenges encompass the increase of the storage capacity limit, even though they can store approximately 350 times more information than common barcodes, and encode different types of characters (e.g., numeric, alphanumeric, kanji and kana). In this work, we fabricate luminescent QR codes based on a poly(methyl methacrylate) substrate coated with organic-inorganic hybrid materials doped with trivalent terbium (Tb3+) and europium (Eu3+) ions, demonstrating the increase of storage capacity per unit area by a factor of two by using the colour multiplexing, when compared to conventional QR codes. A novel methodology to decode the multiplexed QR codes is developed based on a colour separation threshold where a decision level is calculated through a maximum-likelihood criteria to minimize the error probability of the demultiplexed modules, maximizing the foreseen total storage capacity. Moreover, the thermal dependence of the emission colour coordinates of the Eu3+/Tb3+-based hybrids enables the simultaneously QR code colour-multiplexing and may be used to sense temperature (reproducibility higher than 93%), opening new fields of applications for QR codes as smart labels for sensing.

  4. Personalizing Protein Nourishment

    PubMed Central

    DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE

    2016-01-01

    Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355

  5. Draft genome sequence of Paraburkholderia tropica Ppe8 strain, a sugarcane endophytic diazotrophic bacterium.

    PubMed

    Silva, Paula Renata Alves da; Simões-Araújo, Jean Luiz; Vidal, Márcia Soares; Cruz, Leonardo Magalhães; Souza, Emanuel Maltempi de; Baldani, José Ivo

    Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Efficient Signal, Code, and Receiver Designs for MIMO Communication Systems

    DTIC Science & Technology

    2003-06-01

    167 5-31 Concatenation of a tilted-QAM inner code with an LDPC outer code with a two component iterative soft-decision decoder. . . . . . . . . 168 5...for AWGN channels has long been studied. There are well-known soft-decision codes like the turbo codes and LDPC codes that can approach capacity to...bits) low density parity check ( LDPC ) code 1. 2. The coded bits are randomly interleaved so that bits nearby go through different sub-channels, and are

  7. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs

    PubMed Central

    2014-01-01

    Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072

  8. Coherent state coding approaches the capacity of non-Gaussian bosonic channels

    NASA Astrophysics Data System (ADS)

    Huber, Stefan; König, Robert

    2018-05-01

    The additivity problem asks if the use of entanglement can boost the information-carrying capacity of a given channel beyond what is achievable by coding with simple product states only. This has recently been shown not to be the case for phase-insensitive one-mode Gaussian channels, but remains unresolved in general. Here we consider two general classes of bosonic noise channels, which include phase-insensitive Gaussian channels as special cases: these are attenuators with general, potentially non-Gaussian environment states and classical noise channels with general probabilistic noise. We show that additivity violations, if existent, are rather minor for all these channels: the maximal gain in classical capacity is bounded by a constant independent of the input energy. Our proof shows that coding by simple classical modulation of coherent states is close to optimal.

  9. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    NASA Astrophysics Data System (ADS)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  10. The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.

    PubMed

    Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas

    2014-01-01

    For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.

  11. Bandwidth efficient coding: Theoretical limits and real achievements. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Courturier, Servanne; Levy, Yannick; Mills, Diane G.; Perez, Lance C.; Wang, Fu-Quan

    1993-01-01

    In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results.

  12. Run-length encoding graphic rules, biochemically editable designs and steganographical numeric data embedment for DNA-based cryptographical coding system

    PubMed Central

    Kawano, Tomonori

    2013-01-01

    There have been a wide variety of approaches for handling the pieces of DNA as the “unplugged” tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given “passwords” and/or secret numbers using DNA sequences. The “passwords” of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original “passwords.” The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed. PMID:23750303

  13. URF6, Last Unidentified Reading Frame of Human mtDNA, Codes for an NADH Dehydrogenase Subunit

    NASA Astrophysics Data System (ADS)

    Chomyn, Anne; Cleeter, Michael W. J.; Ragan, C. Ian; Riley, Marcia; Doolittle, Russell F.; Attardi, Giuseppe

    1986-10-01

    The polypeptide encoded in URF6, the last unassigned reading frame of human mitochondrial DNA, has been identified with antibodies to peptides predicted from the DNA sequence. Antibodies prepared against highly purified respiratory chain NADH dehydrogenase from beef heart or against the cytoplasmically synthesized 49-kilodalton iron-sulfur subunit isolated from this enzyme complex, when added to a deoxycholate or a Triton X-100 mitochondrial lysate of HeLa cells, specifically precipitated the URF6 product together with the six other URF products previously identified as subunits of NADH dehydrogenase. These results strongly point to the URF6 product as being another subunit of this enzyme complex. Thus, almost 60% of the protein coding capacity of mammalian mitochondrial DNA is utilized for the assembly of the first enzyme complex of the respiratory chain. The absence of such information in yeast mitochondrial DNA dramatizes the variability in gene content of different mitochondrial genomes.

  14. How Many Protein Sequences Fold to a Given Structure? A Coevolutionary Analysis.

    PubMed

    Tian, Pengfei; Best, Robert B

    2017-10-17

    Quantifying the relationship between protein sequence and structure is key to understanding the protein universe. A fundamental measure of this relationship is the total number of amino acid sequences that can fold to a target protein structure, known as the "sequence capacity," which has been suggested as a proxy for how designable a given protein fold is. Although sequence capacity has been extensively studied using lattice models and theory, numerical estimates for real protein structures are currently lacking. In this work, we have quantitatively estimated the sequence capacity of 10 proteins with a variety of different structures using a statistical model based on residue-residue co-evolution to capture the variation of sequences from the same protein family. Remarkably, we find that even for the smallest protein folds, such as the WW domain, the number of foldable sequences is extremely large, exceeding the Avogadro constant. In agreement with earlier theoretical work, the calculated sequence capacity is positively correlated with the size of the protein, or better, the density of contacts. This allows the absolute sequence capacity of a given protein to be approximately predicted from its structure. On the other hand, the relative sequence capacity, i.e., normalized by the total number of possible sequences, is an extremely tiny number and is strongly anti-correlated with the protein length. Thus, although there may be more foldable sequences for larger proteins, it will be much harder to find them. Lastly, we have correlated the evolutionary age of proteins in the CATH database with their sequence capacity as predicted by our model. The results suggest a trade-off between the opposing requirements of high designability and the likelihood of a novel fold emerging by chance. Published by Elsevier Inc.

  15. Glycans: bioactive signals decoded by lectins.

    PubMed

    Gabius, Hans-Joachim

    2008-12-01

    The glycan part of cellular glycoconjugates affords a versatile means to build biochemical signals. These oligosaccharides have an exceptional talent in this respect. They surpass any other class of biomolecule in coding capacity within an oligomer (code word). Four structural factors account for this property: the potential for variability of linkage points, anomeric position and ring size as well as the aptitude for branching (first and second dimensions of the sugar code). Specific intermolecular recognition is favoured by abundant potential for hydrogen/co-ordination bonds and for C-H/pi-interactions. Fittingly, an array of protein folds has developed in evolution with the ability to select certain glycans from the natural diversity. The thermodynamics of this reaction profits from the occurrence of these ligands in only a few energetically favoured conformers, comparing favourably with highly flexible peptides (third dimension of the sugar code). Sequence, shape and local aspects of glycan presentation (e.g. multivalency) are key factors to regulate the avidity of lectin binding. At the level of cells, distinct glycan determinants, a result of enzymatic synthesis and dynamic remodelling, are being defined as biomarkers. Their presence gains a functional perspective by co-regulation of the cognate lectin as effector, for example in growth regulation. The way to tie sugar signal and lectin together is illustrated herein for two tumour model systems. In this sense, orchestration of glycan and lectin expression is an efficient means, with far-reaching relevance, to exploit the coding potential of oligosaccharides physiologically and medically.

  16. Long Non-Coding RNAs: A Novel Paradigm for Toxicology

    PubMed Central

    Dempsey, Joseph L.; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer’s disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. PMID:27864543

  17. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  18. Properties of a certain stochastic dynamical system, channel polarization, and polar codes

    NASA Astrophysics Data System (ADS)

    Tanaka, Toshiyuki

    2010-06-01

    A new family of codes, called polar codes, has recently been proposed by Arikan. Polar codes are of theoretical importance because they are provably capacity achieving with low-complexity encoding and decoding. We first discuss basic properties of a certain stochastic dynamical system, on the basis of which properties of channel polarization and polar codes are reviewed, with emphasis on our recent results.

  19. On the optimum signal constellation design for high-speed optical transport networks.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2012-08-27

    In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.

  20. [Implications of mental image processing in the deficits of verbal information coding during normal aging].

    PubMed

    Plaie, Thierry; Thomas, Delphine

    2008-06-01

    Our study specifies the contributions of image generation and image maintenance processes occurring at the time of imaginal coding of verbal information in memory during normal aging. The memory capacities of 19 young adults (average age of 24 years) and 19 older adults (average age of 75 years) were assessed using recall tasks according to the imagery value of the stimuli to learn. The mental visual imagery capacities are assessed using tasks of image generation and temporary storage of mental imagery. The variance analysis indicates a more important decrease with age of the concretness effect. The major contribution of our study rests on the fact that the decline with age of dual coding of verbal information in memory would result primarily from the decline of image maintenance capacities and from a slowdown in image generation. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  1. Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues

    NASA Astrophysics Data System (ADS)

    Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.

    Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.

  2. A Comparative Study on Safe Pile Capacity as Shown in Table 1 of IS 2911 (Part III): 1980

    NASA Astrophysics Data System (ADS)

    Pakrashi, Somdev

    2017-06-01

    Code of practice for design and construction of under reamed pile foundations: IS 2911 (Part-III)—1980 presents one table in respect of safe load for bored cast in situ under reamed piles in sandy and clayey soils including black cotton soils, stem dia. of pile ranging from 20 to 50 cm and its effective length being 3.50 m. A comparative study, was taken up by working out safe pile capacity for one 400 dia., 3.5 m long bored cast in situ under reamed pile based on subsoil properties obtained from soil investigation work as well as subsoil properties of different magnitudes of clayey, sandy soils and comparing the same with the safe pile capacity shown in Table 1 of that IS Code. The study reveals that safe pile capacity computed from subsoil properties, barring a very few cases, considerably differs from that shown in the aforesaid code and looks forward for more research work and study to find out a conclusive explanation of this probable anomaly.

  3. Radiosensitivity of Mammalian Cells

    PubMed Central

    Walters, R. A.; Petersen, D. F.

    1968-01-01

    Radiation effects on macromolecular synthesis essential for the Chinese hamster cell to traverse the life cycle and to divide have been investigated. Life-cycle analysis techniques employing inhibitors of macromolecular synthesis were used in determining the kinetics of cell growth for specific segments of the population following spontaneous recovery from radiation-induced division delay. The results indicated that recovery does not occur in the absence of functional protein synthesis. Under conditions which inhibit normal RNA and DNA synthesis, irradiated cells can recover the capacity to traverse the life cycle and to divide. The stability of mRNA species coding for proteins essential for division in irradiated cells was also measured. The mean functional lifetime of these mRNA species was 1 hr. The data demonstrate the existence of a specific segment of the population consisting of cells which have completed transcription related to division but not concomitant translation and which can recover from the radiation injury without synthesis of additional RNA. Thus, initial recovery of the ability to divide has an obligate requirement for protein synthesis but no corresponding requirement for nucleic acid synthesis during the period when original messenger remains intact. PMID:5753224

  4. New Aminoacyl-tRNA Synthetase-like Protein in Insecta with an Essential Mitochondrial Function*♦

    PubMed Central

    Guitart, Tanit; Leon Bernardo, Teresa; Sagalés, Jessica; Stratmann, Thomas; Bernués, Jordi; Ribas de Pouplana, Lluís

    2010-01-01

    Aminoacyl-tRNA synthetases (ARS) are modular enzymes that aminoacylate transfer RNAs (tRNA) for their use by the ribosome during protein synthesis. ARS are essential and universal components of the genetic code that were almost completely established before the appearance of the last common ancestor of all living species. This long evolutionary history explains the growing number of functions being discovered for ARS, and for ARS homologues, beyond their canonical role in gene translation. Here we present a previously uncharacterized paralogue of seryl-tRNA synthetase named SLIMP (seryl-tRNA synthetase-like insect mitochondrial protein). SLIMP is the result of a duplication of a mitochondrial seryl-tRNA synthetase (SRS) gene that took place in early metazoans and was fixed in Insecta. Here we show that SLIMP is localized in the mitochondria, where it carries out an essential function that is unrelated to the aminoacylation of tRNA. The knockdown of SLIMP by RNA interference (RNAi) causes a decrease in respiration capacity and an increase in mitochondrial mass in the form of aberrant mitochondria. PMID:20870726

  5. The complete DNA sequence of lymphocystis disease virus.

    PubMed

    Tidona, C A; Darai, G

    1997-04-14

    Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease, which has been reported to occur in over 100 different fish species worldwide. LCDV is a member of the family Iridoviridae and the type species of the genus Lymphocystivirus. The virions contain a single linear double-stranded DNA molecule, which is circularly permuted, terminally redundant, and heavily methylated at cytosines in CpG sequences. The complete nucleotide sequence of LCDV-1 (flounder isolate) was determined by automated cycle sequencing and primer walking. The genome of LCDV-1 is 102.653 bp in length and contains 195 open reading frames with coding capacities ranging from 40 to 1199 amino acids. Computer-assisted analyses of the deduced amino acid sequences led to the identification of several putative gene products with significant homologies to entries in protein data banks, such as the two major subunits of the viral DNA-dependent RNA polymerase, DNA polymerase, several protein kinases, two subunits of the ribonucleoside diphosphate reductase, DNA methyltransferase, the viral major capsid protein, insulin-like growth factor, and tumor necrosis factor receptor homolog.

  6. Development of a cryogenic mixed fluid J-T cooling computer code, 'JTMIX'

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1991-01-01

    An initial study was performed for analyzing and predicting the temperatures and cooling capacities when mixtures of fluids are used in Joule-Thomson coolers and in heat pipes. A computer code, JTMIX, was developed for mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer code, DDMIX, it has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60 K when neon is added.

  7. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less

  8. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    PubMed

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lougovski, P.; Uskov, D. B.

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  10. Relating the effects of protein type and content in increased-protein cheese pies to consumers' perception of satiating capacity.

    PubMed

    Marcano, J; Varela, P; Fiszman, S

    2015-02-01

    Since proteins have been shown to have the highest satiation-inducing effects of all the macronutrients, increasing the protein level is one of the main strategies for designing foods with enhanced satiating capacity. However, few studies analyze the effect that protein addition has on the texture and flavor characteristics of the target food item to relate it to the expected satiating capacity it elicits. The present work studied cheese pies with three levels of soy and whey proteins. Since the protein level altered the rheological behavior of the batters before baking and the texture of the baked pies, the feasibility of adding several protein levels for obtaining a range of final products was investigated. A check-all-that-apply questionnaire containing 32 sensory and non-sensory characteristics of the samples was given to consumers (n = 131) who also scored the perceived samples' satiating capacity. The results showed that the type and content of protein contributed distinctive sensory characteristics to the samples that could be related to their satiating capacity perception. Harder and drier samples (high protein levels) were perceived as more satiating with less perceptible sweet and milky cheese pie characteristic flavors. Soy contributed an off-flavour. These results will contribute to a better understanding of the interrelation of all these factors, aiding the development of highly palatable solid foods with enhanced satiating capacities.

  11. Hiding message into DNA sequence through DNA coding and chaotic maps.

    PubMed

    Liu, Guoyan; Liu, Hongjun; Kadir, Abdurahman

    2014-09-01

    The paper proposes an improved reversible substitution method to hide data into deoxyribonucleic acid (DNA) sequence, and four measures have been taken to enhance the robustness and enlarge the hiding capacity, such as encode the secret message by DNA coding, encrypt it by pseudo-random sequence, generate the relative hiding locations by piecewise linear chaotic map, and embed the encoded and encrypted message into a randomly selected DNA sequence using the complementary rule. The key space and the hiding capacity are analyzed. Experimental results indicate that the proposed method has a better performance compared with the competing methods with respect to robustness and capacity.

  12. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE PAGES

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  13. Death of a dogma: eukaryotic mRNAs can code for more than one protein

    PubMed Central

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-01

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573

  14. Informational structure of genetic sequences and nature of gene splicing

    NASA Astrophysics Data System (ADS)

    Trifonov, E. N.

    1991-10-01

    Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.

  15. Processing of Visual--Action Codes by Deaf and Hearing Children: Coding Orientation or "M"-Capacity?

    ERIC Educational Resources Information Center

    Todman, John; Cowdy, Natascha

    1993-01-01

    Results from a study in which 25 deaf children and 25 hearing children completed a vocabulary test and a compound stimulus visual information task support the hypothesis that performance on cognitive tasks is dependent on compatibility of task demands with a coding orientation. (SLD)

  16. Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage

    PubMed Central

    Cattenoz, Pierre B.; Taft, Ryan J.; Westhof, Eric; Mattick, John S.

    2013-01-01

    Adenosine to inosine (A > I) RNA editing, which is catalyzed by the ADAR family of proteins, is one of the fundamental mechanisms by which transcriptomic diversity is generated. Indeed, a number of genome-wide analyses have shown that A > I editing is not limited to a few mRNAs, as originally thought, but occurs widely across the transcriptome, especially in the brain. Importantly, there is increasing evidence that A > I editing is essential for animal development and nervous system function. To more efficiently characterize the complete catalog of ADAR events in the mammalian transcriptome we developed a high-throughput protocol to identify A > I editing sites, which exploits the capacity of glyoxal to protect guanosine, but not inosine, from RNAse T1 treatment, thus facilitating extraction of RNA fragments with inosine bases at their termini for high-throughput sequencing. Using this method we identified 665 editing sites in mouse brain RNA, including most known sites and suite of novel sites that include nonsynonymous changes to protein-coding genes, hyperediting of genes known to regulate p53, and alterations to non-protein-coding RNAs. This method is applicable to any biological system for the de novo discovery of A > I editing sites, and avoids the complicated informatic and practical issues associated with editing site identification using traditional RNA sequencing data. This approach has the potential to substantially increase our understanding of the extent and function of RNA editing, and thereby to shed light on the role of transcriptional plasticity in evolution, development, and cognition. PMID:23264566

  17. Amino acid substitutions affecting protein dynamics in eglin C do not affect heat capacity change upon unfolding.

    PubMed

    Gribenko, Alexey V; Keiffer, Timothy R; Makhatadze, George I

    2006-08-01

    The heat capacity change upon unfolding (deltaC(p)) is a thermodynamic parameter that defines the temperature dependence of the thermodynamic stability of proteins; however, physical basis of the heat capacity change is not completely understood. Although empirical surface area-based calculations can predict heat capacity changes reasonably well, accumulating evidence suggests that changes in hydration of those surfaces is not the only parameter contributing to the observed heat capacity changes upon unfolding. Because packing density in the protein interior is similar to that observed in organic crystals, we hypothesized that changes in protein dynamics resulting in increased rigidity of the protein structure might contribute to the observed heat capacity change upon unfolding. Using differential scanning calorimetry we characterized the thermodynamic behavior of a serine protease inhibitor eglin C and two eglin C variants with altered native state dynamics, as determined by NMR. We found no evidence of changes in deltaC(p) in either of the variants, suggesting that changes in rigidity do not contribute to the heat capacity change upon unfolding in this model system. Copyright 2006 Wiley-Liss, Inc.

  18. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  19. Solubilized wheat protein isolate: functional properties and potential food applications.

    PubMed

    Ahmedna, M; Prinyawiwatkul, W; Rao, R M

    1999-04-01

    Solubility, foaming capacity/stability, water holding and fat absorption capacities, and emulsifying capacity/stability of a solubilized wheat protein isolate (SWPI) were compared with those of commercial protein, that is, sodium caseinate (NaCAS), dried egg white (DEW), nonfat dry milk (NFDM), and soy protein isolate (SPI). SWPI was highly soluble at pH 6.5-8.5. Foaming capacity of SWPI was superior to those of SPI, NFDM, and DEW, and its foaming stability was similar to those of the commercial proteins. Foaming properties of SWPI were greatly improved in the presence of 0.5% (w/v) CaCl(2). Water holding capacity of SWPI was greater than that of NaCAS, NFDM, and DEW, whereas its fat absorption capacity was comparable to that of SPI, NaCAS, and DEW. SWPI exhibited emulsifying properties similar to those of SPI. SWPI was incorporated at 5, 10, 15, or 20% into ice cream, chocolate chip cookies, banana nut muffins, and hamburger patties. Products containing <5% SWPI were acceptable to consumers.

  20. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco.

    PubMed

    Vanlerberghe, G C; McIntosh, L

    1992-09-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.

  1. One-way quantum repeaters with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-05-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.

  2. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekiert, Damian C.; Cox, Jeffery S.

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here in this paper, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), whichmore » adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Furthermore, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.« less

  3. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    DOE PAGES

    Ekiert, Damian C.; Cox, Jeffery S.

    2014-10-01

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here in this paper, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), whichmore » adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Furthermore, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.« less

  4. Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering

    PubMed Central

    Liu, Zihe; Liu, Lifang; Österlund, Tobias; Hou, Jin; Huang, Mingtao; Fagerberg, Linn; Petranovic, Dina; Uhlén, Mathias

    2014-01-01

    The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis. PMID:24973076

  5. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    PubMed

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Complete mitochondrial genome of Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae).

    PubMed

    Omeire, Destiny; Abdin, Shaunte; Brooks, Daniel M; Miranda, Hector C

    2015-04-01

    The Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae) is classified as Near Threatened on the IUCN Red List. The complete mitochondrial genome of P. germaini is 16,699 bp, consisting of 13 protein-coding genes, 2 rRNA, 22 tRNA genes and 1 control region. All of the 13 protein-coding genes have ATG as start codon. Eight of the 13 protein-coding genes have TAA as stop codon.

  7. Influence of Protein-Phenolic Complex on the Antioxidant Capacity of Flaxseed (Linum usitatissimum L.) Products.

    PubMed

    Guimarães Drummond E Silva, Fernanda; Miralles, Beatriz; Hernández-Ledesma, Blanca; Amigo, Lourdes; Iglesias, Amadeu Hoshi; Reyes Reyes, Felix Guillermo; Netto, Flavia Maria

    2017-02-01

    The impact of the naturally present phenolic compounds and/or proteins on the antioxidant capacity of flaxseed products (phenolic fraction, protein concentrates, and hydrolysates) before and after simulated gastrointestinal digestion was studied. For that, whole and phenolic reduced products were assessed. Four glycosylated phenolic compounds (secoisolariciresinol and ferulic, p-coumaric, and caffeic acids) were identified in flaxseed products. Phenolic fraction exerts the highest antioxidant capacity that increased by alkaline hydrolysis and by simulated gastrointestinal digestion. The action of Alcalase and digestive enzymes resulted in an increase of the antioxidant capacity of whole and phenolic reduced products. Principal component analysis showed that proteinaceous samples act as antioxidant is by H + transfer, while those samples containing phenolic compounds exert their effects by both electron donation and H + transfer mechanisms. Protein/peptide-phenolic complexation, confirmed by fluorescence spectra, exerted a positive effect on the antioxidant capacity, mainly in protein concentrates.

  8. Long Non-Coding RNAs: A Novel Paradigm for Toxicology.

    PubMed

    Dempsey, Joseph L; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  10. Living Organisms Author Their Read-Write Genomes in Evolution.

    PubMed

    Shapiro, James A

    2017-12-06

    Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.

  11. Optimal Near-Hitless Network Failure Recovery Using Diversity Coding

    ERIC Educational Resources Information Center

    Avci, Serhat Nazim

    2013-01-01

    Link failures in wide area networks are common and cause significant data losses. Mesh-based protection schemes offer high capacity efficiency but they are slow, require complex signaling, and instable. Diversity coding is a proactive coding-based recovery technique which offers near-hitless (sub-ms) restoration with a competitive spare capacity…

  12. Error Control Techniques for Satellite and Space Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1996-01-01

    In this report, we present the results of our recent work on turbo coding in two formats. Appendix A includes the overheads of a talk that has been given at four different locations over the last eight months. This presentation has received much favorable comment from the research community and has resulted in the full-length paper included as Appendix B, 'A Distance Spectrum Interpretation of Turbo Codes'. Turbo codes use a parallel concatenation of rate 1/2 convolutional encoders combined with iterative maximum a posteriori probability (MAP) decoding to achieve a bit error rate (BER) of 10(exp -5) at a signal-to-noise ratio (SNR) of only 0.7 dB. The channel capacity for a rate 1/2 code with binary phase shift-keyed modulation on the AWGN (additive white Gaussian noise) channel is 0 dB, and thus the Turbo coding scheme comes within 0.7 DB of capacity at a BER of 10(exp -5).

  13. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  14. Long distance quantum communication with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang; Jianggroup Team

    We study the construction of quantum Reed Solomon codes from classical Reed Solomon codes and show that they achieve the capacity of quantum erasure channel for multi-level quantum systems. We extend the application of quantum Reed Solomon codes to long distance quantum communication, investigate the local resource overhead needed for the functioning of one-way quantum repeaters with these codes, and numerically identify the parameter regime where these codes perform better than the known quantum polynomial codes and quantum parity codes . Finally, we discuss the implementation of these codes into time-bin photonic states of qubits and qudits respectively, and optimize the performance for one-way quantum repeaters.

  15. Post-transcriptional trafficking and regulation of neuronal gene expression.

    PubMed

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  16. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation.

    PubMed

    Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z; Bezprozvannaya, Svetlana; Sharma, Gaurav; Khemtong, Chalermchai; Shah, Akansha M; McAnally, John R; Malloy, Craig R; Szweda, Luke I; Bassel-Duby, Rhonda; Olson, Eric N

    2018-06-26

    Micropeptide regulator of β-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid β-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced β-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. The actin multigene family and livestock speciation using the polymerase chain reaction.

    PubMed

    Fairbrother, K S; Hopwood, A J; Lockley, A K; Bardsley, R G

    1998-01-01

    Actins constitute a family of highly-conserved multifunctional intracellular proteins, best known as myofibrillar components in striated muscle fibres. Most vertebrate genomes contain numerous actin genes with high sequence homology in protein coding regions but considerable variability in intron number and sizes. This genetic diversity can be utilised for livestock speciation purposes. The high sequence conservation has enabled a single pair of oligonucleotides to be used to prime the polymerase chain reaction (PCR) with DNA extracted from all animals so far studied. Multiple amplification products were obtained which on gel electrophoresis constituted characteristic species-specific 'fingerprints'. The patterns were reproducible, did not vary between individuals of the same breed or between different breeds within a species, and could be generated even from heat-processed muscle held at 120 degrees C for one hour. Given the capacity of PCR to amplify relatively short sequences in highly-degraded DNA, this approach may be suitable for authentication of processed meat products.

  18. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE PAGES

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  19. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  20. Different evolutionary patterns of SNPs between domains and unassigned regions in human protein-coding sequences.

    PubMed

    Pang, Erli; Wu, Xiaomei; Lin, Kui

    2016-06-01

    Protein evolution plays an important role in the evolution of each genome. Because of their functional nature, in general, most of their parts or sites are differently constrained selectively, particularly by purifying selection. Most previous studies on protein evolution considered individual proteins in their entirety or compared protein-coding sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each protein of a given genome. To this end, based on PfamA annotation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occurring within protein domains and those within unassigned regions. With these classifications, we found: the density of synonymous SNPs within domains is significantly greater than that of synonymous SNPs within unassigned regions; however, the density of non-synonymous SNPs shows the opposite pattern. We also found there are signatures of purifying selection on both the domain and unassigned regions. Furthermore, the selective strength on domains is significantly greater than that on unassigned regions. In addition, among all of the human protein sequences, there are 117 PfamA domains in which no SNPs are found. Our results highlight an important aspect of protein domains and may contribute to our understanding of protein evolution.

  1. Lower Growth Temperature Increases Alternative Pathway Capacity and Alternative Oxidase Protein in Tobacco 1

    PubMed Central

    Vanlerberghe, Greg C.; McIntosh, Lee

    1992-01-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932

  2. On optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemes

    NASA Astrophysics Data System (ADS)

    Dao, Thanh Hai

    2018-01-01

    Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.

  3. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.

    PubMed

    Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy

    2016-01-01

    Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species. © 2016 S. Karger AG, Basel.

  4. Best interests of adults who lack capacity part 2: key considerations.

    PubMed

    Griffith, Richard

    Last month's article discussed the key concepts underpinning the notion of best interests. In this article the author discusses the requirements for determining the best interests of an adult who lacks capacity under the provisions of the Mental Capacity Act 2005 and its code of practice (Department for Constitutional Affairs 2007).

  5. Experimental studies related to the origin of the genetic code and the process of protein synthesis - A review

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.

    1983-01-01

    A survey is presented of the literature on the experimental evidence for the genetic code assignments and the chemical reactions involved in the process of protein synthesis. In view of the enormous number of theoretical models that have been advanced to explain the origin of the genetic code, attention is confined to experimental studies. Since genetic coding has significance only within the context of protein synthesis, it is believed that the problem of the origin of the code must be dealt with in terms of the origin of the process of protein synthesis. It is contended that the answers must lie in the nature of the molecules, amino acids and nucleotides, the affinities they might have for one another, and the effect that those affinities must have on the chemical reactions that are related to primitive protein synthesis. The survey establishes that for the bulk of amino acids, there is a direct and significant correlation between the hydrophobicity rank of the amino acids and the hydrophobicity rank of their anticodonic dinucleotides.

  6. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  7. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    PubMed

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  8. Belief propagation decoding of quantum channels by passing quantum messages

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  9. DNA barcode goes two-dimensions: DNA QR code web server.

    PubMed

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  10. Structural Phylogenomics Retrodicts the Origin of the Genetic Code and Uncovers the Evolutionary Impact of Protein Flexibility

    PubMed Central

    Caetano-Anollés, Gustavo; Wang, Minglei; Caetano-Anollés, Derek

    2013-01-01

    The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the ‘operational’ RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure. PMID:23991065

  11. Genes encoding intrinsic disorder in Eukaryota have high GC content

    PubMed Central

    Peng, Zhenling; Uversky, Vladimir N.

    2016-01-01

    ABSTRACT We analyze a correlation between the GC content in genes of 12 eukaryotic species and the level of intrinsic disorder in their corresponding proteins. Comprehensive computational analysis has revealed that the disordered regions in eukaryotes are encoded by the GC-enriched gene regions and that this enrichment is correlated with the amount of disorder and is present across proteins and species characterized by varying amounts of disorder. The GC enrichment is a result of higher rate of amino acid coded by GC-rich codons in the disordered regions. Individual amino acids have the same GC-content profile between different species. Eukaryotic proteins with the disordered regions encoded by the GC-enriched gene segments carry out important biological functions including interactions with RNAs, DNAs, nucleotides, binding of calcium and metal ions, are involved in transcription, transport, cell division and certain signaling pathways, and are localized primarily in nucleus, cytosol and cytoplasm. We also investigate a possible relationship between GC content, intrinsic disorder and protein evolution. Analysis of a devised “age” of amino acids, their disorder-promoting capacity and the GC-enrichment of their codons suggests that the early amino acids are mostly disorder-promoting and their codons are GC-rich while most of late amino acids are mostly order-promoting. PMID:28232902

  12. CombAlign: a code for generating a one-to-many sequence alignment from a set of pairwise structure-based sequence alignments.

    PubMed

    Zhou, Carol L Ecale

    2015-01-01

    In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.

  13. Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins

    PubMed Central

    Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S

    2017-01-01

    Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303

  14. Hippocampal Remapping Is Constrained by Sparseness rather than Capacity

    PubMed Central

    Kammerer, Axel; Leibold, Christian

    2014-01-01

    Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of different spatial environments that can be represented. The codes for different environments arise from phase shifts of the periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code. Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not using its full capacity to transfer space information. Both populations may encode different aspects of space. PMID:25474570

  15. High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits

    NASA Astrophysics Data System (ADS)

    Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan

    2016-11-01

    Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.

  16. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi.

    PubMed

    Xiong, Changyan; Li, Xuejiao; Liu, Juanli; Zhao, Xin; Xu, Shungao; Huang, Xinxiang

    2018-01-01

    Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi ( S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis -encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH .

  17. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  18. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  19. Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids.

    PubMed

    Brown, Kalyn A; Deiters, Alexander

    2015-09-01

    The expansion of the genetic code of mammalian cells enables the incorporation of unnatural amino acids into proteins. This is achieved by adding components to the protein biosynthetic machinery, specifically an engineered aminoacyl-tRNA synthetase/tRNA pair. The unnatural amino acids are chemically synthesized and supplemented to the growth medium. Using this methodology, fundamental new chemistries can be added to the functional repertoire of the genetic code of mammalian cells. This protocol outlines the steps necessary to incorporate a photocaged lysine into proteins and showcases its application in the optical triggering of protein translocation to the nucleus. Copyright © 2015 John Wiley & Sons, Inc.

  20. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    PubMed

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (P<0.05). In addition, there was a significant increase in the expression of the IL-10 in mice immunized with pTARGET/ligBrep and fed with Saccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  1. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing.

    PubMed Central

    Wieczorek, D F; Smith, C W; Nadal-Ginard, B

    1988-01-01

    Tropomyosin (TM), a ubiquitous protein, is a component of the contractile apparatus of all cells. In nonmuscle cells, it is found in stress fibers, while in sarcomeric and nonsarcomeric muscle, it is a component of the thin filament. Several different TM isoforms specific for nonmuscle cells and different types of muscle cell have been described. As for other contractile proteins, it was assumed that smooth, striated, and nonmuscle isoforms were each encoded by different sets of genes. Through the use of S1 nuclease mapping, RNA blots, and 5' extension analyses, we showed that the rat alpha-TM gene, whose expression was until now considered to be restricted to muscle cells, generates many different tissue-specific isoforms. The promoter of the gene appears to be very similar to other housekeeping promoters in both its pattern of utilization, being active in most cell types, and its lack of any canonical sequence elements. The rat alpha-TM gene is split into at least 13 exons, 7 of which are alternatively spliced in a tissue-specific manner. This gene arrangement, which also includes two different 3' ends, generates a minimum of six different mRNAs each with the capacity to code for a different protein. These distinct TM isoforms are expressed specifically in nonmuscle and smooth and striated (cardiac and skeletal) muscle cells. The tissue-specific expression and developmental regulation of these isoforms is, therefore, produced by alternative mRNA processing. Moreover, structural and sequence comparisons among TM genes from different phyla suggest that alternative splicing is evolutionarily a very old event that played an important role in gene evolution and might have appeared concomitantly with or even before constitutive splicing. Images PMID:3352602

  2. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    DOT National Transportation Integrated Search

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  3. Arbitrariness is not enough: towards a functional approach to the genetic code.

    PubMed

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  4. Assessing Capacity for Sustainability of Effective Programs and Policies in Local Health Departments.

    PubMed

    Tabak, Rachel G; Duggan, Katie; Smith, Carson; Aisaka, Kristelle; Moreland-Russell, Sarah; Brownson, Ross C

    2016-01-01

    Sustainability has been defined as the existence of structures and processes that allow a program to leverage resources to effectively implement and maintain evidence-based public health and is important in local health departments (LHDs) to retain the benefits of effective programs. Explore the applicability of the Program Sustainability Framework in high- and low-capacity LHDs as defined by national performance standards. Case study interviews from June to July 2013. Standard qualitative methodology was used to code transcripts; codes were developed inductively and deductively. Six geographically diverse LHD's (selected from 3 of high and 3 of low capacity) : 35 LHD practitioners. Thematic reports explored the 8 domains (Organizational Capacity, Program Adaptation, Program Evaluation, Communications, Strategic Planning, Funding Stability, Environmental Support, and Partnerships) of the Program Sustainability Framework. High-capacity LHDs described having environmental support, while low-capacity LHDs reported this was lacking. Both high- and low-capacity LHDs described limited funding; however, high-capacity LHDs reported greater funding flexibility. Partnerships were important to high- and low-capacity LHDs, and both described building partnerships to sustain programming. Regarding organizational capacity, high-capacity LHDs reported better access to and support for adequate staff and staff training when compared with low-capacity LHDs. While high-capacity LHDs described integration of program evaluation into implementation and sustainability, low-capacity LHDs reported limited capacity for measurement specifically and evaluation generally. When high-capacity LHDs described program adoption, they discussed an opportunity to adapt and evaluate. Low-capacity LHDs struggled with programs requiring adaptation. High-capacity LHDs described higher quality communication than low-capacity LHDs. High- and low-capacity LHDs described strategic planning, but high-capacity LHDs reported efforts to integrate evidence-based public health. Investments in leadership support for improving organizational capacity, improvements in communication from the top of the organization, integrating program evaluation into implementation, and greater funding flexibility may enhance sustainability of evidence-based public health in LHDs.

  5. Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results

    NASA Astrophysics Data System (ADS)

    Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.

    2005-12-01

    We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.

  6. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed

    Rhoads, D. M.; McIntosh, L.

    1993-11-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein.

  7. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed Central

    Rhoads, D. M.; McIntosh, L.

    1993-01-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein. PMID:12231986

  8. A co-designed equalization, modulation, and coding scheme

    NASA Technical Reports Server (NTRS)

    Peile, Robert E.

    1992-01-01

    The commercial impact and technical success of Trellis Coded Modulation seems to illustrate that, if Shannon's capacity is going to be neared, the modulation and coding of an analogue signal ought to be viewed as an integrated process. More recent work has focused on going beyond the gains obtained for Average White Gaussian Noise and has tried to combine the coding/modulation with adaptive equalization. The motive is to gain similar advances on less perfect or idealized channels.

  9. Short- and long-term memory contributions to immediate serial recognition: evidence from serial position effects.

    PubMed

    Purser, Harry; Jarrold, Christopher

    2010-04-01

    A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.

  10. De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development.

    PubMed

    Hsu, Hsiang-Yi; Chen, Shu-Hwa; Cha, Yuh-Ru; Tsukamoto, Katsumi; Lin, Chung-Yen; Han, Yu-San

    2015-01-01

    Natural stocks of Japanese eel (Anguilla japonica) have decreased drastically because of overfishing, habitat destruction, and changes in the ocean environment over the past few decades. However, to date, artificial mass production of glass eels is far from reality because of the lack of appropriate feed for the eel larvae. In this study, wild glass eel, leptocephali, preleptocephali, and embryos were collected to conduct RNA-seq. Approximately 279 million reads were generated and assembled into 224,043 transcripts. The transcript levels of genes coding for digestive enzymes and nutrient transporters were investigated to estimate the capacities for nutrient digestion and absorption during early development. The results showed that the transcript levels of protein digestion enzymes were higher than those of carbohydrate and lipid digestion enzymes in the preleptocephali and leptocephali, and the transcript levels of amino acid transporters were also higher than those of glucose and fructose transporters and the cholesterol transporter. In addition, the transcript levels of glucose and fructose transporters were significantly raising in the leptocephali. Moreover, the transcript levels of protein, carbohydrate, and lipid digestion enzymes were balanced in the glass eel, but the transcript levels of amino acid transporters were higher than those of glucose and cholesterol transporters. These findings implied that preleptocephali and leptocephali prefer high-protein food, and the nutritional requirements of monosaccharides and lipids for the eel larvae vary with growth. An online database (http://molas.iis.sinica.edu.tw/jpeel/) that will provide the sequences and the annotated results of assembled transcripts was established for the eel research community.

  11. De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development

    PubMed Central

    Cha, Yuh-Ru; Tsukamoto, Katsumi; Lin, Chung-Yen; Han, Yu-San

    2015-01-01

    Natural stocks of Japanese eel (Anguilla japonica) have decreased drastically because of overfishing, habitat destruction, and changes in the ocean environment over the past few decades. However, to date, artificial mass production of glass eels is far from reality because of the lack of appropriate feed for the eel larvae. In this study, wild glass eel, leptocephali, preleptocephali, and embryos were collected to conduct RNA-seq. Approximately 279 million reads were generated and assembled into 224,043 transcripts. The transcript levels of genes coding for digestive enzymes and nutrient transporters were investigated to estimate the capacities for nutrient digestion and absorption during early development. The results showed that the transcript levels of protein digestion enzymes were higher than those of carbohydrate and lipid digestion enzymes in the preleptocephali and leptocephali, and the transcript levels of amino acid transporters were also higher than those of glucose and fructose transporters and the cholesterol transporter. In addition, the transcript levels of glucose and fructose transporters were significantly raising in the leptocephali. Moreover, the transcript levels of protein, carbohydrate, and lipid digestion enzymes were balanced in the glass eel, but the transcript levels of amino acid transporters were higher than those of glucose and cholesterol transporters. These findings implied that preleptocephali and leptocephali prefer high-protein food, and the nutritional requirements of monosaccharides and lipids for the eel larvae vary with growth. An online database (http://molas.iis.sinica.edu.tw/jpeel/) that will provide the sequences and the annotated results of assembled transcripts was established for the eel research community. PMID:26406914

  12. Using the NCBI Genome Databases to Compare the Genes for Human & Chimpanzee Beta Hemoglobin

    ERIC Educational Resources Information Center

    Offner, Susan

    2010-01-01

    The beta hemoglobin protein is identical in humans and chimpanzees. In this tutorial, students see that even though the proteins are identical, the genes that code for them are not. There are many more differences in the introns than in the exons, which indicates that coding regions of DNA are more highly conserved than non-coding regions.

  13. Research on pre-processing of QR Code

    NASA Astrophysics Data System (ADS)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  14. Biallelic insertion of a transcriptional terminator via the CRISPR/Cas9 system efficiently silences expression of protein-coding and non-coding RNA genes.

    PubMed

    Liu, Yangyang; Han, Xiao; Yuan, Junting; Geng, Tuoyu; Chen, Shihao; Hu, Xuming; Cui, Isabelle H; Cui, Hengmi

    2017-04-07

    The type II bacterial CRISPR/Cas9 system is a simple, convenient, and powerful tool for targeted gene editing. Here, we describe a CRISPR/Cas9-based approach for inserting a poly(A) transcriptional terminator into both alleles of a targeted gene to silence protein-coding and non-protein-coding genes, which often play key roles in gene regulation but are difficult to silence via insertion or deletion of short DNA fragments. The integration of 225 bp of bovine growth hormone poly(A) signals into either the first intron or the first exon or behind the promoter of target genes caused efficient termination of expression of PPP1R12C , NSUN2 (protein-coding genes), and MALAT1 (non-protein-coding gene). Both NeoR and PuroR were used as markers in the selection of clonal cell lines with biallelic integration of a poly(A) signal. Genotyping analysis indicated that the cell lines displayed the desired biallelic silencing after a brief selection period. These combined results indicate that this CRISPR/Cas9-based approach offers an easy, convenient, and efficient novel technique for gene silencing in cell lines, especially for those in which gene integration is difficult because of a low efficiency of homology-directed repair. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  16. Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms

    PubMed Central

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements. PMID:16945140

  17. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    PubMed

    Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong

    2012-01-01

    Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.

  18. Region-specific differences in bioenergetic proteins and protein response to acute high fat diet in brains of low and high capacity runner rats.

    PubMed

    Gan, Li; Ma, Delin; Li, Min; Yang, Fu-Chen; Rogers, Robert S; Wheatley, Joshua L; Koch, Lauren G; Britton, Steven L; Thyfault, John P; Geiger, Paige C; Stanford, John A

    2018-05-01

    Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.

    PubMed

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2015-01-01

    Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity.

  20. Improved Secret Image Sharing Scheme in Embedding Capacity without Underflow and Overflow.

    PubMed

    Pang, Liaojun; Miao, Deyu; Li, Huixian; Wang, Qiong

    2015-01-01

    Computational secret image sharing (CSIS) is an effective way to protect a secret image during its transmission and storage, and thus it has attracted lots of attentions since its appearance. Nowadays, it has become a hot topic for researchers to improve the embedding capacity and eliminate the underflow and overflow situations, which is embarrassing and difficult to deal with. The scheme, which has the highest embedding capacity among the existing schemes, has the underflow and overflow problems. Although the underflow and overflow situations have been well dealt with by different methods, the embedding capacities of these methods are reduced more or less. Motivated by these concerns, we propose a novel scheme, in which we take the differential coding, Huffman coding, and data converting to compress the secret image before embedding it to further improve the embedding capacity, and the pixel mapping matrix embedding method with a newly designed matrix is used to embed secret image data into the cover image to avoid the underflow and overflow situations. Experiment results show that our scheme can improve the embedding capacity further and eliminate the underflow and overflow situations at the same time.

  1. Improved Secret Image Sharing Scheme in Embedding Capacity without Underflow and Overflow

    PubMed Central

    Pang, Liaojun; Miao, Deyu; Li, Huixian; Wang, Qiong

    2015-01-01

    Computational secret image sharing (CSIS) is an effective way to protect a secret image during its transmission and storage, and thus it has attracted lots of attentions since its appearance. Nowadays, it has become a hot topic for researchers to improve the embedding capacity and eliminate the underflow and overflow situations, which is embarrassing and difficult to deal with. The scheme, which has the highest embedding capacity among the existing schemes, has the underflow and overflow problems. Although the underflow and overflow situations have been well dealt with by different methods, the embedding capacities of these methods are reduced more or less. Motivated by these concerns, we propose a novel scheme, in which we take the differential coding, Huffman coding, and data converting to compress the secret image before embedding it to further improve the embedding capacity, and the pixel mapping matrix embedding method with a newly designed matrix is used to embed secret image data into the cover image to avoid the underflow and overflow situations. Experiment results show that our scheme can improve the embedding capacity further and eliminate the underflow and overflow situations at the same time. PMID:26351657

  2. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  3. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway[S

    PubMed Central

    Pamir, Nathalie; Hutchins, Patrick; Ronsein, Graziella; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.; Lusis, Aldons J.; Heinecke, Jay W.

    2016-01-01

    Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages. PMID:26673204

  4. DNA Barcode Goes Two-Dimensions: DNA QR Code Web Server

    PubMed Central

    Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, “DNA barcode” actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113

  5. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  6. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  7. microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury

    DTIC Science & Technology

    2016-08-01

    protein processing is a key feature of AD. MiRNAs are small non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein...non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein dysregulation. Our investigative team has generated

  8. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles.

    PubMed

    Wu, F C; Zhang, H; Zhou, Q; Wu, M; Ballard, Z; Tian, Y; Wang, J Y; Niu, Z W; Huang, Y

    2014-04-18

    A method for site-specific and high yield modification of tobacco mosaic virus coat protein (TMVCP) utilizing a genetic code expanding technology and copper free cycloaddition reaction has been established, and biotin-functionalized virus-like particles were built by the self-assembly of the protein monomers.

  9. Network perturbation by recurrent regulatory variants in cancer

    PubMed Central

    Cho, Ara; Lee, Insuk; Choi, Jung Kyoon

    2017-01-01

    Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928

  10. Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells.

    PubMed

    Chocu, Sophie; Evrard, Bertrand; Lavigne, Régis; Rolland, Antoine D; Aubry, Florence; Jégou, Bernard; Chalmel, Frédéric; Pineau, Charles

    2014-11-01

    Spermatogenesis is a complex process, dependent upon the successive activation and/or repression of thousands of gene products, and ends with the production of haploid male gametes. RNA sequencing of male germ cells in the rat identified thousands of novel testicular unannotated transcripts (TUTs). Although such RNAs are usually annotated as long noncoding RNAs (lncRNAs), it is possible that some of these TUTs code for protein. To test this possibility, we used a "proteomics informed by transcriptomics" (PIT) strategy combining RNA sequencing data with shotgun proteomics analyses of spermatocytes and spermatids in the rat. Among 3559 TUTs and 506 lncRNAs found in meiotic and postmeiotic germ cells, 44 encoded at least one peptide. We showed that these novel high-confidence protein-coding loci exhibit several genomic features intermediate between those of lncRNAs and mRNAs. We experimentally validated the testicular expression pattern of two of these novel protein-coding gene candidates, both highly conserved in mammals: one for a vesicle-associated membrane protein we named VAMP-9, and the other for an enolase domain-containing protein. This study confirms the potential of PIT approaches for the discovery of protein-coding transcripts initially thought to be untranslated or unknown transcripts. Our results contribute to the understanding of spermatogenesis by characterizing two novel proteins, implicated by their strong expression in germ cells. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD000872. © 2014 by the Society for the Study of Reproduction, Inc.

  11. Dietary protein hydrolysate and trypsin inhibitor effects on digestive capacities and performances during early-stages of spotted wolffish: suggested mechanisms.

    PubMed

    Savoie, A; Le François, N R; Lamarre, S G; Blier, P U; Beaulieu, L; Cahu, C

    2011-04-01

    Growth rate is dependent upon adequate provision of amino acids especially in newly-hatched fish which experience very high growth rate. The replacement of a fraction of protein content by partially hydrolyzed (pre-digested) proteins was carried out and the digestive capacities and performances of larval/juvenile spotted wolffish (Anarhichas minor) were measured. The goal of this study was to verify whether the scope for growth is principally dictated by the proteolytic capacity of the digestive system by examining the effect of protein hydrolysates (PH) and trypsin inhibitor dietary inclusion on protein digestion/assimilation capacities, growth and survival. Four experimental diets were examined: C (control) I (supplemented with 750 mg/kg soybean trypsin inhibitor (SBTI)) H (supplemented with 20% PH) and HI (supplemented with 20% PH and 750 mg/kg SBTI). Protein hydrolysate supplementation gave significantly higher body mass than control at day 15 post-hatching. Unexpectedly, at day 30 and 60, fish administered diet HI (containing trypsin inhibitor) were heavier than the other groups. Suggested mechanisms are presented and discussed. The main conclusions of this study are that wolffish larval stage lasts roughly 15 days and that juvenile growth is linked to proteolytic capacity, but also very likely to absorption capacity of peptides and amino acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A Modular Approach To Study Protein Adsorption on Surface Modified Hydroxyapatite.

    PubMed

    Ozhukil Kollath, Vinayaraj; Van den Broeck, Freya; Fehér, Krisztina; Martins, José C; Luyten, Jan; Traina, Karl; Mullens, Steven; Cloots, Rudi

    2015-07-13

    Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    PubMed

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  14. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    PubMed

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  15. Reducing the genetic code induces massive rearrangement of the proteome

    PubMed Central

    O’Donoghue, Patrick; Prat, Laure; Kucklick, Martin; Schäfer, Johannes G.; Riedel, Katharina; Rinehart, Jesse; Söll, Dieter; Heinemann, Ilka U.

    2014-01-01

    Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNAPyl. To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNAPyl deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNAPyl globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency. PMID:25404328

  16. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  17. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data.

    PubMed

    Raju, Hemalatha B; Tsinoremas, Nicholas F; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein-protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches.

  18. Protograph-Based Raptor-Like Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  19. Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT

    NASA Technical Reports Server (NTRS)

    Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.

    2015-01-01

    This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.

  20. Protograph LDPC Codes Over Burst Erasure Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.

  1. Determination of total antioxidant capacity of milk by CUPRAC and ABTS methods with separate characterisation of milk protein fractions.

    PubMed

    Çekiç, Sema Demirci; Demir, Aslı; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2015-05-01

    Most milk-applied antioxidant assays in literature are based on the isolation and quantification of individual antioxidative compounds, whereas total antioxidant capacity (TAC) gives a more holistic picture due to cooperative action of antioxidants. Recently, the cupric reducing antioxidant capacity (CUPRAC) method has been modified to measure the antioxidant capacities of thiol-containing proteins, where the classical ammonium acetate buffer - that may otherwise precipitate proteins- was replaced with concentrated urea buffer (able to expose embedded thiol groups of proteins to oxidative attack) adjusted to pH 7.0. Thus, antioxidant capacity of milk was investigated with two competing TAC assays, namely CUPRAC and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid))/persulphate, because only these assays were capable of evaluating protein contribution to the observed TAC value. As milk fat caused turbidity, experiments were carried out with skim milk or defatted milk samples. To determine TAC, modified CUPRAC method was applied to whole milk, separated and redissolved protein fractions, and the remaining liquid phase after necessary operations. Both TAC methods were investigated for their dilution sensitivity and antioxidant power assessment of separate milk fractions such as casein and whey. Proteins like β-lactoglobulin and casein (but not simple thiols) exhibited enhanced CUPRAC reactivity with surfactant (SDS) addition. Addition of milk protein fractions to whole skim milk produced significant 'negative-biased' deviations (up to -26% relative standard error) from TAC absorbance additivity in the application of the ABTS method, as opposed to that of the CUPRAC method less affected by chemical deviations from Beer's law thereby producing much smaller deviations from additivity (i.e. the property of additivity is valid when the measured TAC of a mixture is equal to the sum of individual antioxidant capacities of its constituents).

  2. Effects of Voice Coding and Speech Rate on a Synthetic Speech Display in a Telephone Information System

    DTIC Science & Technology

    1988-05-01

    Seeciv Limited- System for varying Senses term filter capacity output until some Figure 2. Original limited-capacity channel model (Frim Broadbent, 1958) S...2 Figure 2. Original limited-capacity channel model (From Broadbent, 1958) .... 10 Figure 3. Experimental...unlimited variety of human voices for digital recording sources. Synthesis by Analysis Analysis-synthesis methods electronically model the human voice

  3. Geotechnical LFRD calculations of settlement and bearing capacity of GDOT shallow bridge foundations and retaining walls.

    DOT National Transportation Integrated Search

    2016-08-09

    The AASHTO codes for Load Resistance Factored Design (LRFD) regarding shallow bridge foundations : and walls have been implemented into a set of spreadsheet algorithms to facilitate the calculations of bearing : capacity and footing settlements on na...

  4. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting. Electronic supplementary information (ESI) available: Calculating details of UCNP content per 3D QR code and decoding process of the 3D QR code. See DOI: 10.1039/c6nr01353h

  5. Constructing LDPC Codes from Loop-Free Encoding Modules

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.

  6. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  7. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    PubMed

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  8. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression

    PubMed Central

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919

  9. The application of LDPC code in MIMO-OFDM system

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  10. De Novo Origin of Human Protein-Coding Genes

    PubMed Central

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  11. MitoNuc: a database of nuclear genes coding for mitochondrial proteins. Update 2002.

    PubMed

    Attimonelli, Marcella; Catalano, Domenico; Gissi, Carmela; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Santamaria, Monica; Pesole, Graziano; Saccone, Cecilia

    2002-01-01

    Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organelle genomes. Mitochondrial genomes have been extensively sequenced and analysed and data have been collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc, a database containing detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa. The MitoNuc database can be retrieved through SRS and is available via the web site http://bighost.area.ba.cnr.it/mitochondriome where other mitochondrial databases developed by our group, the complete list of the sequenced mitochondrial genomes, links to other mitochondrial sites and related information, are available. The MitoAln database, related to MitoNuc in the previous release, reporting the multiple alignments of the relevant homologous protein coding regions, is no longer supported in the present release. In order to keep the links among entries in MitoNuc from homologous proteins, a new field in the database has been defined: the cluster identifier, an alpha numeric code used to identify each cluster of homologous proteins. A comment field derived from the corresponding SWISS-PROT entry has been introduced; this reports clinical data related to dysfunction of the protein. The logic scheme of MitoNuc database has been implemented in the ORACLE DBMS. This will allow the end-users to retrieve data through a friendly interface that will be soon implemented.

  12. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel simulation with quantum side information at the receiver. Our main theorem has two important corollaries: rate-distortion theory with quantum side information and common randomness distillation. Simple proofs of achievability of classical multi-terminal source coding problems can be made via a unified approach using the channel simulation theorem as building blocks. The fully quantum generalization of the problem is also conjectured with outer and inner bounds on the achievable rate pairs.

  13. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  14. Identification and characterization of moonlighting long non-coding RNAs based on RNA and protein interactome.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-05-16

    Moonlighting proteins are a class of proteins having multiple distinct functions, which play essential roles in a variety of cellular and enzymatic functioning systems. Although there have long been calls for computational algorithms for the identification of moonlighting proteins, research on approaches to identify moonlighting long non-coding RNAs (lncRNAs) has never been undertaken. Here, we introduce a novel methodology, MoonFinder, for the identification of moonlighting lncRNAs. MoonFinder is a statistical algorithm identifying moonlighting lncRNAs without a priori knowledge through the integration of protein interactome, RNA-protein interactions, and functional annotation of proteins. We identify 155 moonlighting lncRNA candidates and uncover that they are a distinct class of lncRNAs characterized by specific sequence and cellular localization features. The non-coding genes that transcript moonlighting lncRNAs tend to have shorter but more exons and the moonlighting lncRNAs have a variable localization pattern with a high chance of residing in the cytoplasmic compartment in comparison to the other lncRNAs. Moreover, moonlighting lncRNAs and moonlighting proteins are rather mutually exclusive in terms of both their direct interactions and interacting partners. Our results also shed light on how the moonlighting candidates and their interacting proteins implicated in the formation and development of cancers and other diseases. The code implementing MoonFinder is supplied as an R package in the supplementary material. lxcheng@cse.cuhk.edu.hk or ksleung@cse.cuhk.edu.hk. Supplementary data are available at Bioinformatics online.

  15. Next-Generation Sequencing of Protein-Coding and Long Non-protein-Coding RNAs in Two Types of Exosomes Derived from Human Whole Saliva.

    PubMed

    Ogawa, Yuko; Tsujimoto, Masafumi; Yanoshita, Ryohei

    2016-01-01

    Exosomes are small extracellular vesicles containing microRNAs and mRNAs that are produced by various types of cells. We previously used ultrafiltration and size-exclusion chromatography to isolate two types of human salivary exosomes (exosomes I, II) that are different in size and proteomes. We showed that salivary exosomes contain large repertoires of small RNAs. However, precise information regarding long RNAs in salivary exosomes has not been fully determined. In this study, we investigated the compositions of protein-coding RNAs (pcRNAs) and long non-protein-coding RNAs (lncRNAs) of exosome I, exosome II and whole saliva (WS) by next-generation sequencing technology. Although 11% of all RNAs were commonly detected among the three samples, the compositions of reads mapping to known RNAs were similar. The most abundant pcRNA is ribosomal RNA protein, and pcRNAs of some salivary proteins such as S100 calcium-binding protein A8 (protein S100-A8) were present in salivary exosomes. Interestingly, lncRNAs of pseudogenes (presumably, processed pseudogenes) were abundant in exosome I, exosome II and WS. Translationally controlled tumor protein gene, which plays an important role in cell proliferation, cell death and immune responses, was highly expressed as pcRNA and pseudogenes in salivary exosomes. Our results show that salivary exosomes contain various types of RNAs such as pseudogenes and small RNAs, and may mediate intercellular communication by transferring these RNAs to target cells as gene expression regulators.

  16. Quantification of non-coding RNA target localization diversity and its application in cancers.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  17. Comparative biochemical studies of fresh frozen plasma and pooled solvent/detergent-treated plasma (octaplasLG® ) with focus on protein S and its impact in different thrombin generation assay set-ups.

    PubMed

    Heger, A; Janisch, S; Pock, K; Römisch, J

    2016-10-01

    The solvent/detergent treatment enables effective and robust inactivation of all lipid-enveloped viruses, but also inactivates partly sensitive plasma proteins such as protein S. The aim of this study was to investigate the thrombin generation capacity of octaplasLG ® , in particular focusing on the function of protein S in thrombin generation assay and the impact of assay settings. Sixteen octaplasLG ® batches and 32 units of single donor fresh frozen plasma (FFP) were investigated. For protein S, both functional activity and free antigen levels were measured. Thrombin generation assay was performed using two fluorogenic tests with different triggers. Finally, rotational thromboelastometry was performed. Mean protein S levels were lower in octaplasLG ® , but a wider range of values was found for FFP. Clotting parameters and thrombin generation capacities overlapped between the two plasma groups as demonstrated using both thrombin generation assays and different triggers. Spiking studies with protein S-depleted plasma, human purified protein S or antibodies against protein S confirmed a correlation between protein S and thrombin generation capacity under specific assay conditions, especially in an assay with low tissue factor concentration. Correlation between protein S and thrombin generation capacity was demonstrated in the TGA. Due to higher variability in protein S content in the FFP group, overlapping haemostatic potentials of the two plasma groups were found. © 2016 International Society of Blood Transfusion.

  18. Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes.

    PubMed

    Seligmann, Hervé

    2013-03-01

    Usual DNA→RNA transcription exchanges T→U. Assuming different systematic symmetric nucleotide exchanges during translation, some GenBank RNAs match exactly human mitochondrial sequences (exchange rules listed in decreasing transcript frequencies): C↔U, A↔U, A↔U+C↔G (two nucleotide pairs exchanged), G↔U, A↔G, C↔G, none for A↔C, A↔G+C↔U, and A↔C+G↔U. Most unusual transcripts involve exchanging uracil. Independent measures of rates of rare replicational enzymatic DNA nucleotide misinsertions predict frequencies of RNA transcripts systematically exchanging the corresponding misinserted nucleotides. Exchange transcripts self-hybridize less than other gene regions, self-hybridization increases with length, suggesting endoribonuclease-limited elongation. Blast detects stop codon depleted putative protein coding overlapping genes within exchange-transcribed mitochondrial genes. These align with existing GenBank proteins (mainly metazoan origins, prokaryotic and viral origins underrepresented). These GenBank proteins frequently interact with RNA/DNA, are membrane transporters, or are typical of mitochondrial metabolism. Nucleotide exchange transcript frequencies increase with overlapping gene densities and stop densities, indicating finely tuned counterbalancing regulation of expression of systematic symmetric nucleotide exchange-encrypted proteins. Such expression necessitates combined activities of suppressor tRNAs matching stops, and nucleotide exchange transcription. Two independent properties confirm predicted exchanged overlap coding genes: discrepancy of third codon nucleotide contents from replicational deamination gradients, and codon usage according to circular code predictions. Predictions from both properties converge, especially for frequent nucleotide exchange types. Nucleotide exchanging transcription apparently increases coding densities of protein coding genes without lengthening genomes, revealing unsuspected functional DNA coding potential. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, R.D. Jr.; Wessler, S.R.

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open readingmore » frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.« less

  20. Proteomic Analysis of Stationary Phase in the Marine Bacterium 'Candidatus Pelagibacter ubique'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, Sarah M.; Norbeck, Angela D.; Lipton, Mary S.

    2008-05-01

    Candidatus Pelagibacter ubique, an abundant marine alphaproteobacterium, subsists in nature at low ambient nutrient concentrations and may often be exposed to nutrient limitation, but its genome revealed no evidence of global regulatory adaptations to stationary phase. We used high-resolution capillary liquid chromatography (LC) coupled online to an LTQ mass spectrometer to build an Accurate Mass and Time (AMT) tag library, and employed the AMT tag approach to quantitatively examine proteome differences between exponentially growing and stationary phase Cand. P. ubique cells cultivated in a seawater medium. The AMT tag library represented 72% of the predicted protein coding genes. Stationary phasemore » protein abundance increased for OsmC, which mitigates oxidative damage, and for molecular chaperones, enzymes involved in methionine and cysteine biosynthesis, proteins involved in rho-dependent transcription termination, and the signal transduction enzymes CheY-FisH and ChvG. Our findings indicate that Cand. P. ubique responds adaptively to stationary phase by increasing the abundance of a suite of proteins that contribute to homeostasis, but does not undergo major proteome remodeling. We speculate that this limited response may enable Cand. P. ubique to cope with ambient conditions in which nutrients are often insufficient for short periods, and the ability to resume growth overrides the capacity for long term survival afforded by more comprehensive global stationary phase responses.« less

  1. Reverse vaccinology as an approach for developing Histophilus somni vaccine candidates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Wang, Yejun; White, Aaron P; Brownlie, Robert; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-11-01

    Histophilosis of cattle is caused by the Gram negative bacterial pathogen Histophilus somni (H. somni) which is also associated with the bovine respiratory disease (BRD) complex. Existing vaccines for H. somni include either killed cells or bacteria-free outer membrane proteins from the organism which have proven to be moderately successful. In this study, reverse vaccinology was used to predict potential H. somni vaccine candidates from genome sequences. In turn, these may protect animals against new strains circulating in the field. Whole genome sequencing of six recent clinical H. somni isolates was performed using an Illumina MiSeq and compared to six genomes from the 1980's. De novo assembly of crude whole genomes was completed using Geneious 6.1.7. Protein coding regions was predicted using Glimmer3. Scores from multiple web-based programs were utilized to evaluate the antigenicity of these predicted proteins which were finally ranked based on their surface exposure scores. A single new strain was selected for future vaccine development based on conservation of the protein candidates among all 12 isolates. A positive signal with convalescent serum for these antigens in western blots indicates in vivo recognition. In order to test the protective capacity of these antigens bovine animal trials are ongoing. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. Chemical ubiquitination for decrypting a cellular code.

    PubMed

    Stanley, Mathew; Virdee, Satpal

    2016-05-15

    The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized. © 2016 Authors; published by Portland Press Limited.

  3. The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?

    PubMed Central

    van Wessel, T.; de Haan, A.; van der Laarse, W. J.

    2010-01-01

    An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains supplementary material, which is available to authorized users. PMID:20602111

  4. Recovery of gold from industrial wastewater by extracellular proteins obtained from a thermophilic bacterium Tepidimonas fonticaldi AT-A2.

    PubMed

    Han, Yin-Lung; Wu, Jen-Hao; Cheng, Chieh-Lun; Nagarajan, Dillirani; Lee, Ching-Ray; Li, Yi-Heng; Lo, Yung-Chung; Chang, Jo-Shu

    2017-09-01

    Biosorption has emerged as a promising alternative approach for treating wastewater with dilute metal contents in a green and cost effective way. In this study, extracellular proteins of an isolated thermophilic bacterium (Tepidimonas fonticaldi AT-A2) were used as biosorbent to recover precious metal (i.e., Au) from wastewater. The Au (III) adsorption capacity on the T. fonticaldi AT-A2 proteins was the highest when the pH was set at about 4.0-5.0. The adsorption capacity increased with increasing temperature from 15 to 70°C. Adsorption isotherm studies show that both Langmuir and Freundrich models could describe the adsorption equilibrium. The maximum adsorption capacity of Au (III) at 50°C and pH 5 could reach 9.7mg Au/mg protein. The protein-based biosorbent was also used for the recovery of Au from a wastewater containing 15mg/L of Au, achieving a high adsorption capacity of 1.45mg Au/mg protein and a removal efficiency of 71%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria.

    PubMed

    Bender, Aline; Hajieva, Parvana; Moosmann, Bernd

    2008-10-28

    Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized amino acid methionine in the highly oxidative inner mitochondrial membrane. This apparently paradoxical outcome can yet be smoothly settled if the antioxidant surface chemistry of methionine is taken into account, and we present direct experimental evidence that intramembrane accumulation of methionine exhibits antioxidant and cytoprotective properties in living cells. Our results unveil that methionine is an evolutionarily selected antioxidant building block of respiratory chain complexes. Collective protein alterations can thus constitute the selective advantage behind codon reassignments, which authenticates the "ambiguous decoding" hypothesis of genetic code evolution. Oxidative stress has shaped the mitochondrial genetic code.

  6. Structure-related statistical singularities along protein sequences: a correlation study.

    PubMed

    Colafranceschi, Mauro; Colosimo, Alfredo; Zbilut, Joseph P; Uversky, Vladimir N; Giuliani, Alessandro

    2005-01-01

    A data set composed of 1141 proteins representative of all eukaryotic protein sequences in the Swiss-Prot Protein Knowledge base was coded by seven physicochemical properties of amino acid residues. The resulting numerical profiles were submitted to correlation analysis after the application of a linear (simple mean) and a nonlinear (Recurrence Quantification Analysis, RQA) filter. The main RQA variables, Recurrence and Determinism, were subsequently analyzed by Principal Component Analysis. The RQA descriptors showed that (i) within protein sequences is embedded specific information neither present in the codes nor in the amino acid composition and (ii) the most sensitive code for detecting ordered recurrent (deterministic) patterns of residues in protein sequences is the Miyazawa-Jernigan hydrophobicity scale. The most deterministic proteins in terms of autocorrelation properties of primary structures were found (i) to be involved in protein-protein and protein-DNA interactions and (ii) to display a significantly higher proportion of structural disorder with respect to the average data set. A study of the scaling behavior of the average determinism with the setting parameters of RQA (embedding dimension and radius) allows for the identification of patterns of minimal length (six residues) as possible markers of zones specifically prone to inter- and intramolecular interactions.

  7. Molecular Characterization of Mosquitocidal Toxin (Surface Layer Protein, SLP) from Bacillus cereus VCRC B540.

    PubMed

    Mani, Chinnasamy; Selvakumari, Jeyaperumal; Han, YeonSoo; Jo, YongHun; Thirugnanasambantham, Krishnaraj; Sundarapandian, Somaiah; Poopathi, Subbiah

    2018-04-01

    A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.

  8. RNA processing and decay in plastids.

    PubMed

    Germain, Arnaud; Hotto, Amber M; Barkan, Alice; Stern, David B

    2013-01-01

    Plastids were derived through endosymbiosis from a cyanobacterial ancestor, whose uptake was followed by massive gene transfer to the nucleus, resulting in the compact size and modest coding capacity of the extant plastid genome. Plastid gene expression is essential for plant development, but depends on nucleus-encoded proteins recruited from cyanobacterial or host-cell origins. The plastid genome is heavily transcribed from numerous promoters, giving posttranscriptional events a critical role in determining the quantity and sizes of accumulating RNA species. The major events reviewed here are RNA editing, which restores protein conservation or creates correct open reading frames by converting C residues to U, RNA splicing, which occurs both in cis and trans, and RNA cleavage, which relies on a variety of exoribonucleases and endoribonucleases. Because the RNases have little sequence specificity, they are collectively able to remove extraneous RNAs whose ends are not protected by RNA secondary structures or sequence-specific RNA-binding proteins (RBPs). Other plastid RBPs, largely members of the helical-repeat superfamily, confer specificity to editing and splicing reactions. The enzymes that catalyze RNA processing are also the main actors in RNA decay, implying that these antagonistic roles are optimally balanced. We place the actions of RBPs and RNases in the context of a recent proteomic analysis that identifies components of the plastid nucleoid, a protein-DNA complex with multiple roles in gene expression. These results suggest that sublocalization and/or concentration gradients of plastid proteins could underpin the regulation of RNA maturation and degradation. Copyright © 2013 John Wiley & Sons, Ltd.

  9. 78 FR 79363 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Rulemaking Division, (202) 366-8553, or Stanley Staniszewski, Engineering and Research [[Page 79364... increased capacity to transport product. A review of previous research by PHMSA's Engineering and Research..., knowledge-sharing, and skill development across all engineering disciplines. ASME is recognized globally for...

  10. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate.

    PubMed

    Benelhadj, Sonda; Gharsallaoui, Adem; Degraeve, Pascal; Attia, Hamadi; Ghorbel, Dorra

    2016-03-01

    In the present study, a protein isolate extracted from Arthrospira platensis by isoelectric precipitation was evaluated for its functional properties. The maximum nitrogen solubility was 59.6±0.7% (w/w) at pH 10. The A. platensis protein isolate (API) showed relatively high oil (252.7±0.3g oil/100g API) and water (428.8±15.4g of water/100g of API at pH 10) absorption capacities. The protein zeta potential, the emulsifying capacity, the emulsion ageing stability, the emulsion microstructure and the emulsion opacity as well as the foaming capacity and the foam stability were shown to be greatly affected by pH. Especially, emulsifying and foaming capacities were positively correlated to the protein solubility. Moreover, the API was able to form films when sorbitol (30% (w/w)) was used as plasticizer and to form gels when the API concentration exceeded 12% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Quantum and Private Capacities of Low-Noise Channels

    NASA Astrophysics Data System (ADS)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  12. Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model

    PubMed Central

    Woltering, Joost M.; Duboule, Denis

    2015-01-01

    The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan. PMID:26238020

  13. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa

    PubMed Central

    2015-01-01

    Background Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. Results One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. Conclusions These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity. PMID:26693737

  14. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data

    PubMed Central

    Raju, Hemalatha B.; Tsinoremas, Nicholas F.; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein–protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches. PMID:27803687

  15. A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements

    PubMed Central

    Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.

    2008-01-01

    X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625

  16. Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates.

    PubMed

    Adenekan, Monilola K; Fadimu, Gbemisola J; Odunmbaku, Lukumon A; Oke, Emmanuel K

    2018-01-01

    In this study, the effect of different isolation techniques on the isolated proteins from pigeon pea was investigated. Water, methanol, ammonium sulfate, and acetone were used for the precipitation of proteins from pigeon pea. Proximate composition, and antinutritional and functional properties of the pigeon pea flour and the isolated proteins were measured. Data generated were statistically analyzed. The proximate composition of the water-extracted protein isolate was moisture 8.30%, protein 91.83%, fat 0.25%, ash 0.05%, and crude fiber 0.05%. The methanol-extracted protein isolate composition was moisture 7.87%, protein 91.83%, fat 0.17%, and ash 0.13%, while crude fiber and carbohydrates were not detected. The composition of the ammonium sulfate-extracted protein isolate was moisture 7.73%, protein 91.73%, fat 0.36, ash 0.13%, and crude fiber 0.67%. The acetone-extracted protein isolate composition was moisture 8.03%, protein 91.50%, ash 0.67%, and fat 0.30%, but crude fiber and carbohydrates were not detected. The isolate precipitated with ammonium sulfate displayed the highest foaming capacity (37.63%) and foaming stability (55.75%). Isolates precipitated with methanol and acetone had the highest water absorption capacity (160%). Pigeon pea protein isolates extracted with methanol and ammonium sulfate had the highest oil absorption capacity of 145%. Protein isolates recovered through acetone and methanol had the highest emulsifying capacity of 2.23% and emulsifying stability of 91.47%, respectively. The proximate composition of the recovered protein isolates were of high purity. This shows the efficiency of the extraction techniques. The isolates had desirable solubility index. All the isolation techniques brought significant impact on the characteristics of the isolated pigeon pea protein.

  17. SwellGel: an affinity chromatography technology for high-capacity and high-throughput purification of recombinant-tagged proteins.

    PubMed

    Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W

    2001-07-01

    The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.

  18. Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis

    PubMed Central

    Gioti, Anastasia; Nystedt, Björn; Li, Wenjun; Xu, Jun; Andersson, Anna; Averette, Anna F.; Münch, Karin; Wang, Xuying; Kappauf, Catharine; Kingsbury, Joanne M.; Kraak, Bart; Walker, Louise A.; Johansson, Henrik J.; Holm, Tina; Lehtiö, Janne; Stajich, Jason E.; Mieczkowski, Piotr; Kahmann, Regine; Kennell, John C.; Cardenas, Maria E.; Lundeberg, Joakim; Saunders, Charles W.; Boekhout, Teun; Dawson, Thomas L.; Munro, Carol A.; de Groot, Piet W. J.; Butler, Geraldine; Heitman, Joseph; Scheynius, Annika

    2013-01-01

    ABSTRACT Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. PMID:23341551

  19. Large heat capacity change in a protein-monovalent cation interaction.

    PubMed

    Guinto, E R; Di Cera, E

    1996-07-09

    Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.

  20. Maize GO annotation—methods, evaluation, and review (maize-GAMER)

    USDA-ARS?s Scientific Manuscript database

    We created a new high-coverage, robust, and reproducible functional annotation of maize protein-coding genes based on Gene Ontology (GO) term assignments. Whereas the existing Phytozome and Gramene maize GO annotation sets only cover 41% and 56% of maize protein-coding genes, respectively, this stu...

  1. Water-holding capacity and protein denatunation in broiler breast meat

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to investigate the impact of protein denaturation on water-holding capacity (WHC) in broiler breast meat. Breast fillets were collected at 2 h postmortem and segregated into two groups (low-WHC and high-WHC) based on pH and color. Protein solubility was measured at 6 and 24...

  2. Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.

    PubMed

    García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús

    2017-08-10

    Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Biochemistry and functional characterization of squid mantle meat (Dosidicus gigas)].

    PubMed

    Abugoch, L; Guarda, A; María Pérez, L; Isabel Donghi, M

    2000-12-01

    A study for the characterization of frozen giant squid mantle (meat) protein stored at -25 degrees C for 8 month was started. In the present research, the following functional properties were investigate: emulsifying, water holding and gel forming capacities. Optimal conditions for the separation and differentiation of miofibrillar and sarcoplasmatic proteins were also studied. It was found that the unfrozen giant squid mantle meat es capable of emulifying 2.817,4 g of oil/g of protein and holding capacity was 3.64 g of water/g of protein. Related to the gel forming capacity, it was not obtain, probably due to excessive storage of the meat. With regard to miofibrilar protein obtention of the squid mantle meat, it was found that two low ionic strength washings (I = 0.05), the sarcoplasmic proteins were practically eliminated from the protein matrix. The differentiation of miofibrilar and sarcoplasmatic proteins was obtained by PAGE-SDS of the squid mantle meat extracted at two different ionic strength (I = 0.05 and I = 0.5). This work demonstrates that the giant squid mantle protein has a high emulsifying and water holding capacity, and it can be used, as a raw material, for the improvement of sausage products. About the gelling products, more studies will be necessary with fresh squid mantle meat to conclude about this functional property.

  4. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt.

    PubMed

    AbouHaidar, Mounir Georges; Venkataraman, Srividhya; Golshani, Ashkan; Liu, Bolin; Ahmad, Tauqeer

    2014-10-07

    The highly structured (64% GC) covalently closed circular (CCC) RNA (220 nt) of the virusoid associated with rice yellow mottle virus codes for a 16-kDa highly basic protein using novel modalities for coding, translation, and gene expression. This CCC RNA is the smallest among all known viroids and virusoids and the only one that codes proteins. Its sequence possesses an internal ribosome entry site and is directly translated through two (or three) completely overlapping ORFs (shifting to a new reading frame at the end of each round). The initiation and termination codons overlap UGAUGA (underline highlights the initiation codon AUG within the combined initiation-termination sequence). Termination codons can be ignored to obtain larger read-through proteins. This circular RNA with no noncoding sequences is a unique natural supercompact "nanogenome."

  5. [Convergent origin of repeats in genes coding for globular proteins. An analysis of the factors determining the presence of inverted and symmetrical repeats].

    PubMed

    Solov'ev, V V; Kel', A E; Kolchanov, N A

    1989-01-01

    The factors, determining the presence of inverted and symmetrical repeats in genes coding for globular proteins, have been analysed. An interesting property of genetical code has been revealed in the analysis of symmetrical repeats: the pairs of symmetrical codons corresponded to pairs of amino acids with mostly similar physical-chemical parameters. This property may explain the presence of symmetrical repeats and palindromes only in genes coding for beta-structural proteins-polypeptides, where amino acids with similar physical-chemical properties occupy symmetrical positions. A stochastic model of evolution of polynucleotide sequences has been used for analysis of inverted repeats. The modelling demonstrated that only limiting of sequences (uneven frequencies of used codons) is enough for arising of nonrandom inverted repeats in genes.

  6. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera.

    PubMed

    Aronstein, Katherine A; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E

    2012-06-27

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  8. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    PubMed Central

    Aronstein, Katherine A.; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E.

    2012-01-01

    We investigated the effect of the parasitic mite Varroadestructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa. PMID:26466617

  9. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity

    PubMed Central

    Shabalina, Svetlana A.; Spiridonov, Nikolay A.; Kashina, Anna

    2013-01-01

    Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions. PMID:23293005

  10. Role of genomic architecture in the expression dynamics of long noncoding RNAs during differentiation of human neuroblastoma cells.

    PubMed

    Batagov, Arsen O; Yarmishyn, Aliaksandr A; Jenjaroenpun, Piroon; Tan, Jovina Z; Nishida, Yuichiro; Kurochkin, Igor V

    2013-10-16

    Mammalian genomes are extensively transcribed producing thousands of long non-protein-coding RNAs (lncRNAs). The biological significance and function of the vast majority of lncRNAs remain unclear. Recent studies have implicated several lncRNAs as playing important roles in embryonic development and cancer progression. LncRNAs are characterized with different genomic architectures in relationship with their associated protein-coding genes. Our study aimed at bridging lncRNA architecture with dynamical patterns of their expression using differentiating human neuroblastoma cells model. LncRNA expression was studied in a 120-hours timecourse of differentiation of human neuroblastoma SH-SY5Y cells into neurons upon treatment with retinoic acid (RA), the compound used for the treatment of neuroblastoma. A custom microarray chip was utilized to interrogate expression levels of 9,267 lncRNAs in the course of differentiation. We categorized lncRNAs into 19 architecture classes according to their position relatively to protein-coding genes. For each architecture class, dynamics of expression of lncRNAs was studied in association with their protein-coding partners. It allowed us to demonstrate positive correlation of lncRNAs with their associated protein-coding genes at bidirectional promoters and for sense-antisense transcript pairs. In contrast, lncRNAs located in the introns and downstream of the protein-coding genes were characterized with negative correlation modes. We further classified the lncRNAs by the temporal patterns of their expression dynamics. We found that intronic and bidirectional promoter architectures are associated with rapid RA-dependent induction or repression of the corresponding lncRNAs, followed by their constant expression. At the same time, lncRNAs expressed downstream of protein-coding genes are characterized by rapid induction, followed by transcriptional repression. Quantitative RT-PCR analysis confirmed the discovered functional modes for several selected lncRNAs associated with proteins involved in cancer and embryonic development. This is the first report detailing dynamical changes of multiple lncRNAs during RA-induced neuroblastoma differentiation. Integration of genomic and transcriptomic levels of information allowed us to demonstrate specific behavior of lncRNAs organized in different genomic architectures. This study also provides a list of lncRNAs with possible roles in neuroblastoma.

  11. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code ismore » a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.« less

  12. LincRNA-p21: Implications in Human Diseases.

    PubMed

    Tang, Sai-Sai; Zheng, Bi-Ying; Xiong, Xing-Dong

    2015-08-11

    Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases.

  13. Complete genome sequence of Nitratifractor salsuginis type strain (E9I37-1T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Sikorski, Johannes; Zeytun, Ahmet

    Nitratifractor salsuginis Nakagawa et al. 2005 is the type species of the genus Nitratifractor, a member of the family Nautiliaceae. The species is of interest because of its high capacity for nitrate reduction via conversion to N2 through respiration, which is a key compound in plant nutrition. The strain is also of interest because it represents the first mesophilic and faculta- tively anaerobic member of the Epsilonproteobacteria reported to grow on molecular hydro- gen. This is the first completed genome sequence of a member of the genus Nitratifractor and the second sequence from the family Nautiliaceae. The 2,101,285 bp longmore » genome with its 2,121 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  14. Non-isotopic Method for In Situ LncRNA Visualization and Quantitation.

    PubMed

    Maqsodi, Botoul; Nikoloff, Corina

    2016-01-01

    In mammals and other eukaryotes, most of the genome is transcribed in a developmentally regulated manner to produce large numbers of long noncoding RNAs (lncRNAs). Genome-wide studies have identified thousands of lncRNAs lacking protein-coding capacity. RNA in situ hybridization technique is especially beneficial for the visualization of RNA (mRNA and lncRNA) expression in a heterogeneous population of cells/tissues; however its utility has been hampered by complicated procedures typically developed and optimized for the detection of a specific gene and therefore not amenable to a wide variety of genes and tissues.Recently, bDNA has revolutionized RNA in situ detection with fully optimized, robust assays for the detection of any mRNA and lncRNA targets in formalin-fixed paraffin-embedded (FFPE) and fresh frozen tissue sections using manual processing.

  15. Helper-dependent adenoviral vectors for liver-directed gene therapy

    PubMed Central

    Brunetti-Pierri, Nicola; Ng, Philip

    2011-01-01

    Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration resulting in acute toxicity, the severity of which is dependent on vector dose. Intense efforts have been focused on elucidating the factors involved in this acute response and various strategies have been investigated to improve the therapeutic index of HDAd vectors. These strategies have yielded encouraging results with the potential for clinical translation. PMID:21470977

  16. Functional impact of splice isoform diversity in individual cells

    PubMed Central

    Yap, Karen; Makeyev, Eugene V.

    2016-01-01

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755

  17. Functional impact of splice isoform diversity in individual cells.

    PubMed

    Yap, Karen; Makeyev, Eugene V

    2016-08-15

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a 'splicing noise', co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. © 2016 The Author(s).

  18. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  19. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  20. Identification of Putative Nuclear Receptors and Steroidogenic Enzymes in Murray-Darling Rainbowfish (Melanotaenia fluviatilis) Using RNA-Seq and De Novo Transcriptome Assembly.

    PubMed

    Bain, Peter A; Papanicolaou, Alexie; Kumar, Anupama

    2015-01-01

    Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish.

  1. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast

    PubMed Central

    2014-01-01

    Background Nrd1 and Nab3 are essential sequence-specific yeast RNA binding proteins that function as a heterodimer in the processing and degradation of diverse classes of RNAs. These proteins also regulate several mRNA coding genes; however, it remains unclear exactly what percentage of the mRNA component of the transcriptome these proteins control. To address this question, we used the pyCRAC software package developed in our laboratory to analyze CRAC and PAR-CLIP data for Nrd1-Nab3-RNA interactions. Results We generated high-resolution maps of Nrd1-Nab3-RNA interactions, from which we have uncovered hundreds of new Nrd1-Nab3 mRNA targets, representing between 20 and 30% of protein-coding transcripts. Although Nrd1 and Nab3 showed a preference for binding near 5′ ends of relatively short transcripts, they bound transcripts throughout coding sequences and 3′ UTRs. Moreover, our data for Nrd1-Nab3 binding to 3′ UTRs was consistent with a role for these proteins in the termination of transcription. Our data also support a tight integration of Nrd1-Nab3 with the nutrient response pathway. Finally, we provide experimental evidence for some of our predictions, using northern blot and RT-PCR assays. Conclusions Collectively, our data support the notion that Nrd1 and Nab3 function is tightly integrated with the nutrient response and indicate a role for these proteins in the regulation of many mRNA coding genes. Further, we provide evidence to support the hypothesis that Nrd1-Nab3 represents a failsafe termination mechanism in instances of readthrough transcription. PMID:24393166

  2. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    PubMed

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  3. Two fundamental questions about protein evolution.

    PubMed

    Penny, David; Zhong, Bojian

    2015-12-01

    Two basic questions are considered that approach protein evolution from different directions; the problems arising from using Markov models for the deeper divergences, and then the origin of proteins themselves. The real problem for the first question (going backwards in time) is that at deeper phylogenies the Markov models of sequence evolution must lose information exponentially at deeper divergences, and several testable methods are suggested that should help resolve these deeper divergences. For the second question (coming forwards in time) a problem is that most models for the origin of protein synthesis do not give a role for the very earliest stages of the process. From our knowledge of the importance of replication accuracy in limiting the length of a coding molecule, a testable hypothesis is proposed. The length of the code, the code itself, and tRNAs would all have prior roles in increasing the accuracy of RNA replication; thus proteins would have been formed only after the tRNAs and the length of the triplet code are already formed. Both questions lead to testable predictions. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  5. Essential Properties of Language, or, Why Language Is Not a Code

    ERIC Educational Resources Information Center

    Kravchenko, Alexander V.

    2007-01-01

    Despite a strong tradition of viewing "coded equivalence" as the underlying principle of linguistic semiotics, it lacks the power needed to understand and explain language as an empirical phenomenon characterized by complex dynamics. Applying the biology of cognition to the nature of the human cognitive/linguistic capacity as rooted in the…

  6. Recalculation with SEACAB of the activation by spent fuel neutrons and residual dose originated in the racks replaced at Cofrentes NPP

    NASA Astrophysics Data System (ADS)

    Ortego, Pedro; Rodriguez, Alain; Töre, Candan; Compadre, José Luis de Diego; Quesada, Baltasar Rodriguez; Moreno, Raul Orive

    2017-09-01

    In order to increase the storage capacity of the East Spent Fuel Pool at the Cofrentes NPP, located in Valencia province, Spain, the existing storage stainless steel racks were replaced by a new design of compact borated stainless steel racks allowing a 65% increase in fuel storing capacity. Calculation of the activation of the used racks was successfully performed with the use of MCNP4B code. Additionally the dose rate at contact with a row of racks in standing position and behind a wall of shielding material has been calculated using MCNP4B code as well. These results allowed a preliminary definition of the burnker required for the storage of racks. Recently the activity in the racks has been recalculated with SEACAB system which combines the mesh tally of MCNP codes with the activation code ACAB, applying the rigorous two-step method (R2S) developed at home, benchmarked with FNG irradiation experiments and usually applied in fusion calculations for ITER project.

  7. Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs.

    PubMed

    Fei, Jie; Liu, Ran

    2016-06-01

    Wiping out counterfeit drugs is a great task for public health care around the world. The boost of these drugs makes treatment to become potentially harmful or even lethal. In this paper, biodegradable drug-laden QR code label for anti-counterfeiting of drugs is proposed that can provide the non-fluorescence recognition and high capacity. It is fabricated by the laser cutting to achieve the roughness over different surface which causes the difference in the gray levels on the translucent material the QR code pattern, and the micro mold process to obtain the drug-laden biodegradable label. We screened biomaterials presenting the relevant conditions and further requirements of the package. The drug-laden microlabel is on the surface of the troches or the bottom of the capsule and can be read by a simple smartphone QR code reader application. Labeling the pill directly and decoding the information successfully means more convenient and simple operation with non-fluorescence and high capacity in contrast to the traditional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis

    PubMed Central

    Collins, Anne G. E.; Frank, Michael J.

    2012-01-01

    Instrumental learning involves corticostriatal circuitry and the dopaminergic system. This system is typically modeled in the reinforcement learning (RL) framework by incrementally accumulating reward values of states and actions. However, human learning also implicates prefrontal cortical mechanisms involved in higher level cognitive functions. The interaction of these systems remains poorly understood, and models of human behavior often ignore working memory (WM) and therefore incorrectly assign behavioral variance to the RL system. Here we designed a task that highlights the profound entanglement of these two processes, even in simple learning problems. By systematically varying the size of the learning problem and delay between stimulus repetitions, we separately extracted WM-specific effects of load and delay on learning. We propose a new computational model that accounts for the dynamic integration of RL and WM processes observed in subjects' behavior. Incorporating capacity-limited WM into the model allowed us to capture behavioral variance that could not be captured in a pure RL framework even if we (implausibly) allowed separate RL systems for each set size. The WM component also allowed for a more reasonable estimation of a single RL process. Finally, we report effects of two genetic polymorphisms having relative specificity for prefrontal and basal ganglia functions. Whereas the COMT gene coding for catechol-O-methyl transferase selectively influenced model estimates of WM capacity, the GPR6 gene coding for G-protein-coupled receptor 6 influenced the RL learning rate. Thus, this study allowed us to specify distinct influences of the high-level and low-level cognitive functions on instrumental learning, beyond the possibilities offered by simple RL models. PMID:22487033

  9. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    NASA Astrophysics Data System (ADS)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  10. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    PubMed Central

    2010-01-01

    Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223

  11. A-to-I editing of coding and non-coding RNAs by ADARs

    PubMed Central

    Nishikura, Kazuko

    2016-01-01

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264

  12. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.

    PubMed

    Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J

    2013-06-01

    To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.

  13. In silico search for functionally similar proteins involved in meiosis and recombination in evolutionarily distant organisms.

    PubMed

    Bogdanov, Yuri F; Dadashev, Sergei Y; Grishaeva, Tatiana M

    2003-01-01

    Evolutionarily distant organisms have not only orthologs, but also nonhomologous proteins that build functionally similar subcellular structures. For instance, this is true with protein components of the synaptonemal complex (SC), a universal ultrastructure that ensures the successful pairing and recombination of homologous chromosomes during meiosis. We aimed at developing a method to search databases for genes that code for such nonhomologous but functionally analogous proteins. Advantage was taken of the ultrastructural parameters of SC and the conformation of SC proteins responsible for these. Proteins involved in SC central space are known to be similar in secondary structure. Using published data, we found a highly significant correlation between the width of the SC central space and the length of rod-shaped central domain of mammalian and yeast intermediate proteins forming transversal filaments in the SC central space. Basing on this, we suggested a method for searching genome databases of distant organisms for genes whose virtual proteins meet the above correlation requirement. Our recent finding of the Drosophila melanogaster CG17604 gene coding for synaptonemal complex transversal filament protein received experimental support from another lab. With the same strategy, we showed that the Arabidopsis thaliana and Caenorhabditis elegans genomes contain unique genes coding for such proteins.

  14. Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools.

    PubMed

    Koo, Hyunmin; Hakim, Joseph A; Fisher, Phillip R E; Grueneberg, Alexander; Andersen, Dale T; Bej, Asim K

    2016-01-01

    In this study, we report the distribution and abundance of cold-adaptation proteins in microbial mat communities in the perennially ice-covered Lake Joyce, located in the McMurdo Dry Valleys, Antarctica. We have used MG-RAST and R code bioinformatics tools on Illumina HiSeq2000 shotgun metagenomic data and compared the filtering efficacy of these two methods on cold-adaptation proteins. Overall, the abundance of cold-shock DEAD-box protein A (CSDA), antifreeze proteins (AFPs), fatty acid desaturase (FAD), trehalose synthase (TS), and cold-shock family of proteins (CSPs) were present in all mat samples at high, moderate, or low levels, whereas the ice nucleation protein (INP) was present only in the ice and bulbous mat samples at insignificant levels. Considering the near homogeneous temperature profile of Lake Joyce (0.08-0.29 °C), the distribution and abundance of these proteins across various mat samples predictively correlated with known functional attributes necessary for microbial communities to thrive in this ecosystem. The comparison of the MG-RAST and the R code methods showed dissimilar occurrences of the cold-adaptation protein sequences, though with insignificant ANOSIM (R = 0.357; p-value = 0.012), ADONIS (R(2) = 0.274; p-value = 0.03) and STAMP (p-values = 0.521-0.984) statistical analyses. Furthermore, filtering targeted sequences using the R code accounted for taxonomic groups by avoiding sequence redundancies, whereas the MG-RAST provided total counts resulting in a higher sequence output. The results from this study revealed for the first time the distribution of cold-adaptation proteins in six different types of microbial mats in Lake Joyce, while suggesting a simpler and more manageable user-defined method of R code, as compared to a web-based MG-RAST pipeline.

  15. 77 FR 35667 - Commission Information Collection Activities (FERC-567); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... Act of 1995, 44 United States Code (U.S.C.) 3507(a)(1)(D), the Federal Energy Regulatory Commission... Reports of System Flow Diagrams and System Capacity to the Office of Management and Budget (OMB) for... System Flow Diagrams and System Capacity. OMB Control No.: 1902-0005. Type of Request: Three-year...

  16. Energy-efficient spatial-domain-based hybrid multidimensional coded-modulations enabling multi-Tb/s optical transport.

    PubMed

    Djordjevic, Ivan B

    2011-08-15

    In addition to capacity, the future high-speed optical transport networks will also be constrained by energy consumption. In order to solve the capacity and energy constraints simultaneously, in this paper we propose the use of energy-efficient hybrid D-dimensional signaling (D>4) by employing all available degrees of freedom for conveyance of the information over a single carrier including amplitude, phase, polarization and orbital angular momentum (OAM). Given the fact that the OAM eigenstates, associated with the azimuthal phase dependence of the complex electric field, are orthogonal, they can be used as basis functions for multidimensional signaling. Since the information capacity is a linear function of number of dimensions, through D-dimensional signal constellations we can significantly improve the overall optical channel capacity. The energy-efficiency problem is solved, in this paper, by properly designing the D-dimensional signal constellation such that the mutual information is maximized, while taking the energy constraint into account. We demonstrate high-potential of proposed energy-efficient hybrid D-dimensional coded-modulation scheme by Monte Carlo simulations. © 2011 Optical Society of America

  17. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    PubMed

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.

    PubMed

    Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko

    2008-08-18

    Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.

  19. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate.

    PubMed

    Resendiz-Vazquez, J A; Ulloa, J A; Urías-Silvas, J E; Bautista-Rosales, P U; Ramírez-Ramírez, J C; Rosas-Ulloa, P; González-Torres, L

    2017-07-01

    The influence of high-intensity ultrasound (HIU) on the technofunctional properties and structure of jackfruit seed protein isolate (JSPI) was investigated. Protein solutions (10%, w/v) were sonicated for 15min at 20kHz to the following levels of power output: 200, 400, and 600W (pulse duration: on-time, 5s; off-time 1s). Compared with untreated JSPI, HIU at 200W and 400W improved the oil holding capacity (OHC) and emulsifying capacity (EC), but the emulsifying activity (EA) and emulsion stability (ES) increased at 400W and 600W. The foaming capacity (FC) increased after all HIU treatments, as opposed to the water holding capacity (WHC), least gelation concentration (LGC), and foaming stability (FS), which all decreased except at pH 4 for FS. Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) showed changes in the molecular weight of protein fractions after HIU treatment. Scanning electron microscopy (SEM) demonstrated that HIU disrupted the microstructure of JSPI, exhibiting larger aggregates. Surface hydrophobicity and protein solubility of the JSPI dispersions were enhanced after ultrasonication, which increased the destruction of internal hydrophobic interactions of protein molecules and accelerated the molecular motion of proteins to cause protein aggregation. These changes in the technofunctional and structural properties of JSPI could meet the complex needs of manufactured food products. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mucin acts as a nutrient source and a signal for the differential expression of genes coding for cellular processes and virulence factors in Acinetobacter baumannii

    PubMed Central

    Ohneck, Emily J.; Arivett, Brock A.; Fiester, Steven E.; Wood, Cecily R.; Metz, Maeva L.; Simeone, Gabriella M.

    2018-01-01

    The capacity of Acinetobacter baumannii to persist and cause infections depends on its interaction with abiotic and biotic surfaces, including those found on medical devices and host mucosal surfaces. However, the extracellular stimuli affecting these interactions are poorly understood. Based on our previous observations, we hypothesized that mucin, a glycoprotein secreted by lung epithelial cells, particularly during respiratory infections, significantly alters A. baumannii’s physiology and its interaction with the surrounding environment. Biofilm, virulence and growth assays showed that mucin enhances the interaction of A. baumannii ATCC 19606T with abiotic and biotic surfaces and its cytolytic activity against epithelial cells while serving as a nutrient source. The global effect of mucin on the physiology and virulence of this pathogen is supported by RNA-Seq data showing that its presence in a low nutrient medium results in the differential transcription of 427 predicted protein-coding genes. The reduced expression of ion acquisition genes and the increased transcription of genes coding for energy production together with the detection of mucin degradation indicate that this host glycoprotein is a nutrient source. The increased expression of genes coding for adherence and biofilm biogenesis on abiotic and biotic surfaces, the degradation of phenylacetic acid and the production of an active type VI secretion system further supports the role mucin plays in virulence. Taken together, our observations indicate that A. baumannii recognizes mucin as an environmental signal, which triggers a response cascade that allows this pathogen to acquire critical nutrients and promotes host-pathogen interactions that play a role in the pathogenesis of bacterial infections. PMID:29309434

  1. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt

    PubMed Central

    AbouHaidar, Mounir Georges; Venkataraman, Srividhya; Golshani, Ashkan; Liu, Bolin; Ahmad, Tauqeer

    2014-01-01

    The highly structured (64% GC) covalently closed circular (CCC) RNA (220 nt) of the virusoid associated with rice yellow mottle virus codes for a 16-kDa highly basic protein using novel modalities for coding, translation, and gene expression. This CCC RNA is the smallest among all known viroids and virusoids and the only one that codes proteins. Its sequence possesses an internal ribosome entry site and is directly translated through two (or three) completely overlapping ORFs (shifting to a new reading frame at the end of each round). The initiation and termination codons overlap UGAUGA (underline highlights the initiation codon AUG within the combined initiation-termination sequence). Termination codons can be ignored to obtain larger read-through proteins. This circular RNA with no noncoding sequences is a unique natural supercompact “nanogenome.” PMID:25253891

  2. Sandia Simple Particle Tracking (Sandia SPT) v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Stephen M.

    2015-06-15

    Sandia SPT is designed as software to accompany a book chapter being published a methods chapter which provides an introduction on how to label and track individual proteins. The Sandia Simple Particle Tracking code uses techniques common to the image processing community, where its value is that it facilitates implementing the methods described in the book chapter by providing the necessary open-source code. The code performs single particle spot detection (or segmentation and localization) followed by tracking (or connecting the detected particles into trajectories). The book chapter, which along with the headers in each file, constitutes the documentation for themore » code is: Anthony, S.M.; Carroll-Portillo, A.; Timlon, J.A., Dynamics and Interactions of Individual Proteins in the Membrane of Living Cells. In Anup K. Singh (Ed.) Single Cell Protein Analysis Methods in Molecular Biology. Springer« less

  3. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  4. Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants.

    PubMed

    Bhattacharya, D; Steinkötter, J; Melkonian, M

    1993-12-01

    Centrin (= caltractin) is a ubiquitous, cytoskeletal protein which is a member of the EF-hand superfamily of calcium-binding proteins. A centrin-coding cDNA was isolated and characterized from the prasinophyte green alga Scherffelia dubia. Centrin PCR amplification primers were used to isolate partial, homologous cDNA sequences from the green algae Tetraselmis striata and Spermatozopsis similis. Annealing analyses suggested that centrin is a single-copy-coding region in T. striata and S. similis and other green algae studied. Centrin-coding regions from S. dubia, S. similis and T. striata encode four colinear EF-hand domains which putatively bind calcium. Phylogenetic analyses, including homologous sequences from Chlamydomonas reinhardtii and the land plant Atriplex nummularia, demonstrate that the domains of centrins are congruent and arose from the two-fold duplication of an ancestral EF hand with Domains 1+3 and Domains 2+4 clustering. The domains of centrins are also congruent with those of calmodulins demonstrating that, like calmodulin, centrin is an ancient protein which arose within the ancestor of all eukaryotes via gene duplication. Phylogenetic relationships inferred from centrin-coding region comparisons mirror results of small subunit ribosomal RNA sequence analyses suggesting that centrin-coding regions are useful evolutionary markers within the green algae.

  5. GENCODE: the reference human genome annotation for The ENCODE Project.

    PubMed

    Harrow, Jennifer; Frankish, Adam; Gonzalez, Jose M; Tapanari, Electra; Diekhans, Mark; Kokocinski, Felix; Aken, Bronwen L; Barrell, Daniel; Zadissa, Amonida; Searle, Stephen; Barnes, If; Bignell, Alexandra; Boychenko, Veronika; Hunt, Toby; Kay, Mike; Mukherjee, Gaurab; Rajan, Jeena; Despacio-Reyes, Gloria; Saunders, Gary; Steward, Charles; Harte, Rachel; Lin, Michael; Howald, Cédric; Tanzer, Andrea; Derrien, Thomas; Chrast, Jacqueline; Walters, Nathalie; Balasubramanian, Suganthi; Pei, Baikang; Tress, Michael; Rodriguez, Jose Manuel; Ezkurdia, Iakes; van Baren, Jeltje; Brent, Michael; Haussler, David; Kellis, Manolis; Valencia, Alfonso; Reymond, Alexandre; Gerstein, Mark; Guigó, Roderic; Hubbard, Tim J

    2012-09-01

    The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.

  6. Specificity Protein (Sp) Transcription Factors and Metformin Regulate Expression of the Long Non-coding RNA HULC

    EPA Science Inventory

    There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...

  7. Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data

    PubMed Central

    Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/ PMID:26363020

  8. The "Wow! signal" of the terrestrial genetic code

    NASA Astrophysics Data System (ADS)

    shCherbak, Vladimir I.; Makukov, Maxim A.

    2013-05-01

    It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of embedding the signal into the code and possible interpretation of its content are discussed. Overall, while the code is nearly optimized biologically, its limited capacity is used extremely efficiently to pass non-biological information.

  9. Optimizations of a Hardware Decoder for Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon

    2007-01-01

    The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.

  10. LDPC Codes with Minimum Distance Proportional to Block Size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy

    2009-01-01

    Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.

  11. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence.

    PubMed

    Kim, Dong Seon; Hahn, Yoonsoo

    2012-11-13

    Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  12. Protein structure and the sequential structure of mRNA: alpha-helix and beta-sheet signals at the nucleotide level.

    PubMed

    Brunak, S; Engelbrecht, J

    1996-06-01

    A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome.

  13. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing.

    PubMed

    Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.

  14. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing

    PubMed Central

    Dasenko, Mark A.

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced. PMID:26716693

  15. Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.

    PubMed

    Schwientek, Patrick; Neshat, Armin; Kalinowski, Jörn; Klein, Andreas; Rückert, Christian; Schneiker-Bekel, Susanne; Wendler, Sergej; Stoye, Jens; Pühler, Alfred

    2014-11-20

    Actinoplanes sp. SE50/110 is the producer of the alpha-glucosidase inhibitor acarbose, which is an economically relevant and potent drug in the treatment of type-2 diabetes mellitus. In this study, we present the detection of transcription start sites on this genome by sequencing enriched 5'-ends of primary transcripts. Altogether, 1427 putative transcription start sites were initially identified. With help of the annotated genome sequence, 661 transcription start sites were found to belong to the leader region of protein-coding genes with the surprising result that roughly 20% of these genes rank among the class of leaderless transcripts. Next, conserved promoter motifs were identified for protein-coding genes with and without leader sequences. The mapped transcription start sites were finally used to improve the annotation of the Actinoplanes sp. SE50/110 genome sequence. Concerning protein-coding genes, 41 translation start sites were corrected and 9 novel protein-coding genes could be identified. In addition to this, 122 previously undetermined non-coding RNA (ncRNA) genes of Actinoplanes sp. SE50/110 were defined. Focusing on antisense transcription start sites located within coding genes or their leader sequences, it was discovered that 96 of those ncRNA genes belong to the class of antisense RNA (asRNA) genes. The remaining 26 ncRNA genes were found outside of known protein-coding genes. Four chosen examples of prominent ncRNA genes, namely the transfer messenger RNA gene ssrA, the ribonuclease P class A RNA gene rnpB, the cobalamin riboswitch RNA gene cobRS, and the selenocysteine-specific tRNA gene selC, are presented in more detail. This study demonstrates that sequencing of enriched 5'-ends of primary transcripts and the identification of transcription start sites are valuable tools for advanced genome annotation of Actinoplanes sp. SE50/110 and most probably also for other bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  17. Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome

    PubMed Central

    Carver, Melissa N.; Müller, Ulrika; Bekiranov, Stefan; Auble, David T.

    2017-01-01

    Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. PMID:28665995

  18. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interleaved concatenated codes: new perspectives on approaching the Shannon limit.

    PubMed

    Viterbi, A J; Viterbi, A M; Sindhushayana, N T

    1997-09-02

    The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit.

  20. Superdense coding interleaved with forward error correction

    DOE PAGES

    Humble, Travis S.; Sadlier, Ronald J.

    2016-05-12

    Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less

  1. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs.

    PubMed

    Zucchelli, Silvia; Patrucco, Laura; Persichetti, Francesca; Gustincich, Stefano; Cotella, Diego

    2016-01-01

    Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.

  2. On the evolution of primitive genetic codes.

    PubMed

    Weberndorfer, Günter; Hofacker, Ivo L; Stadler, Peter F

    2003-10-01

    The primordial genetic code probably has been a drastically simplified ancestor of the canonical code that is used by contemporary cells. In order to understand how the present-day code came about we first need to explain how the language of the building plan can change without destroying the encoded information. In this work we introduce a minimal organism model that is based on biophysically reasonable descriptions of RNA and protein, namely secondary structure folding and knowledge based potentials. The evolution of a population of such organism under competition for a common resource is simulated explicitly at the level of individual replication events. Starting with very simple codes, and hence greatly reduced amino acid alphabets, we observe a diversification of the codes in most simulation runs. The driving force behind this effect is the possibility to produce fitter proteins when the repertoire of amino acids is enlarged.

  3. Relating saturation capacity to charge density in strong cation exchangers.

    PubMed

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and themore » cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.« less

  5. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.

    PubMed

    Andreou, Andreas I; Nakayama, Naomi

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.

  7. Tests in mice of a dengue vaccine candidate made of chimeric Junin virus-like particles and conserved dengue virus envelope sequences.

    PubMed

    Mareze, Vania Aparecida; Borio, Cristina Silvia; Bilen, Marcos F; Fleith, Renata; Mirazo, Santiago; Mansur, Daniel Santos; Arbiza, Juan; Lozano, Mario Enrique; Bruña-Romero, Oscar

    2016-01-01

    Two new vaccine candidates against dengue virus (DENV) infection were generated by fusing the coding sequences of the self-budding Z protein from Junin virus (Z-JUNV) to those of two cryptic peptides (Z/DENV-P1 and Z/DENV-P2) conserved on the envelope protein of all serotypes of DENV. The capacity of these chimeras to generate virus-like particles (VLPs) and to induce virus-neutralizing antibodies in mice was determined. First, recombinant proteins that displayed reactivity with a Z-JUNV-specific serum by immunofluorescence were detected in HEK-293 cells transfected with each of the two plasmids and VLP formation was also observed by transmission electron microscopy. Next, we determined the presence of antibodies against the envelope peptides of DENV in the sera of immunized C57BL/6 mice. Results showed that those animals that received Z/DENV-P2 DNA coding sequences followed by a boost with DENV-P2 synthetic peptides elicited significant specific antibody titers (≥6.400). Finally, DENV plaque-reduction neutralization tests (PRNT) were performed. Although no significant protective effect was observed when using sera of Z/DENV-P1-immunized animals, antibodies raised against vaccine candidate Z/DENV-P2 (diluted 1:320) were able to reduce in over 50 % the number of viral plaques generated by infectious DENV particles. This reduction was comparable to that of the 4G2 DENV-specific monoclonal cross-reactive (all serotypes) neutralizing antibody. We conclude that Z-JUNV-VLP is a valid carrier to induce antibody-mediated immune responses in mice and that Z/DENV-P2 is not only immunogenic but also protective in vitro against infection of cells with DENV, deserving further studies. On the other side, DENV's fusion peptide-derived chimera Z/DENV-P1 did not display similar protective properties.

  8. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple individuals that necessarily comprise such templates. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feagins, Alicia R.; Basler, Christopher F., E-mail: chris.basler@mssm.edu

    Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, andmore » PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.« less

  10. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions

    PubMed Central

    Cipriano, Andrea; Ballarino, Monica

    2018-01-01

    The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years. PMID:29560353

  11. Increasing Road Infrastructure Capacity Through the Use of Autonomous Vehicles

    DTIC Science & Technology

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. INCREASING ROAD ...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INCREASING ROAD INFRASTRUCTURE CAPACITY THROUGH THE USE OF AUTONOMOUS VEHICLES 5. FUNDING...driverless vehicles, road infrastructure 15. NUMBER OF PAGES 65 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  12. Verbal Short-Term Memory Span in Speech-Disordered Children: Implications for Articulatory Coding in Short-Term Memory.

    ERIC Educational Resources Information Center

    Raine, Adrian; And Others

    1991-01-01

    Children with speech disorders had lower short-term memory capacity and smaller word length effect than control children. Children with speech disorders also had reduced speech-motor activity during rehearsal. Results suggest that speech rate may be a causal determinant of verbal short-term memory capacity. (BC)

  13. 76 FR 5611 - Notice of Availability of the Environmental Assessment for the Short Term Sentences Acquisition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... action alternatives and the No Action Alternative. Natural, cultural, and socioeconomic resource impacts.... Cohn, Chief, or Issac J. Gaston, Site Selection Specialist, Capacity Planning and Site Selection Branch..., Capacity Planning and Site Selection Branch. [FR Doc. 2011-1817 Filed 1-31-11; 8:45 am] BILLING CODE P ...

  14. Protein Binding Capacity of Different Forages Tannin

    NASA Astrophysics Data System (ADS)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  15. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    PubMed

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  16. Slot-like capacity and resource-like coding in a neural model of multiple-item working memory.

    PubMed

    Standage, Dominic; Pare, Martin

    2018-06-27

    For the past decade, research on the storage limitations of working memory has been dominated by two fundamentally different hypotheses. On the one hand, the contents of working memory may be stored in a limited number of `slots', each with a fixed resolution. On the other hand, any number of items may be stored, but with decreasing resolution. These two hypotheses have been invaluable in characterizing the computational structure of working memory, but neither provides a complete account of the available experimental data, nor speaks to the neural basis of the limitations it characterizes. To address these shortcomings, we simulated a multiple-item working memory task with a cortical network model, the cellular resolution of which allowed us to quantify the coding fidelity of memoranda as a function of memory load, as measured by the discriminability, regularity and reliability of simulated neural spiking. Our simulations account for a wealth of neural and behavioural data from human and non-human primate studies, and they demonstrate that feedback inhibition lowers both capacity and coding fidelity. Because the strength of inhibition scales with the number of items stored by the network, increasing this number progressively lowers fidelity until capacity is reached. Crucially, the model makes specific, testable predictions for neural activity on multiple-item working memory tasks.

  17. Foaming and emulsifying properties of porcine red cell protein concentrate.

    PubMed

    Salvador, P; Saguer, E; Parés, D; Carretero, C; Toldrà, M

    2010-08-01

    This work focuses on studying the effects of pH (7.0 and 4.5) and protein concentration on the foaming and emulsifying properties of fresh (F) and spray-dried (SD) porcine red cell protein (RCP) concentrates in order to evaluate the proper use of this blood protein as a functional food ingredient. Also, protein solubility is measured through the pH range from 3.0 to 8.0. In each case, all concentrates show a high solubility, although this is significantly affected by pH. Spray drying slightly reduces the solubility at mild acid and neutral conditions. The foaming capacity is found to be dependent on pH as well as on the drying treatment. SD-RCP concentrates show better foaming capacity than F-RCP. The minimum protein concentration required to attain the highest foaming capacity is found under acid pH for the spray-dried concentrates. Although F-RCP shows low foam stability at acid and neutral pH, spray drying and protein content enhance the stability of foams. Emulsifying properties show dependence on pH as well as on protein content. Furthermore, spray drying affects the emulsifying properties but in different ways, depending on pH and protein concentration.

  18. Methodology and Method and Apparatus for Signaling With Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2014-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  19. Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks

    PubMed Central

    Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.

    2012-01-01

    While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213

  20. RNA-protein interactions in an unstructured context.

    PubMed

    Zagrovic, Bojan; Bartonek, Lukas; Polyansky, Anton A

    2018-05-31

    Despite their importance, our understanding of noncovalent RNA-protein interactions is incomplete. This especially concerns the binding between RNA and unstructured protein regions, a widespread class of such interactions. Here, we review the recent experimental and computational work on RNA-protein interactions in an unstructured context with a particular focus on how such interactions may be shaped by the intrinsic interaction affinities between individual nucleobases and protein side chains. Specifically, we articulate the claim that the universal genetic code reflects the binding specificity between nucleobases and protein side chains and that, in turn, the code may be seen as the Rosetta stone for understanding RNA-protein interactions in general. © 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.

  2. Quaternionic representation of the genetic code.

    PubMed

    Carlevaro, C Manuel; Irastorza, Ramiro M; Vericat, Fernando

    2016-03-01

    A heuristic diagram of the evolution of the standard genetic code is presented. It incorporates, in a way that resembles the energy levels of an atom, the physical notion of broken symmetry and it is consistent with original ideas by Crick on the origin and evolution of the code as well as with the chronological order of appearance of the amino acids along the evolution as inferred from work that mixtures known experimental results with theoretical speculations. Suggested by the diagram we propose a Hamilton quaternions based mathematical representation of the code as it stands now-a-days. The central object in the description is a codon function that assigns to each amino acid an integer quaternion in such a way that the observed code degeneration is preserved. We emphasize the advantages of a quaternionic representation of amino acids taking as an example the folding of proteins. With this aim we propose an algorithm to go from the quaternions sequence to the protein three dimensional structure which can be compared with the corresponding experimental one stored at the Protein Data Bank. In our criterion the mathematical representation of the genetic code in terms of quaternions merits to be taken into account because it describes not only most of the known properties of the genetic code but also opens new perspectives that are mainly derived from the close relationship between quaternions and rotations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Identification of Methanococcus Jannaschii Proteins in 2-D Gel Electrophoresis Patterns by Mass Spectrometry

    DOE R&D Accomplishments Database

    Liang, X.

    1998-06-10

    The genome of Methanococcus jannaschii has been sequenced completely and has been found to contain approximately 1,770 predicted protein-coding regions. When these coding regions are expressed and how their expression is regulated, however, remain open questions. In this work, mass spectrometry was combined with two-dimensional gel electrophoresis to identify which proteins the genes produce under different growth conditions, and thus investigate the regulation of genes responsible for functions characteristic of this thermophilic representative of the methanogenic Archaea.

  4. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  5. ASME AG-1 Section FC Qualified HEPA Filters; a Particle Loading Comparison - 13435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillo, Andrew; Ricketts, Craig I.

    High Efficiency Particulate Air (HEPA) Filters used to protect personnel, the public and the environment from airborne radioactive materials are designed, manufactured and qualified in accordance with ASME AG-1 Code section FC (HEPA Filters) [1]. The qualification process requires that filters manufactured in accordance with this ASME AG-1 code section must meet several performance requirements. These requirements include performance specifications for resistance to airflow, aerosol penetration, resistance to rough handling, resistance to pressure (includes high humidity and water droplet exposure), resistance to heated air, spot flame resistance and a visual/dimensional inspection. None of these requirements evaluate the particle loading capacitymore » of a HEPA filter design. Concerns, over the particle loading capacity, of the different designs included within the ASME AG-1 section FC code[1], have been voiced in the recent past. Additionally, the ability of a filter to maintain its integrity, if subjected to severe operating conditions such as elevated relative humidity, fog conditions or elevated temperature, after loading in use over long service intervals is also a major concern. Although currently qualified HEPA filter media are likely to have similar loading characteristics when evaluated independently, filter pleat geometry can have a significant impact on the in-situ particle loading capacity of filter packs. Aerosol particle characteristics, such as size and composition, may also have a significant impact on filter loading capacity. Test results comparing filter loading capacities for three different aerosol particles and three different filter pack configurations are reviewed. The information presented represents an empirical performance comparison among the filter designs tested. The results may serve as a basis for further discussion toward the possible development of a particle loading test to be included in the qualification requirements of ASME AG-1 Code sections FC and FK[1]. (authors)« less

  6. CHEK2 represses breast stromal fibroblasts and their paracrine tumor-promoting effects through suppressing SDF-1 and IL-6.

    PubMed

    Al-Rakan, Maha A; Hendrayani, Siti-Faujiah; Aboussekhra, Abdelilah

    2016-08-02

    Active fibroblasts, the predominant and the most active cells of breast cancer stroma, are responsible for tumor growth and spread. However, the molecular mediators and pathways responsible for stromal fibroblast activation, and their paracrine pro-carcinogenic effects are still not well defined. The CHEK2 tumor suppressor gene codes for a protein kinase, which plays important roles in the cellular response to various genotoxic stresses. Immunoblotting, quantitative RT-PCR and Immunofluorescence were used to assess the expression of CHEK2 in different primary breast fibroblasts and in tissues. The effect of CHEK2 on the expression and secretion of SDF-1 and IL-6 was evaluated by immunoblotting and ELISA. The WST-1 colorimetric assay was used to assess cell proliferation, while the BD BioCoat Matrigel invasion chambers were utilized to determine the effects of CHEK2 on the migratory and the invasiveness capacities of breast stromal fibroblasts as well as breast cancer cells. We have shown that CHEK2 is down-regulated in most cancer-associated fibroblasts (CAFs) as compared to their corresponding tumor counterpart fibroblasts (TCFs) at both the mRNA and protein levels. Interestingly, CHEK2 down-regulation using specific siRNA increased the expression/secretion of both cancer-promoting cytokines SDF-1 and IL-6, and transdifferentiated stromal fibroblasts to myofibroblasts. These cells were able to enhance the proliferation of non-cancerous epithelial cells, and also boosted the migration/invasion abilities of breast cancer cells in a paracrine manner. The later effect was SDF-1/IL-6-dependent. Importantly, ectopic expression of CHEK2 in active CAFs converted these cells to a normal state, with lower migration/invasion capacities and reduced paracrine pro-carcinogenic effects. These results indicate that CHEK2 possesses non-cell-autonomous tumor suppressor functions, and present the Chk2 protein as an important mediator in the functional interplay between breast carcinomas and their stromal fibroblasts.

  7. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  8. LincRNA-p21: Implications in Human Diseases

    PubMed Central

    Tang, Sai-Sai; Zheng, Bi-Ying; Xiong, Xing-Dong

    2015-01-01

    Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases. PMID:26270659

  9. Viral Evasion and Manipulation of Host RNA Quality Control Pathways

    PubMed Central

    2016-01-01

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. PMID:27226372

  10. Viral Evasion and Manipulation of Host RNA Quality Control Pathways.

    PubMed

    Hogg, J Robert

    2016-08-15

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Strategies and Challenges in Identifying Function for Thousands of sORF-Encoded Peptides in Meiosis.

    PubMed

    Hollerer, Ina; Higdon, Andrea; Brar, Gloria A

    2017-09-20

    Recent genomic analyses have revealed pervasive translation from formerly unrecognized short open reading frames (sORFs) during yeast meiosis. Despite their short length, which has caused these regions to be systematically overlooked by traditional gene annotation approaches, meiotic sORFs share many features with classical genes, implying the potential for similar types of cellular functions. We found that sORF expression accounts for approximately 10-20% of the cellular translation capacity in yeast during meiotic differentiation and occurs within well-defined time windows, suggesting the production of relatively abundant peptides with stage-specific meiotic roles from these regions. Here, we provide arguments supporting this hypothesis and discuss sORF similarities and differences, as a group, to traditional protein coding regions, as well as challenges in defining their specific functions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likelymore » present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.« less

  13. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  14. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  15. Mental Capacity Act 2005: statutory principles and key concepts.

    PubMed

    Griffith, Richard; Tengnah, Cassam

    2008-05-01

    The Mental Capacity Act 2005 represents the most significant development in the law relating to people who lack decision making capacity since the Mental Health Act 1959 removed the states parens patriae jurisdiction preventing relatives, courts and government bodies consenting on behalf of incapable adults (F vs West Berkshire HA [1990]). The Mental Capacity Act 2005 impacts on the care and treatment provided by district nurses and it is essential that you have a sound working knowledge of its provisions and code of practice. In the first article of a series focusing on how the Mental Capacity Act 2005 applies to district nurse practice, Richard Griffith and Cassam Tengnah consider the principles and key concepts underpinning the Act.

  16. Using a Euclid distance discriminant method to find protein coding genes in the yeast genome.

    PubMed

    Zhang, Chun-Ting; Wang, Ju; Zhang, Ren

    2002-02-01

    The Euclid distance discriminant method is used to find protein coding genes in the yeast genome, based on the single nucleotide frequencies at three codon positions in the ORFs. The method is extremely simple and may be extended to find genes in prokaryotic genomes or eukaryotic genomes with less introns. Six-fold cross-validation tests have demonstrated that the accuracy of the algorithm is better than 93%. Based on this, it is found that the total number of protein coding genes in the yeast genome is less than or equal to 5579 only, about 3.8-7.0% less than 5800-6000, which is currently widely accepted. The base compositions at three codon positions are analyzed in details using a graphic method. The result shows that the preference codons adopted by yeast genes are of the RGW type, where R, G and W indicate the bases of purine, non-G and A/T, whereas the 'codons' in the intergenic sequences are of the form NNN, where N denotes any base. This fact constitutes the basis of the algorithm to distinguish between coding and non-coding ORFs in the yeast genome. The names of putative non-coding ORFs are listed here in detail.

  17. Transcription Factor Binding Profiles Reveal Cyclic Expression of Human Protein-coding Genes and Non-coding RNAs

    PubMed Central

    Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.

    2013-01-01

    Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175

  18. A rate-compatible family of protograph-based LDPC codes built by expurgation and lengthening

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam

    2005-01-01

    We construct a protograph-based rate-compatible family of low-density parity-check codes that cover a very wide range of rates from 1/2 to 16/17, perform within about 0.5 dB of their capacity limits for all rates, and can be decoded conveniently and efficiently with a common hardware implementation.

  19. FPGA-based LDPC-coded APSK for optical communication systems.

    PubMed

    Zou, Ding; Lin, Changyu; Djordjevic, Ivan B

    2017-02-20

    In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.

  20. Divided multimodal attention sensory trace and context coding strategies in spatially congruent auditory and visual presentation.

    PubMed

    Kristjánsson, Tómas; Thorvaldsson, Tómas Páll; Kristjánsson, Arni

    2014-01-01

    Previous research involving both unimodal and multimodal studies suggests that single-response change detection is a capacity-free process while a discriminatory up or down identification is capacity-limited. The trace/context model assumes that this reflects different memory strategies rather than inherent differences between identification and detection. To perform such tasks, one of two strategies is used, a sensory trace or a context coding strategy, and if one is blocked, people will automatically use the other. A drawback to most preceding studies is that stimuli are presented at separate locations, creating the possibility of a spatial confound, which invites alternative interpretations of the results. We describe a series of experiments, investigating divided multimodal attention, without the spatial confound. The results challenge the trace/context model. Our critical experiment involved a gap before a change in volume and brightness, which according to the trace/context model blocks the sensory trace strategy, simultaneously with a roaming pedestal, which should block the context coding strategy. The results clearly show that people can use strategies other than sensory trace and context coding in the tasks and conditions of these experiments, necessitating changes to the trace/context model.

  1. Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs

    NASA Astrophysics Data System (ADS)

    Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.

    2018-01-01

    The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.

  2. Expanding capacity and promoting inclusion in introductory computer science: a focus on near-peer mentor preparation and code review

    NASA Astrophysics Data System (ADS)

    Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey

    2017-01-01

    A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on regular, consistent feedback via peer code review and inclusive pedagogy. Introductory computer science students provided consistently high ratings of the peer mentors' knowledge, approachability, and flexibility, and credited peer mentor meetings for their strengthened self-efficacy and understanding. Peer mentors noted the value of videotaped simulations with reflection, discussions of inclusion, and the cohort's weekly practicum for improving practice. Adaptations of peer mentoring for different types of institutions are discussed. Computer science educators, with hopes of improving the recruitment and retention of underrepresented groups, can benefit from expanding their peer support infrastructure and improving the quality of peer mentor preparation.

  3. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.

    Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify codingmore » regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.« less

  4. Unraveling patterns of site-to-site synonymous rates variation and associated gene properties of protein domains and families.

    PubMed

    Dimitrieva, Slavica; Anisimova, Maria

    2014-01-01

    In protein-coding genes, synonymous mutations are often thought not to affect fitness and therefore are not subject to natural selection. Yet increasingly, cases of non-neutral evolution at certain synonymous sites were reported over the last decade. To evaluate the extent and the nature of site-specific selection on synonymous codons, we computed the site-to-site synonymous rate variation (SRV) and identified gene properties that make SRV more likely in a large database of protein-coding gene families and protein domains. To our knowledge, this is the first study that explores the determinants and patterns of the SRV in real data. We show that the SRV is widespread in the evolution of protein-coding sequences, putting in doubt the validity of the synonymous rate as a standard neutral proxy. While protein domains rarely undergo adaptive evolution, the SRV appears to play important role in optimizing the domain function at the level of DNA. In contrast, protein families are more likely to evolve by positive selection, but are less likely to exhibit SRV. Stronger SRV was detected in genes with stronger codon bias and tRNA reusage, those coding for proteins with larger number of interactions or forming larger number of structures, located in intracellular components and those involved in typically conserved complex processes and functions. Genes with extreme SRV show higher expression levels in nearly all tissues. This indicates that codon bias in a gene, which often correlates with gene expression, may often be a site-specific phenomenon regulating the speed of translation along the sequence, consistent with the co-translational folding hypothesis. Strikingly, genes with SRV were strongly overrepresented for metabolic pathways and those associated with several genetic diseases, particularly cancers and diabetes.

  5. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA).

    PubMed

    Guo, Guangyu; Li, Ning

    2011-07-01

    In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    PubMed

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  7. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice

    PubMed Central

    Fiorotto, Marta L; Davis, Teresa A; Sosa, Horacio A; Villegas-Montoya, Carolina; Estrada, Irma; Fleischmann, Ryan

    2014-01-01

    Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein-restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E-UN), or PN11 to PN22 (L-UN) on protein-restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21 days later, muscle protein synthesis was measured in vivo. There were no long-term deficits in protein mass in GLP and E-UN offspring, but in L-UN offspring muscle protein mass remained significantly smaller even after 18 months (P < 0.001). E-UN differed from L-UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed (P < 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E-UN offspring (P < 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal-regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR (P < 0.02), and total upstream binding factor abundance were significantly greater in E-UN than L-UN offspring (P < 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch-up growth. PMID:25239457

  8. Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial.

    PubMed

    Lee, Chan Joo; Choi, Seungbum; Cheon, Dong Huey; Kim, Kyeong Yeon; Cheon, Eun Jeong; Ann, Soo-Jin; Noh, Hye-Min; Park, Sungha; Kang, Seok-Min; Choi, Donghoon; Lee, Ji Eun; Lee, Sang-Hak

    2017-02-28

    The influence of lipid-lowering therapy on high-density lipoprotein (HDL) is incompletely understood. We compared the effect of two lipid-lowering strategies on HDL functions and identified some HDL-related proteins. Thirty two patients were initially screened and HDLs of 21 patients were finally analyzed. Patients were randomized to receive atorvastatin 20 mg (n = 11) or atorvastatin 5 mg/ezetimibe 10 mg combination (n = 10) for 8 weeks. The cholesterol efflux capacity and other anti-inflammatory functions were assessed based on HDLs of the participants before and after treatment. Pre-specified HDL proteins of the same HDL samples were measured. The post-treatment increase in cholesterol efflux capacities was similar between the groups (35.6% and 34.6% for mono-therapy and combination, respectively, p = 0.60). Changes in nitric oxide (NO) production, vascular cell adhesion molecule-1 (VCAM-1) expression, and reactive oxygen species (ROS) production were similar between the groups. The baseline cholesterol efflux capacity correlated positively with apolipoprotein (apo)A1 and C3, whereas apoA1 and apoC1 showed inverse associations with VCAM-1 expression. The changes in the cholesterol efflux capacity were positively correlated with multiple HDL proteins, especially apoA2. Two regimens increased the cholesterol efflux capacity of HDL comparably. Multiple HDL proteins, not limited to apoA1, showed a correlation with HDL functions. These results indicate that conventional lipid therapy may have additional effects on HDL functions with changes in HDL proteins. ClinicalTrials.gov, number NCT02942602 .

  9. The chemical basis for the origin of the genetic code and the process of protein synthesis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The major thrust is to understand just how the process of protein synthesis, including that very important aspect, genetic coding, came to be. Two aspects of the problem: the chemistry of active aminoacyl species; and affinities between amino acids and nucleotides, and specifically, how these affinities might affect the chemistry between the two are stressed.

  10. Mitochondrial genetic codes evolve to match amino acid requirements of proteins.

    PubMed

    Swire, Jonathan; Judson, Olivia P; Burt, Austin

    2005-01-01

    Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.

  11. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies.

    PubMed

    Romero-Gutierrez, Teresa; Peguero-Sanchez, Esteban; Cevallos, Miguel A; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D

    2017-12-12

    This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology.

  12. MicroRNA-mediated networks underlie immune response regulation in papillary thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Tsung; Oyang, Yen-Jen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2014-09-01

    Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific regulation in the direct miRNA-target network among distinctive PTC variants to different extents. Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology. Together, our systematic results uncover the intensive regulation of immune responses underlain by miRNA-mediated networks in PTC, opening up new avenues in the management of thyroid cancer.

  13. Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model.

    PubMed

    Woltering, Joost M; Duboule, Denis

    2015-11-01

    The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.

    PubMed

    Achour, Cyrinne; Aguilo, Francesca

    2018-06-01

    High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript ( XIST ), antisense non-coding RNA in the INK4 locus ( ANRIL ), metastasis associated lung adenocarcinoma transcript 1 ( MALAT1 ), and HOX transcript antisense RNA ( HOTAIR ).

  15. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    PubMed

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  16. Identification of a Conserved Non-Protein-Coding Genomic Element that Plays an Essential Role in Alphabaculovirus Pathogenesis

    PubMed Central

    Kikhno, Irina

    2014-01-01

    Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153

  17. Evaluating the protein coding potential of exonized transposable element sequences

    PubMed Central

    Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King

    2007-01-01

    Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to encode protein sequences. Conclusion The exaptation of the numerous TE sequences found in exons as bona fide protein coding sequences may prove to be far less common than has been suggested by the analysis of complete genomes. We hypothesize that many exonized TE sequences actually function as post-transcriptional regulators of gene expression, rather than coding sequences, which may act through a variety of double stranded RNA related regulatory pathways. Indeed, their relatively high copy numbers and similarity to sequences dispersed throughout the genome suggests that exonized TE sequences could serve as master regulators with a wide scope of regulatory influence. Reviewers: This article was reviewed by Itai Yanai, Kateryna D. Makova, Melissa Wilson (nominated by Kateryna D. Makova) and Cedric Feschotte (nominated by John M. Logsdon Jr.). PMID:18036258

  18. Drug Design Relating Amebicides to Inhibition of Protein Synthesis.

    DTIC Science & Technology

    1977-09-01

    A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct

  19. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    PubMed Central

    2012-01-01

    Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution. PMID:23148531

  20. Analysis on applicable error-correcting code strength of storage class memory and NAND flash in hybrid storage

    NASA Astrophysics Data System (ADS)

    Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken

    2018-04-01

    A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.

  1. Amino acid codes in mitochondria as possible clues to primitive codes

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1981-01-01

    Differences between mitochondrial codes and the universal code indicate that an evolutionary simplification has taken place, rather than a return to a more primitive code. However, these differences make it evident that the universal code is not the only code possible, and therefore earlier codes may have differed markedly from the previous code. The present universal code is probably a 'frozen accident.' The change in CUN codons from leucine to threonine (Neurospora vs. yeast mitochondria) indicates that neutral or near-neutral changes occurred in the corresponding proteins when this code change took place, caused presumably by a mutation in a tRNA gene.

  2. Airborne antenna radiation pattern code user's manual

    NASA Technical Reports Server (NTRS)

    Burnside, Walter D.; Kim, Jacob J.; Grandchamp, Brett; Rojas, Roberto G.; Law, Philip

    1985-01-01

    The use of a newly developed computer code to analyze the radiation patterns of antennas mounted on a ellipsoid and in the presence of a set of finite flat plates is described. It is shown how the code allows the user to simulate a wide variety of complex electromagnetic radiation problems using the ellipsoid/plates model. The code has the capacity of calculating radiation patterns around an arbitrary conical cut specified by the user. The organization of the code, definition of input and output data, and numerous practical examples are also presented. The analysis is based on the Uniform Geometrical Theory of Diffraction (UTD), and most of the computed patterns are compared with experimental results to show the accuracy of this solution.

  3. Revealing Future Research Capacity from an Analysis of a National Database of Discipline-Coded Australian PhD Thesis Records

    ERIC Educational Resources Information Center

    Pittayachawan, Siddhi; Macauley, Peter; Evans, Terry

    2016-01-01

    This article reports how statistical analyses of PhD thesis records can reveal future research capacities for disciplines beyond their primary fields. The previous research showed that most theses contributed to and/or used methodologies from more than one discipline. In Australia, there was a concern for declining mathematical teaching and…

  4. Construction of Protograph LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  5. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.

  6. Protein functional features are reflected in the patterns of mRNA translation speed.

    PubMed

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  7. An endogenous small interfering RNA pathway in Drosophila

    PubMed Central

    Czech, Benjamin; Malone, Colin D.; Zhou, Rui; Stark, Alexander; Schlingeheyde, Catherine; Dus, Monica; Perrimon, Norbert; Kellis, Manolis; Wohlschlegel, James A.; Sachidanandam, Ravi; Hannon, Gregory J.; Brennecke, Julius

    2009-01-01

    Drosophila endogenous small RNAs are categorized according to their mechanisms of biogenesis and the Argonaute protein to which they bind. MicroRNAs are a class of ubiquitously expressed RNAs of ~22 nucleotides in length, which arise from structured precursors through the action of Drosha–Pasha and Dicer-1–Loquacious complexes1–7. These join Argonaute-1 to regulate gene expression8,9. A second endogenous small RNA class, the Piwi-interacting RNAs, bind Piwi proteins and suppress transposons10,11. Piwi-interacting RNAs are restricted to the gonad, and at least a subset of these arises by Piwi-catalysed cleavage of single-stranded RNAs12,13. Here we show that Drosophila generates a third small RNA class, endogenous small interfering RNAs, in both gonadal and somatic tissues. Production of these RNAs requires Dicer-2, but a subset depends preferentially on Loquacious1,4,5 rather than the canonical Dicer-2 partner, R2D2 (ref. 14). Endogenous small interfering RNAs arise both from convergent transcription units and from structured genomic loci in a tissue-specific fashion. They predominantly join Argonaute-2 and have the capacity, as a class, to target both protein-coding genes and mobile elements. These observations expand the repertoire of small RNAs in Drosophila, adding a class that blurs distinctions based on known biogenesis mechanisms and functional roles. PMID:18463631

  8. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.

    PubMed

    Gómez-Molero, Emilia; de Boer, Albert D; Dekker, Henk L; Moreno-Martínez, Ana; Kraneveld, Eef A; Ichsan; Chauhan, Neeraj; Weig, Michael; de Soet, Johannes J; de Koster, Chris G; Bader, Oliver; de Groot, Piet W J

    2015-12-01

    Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The sea cucumber genome provides insights into morphological evolution and visceral regeneration

    PubMed Central

    Dai, Hui; Hamel, Jean-François; Liu, Chengzhang; Yu, Yang; Liu, Shilin; Lin, Wenchao; Guo, Kaimin; Jin, Songjun; Xu, Peng; Storey, Kenneth B.; Huan, Pin; Zhang, Tao; Zhou, Yi; Zhang, Jiquan; Lin, Chenggang; Li, Xiaoni; Xing, Lili; Huo, Da; Sun, Mingzhe; Wang, Lei; Mercier, Annie; Li, Fuhua; Yang, Hongsheng

    2017-01-01

    Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs. PMID:29023486

  10. The sea cucumber genome provides insights into morphological evolution and visceral regeneration.

    PubMed

    Zhang, Xiaojun; Sun, Lina; Yuan, Jianbo; Sun, Yamin; Gao, Yi; Zhang, Libin; Li, Shihao; Dai, Hui; Hamel, Jean-François; Liu, Chengzhang; Yu, Yang; Liu, Shilin; Lin, Wenchao; Guo, Kaimin; Jin, Songjun; Xu, Peng; Storey, Kenneth B; Huan, Pin; Zhang, Tao; Zhou, Yi; Zhang, Jiquan; Lin, Chenggang; Li, Xiaoni; Xing, Lili; Huo, Da; Sun, Mingzhe; Wang, Lei; Mercier, Annie; Li, Fuhua; Yang, Hongsheng; Xiang, Jianhai

    2017-10-01

    Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs.

  11. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    PubMed

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  12. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    PubMed

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  13. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  14. Automated multi-dimensional purification of tagged proteins.

    PubMed

    Sigrell, Jill A; Eklund, Pär; Galin, Markus; Hedkvist, Lotta; Liljedahl, Pia; Johansson, Christine Markeland; Pless, Thomas; Torstenson, Karin

    2003-01-01

    The capacity for high throughput purification (HTP) is essential in fields such as structural genomics where large numbers of protein samples are routinely characterized in, for example, studies of structural determination, functionality and drug development. Proteins required for such analysis must be pure and homogenous and available in relatively large amounts. AKTA 3D system is a powerful automated protein purification system, which minimizes preparation, run-time and repetitive manual tasks. It has the capacity to purify up to 6 different His6- or GST-tagged proteins per day and can produce 1-50 mg protein per run at >90% purity. The success of automated protein purification increases with careful experimental planning. Protocol, columns and buffers need to be chosen with the final application area for the purified protein in mind.

  15. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.

  16. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber.

    PubMed

    Wang, Andong; Zhu, Long; Chen, Shi; Du, Cheng; Mo, Qi; Wang, Jian

    2016-05-30

    Mode-division multiplexing over fibers has attracted increasing attention over the last few years as a potential solution to further increase fiber transmission capacity. In this paper, we demonstrate the viability of orbital angular momentum (OAM) modes transmission over a 50-km few-mode fiber (FMF). By analyzing mode properties of eigen modes in an FMF, we study the inner mode group differential modal delay (DMD) in FMF, which may influence the transmission capacity in long-distance OAM modes transmission and multiplexing. To mitigate the impact of large inner mode group DMD in long-distance fiber-based OAM modes transmission, we use low-density parity-check (LDPC) codes to increase the system reliability. By evaluating the performance of LDPC-coded single OAM mode transmission over 50-km fiber, significant coding gains of >4 dB, 8 dB and 14 dB are demonstrated for 1-Gbaud, 2-Gbaud and 5-Gbaud quadrature phase-shift keying (QPSK) signals, respectively. Furthermore, in order to verify and compare the influence of DMD in long-distance fiber transmission, single OAM mode transmission over 10-km FMF is also demonstrated in the experiment. Finally, we experimentally demonstrate OAM multiplexing and transmission over a 50-km FMF using LDPC-coded 1-Gbaud QPSK signals to compensate the influence of mode crosstalk and DMD in the 50 km FMF.

  17. Using Third-Party Inspectors in Building Energy Codes Enforcement in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Evans, Meredydd; Kumar, Pradeep

    India is experiencing fast income growth and urbanization, and this leads to unprecedented increases in demand for building energy services and resulting energy consumption. In response to rapid growth in building energy use, the Government of India issued the Energy Conservation Building Code (ECBC) in 2007, which is consistent with and based on the 2001 Energy Conservation Act. ECBC implementation has been voluntary since its enactment and a few states have started to make progress towards mandatory implementation. Rajasthan is the first state in India to adopt ECBC as a mandatory code. The State adopted ECBC with minor additions onmore » March 28, 2011 through a stakeholder process; it became mandatory in Rajasthan on September 28, 2011. Tamil Nadu, Gujarat, and Andhra Pradesh have started to draft an implementation roadmap and build capacity for its implementation. The Bureau of Energy Efficiency (BEE) plans to encourage more states to adopt ECBC in the near future, including Haryana, Uttar Pradesh, Karnataka, Maharashtra, West Bengal, and Delhi. Since its inception, India has applied the code on a voluntary basis, but the Government of India is developing a strategy to mandate compliance. Implementing ECBC requires coordination between the Ministry of Power and the Ministry of Urban Development at the national level as well as interdepartmental coordination at the state level. One challenge is that the Urban Local Bodies (ULBs), the enforcement entities of building by-laws, lack capacity to implement ECBC effectively. For example, ULBs in some states might find the building permitting procedures to be too complex; in other cases, lack of awareness and technical knowledge on ECBC slows down the amendment of local building by-laws as well as ECBC implementation. The intent of this white paper is to share with Indian decision-makers code enforcement approaches: through code officials, third-party inspectors, or a hybrid approach. Given the limited capacity and human resources available in the state and local governments, involving third-party inspectors could rapidly expand the capacity for plan reviews and broad implementation. However, the procedures of involving third-parties need to be carefully designed in order to guarantee a fair process. For example, there should be multiple checks and certification requirements for third-party inspectors, and the government should have the final approval when third-party inspectors are used in a project. This paper discusses different approaches of involving third-parties in ECBC enforcement; the Indian states may choose the approaches that work best in their given circumstances.« less

  18. Interleaved concatenated codes: New perspectives on approaching the Shannon limit

    PubMed Central

    Viterbi, A. J.; Viterbi, A. M.; Sindhushayana, N. T.

    1997-01-01

    The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit. PMID:11038568

  19. Evolution at protein ends: major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals

    PubMed Central

    Shabalina, Svetlana A.; Ogurtsov, Aleksey Y.; Spiridonov, Nikolay A.; Koonin, Eugene V.

    2014-01-01

    Alternative splicing (AS), alternative transcription initiation (ATI) and alternative transcription termination (ATT) create the extraordinary complexity of transcriptomes and make key contributions to the structural and functional diversity of mammalian proteomes. Analysis of mammalian genomic and transcriptomic data shows that contrary to the traditional view, the joint contribution of ATI and ATT to the transcriptome and proteome diversity is quantitatively greater than the contribution of AS. Although the mean numbers of protein-coding constitutive and alternative nucleotides in gene loci are nearly identical, their distribution along the transcripts is highly non-uniform. On average, coding exons in the variable 5′ and 3′ transcript ends that are created by ATI and ATT contain approximately four times more alternative nucleotides than core protein-coding regions that diversify exclusively via AS. Short upstream exons that encompass alternative 5′-untranslated regions and N-termini of proteins evolve under strong nucleotide-level selection whereas in 3′-terminal exons that encode protein C-termini, protein-level selection is significantly stronger. The groups of genes that are subject to ATI and ATT show major differences in biological roles, expression and selection patterns. PMID:24792168

  20. The Human Cell Surfaceome of Breast Tumors

    PubMed Central

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  1. Hidden Structural Codes in Protein Intrinsic Disorder.

    PubMed

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  2. tRNA acceptor stem and anticodon bases form independent codes related to protein folding

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2015-01-01

    Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3′ acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water. PMID:26034281

  3. Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39

    PubMed Central

    Fujisawa, Takatomo; Narikawa, Rei; Okamoto, Shinobu; Ehira, Shigeki; Yoshimura, Hidehisa; Suzuki, Iwane; Masuda, Tatsuru; Mochimaru, Mari; Takaichi, Shinichi; Awai, Koichiro; Sekine, Mitsuo; Horikawa, Hiroshi; Yashiro, Isao; Omata, Seiha; Takarada, Hiromi; Katano, Yoko; Kosugi, Hiroki; Tanikawa, Satoshi; Ohmori, Kazuko; Sato, Naoki; Ikeuchi, Masahiko; Fujita, Nobuyuki; Ohmori, Masayuki

    2010-01-01

    A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis. PMID:20203057

  4. Generation of a variety of stable Influenza A reporter viruses by genetic engineering of the NS gene segment

    PubMed Central

    Reuther, Peter; Göpfert, Kristina; Dudek, Alexandra H.; Heiner, Monika; Herold, Susanne; Schwemmle, Martin

    2015-01-01

    Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection. PMID:26068081

  5. Hydrocolloids Decrease the Digestibility of Corn Starch, Soy Protein, and Skim Milk and the Antioxidant Capacity of Grape Juice.

    PubMed

    Yi, Yue; Jeon, Hyeong-Ju; Yoon, Sun; Lee, Seung-Min

    2015-12-01

    Hydrocolloids have many applications in foods including their use in dysphagia diets. We aimed to evaluate whether hydrocolloids in foods affect the digestibility of starch and protein, and their effects on antioxidant capacity. The thickening hydrocolloids: locust bean gum and carboxymethyl cellulose, and the gel-forming agents: agar agar, konjac-glucomannan, and Hot & Soft Plus were blended with corn starch and soy protein, skim milk, or grape juice and were examined for their in vitro-digestability by comparing the reducing sugar and trichloroacetic acid (TCA)-soluble peptide, for antioxidant capacity by total polyphenol contents and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The hydrocolloids resulted in a decrease in starch digestibility with the gel-forming agents. Hydrocolloids diminished TCA-soluble peptides in skim milk compared to soy protein with the exception of locust bean gum and decreased free radical scavenging capacities and total phenolic contents in grape juice. Our findings may provide evidence for the use of hydro-colloids for people at risk of nutritional deficiencies such as dysphagia patients.

  6. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    PubMed Central

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  7. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.

    PubMed

    Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M

    2010-12-15

    Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  8. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana *

    PubMed Central

    Ndah, Elvis; Jonckheere, Veronique

    2017-01-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. PMID:28432195

  9. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana.

    PubMed

    Willems, Patrick; Ndah, Elvis; Jonckheere, Veronique; Stael, Simon; Sticker, Adriaan; Martens, Lennart; Van Breusegem, Frank; Gevaert, Kris; Van Damme, Petra

    2017-06-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The complete mitochondrial genome of a spiraling whitefly, Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae).

    PubMed

    Ming-Xing, Lu; Zhi-Teng, Chen; Wei-Wei, Yu; Yu-Zhou, Du

    2017-03-01

    We report the complete mitochondrial genome (mitogenome) of a spiraling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae). The 16 170 bp long genome consists of 13 protein-coding genes, 20 transfer RNAs, 2 ribosomal RNAs, and a control region. The A. dispersus mitogenome also includes a cytb-like non-coding region and shows several variations relative to the typical insect mitogenome. A phylogenetic tree has been constructed using the 13 protein-coding genes of 12 related species from Hemiptera. Our results would contribute to further study of phylogeny in Aleyrodidae and Hemiptera.

  11. Origin and evolution of the long non-coding genes in the X-inactivation center.

    PubMed

    Romito, Antonio; Rougeulle, Claire

    2011-11-01

    Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation. Copyright © 2011. Published by Elsevier Masson SAS.

  12. Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication.

    PubMed

    Liberek, K; Osipiuk, J; Zylicz, M; Ang, D; Skorko, J; Georgopoulos, C

    1990-02-25

    The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.

  13. Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis

    Treesearch

    Jose M. Laplaza; Beatriz Rivas Torres; Yong-Su Jin; Thomas W. Jeffries

    2006-01-01

    Pichia stipitis is widely studied for its capacity to ferment d-xylose to ethanol. Strain improvement has been facilitated by recent completion of the P. stipitis genome. P. stipitis uses CUG to code for serine rather than leucine, as is the case for the universal genetic code thereby limiting the availability of heterologous drug resistance markers for transformation...

  14. Adaptive Transmission and Channel Modeling for Frequency Hopping Communications

    DTIC Science & Technology

    2009-09-21

    proposed adaptive transmission method has much greater system capacity than conventional non-adaptive MC direct- sequence ( DS )- CDMA system. • We...several mobile radio systems. First, a new improved allocation algorithm was proposed for multicarrier code-division multiple access (MC- CDMA ) system...Multicarrier code-division multiple access (MC- CDMA ) system with adaptive frequency hopping (AFH) has attracted attention of researchers due to its

  15. Feedback Codes and Action Plans: Building the Capacity of First-Year Students to Apply Feedback to a Scientific Report

    ERIC Educational Resources Information Center

    Bird, Fiona L.; Yucel, Robyn

    2015-01-01

    Effective feedback can build self-assessment skills in students so that they become more competent and confident to identify and self-correct weaknesses in their work. In this study, we trialled a feedback code as part of an integrated programme of formative and summative assessment tasks, which provided feedback to first-year students on their…

  16. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  17. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam

    2016-11-01

    Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Coding for Parallel Links to Maximize the Expected Value of Decodable Messages

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.; Chang, Christopher S.

    2011-01-01

    When multiple parallel communication links are available, it is useful to consider link-utilization strategies that provide tradeoffs between reliability and throughput. Interesting cases arise when there are three or more available links. Under the model considered, the links have known probabilities of being in working order, and each link has a known capacity. The sender has a number of messages to send to the receiver. Each message has a size and a value (i.e., a worth or priority). Messages may be divided into pieces arbitrarily, and the value of each piece is proportional to its size. The goal is to choose combinations of messages to send on the links so that the expected value of the messages decodable by the receiver is maximized. There are three parts to the innovation: (1) Applying coding to parallel links under the model; (2) Linear programming formulation for finding the optimal combinations of messages to send on the links; and (3) Algorithms for assisting in finding feasible combinations of messages, as support for the linear programming formulation. There are similarities between this innovation and methods developed in the field of network coding. However, network coding has generally been concerned with either maximizing throughput in a fixed network, or robust communication of a fixed volume of data. In contrast, under this model, the throughput is expected to vary depending on the state of the network. Examples of error-correcting codes that are useful under this model but which are not needed under previous models have been found. This model can represent either a one-shot communication attempt, or a stream of communications. Under the one-shot model, message sizes and link capacities are quantities of information (e.g., measured in bits), while under the communications stream model, message sizes and link capacities are information rates (e.g., measured in bits/second). This work has the potential to increase the value of data returned from spacecraft under certain conditions.

  19. The international implications of national and local coordination on building energy codes: Case studies in six cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Yu, Sha; Staniszewski, Aaron

    Building energy efficiency is an important strategy for reducing greenhouse gas emissions globally. In fact, 55 countries have included building energy efficiency in their Nationally Determined Contributions (NDCs) under the Paris Agreement. This research uses building energy code implementation in six cities across different continents as case studies to assess what it may take for countries to implement the ambitions of their energy efficiency goals. Specifically, we look at the cases of Bogota, Colombia; Da Nang, Vietnam; Eskisehir, Turkey; Mexico City, Mexico; Rajkot, India; and Tshwane, South Africa, all of which are “deep dive” cities under the Sustainable Energy formore » All's Building Efficiency Accelerator. The research focuses on understanding the baseline with existing gaps in implementation and coordination. The methodology used a combination of surveys on code status and interviews with stakeholders at the local and national level, as well as review of published documents. We looked at code development, implementation, and evaluation. The cities are all working to improve implementation, however, the challenges they currently face include gaps in resources, capacity, tools, and institutions to check for compliance. Better coordination between national and local governments could help improve implementation, but that coordination is not yet well established. For example, all six of the cities reported that there was little to no involvement of local stakeholders in development of the national code; only one city reported that it had access to national funding to support code implementation. More robust coordination could better link cities with capacity building and funding for compliance, and ensure that the code reflects local priorities. By understanding gaps in implementation, it can also help in designing more targeted interventions to scale up energy savings.« less

  20. The international implications of national and local coordination on building energy codes: Case studies in six cities

    DOE PAGES

    Evans, Meredydd; Yu, Sha; Staniszewski, Aaron; ...

    2018-04-17

    Building energy efficiency is an important strategy for reducing greenhouse gas emissions globally. In fact, 55 countries have included building energy efficiency in their Nationally Determined Contributions (NDCs) under the Paris Agreement. This research uses building energy code implementation in six cities across different continents as case studies to assess what it may take for countries to implement the ambitions of their energy efficiency goals. Specifically, we look at the cases of Bogota, Colombia; Da Nang, Vietnam; Eskisehir, Turkey; Mexico City, Mexico; Rajkot, India; and Tshwane, South Africa, all of which are “deep dive” cities under the Sustainable Energy formore » All's Building Efficiency Accelerator. The research focuses on understanding the baseline with existing gaps in implementation and coordination. The methodology used a combination of surveys on code status and interviews with stakeholders at the local and national level, as well as review of published documents. We looked at code development, implementation, and evaluation. The cities are all working to improve implementation, however, the challenges they currently face include gaps in resources, capacity, tools, and institutions to check for compliance. Better coordination between national and local governments could help improve implementation, but that coordination is not yet well established. For example, all six of the cities reported that there was little to no involvement of local stakeholders in development of the national code; only one city reported that it had access to national funding to support code implementation. More robust coordination could better link cities with capacity building and funding for compliance, and ensure that the code reflects local priorities. By understanding gaps in implementation, it can also help in designing more targeted interventions to scale up energy savings.« less

  1. Neutron-Encoded Protein Quantification by Peptide Carbamylation

    NASA Astrophysics Data System (ADS)

    Ulbrich, Arne; Merrill, Anna E.; Hebert, Alexander S.; Westphall, Michael S.; Keller, Mark P.; Attie, Alan D.; Coon, Joshua J.

    2014-01-01

    We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.

  2. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion

    PubMed Central

    Alghannam, Abdullah F.; Betts, James A.

    2018-01-01

    The importance of post-exercise recovery nutrition has been well described in recent years, leading to its incorporation as an integral part of training regimes in both athletes and active individuals. Muscle glycogen depletion during an initial prolonged exercise bout is a main factor in the onset of fatigue and so the replenishment of glycogen stores may be important for recovery of functional capacity. Nevertheless, nutritional considerations for optimal short-term (3–6 h) recovery remain incompletely elucidated, particularly surrounding the precise amount of specific types of nutrients required. Current nutritional guidelines to maximise muscle glycogen availability within limited recovery are provided under the assumption that similar fatigue mechanisms (i.e., muscle glycogen depletion) are involved during a repeated exercise bout. Indeed, recent data support the notion that muscle glycogen availability is a determinant of subsequent endurance capacity following limited recovery. Thus, carbohydrate ingestion can be utilised to influence the restoration of endurance capacity following exhaustive exercise. One strategy with the potential to accelerate muscle glycogen resynthesis and/or functional capacity beyond merely ingesting adequate carbohydrate is the co-ingestion of added protein. While numerous studies have been instigated, a consensus that is related to the influence of carbohydrate-protein ingestion in maximising muscle glycogen during short-term recovery and repeated exercise capacity has not been established. When considered collectively, carbohydrate intake during limited recovery appears to primarily determine muscle glycogen resynthesis and repeated exercise capacity. Thus, when the goal is to optimise repeated exercise capacity following short-term recovery, ingesting carbohydrate at an amount of ≥1.2 g kg body mass−1·h−1 can maximise muscle glycogen repletion. The addition of protein to carbohydrate during post-exercise recovery may be beneficial under circumstances when carbohydrate ingestion is sub-optimal (≤0.8 g kg body mass−1·h−1) for effective restoration of muscle glycogen and repeated exercise capacity. PMID:29473893

  3. Molecular cloning, characterization, and expression of Cuc m 2, a major allergen in Cucumis melo

    PubMed Central

    Sankian, Mojtaba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2013-01-01

    Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine cross-reactivity of the major allergen with closely-related allergens from other plants displaying clinical cross-reactivity with melon. Methods: Identification and molecular characterization of the major melon allergen were performed using IgE immunoblotting, allergen-specific ELISA, affinity-based purifications, cross-inhibition assays, cloning, and expression of the allergen in Escherichia coli. Results: Melon profilin was identified and isolated as a major IgE-binding component and designated as Cuc m 2. Sequencing corresponding cDNA revealed an open reading frame of 363 bp coding for 131 amino acid residues and two fragments of 171 bp and 383 bps for the 5’and 3’ UTRs, respectively. Significant cross-reactivity was found between melon profilin and Cynodon dactylon, tomato, peach, and grape profilins in cross-inhibition assays. Although the highest degree of amino acid identity was revealed with watermelon profilin, there was no significant cross-reactivity between melon and watermelon profilins. Conclusion: Melon profilin is the major IgE-binding component in melon extract, and the recombinant and natural forms exhibited similar IgE-binding capacities. A part of the fruit-fruit and pollen-fruit cross-reactions could be explained by the presence of this conserved protein; however, sequence homology provides insufficient information to predict IgE cross-reactivity of profilins. PMID:26989709

  4. Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data.

    PubMed

    Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/. © The Author(s) 2015. Published by Oxford University Press.

  5. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    PubMed Central

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  6. Green Tea Consumption after Intense Taekwondo Training Enhances Salivary Defense Factors and Antibacterial Capacity

    PubMed Central

    Lin, Shiuan-Pey; Li, Chia-Yang; Suzuki, Katsuhiko; Chang, Chen-Kang; Chou, Kuei-Ming; Fang, Shih-Hua

    2014-01-01

    The aim of this study was to investigate the short-term effects of green tea consumption on selected salivary defense proteins, antibacterial capacity and anti-oxidation activity in taekwondo (TKD) athletes, following intensive training. Twenty-two TKD athletes performed a 2-hr TKD training session. After training, participants ingested green tea (T, caffeine 6 mg/kg and catechins 22 mg/kg) or an equal volume of water (W). Saliva samples were collected at three time points: before training (BT-T; BT-W), immediately after training (AT-T; AT-W), and 30 min after drinking green tea or water (Rec-T; Rec-W). Salivary total protein, immunoglobulin A (SIgA), lactoferrin, α-amylase activity, free radical scavenger activity (FRSA) and antibacterial capacity were measured. Salivary total protein, lactoferrin, SIgA concentrations and α-amylase activity increased significantly immediately after intensive TKD training. After tea drinking and 30 min rest, α-amylase activity and the ratio of α-amylase to total protein were significantly higher than before and after training. In addition, salivary antibacterial capacity was not affected by intense training, but green tea consumption after training enhanced salivary antibacterial capacity. Additionally, we observed that salivary FRSA was markedly suppressed immediately after training and quickly returned to pre-exercise values, regardless of which fluid was consumed. Our results show that green tea consumption significantly enhances the activity of α-amylase and salivary antibacterial capacity. PMID:24498143

  7. Analysis of protein-coding genetic variation in 60,706 humans.

    PubMed

    Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G

    2016-08-18

    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

  8. Molecular cloning and sequence analysis of the gene coding for the 57kDa soluble antigen of the salmonid fish pathogen Renibacterium salmoninarum

    USGS Publications Warehouse

    Chien, Maw-Sheng; Gilbert , Teresa L.; Huang, Chienjin; Landolt, Marsha L.; O'Hara, Patrick J.; Winton, James R.

    1992-01-01

    The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated Mr value of 57190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27–61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein in synthesized as a 557-amino acid precursor and processed to produce a mature protein of Mr 54505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.

  9. Context influences on TALE–DNA binding revealed by quantitative profiling

    PubMed Central

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  10. Context influences on TALE-DNA binding revealed by quantitative profiling.

    PubMed

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  11. CDSbank: taxonomy-aware extraction, selection, renaming and formatting of protein-coding DNA or amino acid sequences.

    PubMed

    Hazes, Bart

    2014-02-28

    Protein-coding DNA sequences and their corresponding amino acid sequences are routinely used to study relationships between sequence, structure, function, and evolution. The rapidly growing size of sequence databases increases the power of such comparative analyses but it makes it more challenging to prepare high quality sequence data sets with control over redundancy, quality, completeness, formatting, and labeling. Software tools for some individual steps in this process exist but manual intervention remains a common and time consuming necessity. CDSbank is a database that stores both the protein-coding DNA sequence (CDS) and amino acid sequence for each protein annotated in Genbank. CDSbank also stores Genbank feature annotation, a flag to indicate incomplete 5' and 3' ends, full taxonomic data, and a heuristic to rank the scientific interest of each species. This rich information allows fully automated data set preparation with a level of sophistication that aims to meet or exceed manual processing. Defaults ensure ease of use for typical scenarios while allowing great flexibility when needed. Access is via a free web server at http://hazeslab.med.ualberta.ca/CDSbank/. CDSbank presents a user-friendly web server to download, filter, format, and name large sequence data sets. Common usage scenarios can be accessed via pre-programmed default choices, while optional sections give full control over the processing pipeline. Particular strengths are: extract protein-coding DNA sequences just as easily as amino acid sequences, full access to taxonomy for labeling and filtering, awareness of incomplete sequences, and the ability to take one protein sequence and extract all synonymous CDS or identical protein sequences in other species. Finally, CDSbank can also create labeled property files to, for instance, annotate or re-label phylogenetic trees.

  12. Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun

    2004-05-01

    Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decodingmore » in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques.« less

  13. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    NASA Astrophysics Data System (ADS)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  14. Estimation of salivary flow rate, pH, buffer capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries severity, age and gender.

    PubMed

    Pandey, Pallavi; Reddy, N Venugopal; Rao, V Arun Prasad; Saxena, Aditya; Chaudhary, C P

    2015-03-01

    The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free) Group B: Children with DMFS/dfs ≥5 (caries active). Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) assays. The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P < 0.05) for salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P < 0.05) for salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.

  15. [Study of the reineta protein modifications (Brama australis), put under freezing and storage to -18 degrees C and -30 degrees C].

    PubMed

    Abugoch, Lilian; Quitral, Vilma; Larraín, M Angélica; Vinagre, Julia; Kriukov, Andrei; Chávez, Gloria

    2006-12-01

    The objective of the present work was to study functional and thermal properties of reineta (Brama australis) frozen meat, analysed by water retention capacity (WRC), gel forming capacity (GFC), texture, emulsifying capacity and differential scanning calorimetry (DSC). For this study, reineta fillets were obtained and extracted by the same conditions, and cutted, packaged, frozen and stored at -18 degrees C and -30 degrees C for 7 months. The results obtained, showed that there were no signifficant differences in the responses to thermal treatment for all the specimens. For samples frozen at -18 degrees C and -30 degrees C, the protein contents were 23.5 + 0.0 and 25.4 + 1.0%, respectively. The WRC values were 0.45 + 0.1 and 1.59 +/- 0.0 g water/g protein, respectively. The gel forming capacity was only present in the fresh samples, whereas the frozen stored ones only form protein aggregates. The emulsifying capacity was between 960 and 1400 g oil / g protein, and the storage time increased this value. The miosin denaturation temperature (Td) and denaturation enthalpy (?H), obtained by DSC, fluctuated between 39.2 +/- 0.5 to 44.8 +/- 0.8 degrees C and 1.12 +/- 0.3 to 0.52 +/- 0.2 J/g, respectively. The actina values were between 71.0 +/- 0.6 to 75.3 +/- 0.5 degrees C and between 0.5 +/- 0.1 to 0.7 +/- 0.1 J/g. Cooperativity decreased as the storage time increased. This is showing a certain degree of protein displacement. The values found by thermal analyses showed a direct relationship with the functional properties, both decreasing with storage time.

  16. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. a critical ionic capacity for drastically enhanced capacity and uptake kinetics.

    PubMed

    Yu, Lin-Ling; Tao, Shi-Peng; Dong, Xiao-Yan; Sun, Yan

    2013-08-30

    To explore the details of protein uptake to polymer-grafted ion exchangers, Sepharose FF was modified with poly(ethylenimine) (PEI) to prepare anion exchanger of 10 different ionic capacities (ICs, 100-1220mmol/L). Adsorption equilibria and kinetics of bovine serum albumin (BSA) were then studied. It is found that ionic capacity, i.e., the coupling density of PEI, had significant effect on both adsorption capacity (qm) and effective protein diffusivity (De). With increasing ionic capacity, the qm value increased rapidly at IC<260mmol/L and then increased slowly till reaching a plateau at IC=600mmol/L. In the IC range of 100-600mmol/L, however, the De values kept at a low level (De/D0<0.07); it first decreased from 0.05±0.01 at IC=100mmol/L to 0.01±0.01 at IC=260mmol/L and then increased to 0.06±0.01 at IC=600mmol/L. Thereafter, sharp increases of the qm and De values [36% (from 201 to 273mg/mL) and 670% (from 0.06±0.01 to 0.49±0.04), respectively] were observed in the narrow range of IC from 600 to 740mmol/L. Finally, at IC>740mmol/L, the qm value decreased significantly while the De value increased moderately with increasing the IC. The results indicate that PEI chains played an important role in protein adsorption and transport. In brief, there was a critical IC (cIC) or PEI chain density, above which protein adsorption and transport behaviors changed drastically. The cIC was identified to be about 600mmol/L. Estimation of PEI grafting-layer thickness suggests that PEI chains formed an extended three-dimensional grafting-layer at IC>cIC, which provided high flexibility as well as accessibility of the chains for protein binding. Therefore, at IC>cIC, the adjacent PEI chains became close and flexible enough, leading to facilitated transport of adsorbed protein molecules by the interactions of neighboring chains mediated by the bound molecules. It is regarded as "chain delivery" effect. At the same time, improved accessibility of binding sites led the significant increase of binding capacity. The decrease of qm value at IC>740mmol/L is considered due to the decrease of effective porosity. The research has thus provided new insight into protein adsorption and transport in polymer-grafted ion-exchange media. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An evaluation of the effect of JPEG, JPEG2000, and H.264/AVC on CQR codes decoding process

    NASA Astrophysics Data System (ADS)

    Vizcarra Melgar, Max E.; Farias, Mylène C. Q.; Zaghetto, Alexandre

    2015-02-01

    This paper presents a binarymatrix code based on QR Code (Quick Response Code), denoted as CQR Code (Colored Quick Response Code), and evaluates the effect of JPEG, JPEG2000 and H.264/AVC compression on the decoding process. The proposed CQR Code has three additional colors (red, green and blue), what enables twice as much storage capacity when compared to the traditional black and white QR Code. Using the Reed-Solomon error-correcting code, the CQR Code model has a theoretical correction capability of 38.41%. The goal of this paper is to evaluate the effect that degradations inserted by common image compression algorithms have on the decoding process. Results show that a successful decoding process can be achieved for compression rates up to 0.3877 bits/pixel, 0.1093 bits/pixel and 0.3808 bits/pixel for JPEG, JPEG2000 and H.264/AVC formats, respectively. The algorithm that presents the best performance is the H.264/AVC, followed by the JPEG2000, and JPEG.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiser, C.; McIntosh, L.

    The rise in alternative respiratory capacity upon aging of potato (Solanum tuberosum) tuber slices is correlated with changes in mitochondrial membrane protein composition and a requirement for cytoplasmic protein synthesis. However, the lack of an antibody specific to the alternative oxidase has, until recently, prevented examination of the alternative oxidase protein(s) itself. We have employed a monoclonal antibody raised against the Sauromatum guttatum alternative oxidase to investigate developmental changes in the alternative pathway of aging potato slice mitochondria and to characterize the potato alternative oxidase by one- and two-dimensional gel electrophoresis. The relative levels of a 36 kilodalton protein parallelmore » the rise in alternative path capacity. A plausible interpretation is that this alternative oxidase protein is synthesized de novo during aging of potato slices.« less

  19. Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling1[C][W

    PubMed Central

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-01-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling. PMID:23085839

  20. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term

    PubMed Central

    Romero, Roberto; Tarca, Adi; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S.; Kalita, Cynthia A.; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-01-01

    Objective The mechanisms responsible for normal and abnormal parturition are poorly understood. Myometrial activation leading to regular uterine contractions is a key component of labor. Dysfunctional labor (arrest of dilatation and/or descent) is a leading indication for cesarean delivery. Compelling evidence suggests that most of these disorders are functional in nature, and not the result of cephalopelvic disproportion. The methodology and the datasets afforded by the post-genomic era provide novel opportunities to understand and target gene functions in these disorders. In 2012, the ENCODE Consortium elucidated the extraordinary abundance and functional complexity of long non-coding RNA genes in the human genome. The purpose of the study was to identify differentially expressed long non-coding RNA genes in human myometrium in women in spontaneous labor at term. Materials and Methods Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n=19) and women in spontaneous labor at term (n=20). RNA was extracted and profiled using an Illumina® microarray platform. The analysis of the protein coding genes from this study has been previously reported. Here, we have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. Results Upon considering more than 18,498 distinct lncRNA genes compiled nonredundantly from public experimental data sources, and interrogating 2,634 that matched Illumina microarray probes, we identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an independent experimental method. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site that lacked evolutionary conservation beyond primates. Conclusions We provide for the first time evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known, as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term. PMID:24168098

  1. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    PubMed

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  2. Cellular miR-2909 RNomics governs the genes that ensure immune checkpoint regulation.

    PubMed

    Kaul, Deepak; Malik, Deepti; Wani, Sameena

    2018-06-20

    Cross-talk between coding RNAs and regulatory non-coding microRNAs, within human genome, has provided compelling evidence for the existence of flexible checkpoint control of T-Cell activation. The present study attempts to demonstrate that the interplay between miR-2909 and its effector KLF4 gene has the inherent capacity to regulate genes coding for CTLA4, CD28, CD40, CD134, PDL1, CD80, CD86, IL-6 and IL-10 within normal human peripheral blood mononuclear cells (PBMCs). Based upon these findings, we propose a pathway that links miR-2909 RNomics with the genes coding for immune checkpoint regulators required for the maintenance of immune homeostasis.

  3. Beta.-glucosidase coding sequences and protein from orpinomyces PC-2

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong; Ximenes, Eduardo A.

    2001-02-06

    Provided is a novel .beta.-glucosidase from Orpinomyces sp. PC2, nucleotide sequences encoding the mature protein and the precursor protein, and methods for recombinant production of this .beta.-glucosidase.

  4. [Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique].

    PubMed

    Zhang, Yu; Yao, Youlin; Jiang, Siyuan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2015-04-01

    To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1), key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique. Human cervical carcinoma cell Hela library was adopted. Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium. Target clones were screened. After isolating the positive clones, the target clones were sequenced and analyzed. Fourteen protein coding genes were identified, 4 of which were found to contain whole coding regions of genes, which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E. coli (CUTA) associated with copper metabolism. There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins. Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.

  5. Salt-soluble proteins from wheat-derived foodstuffs show lower allergenic potency than those from raw flour.

    PubMed

    de Gregorio, Marta; Armentia, Alicia; Díaz-Perales, Araceli; Palacín, Arantxa; Dueñas-Laita, Antonio; Martín, Blanca; Salcedo, Gabriel; Sánchez-Monge, Rosa

    2009-04-22

    Salt-soluble proteins from wheat flour have been described as main allergens associated with both baker's asthma and food allergy. However, most studies have used raw flour as starting material, thus not considering potential changes in allergenic properties induced by the heat treatment and other industrial processing to produce wheat-derived foodstuffs. Salt extracts from different commercial wheat-derived products were obtained and their allergenic properties investigated by IgE-immunodetection, ELISA assays, and skin prick test. The IgE-binding capacity of salt-soluble proteins from commercial breads and cooked pastas was reduced around 50% compared with that of raw flour, the reduction being less dramatic in noncooked pastas and biscuits. Several wheat-derived foodstuffs showed major IgE-binding components of 20 and 35 kDa, identified as avenin-like and globulin proteins, respectively. These proteins, as well as most flour and bread salt-soluble proteins, were hydrolyzed when subjected to simulated gastrointestinal digestion. However, the digested products still exhibited a residual IgE-binding capacity. Therefore, processing of wheat flour to obtain derived foodstuffs decreases the IgE binding-capacity of the major salt-soluble wheat proteins. Moreover, simulated gastric fluid digestion further inactivates some heat-resistant IgE-binding proteins.

  6. [Long non-coding RNAs in the pathophysiology of atherosclerosis].

    PubMed

    Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav

    2018-01-01

    The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words: atherosclerosis - lincRNA - lncRNA - MALAT - MIAT.

  7. 40 CFR 86.1542 - Information required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), fuel system (including number of carburetors, number of carburetor barrels, fuel injection type and fuel tank(s) capacity and location), engine code, gross vehicle weight rating, inertia weight class and...

  8. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly

    PubMed Central

    Andreou, Andreas I.

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile—simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation. PMID:29293531

  9. Electrical generating unit inventory 1976-1986: Illinois, Indiana, Kentucky, Ohio, Pennsylvania and West Virginia

    NASA Astrophysics Data System (ADS)

    Jansen, S. D.

    1981-09-01

    The ORBES region consists of all of Kentucky, most of West Virginia, substantial parts of Illinois, Indiana, and Ohio, and southwestern Pennsylvania. The inventory lists installed electrical generating capacity in commercial service as of December 1, 1976, and scheduled capacity additions and removals between 1977 and 1986 in the six ORBES states (Illinois, Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia). The following information is included for each electrical generating unit: unit ID code, company index, whether point or industrial ownership, plant name, whether inside or outside the ORBES region, FIPS county code, type of unit, size in megawatts, type of megawatt rating, status of unit, data of commercial operation, scheduled retirement date, primary fuel, alternate fuel, type of cooling, source of cooling water, and source of information.

  10. Characterization of mitochondrial genome of sea cucumber Stichopus horrens: a novel gene arrangement in Holothuroidea.

    PubMed

    Fan, SiGang; Hu, ChaoQun; Wen, Jing; Zhang, LvPing

    2011-05-01

    The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA ( Ser(UCN) ), tRNA ( Gln ), tRNA ( Ala ), tRNA ( Val ), tRNA ( Asp )) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=-0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.

  11. Comparative sequence analysis of acid sensitive/resistance proteins in Escherichia coli and Shigella flexneri

    PubMed Central

    Manikandan, Selvaraj; Balaji, Seetharaaman; Kumar, Anil; Kumar, Rita

    2007-01-01

    The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great current interest. A preliminary study was carried out to determine residue pattern conservation among the antiporters of enteric bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the molecular evidence that proved the relationship between E. coli and S. flexneri. Multiple sequence alignment of the gadC coded acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily. PMID:21670792

  12. Onboard Image Processing System for Hyperspectral Sensor

    PubMed Central

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  13. An examination of some safety issues among commercial motorcyclists in Nigeria: a case study.

    PubMed

    Arosanyin, Godwin Tunde; Olowosulu, Adekunle Taiwo; Oyeyemi, Gafar Matanmi

    2013-01-01

    The reduction of road crashes and injuries among motorcyclists in Nigeria requires a system inquiry into some safety issues at pre-crash, crash and post-crash stages to guide action plans. This paper examines safety issues such as age restriction, motorcycle engine capacity, highway code awareness, licence holding, helmet usage, crash involvement, rescue and payment for treatment among commercial motorcyclists. The primary data derived from a structured questionnaire administered to 334 commercial motorcyclists in Samaru, Zaria were analysed using descriptive statistics and logistic regression technique. There was total compliance with age restriction and motorcycle engine capacity. About 41.8% of the operators were not aware of the existence of the highway code. The odds of licence holding increased with highway code awareness, education with above senior secondary as the reference category and earnings. The odds of crash involvement decreased with highway code awareness, earnings and mode of operation. About 84% of the motorcyclists did not use crash helmet, in spite of being aware of the benefit, and 65.4% of motorcycle crashes was found to be with other road users. The promotion of safety among motorcyclists therefore requires strict traffic law enforcement and modification of road design to segregate traffic and protect pedestrians.

  14. Oxidative Stress in Spinocerebellar Ataxia Type 7 Is Associated with Disease Severity.

    PubMed

    Torres-Ramos, Y; Montoya-Estrada, A; Cisneros, B; Tercero-Pérez, K; León-Reyes, G; Leyva-García, N; Hernández-Hernández, Oscar; Magaña, Jonathan J

    2018-06-06

    Spinocerebellar ataxia type 7 is a neurodegenerative inherited disease caused by a CAG expansion in the coding region of the ATXN7 gene, which results in the synthesis of polyglutamine-containing ataxin-7. Expression of mutant ataxin-7 disturbs different cell processes, including transcriptional regulation, protein conformation and clearance, autophagy, and glutamate transport; however, mechanisms underlying neurodegeneration in SCA7 are still unknown. Implication of oxidative stress in the pathogenesis of various neurodegenerative diseases, including polyglutamine disorders, has recently emerged. We perform a cross-sectional study to determine for the first time pheripheral levels of different oxidative stress markers in 29 SCA7 patients and 28 age- and sex-matched healthy subjects. Patients with SCA7 exhibit oxidative damage to lipids (high levels of lipid hydroperoxides and malondialdehyde) and proteins (elevated levels of advanced oxidation protein products and protein carbonyls). Furthermore, SCA7 patients showed enhanced activity of various anti-oxidant enzymes (glutathione reductase, glutathione peroxidase, and paraoxonase) as well as increased total anti-oxidant capacity, which suggest that activation of the antioxidant defense system might occur to counteract oxidant damage. Strikingly, we found positive correlation between some altered oxidative stress markers and disease severity, as determined by different clinical scales, with early-onset patients showing a more severe disturbance of the redox system than adult-onset patients. In summay, our results suggest that oxidative stress might contribute to SCA7 pathogenesis. Furthermore, oxidative stress biomarkers that were found relevant to SCA7 in this study could be useful to follow disease progression and monitor therapeutic intervention.

  15. HippDB: a database of readily targeted helical protein-protein interactions.

    PubMed

    Bergey, Christina M; Watkins, Andrew M; Arora, Paramjit S

    2013-11-01

    HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. arora@nyu.edu.

  16. Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae).

    PubMed

    Liu, Ze-Xuan; Zhang, Yan; Liu, Yu-Ting; Chang, Qiao-Cheng; Su, Xin; Fu, Xue; Yue, Dong-Mei; Gao, Yuan; Wang, Chun-Ren

    2016-04-01

    Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.

  17. Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)

    PubMed Central

    Liu, Ze-Xuan; Zhang, Yan; Liu, Yu-Ting; Chang, Qiao-Cheng; Su, Xin; Fu, Xue; Yue, Dong-Mei; Gao, Yuan; Wang, Chun-Ren

    2016-01-01

    Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans. PMID:27180575

  18. Brain cDNA clone for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTiernan, C.; Adkins, S.; Chatonnet, A.

    1987-10-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less

  19. The inhibitory effect of milk on the absorption of dietary phenolic acids and the change in human plasma antioxidant capacity through a mechanism involving both milk proteins and fats.

    PubMed

    Zhang, Hao; Jiang, Lu; Guo, Huiyuan; Sun, Jing; Liu, Xianting; Liu, Ruihai; Ding, Qingbo; Ren, Fazheng

    2013-07-01

    We assessed the effects of milk proteins and fats, alone and in combination, on the absorption of phenolic acids and the change in plasma antioxidant capacity after jujube juice intake in humans. Twenty volunteers received the following four treatments each in a 4 × 4 Latin square design with a minimum 1 week interval: 200 mL of jujube juice plus 200 mL of (1) water; (2) whole milk; (3) skimmed milk; or (4) milk fat. The results showed that skimmed milk extended the time to reach maximum increase of plasma phenolic acids concentrations and plasma antioxidant capacity. However, neither the skimmed milk nor the milk fat had a significant effect on the absorption of phenolic acids. In contrast, whole milk significantly reduced the absorption of phenolic acids and the increase in plasma antioxidant capacity (p < 0.05). In vitro results suggested the formation of complexes during digestion that involved milk proteins, milk fats, and phenolic acids, which were responsible for the inhibitory effect of whole milk. Milk proteins and fats together, but not alone, are responsible for the inhibitory effect of milk on the absorption of phenolic acids and the change in plasma antioxidant capacity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Expanding and reprogramming the genetic code.

    PubMed

    Chin, Jason W

    2017-10-04

    Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.

  1. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.

    PubMed

    Miller, Andrew D

    2015-02-01

    A sense peptide can be defined as a peptide whose sequence is coded by the nucleotide sequence (read 5' → 3') of the sense (positive) strand of DNA. Conversely, an antisense (complementary) peptide is coded by the corresponding nucleotide sequence (read 5' → 3') of the antisense (negative) strand of DNA. Research has been accumulating steadily to suggest that sense peptides are capable of specific interactions with their corresponding antisense peptides. Unfortunately, although more and more examples of specific sense-antisense peptide interactions are emerging, the very idea of such interactions does not conform to standard biology dogma and so there remains a sizeable challenge to lift this concept from being perceived as a peripheral phenomenon if not worse, into becoming part of the scientific mainstream. Specific interactions have now been exploited for the inhibition of number of widely different protein-protein and protein-receptor interactions in vitro and in vivo. Further, antisense peptides have also been used to induce the production of antibodies targeted to specific receptors or else the production of anti-idiotypic antibodies targeted against auto-antibodies. Such illustrations of utility would seem to suggest that observed sense-antisense peptide interactions are not just the consequence of a sequence of coincidental 'lucky-hits'. Indeed, at the very least, one might conclude that sense-antisense peptide interactions represent a potentially new and different source of leads for drug discovery. But could there be more to come from studies in this area? Studies on the potential mechanism of sense-antisense peptide interactions suggest that interactions may be driven by amino acid residue interactions specified from the genetic code. If so, such specified amino acid residue interactions could form the basis for an even wider amino acid residue interaction code (proteomic code) that links gene sequences to actual protein structure and function, even entire genomes to entire proteomes. The possibility that such a proteomic code should exist is discussed. So too the potential implications for biology and pharmaceutical science are also discussed were such a code to exist.

  2. Genetic coding and gene expression - new Quadruplet genetic coding model

    NASA Astrophysics Data System (ADS)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  3. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout.

    PubMed

    Al-Tobasei, Rafet; Paneru, Bam; Salem, Mohamed

    2016-01-01

    The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1-2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200 nt. Emerging evidence indicates that lncRNAs play critical roles in various cellular processes including regulation of gene expression. LncRNAs show low levels of gene expression and sequence conservation, which make their computational identification in genomes difficult. In this study, more than two billion Illumina sequence reads were mapped to the genome reference using the TopHat and Cufflinks software. Transcripts shorter than 200 nt, with more than 83-100 amino acids ORF, or with significant homologies to the NCBI nr-protein database were removed. In addition, a computational pipeline was used to filter the remaining transcripts based on a protein-coding-score test. Depending on the filtering stringency conditions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and 3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout genome and provides a valuable resource for functional genomics research in salmonids.

  4. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  5. Premature Infants have Lower Gastric Digestion Capacity for Human Milk Proteins than Term Infants.

    PubMed

    Demers-Mathieu, Veronique; Qu, Yunyao; Underwood, Mark A; Borghese, Robyn; Dallas, David Charles

    2018-05-01

    Whether premature infants have lower gastric protein digestive capacity than term infants and the extent to which human milk proteases contribute to overall gastric digestion are unknown and were investigated in this study. Human milk and infant gastric samples were collected from 16 preterm (24-32 wk gestational age) and 6 term (38-40 wk gestational age) mother-infant pairs within a range of 5 to 42 days postnatal age. For each pair, an aliquot of human milk was adjusted to pH 4.5 and incubated for 2 hours at 37 °C to simulate the gastric conditions without pepsin (milkinc). Their gastric protein digestion capacity was measured as proteolysis (free N-terminals) and protease activities. Two-way analysis of variance followed by Tukey post hoc test was applied to compare measurements between preterm and term infants as well as among human milk, milkinc, and gastric samples. Measurements of gastric protein digestion were significantly lower in preterm infants than term infants. Overall milk protease activity did not differ between human milk samples from term- and preterm-delivering mothers. As protease activity did not increase with simulated gastric incubation, milk proteases likely contributed minimally to gastric digestion. Preterm infants have lower gastric protein digestion capacity than term infants, which could impair nutrient acquisition. Human milk proteases contribute minimally to overall gastric digestion. The limited activity of milk proteases suggests that these enzymes cannot compensate for the premature infant's overall lower gastric protein digestion.

  6. Computer model for electrochemical cell performance loss over time in terms of capacity, power, and conductance (CPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.

    2015-09-01

    Available capacity, power, and cell conductance figure centrally into performance characterization of electrochemical cells (such as Li-ion cells) over their service life. For example, capacity loss in Li-ion cells is due to a combination of mechanisms, including loss of free available lithium, loss of active host sites, shifts in the potential-capacity curve, etc. Further distinctions can be made regarding irreversible and reversible capacity loss mechanisms. There are tandem needs for accurate interpretation of capacity at characterization conditions (cycling rate, temperature, etc.) and for robust self-consistent modeling techniques that can be used for diagnostic analysis of cell data as well asmore » forecasting of future performance. Analogous issues exist for aging effects on cell conductance and available power. To address these needs, a modeling capability was developed that provides a systematic analysis of the contributing factors to battery performance loss over aging and to act as a regression/prediction platform for cell performance. The modeling basis is a summation of self-consistent chemical kinetics rate expressions, which as individual expressions each covers a distinct mechanism (e.g., loss of active host sites, lithium loss), but collectively account for the net loss of premier metrics (e.g., capacity) over time for a particular characterization condition. Specifically, sigmoid-based rate expressions are utilized to describe each contribution to performance loss. Through additional mathematical development another tier of expressions is derived and used to perform differential analyses and segregate irreversible versus reversible contributions, as well as to determine concentration profiles over cell aging for affected Li+ ion inventory and fraction of active sites that remain at each time step. Reversible fade components are surmised by comparing fade rates at fast versus slow cycling conditions. The model is easily utilized for predictive calculations so that future capacity performance can be estimated. The invention covers mathematical and theoretical frameworks, and demonstrates application to various Li-ion cells covering test periods that vary in duration, and shows model predictions well past the end of test periods. Version 2.0 Enhancements: the code now covers path-dependent aging scenarios, wherein the framework allows for arbitrarily-chosen aging conditions over a timeline to accommodate prediction of battery aging over a multiplicity of changing conditions. The code framework also allows for cell conductance and power loss evaluations over cell aging, analysis of series strings that contain a thermal anomaly (hot spot), and evaluation of battery thermal management parameters that impact battery lifetimes. Lastly, a comprehensive GUI now resides in the Ver. 2.0 code.« less

  7. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    PubMed

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.

  8. Genetics of PCOS: A systematic bioinformatics approach to unveil the proteins responsible for PCOS.

    PubMed

    Panda, Pritam Kumar; Rane, Riya; Ravichandran, Rahul; Singh, Shrinkhla; Panchal, Hetalkumar

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a hormonal imbalance in women, which causes problems during menstrual cycle and in pregnancy that sometimes results in fatality. Though the genetics of PCOS is not fully understood, early diagnosis and treatment can prevent long-term effects. In this study, we have studied the proteins involved in PCOS and the structural aspects of the proteins that are taken into consideration using computational tools. The proteins involved are modeled using Modeller 9v14 and Ab-initio programs. All the 43 proteins responsible for PCOS were subjected to phylogenetic analysis to identify the relatedness of the proteins. Further, microarray data analysis of PCOS datasets was analyzed that was downloaded from GEO datasets to find the significant protein-coding genes responsible for PCOS, which is an addition to the reported protein-coding genes. Various statistical analyses were done using R programming to get an insight into the structural aspects of PCOS that can be used as drug targets to treat PCOS and other related reproductive diseases.

  9. Patch Finder Plus (PFplus): a web server for extracting and displaying positive electrostatic patches on protein surfaces.

    PubMed

    Shazman, Shula; Celniker, Gershon; Haber, Omer; Glaser, Fabian; Mandel-Gutfreund, Yael

    2007-07-01

    Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding.

  10. Patch Finder Plus (PFplus): A web server for extracting and displaying positive electrostatic patches on protein surfaces

    PubMed Central

    Shazman, Shula; Celniker, Gershon; Haber, Omer; Glaser, Fabian; Mandel-Gutfreund, Yael

    2007-01-01

    Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding. PMID:17537808

  11. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  12. Construction of a Functional S-Layer Fusion Protein Comprising an Immunoglobulin G-Binding Domain for Development of Specific Adsorbents for Extracorporeal Blood Purification

    PubMed Central

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit

    2004-01-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773

  13. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com; School of Life Sciences, Södertörn Högskola, Huddinge 141-89; Djupedal, Ingela

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its rolemore » in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.« less

  14. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    PubMed

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  15. Impact of the Maillard reaction on the antioxidant capacity of bovine lactoferrin.

    PubMed

    Joubran, Yousef; Mackie, Alan; Lesmes, Uri

    2013-12-15

    Studies raise the notion that the Maillard reaction (MR) may be harnessed to modify the antioxidant capacity of alimentary proteins. However, little is known about the impact of MR on bioactive proteins. Glucose and fructose were used as model moieties reacting with lactoferrin (LF). UV absorbance and SDS-PAGE analyses were used to monitor MR progression during 36 h of mild thermal processing (60 °C, 79% RH). FTIR and CD did not reveal changes in LF structure; However, dynamic light scattering showed MR increased mean particle sizes and sample turbidity at 3

  16. Community and District Empowerment for Scale-up (CODES): a complex district-level management intervention to improve child survival in Uganda: study protocol for a randomized controlled trial.

    PubMed

    Waiswa, Peter; O'Connell, Thomas; Bagenda, Danstan; Mullachery, Pricila; Mpanga, Flavia; Henriksson, Dorcus Kiwanuka; Katahoire, Anne Ruhweza; Ssegujja, Eric; Mbonye, Anthony K; Peterson, Stefan Swartling

    2016-03-11

    Innovative and sustainable strategies to strengthen districts and other sub-national health systems and management are urgently required to reduce child mortality. Although highly effective evidence-based and affordable child survival interventions are well-known, at the district level, lack of data, motivation, analytic and planning capacity often impedes prioritization and management weaknesses impede implementation. The Community and District Empowerment for Scale-up (CODES) project is a complex management intervention designed to test whether districts when empowered with data and management tools can prioritize and implement evidence-based child survival interventions equitably. The CODES strategy combines management, diagnostic, and evaluation tools to identify and analyze the causes of bottlenecks to implementation, build capacity of district management teams to implement context-specific solutions, and to foster community monitoring and social accountability to increase demand for services. CODES combines UNICEF tools designed to systematize priority setting, allocation of resources and problem solving with Community dialogues based on Citizen Report Cards and U-Reports used to engage and empower communities in monitoring health service provision and to demand for quality services. Implementation and all data collection will be by the districts teams or local Community-based Organizations who will be supported by two local implementing partners. The study will be evaluated as a cluster randomized trial with eight intervention and eight comparison districts over a period of 3 years. Evaluation will focus on differences in uptake of child survival interventions and will follow an intention-to-treat analysis. We will also document and analyze experiences in implementation including changes in management practices. By increasing the District Health Management Teams' capacity to prioritize and implement context-specific solutions, and empowering communities to become active partners in service delivery, coverage of child survival interventions will increase. Lessons learned on strengthening district-level managerial capacities and mechanisms for community monitoring may have implications, not only in Uganda but also in other similar settings, especially with regard to accelerating effective coverage of key child survival interventions using locally available resources. ISRCTN15705788 , Date of registration; 24 July 2015.

  17. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2016-01-01

    Design Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellation Abstract Communication systems are described that use geometrically PSK shaped constellations that have increased capacity compared to conventional PSK constellations operating within a similar SNR band. The geometrically shaped PSK constellation is optimized based upon parallel decoding capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  18. On the possible origin and evolution of the genetic code

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1974-01-01

    The genetic code is examined for indications of possible preceding codes that existed during early evolution. Eight of the 20 amino acids are coded by 'quartets' of codons with fourfold degeneracy, and 16 such quartets can exist, so that an earlier code could have provided for 15 or 16 amino acids, rather than 20. If twofold degeneracy is postulated for the first position of the codon, there could have been ten amino acids in the code. It is speculated that these may have been phenylalanine, valine, proline, alanine, histidine, glutamine, glutanic acid, aspartic acid, cysteine and glycine. There is a notable deficiency of arginine in proteins, despite the fact that it has six codons. Simultaneously, there is more lysine in proteins than would be expected from its two codons, if the four bases in mRNA are equiprobable and are arranged randomly. It is speculated that arginine is an 'intruder' into the genetic code, and that it may have displayed another amino acid such as ornithine, or may even have displayed lysine from some of its previous codon assignments. As a result, natural selection has favored lysine against the fact that it has only two codons.

  19. Problem-Based Test: An "In Vitro" Experiment to Analyze the Genetic Code

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: genetic code, translation, synthetic polynucleotide, leucine, serine, filter precipitation, radioactivity measurement, template, mRNA, tRNA, rRNA, aminoacyl-tRNA synthesis, ribosomes, degeneration of the code, wobble, initiation, and elongation of protein synthesis, initiation codon.…

  20. LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature.

    PubMed

    Pian, Cong; Zhang, Guangle; Chen, Zhi; Chen, Yuanyuan; Zhang, Jin; Yang, Tao; Zhang, Liangyun

    2016-01-01

    As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.

  1. Application of 2D graphic representation of protein sequence based on Huffman tree method.

    PubMed

    Qi, Zhao-Hui; Feng, Jun; Qi, Xiao-Qin; Li, Ling

    2012-05-01

    Based on Huffman tree method, we propose a new 2D graphic representation of protein sequence. This representation can completely avoid loss of information in the transfer of data from a protein sequence to its graphic representation. The method consists of two parts. One is about the 0-1 codes of 20 amino acids by Huffman tree with amino acid frequency. The amino acid frequency is defined as the statistical number of an amino acid in the analyzed protein sequences. The other is about the 2D graphic representation of protein sequence based on the 0-1 codes. Then the applications of the method on ten ND5 genes and seven Escherichia coli strains are presented in detail. The results show that the proposed model may provide us with some new sights to understand the evolution patterns determined from protein sequences and complete genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Complete mitochondrial genome of the agarophyte red alga Gelidium vagum (Gelidiales).

    PubMed

    Yang, Eun Chan; Kim, Kyeong Mi; Boo, Ga Hun; Lee, Jung-Hyun; Boo, Sung Min; Yoon, Hwan Su

    2014-08-01

    We describe the first complete mitochondrial genome of Gelidium vagum (Gelidiales) (24,901 bp, 30.4% GC content), an agar-producing red alga. The circular mitochondrial genome contains 43 genes, including 23 protein-coding, 18 tRNA and 2 rRNA genes. All the protein-coding genes have a typical ATG start codon. No introns were found. Two genes, secY and rps12, were overlapped by 41 bp.

  3. The Colossus of ubiquitylation –decrypting a cellular code

    PubMed Central

    Williamson, Adam; Werner, Achim; Rape, Michael

    2013-01-01

    Ubiquitylation is an essential posttranslational modification that can regulate the stability, activity, or localization of thousands of proteins. The reversible attachment of ubiquitin as well as interpretation of the ubiquitin signal depend on dynamic protein networks that are challenging to analyze. In this perspective, we discuss tools of the trade that have recently been developed to dissect mechanisms of ubiquitin-dependent signaling, thereby revealing the critical features of an important cellular code. PMID:23438855

  4. The chemical basis for the origin of the genetic code and the process of protein synthesis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The principles upon which the process of protein synthesis and the genetic code were established are elucidated. Extensive work on nuclear magnetic resonance studies of both monomermonomer and monoamino acid polynucleotide interactions is included. A new method of general utility for studying any amino acid interacting with any polynucleotide was developed. This system involves the use of methyl esters of amino acids interacting with polynucleotides.

  5. The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca).

    PubMed

    Peng, Rui; Zeng, Bo; Meng, Xiuxiang; Yue, Bisong; Zhang, Zhihe; Zou, Fangdong

    2007-08-01

    The complete mitochondrial genome sequence of the giant panda, Ailuropoda melanoleuca, was determined by the long and accurate polymerase chain reaction (LA-PCR) with conserved primers and primer walking sequence methods. The complete mitochondrial DNA is 16,805 nucleotides in length and contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one control region. The total length of the 13 protein-coding genes is longer than the American black bear, brown bear and polar bear by 3 amino acids at the end of ND5 gene. The codon usage also followed the typical vertebrate pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 5 (ND5) gene. The molecular phylogenetic analysis was performed on the sequences of 12 concatenated heavy-strand encoded protein-coding genes, and suggested that the giant panda is most closely related to bears.

  6. RBind: computational network method to predict RNA binding sites.

    PubMed

    Wang, Kaili; Jian, Yiren; Wang, Huiwen; Zeng, Chen; Zhao, Yunjie

    2018-04-26

    Non-coding RNA molecules play essential roles by interacting with other molecules to perform various biological functions. However, it is difficult to determine RNA structures due to their flexibility. At present, the number of experimentally solved RNA-ligand and RNA-protein structures is still insufficient. Therefore, binding sites prediction of non-coding RNA is required to understand their functions. Current RNA binding site prediction algorithms produce many false positive nucleotides that are distance away from the binding sites. Here, we present a network approach, RBind, to predict the RNA binding sites. We benchmarked RBind in RNA-ligand and RNA-protein datasets. The average accuracy of 0.82 in RNA-ligand and 0.63 in RNA-protein testing showed that this network strategy has a reliable accuracy for binding sites prediction. The codes and datasets are available at https://zhaolab.com.cn/RBind. yjzhaowh@mail.ccnu.edu.cn. Supplementary data are available at Bioinformatics online.

  7. Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment.

    PubMed

    Zhang, Qingbin; Chen, Li; Cui, Shiman; Li, Yan; Zhao, Qi; Cao, Wei; Lai, Shixiang; Yin, Sanjun; Zuo, Zhixiang; Ren, Jian

    2017-10-25

    Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.

  8. Decoding the non-coding RNAs in Alzheimer's disease.

    PubMed

    Schonrock, Nicole; Götz, Jürgen

    2012-11-01

    Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.

  9. On the Origin of Protein Superfamilies and Superfolds

    NASA Astrophysics Data System (ADS)

    Magner, Abram; Szpankowski, Wojciech; Kihara, Daisuke

    2015-02-01

    Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-structure relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute an information theoretic channel and computed the most efficient distribution of sequences that code all protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of folds. The current study provides a new information theoretic framework for proteins that could be widely applied for understanding protein sequences, structures, functions, and interactions.

  10. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    PubMed

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related antiviral immune responses. However, no direct experimental data confirm such a model. In this study of vaccinia E3 protein, we found that the biological functions of the E3 protein are not necessarily linked to its biochemical capacity of dsRNA binding. Thus, our data strongly point to a new concept of virus modulation of cellular antiviral responses triggered by dsRNA PAMPs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Physicochemical and functional properties of protein concentrate from by-product of coconut processing.

    PubMed

    Rodsamran, Pattrathip; Sothornvit, Rungsinee

    2018-02-15

    Coconut cake, a by-product from milk and oil extractions, contains a high amount of protein. Protein extraction from coconut milk cake and coconut oil cake was investigated. The supernatant and precipitate protein powders from both coconut milk and oil cakes were compared based on their physicochemical and functional properties. Glutelin was the predominant protein fraction in both coconut cakes. Protein powders from milk cake presented higher water and oil absorption capacities than those from oil cake. Both protein powders from oil cake exhibited better foaming capacity and a better emulsifying activity index than those from milk cake. Coconut proteins were mostly solubilized in strong acidic and alkaline solutions. Minimum solubility was observed at pH 4, confirming the isoelectric point of coconut protein. Therefore, the coconut residues after extractions might be a potential alternative renewable plant protein source to use asa food ingredient to enhance food nutrition and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Mitochondrial Cytochrome Oxidase Subunit I Gene Occurs on a Minichromosome with Extensive Heteroplasmy in Two Species of Chewing Lice, Geomydoecus aurei and Thomomydoecus minor

    PubMed Central

    Pietan, Lucas L.; Spradling, Theresa A.

    2016-01-01

    In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589

  13. Analysis and recognition of 5′ UTR intron splice sites in human pre-mRNA

    PubMed Central

    Eden, E.; Brunak, S.

    2004-01-01

    Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5′ untranslated regions (UTRs), and investigate correlations between this class of splice sites and other features found in the adjacent exons and introns. By restricting the training of neural network algorithms to ‘pure’ UTRs (not extending partially into protein coding regions), we for the first time investigate the predictive power of the splicing signal proper, in contrast to conventional splice site prediction, which typically relies on the change in sequence at the transition from protein coding to non-coding. By doing so, the algorithms were able to pick up subtler splicing signals that were otherwise masked by ‘coding’ noise, thus enhancing significantly the prediction of 5′ UTR splice sites. For example, the non-coding splice site predicting networks pick up compositional and positional bias in the 3′ ends of non-coding exons and 5′ non-coding intron ends, where cytosine and guanine are over-represented. This compositional bias at the true UTR donor sites is also visible in the synaptic weights of the neural networks trained to identify UTR donor sites. Conventional splice site prediction methods perform poorly in UTRs because the reading frame pattern is absent. The NetUTR method presented here performs 2–3-fold better compared with NetGene2 and GenScan in 5′ UTRs. We also tested the 5′ UTR trained method on protein coding regions, and discovered, surprisingly, that it works quite well (although it cannot compete with NetGene2). This indicates that the local splicing pattern in UTRs and coding regions is largely the same. The NetUTR method is made publicly available at www.cbs.dtu.dk/services/NetUTR. PMID:14960723

  14. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages

    PubMed Central

    Cambridge, Joshua M.; Blinkova, Alexandra L.; Salvador Rocha, Erick I.; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M.; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O.

    2018-01-01

    Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12–14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism. PMID:29293521

  15. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages.

    PubMed

    Cambridge, Joshua M; Blinkova, Alexandra L; Salvador Rocha, Erick I; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O; Walker, James R

    2018-01-01

    Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12-14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism.

  16. Nutritional aspects of second generation soy foods.

    PubMed

    Alezandro, Marcela Roquim; Granato, Daniel; Lajolo, Franco Maria; Genovese, Maria Inés

    2011-05-25

    Samples of 15 second generation soy-based products (n = 3), commercially available, were analyzed for their protein and isoflavone contents and in vitro antioxidant activity, by means of the Folin-Ciocalteu reducing ability, DPPH radical scavenging capacity, and oxygen radical absorbance capacity. Isoflavone identification and quantification were performed by high-performance liquid chromatography. Products containing soy and/or soy-based ingredients represent important sources of protein in addition to the low fat amounts. However, a large variation in isoflavone content and in vitro antioxidant capacity was observed. The isoflavone content varied from 2.4 to 18.1 mg/100 g (FW), and soy kibe and soy sausage presented the highest amounts. Chocolate had the highest antioxidant capacity, but this fact was probably associated with the addition of cocoa liquor, a well-known source of polyphenolics. This study showed that the soy-based foods do not present a significant content of isoflavones when compared with the grain, and their in vitro antioxidant capacity is not related with these compounds but rather to the presence of other phenolics and synthetic antioxidants, such as sodium erythorbate. However, they may represent alternative sources and provide soy protein, isoflavones, and vegetable fat for those who are not ready to eat traditional soy foods.

  17. Non-coding RNAs in lung cancer

    PubMed Central

    Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio

    2014-01-01

    The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996

  18. Gene discovery in Eimeria tenella by immunoscreening cDNA expression libraries of sporozoites and schizonts with chicken intestinal antibodies.

    PubMed

    Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie

    2003-04-02

    Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.

  19. Unified method of knowledge representation in the evolutionary artificial intelligence systems

    NASA Astrophysics Data System (ADS)

    Bykov, Nickolay M.; Bykova, Katherina N.

    2003-03-01

    The evolution of artificial intelligence systems called by complicating of their operation topics and science perfecting has resulted in a diversification of the methods both the algorithms of knowledge representation and usage in these systems. Often by this reason it is very difficult to design the effective methods of knowledge discovering and operation for such systems. In the given activity the authors offer a method of unitized representation of the systems knowledge about objects of an external world by rank transformation of their descriptions, made in the different features spaces: deterministic, probabilistic, fuzzy and other. The proof of a sufficiency of the information about the rank configuration of the object states in the features space for decision making is presented. It is shown that the geometrical and combinatorial model of the rank configurations set introduce their by group of some system of incidence, that allows to store the information on them in a convolute kind. The method of the rank configuration description by the DRP - code (distance rank preserving code) is offered. The problems of its completeness, information capacity, noise immunity and privacy are reviewed. It is shown, that the capacity of a transmission channel for such submission of the information is more than unit, as the code words contain the information both about the object states, and about the distance ranks between them. The effective algorithm of the data clustering for the object states identification, founded on the given code usage, is described. The knowledge representation with the help of the rank configurations allows to unitize and to simplify algorithms of the decision making by fulfillment of logic operations above the DRP - code words. Examples of the proposed clustering techniques operation on the given samples set, the rank configuration of resulted clusters and its DRP-codes are presented.

  20. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  1. AACCI Approved Methods Technical Committee Report: Collaborative study on a method for determining the water holding capacity of pulse flours and their protein materials (AACCI Method 56-37.01)

    USDA-ARS?s Scientific Manuscript database

    A method for determining water holding capacity (WHC) of pulse flours and protein materials has been developed and subjected to an interlaboratory study. Eleven participants analyzed twelve blind duplicates of six different samples in a collaborative study to evaluate the repeatability and reproduci...

  2. Operational evaluation of a DGPS / SATCOM VTS : final report

    DOT National Transportation Integrated Search

    1996-09-01

    Satellite communications (SATCOM) using code division multiple access(CDMA) modulation and burst messaging, provided a new dimension to communication channel capacity, operating dependability, and area of coverage. This technology, together with diff...

  3. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Whey protein concentrate. 184.1979c Section 184... the following specifications: (1) The analysis of whey protein concentrate, on a dry product basis.../federal_register/code_of_federal_regulations/ibr_locations.html. (3) The whey protein concentrate shall be...

  4. Glycation of whey protein with dextrans of different molar mass: Effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy.

    PubMed

    Xu, Lei; Gong, Yuansheng; Gern, James E; Ikeda, Shinya; Lucey, John A

    2018-05-16

    A growing concern around the world is the number of people who are suffering from food protein allergies. One potential approach to decrease protein allergenicity is to block IgE-binding epitopes of the protein allergen by attachment of polysaccharides via the Maillard reaction (i.e., glycation). Protein glycation has been extensively studied to modify various functional properties. We wanted to examine whether glycates could reduce IgE binding in patients with cow milk protein allergy and to explore how the size (molar mass; M W ) of the polysaccharide affects this IgE-binding capacity. Glycation was performed using the initial step of the Maillard reaction performed in aqueous solutions. The specific goal of this study was to reduce the IgE-binding capacity of whey protein isolate (WPI) through glycation with dextran (DX). Blood sera were obtained from 8 patients who had been diagnosed with cow milk protein allergy, and a composite sera sample was used for IgE-binding analysis by the ImmunoCap (Phadia, Uppsala, Sweden) method. The WPI was glycated with DX of M W ranging from 1 to 2,000 kDa, and the M W of purified glycates was determined using size-exclusion chromatography coupled with multiangle laser light scattering. The WPI to DX molar ratios in the glycates made from DX that had M W values of 1, 3.5, 10 (G10), 150, 500, and 2,000 kDa were 1:4, 1:3, 1:2, 1:1.5, 1:1, and 1:1, respectively. With the increase in the M W of DX, there was an increase in the M W values of the corresponding glycates but a decrease in the number of bound DX. The WPI-DX glycates had lower whey protein IgE-binding capacity than native WPI, with the lowest IgE-binding capacity obtained in the G10 glycate. The DX binding ratios and morphology results from atomic force microscopy images suggested that glycation of WPI with small-M W DX resulted in extensive protein surface coverage, probably due to the attachment of up to 4 DX molecules per whey protein. The lower IgE binding of the G10 glycate was likely due to greater steric hindrance (or a physical barrier) at the surface of the protein. In summary, our results demonstrate that glycating WPI with DX via Maillard reaction can potentially be used to decrease the allergenicity of whey protein. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde.

    PubMed

    Wu, Wei; Hua, Yufei; Lin, Qinlu

    2014-03-01

    Malondialdehyde (MDA) was selected as a representative of lipid peroxidation products to investigate the effects of oxidative modification on thermal aggregation and gel properties of soy protein by lipid peroxidation products. Incubation of soy protein with increasing concentration of MDA resulted in gradual decrease of particle size and content of thermal aggregates during heat denaturation. Oxidative modification by MDA resulted in a decrease in water holding capacity, gel hardness, and gel strength of soy protein gel. An increase in coarseness and interstice of MDA modified protein gel network was accompanied by uneven distribution of interstice as MDA concentration increased. The results showed that degree of thermal aggregation of MDA-modified soy protein gradually decreased as MDA concentration increased, which contributed to a decrease in water holding capacity, gel hardness, and gel strength of MDA-modified soy protein gel.

  6. Biochemical and physicochemical analysis of fish protein isolate recovered from red snapper (Lutjanus sp.) by-product using isoelectric solubilization/precipitation method

    NASA Astrophysics Data System (ADS)

    Pramono, H.; Pujiastuti, D. Y.; Sahidu, A. M.

    2018-04-01

    The effect of acid- and alkali-process on biochemical and physicochemical characteristics of fish protein isolate from red snapper (Lutjanus sp) by-product was evaluated. Protein recovered by alkali process (16.79%) was higher compared to acid process (13.75%). Reduction of lipid content and total volatile basic nitrogen (TVB-N) exhibited in both treatments indicated both process improved fish protein isolate recovered from red snapper by-product. In addition, the increasing of water holding capacity and oil binding capacity were observed. However, high peroxide value of fish protein isolate was showed in both treatment. This finding indicated that acid and alkali process can be used as a useful method to recover proteins from red snapper by-product. Alkali process gave a protein isolate with better overall quality compared to acid process.

  7. Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene.

    PubMed

    Zámbó, Boglárka; Várady, György; Padányi, Rita; Szabó, Edit; Németh, Adrienn; Langó, Tamás; Enyedi, Ágnes; Sarkadi, Balázs

    2017-07-01

    Plasma membrane Ca 2+ -ATPases are key calcium exporter proteins in most tissues, and PMCA4b is the main calcium transporter in the human red blood cells (RBCs). In order to assess the expression level of PMCA4b, we have developed a flow cytometry and specific antibody binding method to quantitatively detect this protein in the erythrocyte membrane. Interestingly, we found several healthy volunteers showing significantly reduced expression of RBC-PMCA4b. Western blot analysis of isolated RBC membranes confirmed this observation, and indicated that there are no compensatory alterations in other PMCA isoforms. In addition, reduced PMCA4b levels correlated with a lower calcium extrusion capacity in these erythrocytes. When exploring the potential genetic background of the reduced PMCA4b levels, we found no missense mutations in the ATP2B4 coding regions, while a formerly unrecognized minor haplotype in the predicted second promoter region closely correlated with lower erythrocyte PMCA4b protein levels. In recent GWA studies, SNPs in this ATP2B4 haplotype have been linked to reduced mean corpuscular hemoglobin concentrations (MCHC), and to protection against malaria infection. Our data suggest that an altered regulation of gene expression is responsible for the reduced RBC-PMCA4b levels that is probably linked to the development of human disease-related phenotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Deciphering the Ubiquitin Code.

    PubMed

    Dittmar, Gunnar; Selbach, Matthias

    2017-03-02

    In this issue of Molecular Cell, Zhang et al. (2017) systematically identify proteins interacting with all possible di-ubiquitin linkages, thus providing a catalog of readers of the ubiquitin code. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Origins of Allostery and Evolvability in Proteins: A Case Study.

    PubMed

    Raman, Arjun S; White, K Ian; Ranganathan, Rama

    2016-07-14

    Proteins display the capacity for adaptation to new functions, a property critical for evolvability. But what structural principles underlie the capacity for adaptation? Here, we show that adaptation to a physiologically distinct class of ligand specificity in a PSD95, DLG1, ZO-1 (PDZ) domain preferentially occurs through class-bridging intermediate mutations located distant from the ligand-binding site. These mutations provide a functional link between ligand classes and demonstrate the principle of "conditional neutrality" in mediating evolutionary adaptation. Structures show that class-bridging mutations work allosterically to open up conformational plasticity at the active site, permitting novel functions while retaining existing function. More generally, the class-bridging phenotype arises from mutations in an evolutionarily conserved network of coevolving amino acids in the PDZ family (the sector) that connects the active site to distant surface sites. These findings introduce the concept that allostery in proteins could have its origins not in protein function but in the capacity to adapt. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.).

    PubMed

    Wang, Maojun; Yuan, Daojun; Tu, Lili; Gao, Wenhui; He, Yonghui; Hu, Haiyan; Wang, Pengcheng; Liu, Nian; Lindsey, Keith; Zhang, Xianlong

    2015-09-01

    Long noncoding RNAs (lncRNAs) are transcripts of at least 200 bp in length, possess no apparent coding capacity and are involved in various biological regulatory processes. Until now, no systematic identification of lncRNAs has been reported in cotton (Gossypium spp.). Here, we describe the identification of 30 550 long intergenic noncoding RNA (lincRNA) loci (50 566 transcripts) and 4718 long noncoding natural antisense transcript (lncNAT) loci (5826 transcripts). LncRNAs are rich in repetitive sequences and preferentially expressed in a tissue-specific manner. The detection of abundant genome-specific and/or lineage-specific lncRNAs indicated their weak evolutionary conservation. Approximately 76% of homoeologous lncRNAs exhibit biased expression patterns towards the At or Dt subgenomes. Compared with protein-coding genes, lncRNAs showed overall higher methylation levels and their expression was less affected by gene body methylation. Expression validation in different cotton accessions and coexpression network construction helped to identify several functional lncRNA candidates involved in cotton fibre initiation and elongation. Analysis of integrated expression from the subgenomes of lncRNAs generating miR397 and its targets as a result of genome polyploidization indicated their pivotal functions in regulating lignin metabolism in domesticated tetraploid cotton fibres. This study provides the first comprehensive identification of lncRNAs in Gossypium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies

    PubMed Central

    Romero-Gutierrez, Teresa; Batista, Cesar V. F.

    2017-01-01

    This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology. PMID:29231872

  12. In the Beginning was a Mutualism - On the Origin of Translation

    NASA Astrophysics Data System (ADS)

    Vitas, Marko; Dobovišek, Andrej

    2018-04-01

    The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.

  13. A lncRNA Perspective into (Re)Building the Heart.

    PubMed

    Frank, Stefan; Aguirre, Aitor; Hescheler, Juergen; Kurian, Leo

    2016-01-01

    Our conception of the human genome, long focused on the 2% that codes for proteins, has profoundly changed since its first draft assembly in 2001. Since then, an unanticipatedly expansive functionality and convolution has been attributed to the majority of the genome that is transcribed in a cell-type/context-specific manner into transcripts with no apparent protein coding ability. While the majority of these transcripts, currently annotated as long non-coding RNAs (lncRNAs), are functionally uncharacterized, their prominent role in embryonic development and tissue homeostasis, especially in the context of the heart, is emerging. In this review, we summarize and discuss the latest advances in understanding the relevance of lncRNAs in (re)building the heart.

  14. A class of cellular automata modeling winnerless competition

    NASA Astrophysics Data System (ADS)

    Afraimovich, V.; Ordaz, F. C.; Urías, J.

    2002-06-01

    Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.

  15. Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europaea.

    PubMed

    McTavish, H; LaQuier, F; Arciero, D; Logan, M; Mundfrom, G; Fuchs, J A; Hooper, A B

    1993-04-01

    The genome of Nitrosomonas europaea contains at least three copies each of the genes coding for hydroxylamine oxidoreductase (HAO) and cytochrome c554. A copy of an HAO gene is always located within 2.7 kb of a copy of a cytochrome c554 gene. Cytochrome P-460, a protein that shares very unusual spectral features with HAO, was found to be encoded by a gene separate from the HAO genes.

  16. Exogean: a framework for annotating protein-coding genes in eukaryotic genomic DNA

    PubMed Central

    Djebali, Sarah; Delaplace, Franck; Crollius, Hugues Roest

    2006-01-01

    Background Accurate and automatic gene identification in eukaryotic genomic DNA is more than ever of crucial importance to efficiently exploit the large volume of assembled genome sequences available to the community. Automatic methods have always been considered less reliable than human expertise. This is illustrated in the EGASP project, where reference annotations against which all automatic methods are measured are generated by human annotators and experimentally verified. We hypothesized that replicating the accuracy of human annotators in an automatic method could be achieved by formalizing the rules and decisions that they use, in a mathematical formalism. Results We have developed Exogean, a flexible framework based on directed acyclic colored multigraphs (DACMs) that can represent biological objects (for example, mRNA, ESTs, protein alignments, exons) and relationships between them. Graphs are analyzed to process the information according to rules that replicate those used by human annotators. Simple individual starting objects given as input to Exogean are thus combined and synthesized into complex objects such as protein coding transcripts. Conclusion We show here, in the context of the EGASP project, that Exogean is currently the method that best reproduces protein coding gene annotations from human experts, in terms of identifying at least one exact coding sequence per gene. We discuss current limitations of the method and several avenues for improvement. PMID:16925841

  17. Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field.

    PubMed

    He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A

    2009-10-01

    We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.

  18. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability.

    PubMed

    Reggiani, Claudio; Coppens, Sandra; Sekhara, Tayeb; Dimov, Ivan; Pichon, Bruno; Lufin, Nicolas; Addor, Marie-Claude; Belligni, Elga Fabia; Digilio, Maria Cristina; Faletra, Flavio; Ferrero, Giovanni Battista; Gerard, Marion; Isidor, Bertrand; Joss, Shelagh; Niel-Bütschi, Florence; Perrone, Maria Dolores; Petit, Florence; Renieri, Alessandra; Romana, Serge; Topa, Alexandra; Vermeesch, Joris Robert; Lenaerts, Tom; Casimir, Georges; Abramowicz, Marc; Bontempi, Gianluca; Vilain, Catheline; Deconinck, Nicolas; Smits, Guillaume

    2017-07-19

    Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.

  19. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    PubMed

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  20. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes.

    PubMed

    McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G

    2016-05-05

    Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.

Top