Science.gov

Sample records for protein compatible polymer

  1. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  2. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.

    PubMed

    Smith, Megan M; Silva, Jeff A K; Munakata-Marr, Junko; McCray, John E

    2008-12-15

    Polymer floods provide a promising method to more effectively deliver conventional groundwater treatment agents to organic contaminants distributed within heterogeneous aquifer systems. Combinations of nontoxic polymers (xanthan and hydrolyzed polyacrylamide) and common chemical oxidants (potassium permanganate and sodium persulfate) were investigated to determine the suitability of these mixtures for polymer-enhanced in situ chemical oxidation applications. Oxidant demand and solution viscosity were utilized as initial measures of chemical compatibility. After 72 h of reaction with both test oxidants, solution viscosities in mixtures containing hydrolyzed polyacrylamide were decreased by more than 90% (final viscosities approximately 2 cP), similar to the 95% viscosity loss (final viscosities approximately 1 cP, near that of water) observed in xanthan/persulfate experiments. In contrast, xanthan solutions exposed to potassium permanganate preserved 60-95% of initial viscosity after 72 h. Permanganate depletion in xanthan-containing experiments ranged from 2% to 24% over the same test period. Although oxidant consumption in xanthan/permanganate solutions appeared to be correlated with increasing xanthan concentrations, solutions of up to 2000 mg/L xanthan did not inhibit permanganate from oxidizing a dissolved-phase test contaminant (tetrachloroethene, PCE) in xanthan solution. These advantageous characteristics (high viscosity retention, moderate oxidant demand, and lack of competitive effects on PCE oxidation rate) render xanthan/permanganate the most compatible polymer/oxidant combination of those tested for remediation by polymer-enhanced chemical oxidation. PMID:19174907

  3. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.

    PubMed

    Smith, Megan M; Silva, Jeff A K; Munakata-Marr, Junko; McCray, John E

    2008-12-15

    Polymer floods provide a promising method to more effectively deliver conventional groundwater treatment agents to organic contaminants distributed within heterogeneous aquifer systems. Combinations of nontoxic polymers (xanthan and hydrolyzed polyacrylamide) and common chemical oxidants (potassium permanganate and sodium persulfate) were investigated to determine the suitability of these mixtures for polymer-enhanced in situ chemical oxidation applications. Oxidant demand and solution viscosity were utilized as initial measures of chemical compatibility. After 72 h of reaction with both test oxidants, solution viscosities in mixtures containing hydrolyzed polyacrylamide were decreased by more than 90% (final viscosities approximately 2 cP), similar to the 95% viscosity loss (final viscosities approximately 1 cP, near that of water) observed in xanthan/persulfate experiments. In contrast, xanthan solutions exposed to potassium permanganate preserved 60-95% of initial viscosity after 72 h. Permanganate depletion in xanthan-containing experiments ranged from 2% to 24% over the same test period. Although oxidant consumption in xanthan/permanganate solutions appeared to be correlated with increasing xanthan concentrations, solutions of up to 2000 mg/L xanthan did not inhibit permanganate from oxidizing a dissolved-phase test contaminant (tetrachloroethene, PCE) in xanthan solution. These advantageous characteristics (high viscosity retention, moderate oxidant demand, and lack of competitive effects on PCE oxidation rate) render xanthan/permanganate the most compatible polymer/oxidant combination of those tested for remediation by polymer-enhanced chemical oxidation.

  4. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility.

    PubMed

    Liu, Pingsheng; Chen, Qiang; Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong; Shen, Jian

    2013-10-01

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. PMID:23910289

  5. Effects of compatability on the conductivity of conducting polymer blends

    SciTech Connect

    Liu, Mingjun; Nowak, C.K.; Gregory, R.V.

    1995-12-01

    The electrical conductivity of chemically synthesized polyaniline (PANI) blends with nylon 6,6 and polystyrene was measured. The conductivities of the top and bottom of the films cast from blend solutions were found to differ. This effect was most pronounced at low percent loadings of PANI. The maximum difference in conductivity between two sides of the same film was found to be five orders of magnitude in the case of a 5% PANI blend with polystyrene. In this case the conductive polymer appears to be rich on one side of the film rather than more homogeneously dispersed on both sides. SEM provides evidence for the formation of a percolation cluster on one side of the film which is most notable in polystyrene blends. X-ray and FTIR indicated that greater interaction between PANI and nylon 6,6 than PANI and polystyrene. It is proposed that the magnitude of the variation in conductivity between the two sides of the film depends on the compatibility of the conducting and insulating host polymers.

  6. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry.

    PubMed

    Xiang, Tao; Lu, Ting; Xie, Yi; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2016-08-01

    The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact. PMID:27039977

  7. Protein crystallization facilitated by molecularly imprinted polymers

    PubMed Central

    Saridakis, Emmanuel; Khurshid, Sahir; Govada, Lata; Phan, Quan; Hawkins, Daniel; Crichlow, Gregg V.; Lolis, Elias; Reddy, Subrayal M.; Chayen, Naomi E.

    2011-01-01

    We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as “smart materials,” are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8–10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates. PMID:21690356

  8. Recombinant protein polymers in biomaterials.

    PubMed

    Kim, Wookhyun

    2013-01-01

    Naturally occurring protein-based materials have been found that function as critical components in biomechanical response, fibers and adhesives. A relatively small but growing number of recombinant protein-based materials that mimic the desired features of their natural sources, such as collagens, elastins and silks, are considered as an alternative to conventional synthetic polymers. Advances in genetic engineering have facilitated the synthesis of repetitive protein polymers with precise control of molecular weights which are designed by using synthetic genes encoding tandem repeats of oligopeptide originating from a modular domain of natural proteins. Many repeat sequences as protein polymer building blocks adopt a well-defined secondary structure and undergo self-assembly to result in physically cross-linked networks or with chemical cross-linking so that further form three-dimensional architectures similar to natural counterparts. In this review, recombinant protein polymers currently developed will be presented that have emerged as promising class of next generation biomaterials. PMID:23276922

  9. Quick setting water-compatible furfuryl alcohol polymer concretes

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1982-11-30

    A novel quick setting polymer concrete composite comprising a furfuryl alcohol monomer, an aggregate containing a maximum of 8% by weight water, and about 1-10% trichlorotoluene initiator and about 20-80% powdered metal salt promoter, such as zinc chloride, based on the weight of said monomer, to initiate and promote polymerization of said monomer in the presence of said aggregate, within 1 hour after mixing at a temperature of -20.degree. C. to 40.degree. C., to produce a polymer concrete having a 1 hour compressive strength greater than 2000 psi.

  10. Compatibility of a protein topical gel with wound dressings.

    PubMed

    Ji, Junyan A; Borisov, Oleg; Ingham, Erika; Ling, Victor; Wang, Y John

    2009-02-01

    The compatibility between several dressing materials and a recombinant human vascular endothelial growth factor (rhVEGF) topical methylcellulose gel formulation was investigated. The dressings being studied were Adaptic, Non-stick Dressing, Conformant 2, Opsite and Tegapore. The criteria to select a compatible dressing include protein stability, absence of leachables from the dressing, and ability to retain gel on wound. An LC-MS method with sample treatment using cellulase was developed to determine protein oxidation in gel formulations. Results showed that rhVEGF was significantly oxidized by Adaptic dressing in 24 h. Protein oxidation was likely due to the peroxides, as determined by FOX assay, released into the protein solution from the dressing. Furthermore, Adaptic dressing caused protein adsorption loss, formation of high MW protein adducts, and released leachables as determined by RP-HPLC, LC-MS, and SEC. No protein oxidation or loss was observed after exposure to the other four alternative dressings. However, unknown leachables were detected in the presence of Opsite and Non-stick Dressing. The pore sizes of the Conformant 2 and Non-stick dressings were too large to hold the topical gel within the wound area, making them unsuitable for patient use. No rhVEGF bioactivity loss was observed in the presence of Tegapore. In conclusion, Tegapore was considered suitable for the rhVEGF topical gel.

  11. Cell compatible arginine containing cationic polymer: one-pot synthesis and preliminary biological assessment.

    PubMed

    Zavradashvili, Nino; Memanishvili, Tamar; Kupatadze, Nino; Baldi, Lucia; Shen, Xiao; Tugushi, David; Wandrey, Christine; Katsarava, Ramaz

    2014-01-01

    Synthetic cationic polymers are of interest as both nonviral vectors for intracellular gene delivery and antimicrobial agents. For both applications synthetic polymers containing guanidine groups are of special interest since such kind of organic compounds/polymers show a high transfection potential along with antibacterial activity. It is important that the delocalization of the positive charge of the cationic group in guanidine significantly decreases the toxicity compared to the ammonium functionality. One of the most convenient ways for incorporating guanidine groups is the synthesis of polymers composed of the amino acid arginine (Arg) via either application of Arg-based monomers or chemical modification of polymers with derivatives of Arg. It is also important to have biodegradable cationic polymers that will be cleared from the body after their function as transfection or antimicrobial agent is fulfilled. This chapter deals with a two-step/one-pot synthesis of a new biodegradable cationic polymer-poly(ethylene malamide) containing L-arginine methyl ester covalently attached to the macrochains in β-position of the malamide residue via the α-amino group. The goal cationic polymer was synthesized by in situ interaction of arginine methyl ester dihydrochloride with intermediary poly(ethylene epoxy succinimide) formed by polycondensation of di-p-nitrophenyl-trans-epoxy succinate with ethylenediamine. The cell compatibility study with Chinese hamster ovary (CHO) and insect Schneider 2 cells (S2) within the concentration range of 0.02-500 mg/mL revealed that the new polymer is not cytotoxic. It formed nanocomplexes with pDNA (120-180 nm in size) at low polymer/DNA weight ratios (WR = 5-10). A preliminarily transfection efficiency of the Arg-containing new cationic polymer was assessed using CHO, S2, H5, and Sf9 cells.

  12. Protein Adsorption on Surfaces with Grafted Polymers

    PubMed Central

    Szleifer, I.

    1997-01-01

    A general theoretical framework for studying the adsorption of protein molecules on surfaces with grafted polymers is presented. The approach is a generalization of the single-chain mean-field theory, in which the grafted polymer-protein-solvent layer is assumed to be inhomogeneous in the direction perpendicular to the grafting surface. The theory enables the calculation of the adsorption isotherms of the protein as a function of the surface coverage of grafted polymers, concentration of protein in bulk, and type of solvent molecules. The potentials of mean force of the protein with the surface are calculated as a function of polymer surface coverage and amount of protein adsorbed. The theory is applied to model lysozyme on surfaces with grafted polyethylene oxide. The protein is modeled as spherical in solution, and it is assumed that the protein-polymer, protein-solvent, and polymer-solvent attractive interactions are all equal. Therefore, the interactions determining the structure of the layer (beyond the bare polymer-surface and protein-surface interactions) are purely repulsive. The bare surface-protein interaction is taken from atomistic calculations by Lee and Park. For surfaces that do not have preferential attractions with the grafted polymer segments, the adsorption isotherms of lysozyme are independent of the polymer length for chains with more than 50 ethylene oxide units. However, the potentials of mean force show strong variations with grafted polymer molecular weight. The competition between different conformations of the adsorbed protein is studied in detail. The adsorption isotherms change qualitatively for surfaces with attractive interactions with ethylene oxide monomers. The protein adsorption is a function of chain length—the longer the polymer the more effective it is in preventing protein adsorption. The structure of the layer and its deformation upon protein adsorption are very important in determining the adsorption isotherms and the

  13. Benchtop fabrication of microfluidic systems based on curable polymers with improved solvent compatibility.

    PubMed

    Hashimoto, Michinao; Langer, Robert; Kohane, Daniel S

    2013-01-21

    This paper describes a general scheme to fabricate microchannels from curable polymers on a laboratory benchtop. Using the scheme described here, benchtop fabrication of SU-8 microfluidic systems was demonstrated for the first time, and their compatibility with organic solvents was demonstrated. The fabrication process has three major stages: 1) transferring patterns of microchannels to polymer films by molding, 2) releasing the patterned film and creating inlets and outlets for fluids, and 3) sealing two films together to create a closed channel system. Addition of a PDMS slab supporting the polymer film provided structural integrity during and after fabrication, allowing manipulation of the polymer films without fracturing or deformation. SU-8 channels fabricated according to this scheme exhibited solvent compatibility against continuous exposure to acetone and ethylacetate, which are incompatible with native PDMS. Using the SU-8 channels, continuous generation of droplets of ethylacetate, and templated synthesis of poly (lactic-co-glycolic acid) (PLGA) microparticles, both with stable size, were demonstrated continuously over 24 h, and at intervals over 75 days. PMID:23192674

  14. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  15. NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect

    Fondeur, F.; Peters, T.; Fink, S.

    2011-09-29

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The

  16. Protein-Polymer Functionalized Nanopatterned Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Akcora, Pinar

    2015-03-01

    Understanding and controlling the protein interactions with surfaces for biosensors and biomedical implants is a fundamental problem for biocompatible nanomaterial design. Proteins attached in ordered nanopores can exhibit superior biological activities compared to smooth microstructured surfaces. We developed heterogeneous and nanopatterned surfaces decorated with polymer brushes and proteins to control protein fates through elasticity. The heterogeneity of surfaces is controlled with well-defined chemistry, pattern size and geometry, stiffness of polymers and protein types. We will present our recent nanoindentation results on nanopatterned and biofunctionalized flat surfaces and discuss the pattern size effect on protein activity, hence conformation.

  17. Protein-polymer nanoreactors for medical applications.

    PubMed

    Palivan, Cornelia G; Fischer-Onaca, Ozana; Delcea, Mihaela; Itel, Fabian; Meier, Wolfgang

    2012-04-01

    Major challenges that confront nanoscience in medicine today include the development of efficacious therapies with minimum side effects, diagnostic methods featuring significantly higher sensitivities and selectivities, and personalized diagnostics and therapeutics for theragnostic approaches. With these goals in mind, combining biological molecules and synthetic carriers/templates, such as polymer supramolecular assemblies, represents a very promising strategy. In this critical review, we present protein-polymer systems as reaction spaces at the nano-scale in which the enzymatic reactions take place inside polymer supramolecular assembly, at its interface with the environment or in a combination of both. The location of the protein(s) with respect to the polymer assembly generates a diversity of systems ranging from nanoreactors to active enzymatic polymer surfaces. We describe these both in terms of general modelling and addressing the specific conditions and requirements related to the medical domain. We will particularly present protein-polymer nanoreactors that provide protected spaces for enzymatic reactions. We also show how polymer supramolecular structures, such as micelles, capsules, dendrimers and vesicles, can accommodate sensitive biomolecules to mimic natural systems and functions, and to serve as avenues for new medical approaches. Even though not yet on the market, we will emphasize possible applications of protein-polymer systems that generate reaction nanospaces-as novel ways to advanced medicine (264 references).

  18. Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane.

    PubMed

    Xiang, Tao; Wang, Rui; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2014-05-13

    Development of blood compatible membranes is critical for biomedical applications. Zwitterionic polymers have been proved to be resistant to nonspecific protein adsorption and platelet adhesion. In this work, two kinds of zwitterionic copolymers bearing alkynyl and azide groups are synthesized by atom transfer radical polymerization (ATRP) and subsequent reactions, namely alkynyl-poly(sulfobetaine methacrylate) (alkynyl-PSBMA) and azide-poly(sulfobetaine methacrylate) (azide-PSBMA). The copolymers are directly used to modify azido-functionalized polysulfone (PSf-N3) membrane via click chemistry-enabled layer-by-layer (LBL) assembly. Alkynyl-citric acid is then clicked onto the membrane when the outermost layer was azide-PSBMA. The chemical compositions, surface morphologies, and hydrophilicity of the zwitterionic polymer and citric acid multilayer modified membranes are characterized. The composite multilayer is resistant to protein adsorption and platelet adhesion and also prolongs clotting times, indicating that the blood compatibility is improved. Moreover, after clicking the small molecule anticoagulant alkynyl-citric acid onto the outermost of the zwitterionic multilayer, the membrane shows further improved anticoagulant property. The deposition of zwitterionic polymer and citric acid via click chemistry-enabled LBL assembly can improve the blood compatibility of the PSf membrane. PMID:24754639

  19. Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane.

    PubMed

    Xiang, Tao; Wang, Rui; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2014-05-13

    Development of blood compatible membranes is critical for biomedical applications. Zwitterionic polymers have been proved to be resistant to nonspecific protein adsorption and platelet adhesion. In this work, two kinds of zwitterionic copolymers bearing alkynyl and azide groups are synthesized by atom transfer radical polymerization (ATRP) and subsequent reactions, namely alkynyl-poly(sulfobetaine methacrylate) (alkynyl-PSBMA) and azide-poly(sulfobetaine methacrylate) (azide-PSBMA). The copolymers are directly used to modify azido-functionalized polysulfone (PSf-N3) membrane via click chemistry-enabled layer-by-layer (LBL) assembly. Alkynyl-citric acid is then clicked onto the membrane when the outermost layer was azide-PSBMA. The chemical compositions, surface morphologies, and hydrophilicity of the zwitterionic polymer and citric acid multilayer modified membranes are characterized. The composite multilayer is resistant to protein adsorption and platelet adhesion and also prolongs clotting times, indicating that the blood compatibility is improved. Moreover, after clicking the small molecule anticoagulant alkynyl-citric acid onto the outermost of the zwitterionic multilayer, the membrane shows further improved anticoagulant property. The deposition of zwitterionic polymer and citric acid via click chemistry-enabled LBL assembly can improve the blood compatibility of the PSf membrane.

  20. Molecular simulation of polymer assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng

    2005-10-01

    Protein refolding in vitro, the formation of the tertiary structure that enables the protein to display its biological function, can be significantly enhanced by adding a polymer of an appropriate hydrophobicity and concentration into the refolding buffer. A molecular simulation of the refolding of a two-dimensional simple lattice protein was presented. A protein folding map recording the occurrence frequency of specified conformations was derived, from which the refolding thermodynamics and kinetics were interpreted. It is shown that, in the absence of polymer, the protein falls into the "energy trapped" conformations characterized by a high intramolecular hydrophobic interaction, denoted as HH contact, and a high magnitude of the structure overlap function, χ. This makes it difficult for the protein to fold to the native state. The polymer with a suitable chain length, concentration, and hydrophobicity has formed complex with partially folded protein and created diversified intermediates with low χ. This gives more pathways for the protein to fold to the native state. At a given hydrophobicity, the short chain polymer has a broader concentration range where it assists protein folding than those of long chains. The above simulation agrees well with the experimental results reported elsewhere [Cleland et al., J. Biol. Chem. 267, 13327 (1992); ibid., Bio/Technology 10, 1013 (1992); Chen et al., Enzyme Microb. Technol. 32, 120 (2003); Lu et al., Biochem. Eng. J. 24, 55 (2005); ibid., J. Chem. Phys. 122, 134902 (2005); ibid., Biochem. Eng. J. (to be published)] and is of fundamental importance for the design and application of polymers for protein refolding.

  1. Blood compatibility assessment of polymers used in drug eluting stent coatings.

    PubMed

    Szott, Luisa Mayorga; Irvin, Colleen A; Trollsas, Mikael; Hossainy, Syed; Ratner, Buddy D

    2016-06-01

    Differences in thrombosis rates have been observed clinically between different drug eluting stents. Such differences have been attributed to numerous factors, including stent design, injury created by the catheter delivery system, coating application technologies, and the degree of thrombogenicity of the polymer. The relative contributions of these factors are generally unknown. This work focuses on understanding the thrombogenicity of the polymer by examining mechanistic interactions with proteins, human platelets, and human monocytes of a number of polymers used in drug eluting stent coatings, in vitro. The importance for blood interactions of adsorbed albumin and the retention of albumin was suggested by the data. Microscopic imaging and immunostaining enhanced the interpretation of results from the lactate dehydrogenase cell counting assay and provided insight into platelet interactions, total quantification, and morphometry. In particular, highly spread platelets may be surface-passivating, possibly inhibiting ongoing thrombotic events. In many of the assays used here, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) showed a differentiated protein deposition pattern that may contribute to the explanation of the consistently thromboresistant blood-materials interaction for fluororpolymers cited in literature. These results are supportive of one of several possible factors contributing to the good thromboresistant clinical safety performance of PVDF-HFP coated drug eluting stents. PMID:27083991

  2. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine.

    PubMed

    Liu, Jubo; Xiao, Yuehua; Allen, Christine

    2004-01-01

    To establish a method for predicting polymer-drug compatibility as a means to guide formulation development, we carried out physicochemical analyses of polymer-drug pairs and compared the difference in total and partial solubility parameters of polymer and drug. For these studies, we employed a range of biodegradable polymers and the anticancer agent Ellipticine as the model drug. The partial and total solubility parameters for the polymer and drug were calculated using the group contribution method. Drug-polymer pairs with different enthalpy of mixing values were analyzed by physicochemical techniques including X-ray diffraction and Fourier transform infrared. Polymers identified to be compatible [i.e., polycaprolactone (PCL) and poly-beta-benzyl-L-aspartate (PBLA)] and incompatible [i.e., poly (d,l-lactide (PLA)], by the above mentioned methods, were used to formulate Ellipticine. Specifically, Ellipticine was loaded into PBLA, PCL, and PLA films using a solvent casting method to produce a local drug formulation; while, polyethylene oxide (PEO)-b-polycaprolactone (PCL) and PEO-b-poly (d,l-lactide) (PLA) copolymer micelles were prepared by both dialysis and dry down methods resulting in a formulation for systemic administration. The drug release profiles for all formulations and the drug loading efficiency for the micelle formulations were also measured. In this way, we compared formulation characteristics with predictions from physicochemical analyses and comparison of total and partial solubility parameters. Overall, a good correlation was obtained between drug formulation characteristics and findings from our polymer-drug compatibility studies. Further optimization of the PEO-b-PCL micelle formulation for Ellipticine was also performed. PMID:14648643

  3. The compatibility evaluation of Cr3+ Gel system and polymer/surfactant system with alternating injection mode

    NASA Astrophysics Data System (ADS)

    Zhang, J. H.; Li, H. K.; Wang, Y. N.; Zhi, J. Q.; Liu, Y.

    2016-08-01

    Alternately injecting the slug of the gel and polymer/surfactant compound system is a new way to further enhance oil recovery after polymer flooding. The displacement system needs to produce an ultra low interfacial tension to oil and to enlarge swept volume significantly. Based on experimental analysis, the influence factors of Cr3+ gel system viscosity and the compatibility of gel with two types of surfactant compared with composite ion gel system has been studied. The experimental result shows that it has well stability, and the compatibility of gel with RMA-1 type surfactant is very well. It can produce an ultra low interfacial tension to oil so that enhanced oil recovery has been reached more than 10 percent by using the gel system to displace residual oil after polymer flooding in artificial large flat- panel model.

  4. Releasable Conjugation of Polymers to Proteins.

    PubMed

    Gong, Yuhui; Leroux, Jean-Christophe; Gauthier, Marc A

    2015-07-15

    Many synthetic strategies are available for preparing well-defined conjugates of peptides/proteins and polymers. Most reports on this topic involve coupling methoxy poly(ethylene glycol) to therapeutic proteins, a process referred to as PEGylation, to increase their circulation lifetime and reduce their immunogenicity. Unfortunately, the major dissuading dogma of PEGylation is that, in many cases, polymer modification leads to significant (or total) loss of activity/function. One approach that is gaining momentum to address this challenge is to release the native protein from the polymer with time in the body (releasable PEGylation). This contribution will present the state-of-the-art of this rapidly evolving field, with emphasis on the chemistry behind the release of the peptide/protein and the means for altering the rate of release in biological fluids. Linkers discussed include those based on the following: substituted maleic anhydride and succinates, disulfides, 1,6-benzyl-elimination, host-guest interactions, bicin, β-elimination, biodegradable polymers, E1cb elimination, β-alanine, photoimmolation, coordination chemistry, zymogen activation, proteolysis, and thioesters.

  5. Chemical virology: Packing polymers in protein cages

    NASA Astrophysics Data System (ADS)

    Cornelissen, Jeroen J. L. M.

    2012-10-01

    The combination of addressable synthetic macromolecules with proteins of precise structure and function often leads to materials with unique properties, as is now shown by the efficient multi-site initiation of polymer growth inside the cavity of a virus capsid.

  6. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  7. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor)

    2007-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  8. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor)

    2011-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  9. Microwave-assisted protein staining: mass spectrometry compatible methods for rapid protein visualisation.

    PubMed

    Nesatyy, Victor J; Dacanay, Andrew; Kelly, John F; Ross, Neil W

    2002-01-01

    The effects of microwave irradiation on the staining of electrophoresed and electroblotted proteins have been assessed using currently available detection methods. Although the absorption of microwave radiation was found to be uneven, band intensity following microwave-assisted protein staining (MAPS) was comparable and in some cases exceeded the intensity of the bands visualised by the original staining methods. It was found that microwave treatment drastically reduced the duration of the staining protocols for visualisation of the proteins separated by both one- and two-dimensional electrophoresis. Application of MAPS methods did not affect peptide mass fingerprinting analysis by mass spectrometry and subsequent identification of the protein by database searching. The peptide mass maps corresponding to the proteins visualised using both the conventional and MAPS methods did not show significant difference in signal/noise ratio. Moreover, it appeared that microwave treatment of the gels resulted in the increased recovery of the peptides following in-gel trypsin digestion. Briefly, microwave-assisted protein staining methods were rapid, compatible with mass spectrometry and were equally effective on thin (0.75-mm) and thick (1.5-mm) gels (such as those used in 2D electrophoresis). PMID:11816041

  10. Magnetic Resonance Imaging Compatibility of the Polymer-based Cochlear Implant

    PubMed Central

    Kim, Jin Ho; Min, Kyou Sik; An, Soon Kwan; Jeong, Joon Soo; Jun, Sang Beom; Cho, Min Hyoung; Son, Young-Don; Cho, Zang-Hee

    2012-01-01

    Objectives In this study, we compared the magnetic resonance (MR) image artifacts caused by a conventional metal-based cochlear implant and a newly developed liquid crystal polymer (LCP)-based device. Methods The metal-based cochlear implant system (Nurobiosys Co.) was attached to side of the head of a subject and the LCP-based device was attached to opposite side. In both devices, alignment magnets were removed for safety. Magnetic resonance imaging (MRI) was performed on a widely used 3.0 T and an ultra-high 7.0 T MRI machine. 3.0 and 7.0 T MR images were acquired using T1- and T2*-weighted gradient echo sequences, respectively. Results In the 3.0 T images, the metal-based device on the left side generated the significant amount of artifacts. The MR images in the proximity of the metal package were obscured by the artifacts in both axial and sagittal views. On the other hand, the MR images near the LCP-based device were relatively free from the artifacts and clearly showed the brain structures. 7.0 T MR images showed the more severe distortion in the both sides but the metal-based cochlear implant system caused a much larger obscure area than the LCP-based system. Conclusion The novel LCP-based cochlear implant provides a good MRI compatibility beyond present-day cochlear implants. Thus, MR images can be obtained from the subjects even with the implanted LCP-based neural prosthetic systems providing useful diagnostic information. Furthermore, it will be also useful for functional MRI studies of the auditory perception mechanism after cochlear implantations as well as for positron emission tomography-MRI hybrid imaging. PMID:22701769

  11. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.

    PubMed

    Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Li, Chenxi; Zhang, Huiqi

    2010-11-15

    A new and efficient approach to obtaining molecularly imprinted polymers (MIPs) with both pure water-compatible (i.e., applicable in the pure aqueous environments) and stimuli-responsive binding properties is described, whose proof-of-principle is demonstrated by the facile modification of the preformed MIP microspheres via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAAm). The presence of poly(NIPAAm) (PNIPAAm) brushes on the obtained MIP microspheres was confirmed by FT-IR as well as the water dispersion and static contact angle experiments, and some quantitative information including the molecular weights and polydispersities of the grafted polymer brushes, the thickness of the polymer brush layers, and their grafting densities was provided. In addition, the binding properties of the ungrafted and grafted MIPs/NIPs in both methanol/water (4/1, v/v) and pure water solutions were also investigated. The introduction of PNIPAAm brushes onto the MIP microspheres has proven to significantly improve their surface hydrophilicity and impart stimuli-responsive properties to them, leading to their pure water-compatible and thermo-responsive binding properties. The application of the facile surface-grafting approach, together with the versatility of RAFT polymerization and the availability of many different functional monomers, makes the present methodology a general and promising way to prepare water-compatible and stimuli-responsive MIPs for a wide range of templates.

  12. The effect of receptor-polymer matrix compatibility on electrochemical properties of PEO-based polymer electrolytes containing supramolecular additives. Part 2. Ionic transport study

    NASA Astrophysics Data System (ADS)

    Kalita, M.; Sołgała, A.; Siekierski, M.; Pawłowska, M.; Rokicki, G.; Wieczorek, W.

    Poly(ethylene oxide)-lithium salt composite electrolytes containing two different derivatives of calix[4]arene were tested as anion complexing agents for I - and CF 3SO 3 -. Both calix[4]arene derivatives studied have identical anion coordination groups but they have different compatibility with the polymer matrix obtained by chemical linking of the oligo(ethylene oxide) chains to one of the studied calixarenes. The impedance spectroscopy studies showed that the addition of the anion receptor significantly changes the conductivity. The character of this changes strongly depends on the receptor used while the electrochemical stability of these two calixarene receptors measured by cyclic voltammetry is similar. It was also proved that addition of the anion receptor strongly changes the polymer matrix morphology and thermal behavior. By the comparison with the liquid systems which electrical properties were similar to the polymer matrix, we can assume that these changes are a result of anion-receptor interactions.

  13. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of

  14. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of

  15. Self-Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water-Compatible Lewis Acid Catalysts.

    PubMed

    Miyamura, Hiroyuki; Sonoyama, Arisa; Hayrapetyan, Davit; Kobayashi, Shū

    2015-09-01

    While water-compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self-assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water-compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C-C bond-forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions. PMID:26228075

  16. Self-Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water-Compatible Lewis Acid Catalysts.

    PubMed

    Miyamura, Hiroyuki; Sonoyama, Arisa; Hayrapetyan, Davit; Kobayashi, Shū

    2015-09-01

    While water-compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self-assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water-compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C-C bond-forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions.

  17. Structure and properties of soy protein/poly(butylene succinate) blends with improved compatibility.

    PubMed

    Li, Yi-Dong; Zeng, Jian-Bing; Wang, Xiu-Li; Yang, Ke-Ke; Wang, Yu-Zhong

    2008-11-01

    A novel environmentally friendly thermoplastic soy protein/polyester blend was successfully prepared by blending soy protein isolate (SPI) with poly(butylene succinate) (PBS). To improve the compatibility between SPI and PBS, the polyester was pretreated by introducing different amounts of urethane and isocyanate groups before blending. The blends containing pretreated PBS showed much finer phase structures because of good dispersion of polyester in protein. Consequently, the tensile strength and modulus of blends increased obviously. A lower glass transition temperature of protein in the blends than that of the pure SPI, which was caused by the improvement of the compatibility between two phases, was observed by dynamic mechanical analyzer (DMA). The hydrophobicity, water resistance, and moisture absorption at different humidities of the blends were modified significantly due to the incorporation of PBS.

  18. A high-throughput-compatible assay to measure the degradation of endogenous Huntingtin proteins

    PubMed Central

    Wu, Peng; Lu, Ming-xing; Cui, Xiao-tian; Yang, He-qing; Yu, Shen-liang; Zhu, Jian-bin; Sun, Xiao-li; Lu, Boxun

    2016-01-01

    Aim: The accumulation of disease-causing proteins is a common hallmark of many neurodegenerative disorders. Measuring the degradation of such proteins using high-throughput-compatible assays is highly desired for the identification of genetic and chemical modulators of degradation. For example, Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder caused by the cytotoxicity of mutant huntingtin protein (mHTT). The high-throughput measurement of mHTT degradation is important in HD drug discovery and research. Existing methods for such purposes have limitations due to their dependence on protein tags or pan protein synthesis inhibitors. Here, we report a high-throughput-compatible pulse-chase method (CH-chase) for the measurement of endogenous tag-free huntingtin protein (HTT) degradation based on Click chemistry and Homogeneous Time Resolved Fluorescence (HTRF) technologies. Methods: The pulsed-labeled proteins were conjugated with biotin using the click reaction strain-promoted alkyne-azide cycloaddition (SPAAC), and the chase signals were calculated by measuring the reduction percentage of the HTT HTRF signals after pull-down with streptavidin beads. Results: We validated that the signals were within the linear detection range and were HTT-specific. We successfully measured the degradation of endogenous HTT in a high-throughput-compatible format using 96-well plates. The predicted changes of HTT degradation by known modifiers were observed, which confirmed that the assay is suitable for the identification of HTT degradation modifiers. Conclusion: We have established the first high-throughput-compatible assay capable of measuring endogenous, tag-free HTT degradation, providing a valuable tool for HD research and drug discovery. The method could be applied to other proteins and can facilitate research on other neurodegenerative disorders and proteinopathies. PMID:27264314

  19. Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode

    NASA Astrophysics Data System (ADS)

    Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun

    A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.

  20. Molecular cloning of protein-based polymers.

    PubMed

    Mi, Lixin

    2006-07-01

    Protein-based biopolymers have become a promising class of materials for both biomedical and pharmaceutical applications, as they have well-defined molecular weights, monomer compositions, as well as tunable chemical, biological, and mechanical properties. Using standard molecular biology tools, it is possible to design and construct genes encoding artificial proteins or protein-based polymers containing multiple repeats of amino acid sequences. This article reviews some of the traditional methods used for constructing DNA duplexes encoding these repeat-containing genes, including monomer generation, concatemerization, iterative oligomerization, and seamless cloning. A facile and versatile method, called modules of degenerate codons (MDC), which uses PCR and codon degeneracy to overcome some of the disadvantages of traditional methods, is introduced. Re-engineering of the random coil spacer domain of a bioactive protein, WPT2-3R, is used to demonstrate the utility of the MDC method. MDC re-constructed coding sequences facilitate further manipulations, such as insertion, deletion, and swapping of various sequence modules. A summary of some promising emerging techniques for synthesizing repetitive sequence-containing artificial proteins is also provided. PMID:16827576

  1. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng.

    PubMed

    Ji, Wenhua; Xie, Hongkai; Zhou, Jie; Wang, Xiao; Ma, Xiuli; Huang, Luqi

    2016-01-01

    Specific molecularly imprinted polymers for dencichine were developed for the first time in this study by the bulk polymerization using phenylpyruvic acid and dl-tyrosine as multi-templates. The photographs confirmed that molecularly imprinted polymers prepared using N,N'-methylene diacrylamide as cross-linker and glycol dimethyl ether as porogen displayed excellent hydrophilicity. Selectivity, adsorption isotherm and adsorption kinetics were investigated. The sample loading-washing-eluting solvent was optimized to evaluate the property of molecularly imprinted solid phase extract. Compared with LC/WCX-SPE, water-compatible molecularly imprinted solid phase extraction displayed more excellent specific adsorption performance. The extracted dencichine from Panax notoginseng with the purity of 98.5% and the average recovery of 85.6% (n=3) was obtained.

  2. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng.

    PubMed

    Ji, Wenhua; Xie, Hongkai; Zhou, Jie; Wang, Xiao; Ma, Xiuli; Huang, Luqi

    2016-01-01

    Specific molecularly imprinted polymers for dencichine were developed for the first time in this study by the bulk polymerization using phenylpyruvic acid and dl-tyrosine as multi-templates. The photographs confirmed that molecularly imprinted polymers prepared using N,N'-methylene diacrylamide as cross-linker and glycol dimethyl ether as porogen displayed excellent hydrophilicity. Selectivity, adsorption isotherm and adsorption kinetics were investigated. The sample loading-washing-eluting solvent was optimized to evaluate the property of molecularly imprinted solid phase extract. Compared with LC/WCX-SPE, water-compatible molecularly imprinted solid phase extraction displayed more excellent specific adsorption performance. The extracted dencichine from Panax notoginseng with the purity of 98.5% and the average recovery of 85.6% (n=3) was obtained. PMID:26680322

  3. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    SciTech Connect

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  4. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing.

    PubMed

    Pompach, Petr; Benada, Oldřich; Rosůlek, Michal; Darebná, Petra; Hausner, Jiří; Růžička, Viktor; Volný, Michael; Novák, Petr

    2016-09-01

    We present a technology that allows the preparation of matrix-assisted laser desorption/ionization (MALDI)-compatible protein chips by ambient ion landing of proteins and successive utilization of the resulting protein chips for the development of bioanalytical assays. These assays are based on the interaction between the immobilized protein and the sampled analyte directly on the protein chip and subsequent in situ analysis by MALDI mass spectrometry. The electrosprayed proteins are immobilized on dry metal and metal oxide surfaces, which are nonreactive under normal conditions. The ion landing of electrosprayed protein molecules is performed under atmospheric pressure by an automated ion landing apparatus that can manufacture protein chips with a predefined array of sample positions or any other geometry of choice. The protein chips prepared by this technique are fully compatible with MALDI ionization because the metal-based substrates are conductive and durable enough to be used directly as MALDI plates. Compared to other materials, the nonreactive surfaces show minimal nonspecific interactions with chemical species in the investigated sample and are thus an ideal substrate for selective protein chips. Three types of protein chips were used in this report to demonstrate the bioanalytical applications of ambient ion landing. The protein chips with immobilized proteolytic enzymes showed the usefulness for fast in situ peptide MALDI sequencing; the lectin-based protein chips showed the ability to enrich glycopeptides from complex mixtures with subsequent MALDI analysis, and the protein chips with immobilized antibodies were used for a novel immunoMALDI workflow that allowed the enrichment of antigens from the serum followed by highly specific MALDI detection. PMID:27478994

  5. Emerging Synthetic Techniques for Protein-Polymer Conjugations

    PubMed Central

    Broyer, Rebecca M.; Grover, Gregory N.; Maynard, Heather D.

    2011-01-01

    Protein-polymer conjugates are important in diverse fields including drug delivery, biotechnology, and nanotechnology. This feature article highlights recent advances in the synthesis and application of protein-polymer conjugates by controlled radical polymerization techniques. Special emphasis on new applications of the materials, particularly in biomedicine, are highlighted. PMID:21229146

  6. Effect of the compatible solute ectoine on the stability of the membrane proteins.

    PubMed

    Roychoudhury, Arpita; Haussinger, Dieter; Oesterhelt, Filipp

    2012-08-01

    Mechanical single molecule techniques offer exciting possibilities for investigating protein folding and stability in native environments at sub-nanometer resolutions. Compatible solutes show osmotic activity which even at molar concentrations do not interfere with cell metabolism. They are known to protect proteins against external stress like temperature, high salt concentrations and dehydrating conditions. We studied the impact of the compatible solute ectoine (1M) on membrane proteins by analyzing the mechanical properties of Bacteriorhodopsin (BR) in its presence and absence by single molecule force spectroscopy. The unfolding experiments on BR revealed that ectoine decreases the persistence length of its polypeptide chain thereby increasing its tendency to coil up. In addition, we found higher unfolding forces indicating strengthening of those intra molecular interactions which are crucial for stability. This shows that force spectroscopy is well suited to study the effect of compatible solutes to stabilize membrane proteins against unfolding. In addition, it may lead to a better understanding of their detailed mechanism of action.

  7. Compatibility of Astragalus and Salvia extract inhibits myocardial fibrosis and ventricular remodeling by regulation of protein kinase D1 protein

    PubMed Central

    Mao, Bingyu; Nuan, Liu; Yang, Lei; Zeng, Xiaotao

    2015-01-01

    Aims: This study is to determine the effect of astragalus and salvia extract on the alteration of myocardium in a rat model of myocardial infarction. Methods: A total of 40 male Sprague-Dawley rats were randomly divided into the sham-operated group, the control group, the Astragalus group, the Salvia group, and the compatibility of Astragalus and Salvia and group. The cardiac functions were determined at 8 weeks after treatment. Hematoxylin-eosin staining was performed to observe the morphology and arrangement of cardiomyocytes. Masson’s trichrome staining was performed to investigate the distribution of myocardial interstitial collagen. Immunohistochemical staining was performed to determine the expression ofprotein kinase D1 in myocardial tissues. Results: In the sham-operated group, the Astragalus group, the Salvia group, and the compatibility of Astragalus and Salvia group, the left ventricular systolic pressure and the maximum rate of left ventricular pressure were significantly increased while the left ventricular end diastolic pressure were significantly decreased when compared with those in the control group (P < 0.05). Normal morphology and arrangement of cardiomyocytes were maintained in the compatibility of Astragalus and Salvia group. Contents of collagen fibers in myocardial tissues were decreased in the compatibility of Astragalus and Salvia group (P < 0.05). Expression levels of protein kinase D1 were significantly decreased in cardiomyocytes of the compatibility of Astragalus and Salvia group. Conclusions: Compatibility of Astragalus and Salvia extract may inhibit myocardial fibrosis and ventricular remodeling by regulation of protein kinase D1 protein in a rat model of myocardial infarction. PMID:26064267

  8. Advances in Polymer and Polymeric Nanostructures for Protein Conjugation

    PubMed Central

    González-Toro, Daniella C.; Thayumanavan, S.

    2013-01-01

    Linear polymers have been considered the best molecular structures for the formation of efficient protein conjugates due to their biological advantages, synthetic convenience and ease of functionalization. In recent years, much attention has been dedicated to develop synthetic strategies that produce the most control over protein conjugation utilizing linear polymers as scaffolds. As a result, different conjugate models, such as semitelechelic, homotelechelic, heterotelechelic and branched or star polymer conjugates, have been obtained that take advantage of these well-controlled synthetic strategies. Development of protein conjugates using nanostructures and the formation of said nanostructures from protein-polymer bioconjugates are other areas in the protein bioconjugation field. Although several polymer-protein technologies have been developed from these discoveries, few review articles have focused on the design and function of these polymers and nanostructures. This review will highlight some recent advances in protein-linear polymer technologies that employ protein covalent conjugation and successful protein-nanostructure bioconjugates (covalent conjugation as well) that have shown great potential for biological applications. PMID:24058205

  9. Site-specific polymer modification of therapeutic proteins.

    PubMed

    Kochendoerfer, Gerd G

    2005-12-01

    Recent advances in chemoselective ligation technology have made possible the modification of proteins with polymers in a site-specific and controlled manner. These approaches rely on the incorporation of chemoselective anchors into the protein backbone by either chemical or recombinant means, and subsequent modification with a polymer carrying a complementary linker. As a result, the assembly process and the covalent structure of the resulting protein-polymer conjugate are completely controlled, enabling the rational optimization of drug properties, in particular efficacy and pharmacokinetic properties. Application of chemoselective ligation technologies to cytokines and chemokines has led to the generation of new lead proteins for use as erythropoietic agents and HIV fusion inhibitors.

  10. Chemical compatibility of PU/PAN interpenetrating polymer network membrane with substituted aromatic solvents.

    PubMed

    Kumar, H; Siddaramaiah

    2007-09-01

    Polyethylene glycol (PEG)-based polyurethane/polyacrylonitrile (PU/PAN, 50/50) semi-interpenetrating polymer network (SIPN) membrane has been studied from sorption/desorption cycles and diffusion behaviour with substituted aromatic probe molecules at 20, 40 and 60 degrees C. Sorption/desorption cycles have been repeated to evaluate polymer-solvent interaction. Organic solvents taken up or given out by IPN are measured periodically till equilibrium. Using these data, sorption (S), diffusion (D) and permeation (P) coefficients have been calculated from Fick's equation. Sorption data is correlated with solubility parameter of solvents and polymer. It was found that solvents of comparable solubility parameter with IPN interact more and thus there is an increase in sorption. Molecular mass between cross-link has been calculated using Flory Rehner equation. The cross-link density and degree of cross-linking of the membrane is calculated. From the temperature dependence of sorption and diffusion coefficients, the Arrhenius activation parameters like activation energy for diffusion (E(D)) and permeation (E(P)) processes have been calculated. Furthermore, the sorption results have been interpreted in terms of thermodynamic parameters such as change in enthalpy (DeltaH) and entropy (DeltaS). Concentration profiles of penetrants at different penetration depths in the polymer sample at different time intervals have also been calculated theoretically from a solution of Fick's equation under appropriate initial boundary conditions. PMID:17418943

  11. Compatibility and Impact Resistance of Biodegradable Polymer Blends Using Clays and Natural Nanotubes

    NASA Astrophysics Data System (ADS)

    Guo, Yichen; Yuan, Xue; Zuo, Xianghao; Rafailovich, Miriam

    Montmorillonite clays and Halloysite nanotubes (HNTs) were modified by surface adsorption of resorcinol di (phenyl phosphate) (RDP) oligomers. Biodegradable poly (lactic acid) (PLA) and poly (butylene adipate-co-butylene terephthalate) (PBAT) polymers were blended together with RDP coated clays and tubes. TEM images of thin sections indicated that even though both RDP coated clay nanotubes and platelets located on the interfacial region between two immiscible polymers, only the platelets, having the larger aspect ratio, were able to reduce the PBAT domain sizes. The ability of clay platelets to partially compatibilize the blend was further confirmed by the dynamic mechanical analysis (DMA) which showed that the glass transition temperatures of two polymers tend to shift closer. Izod impact testing demonstrated that the rubbery PBAT phase greatly increased the impact strength of the unfilled blend, but addition of only 5% of clay filler decrease the impact strength by nearly 50% while a small increase was observed with nanotubes at that concentration. A simple model is proposed. The clay platelets are observed to cover the interfacial area. Although they are effective at reducing the interfacial tension, they block the entanglements between two polymer phase and increase the overall brittleness. On the other hand, the HNTs are observed to lie perpendicular to the interface, which makes them less effective in reducing interfacial tension, but far more effective at retarding micro-crack propagation.

  12. Investigation into the Relaxation Dynamics of Polymer-Protein Conjugates Reveals Surprising Role of Polymer Solvation on Inherent Protein Flexibility.

    PubMed

    Russo, Daniela; Plazanet, Marie; Teixeira, José; Moulin, Martine; Härtlein, Michael; Wurm, Frederik R; Steinbach, Tobias

    2016-01-11

    Fully biodegradable protein-polymer conjugates, namely, MBP-PMeEP (maltose binding protein-poly methyl-ethylene phosphonate), have been investigated in order to understand the role of polymer solvation on protein flexibility. Using elastic and quasi-elastic incoherent neutron scattering, in combination with partially deuterated conjugate systems, we are able to disentangle the polymer dynamics from the protein dynamics and meaningfully address the coupling between both components. We highlight that, in the dry state, the protein-polymer conjugates lack any dynamical transition in accordance with the generally observed behavior for dry proteins. In addition, we observe a larger flexibility of the conjugated protein, compared to the native protein, as well as a lack of polymer-glass transition. Only upon water hydration does the conjugate recover its dynamical transition, leading to the conclusion that exclusive polymer solvation is insufficient to unfreeze fluctuations on the picosecond-nanosecond time scale in biomolecules. Our results also confirm the established coupling between polymer and protein dynamics in the conjugate.

  13. Protein-like dynamics of polycarbonate polymers in water.

    PubMed

    Zidar, Jernej; Lim, Geraldine S; Cheong, Daniel W; Klähn, Marco

    2015-01-01

    The dynamics of amphiphilic peptide-mimicking polycarbonate polymers are investigated, considering variations in polymer length, monomer sequence, and monomer modification. The polymers are simulated in aqueous solution with atomistic molecular dynamics simulations and an empirical force field. Various structural polymer properties, interaction strengths, and solvation free energies are derived. It is found that water is a less favorable solvent for these polymers than for peptides. Moreover, polymers readily adopt irreversibly a compact state that consists of a variety of distinct compact conformations that are adopted through frequent transitions. Furthermore, the polymers exhibit a strong propensity to form large aggregates. The driving forces for these processes appear to be a hydrophobic effect and more favorable polymer-solvent interactions of aggregates that overcome the otherwise strong mutual repulsion between the positively charged polymers. Replacing hydrophobic residues with polar side chains destabilizes the compact conformations of the polymers. Our results also indicate that the monomer sequence has little effect on the overall solvation properties of the polymer molecule. However, the sequence influences flexibility and compactness of the monomer in solution. Overall, the results of this work confirm the protein-like characteristics of these polymers and elucidate the role of single residues in influencing the structure and aggregation in aqueous solution.

  14. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells.

    PubMed

    Hwang, Ye-Jin; Earmme, Taeshik; Courtright, Brett A E; Eberle, Frank N; Jenekhe, Samson A

    2015-04-01

    Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design.

  15. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells.

    PubMed

    Hwang, Ye-Jin; Earmme, Taeshik; Courtright, Brett A E; Eberle, Frank N; Jenekhe, Samson A

    2015-04-01

    Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design. PMID:25807377

  16. Depletion theory and the precipitation of protein by polymer.

    PubMed

    Odijk, Theo

    2009-03-26

    The depletion theory of nanoparticles immersed in a semidilute polymer solution is reinterpreted in terms of depleted chains of polymer segments. Limitations and extensions of mean-field and scaling theories are discussed. An explicit expression for the interaction between two small spheres is also reviewed. The depletion free energy for a particle of general shape is given in terms of the capacitance or effective Stokes radius. This affords a reasonable explanation for the effect of polymer on protein precipitation.

  17. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot

    NASA Astrophysics Data System (ADS)

    Xun, Zhe; Zhao, Xiaoyun; Guan, Yifu

    2013-09-01

    Quantum dots have experienced rapid development in imaging, labeling and sensing in medicine and life science. To be suitable for polymerase chain reaction (PCR) assay, we have tested QD thermal cycling durability and compatibility, which have not been addressed in previous reports. In this study, we synthesized CdSe/ZnS QDs with a surface modification with high-MW amphiphilic copolymers and observed that Mg2+ ions in the PCR reaction could induce the QDs to precipitate and reduce their fluorescence signal significantly after thermal cycling. To overcome this problem, we used mPEG2000 to conjugate the QD surface for further protection, and found that this modification enables QDs to endure 40 thermal cycles in the presence of other components essential for PCR reactions. We have also identified that QDs have different effects on rTaq and Ex Taq polymerization systems. A high QD concentration could apparently reduce the PCR efficiency, but this inhibition was relieved significantly in the Ex PCR system as the concentration of Ex Taq polymerase was increased. Real-time PCR amplification results showed that QDs could provide a sufficiently measurable fluorescence signal without excessively inhibiting the DNA amplification. Based on this improved thermal cycling durability and compatibility with the PCR system, QDs have the potential to be developed as stable fluorescent sensors in PCR and real-time PCR amplification.

  18. Water-Stable Metal-Organic Framework/Polymer Composites Compatible with Human Hepatocytes.

    PubMed

    Neufeld, Megan J; Ware, Brenton R; Lutzke, Alec; Khetani, Salman R; Reynolds, Melissa M

    2016-08-01

    Metal-organic frameworks (MOFs) have demonstrated promise in biomedical applications as vehicles for drug delivery, as well as for the ability of copper-based MOFs to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). Because NO is a participant in biological processes where it exhibits anti-inflammatory, antibacterial, and antiplatelet activation properties, it has received significant attention for therapeutic purposes. Previous work has shown that the water-stable MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or CuBTTri, produces NO from RSNOs and can be included within a polymeric matrix to form NO-generating materials. While such materials demonstrate potential, the possibility of MOF degradation leading to copper-related toxicity is a concern that must be addressed prior to adapting these materials for biomedical applications. Herein, we present the first cytotoxicity evaluation of an NO-generating CuBTTri/polymer composite material using 3T3-J2 murine embryonic fibroblasts and primary human hepatocytes (PHHs). CuBTTri/polymer films were prepared from plasticized poly(vinyl chloride) (PVC) and characterized via PXRD, ATR-FTIR, and SEM-EDX. Additionally, the ability of the CuBTTri/polymer films to enhance NO generation from S-nitroso-N-acetylpenicillamine (SNAP) was evaluated. Enhanced NO generation in the presence of the CuBTTri/polymer films was observed, with an average NO flux (0.90 ± 0.13 nmol cm(-2) min(-1)) within the range associated with antithrombogenic surfaces. The CuBTTri/polymer films were analyzed for stability in phosphate buffered saline (PBS) and cell culture media under physiological conditions for a 4 week duration. Cumulative copper release in both cell media (0.84 ± 0.21%) and PBS (0.18 ± 0.01%) accounted for less than 1% of theoretical copper present in the films. In vitro cell studies performed with 3T3-J2 fibroblasts and PHHs did not indicate significant toxicity, providing further

  19. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  20. Construction of monomer-free, highly crosslinked, water-compatible polymers.

    PubMed

    Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W

    2014-12-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. PMID:25248612

  1. Construction of Monomer-free, Highly Crosslinked, Water-compatible Polymers

    PubMed Central

    Dailing, E.A.; Lewis, S.H.; Barros, M.D.; Stansbury, J.W.

    2014-01-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. PMID:25248612

  2. Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A.

    PubMed

    Wu, Xiaqing; Wang, Xiaoyan; Lu, Wenhui; Wang, Xinran; Li, Jinhua; You, Huiyan; Xiong, Hua; Chen, Lingxin

    2016-02-26

    Versatile molecularly imprinted polymers (MIPs) have been widely applied to various sample matrices, however, molecular recognition in aqueous media is still difficult. Stimuli-responsive MIPs have received increasing attentions due to their unique feature that the molecular recognition is regulated by specific external stimuli. Herein, water-compatible temperature and magnetic dual-responsive MIPs (WC-TMMIPs) with hydrophilic brushes were prepared via reversible addition-fragmentation chain transfer precipitation polymerization for reversible and selective recognition and extraction of bisphenol A (BPA). Transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometry (VSM) as characterization methods were used to examine the successful synthesis of polymers, and the resultant WC-TMMIPs showed excellent thermosensitivity and simple rapid magnetic separation. Controlled adsorption and release of BPA by temperature regulation were investigated systematically, and the maximum adsorption and removal efficiency toward BPA in aqueous solutions were attained at 35 °C and 45 °C, respectively, as well as a good recoverability was exhibited with the precision less than 5% through five adsorption-desorption cycles. Phenolic structural analogs were tested and good recognition specificity for BPA was displayed. Accordingly, the WC-TMMIPs were employed as adsorbents for magnetic solid-phase extraction (MSPE) and packed SPE of BPA from seawater samples. Using the two modes followed by HPLC-UV determination, excellent linearity was attained in the range of 0.1-14.5 μM and 1.3-125 nM, with low detection limits of 0.02 μM and 0.18 nM, respectively. Satisfactory recoveries for spiked seawater samples were achieved ranging from 86.3-103.5% and 96.2-104.3% with RSD within 2.12-4.33%. The intelligent WC-TMMIPs combining water-compatibility, molecular recognition, magnetic separation, and temperature regulation proved

  3. Effect of film compatibility on electro-optic properties of dye doped polymer DR1/SU-8

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Xie, Ying; Zhao, Xuliang; Li, Dehui; Zhao, Shimin; Yue, Yuanbin; Wang, Xibin; Sun, Jian; Liang, Lei; Chen, Changming; Zhang, Daming; Wang, Fei; Xie, Zhiyuan

    2013-11-01

    The physic-chemical compatibility of passive cladding and poled Dispersed Red 1 (DR1) doped ultraviolet (UV) curable polymer SU-8 was investigated. The multilayer films consisting of DR1/SU-8 core and Norland Optical Adhensive 73 (NOA73), SU-8, polydimethylsiloxane (PDMS), or polymethylmethacrylate (PMMA) upper-cladding were fabricated on the silicon substrate, respectively. The interface morphologies were characterized through scan electronic microscope. Parallel plate electric field poling was carried out to align the polarity of chromophores in SU-8. The core-cladding interface with no chemical erosion or delamination was obtained by adopting an excess UV exposure and higher temperature dealing when NOA73 was used as the upper-cladding. The root mean square roughness of the upper-cladding surface was measured by atomic force microscope to verify the poling process. The electro-optic (EO) signal response amplitude of these multilayer films was used to characterize the polarizability alignment of DR1 chromophores by means of Teng-Man method after poling. Resistivity of claddings was measured at the glass transition temperature of DR1/SU-8 to explain the EO response difference. The configuration of NOA73/(DR1/SU-8) exhibited the best EO performance and time relaxation in amplitude within 550 h by prolonging the cooling time in poling process. A channel waveguide was fabricated to study the poling-induced optical loss. The results show that the selection of passive cladding with favorable electrical and chemical property is essential to establish optical nonlinearity in the dye-polymer system.

  4. Multimeric Disintegrin Protein Polymer Fusions That Target Tumor Vasculature

    PubMed Central

    2015-01-01

    Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited. Reasons for this include the challenges of decorating pharmaceutical-grade nanoparticles with proteins by a process that is robust, scalable, and cost-effective. As an alternative to covalent bioconjugation between a protein and nanoparticle, we report that biologically active proteins may themselves mediate the formation of small multimers through steric stabilization by large protein polymers. Unlike multistep purification and bioconjugation, this approach is completed during biosynthesis. As proof-of-principle, the disintegrin protein called vicrostatin (VCN) was fused to an elastin-like polypeptide (A192). A significant fraction of fusion proteins self-assembled into multimers with a hydrodynamic radius of 15.9 nm. The A192-VCN fusion proteins compete specifically for cell-surface integrins on human umbilical vein endothelial cells (HUVECs) and two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Confocal microscopy revealed that, unlike linear RGD-containing protein polymers, the disintegrin fusion protein undergoes rapid cellular internalization. To explore their potential clinical applications, fusion proteins were characterized using small animal positron emission tomography (microPET). Passive tumor accumulation was observed for control protein polymers; however, the tumor accumulation of A192-VCN was saturable, which is consistent with integrin-mediated binding. The fusion of a protein polymer and disintegrin results in a higher intratumoral contrast compared to free VCN or A192 alone. Given the diversity of disintegrin proteins with specificity for various cell-surface integrins, disintegrin fusions are a new source of biomaterials with potential diagnostic and

  5. Applications of Polymer Brushes in Protein Analysis and Purification

    NASA Astrophysics Data System (ADS)

    Jain, Parul; Baker, Gregory L.; Bruening, Merlin L.

    2009-07-01

    This review examines the application of polymer brush-modified flat surfaces, membranes, and beads for protein immobilization and isolation. Modification of porous substrates with brushes yields membranes that selectively bind tagged proteins to give 99% pure protein at capacities as high as 100 mg of protein per cubic centimeter of membrane. Moreover, enrichment of phosphopeptides on brush-modified matrix-assisted laser desorption/ionization (MALDI) plates allows detection and characterization of femtomole levels of phosphopeptides by MALDI mass spectrometry. Because swollen hydrophilic brushes can resist nonspecific protein adsorption while immobilizing a high density of proteins, they are attractive as substrates for protein microarrays. This review highlights the advantages of polymer brush-modified surfaces over self-assembled monolayers and identifies some research needs in this area.

  6. Protein-based supramolecular polymers: progress and prospect.

    PubMed

    Luo, Quan; Dong, Zeyuan; Hou, Chunxi; Liu, Junqiu

    2014-09-11

    Proteins are naturally evolved macromolecules with highly sophisticated structures and diverse properties. The design and controlled self-assembly of proteins into polymeric architectures via supramolecular interactions offers unique advantages in understanding the spontaneously self-organisational process and fabrication of various bioactive materials. This feature article highlights recent advances and future trends in supramolecular polymers that are directly assembled from the building blocks of proteins. Non-covalent interactions capable of inducing polymerization include aromatic π-π stacking, host-guest interactions, metal coordination, and interprotein interactions combined with site-selective protein modification to explore the dynamic and specific unidirectional aggregation behaviours among protein units. We also discuss some extended supramolecular protein polymers achieved by rational design and fine-tuning the protein-protein interactions, which may help to inspire future design of more complicated polymeric protein assemblies. The protein-based supramolecular polymer system provides a versatile platform for functionalization and thereby shows great potential in the development of novel biomaterials with controlled structures and properties. PMID:25005829

  7. Amphipols: Polymers that Keep Membrane Proteins Soluble in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Tribet, Christophe; Audebert, Roland; Popot, Jean-Luc

    1996-12-01

    Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin.

  8. Encapsulation of Semiconducting Polymers in Vault Protein Cages

    SciTech Connect

    Ng, B.C.; Yu, M.; Gopal, A.; Rome, L.H.; Monbouquette, H.G.; Tolbert, S.H.

    2009-05-22

    We demonstrate that a semiconducting polymer [poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene), MPS-PPV] can be encapsulated inside recombinant, self-assembling protein nanocapsules called 'vaults'. Polymer incorporation into these nanosized protein cages, found naturally at {approx}10,000 copies per human cell, was confirmed by fluorescence spectroscopy and small-angle X-ray scattering. Although vault cellular functions and gating mechanisms remain unknown, their large internal volume and natural prevalence within the human body suggests they could be used as carriers for therapeutics and medical imaging reagents. This study provides the groundwork for the use of vaults in encapsulation and delivery applications.

  9. Hydrophobic blocks facilitate lipid compatibility and translocon recognition of transmembrane protein sequences.

    PubMed

    Stone, Tracy A; Schiller, Nina; von Heijne, Gunnar; Deber, Charles M

    2015-02-24

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity in

  10. Hydrophobic Blocks Facilitate Lipid Compatibility and Translocon Recognition of Transmembrane Protein Sequences

    PubMed Central

    2016-01-01

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate–polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity

  11. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    PubMed

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-01

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  12. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    PubMed

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-01

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity. PMID:27533365

  13. Polymer and protein interfacial competition in a shell production process

    NASA Astrophysics Data System (ADS)

    Willard, Emma; Randall, Greg

    2015-11-01

    We are exploring oil-in-aqueous polymer compound droplet formulations to UV polymerize into shells while in a strong AC electric field (kV/cm, 20 MHz). The electric field drives the drops to adopt a concentric configuration so that a ``perfect'' spherical shell can be polymerized with a uniform wall thickness. In our previous study of oil-in-water droplet centering, we determined that droplet stretching in the electric field was a problem, which we overcame by using protein additives to strengthen the oil/water interface. However, adding polymer to the shell fluid has been shown to weaken the droplet interface and further complicates T junction droplet generation. In this work, we study the adsorption competition between bovine serum albumin and polyethylene glycol diacrylate with the pendant drop method to generate a polymer/protein shell formulation that will resist stretching in the centering electric field. Furthermore, we explore droplet generation of polymer/protein shell formulations in a double T junction and stretching in an electric field. Work supported by General Atomics IR&D funds.

  14. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles

    PubMed Central

    Ray, Greeshma; Schmitt, Phuong Tieu

    2016-01-01

    ABSTRACT Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein

  15. A Generic Polymer-Protein Ligation Strategy for Vaccine Delivery.

    PubMed

    Lybaert, Lien; Vanparijs, Nane; Fierens, Kaat; Schuijs, Martijn; Nuhn, Lutz; Lambrecht, Bart N; De Geest, Bruno G

    2016-03-14

    Although the field of cancer immunotherapy is intensively investigated, there is still a need for generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we report on a generic polymer-protein ligation strategy to formulate protein antigens into reversible polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8 T-cells. A N-hydroxypropylmethacrylamide (HPMA)-based copolymer was synthesized via RAFT polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation efficiency to ovalbumin, which is used as a model protein antigen, protected thiols were introduced onto lysine residues and deprotected in situ in the presence of the polymer. The ligation efficiency was compared for both the thiol-modified versus unmodified ovalbumin, and the reversibility was confirmed. Furthermore, the obtained nanoconjugates were tested in vitro for their interaction and association with dendritic cells, showing enhanced cellular uptake and antigen cross-presentation to CD8 T-cells.

  16. Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation

    PubMed Central

    Davis, Nicolynn E.; Ding, Sheng; Forster, Ryan; Pinkas, Daniel M.; Barron, Annelise E.

    2012-01-01

    Biomaterials that mimic the extracellular matrix in both modularity and crosslinking chemistry have the potential to recapitulate the instructive signals that ultimately control cell fate. Toward this goal, modular protein polymer-based hydrogels were created through genetic engineering and enzymatic crosslinking. Animal derived tissue transglutaminase (tTG) and recombinant human transglutaminase (hTG) enzymes were used for coupling two classes of protein polymers containing either lysine or glutamine, which have the recognition substrates for enzymatic crosslinking, evenly spaced along the protein backbone. Utilizing tTG under physiological conditions, crosslinking occurred within two minutes, as determined by particle tracking microrheology. Hydrogel composition impacted the elastic storage modulus of the gel over 4-fold and also influenced microstructure and degree of swelling, but did not appreciably effect degradation by plasmin. Mouse 3T3 and primary human fibroblasts were cultured in both 2- and 3-dimensions without a decrease in cell viability and displayed spreading in 2D. The properties of these gels, which are controlled through the specific nature of the protein polymer precursors, render these gels valuable for in situ therapies. Furthermore, the modular hydrogel composition allows tailoring of mechanical and physical properties for specific tissue engineering applications. PMID:20609472

  17. Magnetic Surfactants and Polymers with Gadolinium Counterions for Protein Separations.

    PubMed

    Brown, Paul; Bromberg, Lev; Rial-Hermida, M Isabel; Wasbrough, Matthew; Hatton, T Alan; Alvarez-Lorenzo, Carmen

    2016-01-26

    New magnetic surfactants, (cationic hexadecyltrimethlyammonium bromotrichlorogadolinate (CTAG), decyltrimethylammonium bromotrichlorogadolinate (DTAG), and a magnetic polymer (poly(3-acrylamidopropyl)trimethylammonium tetrachlorogadolinate (APTAG)) have been synthesized by the simple mixing of the corresponding surfactants and polymer with gadolinium metal ions. A magnetic anionic surfactant, gadolinium tri(1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) (Gd(AOT)3), was synthesized via metathesis. Both routes enable facile preparation of magnetically responsive magnetic polymers and surfactants without the need to rely on nanocomposites or organic frameworks with polyradicals. Electrical conductivity, surface tensiometry, SQUID magnetometry, and small-angle neutron scattering (SANS) demonstrate surface activity and self-aggregation behavior of the magnetic surfactants similar to their magnetically inert parent analogues but with added magnetic properties. The binding of the magnetic surfactants to proteins enables efficient separations under low-strength (0.33 T) magnetic fields in a new, nanoparticle-free approach to magnetophoretic protein separations and extractions. Importantly, the toxicity of the magnetic surfactants and polymers is, in some cases, lower than that of their halide analogues.

  18. DMA Modulus as a Screening Parameter for Compatibility of Polymeric Containment Materials with Various Solutions for use in Space Shuttle Microgravity Protein Crystal Growth (PCG) Experiments

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.

  19. Encapsulation of Semiconducting Polymers in Vault Protein Cages

    PubMed Central

    Ng, Benny C.; Yu, Marcella; Gopal, Ajaykumar; Rome, Leonard H.; Monbouquette, Harold G.; Tolbert, Sarah H.

    2009-01-01

    We demonstrate that a semiconducting polymer [poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene), MPS-PPV] can be encapsulated inside recombinant, self-assembling protein nanocapsules called “vaults”. Polymer incorporation into these nano-sized protein cages, found naturally at ~10,000 copies per human cell, was confirmed by fluorescent spectroscopy and small-angle X-ray scattering (SAXS). Although vault cellular functions and gating mechanism remain unknown, their large internal volume and natural prevalence within the human body suggests they could be used as carriers for therapeutics and medical imaging reagents. This study provides the groundwork for the use of vaults in encapsulation and delivery applications. PMID:18803422

  20. [Molecularly imprinted polymers in electro analysis of proteins].

    PubMed

    Shumyantseva, V V; Bulko, T V; Baychorov, I Kh; Archakov, A I

    2015-01-01

    In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4.

  1. Protein markers of Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) populations using quantitative proteomics and character compatibility.

    PubMed

    Ciordia, Sergio; Robertson, Lee; Arcos, Susana C; González, María Rosa; Mena, María Del Carmen; Zamora, Paula; Vieira, Paulo; Abrantes, Isabel; Mota, Manuel; Castagnone-Sereno, Philippe; Navas, Alfonso

    2016-03-01

    The Pine Wood Nematode (PWN) Bursaphelenchus xylophilus is a severe forest pathogen in countries where it has been introduced and is considered a worldwide quarantine organism. In this study, protein markers for differentiating populations of this nematode were identified by studying differences among four selected Iberian and one American population. These populations were compared by quantitative proteomics (iTRAQ). From a total of 2860 proteins identified using the public database from the B. xylophilus genome project, 216 were unambiguous and significantly differentially regulated in the studied populations. Comparisons of their pairwise ratio were statistically treated and supported in order to convert them into discrete character states, suggesting that 141 proteins were not informative as population specific markers. Application of the Character Compatibility methodology on the remaining 75 proteins (belonging to families with different biological functions) excludes 27 which are incompatible among them. Considering only the compatible proteins, the method selects a subset of 30 specific unique protein markers which allowed the compared classification of the Iberian isolates. This approach makes it easier search for diagnostic tools and phylogenetic inference within species and populations of a pathogen exhibiting a high level of genetic diversity. PMID:26718462

  2. Protein markers of Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) populations using quantitative proteomics and character compatibility.

    PubMed

    Ciordia, Sergio; Robertson, Lee; Arcos, Susana C; González, María Rosa; Mena, María Del Carmen; Zamora, Paula; Vieira, Paulo; Abrantes, Isabel; Mota, Manuel; Castagnone-Sereno, Philippe; Navas, Alfonso

    2016-03-01

    The Pine Wood Nematode (PWN) Bursaphelenchus xylophilus is a severe forest pathogen in countries where it has been introduced and is considered a worldwide quarantine organism. In this study, protein markers for differentiating populations of this nematode were identified by studying differences among four selected Iberian and one American population. These populations were compared by quantitative proteomics (iTRAQ). From a total of 2860 proteins identified using the public database from the B. xylophilus genome project, 216 were unambiguous and significantly differentially regulated in the studied populations. Comparisons of their pairwise ratio were statistically treated and supported in order to convert them into discrete character states, suggesting that 141 proteins were not informative as population specific markers. Application of the Character Compatibility methodology on the remaining 75 proteins (belonging to families with different biological functions) excludes 27 which are incompatible among them. Considering only the compatible proteins, the method selects a subset of 30 specific unique protein markers which allowed the compared classification of the Iberian isolates. This approach makes it easier search for diagnostic tools and phylogenetic inference within species and populations of a pathogen exhibiting a high level of genetic diversity.

  3. Primary style protein expression in the self-incompatible/compatible apricot by the 2D-DIGE technique.

    PubMed

    Cao, Xiaoyan; Feng, Jianrong; Wang, Dajiang; Sun, Junli; Lu, Xiaoyan; Liu, Huaifeng

    2012-07-15

    In order to explore the molecular mechanism underlying self-incompatibility (SI) in the apricot (Prunus armeniaca L.) at the proteome level, we examined the style proteomes at different stages of flower development: small bud, big bud, 24h after self-pollination and 24h after cross-pollination with cultivar Badanshui in the SI apricot cultivar Xinshiji and the self-compatible (SC) apricot cultivar Katy by 2D fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). About 1500 style protein spots were detected; 66 were expressed differently in the four stages in Xinshiji. About 1600 style protein spots were detected; 143 were expressed differently in the four stages of flower development in Katy. In Xinshiji, one protein was expressed specifically, four proteins showed up-regulated expression and twenty-nine proteins showed down-regulated expression in the cross-pollinated style compared to the self-pollinated style. Thirteen proteins were identified unambiguously. In Katy, three proteins were expressed specifically, five proteins showed up-regulated expression and thirteen proteins showed down-regulated expression in the cross-pollinated style compared to self-pollinated style. Seven proteins were identified unambiguously. The different reactions of the style at the proteomic level were triggered in Xinshiji and Katy by self pollen and non-self pollen.

  4. Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Street, Robert A; Thompson, Barry C

    2014-07-01

    The evolution of the open-circuit voltage (Voc) with composition in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of the polymers. Ternary blends based on poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%) with phenyl-C61-butyric acid methyl ester (PC61BM) acceptor were investigated. The Voc is pinned to the lower value of the P3HTT-DPP-10%:PC61BM binary blend even up to 95% PCDTBT in the polymer fraction. This is in stark contrast to the previously investigated system based on P3HTT-DPP-10%, poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT75-co-EHT25), and PC61BM, where the Voc varied regularly across the full composition range, as explained by an organic alloy model, implying strong physical and electronic interaction between the polymers. Photocurrent spectral response (PSR) and external quantum efficiency (EQE) measurements indicate that the present system does not exhibit the hallmarks of alloy formation. Measured values of the surface energies of the polymers support miscibility of P3HTT-DPP-10% with P3HT75-co-EHT25 but not with PCDTBT. Surface energy is proposed as a figure of merit for predicting alloy formation and compositional dependence of the Voc in ternary blend solar cells and miscibility between polymers is proposed as a necessary attribute for polymer pairs that will display alloy behavior.

  5. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion.

    PubMed

    Zhao, Lijuan; Zhao, Faqiong; Zeng, Baizhao

    2014-12-15

    A novel water-compatible fenitrothion imprinted polymer was prepared on Au nanoparticles (AuNPs) by click chemistry and reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization (RAFTPP). The RAFT chain-transfer agent was synthesized on the surface of AuNPs using click chemistry, then an imprinted polymer with hydrophilic polymer brushes was prepared on the RAFT chain-transfer agent modified AuNPs by RAFTPP, mediated by hydrophilic polyethylene glycol macromolecular cochain-transfer agent. The obtained molecularly imprinted material showed improved accessibility to fenitrothion and recognition property in water medium. When the material was immobilized on an ionic liquid functionalized graphene coated glassy carbon electrode for the electrochemical determination of fenitrothion, the resulting electrochemical sensor presented linear response in the range of 0.01-5 μM, with a sensitivity of 6.1 μA/μM mm(2). The low limit of detection was 8 nM (S/N=3). The sensor was successfully applied to the determination of real samples and the recovery for standard added was 95-108%.

  6. Protein-Polymer Conjugation—Moving Beyond PEGylation

    PubMed Central

    Qi, Yizhi; Chilkoti, Ashutosh

    2015-01-01

    In this review, we summarize —from a materials science perspective— the current state of the field of polymer conjugates of peptide and protein drugs, with a focus on polymers that have been developed as alternatives to the current gold standard, poly(ethylene glycol) (PEG). PEGylation, or the covalent conjugation of PEG to biological therapeutics to improve their therapeutic efficacy by increasing their circulation half-lives and stability, has been the gold standard in the pharmaceutical industry for several decades. After years of research and development, the limitations of PEG, specifically its non-degradability and immunogenicity have become increasingly apparent. While PEG is still currently the best polymer available with the longest clinical track record, extensive research is underway to develop alternative materials in an effort to address these limitations of PEG. Many of these alternative materials have shown promise, though most of them are still in an early stage of development and their in vivo distribution, mechanism of degradation, route of elimination and immunogenicity have not been investigated to a similar extent as for PEG. Thus, further in-depth in vivo testing is essential to validate whether any of the alternative materials discussed in this review qualify as a replacement for PEG. PMID:26356631

  7. The nature of protein interactions governing globular protein-polymer block copolymer self-assembly.

    PubMed

    Lam, Christopher N; Kim, Minkyu; Thomas, Carla S; Chang, Dongsook; Sanoja, Gabriel E; Okwara, Chimdimma U; Olsen, Bradley D

    2014-04-14

    The effects of protein surface potential on the self-assembly of protein-polymer block copolymers are investigated in globular proteins with controlled shape through two approaches: comparison of self-assembly of mCherry-poly(N-isopropylacrylamide) (PNIPAM) bioconjugates with structurally homologous enhanced green fluorescent protein (EGFP)-PNIPAM bioconjugates, and mutants of mCherry with altered electrostatic patchiness. Despite large changes in amino acid sequence, the temperature-concentration phase diagrams of EGFP-PNIPAM and mCherry-PNIPAM conjugates have similar phase transition concentrations. Both materials form identical phases at two different coil fractions below the PNIPAM thermal transition temperature and in the bulk. However, at temperatures above the thermoresponsive transition, mCherry conjugates form hexagonal phases at high concentrations while EGFP conjugates form a disordered micellar phase. At lower concentration, mCherry shows a two-phase region while EGFP forms homogeneous disordered micellar structures, reflecting the effect of changes in micellar stability. Conjugates of four mCherry variants with changes to their electrostatic surface patchiness also showed minimal change in phase behavior, suggesting that surface patchiness has only a small effect on the self-assembly process. Measurements of protein/polymer miscibility, second virial coefficients, and zeta potential show that these coarse-grained interactions are similar between mCherry and EGFP, indicating that coarse-grained interactions largely capture the relevant physics for soluble, monomeric globular protein-polymer conjugate self-assembly. PMID:24654888

  8. Tyrosine Coupling Creates a Hyperbranched Multivalent Protein Polymer Using Horseradish Peroxidase via Bipolar Conjugation Points.

    PubMed

    Minamihata, Kosuke; Yamaguchi, Sou; Nakajima, Kei; Nagamune, Teruyuki

    2016-05-18

    Protein polymers of covalently cross-linked protein monomers are highly attractive biomaterials because each monomer unit possesses distinct protein functions. Protein polymers often show enhancement effects on the function by integrating a large number of molecules into one macromolecule. The cross-linking site of component proteins should be precisely controlled to avoid diminishing the protein function. However, preparing protein polymers that are cross-linked site-specifically with a high cross-linking degree is a challenge. Here, we demonstrate the preparation of a site-specifically cross-linked protein polymer that has a hyperbranched polymer-like structure with a high cross-linking degree. A horseradish peroxidase (HRP) reaction was used to achieve the protein polymerization through a peptide tag containing a tyrosine residue (Y-tag). Y-tag sequences were introduced to both N- and C-termini of a model protein, protein G. The dual Y-tagged protein G (Y-pG-Y) was treated with HRP to form a Y-pG-Y polymer possessing average and maximum cross-linking degree of approximately 70-mer and 150-mer, respectively. The Y-pG-Y polymer shows the highest cross-linking degree among the protein polymers reported, which are completely soluble in water and cross-linked via covalent bonding. The Y-pG-Y was cross-linked site-specifically at the Tyr residue in the Y-tag, retaining its function, and the Y-pG-Y polymer showed extremely strong avidity against immunoglobulin G. The reactivities of N- and C-terminal Y-tags were evaluated, and we revealed that the difference in the radical formation rate by HRP was the key for yielding highly cross-linked protein polymers. PMID:27093089

  9. Role of Polymer Architecture on the Activity of Polymer-Protein Conjugates for the Treatment of Accelerated Bone Loss Disorders.

    PubMed

    Tucker, Bryan S; Stewart, Jon D; Aguirre, J Ignacio; Holliday, L Shannon; Figg, C Adrian; Messer, Jonathan G; Sumerlin, Brent S

    2015-08-10

    Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.

  10. An improved mechanically durable electrophoresis gel matrix that is fully compatible with fluorescence-based protein detection technologies.

    PubMed

    Schulenberg, Birte; Arnold, Brad; Patton, Wayne F

    2003-07-01

    Unfortunately, conventional large-format polyacrylamide gels are mechanically fragile, often tearing during the subsequent manipulations required for visualization of the proteins. This problem is compounded when large-format two-dimensional gels are subjected to multiple staining procedures in order to detect different classes of proteins, such as total protein, phosphoproteins, and glycoproteins. A mechanically durable liquid polyacrylamide-based matrix has been developed that, upon polymerization, facilitates the handling of one-dimensional and two-dimensional gels. The matrix, referred to as Rhinohide liquid acrylamide, is stable as a refrigerated solution for up to one year, and forms a polymer-reinforced polyacrylamide gel suitable for electrophoresis, upon addition of catalysts. The matrix is superior to previously reported durable gel matrices in that it does not cause distortion of high-molecular-weight bands and does not suffer from other spot morphology artifacts, such as doubling of protein spots in the molecular weight dimension. The matrix is particularly valuable for the analysis of proteins applying multiple applications of fluorescent dyes, as required with serial staining of proteins for phosphorylation, glycosylation, and total protein expression, using Pro-Q Diamond phosphoprotein stain, Pro-Q Emerald glycoprotein stain and SYPRO Ruby protein gel stain, respectively.

  11. An improved mechanically durable electrophoresis gel matrix that is fully compatible with fluorescence-based protein detection technologies.

    PubMed

    Schulenberg, Birte; Arnold, Brad; Patton, Wayne F

    2003-07-01

    Unfortunately, conventional large-format polyacrylamide gels are mechanically fragile, often tearing during the subsequent manipulations required for visualization of the proteins. This problem is compounded when large-format two-dimensional gels are subjected to multiple staining procedures in order to detect different classes of proteins, such as total protein, phosphoproteins, and glycoproteins. A mechanically durable liquid polyacrylamide-based matrix has been developed that, upon polymerization, facilitates the handling of one-dimensional and two-dimensional gels. The matrix, referred to as Rhinohide liquid acrylamide, is stable as a refrigerated solution for up to one year, and forms a polymer-reinforced polyacrylamide gel suitable for electrophoresis, upon addition of catalysts. The matrix is superior to previously reported durable gel matrices in that it does not cause distortion of high-molecular-weight bands and does not suffer from other spot morphology artifacts, such as doubling of protein spots in the molecular weight dimension. The matrix is particularly valuable for the analysis of proteins applying multiple applications of fluorescent dyes, as required with serial staining of proteins for phosphorylation, glycosylation, and total protein expression, using Pro-Q Diamond phosphoprotein stain, Pro-Q Emerald glycoprotein stain and SYPRO Ruby protein gel stain, respectively. PMID:12872220

  12. Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Fan, Wenying; He, Man; You, Linna; Zhu, Xuewei; Chen, Beibei; Hu, Bin

    2016-04-22

    Due to the high selectivity and stability, molecularly imprinted polymers (MIPs) have been successfully applied in stir bar sorptive extraction (SBSE) as a special coating to improve the selective extraction capability for target analytes. However, traditional MIPs usually suffer from incompatibility in aqueous media and low adsorption capacity, which limit the application of MIP coated stir bar in aqueous samples. To solve these problems, a water-compatible graphene oxides (GO)/MIP composite coated stir bar was prepared in this work by in situ polymerization. The prepared water-compatible GO/MIP coated stir bar presented good mechanical strength and chemical stability, and its recognition ability in aqueous samples was improved due to the polymerization of MIP in water environment, the adsorption capacity for target analytes was also increased by the addition of GO in MIP pre-polymer solution. Based on it, a method of water-compatible GO/MIP coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detector (HPLV-UV) was proposed for the analysis of propranolol (PRO) in aqueous solution. The influencing factors of SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-UV method was evaluated under the optimized conditions. The limit of detection (LOD) of the proposed method for PRO was about 0.37 μg L(-1), and the enrichment factor (EF) was 59.7-fold (theoretical EF was 100-fold). The reproducibility was also investigated at concentrations of 5 μg L(-1) and the relative standard deviation (RSD) was found to be 7.3% (n=7). The proposed method of GO/MIP coating-SBSE-HPLC-UV was successfully applied for the assay of the interested PRO drug in urine samples, and further extended to the investigation of the excretion of the drugs by monitoring the variation of the concentration of PRO in urine

  13. Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Fan, Wenying; He, Man; You, Linna; Zhu, Xuewei; Chen, Beibei; Hu, Bin

    2016-04-22

    Due to the high selectivity and stability, molecularly imprinted polymers (MIPs) have been successfully applied in stir bar sorptive extraction (SBSE) as a special coating to improve the selective extraction capability for target analytes. However, traditional MIPs usually suffer from incompatibility in aqueous media and low adsorption capacity, which limit the application of MIP coated stir bar in aqueous samples. To solve these problems, a water-compatible graphene oxides (GO)/MIP composite coated stir bar was prepared in this work by in situ polymerization. The prepared water-compatible GO/MIP coated stir bar presented good mechanical strength and chemical stability, and its recognition ability in aqueous samples was improved due to the polymerization of MIP in water environment, the adsorption capacity for target analytes was also increased by the addition of GO in MIP pre-polymer solution. Based on it, a method of water-compatible GO/MIP coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detector (HPLV-UV) was proposed for the analysis of propranolol (PRO) in aqueous solution. The influencing factors of SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-UV method was evaluated under the optimized conditions. The limit of detection (LOD) of the proposed method for PRO was about 0.37 μg L(-1), and the enrichment factor (EF) was 59.7-fold (theoretical EF was 100-fold). The reproducibility was also investigated at concentrations of 5 μg L(-1) and the relative standard deviation (RSD) was found to be 7.3% (n=7). The proposed method of GO/MIP coating-SBSE-HPLC-UV was successfully applied for the assay of the interested PRO drug in urine samples, and further extended to the investigation of the excretion of the drugs by monitoring the variation of the concentration of PRO in urine

  14. Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid.

    PubMed

    Li, Bin; Xu, Jingjing; Hall, Andrew J; Haupt, Karsten; Tse Sum Bui, Bernadette

    2014-09-01

    Molecularly imprinted polymers (MIPs) for salicylic acid were synthesized and evaluated in aqueous environments in the aim to apply them as drug delivery carriers. One organic MIP and one inorganic MIP based on the sol-gel process were synthesized. The organic MIP was prepared by radical polymerization using the stoichiometric functional monomer, 1-(4-vinylphenyl)-3-(3,5-bis(trifluoromethyl)phenyl)urea, which can establish strong electrostatic interactions with the -COOH of salicylic acid. The sol-gel MIP was prepared with 3-(aminopropyl)triethoxysilane and trimethoxyphenylsilane, as functional monomers and tetraethyl orthosilicate as the crosslinker. While the organic MIPs bound the target specifically in acetonitrile, they exhibited lower binding in the presence of water, although the imprinting factor increased under these conditions, due to reduced non-specific binding. The sol-gel MIP has a high specificity and capacity for the drug in ethanol, a solvent compatible with drug formulation and biomedical applications. In vitro release profiles of the polymers in water were evaluated, and the results were modelled by Fick's law of diffusion and the power law. Analysis shows that the release mechanism was predominantly diffusion-controlled. PMID:25042710

  15. Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid.

    PubMed

    Li, Bin; Xu, Jingjing; Hall, Andrew J; Haupt, Karsten; Tse Sum Bui, Bernadette

    2014-09-01

    Molecularly imprinted polymers (MIPs) for salicylic acid were synthesized and evaluated in aqueous environments in the aim to apply them as drug delivery carriers. One organic MIP and one inorganic MIP based on the sol-gel process were synthesized. The organic MIP was prepared by radical polymerization using the stoichiometric functional monomer, 1-(4-vinylphenyl)-3-(3,5-bis(trifluoromethyl)phenyl)urea, which can establish strong electrostatic interactions with the -COOH of salicylic acid. The sol-gel MIP was prepared with 3-(aminopropyl)triethoxysilane and trimethoxyphenylsilane, as functional monomers and tetraethyl orthosilicate as the crosslinker. While the organic MIPs bound the target specifically in acetonitrile, they exhibited lower binding in the presence of water, although the imprinting factor increased under these conditions, due to reduced non-specific binding. The sol-gel MIP has a high specificity and capacity for the drug in ethanol, a solvent compatible with drug formulation and biomedical applications. In vitro release profiles of the polymers in water were evaluated, and the results were modelled by Fick's law of diffusion and the power law. Analysis shows that the release mechanism was predominantly diffusion-controlled.

  16. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-03-17

    The molecular interaction forces generated during the adsorption of proteins to surfaces were examined by the force-versus-distance (f-d) curve measurements of atomic force microscopy using probes modified with appropriate molecules. Various substrates with polymer brush layers bearing zwitterionic, cationic, anionic, and hydrophobic groups were systematically prepared by surface-initiated atom transfer radical polymerization. Surface interaction forces on these substrates were analyzed by the f-d curve measurements using probes with the same polymer brush layer as the substrate. Repulsive forces, which decreased depending on the ionic strength, were generated between cationic or anionic polyelectrolyte brush layers; these were considered to be electrostatic interaction forces. A strong adhesive force was detected between hydrophobic polymer brush layers during retraction; this corresponded to the hydrophobic interaction between two hydrophobic polymer layers. In contrast, no significant interaction forces were detected between zwitterionic polymer brush layers. Direct interaction forces between proteins and polymer brush layers were then quantitatively evaluated by the f-d curve measurements using protein-immobilized probes consisting of negatively charged albumin and positively charged lysozyme under physiological conditions. In addition, the amount of protein adsorbed on the polymer brush layer was quantified by surface plasmon resonance measurements. Relatively large amounts of protein adsorbed to the polyelectrolyte brush layers with opposite charges. It was considered that the detachment of the protein after contact with the polymer brush layer hardly occurred due to salt formation at the interface. Both proteins adsorbed significantly on the hydrophobic polymer brush layer, which was due to hydrophobic interactions at the interface. In contrast, the zwitterionic polymer brush layer exhibited no significant interaction force with proteins and suppressed

  17. Synthesis and characterization of polymer brushes for controlled adsorption of proteins

    NASA Astrophysics Data System (ADS)

    Hoy, Olha

    Performance of biomedical devices to a large extent depends on the interactions between the device surface and the biological liquids/protein molecules. To achieve controllable interactions between the device and biomolecules and still retain the required mechanical strength on the whole, modification of the surface is often done. In the present study surface properties were modified through a polymer brush approach. After the modification, surfaces gain tunability toward protein adsorption. Mixed polymer brushes consisting of protein repelling and protein attractive components were used, with a "grafting to" method employed for the synthesis of polymer layers. First, poly(ethylene glycol), the protein repelling component of the mixed polymer brush, was tethered to the surface. Then, polyacrylic acid-b-polystyrene (the protein attractive component) was grafted on top of the previous layer. As one part of this study, the temperature dependence of grafting of the mixed brush components was studied. Surface morphology and surface properties of the mixed polymer brush were altered by treating the brush with different organic solvents. Changes in surface morphology and properties resulting from the solvent treatment were studied in dry conditions and in aqueous media. Hydrophobic interactions of the mixed polymer brush in different pH environments were also estimated. Synthesized mixed polymer brushes demonstrated a clear dependency between the external stimuli applied to the brush and the amount of the protein adsorbed onto the brush surface, allowing an effective control of protein adsorption. Attraction forces between the protein molecules and surface of he mixed polymer brush were measured using AFM and these supported the findings from the protein adsorption studies. 2-D molecular imprinting of the polymer brush approach was used to synthesize a surface with controlled positioning of the protein molecules on the surface. Protein adsorption onto the surface of the

  18. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    PubMed

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  19. Protein ProQ Influences Osmotic Activation of Compatible Solute Transporter ProP in Escherichia coli K-12

    PubMed Central

    Kunte, H. Jörg; Crane, Rebecca A.; Culham, Doreen E.; Richmond, Deborah; Wood, Janet M.

    1999-01-01

    ProP is an osmoregulatory compatible solute transporter in Escherichia coli K-12. Mutation proQ220::Tn5 decreased the rate constant for and the extent of ProP activation by an osmotic upshift but did not alter proP transcription or the ProP protein level. Allele proQ220::Tn5 was isolated, and the proQ sequence was determined. Locus proQ is upstream from prc (tsp) at 41.2 centisomes on the genetic map. The proQ220::Tn5 and prc phenotypes were different, however. Gene proQ is predicted to encode a 232-amino-acid, basic, hydrophilic protein (molecular mass, 25,876 Da; calculated isoelectric point, 9.66; 32% D, E, R, or K; 54.5% polar amino acids). The insertion of PCR-amplified proQ into vector pBAD24 produced a plasmid containing the wild-type proQ open reading frame, the expression of which yielded a soluble protein with an apparent molecular mass of 30 kDa. Antibodies raised against the overexpressed ProQ protein detected cross-reactive material in proQ+ bacteria but not in proQ220::Tn5 bacteria. ProQ may be a structural element that influences the osmotic activation of ProP at a posttranslational level. PMID:10049386

  20. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    PubMed

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-09-01

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins. PMID:26133398

  1. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    PubMed

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  2. Coffee bean arabinogalactans: acidic polymers covalently linked to protein.

    PubMed

    Redgwell, Robert J; Curti, Delphine; Fischer, Monica; Nicolas, Pierre; Fay, Laurent B

    2002-02-11

    The arabinogalactan content of green coffee beans (Coffea arabica var. Yellow Caturra) was released by a combination of chemical extraction and enzymatic hydrolysis of the mannan-cellulose component of the wall. Several arabinogalactan fractions were isolated, purified by gel-permeation and ion-exchange chromatography and characterised by compositional and linkage analysis. The AG fractions contained between 6 and 8% glucuronic acid, and gave a positive test for the beta-glucosyl-Yariv reagent, a stain specific for arabinogalactan-proteins. The protein component accounted for between 0.5 and 2.0% of the AGPs and contained between 7 and 12% hydroxyproline. The AG moieties displayed considerable heterogeneity with regard to their degree of arabinosylation and the extent and composition of their side-chains. They possessed a MW average of 650 kDa which ranged between 150 and 2000 kDa. An investigation of the structural features of the major AG fraction, released following enzymatic hydrolysis of the mannan-cellulose polymers, allowed a partial structure of coffee arabinogalactan to be proposed.

  3. Investigating the compatibility of PEEK polymer for the fabrication of sample cells for use in muon spin spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandrasena, L.; McKenzie, I.; Brodovitch, J.-C.; Mozafari, M.; Cottrell, S. P.; Percival, P. W.

    2014-12-01

    Polyether ether ketone (PEEK) is a thermoplastic polymer with a wide range of applications due to its chemical inertness and thermal stability, and for these reasons sample cells for gas and liquid phase μSR have been constructed from PEEK. Muon levelcrossing resonance (μLCR) studies of PEEK revealed a broad, strong μLCR signal that, we hypothesize, is due to multiple overlapping resonances from the various muonium (Mu) adducts of PEEK. To investigate this, two monomer units from PEEK (4,4'-dihydroxybenzophenone and para-dimethoxybenzene) were studied in solution using transverse-field muon spin rotation (TF-μSR) and μLCR. Two different muoniated radicals were formed by Mu addition to 4,4/- dihydroxybenzophenone and one radical was formed in para-dimethoxybenzene. The μSR spectra were assigned by comparing the experimentally measured muon and proton hyperfine coupling constants with values calculated for the possible structures using Gaussian-09 software with the B3LYP functional and 6-31G basis set. Good agreement was found for cyclohexadienyl- type radicals formed by Mu addition to the benzene rings of the monomer units. We can also infer that these radicals are being formed in PEEK, and based on this we conclude that sample cells made of PEEK are unsuitable for many types of μSR experiment.

  4. Crosslinked hyaluronan with a protein-like polymer: novel bioresorbable films for biomedical applications.

    PubMed

    Pitarresi, G; Palumbo, F S; Calabrese, R; Craparo, E F; Giammona, G

    2008-02-01

    In this work, novel hydrogel films based on hyaluronan (HA) chemically crosslinked with the alpha,beta-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-D,L-aspartamide (PHEA-EDA) were produced by solution casting method. The goal was to exploit both the biological key role of HA in tissue repair and regeneration, and the versatility of a synthetic protein-like polymer as the PHEA-EDA, in order to obtain biomaterials with physicochemical and biological properties suitable for a clinical use. By varying the molar ratio between the PHEA-EDA amino groups and HA carboxyl groups, three different films were obtained and characterized. Particularly FTIR, swelling, hydrolysis, and enzymatic degradation studies were performed. In addition, the cytocompatibility of HA/PHEA-EDA hydrogel films was evaluated using human derm fibroblasts, by means of MTT and trypan blue exclusion assays. The high swelling capability, the long-term hydrolysis resistance, and the resistance to hyaluronidase greater than that of only HA, together with the cell compatibility, have suggested the potential application of these novel HA-based hydrogel films in the biomedical field of tissue engineering.

  5. Integral membrane proteins and free electron lasers - a compatible couple indeed!

    PubMed

    Wiener, Michael C

    2015-07-01

    Several structures of membrane transport proteins in complex with mechanistically-relevant ligands, determined by serial femtosecond crystallography of microcrystals at an X-ray free-electron source source, are presented. These results, including investigation of approaches to data quality assessment and refinement from low-redundancy data, indicate the feasibility of using this approach for ligand screening.

  6. Selection and demographic history shape the molecular evolution of the gamete compatibility protein bindin in Pisaster sea stars

    PubMed Central

    Popovic, Iva; Marko, Peter B; Wares, John P; Hart, Michael W

    2014-01-01

    Reproductive compatibility proteins have been shown to evolve rapidly under positive selection leading to reproductive isolation, despite the potential homogenizing effects of gene flow. This process has been implicated in both primary divergence among conspecific populations and reinforcement during secondary contact; however, these two selective regimes can be difficult to discriminate from each other. Here, we describe the gene that encodes the gamete compatibility protein bindin for three sea star species in the genus Pisaster. First, we compare the full-length bindin-coding sequence among all three species and analyze the evolutionary relationships between the repetitive domains of the variable second bindin exon. The comparison suggests that concerted evolution of repetitive domains has an effect on bindin divergence among species and bindin variation within species. Second, we characterize population variation in the second bindin exon of two species: We show that positive selection acts on bindin variation in Pisaster ochraceus but not in Pisaster brevispinus, which is consistent with higher polyspermy risk in P. ochraceus. Third, we show that there is no significant genetic differentiation among populations and no apparent effect of sympatry with congeners that would suggest selection based on reinforcement. Fourth, we combine bindin and cytochrome c oxidase 1 data in isolation-with-migration models to estimate gene flow parameter values and explore the historical demographic context of our positive selection results. Our findings suggest that positive selection on bindin divergence among P. ochraceus alleles can be accounted for in part by relatively recent northward population expansions that may be coupled with the potential homogenizing effects of concerted evolution. PMID:24967076

  7. Selection and demographic history shape the molecular evolution of the gamete compatibility protein bindin in Pisaster sea stars.

    PubMed

    Popovic, Iva; Marko, Peter B; Wares, John P; Hart, Michael W

    2014-05-01

    Reproductive compatibility proteins have been shown to evolve rapidly under positive selection leading to reproductive isolation, despite the potential homogenizing effects of gene flow. This process has been implicated in both primary divergence among conspecific populations and reinforcement during secondary contact; however, these two selective regimes can be difficult to discriminate from each other. Here, we describe the gene that encodes the gamete compatibility protein bindin for three sea star species in the genus Pisaster. First, we compare the full-length bindin-coding sequence among all three species and analyze the evolutionary relationships between the repetitive domains of the variable second bindin exon. The comparison suggests that concerted evolution of repetitive domains has an effect on bindin divergence among species and bindin variation within species. Second, we characterize population variation in the second bindin exon of two species: We show that positive selection acts on bindin variation in Pisaster ochraceus but not in Pisaster brevispinus, which is consistent with higher polyspermy risk in P. ochraceus. Third, we show that there is no significant genetic differentiation among populations and no apparent effect of sympatry with congeners that would suggest selection based on reinforcement. Fourth, we combine bindin and cytochrome c oxidase 1 data in isolation-with-migration models to estimate gene flow parameter values and explore the historical demographic context of our positive selection results. Our findings suggest that positive selection on bindin divergence among P. ochraceus alleles can be accounted for in part by relatively recent northward population expansions that may be coupled with the potential homogenizing effects of concerted evolution. PMID:24967076

  8. Selection and demographic history shape the molecular evolution of the gamete compatibility protein bindin in Pisaster sea stars.

    PubMed

    Popovic, Iva; Marko, Peter B; Wares, John P; Hart, Michael W

    2014-05-01

    Reproductive compatibility proteins have been shown to evolve rapidly under positive selection leading to reproductive isolation, despite the potential homogenizing effects of gene flow. This process has been implicated in both primary divergence among conspecific populations and reinforcement during secondary contact; however, these two selective regimes can be difficult to discriminate from each other. Here, we describe the gene that encodes the gamete compatibility protein bindin for three sea star species in the genus Pisaster. First, we compare the full-length bindin-coding sequence among all three species and analyze the evolutionary relationships between the repetitive domains of the variable second bindin exon. The comparison suggests that concerted evolution of repetitive domains has an effect on bindin divergence among species and bindin variation within species. Second, we characterize population variation in the second bindin exon of two species: We show that positive selection acts on bindin variation in Pisaster ochraceus but not in Pisaster brevispinus, which is consistent with higher polyspermy risk in P. ochraceus. Third, we show that there is no significant genetic differentiation among populations and no apparent effect of sympatry with congeners that would suggest selection based on reinforcement. Fourth, we combine bindin and cytochrome c oxidase 1 data in isolation-with-migration models to estimate gene flow parameter values and explore the historical demographic context of our positive selection results. Our findings suggest that positive selection on bindin divergence among P. ochraceus alleles can be accounted for in part by relatively recent northward population expansions that may be coupled with the potential homogenizing effects of concerted evolution.

  9. Soy protein polymers: Enhancing the water stability property

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    Soy protein based plastics have been processed in the past by researchers for various short-term applications; however a common issue is the high water sensitivity of these plastics. This work concentrates on resolving this water sensitivity issue of soy protein polymers by employing chemical and mechanical interaction at the molecular level during extrusion. The primary chemical interactions employed were anhydride chemistries such as maleic anhydride (MA), phthalic anhydride (PTA), and butylated hydroxyanisole (BHA). These were respectively used in conjunction with glycerol as a plasticizer to produce relatively water stable soy protein based plastics. Formulations with varying additive levels of the chemistries were extruded and injection molded to form the samples for characterization. The additive levels of anhydrides were varied between 3-10% tw/tw (total mass). Results indicated that phthalic anhydride formulations resulted in highest water stability. Plastic formulations with concentration up to 10% phthalic anhydride were observed to have water absorption as low as 21.5% after 24 hrs of exposure to water with respect to 250% for the control formulation. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize and confirm the fundamental mechanisms of water stability achieved by phthalic and maleic anhydride chemistries. In addition, the anhydride formulations were modified by inclusion of cotton fibers and pretreated cotton powder in order to improve mechanical properties. The incorporation of cotton fibers improved the dry strength by 18%, but did not significantly improve the wet state strength of the plastics. It was also observed that the butylated-hydroxy anisole (BHA) formulation exhibited high extension values in the dry state and had inferior water absorption properties in comparison with anhydride formulations.

  10. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus.

    PubMed

    Lamosa, P; Burke, A; Peist, R; Huber, R; Liu, M Y; Silva, G; Rodrigues-Pousada, C; LeGall, J; Maycock, C; Santos, H

    2000-05-01

    Diglycerol phosphate accumulates under salt stress in the archaeon Archaeoglobus fulgidus (L. O. Martins, R. Huber, H. Huber, K. O. Stetter, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 63:896-902, 1997). This solute was purified after extraction from the cell biomass. In addition, the optically active and the optically inactive (racemic) forms of the compound were synthesized, and the ability of the solute to act as a protecting agent against heating was tested on several proteins derived from mesophilic or hyperthermophilic sources. Diglycerol phosphate exerted a considerable stabilizing effect against heat inactivation of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and Thermococcus litoralis glutamate dehydrogenase. Highly homologous and structurally well-characterized rubredoxins from Desulfovibrio gigas, Desulfovibrio desulfuricans (ATCC 27774), and Clostridium pasteurianum were also examined for their thermal stabilities in the presence or absence of diglycerol phosphate, glycerol, and inorganic phosphate. These proteins showed different intrinsic thermostabilities, with half-lives in the range of 30 to 100 min. Diglycerol phosphate exerted a strong protecting effect, with approximately a fourfold increase in the half-lives for the loss of the visible spectra of D. gigas and C. pasteurianum rubredoxins. In contrast, the stability of D. desulfuricans rubredoxin was not affected. These different behaviors are discussed in the light of the known structural features of rubredoxins. The data show that diglycerol phosphate is a potentially useful protein stabilizer in biotechnological applications. PMID:10788369

  11. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers.

    PubMed

    Wu, Jiang; Zhao, Chao; Hu, Rundong; Lin, Weifeng; Wang, Qiuming; Zhao, Jun; Bilinovich, Stephanie M; Leeper, Thomas C; Li, Lingyan; Cheung, Harry M; Chen, Shengfu; Zheng, Jie

    2014-02-01

    Protein-polymer interactions are of great interest in a wide range of scientific and technological applications. Neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are two well-known nonfouling materials that exhibit strong surface resistance to proteins. However, it still remains unclear or unexplored how PEG and pSBMA interact with proteins in solution. In this work, we examine the interactions between two model proteins (bovine serum albumin and lysozyme) and two typical antifouling polymers of PEG and pSBMA in aqueous solution using fluorescence spectroscopy, atomic force microscopy and nuclear magnetic resonance. The effect of protein:polymer mass ratios on the interactions is also examined. Collective data clearly demonstrate the existence of weak hydrophobic interactions between PEG and proteins, while there are no detectable interactions between pSBMA and proteins. The elimination of protein interaction with pSBMA could be due to an enhanced surface hydration of zwitterionic groups in pSBMA. New evidence is given to demonstrate the interactions between PEG and proteins, which are often neglected in the literature because the PEG-protein interactions are weak and reversible, as well as the structural change caused by hydrophobic interaction. This work provides a better fundamental understanding of the intrinsic structure-activity relationship of polymers underlying polymer-protein interactions, which are important for designing new biomaterials for biosensor, medical diagnostics and drug delivery applications. PMID:24120846

  12. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  13. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.

    PubMed

    Pelegri-O'Day, Emma M; Maynard, Heather D

    2016-09-20

    Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with

  14. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.

    PubMed

    Pelegri-O'Day, Emma M; Maynard, Heather D

    2016-09-20

    Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with

  15. Uniform polymer-protein conjugate by aqueous AGET ATRP using protein as a macroinitiator.

    PubMed

    Zhu, Binbin; Lu, Diannan; Ge, Jun; Liu, Zheng

    2011-05-01

    In situ aqueous activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) in air, using an enzyme as a macroinitiator, has been proposed to prepare uniform polymer-protein conjugates with improved stability under adverse conditions. In the first step, an initiator, 2-bromoisobutyryl bromide (BIB), was grafted onto the protein surface by reaction with the amino groups. The second step was in situ AGET ATRP polymerization in air using CuBr(2)/1,1,4,7,7-pentamethyldiethylenetriamine as a catalyst and ascorbic acid as a reducing agent. The effectiveness of this method has been demonstrated using horseradish peroxidase (HRP) as a model protein and acrylamide as the monomer, which yielded HRP-polyacrylamide conjugate with a mean particle size of about 20-30 nm. The grafting of BIB onto HRP and the subsequent polymerization yielding a polyacrylamide chain were confirmed by nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight spectrometry analysis. The size of the conjugate was shown to be a function of monomer loading and reaction time. The HRP conjugates yielded essentially retained the catalytic behavior of HRP in free form, as shown by K(m) and V(max) values, but exhibited significantly enhanced thermal stability against high temperature and trypsin digestion. The use of protein as the macroinitiator prevented the formation of copolymer and thus facilitated purification of the protein conjugate. The uniform size indicates a well-defined composition of protein and polymer, which is essential for applications that request a precise control of the dosage of enzyme activity. PMID:21277397

  16. Atomic force microscopy compatible device for stretching cells and adsorbed proteins

    NASA Astrophysics Data System (ADS)

    De Jong, K. L.; MacLeod, H. C.; Norton, P. R.; Petersen, N. O.; Jasnin, M. F.

    2006-02-01

    A device that we term a "microrack" was designed to provide a means to stretch cells and proteins and to permit the measurement of any changes in adhesion forces that might occur as a result of the strain, with an atomic force microscope. The device requires an elastic material that allows adsorption of proteins and attachment of cells. The elastomer polydimethylsiloxane (PDMS) was chosen, and its suitability for short-term cell studies was tested by comparing cell morphology and fiber distribution on PDMS with cells grown on glass, a conventional substrate for cell study. Atomic force microscopy (AFM) images and section analysis of beads and scrape marks on the PDMS surface before and after stretching indicate that the microrack can provide up to 21%-29% deformation of PDMS. AFM images of cells grown on PDMS show that material attached to the surface is also affected by stretching of the microrack. The rupture of the cell after stretching and rippling of the cell under compression can be attributed to the fixation treatment, but indicates that the cell morphology is significantly affected by the movement of the substrate on the microrack.

  17. Local tolerance to spider silks and protein polymers in vivo.

    PubMed

    Vollrath, F; Barth, P; Basedow, A; Engström, W; List, H

    2002-01-01

    Spider silks were implanted subcutaneously in pigs for a study of the tolerance against this material. Four types of spider silks of high purity and cleanliness were implanted: (i) major ampullate dragline silk reeled from the golden silk spider Nephila clavipes, (ii) native (unsterilised) silk reeled from a Brachypelma spider, (iii) native silk taken from this spider's web and (iv) its web silk thermally treated at 80 degrees C. For comparison we used fibrous silk analogue protein polymers and four already marketed wound dressings (polyurethane film, collagen dressings, gauze pads). All materials were applied epicutaneously to split skin wounds. The implants were examined macroscopically as well as by light microscopy. Superficially, all sites healed rapidly. There were marked inflammatory reactions in all sites with lympho-plasmacellular infiltrations, evidence of phagocytosis and granuloma formation as indicated by the appearance of giant cells. However there was a marked absence of epitheloid cells indicating that the observed reaction was a foreign body granuloma. Furthermore, the histopathological images recorded after 14 days revealed no marked differences between the dressings. Polyurethane films, however, seemed to be superior with respect to the duration of the wound healing process. PMID:12224131

  18. Detection and identification of proteins using nanoparticle-fluorescent polymer `chemical nose' sensors

    NASA Astrophysics Data System (ADS)

    You, Chang-Cheng; Miranda, Oscar R.; Gider, Basar; Ghosh, Partha S.; Kim, Ik-Bum; Erdogan, Belma; Krovi, Sai Archana; Bunz, Uwe H. F.; Rotello, Vincent M.

    2007-05-01

    A sensor array containing six non-covalent gold nanoparticle-fluorescent polymer conjugates has been created to detect, identify and quantify protein targets. The polymer fluorescence is quenched by gold nanoparticles; the presence of proteins disrupts the nanoparticle-polymer interaction, producing distinct fluorescence response patterns. These patterns are highly repeatable and are characteristic for individual proteins at nanomolar concentrations, and can be quantitatively differentiated by linear discriminant analysis (LDA). Based on a training matrix generated at protein concentrations of an identical ultraviolet absorbance at 280 nm (A280 = 0.005), LDA, combined with ultraviolet measurements, has been successfully used to identify 52 unknown protein samples (seven different proteins) with an accuracy of 94.2%. This work demonstrates the construction of novel nanomaterial-based protein detector arrays with potential applications in medical diagnostics.

  19. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.

    PubMed

    Brogan, Alex P S; Hallett, Jason P

    2016-04-01

    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems. PMID:26976718

  20. Effects of post-anthesis fertilizer on the protein composition of the gluten polymer in a US bread wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both genetic and environmental factors influence the types and amounts of wheat proteins that link together to form polymers essential for flour quality. To understand how plant growth conditions might influence gluten polymer formation, protein fractions containing small and large polymers were se...

  1. Quantitative ToF-SIMS studies of protein drug release from biodegradable polymer drug delivery membranes

    NASA Astrophysics Data System (ADS)

    Burns, Sarah A.; Gardella, Joseph A.

    2008-12-01

    Biodegradable polymers are of interest in developing strategies to control protein drug delivery. The protein that was used in this study is Keratinocyte Growth Factor (KGF) which is a protein involved in the re-epithelialization process. The protein is stabilized in the biodegradable polymer matrix during formulation and over the course of polymer degradation with the use of an ionic surfactant Aerosol-OT (AOT) which will encapsulate the protein in an aqueous environment. The release kinetics of the protein from the surface of these materials requires precise timing which is a crucial factor in the efficacy of this drug delivery system. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used in the same capacity to identify the molecular ion peak of the surfactant and polymer and use this to determine surface concentration. In the polymer matrix, the surfactant molecular ion peak was observed in the positive and negative mode at m/ z 467 and 421, respectively. These peaks were determined to be [AOT + Na +] and [AOT - Na +]. These methods are used to identify the surfactant and protein from the polymer matrix and are used to measure the rate of surface accumulation. The second step was to compare this accumulation rate with the release rate of the protein into an aqueous solution during the degradation of the biodegradable film. This rate is compared to that from fluorescence spectroscopy measurements using the protein autofluorescence from that released into aqueous solution [C.M. Mahoney, J. Yu, A. Fahey, J.A.J. Gardella, SIMS depth profiling of polymer blends with protein based drugs, Appl. Surf. Sci. 252 (2006), 6609-6614.].

  2. pH-responsive release of proteins from biocompatible and biodegradable reverse polymer micelles.

    PubMed

    Koyamatsu, Yuichi; Hirano, Taisuke; Kakizawa, Yoshinori; Okano, Fumiyoshi; Takarada, Tohru; Maeda, Mizuo

    2014-01-10

    A reverse polymer micelle with a diameter of 100nm was prepared for a protein carrier releasing payloads in a pH-dependent manner. The reverse polymer micelle was made from an amphiphilic diblock copolymer of biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) and biocompatible poly(ethylene glycol) (PEG). PLGA having a terminal carboxyl group was additionally embedded in the micelle's PLGA layer via hydrophobic interaction. The micelles encapsulating bovine serum albumin and streptavidin released the proteins under neutral and basic conditions, whereas the proteins remained in the interior at acidic pH. Using erythropoietin as a protein drug, it was also exemplified that the released protein retained its cell proliferation activity even after rigorous formulation processes, including water-in-oil emulsion. The present reverse polymer micelle could potentially find application as an oral protein drug delivery carrier. PMID:24200745

  3. Site-Specific Zwitterionic Polymer Conjugates of a Protein Have Long Plasma Circulation.

    PubMed

    Bhattacharjee, Somnath; Liu, Wenge; Wang, Wei-Han; Weitzhandler, Isaac; Li, Xinghai; Qi, Yizhi; Liu, Jinyao; Pang, Yan; Hunt, Donald F; Chilkoti, Ashutosh

    2015-11-01

    Many proteins suffer from suboptimal pharmacokinetics (PK) that limit their utility as drugs. The efficient synthesis of polymer conjugates of protein drugs with tunable PK to optimize their in vivo efficacy is hence critical. We report here the first study of the in vivo behavior of a site-specific conjugate of a zwitterionic polymer and a protein. To synthesize the conjugate, we first installed an initiator for atom-transfer radical polymerization (ATRP) at the N terminus of myoglobin (Mb-N-Br). Subsequently, in situ ATRP was carried out in aqueous buffer to grow an amine-functionalized polymer from Mb-N-Br. The cationic polymer was further derivatized to two zwitterionic polymers by treating the amine groups of the cationic polymer with iodoacetic acid to obtain poly(carboxybetaine methacrylate) with a one-carbon spacer (PCBMA; C1 ), and sequentially with 3-iodopropionic acid and iodoacetic acid to obtain PCBMA(mix) with a mixture of C1 and C2 spacers. The Mb-N-PCBMA polymer conjugates had a longer in vivo plasma half-life than a PEG-like comb polymer conjugate of similar molecular weights (MW). The structure of the zwitterion plays a role in controlling the in vivo behavior of the conjugate, as the PCBMA conjugate with a C1 spacer had significantly longer plasma circulation than the conjugate with a mixture of C1 and C2 spacers.

  4. Control of protein-ligand recognition using a stimuli-responsive polymer

    NASA Astrophysics Data System (ADS)

    Stayton, Patrick S.; Shimoboji, Tsuyoshi; Long, Cynthia; Chilkoti, Ashutosh; Ghen, Guohua; Harris, J. Milton; Hoffman, Allan S.

    1995-11-01

    STIMULI-responsive polymers exhibit reversible phase changes in response to changes in environmental factors such as pH or temperature1-14. Conjugating such polymers to antibodies and proteins provides molecular systems for applications such as affinity separations, immunoassays and enzyme recovery and recycling15- 25. Here we show that conjugating a temperaturesensitive polymer to a genetically engineered site on a protein allows the protein's ligand binding affinity to be controlled. We synthesized a mutant of the protein streptavidin to enable sitespecific conjugation of the responsive polymer near the protein's binding site. Normal binding of biotin to the modified protein occurs below 32 °C, whereas above this temperature the polymer collapses and blocks binding. The collapse of the polymer and thus the enabling and disabling of binding, is reversible. Such environmentally triggered control of binding may find many applications in biotechnology and biomedicine, such as the control of enzyme reaction rates and of biosensor activity, and the controlled release of drugs.

  5. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    SciTech Connect

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; Lokitz, Bradley S.; Minko, Sergiy; Hinrichs, Karsten

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights into the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.

  6. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    DOE PAGES

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; et al

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights intomore » the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.« less

  7. Effects of Crosslinking on the Mechanical Properties Drug Release, and Cytocompatibility of Protein Polymers

    PubMed Central

    Martinez, Adam W.; Caves, Jeffrey M.; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L.

    2013-01-01

    Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor phase crosslinking strategies decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA) (24.5%), GTA vapor crosslinking (31.6%), disulfide (SS) (18.2%), and SS vapor crosslinking (25.5%) (p <0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure, and ultimate tensile strength (UTS). In all cases, vapor phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor phase approaches influenced drug delivery rates; with decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical, and drug delivery properties of protein polymers. PMID:23993944

  8. Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes.

    PubMed

    Chang, Yu; Chang, Yung; Higuchi, Akon; Shih, Yu-Ju; Li, Pei-Tsz; Chen, Wen-Yih; Tsai, Eing-Mei; Hsiue, Ging-Ho

    2012-03-01

    In this work, bioadhesive behavior of plasma proteins and blood cells from umbilical cord blood (UCB) onto zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymer brushes was studied. The surface coverage of polySBMA brushes on a hydrophobic polystyrene (PS) well plate with surface grafting weights ranging from 0.02 mg/cm(2) to 0.69 mg/cm(2) can be effectively controlled using the ozone pretreatment and thermal-induced radical graft-polymerization. The chemical composition, grafting structure, surface hydrophilicity, and hydration capability of prepared polySBMA brushes were determined to illustrate the correlations between grafting properties and blood compatibility of zwitterionic-grafted surfaces in contact with human UCB. The protein adsorption of fibrinogen in single-protein solutions and at complex medium of 100% UCB plasma onto different polySBMA brushes with different grafting coverage was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. The grafting density of the zwitterionic brushes greatly affects the PS surface, thus controlling the adsorption of fibrinogen, the adhesion of platelets, and the preservation of hematopoietic stem and progenitor cells (HSPCs) in UCB. The results showed that PS surfaces grafted with polySBMA brushes possess controllable hydration properties through the binding of water molecules, regulating the bioadhesive and bioinert characteristics of plasma proteins and blood platelets in UCB. Interestingly, it was found that the polySBMA brushes with an optimized grafting weight of approximately 0.1 mg/cm(2) at physiologic temperatures show significant hydrated chain flexibility and balanced hydrophilicity to provide the best preservation capacity for HSPCs stored in 100% UCB solution for 2 weeks. This work suggests that, through controlling grafting structures, the hemocompatible nature of grafted zwitterionic polymer brushes makes them well suited to the molecular design of regulated

  9. Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers.

    PubMed

    Carlsson, Nils; Borde, Annika; Wölfel, Sebastian; Kerman, Björn; Larsson, Anette

    2011-04-01

    We investigated how the Bradford assay for measurements of protein released from a drug formulation may be affected by a concomitant release of a pharmaceutical polymer used to formulate the protein delivery device. The main result is that polymer-caused perturbations of the Coomassie dye absorbance at the Bradford monitoring wavelength (595nm) can be identified and corrected by recording absorption spectra in the region of 350-850mm. The pharmaceutical polymers Carbopol and chitosan illustrate two potential types of perturbations in the Bradford assay, whereas the third polymer, hydroxypropylmethylcellulose (HPMC), acts as a nonperturbing control. Carbopol increases the apparent absorbance at 595nm because the polymer aggregates at the low pH of the Bradford protocol, causing a turbidity contribution that can be corrected quantitatively at 595nm by measuring the sample absorbance at 850nm outside the dye absorption band. Chitosan is a cationic polymer under Bradford conditions and interacts directly with the anionic Coomassie dye and perturbs its absorption spectrum, including 595nm. In this case, the Bradford method remains useful if the polymer concentration is known but should be used with caution in release studies where the polymer concentration may vary and needs to be measured independently.

  10. Nanostructured Thin Film Polymer Devices for Constant-Rate Protein Delivery

    PubMed Central

    Bernards, Daniel A.; Lance, Kevin D.; Ciaccio, Natalie A.; Desai, Tejal A.

    2012-01-01

    Herein long-term delivery of proteins from biodegradable thin film devices is demonstrated, where a nanostructured polymer membrane controls release. Protein was sealed between two poly(caprolactone) films, which generated the thin film devices. Protein release for 210 days was shown in vitro, and stable activity was established through 70 days with a model protein. These thin film devices present a promising delivery platform for biologic therapeutics, particularly for application in constrained spaces. PMID:22985294

  11. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity.

    PubMed

    Gallat, François-Xavier; Brogan, Alex P S; Fichou, Yann; McGrath, Nina; Moulin, Martine; Härtlein, Michael; Combet, Jérôme; Wuttke, Joachim; Mann, Stephen; Zaccai, Giuseppe; Jackson, Colin J; Perriman, Adam W; Weik, Martin

    2012-08-15

    The observation of biological activity in solvent-free protein-polymer surfactant hybrids challenges the view of aqueous and nonaqueous solvents being unique promoters of protein dynamics linked to function. Here, we combine elastic incoherent neutron scattering and specific deuterium labeling to separately study protein and polymer motions in solvent-free hybrids. Myoglobin motions within the hybrid are found to closely resemble those of a hydrated protein, and motions of the polymer surfactant coating are similar to those of the hydration water, leading to the conclusion that the polymer surfactant coating plasticizes protein structures in a way similar to hydration water.

  12. Chemical interactions between protein molecules and polymer membrane materials. Annual progress report, August 1, 1992--July 30, 1993

    SciTech Connect

    Belfort, G.; Koehler, J.; Wood, J.

    1993-07-15

    The Surface Force Apparatus is now operable; data collection is automatic. Hen egg lysozyme was chosen as model protein. Protein-protein, protein-mica, protein-polymer, and protein-surfactant interactions were studied. Circular dichroism was used to study changes in protein structure during adsorption.

  13. Recombinant Protein Production by In Vivo Polymer Inclusion Display ▿

    PubMed Central

    Grage, Katrin; Peters, Verena; Rehm, Bernd H. A.

    2011-01-01

    A novel approach to produce purified recombinant proteins was established. The target protein is produced as polyhydroxyalkanoate (PHA) synthase fusion protein, which mediates intracellular formation of PHA inclusions displaying the target protein. After isolation of the PHA inclusions, the pure target protein was released by simple enterokinase digestion. PMID:21803888

  14. 'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film

    SciTech Connect

    Parthasarathy, Meera; Pillai, Vijayamohanan K. Mulla, Imtiaz S.; Shabab, Mohammed; Khan, M.I.

    2007-12-07

    Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped protein is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.

  15. Measurements of water sorption enthalpy on polymer surfaces and its effect on protein adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Joonyeong; Qian, Wei; Al-Saigh, Zeki Y.

    2011-02-01

    The molar enthalpy of sorption ( ΔHms`) of water vapor onto three polymer surfaces and its effect on nonspecific protein adsorption were investigated by inverse gas chromatography (IGC). The values of ΔHms measured by IGC were found to be -16.9 ± 1.2, -18.6 ± 1.3, and -29.9 ± 2.4 kJ/mole for polystyrene (PS), polymethylmethacrylate (PMMA), and poly(2-hydroxyethyl methacrylate) (PHEMA), respectively, over a temperature range of 333-423 K. Protein adsorption to three polymer-coated substrates was conducted as a function of the bulk protein concentration using lysozyme, fibrinogen, and bovine serum albumin (BSA), and the amount of adsorbed protein was measured by the solution depletion method. For a given bulk protein concentration, a larger amount of protein is adsorbed on PS and PMMA surfaces which have greater ΔHms than that of PHEMA surfaces. Although ΔHms for PS and PMMA are close to each other, PS surfaces were found to exhibit a higher adsorption affinity than PMMA surfaces over the proteins and concentrations investigated. Our results indicate that the strength of water-polymer interactions and the functional groups on the polymer surface are important factors for controlling the amount of nonspecifically adsorbed protein.

  16. Acene-doped polymer films: singlet oxygen dosimetry and protein sensing.

    PubMed

    Koylu, Damla; Sarrafpour, Syena; Zhang, Jingjing; Ramjattan, Sanya; Panzer, Matthew J; Thomas, Samuel W

    2012-10-01

    This paper describes thin films comprising acenes dispersed in a conjugated polymeric host that have a ratiometric photoluminescence response to singlet oxygen. These films also respond to irradiation of protein-bound sensitizers, which represents a solution to the problem of protein-conjugated polymer non-specific interactions. PMID:22899174

  17. Thermoseparating water/polymer system: a novel one-polymer aqueous two-phase system for protein purification.

    PubMed

    Johansson, H O; Persson, J; Tjerneld, F

    1999-01-01

    In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C(14)H(29)) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14 degrees C. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase composed of 5-9% HM-EOPO in water when separated at 17-30 degrees C. The copolymer is self-associating and forms micellar-like structures with a CMC at 12 microM (0.01%). The partitioning behavior of three proteins (lysozyme, bovine serum albumin, and apolipoprotein A-1) in water/HM-EOPO two-phase systems has been studied, as well as the effect of various ions, pH, and temperature on protein partitioning. The amphiphilic protein apolipoprotein A-1 was strongly partitioned to the HM-EOPO-rich phase within a broad-temperature range. The partitioning of hydrophobic proteins can be directed with addition of salt. Below the isoelectric point (pI) BSA was partitioned to the HM-EOPO-rich phase and above the pI to the water phase when NaClO(4)was added to the system. Lysozyme was directed to the HM-EOPO phase with NaClO(4), and to the water phase with Na-phosphate. The possibility to direct protein partitioning between water and copolymer phases shows that this system can be used for protein separations. This was tested on purification of apolipoprotein A-1 from human plasma and Escherichia coli extract. Apolipoprotein A-1 could be recovered in the HM-EOPO-rich phase and the majority of contaminating proteins in the water phase. By

  18. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS

    PubMed Central

    2010-01-01

    Background Proteomic analysis of laticifer latex in Hevea brasiliensis has been received more significant attentions. However, the sticky and viscous characteristic of rubber latex as cytoplasm of laticifer cells and the complication of laticifer latex membrane systems has made it challenge to isolate high-quality proteins for 2-DE and MS. Results Based on the reported Borax/PVPP/Phenol (BPP) protocol, we developed an efficient method for protein preparation from different latex subcellular fractions and constructed high-resolution reference 2-DE maps. The obtained proteins from both total latex and C-serum fraction with this protocol generate more than one thousand protein spots and several hundreds of protein spots from rubber particles as well as lutoid fraction and its membranes on the CBB stained 2-DE gels. The identification of 13 representative proteins on 2-DE gels by MALDI TOF/TOF MS/MS suggested that this method is compatible with MS. Conclusion The proteins extracted by this method are compatible with 2-DE and MS. This protein preparation protocol is expected to be used in future comparative proteomic analysis for natural rubber latex. PMID:20565811

  19. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    PubMed Central

    Hahm, Jong-in

    2011-01-01

    The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered. PMID:21691441

  20. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

    PubMed

    Hammad, Moamen; Rao, Wei; Smith, James G W; Anderson, Daniel G; Langer, Robert; Young, Lorraine E; Barrett, David A; Davies, Martyn C; Denning, Chris; Alexander, Morgan R

    2016-08-16

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture 'hits' that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  1. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  2. Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.

    2003-01-01

    While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.

  3. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.

    PubMed

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level.

  4. Gene networks in the synthesis and deposition of protein polymers during grain development of wheat.

    PubMed

    She, Maoyun; Ye, Xingguo; Yan, Yueming; Howit, C; Belgard, M; Ma, Wujun

    2011-03-01

    As the amino acid storing organelle, the protein bodies provide nutrients for embryo development, seed germination and early seedling growth through storage proteolysis in cereal plants, such as wheat and rice. In protein bodies, the monomeric and polymeric prolamins, i.e. gliadins and glutenins, form gluten and play a key role in determining dough functionality and end-product quality of wheat. The formation of intra- and intermolecular bonds, including disulphide and tyrosine bonds, in and between prolamins confers cohesivity, viscosity, elasticity and extensibility to wheat dough during mixing and processing. In this review, we summarize recent progress in wheat gluten research with a focus on the fundamental molecular biological aspects, including transcriptional regulation on genes coding for prolamin components, biosynthesis, deposition and secretion of protein polymers, formation of protein bodies, genetic control of seed storage proteins, the transportation of the protein bodies and key enzymes for determining the formation of disulphide bonds of prolamin polymers.

  5. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  6. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    PubMed

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization.

  7. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    PubMed

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization. PMID:27424262

  8. Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein-Polymer Diblock Copolymers

    PubMed Central

    Thomas, Carla S.; Xu, Liza; Olsen, Bradley D.

    2014-01-01

    Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. Using model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide), orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed depending upon the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. PMID:22924842

  9. Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers.

    PubMed

    Thomas, Carla S; Xu, Liza; Olsen, Bradley D

    2012-09-10

    Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. PMID:22924842

  10. IBM Compatibility.

    ERIC Educational Resources Information Center

    Miller, Michael J.; McMillan, Tom

    1984-01-01

    Defines in detail the three levels of IBM compatibility--operational, data, and MS-DOS--and also examines 16-bit microprocessors and the MS-DOS operating system, both of which play key roles in determining whether a given machine will run IBM software. (MBR)

  11. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function.

    PubMed

    Beenken-Rothkopf, Liese N; Karfeld-Sulzer, Lindsay S; Davis, Nicolynn E; Forster, Ryan; Barron, Annelise E; Fontaine, Magali J

    2013-01-01

    Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells. Chemical and mechanical properties of the hydrogel were modified by altering the protein concentrations while collagen IV, fibronectin, and laminin were incorporated to reestablish cell-matrix interactions lost during cell isolation. Rheology indicated all hydrogels formed quickly, resulting in robust, elastic hydrogels with Young's moduli similar to soft tissue. All hydrogels tested supported both high MIN6 β-cell viability and function and have the potential to serve as an encapsulation platform for islet cell delivery in vivo.

  12. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    SciTech Connect

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  13. Combinatorial Synthesis of and high-throughput protein release from polymer film and nanoparticle libraries.

    PubMed

    Petersen, Latrisha K; Chavez-Santoscoy, Ana V; Narasimhan, Balaji

    2012-09-06

    Polyanhydrides are a class of biomaterials with excellent biocompatibility and drug delivery capabilities. While they have been studied extensively with conventional one-sample-at-a-time synthesis techniques, a more recent high-throughput approach has been developed enabling the synthesis and testing of large libraries of polyanhydrides(1). This will facilitate more efficient optimization and design process of these biomaterials for drug and vaccine delivery applications. The method in this work describes the combinatorial synthesis of biodegradable polyanhydride film and nanoparticle libraries and the high-throughput detection of protein release from these libraries. In this robotically operated method (Figure 1), linear actuators and syringe pumps are controlled by LabVIEW, which enables a hands-free automated protocol, eliminating user error. Furthermore, this method enables the rapid fabrication of micro-scale polymer libraries, reducing the batch size while resulting in the creation of multivariant polymer systems. This combinatorial approach to polymer synthesis facilitates the synthesis of up to 15 different polymers in an equivalent amount of time it would take to synthesize one polymer conventionally. In addition, the combinatorial polymer library can be fabricated into blank or protein-loaded geometries including films or nanoparticles upon dissolution of the polymer library in a solvent and precipitation into a non-solvent (for nanoparticles) or by vacuum drying (for films). Upon loading a fluorochrome-conjugated protein into the polymer libraries, protein release kinetics can be assessed at high-throughput using a fluorescence-based detection method (Figures 2 and 3) as described previously(1). This combinatorial platform has been validated with conventional methods(2) and the polyanhydride film and nanoparticle libraries have been characterized with (1)H NMR and FTIR. The libraries have been screened for protein release kinetics, stability and

  14. The effect of polymer surface modification on polymer-protein interaction via interfacial polymerization and hydrophilic polymer grafting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...

  15. Origins of Structural Flexibility in Protein-Based Supramolecular Polymers Revealed by DEER Spectroscopy

    PubMed Central

    2015-01-01

    Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil-forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron–electron resonance (DEER) spectroscopy. Experimental spin–spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how the linker structure impacts chain dynamics in the coiled-coil supramolecular polymer. PMID:25060334

  16. Origins of structural flexibility in protein-based supramolecular polymers revealed by DEER spectroscopy.

    PubMed

    Tavenor, Nathan A; Silva, K Ishara; Saxena, Sunil; Horne, W Seth

    2014-08-21

    Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil-forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron-electron resonance (DEER) spectroscopy. Experimental spin-spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how the linker structure impacts chain dynamics in the coiled-coil supramolecular polymer. PMID:25060334

  17. Preparation of photoreactive phospholipid polymer nanoparticles to immobilize and release protein by photoirradiation.

    PubMed

    Chen, Weixin; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    Photoreactive and cytocompatible polymer nanoparticles for immobilizing and releasing proteins were prepared. A water-soluble and amphiphilic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-4-(4-(1-methacryloyloxyethyl)-2-methoxy-5-nitrophenoxy) butyric acid (PL)) (PMB-PL) was synthesized. The PMB-PL underwent a cleavage reaction at the PL unit with photoirradiation at a wavelength of 365 nm. Additionally, the PMB-PL took polymer aggregate in aqueous medium and was used to modify the surface of biodegradable poly(L-lactic acid) (PLA) nanoparticle as an emulsifier. The morphology of the PMB-PL/PLA nanoparticle was spherical and approximately 130 nm in diameter. The carboxylic acid group in the PL unit could immobilize proteins by covalent bonding. The bound proteins were released by a photoinduced cleavage reaction. Within 60s, up to 90% of the immobilized proteins was released by photoirradiation. From these results and with an understanding of the fundamental properties of MPC polymers, we concluded that PMB-PL/PLA nanoparticles have the potential to be used as smart carriers to deliver proteins to biological systems, such as the inside of living cells.

  18. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry

    PubMed Central

    2014-01-01

    Background Certain wheat gluten proteins form large protein polymers that are extractable in 0.5% SDS only after sonication. Although there is a strong relationship between the amounts of these polymers in the flour and bread-making quality, the protein components of these polymers have not been thoroughly investigated. Results Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication. Proteins were further separated by size exclusion chromatography (SEC) into monomeric and polymeric fractions and analyzed by quantitative two-dimensional gel electrophoresis (2-DE). When proteins in select 2-DE spots were identified by tandem mass spectrometry (MS/MS), overlapping spots from the different protein fractions often yielded different identifications. Most high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) partitioned into the polymer fractions, while most gliadins were found in the monomer fractions. The exceptions were alpha, gamma and omega gliadins containing odd numbers of cysteine residues. These proteins were detected in all fractions, but comprised the largest proportion of the SDS-extractable polymer fraction. Several types of non-gluten proteins also were found in the polymer fractions, including serpins, triticins and globulins. All three types were found in the largest proportions in the SDS-extractable polymer fraction. Conclusions This is the first study to report the accumulation of gliadins containing odd numbers of cysteine residues in the SDS-extractable glutenin polymer fraction, supporting the hypothesis that these gliadins serve as chain terminators of the polymer chains. These data make it possible to formulate hypotheses about how protein composition influences polymer size and structure and provide a foundation for future experiments aimed at determining how environment affects glutenin polymer distribution. In addition, the

  19. PBM: a software package to create, display and manipulate interactively models of small molecules and proteins on IBM-compatible PCs.

    PubMed

    Perrakis, A; Constantinides, C; Athanasiades, A; Hamodrakas, S J

    1995-04-01

    The PBM package was developed to create, display and conveniently manipulate protein and small molecule structures on IBM-compatible microcomputers. It consists of four modules: CREATE, SPHERE, RIBBON and CONVERT. CREATE includes commands to create or alter ('mutate') the primary and subsequently the tertiary structure of a given peptide or protein by defining phi and psi angles of residues at will, options to add, delete or alter atoms in a structure, utilities to choose easily between the most common rotamers of amino acid residue sidechains and options to analyse in various ways a protein conformation. SPHERE provides for an interactive manipulation of structures containing up to 2700 atoms which can belong up to six different molecules. All manipulations can be made with the use of an ordinary mouse, by choosing from a variety of pull-down menus. Three types of models can be implemented to display molecules on the computer screen or the plotter: skeletal, solid space-filling and wireframe space-filling models. RIBBON creates ribbon models of proteins and allows for a limited variety of interactive manipulations. CONVERT is a file converter, which is capable of converting files of atom coordinates of literally any format to Brookhaven Data Bank format files. The package produces very good results for protein molecules of reasonable sizes, both in terms of graphics quality and speed of operations, on an 80486 IBM PC-compatible machine equipped with a 1 MByte VGA display card and a colour VGA monitor, which is a recommended configuration.

  20. Elastic properties of protein functionalized nanoporous polymer films

    SciTech Connect

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.

  1. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  2. Multivalent protein polymers with controlled chemical and physical properties.

    PubMed

    Top, Ayben; Kiick, Kristi L

    2010-12-30

    In this review, we describe our work on the design, characterization, and modification of a series of alanine-rich helical polypeptides with novel functions. Glycosylation of the polypeptides has permitted investigation of polymer architecture effects on multivalent interactions. One of the members of this polypeptide family exhibits polymorphological behavior that is easily manipulated via simple changes in solution pH and temperature. Polypeptide-based fibrils formed at acidic pH and high temperature were shown to direct the one-dimensional organization of gold nanoparticles via electrostatic interactions. As a precursor to fibrils, aggregates likely comprising alanine-rich cores form at low temperatures and acidic pH and reversibly dissociate into monomers upon deprotonation. PEGylation of these polypeptides does not alter the self-association or conformational behavior of the polypeptide, suggesting potential applications in the development of assembled delivery vehicles, as modification of the polypeptides should be a useful strategy for controlling assembly. PMID:20562016

  3. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  4. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona.

    PubMed

    Natte, Kishore; Friedrich, Jörg F; Wohlrab, Sebastian; Lutzki, Jana; von Klitzing, Regine; Österle, Werner; Orts-Gil, Guillermo

    2013-04-01

    The study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silica-poly(ethylene glycol) core-shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1-6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW=350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle-protein corona. Oppositely, for SNPs@PEG with MW≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and penetration depth of BSA toward PEGylated surfaces depending on the polymer length which may explain differences in protein corona evolution.

  5. Coil fraction-dependent phase behaviour of a model globular protein-polymer diblock copolymer.

    PubMed

    Thomas, Carla S; Olsen, Bradley D

    2014-05-01

    The self-assembly of the model globular protein-polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) is explored across a range of polymer coil fractions from 0.21 to 0.82 to produce a phase diagram for these materials as a function of molecular composition. Overall, four types of morphologies were observed: hexagonally packed cylinders, perforated lamellae, lamellae, and disordered nanostructures. Across all coil fractions and morphologies, a lyotropic re-entrant order-disorder transition in water was observed, with disordered structures below 30 wt% and above 70 wt% and well-ordered morphologies at intermediate concentrations. Solid state samples prepared by solvent evaporation show moderately ordered structures similar to those observed in 60 wt% solutions, suggesting that bulk structures result from kinetic trapping of morphologies which appear at lower concentrations. While highly ordered cylindrical nanostructures are observed around a bioconjugate polymer volume fraction of 0.3 and well-ordered lamellae are seen near a volume fraction of 0.6, materials at lower or higher coil fractions become increasingly disordered. Notable differences between the phase behaviour of globular protein-polymer block copolymers and coil-coil diblock copolymers include the lack of spherical nanostructures at either high or low polymer coil fractions as well as shifted phase boundaries between morphologies which result in an asymmetric phase diagram. PMID:24695642

  6. Protein-resistant NTA-functionalized polymer brushes for selective and stable immobilization of histidine-tagged proteins.

    PubMed

    Gautrot, Julien E; Huck, Wilhelm T S; Welch, Martin; Ramstedt, Madeleine

    2010-01-01

    Protein-resistant polymeric coatings that allow highly selective immobilization of specific biomolecules are essential for biomedical applications such as microarrays, biosensing, heterogeneous catalysis, and bioengineering. Polymer brushes are particularly interesting for this purpose because their chemical structure and physical properties can easily be tailored to meet specific needs. This article explores the functionalization of two protein-resistant polymer brushes, poly(oligoethylene glycol methacrylate) (POEGMA) and poly(hydroxyethyl methacrylate) (PHEMA), with nitrilotriacetic acid (NTA) moieties that can complex histidine-tagged (His-tagged) proteins selectively and reversibly. Using fluorescence microscopy, IR spectroscopy, X-ray photoelectron spectroscopy, surface plasmon resonanace, and ellipsometry, we demonstrate that His-tagged green fluorescent protein can be immobilized on NTA brushes with high stability and loading. The loading saturation reached for NTA-POEGMA is higher than that for NTA-PHEMA because of increased swelling of the former brush. Despite this higher loading capacity, NTA-POEGMA remained highly protein-resistant, which shows its potential for "clean" and specific protein immobilization. Finally, we showed that the preserved protein resistance of NTA-POEGMA brushes can be used to generate well-defined binary biofunctional patterns via a simple protocol of incubations and washes. These patterns may find applications in cell arraying and screening. PMID:20356235

  7. Amphipathic Polymers Enable the Study of Functional Membrane Proteins in the Gas Phase

    PubMed Central

    2012-01-01

    Membrane proteins are notoriously challenging to analyze using mass spectrometry (MS) because of their insolubility in aqueous solution. Current MS methods for studying intact membrane proteins involve solubilization in detergent. However, detergents can destabilize proteins, leading to protein unfolding and aggregation, or resulting in inactive entities. Amphipathic polymers, termed amphipols, can be used as a substitute for detergents and have been shown to enhance the stability of membrane proteins. Here, we show the utility of amphipols for investigating the structural and functional properties of membrane proteins using electrospray ionization mass spectrometry (ESI-MS). The functional properties of two bacterial outer-membrane β-barrel proteins, OmpT and PagP, in complex with the amphipol A8-35 are demonstrated, and their structural integrities are confirmed in the gas phase using ESI-MS coupled with ion mobility spectrometry (IMS). The data illustrate the power of ESI-IMS-MS in separating distinct populations of amphipathic polymers from the amphipol–membrane complex while maintaining a conformationally “nativelike” membrane protein structure in the gas phase. Together, the data indicate the potential importance and utility of amphipols for the analysis of membrane proteins using MS. PMID:23072351

  8. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs).

    PubMed

    EL-Sharif, Hazim F; Hawkins, Daniel M; Stevenson, Derek; Reddy, Subrayal M

    2014-08-01

    Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based monomers. Protein affinity towards the HydroMIPs was investigated under equilibrium conditions and over a range of concentrations using specific binding with Hill slope saturation profiles. We report HydroMIP binding affinities, in terms of equilibrium dissociation constants (Kd) within the micro-molar range (25 ± 4 μM, 44 ± 3 μM, 17 ± 2 μM for haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The extent of non-specific binding or cross-selectivity for non-target proteins has also been assessed. It is concluded that both selectivity and affinity for both cognate and non-cognate proteins towards the MIPs were dependent on the concentration and the complementarity of their structures and size. This is tentatively attributed to the formation of protein complexes during both the polymerisation and rebinding stages at high protein concentrations. We have used atomic force spectroscopy to characterize molecular interactions in the MIP cavities using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). Our force data suggest that we have produced selective cavities for the template protein in the MIPs and we have been able to quantify the extent of non-specific protein binding on, for example, a non-imprinted polymer (NIP) control surface.

  9. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs).

    PubMed

    EL-Sharif, Hazim F; Hawkins, Daniel M; Stevenson, Derek; Reddy, Subrayal M

    2014-08-01

    Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based monomers. Protein affinity towards the HydroMIPs was investigated under equilibrium conditions and over a range of concentrations using specific binding with Hill slope saturation profiles. We report HydroMIP binding affinities, in terms of equilibrium dissociation constants (Kd) within the micro-molar range (25 ± 4 μM, 44 ± 3 μM, 17 ± 2 μM for haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The extent of non-specific binding or cross-selectivity for non-target proteins has also been assessed. It is concluded that both selectivity and affinity for both cognate and non-cognate proteins towards the MIPs were dependent on the concentration and the complementarity of their structures and size. This is tentatively attributed to the formation of protein complexes during both the polymerisation and rebinding stages at high protein concentrations. We have used atomic force spectroscopy to characterize molecular interactions in the MIP cavities using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). Our force data suggest that we have produced selective cavities for the template protein in the MIPs and we have been able to quantify the extent of non-specific protein binding on, for example, a non-imprinted polymer (NIP) control surface. PMID:24950144

  10. Self-assembly of silk-elastinlike protein polymers into three-dimensional scaffolds for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zeng, Like

    Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the

  11. Fingerprint-imprinted polymer: rational selection of peptide epitope templates for the determination of proteins by molecularly imprinted polymers.

    PubMed

    Bossi, Alessandra M; Sharma, Piyush S; Montana, Luca; Zoccatelli, Gianni; Laub, Orgad; Levi, Raphael

    2012-05-01

    The pool of peptides composing a protein allows for its distinctive identification in a process named fingerprint (FP) analysis. Here, the FP concept is used to develop a method for the rational preparation of molecularly imprinted polymers (MIPs) for protein recognition. The fingerprint imprinting (FIP) is based on the following: (1) the in silico cleavage of the protein sequence of interest with specific agents; (2) the screening of all the peptide sequences generated against the UniProtKB database in order to allow for the rational selection of distinctive and unique peptides (named as epitopes) of the target protein; (3) the selected epitopes are synthesized and used as templates for the molecular imprinting process. To prove the principle, NT-proBNP, a marker of the risk of cardiovascular events, was chosen as an example. The in silico analysis of the NT-proBNP sequence allowed us to individuate the peptide candidates, which were next used as templates for the preparation of NT-pro-BNP-specific FIPs and tested for their ability to bind the NT-proBNP peptides in complex samples. Results indicated an imprinting factor, IF, of ~10, a binding capacity of 0.5-2 mg/g, and the ability to rebind 40% of the template in a complex sample, composed of the whole digests of NT-proBNP.

  12. Stable protein-repellent zwitterionic polymer brushes grafted from silicon nitride.

    PubMed

    Nguyen, Ai T; Baggerman, Jacob; Paulusse, Jos M J; van Rijn, Cees J M; Zuilhof, Han

    2011-03-15

    Zwitterionic poly(sulfobetaine acrylamide) (SBMAA) brushes were grafted from silicon-rich silicon nitride (SixN4, x > 3) surfaces by atom transfer radical polymerization (ATRP) and studied in protein adsorption experiments. To this aim ATRP initiators were immobilized onto SixN4 through stable Si-C linkages via three consecutive reactions. A UV-induced reaction of 1,2-epoxy-9-decene with hydrogen-terminated SixN4 surfaces was followed by conversion of the epoxide with 1,2-ethylenediamine resulting in primary and secondary amine-terminated surfaces. A reaction with 2-bromoisobutyryl bromide led to ATRP initiator-covered surfaces. Zwitterionic polymer brushes of SBMAA were grown from these initiator-coated surfaces (thickness ∼30 nm), and the polymer-coated surfaces were characterized in detail by static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and an atomic force microscope (AFM). The adsorption of proteins onto zwitterionic polymer coated surfaces was evaluated by in situ reflectometry, using a fibrinogen (FIB) solution of 0.1 g·L(-1), and compared to hexadecyl-coated SixN4 surfaces (C16-SixN4), uncoated air-based plasma oxidized SixN4 surfaces (SiOy-SixN4), and hexa(ethylene oxide)-coated SixN4 surfaces (EO6-SixN4). Excellent protein repellence (>99%) was observed for these zwitterionic polymer-coated SixN4 surfaces during exposure to FIB solution as compared to C16-SixN4 surfaces. Furthermore, the stability of these zwitterionic polymer-coated SixN4 surfaces was surveyed by exposing the surfaces for 1 week to phosphate buffered saline (PBS) solution at room temperature. The zwitterionic polymer-coated SixN4 surfaces before and after exposure to PBS solution were characterized by XPS, AFM, and water contact angle measurements, and their protein-repelling properties were evaluated by reflectometry. After exposure to PBS solution, the zwitterionic polymer coating remained intact, and its thickness was unchanged within experimental

  13. Impact of glucose polymer chain length on heat and physical stability of milk protein-carbohydrate nutritional beverages.

    PubMed

    Chen, Biye; O'Mahony, James A

    2016-11-15

    This study investigated the impact of glucose polymer chain length on heat and physical stability of milk protein isolate (MPI)-carbohydrate nutritional beverages containing 8.5% w/w total protein and 5% w/w carbohydrate. The maltodextrin and corn syrup solids glucose polymers used had dextrose equivalent (DE) values of 17 or 38, respectively. Increasing DE value of the glucose polymers resulted in a greater increase in brown colour development, ionic calcium, protein particle size, apparent viscosity and pseudoplastic rheological behaviour, and greater reduction in pH, hydration and heat stability on sterilisation at 120°C. Incorporation of glucose polymers with MPI retarded sedimentation of protein during accelerated physical stability testing, with maltodextrin DE17 causing a greater reduction in sedimentation velocity and compressibility of sediment formed than corn syrup solids DE38. The results demonstrate that chain length of the glucose polymer used strongly impacts heat and physical stability of MPI-carbohydrate nutritional beverages.

  14. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  15. Interactions between protein coated particles and polymer surfaces studied with the rotating particles probe.

    PubMed

    Kemper, M; Spridon, D; van IJzendoorn, L J; Prins, M W J

    2012-05-29

    Nonspecific interactions between proteins and polymer surfaces have to be minimized in order to control the performance of biosensors based on immunoassays with particle labels. In this paper we investigate these nonspecific interactions by analyzing the response of protein coated magnetic particles to a rotating magnetic field while the particles are in nanometer vicinity to a polymer surface. We use the fraction of nonrotating (bound) particles as a probe for the interaction between the particles and the surface. As a model system, we study the interaction of myoglobin coated particles with oxidized polystyrene surfaces. We measure the interaction as a function of the ionic strength of the solution, varying the oxidation time of the polystyrene and the pH of the solution. To describe the data we propose a model in which particles bind to the polymer by crossing an energy barrier. The height of this barrier depends on the ionic strength of the solution and two interaction parameters. The fraction of nonrotating particles as a function of ionic strength shows a characteristic shape that can be explained with a normal distribution of energy barrier heights. This method to determine interaction parameters paves the way for further studies to quantify the roles of protein coated particles and polymers in their mutual nonspecific interactions in different matrixes.

  16. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    PubMed

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications.

  17. Bifunctional polyacrylamide based polymers for the specific binding of hexahistidine tagged proteins on gold surfaces.

    PubMed

    Thompson, Lucas B; Mack, Nathan H; Nuzzo, Ralph G

    2010-05-01

    We describe a modified bifunctional analogue of polyacrylamide that spontaneously forms self-assembled polymeric thin films on Au surfaces. The film is engineered to specifically bind histidine tagged proteins (6His), while simultaneously remaining inherently resistant to the non-specific adsorption of proteins in solution. The backbone of a polyacrylamide-co-n-acryloxysuccinimide copolymer is functionalized via tandem active ester (NHS) couplings with 3-(methylthio)propylamine (MTP) and nitrilotriacetic acid (NTA). The resulting functionalized polymers form stable and exceptionally hydrophilic thin films that are approximately 2-5 nm thick, a mass coverage that varies with the MTP graft density. These films are characterized using a variety of techniques (X-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), ellipsometry, surface plasmon resonance (SPR), and matrix assisted laser desorption ionization (MALDI)) to establish their structure and function. The protein resistance of the films, as demonstrated by their exposure to solutions of bovine serum albumin (BSA), can be modulated by the amount of MTP grafted to the polymer, which in turn, affects their mass coverage. We show that it is possible to specifically capture hexahistidine tagged proteins with low incidences of nonspecific adsorption using these materials, a discrimination quantified using surface plasmon resonance (SPR) at concentrations down to approximately 20 nM. These polymers also bind strongly to the surfaces of Au nanoparticles, stabilizing them against aggregation, providing them with a similar capacity to selectively bind 6His tagged proteins that can then be speciated using MALDI.

  18. The effect of the presence of globular proteins and elongated polymers on enzyme activity.

    PubMed

    Derham, Barry K; Harding, John J

    2006-06-01

    We have studied the effect of a crowded (macromolecular) solution on reaction rates of the decarboxylating enzymes urease, pyruvate decarboxylase and glutamate decarboxylase. A variety of crowding agents were used including haemoglobin, lysozyme, various dextrans and polyethylene glycol. Enzyme reaction rates of all three enzymes show two different types of effect that separate the globular proteins from the polysaccharides/polymers. Increasing concentration of globular proteins caused a dramatic rise in enzyme activity up to 30% crowding concentration then the activity decreased, whereas the polymers caused a concentration dependent decrease in activity. The viscosities of the globular proteins were low compared to the polymers. The increased activity with proteins may be due to the decreased amount of free water, which leads to higher effective concentration of substrates, or to an increased oligomeric state by self-association. The lower activities of all enzymes with all agents at high concentrations may be explained by a decrease in rates of diffusion. An increase in protein crowding (decrease in cell water content) may contribute to pathological conditions including cataract and Alzheimer's disease.

  19. High-molecular-weight polymers for protein crystallization: poly-gamma-glutamic acid-based precipitants.

    PubMed

    Hu, Ting Chou; Korczyńska, Justyna; Smith, David K; Brzozowski, Andrzej Marek

    2008-09-01

    Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-gamma-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of approximately 400 kDa and PGA-HM (high molecular weight) of >1,000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  20. Bifunctional polyacrylamide based polymers for the specific binding of hexahistidine tagged proteins on gold surfaces.

    PubMed

    Thompson, Lucas B; Mack, Nathan H; Nuzzo, Ralph G

    2010-05-01

    We describe a modified bifunctional analogue of polyacrylamide that spontaneously forms self-assembled polymeric thin films on Au surfaces. The film is engineered to specifically bind histidine tagged proteins (6His), while simultaneously remaining inherently resistant to the non-specific adsorption of proteins in solution. The backbone of a polyacrylamide-co-n-acryloxysuccinimide copolymer is functionalized via tandem active ester (NHS) couplings with 3-(methylthio)propylamine (MTP) and nitrilotriacetic acid (NTA). The resulting functionalized polymers form stable and exceptionally hydrophilic thin films that are approximately 2-5 nm thick, a mass coverage that varies with the MTP graft density. These films are characterized using a variety of techniques (X-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), ellipsometry, surface plasmon resonance (SPR), and matrix assisted laser desorption ionization (MALDI)) to establish their structure and function. The protein resistance of the films, as demonstrated by their exposure to solutions of bovine serum albumin (BSA), can be modulated by the amount of MTP grafted to the polymer, which in turn, affects their mass coverage. We show that it is possible to specifically capture hexahistidine tagged proteins with low incidences of nonspecific adsorption using these materials, a discrimination quantified using surface plasmon resonance (SPR) at concentrations down to approximately 20 nM. These polymers also bind strongly to the surfaces of Au nanoparticles, stabilizing them against aggregation, providing them with a similar capacity to selectively bind 6His tagged proteins that can then be speciated using MALDI. PMID:20407699

  1. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    PubMed

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications. PMID:25757821

  2. Hydrogen-ion binding by tobacco-mosaic-virus protein polymers.

    PubMed

    Durham, A C; Vogel, D; de Marcillac, G D

    1977-09-15

    Hydrogen ion titration curves of tobacco mosaic virus protein have been measured in various conditions of protein concentration, temperature, ionic strength, and rate of pH change. The polymers present at each stage are deduced from turbidity and sedimentation data, plus published information. A simple semi-quantitative analysis of the curves is given, and the pK values of the two abnormal carboxylates in single helix are estimated as 6.4 and about 7.0. Disks, and some faster-forming unknown polymers in the same size range, have been abnormal carboxylate with pK 6.9. These results are most easily interpreted in terms of electrostatic interactions between carboxylates, probably at the axial ends of the protein subunits.

  3. The effect of polymer surface modification on polymer-protein interaction via interfacial polymerization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Membrane separation is an important processing technology used for separating food ingredients and fractionating value-added components from food processing by-products. Long-term performance of polymeric membranes in food protein processing is impeded by formation of fouled layers on the membrane ...

  4. Frictional drag and electrical manipulation of recombinant proteins in polymer-supported membranes.

    PubMed

    Tanaka, Motomu; Hermann, Joachim; Haase, Ilka; Fischer, Markus; Boxer, Steven G

    2007-05-01

    We establish a lipid monolayer supported by a polymer interface that offers advantages over conventional solid-supported membranes for determining the frictional drag at the membrane-protein interface as well as for electric field manipulation of membrane-anchored proteins. Polymer-supported monolayers with functional lipid anchors allow for the specific docking of His-tagged green fluorescent protein variants (His-EGFP and His-DsRed tetramer) onto the membrane surface at a defined surface density. In the first part, we measure the lateral diffusion coefficients of lipids and proteins and calculate the frictional drag at the protein-membrane interface. The second part deals with the electric field-induced accumulation of recombinant proteins on a patterned surface. The mean drift velocity of proteins, which can be obtained analytically from the shape of the steady-state concentration gradient, can be controlled by tuning the interplay of electrophoresis and electroosmosis. The results demonstrate the potential of such molecular constructs for the local functionalization of solid substrates with membrane-associated proteins.

  5. Development, characterization and applications of electrodes modified with conductive polymers, ionic liquids and proteins

    NASA Astrophysics Data System (ADS)

    Tang, Yijun

    My research involves both fundamental studies and applications of the electrodes whose surfaces are chemically modified. Conductive polymers are one of the major materials that are used to modify electrode surfaces. The thorough understanding of the behavior of conductive polymers in ionic liquids is interesting and important as the ionic liquids are becoming promising solvents. With poly(vinyl ferrocene) as the model conductive polymer, electrochemical studies were performed in various ionic liquid electrolytes. A theoretical square model and dynamic equilibrium were proposed to describe the interaction between conductive polymers and ionic liquids when the electrons transferred between the electrode and electrolyte. These findings were applied to enable and accelerate the structure relaxation of conductive polymers so that the conductive polymers were capable of delivering peptides efficiently. Incorporation of metallic nanoparticles to the conductive polymer matrix entitled new properties to the conductive polymer, increasing conductivity and providing catalytic abilities. This modification on electrode surface might bring potential uses in gas sensing, energy storage, energy conversion, etc. Conductive polymer coated electrodes produced unique double layer in ionic liquids and a fundamental study of quantum charging help to understand the double layer properties. I also studied the application of surface modified electrodes in chemo- and biosensing. A nonregeneration protocol was created to save the cost and the time in analyzing interfacial binding activities and to prevent the potential of deterioration caused to biological ligands by the conventional regeneration. In the study of carbohydrate/protein interactions, a "click" chemical reaction was first used in constructing a carbohydrate-based biosensor, which was capable of detecting and analyzing proteins specifically and accurately. In another biosensor design, the hydrogen bonding between the template and

  6. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers

    PubMed Central

    Mukherjee, Biswajit; Santra, Kousik; Pattnaik, Gurudutta; Ghosh, Soma

    2008-01-01

    Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release profile of BSA from nanoparticles could be modulated by changing protein-polymer ratios and/or by varying homogenizing speed during multiple-emulsion preparation technique. The formulation prepared with protein-polymer ratio of 1:60 at 17,500 rpm gave maximum protein-loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared formulations. Decreased (10,000 rpm) or enhanced (24,000 rpm) homogenizing speeds resulted in increased polydispersion with larger particles having no better protein-loading and -release profiles in the present study. PMID:19337417

  7. Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yuan, Huanxiang; Zhu, Chunlei; Yang, Qiong; Lv, Fengting; Liu, Libing; Wang, Shu

    2012-10-01

    For most molecule-targeted anticancer systems, intracellular protein targets are very difficult to be accessed by antibodies, and also most efforts are made to inhibit protein activity temporarily rather than inactivate them permanently. In this work we firstly designed and synthesized multifunctional polymer-drug conjugates (polythiophene-tamoxifen) for intracellular molecule-targeted binding and inactivation of protein (estrogen receptor α, ERα) for growth inhibition of MCF-7 cancer cells. Small molecule drug was conjugated to polymer side chain for intracellular signal protein targeting, and simultaneously the fluorescent characteristic of polymer for tracing the cellular uptake and localization of polythiophene-drug conjugates by cell imaging. Under light irradiation, the conjugated polymer can sensitize oxygen to produce reactive oxygen species (ROS) that specifically inactivate the targeted protein, and thus inhibit the growth of tumor cells. The conjugates showed selective growth inhibition of ERα positive cancer cells, which exhibits low side effect for our intracellular molecule-targeted therapy system.

  8. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion.

    PubMed

    Psarra, Evmorfia; König, Ulla; Ueda, Yuichiro; Bellmann, Cornelia; Janke, Andreas; Bittrich, Eva; Eichhorn, Klaus-J; Uhlmann, Petra

    2015-06-17

    Controlling the reversibility, quantity, and extent of biomolecule interaction at interfaces has a significant relevance for biomedical and biotechnological applications, because protein adsorption is always the first step when a solid surface gets in contact with a biological fluid. Polymer brushes, composed of end-tethered linear polymers with sufficient grafting density, are very promising to control and alter interactions with biological systems because of their unique structure and distinct collaborative response to environmental changes. We studied protein adsorption and cell adhesion at polymer brush substrates which consisted of poly(N-isopropylacrylamide) (PNIPAAm), having a lower critical solution temperature (LCST), to control bioadsorptive processes by changing the environmental temperature. Preparing the PNIPAAm brushes by the "grafting-to"-method two differently synthesized PNIPAAm polymers were used, at which one possessed an additional hydrophobic terminal headgroup. It is known that hydrophobic moieties can influence protein adsorption significantly. The films were comprehensively analyzed by in situ spectroscopic ellipsometry, contact angle measurements, streaming potential, and atomic force microscopy. Our study was mainly focused on the investigation of the fibrinogen (FGN) adsorption responsiveness both on homo polymer PNIPAAm brushes with and without the hydrophobic terminal functionalization, and further on binary brushes made of the polyelectrolyte poly(acrylic acid) (PAA) and one of the prior described two PNIPAAm species. The results show that the terminal hydrophobic modification of PNIPAAm has a considerable impact on wettability, LCST, and morphology of the homo and the binary brush systems, which consequently led to an alteration of FGN adsorption. By using binary PNIPAAm-PAA brushes with different composition it was possible to induce stimuli dependent FGN adsorption with a considerable amplified switching effect by introducing a

  9. Biomimetic Polymer Brushes Containing Tethered Acetylcholine Analogs for Protein and Hippocampal Neuronal Cell Patterning

    PubMed Central

    Zhou, Zhaoli; Yu, Panpan; Geller, Herbert M.; Ober, Christopher K.

    2013-01-01

    This paper describes a method to control neuronal cell adhesion and differentiation with both chemical and topographic cues by using a spatially defined polymer brush pattern. First, biomimetic methacrylate polymer brushes containing tethered neurotransmitter acetylcholine functionalities in the form of dimethylaminoethyl methacrylate (DMAEMA), or free hydroxyl-terminated poly(ethylene glycol) (PEG) units were prepared using the “grown from” method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions. The surface properties of the resulting brushes were thoroughly characterized with various techniques and hippocampal neuronal cell culture on the brush surfaces exhibit cell viability and differentiation comparable to, or even better than, those on commonly used poly-L-lysine coated glass coverslips. The polymer brushes were then patterned via UV photolithography techniques to provide specially designed surface features with different sizes (varying from 2 µm to 200 µm) and orientations (horizontal and vertical). Protein absorption experiments and hippocampal neuronal cell culture tests on the brush patterns showed that both protein and neurons can adhere to the patterns and therefore be guided by such patterns. These results also demonstrate that, because of their unique chemical composition and well-defined nature, the developed polymer brushes may find many potential applications in cell-material interactions studies and neural tissue engineering. PMID:23336729

  10. Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA.

    PubMed

    Hahn, Marc Benjamin; Solomun, Tihomir; Wellhausen, Robert; Hermann, Sabrina; Seitz, Harald; Meyer, Susann; Kunte, Hans-Jörg; Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Sturm, Heinz

    2015-12-10

    Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-5-protein (G5P) to a single-stranded DNA (dT25). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonucleotide, which has important consequences for osmotic regulation mechanisms.

  11. Polymersomes prepared from thermoresponsive fluorescent protein-polymer bioconjugates: capture of and report on drug and protein payloads.

    PubMed

    Wong, Chin Ken; Laos, Alistair J; Soeriyadi, Alexander H; Wiedenmann, Jörg; Curmi, Paul M G; Gooding, J Justin; Marquis, Christopher P; Stenzel, Martina H; Thordarson, Pall

    2015-04-27

    Polymersomes provide a good platform for targeted drug delivery and the creation of complex (bio)catalytically active systems for research in synthetic biology. To realize these applications requires both spatial control over the encapsulation components in these polymersomes and a means to report where the components are in the polymersomes. To address these twin challenges, we synthesized the protein-polymer bioconjugate PNIPAM-b-amilFP497 composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and a green-fluorescent protein variant (amilFP497). Above 37 °C, this bioconjugate forms polymersomes that can (co-)encapsulate the fluorescent drug doxorubicin and the fluorescent light-harvesting protein phycoerythrin 545 (PE545). Using fluorescence lifetime imaging microscopy and Förster resonance energy transfer (FLIM-FRET), we can distinguish the co-encapsulated PE545 protein inside the polymersome membrane while doxorubicin is found both in the polymersome core and membrane.

  12. Polymersomes prepared from thermoresponsive fluorescent protein-polymer bioconjugates: capture of and report on drug and protein payloads.

    PubMed

    Wong, Chin Ken; Laos, Alistair J; Soeriyadi, Alexander H; Wiedenmann, Jörg; Curmi, Paul M G; Gooding, J Justin; Marquis, Christopher P; Stenzel, Martina H; Thordarson, Pall

    2015-04-27

    Polymersomes provide a good platform for targeted drug delivery and the creation of complex (bio)catalytically active systems for research in synthetic biology. To realize these applications requires both spatial control over the encapsulation components in these polymersomes and a means to report where the components are in the polymersomes. To address these twin challenges, we synthesized the protein-polymer bioconjugate PNIPAM-b-amilFP497 composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and a green-fluorescent protein variant (amilFP497). Above 37 °C, this bioconjugate forms polymersomes that can (co-)encapsulate the fluorescent drug doxorubicin and the fluorescent light-harvesting protein phycoerythrin 545 (PE545). Using fluorescence lifetime imaging microscopy and Förster resonance energy transfer (FLIM-FRET), we can distinguish the co-encapsulated PE545 protein inside the polymersome membrane while doxorubicin is found both in the polymersome core and membrane. PMID:25736460

  13. Artificial Organelles: Reactions inside Protein-Polymer Supramolecular Assemblies.

    PubMed

    Garni, Martina; Einfalt, TomaŽ; Lomora, Mihai; Car, Anja; Meier, Wolfgang; Palivan, Cornelia G

    2016-01-01

    Reactions inside confined compartments at the nanoscale represent an essential step in the development of complex multifunctional systems to serve as molecular factories. In this respect, the biomimetic approach of combining biomolecules (proteins, enzymes, mimics) with synthetic membranes is an elegant way to create functional nanoreactors, or even simple artificial organelles, that function inside cells after uptake. Functionality is provided by the specificity of the biomolecule(s), whilst the synthetic compartment provides mechanical stability and robustness. The availability of a large variety of biomolecules and synthetic membranes allows the properties and functionality of these reaction spaces to be tailored and adjusted for building complex self-organized systems as the basis for molecular factories. PMID:27363371

  14. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery

    PubMed Central

    Dai, Min; Frezzo, JA; Sharma, E; Chen, R; Singh, N; Yuvienco, C; Caglar, E; Xiao, S; Saxena, A; Montclare, JK

    2016-01-01

    We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising candidates for drug delivery vehicles. PMID:27081576

  15. ELISA-mimic screen for synthetic polymer nanoparticles with high affinity to target proteins.

    PubMed

    Yonamine, Yusuke; Hoshino, Yu; Shea, Kenneth J

    2012-09-10

    Synthetic polymer nanoparticles (NPs) that display high affinity to protein targets have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). In this study, we modified an immunological assay (enzyme-linked immunosorbent assay: ELISA) into a high-throughput screening method to select nanoparticles with high affinity to target proteins. Histone and fibrinogen were chosen as target proteins to demonstrate this concept. The selection process utilized a biotinylated NP library constructed with combinations of functional monomers. The screen identified NPs with distinctive functional group compositions that exhibited high affinity to either histone or fibrinogen. The variation of protein affinity with changes in the nature and amount of functional groups in the NP provided chemical insight into the principle determinants of protein-NP binding. The NP affinity was semiquantified using the ELISA-mimic assay by varying the NP concentrations. The screening results were found to correlate with solution-based assay results. This screening system utilizing a biotinylated NP is a general approach to optimize functional monomer compositions and can be used to rapidly search for synthetic polymers with high (or low) affinity for target biological macromolecules. PMID:22813352

  16. Control of biomimetic hydroxyapatite deposition on polymer substrates using different protein adsorption abilities.

    PubMed

    Iijima, Kazutoshi; Sakai, Atsushi; Komori, Akinori; Sakamoto, Yuri; Matsuno, Hisao; Serizawa, Takeshi; Hashizume, Mineo

    2015-06-01

    We recently developed a system for coating polystyrene (PS) substrates with hydroxyapatite (HAp) by utilizing serum protein adsorption layers as mediators to induce the heterogeneous nucleation of HAp in simulated body fluids (SBFs). In this study, the selective deposition of HAp on polymer substrate surfaces with different protein adsorption abilities was investigated using PS and poly(methyl methacrylate) (PMMA). Atomic force microscopic observations and the results of a quantitative analysis using a quartz-crystal microbalance (QCM) revealed that the amounts of proteins such as human serum albumin (HSA) and human immunoglobulin G (hIgG) adsorbed on PS substrate surfaces were markedly greater than those on PMMA substrate surfaces. A markedly larger amount of HAp was deposited on protein-treated PS substrate surfaces than on PMMA substrate surfaces, reflecting protein adsorption to polymers. We also revealed that the deposition of HAp on protein-adsorbed PS substrate surfaces was enhanced by aqueous calcium chloride treatments before immersion in 1.5SBF. In the case of 2.5 M calcium chloride treatment, these surfaces were completely covered with deposits. PMID:25909182

  17. A CO2-switchable polymer brush for reversible capture and release of proteins.

    PubMed

    Kumar, Surjith; Tong, Xia; Dory, Yves L; Lepage, Martin; Zhao, Yue

    2013-01-01

    We report on a polymer brush that can be switched between extended (hydrated) and collapsed (dehydrated) chain conformational states just by passing CO(2) and an inert gas like N(2) in solution alternately. This conformational change allows for reversible adsorption and release of a protein. In contrast to adding acids and bases for pH change, using gases as the trigger makes it possible to repeat the switching cycle many times without salt accumulation. PMID:23165009

  18. A CO2-switchable polymer brush for reversible capture and release of proteins.

    PubMed

    Kumar, Surjith; Tong, Xia; Dory, Yves L; Lepage, Martin; Zhao, Yue

    2013-01-01

    We report on a polymer brush that can be switched between extended (hydrated) and collapsed (dehydrated) chain conformational states just by passing CO(2) and an inert gas like N(2) in solution alternately. This conformational change allows for reversible adsorption and release of a protein. In contrast to adding acids and bases for pH change, using gases as the trigger makes it possible to repeat the switching cycle many times without salt accumulation.

  19. Immobilization of proteins on glow discharge treated polymers

    NASA Astrophysics Data System (ADS)

    Kiaei, D.; Safranj, A.; Chen, J. P.; Johnston, A. B.; Zavala, F.; Deelder, A.; Castelino, J. B.; Markovic, V.; Hoffman, A. S.

    Certain glow discharge-treated surfaces have been shown to enhance retention of adsorbed proteins. On the basis of this phenomenon, we have investigated the possibility of immobilizing (a) albumin for developing thromboresistant and non-fouling surfaces, (b) antibodies for immuno-diagnostic assays and (c) enzymes for various biosensors and industrial bioprocesses. Albumin retention was highest on surfaces treated with tetrafluoroethylene (TFE) compared to untreated surfaces or other glow discharge treatments studied. Preadsorption of albumin on TFE-treated surfaces resulted in low fibrinogen adsorption and platelet adhesion. IgG retention was also highest on TFE-treated surfaces. The lower detection limits of both malaria antigen and circulating anodic antigen of the schistosomiasis worm were enhanced following glow discharge treatment of the assay plates with TFE. Both TFE and tetrachloroethylene (TCE) glow discharge treated surfaces showed high retention of adsorbed horseradish peroxidase (HRP). However, the retained specific activity of HRP after adsorption on TCE-treated surfaces was remarkably higher than on TFE-treated surfaces.

  20. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer-protein blends.

    PubMed

    Banerjee, Subham; Chattopadhyay, Pronobesh; Ghosh, Animesh; Goyary, Danswrang; Karmakar, Sanjeev; Veer, Vijay

    2013-04-01

    Carbohydrate polymer-protein blends Zanthoxylum limonella oil (ZLO) loaded microcapsules were prepared by multiple emulsion solvent evaporation technology and the influence of various processing variables on the properties of ZLO loaded microcapsules were examined systematically. It was found that the internal aqueous alginate phase volume, external aqueous gelatin phase volume and concentration of surfactant in external aqueous gelatin phase have a significant influence on microcapsules properties. The essential oil-loaded microcapsules were smooth and spherical in shape as revealed by scanning electron micrograph. Results of Fourier transform infrared (FTIR) spectroscopy indicated stable character and showed the absence of chemical interaction between the microencapsulated oil and carbohydrate polymer-protein blends. Differential scanning calorimetry (DSC) study revealed the antioxidant nature of ZLO in the microcapsules. The release rate of ZLO loaded microcapsules was analyzed by UV-vis spectrophotometer. 83.80% of oil encapsulation efficiency was obtained depending upon the processing variables. Thus, proper control of the processing variables involved in this technology could allow effective incorporation of essential oil into the core of the carbohydrate polymer-protein blends matrix.

  1. Protein-polymer functionalized aqueous ferrofluids showing high T2 relaxivity.

    PubMed

    Bhattacharya, S; Sheikh, L; Tiwari, V; Ghosh, M; Patel, J N; Patel, A B; Nayar, S

    2014-05-01

    Controlled size, shape and dispersibility of superparamagnetic iron oxide nanoparticles (SPIONs), has been achieved in a protein-polymer colloidal dispersion. Stable ferrofluid (FF) is synthesized in an aqueous medium of collagen, bovine serum albumin and poly(vinyl) alcohol that equilibrates with time, at ambient conditions, into an organized matrix with iron oxide particles sterically caged at defined sites. It mimics a biomineralization system; hence the process is termed biomimetics. Though the exact mechanism is not understood at this stage, we have established, with serial dilution of the protein-polymer solution that the SPIONs are formed inside the self-contained clusters of the two proteins and the polymer, which show a tendency to self assemble. More than the interparticle dipolar attractions of magnetic particles, electrostatic interactions play a role in cluster formation and collagen is responsible for the overall stability, supported by systematic dynamic light scattering data. The basic aim of this study was to increase magnetization of a previously synthesized ferrofluid without hampering stability, by reducing the total macromolecular concentration. Thrice the magnetization was achieved and in addition, the synthesized FFs exhibited very high transverse relaxivity and showed good contrast in mice liver, in the in vivo studies. PMID:24734534

  2. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels.

    PubMed Central

    Tong, J; Anderson, J L

    1996-01-01

    The equilibrium partition coefficient (K) and diffusion coefficient (Dgel) of two proteins and two linear polymers were measured as a function of polymer content of a 2.7% cross-linked polyacrylamide (PA) gel. The gel concentration, expressed as a volume percentage of PA in the gel (phi), varied between 0 and 14%. The measurements were made by fluorescence spectroscopy; fluorescent dyes were covalently attached to the macromolecules. The dependence of K on phi for the proteins agrees with a model of the gel network as randomly placed, impenetrable rods. The diffusion data are interpreted in terms of an effective medium theory for the mobility of a sphere in a Brinkman fluid. Using values of the Brinkman parameter in the literature, the effective medium model with no adjustable parameters fits the diffusion data for the proteins very well but underpredicts Dgel for the linear polymers. The gel effect on partitioning is significantly greater than that on diffusion. The permeability (KDgel) of bovine serum albumin decreased by 10(3) over the range phi = 0 --> 8%, and the ratio of permeabilities for ribonuclease compared to BSA increased from 2 to 30. Images FIGURE 1 PMID:8785307

  3. Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Valluripalli, Vinod; Shi, Pu; Wang, Jiawei; Lin, Yi-An; Cui, Honggang; Kannan, Ram; Hinton, David R; MacKay, J. Andrew

    2014-01-01

    αB-crystallin is a protein chaperone with anti-apoptotic and anti-inflammatory activity that is apically secreted in exosomes by polarized human retinal pigment epithelium. A 20 amino acid mini-peptide derived from residues 73-92 of αB-crystallin protects human retinal pigment epithelial (RPE) cells from oxidative stress, a process involved in the progression of age related macular degeneration (AMD). Unfortunately, due to its small size, its development as a therapeutic requires a robust controlled release system. To achieve this goal, the αB-crystallin peptide was re-engineered into a protein polymer nanoparticle/macromolecule with the purpose of increasing the hydrodynamic radius/molecular weight and enhancing potency via multivalency or an extended retention time. The peptide was recombinantly fused with two high molecular weight (~40 kD) protein polymers inspired by human tropoelastin. These elastin-like-polypeptides (ELPs) include: i) a soluble peptide called S96; and ii) a diblock copolymer called SI that assembles multivalent nanoparticles at physiological temperature. Fusion proteins, cryS96 and crySI, were found to reduce aggregation of alcohol dehydrogenase and insulin, which demonstrates that ELP fusion did not diminish chaperone activity. Next their interaction with RPE cells was evaluated under oxidative stress. Unexpectedly, H2O2-induced stress dramatically enhanced cellular uptake and nuclear localization of both cryS96 and crySI ELPs. Accompanying uptake, both fusion proteins protected RPE cells from apoptosis, as indicated by reduced caspase 3 activation and TUNEL staining. This study demonstrates the in vitro feasibility of modulating the hydrodynamic radius for small peptide chaperones by seamless fusion with protein polymers; furthermore, they may have therapeutic applications in diseases associated with oxidative stress, such as AMD. PMID:24780268

  4. The Role of Electrostatics in the Partitioning Behavior of Proteins into Polymer Hydrogels

    NASA Astrophysics Data System (ADS)

    Sharma, Upma; Carbeck, Jeffrey

    2000-03-01

    The goal of this work is to quantify the role of electrostatic interactions in the partitioning behavior of proteins into polymer hydrogels using charge ladders of proteins and capillary electrophoresis. Previous attempts to study electrostatic interactions between polyelectrolytes and proteins have been performed by conducting experiments in which the pH of the system is varied. This method does alter the charge of the protein; it also affects the degree of ionization of the polyelectrolytes. The partitioning behavior will vary as a combination of these effects. Protein charge ladders offer a superior approach relative to changing solution pH as this approach allows for isolation of charge as the independent variable. Partitioning experiments conducted using neutral, anionic, and cationic gels show that partitioning behavior for proteins was independent of the molecular weight of the protein for myoglobin, a-lactalbumin, lysozyme, and bovine carbonic anhydrase. Partitioning varied with the protein charge in a way not expected from simple electrostatic arguments. For example, in gels with a low charge density, the partitioning behavior varied linearly with protein charge; in high charge density gels, the parititioning behavior was independent of the protein charge.

  5. Multiplexed detection of protein cancer markers on Au/Ag-barcoded nanorods using fluorescent-conjugated polymers.

    PubMed

    Zheng, Weiming; He, Lin

    2010-07-01

    Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as approximately 25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.

  6. Integrated reactive ion etching to pattern cross-linked hydrophilic polymer structures for protein immobilization

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Strickland, Aaron D.; Kim, Il; Malliaras, George G.; Batt, Carl A.

    2007-04-01

    Patterning of cross-linked hydrophilic polymer features using reactive ion etching (RIE) capable of covalently immobilizing proteins has been achieved. Projection photolithography was used to pattern photoresist to create micromolds. Vapor phase molecular self-assembly of polymerizable monolayer in molds allowed covalent binding of hydrogel on surface during free-radical polymerization. Excess hydrogel blanket film was consumed with oxygen RIE resulting into hydrogel pattern of 1μm size aligned to prefabricated silicon oxide structures. Proteins were finally coupled through their primary amine groups selectively to acid functionalized hydrogel features through stable amide linkages using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride and N-hydroxysulfosuccinimide.

  7. Positioning Multiple Proteins at the Nanoscale with Electron Beam Cross-Linked Functional Polymers

    PubMed Central

    Christman, Karen L.; Schopf, Eric; Broyer, Rebecca M.; Li, Ronald C.; Chen, Yong; Maynard, Heather D.

    2009-01-01

    Constructing multicomponent protein structures that match the complexity of those found in Nature is essential for the next generation of medical materials. In this report, a versatile method to precisely arrange multicomponent protein nanopatterns in two-dimensional single-layer or three-dimensional multilayer formats using electron beam lithography is described. Eight arm poly(ethylene glycol)s were modified at the chain ends with either biotin, maleimide, aminooxy, or nitrilotriacetic acid. Analysis by 1H NMR spectroscopy revealed that the reactions were efficient and that end group conversions were 91-100%. The polymers were then cross-linked onto Si surfaces using electron beams to form micron sized patterns of the functional groups. Proteins with biotin binding sites, a free cysteine, an N-terminal α-oxoamide, and a histidine tag, respectively, were then incubated with the substrate in aqueous solutions without the addition of any other reagents. By fluorescence microscopy experiments it was determined that proteins reacted site-specifically with the exposed functional groups to form protein micropatterns. Multicomponent nanoscale protein patterns were then fabricated. Different PEGs with orthogonal reactivity were sequentially patterned on the same chip. Simultaneous assembly of two different proteins from a mixture of the biomolecules formed the multicomponent two dimensional patterns. Atomic force microscopy demonstrated that nanometer sized patterns of polymer were formed and fluorescence microscopy demonstrated that side-by-side patterns of the different proteins were obtained. Moreover, multilayer PEG fabrication produced micron and nanometer sized patterns of one functional group on top of the other. Precise three-dimensional arrangements of different proteins were then realized. PMID:19160460

  8. Electrodeposition of polymer nanodots with controlled density and their reversible functionalization by polyhistidine-tag proteins.

    PubMed

    Bazin, Damien; Chevalier, Sébastien; Saadaoui, Hassan; Santarelli, Xavier; Larpent, Chantal; Feracci, Hélène; Faure, Chrystel

    2012-10-01

    We present a simple and rapid procedure for producing polymer-coated substrates that can be easily functionalized by ion-chelating proteins. The procedure consists of depositing 18 nm metal-chelating cyclam-modified polymer nanoparticles (cyclam-nps) onto a conductive substrate (an Indium Tin Oxide (ITO) electrode) from an aqueous dispersion of Cu(2+)-loaded cyclam-nps while being subjected to a direct current (DC) field. The density of deposited nps as measured by AFM is shown to be in direct correlation to the concentration of nps in the dispersion with deposition of the particles taking less than 5 s. Because of the functionalization of the nps with cyclam groups, they can be used as anchoring sites for 6-Histidine (6-His) tagged proteins through complexation with divalent metal ions. In this work 6-His Green Fluorescent Protein (6-His GFP) is used as a model protein. The characterization by fluorescence microscopy clearly shows that the protein affinity was ion dependent and that the 6-His GFP density can be controlled by np density, which is itself easily tunable. AFM observations confirmed the immobilization of 6-His GFP onto cyclam-nps and its subsequent removal by treatment with ethylenediaminetetraacetic acid (EDTA).

  9. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    PubMed

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-01

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  10. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants.

    PubMed

    Elvira, Maria Isabel; Galdeano, Myriam Molina; Gilardi, Patricia; García-Luque, Isabel; Serra, Maria Teresa

    2008-01-01

    Resistance conferred by the L(3) gene is active against most of the tobamoviruses, including the Spanish strain (PMMoV-S), a P(1,2) pathotype, but not against certain strains of pepper mild mottle virus (PMMoV), termed P(1,2,3) pathotype, such as the Italian strain (PMMoV-I). Both viruses are nearly identical at their nucleotide sequence level (98%) and were used to challenge Capsicum chinense PI159236 plants harbouring the L(3) gene in order to carry out a comparative proteomic analysis of PR proteins induced in this host in response to infection by either PMMoV-S or PMMoV-I. PMMoV-S induces a hypersensitive reaction (HR) in C. chinense PI159236 plant leaves with the formation of necrotic local lesions and restriction of the virus at the primary infection sites. In this paper, C. chinense PR protein isoforms belonging to the PR-1, beta-1,3-glucanases (PR-2), chitinases (PR-3), osmotin-like protein (PR-5), peroxidases (PR-9), germin-like protein (PR-16), and PRp27 (PR-17) have been identified. Three of these PR protein isoforms were specifically induced during PMMoV-S-activation of C. chinense L(3) gene-mediated resistance: an acidic beta-1,3-glucanase isoform (PR-2) (M(r) 44.6; pI 5.1), an osmotin-like protein (PR-5) (M(r) 26.8; pI 7.5), and a basic PR-1 protein isoform (M(r) 18; pI 9.4-10.0). In addition, evidence is presented for a differential accumulation of C. chinense PR proteins and mRNAs in the compatible (PMMoV-I)-C. chinense and incompatible (PMMoV-S)-C. chinense interactions for proteins belonging to all PR proteins detected. Except for an acidic chitinase (PR-3) (M(r) 30.2; pI 5.0), an earlier and higher accumulation of PR proteins and mRNAs was detected in plants associated with HR induction. Furthermore, the accumulation rates of PR proteins and mRNA did not correlate with maximal accumulation levels of viral RNA, thus indicating that PR protein expression may reflect the physiological status of the plant.

  11. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays.

    PubMed

    Hahm, Jong-in

    2014-08-26

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.

  12. Self-Assembly of Differently Shaped Protein-Polymer Conjugates through Modification of the Bioconjugation Site.

    PubMed

    Huang, Aaron; Olsen, Bradley D

    2016-08-01

    Self-assembly of protein-polymer block copolymers is an attractive route for preparing biocatalytic materials. To clarify the effect of bioconjugate shape on self-assembly without changing the chemical details of either block, four different conjugation sites are selected on the surface of the model globular protein mCherry at residues 3, 108, 131, and 222 to alter the colloidal shape of the bioconjugate. All four mCherry-b-poly(N-isopropylacrylamide) bioconjugates show qualitatively similar phase diagrams, indicating that self-assembly is robust with respect to changes in conjugation site. However, protein orientation has an effect on the location of the order-disorder transition concentration, and the stability of the disordered micellar phase is shown to be different for each conjugate. Differences in domain spacing also suggest changes in protein orientation within the lamellae.

  13. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression.

    PubMed

    Ghosh, Sudip; Narula, Kanika; Sinha, Arunima; Ghosh, Rajgourab; Jawa, Priyanka; Chakraborty, Niranjan; Chakraborty, Subhra

    2016-01-01

    Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ. PMID:27507973

  14. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression

    PubMed Central

    Ghosh, Sudip; Narula, Kanika; Sinha, Arunima; Ghosh, Rajgourab; Jawa, Priyanka; Chakraborty, Niranjan; Chakraborty, Subhra

    2016-01-01

    Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ. PMID:27507973

  15. A Modular Method for the High-Yield Synthesis of Site-Specific Protein-Polymer Therapeutics.

    PubMed

    Pang, Yan; Liu, Jinyao; Qi, Yizhi; Li, Xinghai; Chilkoti, Ashutosh

    2016-08-22

    A versatile method is described to engineer precisely defined protein/peptide-polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin-like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme-mediated ligation; and 3) attachment of a polymer by a click reaction with near-quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water-soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide-polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide-polymer conjugates for therapeutic use and other applications. PMID:27439953

  16. John H. Dillon Medal Talk: Protein Fibrils, Polymer Physics: Encounter at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele

    2011-03-01

    Aggregation of proteins is central to many aspects of daily life, ranging from blood coagulation, to eye cataract formation disease, food processing, or neurodegenerative infections. In particular, the physical mechanisms responsible for amyloidosis, the irreversible fibril formation of various proteins implicated in protein misfolding disorders such as Alzheimer, Creutzfeldt-Jakob or Huntington's diseases, have not yet been fully elucidated. In this talk I will discuss how polymer physics and colloidal science concepts can be used to reveal very useful information on the formation, structure and properties of amyloid protein fibrils. I will discuss their physical properties at various length scales, from their collective liquid crystalline behavior in solution to their structural features at the single molecule length scale and show how polymer science notions can shed a new light on these interesting systems. 1) ``Understanding amyloid aggregation by statistical analysis of atomic force microscopy images'' J. Adamcik, J.-M. Jung, J. Flakowski, P. De Los Rios, G. Dietler and R. Mezzenga, Nature nanotechnology, 5, 423 (2010)

  17. Effect of Polymer Porosity on Aqueous Self-Healing Encapsulation of Proteins in PLGA Microspheres

    PubMed Central

    Reinhold, Samuel E.

    2014-01-01

    Self-healing (SH) poly(lactic-co-glycolic acid) (PLGA) microspheres are a unique class of functional biomaterials capable of microencapsulating process-sensitive proteins by simple mixing and heating the drug-free polymer in aqueous protein solution. Drug-free SH microspheres of PLGA 50/50 with percolating pore networks of varying porosity (ε = 0.49–73) encapsulate increasing lysozyme (~1–10% w/w) with increasing ε, with typically ~20–25% pores estimated assessible to entry by the enzyme from the external solution. Release kinetics of lysozyme under physiological conditions is continuous over > 2 weeks and most strongly influenced by ε and protein loading before reaching a lag phase until 28 days at the study completion. Recovered enzyme after release is typically predominantly monomeric and active. Formulations containing acid-neutralizing MgCO3 at >4.3% exhibit >97% monomeric and active protein after the release with full mass balance recovery. Hence, control of SH polymer ε is a key parameter to development of this new class of biomaterials. PMID:24285573

  18. Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode.

    PubMed

    Bax, Daniel V; Tipa, Roxana S; Kondyurin, Alexey; Higgins, Michael J; Tsoutas, Kostadinos; Gelmi, Amy; Wallace, Gordon G; McKenzie, David R; Weiss, Anthony S; Bilek, Marcela M M

    2012-07-01

    The interaction of proteins and cells with polymers is critical to their use in scientific and medical applications. In this study, plasma immersion ion implantation (PIII) was used to modify the surface of the conducting polymer, polypyrrole, which possesses electrical properties. PIII treatment enabled persistent, covalent binding of the cell adhesive protein, tropoelastin, without employing chemical linking molecules. In contrast tropoelastin was readily eluted from the untreated surface. Through this differential persistence of binding, surface bound tropoelastin supported cell adhesion and spreading on the PIII treated but not the untreated polypyrrole surface. The application of a steel shadow mask during PIII treatment allowed for spatial definition of tropoelastin exclusively to PIII treated regions. The general applicability of this approach to other extracellular matrix proteins was illustrated using collagen I, which displayed similar results to tropoelastin but required extended washing conditions. This approach allowed fine patterning of cell adhesion and spreading to tropoelastin and collagen, specifically on PIII treated polypyrrole regions. We therefore present a methodology to alter the functionality of polypyrrole surfaces, generating surfaces that can spatially control cellular interactions through protein functionalization with the potential for electrical stimulation.

  19. New Trends in Compatibility.

    ERIC Educational Resources Information Center

    Miller, Michael J.; Maremaa, Thomas

    1984-01-01

    Surveys the choices available in new 16-bit microcomputers which run the MS-DOS operating system and which are IBM compatible. The 18 microcomputers reviewed are divided into the categories of compatibles offering additional features, low-cost compatibles, sleeker and faster compatibles, and coprocessor boards that yield compatibility. (MBR)

  20. Complementary metal oxide semiconductor compatible silicon nanowires-on-a-chip: fabrication and preclinical validation for the detection of a cancer prognostic protein marker in serum.

    PubMed

    Tran, Duy P; Wolfrum, Bernhard; Stockmann, Regina; Pai, Jing-Hong; Pourhassan-Moghaddam, Mohammad; Offenhäusser, Andreas; Thierry, Benjamin

    2015-02-01

    An integrated translational biosensing technology based on arrays of silicon nanowire field-effect transistors (SiNW FETs) is described and has been preclinically validated for the ultrasensitive detection of the cancer biomarker ALCAM in serum. High-quality SiNW arrays have been rationally designed toward their implementation as molecular biosensors. The FET sensing platform has been fabricated using a complementary metal oxide semiconductor (CMOS)-compatible process. Reliable and reproducible electrical performance has been demonstrated via electrical characterization using a custom-designed portable readout device. Using this platform, the cancer prognostic marker ALCAM could be detected in serum with a detection limit of 15.5 pg/mL. Importantly, the detection could be completed in less than 30 min and span a wide dynamic detection range (∼10(5)). The SiNW-on-a-chip biosensing technology paves the way to the translational clinical application of FET in the detection of cancer protein markers.

  1. An amphipathic alpha-helical peptide from Apolipoprotein A1 stabilizes protein polymer vesicles

    PubMed Central

    Pastuszka, Martha K.; Wang, Xiangdong; Lock, Lye Lin; Janib, Siti Mohd; Cui, Honggang; DeLeve, Laurie D.; MacKay, J. Andrew

    2014-01-01

    L4F, an alpha helical peptide inspired by the lipid-binding domain of the ApoA1 protein, has potential applications in the reduction of inflammation involved with cardiovascular disease as well as liver fibrosis. In addition to its biological activity, amphipathic peptides such as L4F are likely candidates to direct the molecular assembly of peptide nanostructures. Here we describe the stabilization of the amphipathic L4F peptide through fusion to a high molecular weight protein polymer. Comprised of multiple pentameric repeats, elastin-like polypeptides (ELPs) are biodegradable protein polymers inspired from the human gene for tropoelastin. Dynamic light scattering confirmed that the fusion peptide forms nanoparticles with a hydrodynamic radius of approximately 50 nm, which is unexpectedly above that observed for the free ELP (~5.1 nm). To further investigate their morphology, negative and cryogenic transmission electron microscopy were used to reveal that they are unilamellar vesicles. On average, these vesicles are 49 nm in radius with lamellae 8 nm in thickness. To evaluate their therapeutic potential, the L4F nanoparticles were incubated with hepatic stellate cells. Stellate cell activation leads to hepatic fibrosis; furthermore, their activation is suppressed by ApoA1 mimetic peptides. Consistent with this observation, L4F nanoparticles were found to suppress hepatic stellate cell activation in vitro. To evaluate the in vivo potential for these nanostructures, their plasma pharmacokinetics were evaluated in rats. Despite the assembly of nanostructures, both free L4F and L4F nanoparticles exhibited similar half-lives of approximately 1 hr in plasma. This is the first study reporting the stabilization of peptide-based vesicles using ApoA1 mimetic peptides fused to a protein polymer; furthermore, this platform for peptide-vesicle assembly may have utility in the design of biodegradable nanostructures. PMID:25016969

  2. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    NASA Astrophysics Data System (ADS)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for

  3. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.

    PubMed

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-01-01

    The downstream processing of therapeutic proteins is a challenging task. Key information needed to estimate applicable workup strategies (e.g. crystallization) are the interactions of the proteins with other components in solution. This information can be deduced from the second osmotic virial coefficient B22 , measurable by static light scattering. Thermodynamic models are very valuable for predicting B22 data for different process conditions and thus decrease the experimental effort. Available B22 models consider aqueous salt solutions but fail for the prediction of B22 if an additional polymer is present in solution. This is due to the fact that depending on the polymer concentration protein-protein interactions are not rectified as assumed within these models. In this work, we developed an extension of the xDLVO model to predict B22 data of proteins in aqueous polymer-salt solutions. To show the broad applicability of the model, lysozyme, γ-globulin and D-xylose ketol isomerase in aqueous salt solution containing polyethylene glycol were considered. For all proteins considered, the modified xDLVO model was able to predict the experimentally observed non-monotonical course in B22 data with high accuracy. When used in an early stage in process development, the model will contribute to an efficient and cost effective downstream processing development.

  4. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models.

    PubMed

    Cheng, Ryan R; Hawk, Alexander T; Makarov, Dmitrii E

    2013-02-21

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  5. Supramolecular Ensembles Formed between Charged Conjugated Polymers and Glycoprobes for the Fluorogenic Recognition of Receptor Proteins.

    PubMed

    Dou, Wei-Tao; Zeng, Ya-Li; Lv, Ying; Wu, Jiatao; He, Xiao-Peng; Chen, Guo-Rong; Tan, Chunyan

    2016-06-01

    This paper describes the simple construction of a unique class of supramolecular ensembles formed by electrostatic self-assembly between charged conjugated polymers and fluorophore-coupled glycoligands (glycoprobes) for the selective fluorogenic detection of receptor proteins at both the molecular and cellular levels. We show that positively and negatively charged diazobenzene-containing poly(p-phenylethynylenes) (PPEs) can be used to form stable fluorogenic probes with fluorescein-based (negatively charged) and rhodamine B based (positively charged) glycoprobes by electrostatic interaction. The structures of the ensembles have been characterized by spectroscopic and microscopic techniques. The supramolecular probes formed show quenched fluorescence in an aqueous buffer solution, which can be specifically recovered, in a concentration-dependent manner, through competitive complexation with a selective protein receptor, over a range of other unselective proteins. The ensembles also show selective fluorescence enhancement with a live cell that expresses the glycoligand receptor but not a control cell without receptor expression. PMID:27159586

  6. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. PMID:27566352

  7. Protein polymer hydrogels by in situ, rapid and reversible self-gelation

    PubMed Central

    Asai, Daisuke; Xu, Donghua; Liu, Wenge; Quiroz, Felipe Garcia; Callahan, Daniel J.; Zalutsky, Michael R.; Craig, Stephen L.; Chilkoti, Ashutosh

    2013-01-01

    Protein-based biomaterials are an important class of materials for applications in biotechnology and medicine. The exquisite control of their composition, stereochemistry, and chain length offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here, we report the synthesis of a thermally responsive peptide polymer-based hydrogel composed of a recombinant elastin-like polypeptide (ELP) that rapidly forms a reversibly cross-linked hydrogel by the formation of intermolecular disulfide cross-links. To do so, we designed and synthesized ELPs that incorporate periodic cysteine residues (cELPs), and show that cELPs are thermally responsive protein polymers that display rapid gelation under physiologically relevant, mild oxidative conditions. Gelation of cELPs, at concentrations as low as 2.5 wt%, occurs in ~2.5 min upon addition a low concentration of hydrogen peroxide (0.3 wt%). We show the utility of these hydrogels for the sustained release of a model protein in vitro, and demonstrate the ability of this injectable biomaterial to pervade tumors to maximize tumor coverage and retention time upon intratumoral injection. cELPs represent a new class of injectable reversibly cross-linked hydrogels with properties intermediate between ELP coacervates and chemically cross-linked ELP hydrogels that will find useful applications in drug delivery and tissue engineering. PMID:22538198

  8. Solid protein solder-doped biodegradable polymer membranes for laser-assisted tissue repair

    NASA Astrophysics Data System (ADS)

    Hodges, Diane E.; McNally-Heintzelman, Karen M.; Welch, Ashley J.

    2000-05-01

    Solid protein solder-doped polymer membranes have been developed for laser-assisted tissue repair. Biodegradable polymer films of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) using a solvent-casting and particulate-leaching technique. The films provided a porous scaffold that readily absorbed the traditional protein solder mix composed of bovine serum albumin (BSA) and indocyanine green (ICG) dye. In vitro investigations were conducted to assess the influence of various processing parameters on the strength of tissue repairs formed using the new membranes. These parameters included the PLGA copolymer and PLGA/PEG blend ratio, the salt particle size, the initial bovine serum albumin (BSA) weight fraction, and the laser irradiance used to denature the solder. Altering the PLGA copolymer ratio had little effect on repair strength, however, it influenced the membrane degradation rate. Repair strength increased with increased membrane pore size and BSA concentration. The addition of PEG during the film casting stage increased the flexibility of the membranes but not necessarily the repair strength. The repair strength increased with increasing irradiance from 12 W/cm2 to 15 W/cm2. The new solder-doped polymer membranes provide all of the benefits associated with solid protein solders including high repair strength and improved edge coaptation. In addition, the flexible and moldable nature of the new membranes offer the capability of tailoring the membranes to a wide range of tissue geometries, and consequently, improved clinical applicability of laser- assisted tissue repair.

  9. A collection of programs for nucleic acid and protein analysis, written in FORTRAN 77 for IBM-PC compatible microcomputers.

    PubMed

    Lang, B F; Burger, G

    1986-01-10

    We have developed a collection of programs for manipulation and analysis of nucleotide and protein sequences. The package was written in Fortran 77 on a Sirius1/Victor microcomputer which can be easily implemented on a large variety of other computers. Some of the programs have already been adapted for use on a Vax 11. Our aim was to develop programs consisting of small, comprehensible and well documented units that have very fast execution times and are comfortably interactive. The package is therefore suitable for individual modifications, even with little understanding of computer languages.

  10. Autoclaving as a chemical-free process to stabilize recombinant silk-elastinlike protein polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Qiu, Weiguo; Cappello, Joseph; Wu, Xiaoyi

    2011-06-01

    We report here that autoclaving is a chemical-free, physical crosslinking strategy capable of stabilizing electrospun recombinant silk-elastinlike protein (SELP) polymer nanofibers. Fourier transform infrared spectroscopy showed that the autoclaving of SELP nanofibers induced a conformational conversion of β-turns and unordered structures to ordered β-sheets. Tensile stress-strain analysis of the autoclaved SELP nanofibrous scaffolds in phosphate buffered saline at 37 °C revealed a Young's modulus of 1.02 ± 0.28 MPa, an ultimate tensile strength of 0.34 ± 0.04 MPa, and a strain at failure of 29% ± 3%.

  11. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.

    PubMed

    Zeng, Xiangqun; Qu, Ke; Rehman, Abdul

    2016-09-20

    Carbohydrate-protein interactions occur through glycoproteins, glycolipids, or polysaccharides displayed on the cell surface with lectins. However, studying these interactions is challenging because of the complexity and heterogeneity of the cell surface, the inherent structural complexity of carbohydrates, and the typically weak affinities of the binding reactions between the lectins and monovalent carbohydrates. The lack of chromophores and fluorophores in carbohydrate structures often drives such investigations toward fluorescence labeling techniques, which usually require tedious and complex synthetic work to conjugate fluorescent tags with additional risk of altering the reaction dynamics. Probing these interactions directly on the cell surface is even more difficult since cells could be too fragile for labeling or labile dynamics could be affected by the labeled molecules that may interfere with the cellular activities, resulting in unwanted cell responses. In contrast, label-free biosensors allow real-time monitoring of carbohydrate-protein interactions in their natural states. A prerequisite, though, for this strategy to work is to mimic the coding information on potential interactions of cell surfaces onto different biosensing platforms, while the complementary binding process can be transduced into a useful signal noninvasively. Through carbohydrate self-assembled monolayers and glycopolymer scaffolds, the multivalency of the naturally existing simple and complex carbohydrates can be mimicked and exploited with label-free readouts (e.g., optical, acoustic, mechanical, electrochemical, and electrical sensors), yet such inquiries reflect only limited aspects of complicated biointeraction processes due to the unimodal transduction. In this Account, we illustrate that functionalized glycosylated conductive polymer scaffolds are the ideal multimodal biointerfaces that not only simplify the immobilization process for surface fabrication via electrochemical

  12. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.

    PubMed

    Zeng, Xiangqun; Qu, Ke; Rehman, Abdul

    2016-09-20

    Carbohydrate-protein interactions occur through glycoproteins, glycolipids, or polysaccharides displayed on the cell surface with lectins. However, studying these interactions is challenging because of the complexity and heterogeneity of the cell surface, the inherent structural complexity of carbohydrates, and the typically weak affinities of the binding reactions between the lectins and monovalent carbohydrates. The lack of chromophores and fluorophores in carbohydrate structures often drives such investigations toward fluorescence labeling techniques, which usually require tedious and complex synthetic work to conjugate fluorescent tags with additional risk of altering the reaction dynamics. Probing these interactions directly on the cell surface is even more difficult since cells could be too fragile for labeling or labile dynamics could be affected by the labeled molecules that may interfere with the cellular activities, resulting in unwanted cell responses. In contrast, label-free biosensors allow real-time monitoring of carbohydrate-protein interactions in their natural states. A prerequisite, though, for this strategy to work is to mimic the coding information on potential interactions of cell surfaces onto different biosensing platforms, while the complementary binding process can be transduced into a useful signal noninvasively. Through carbohydrate self-assembled monolayers and glycopolymer scaffolds, the multivalency of the naturally existing simple and complex carbohydrates can be mimicked and exploited with label-free readouts (e.g., optical, acoustic, mechanical, electrochemical, and electrical sensors), yet such inquiries reflect only limited aspects of complicated biointeraction processes due to the unimodal transduction. In this Account, we illustrate that functionalized glycosylated conductive polymer scaffolds are the ideal multimodal biointerfaces that not only simplify the immobilization process for surface fabrication via electrochemical

  13. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    PubMed

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-01

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity. PMID:18991420

  14. Morphology and phase separation of hydrophobic clusters of soy globular protein polymers.

    PubMed

    Sun, Xiuzhi Susan; Wang, Donghai; Zhang, Lu; Mo, Xiaoqun; Zhu, Li; Bolye, Dan

    2008-04-01

    Protein hydrophobic interaction has been considered the most important factor dominating protein folding, aggregation, gelling, self-assembly, adhesion, and cohesion properties. In this paper, morphology and phase separation of hydrophobic clusters, networks, and aggregates of soy globular protein polymers, induced by using a reducing agent (NaHSO3), are studied using microscopic instruments. The morphology and phase separation of these hydrophobic clusters are sensitive to protein structure and composition, pH, and ionic-strength (I(m)). Most of the clusters are in spherical-shape architecture and mainly consist of hydrophobic polypeptides. Rod-shape clusters were also observed at higher ionic strength, and mainly consist of hydrophilic polypeptides. The ratio of hydrophobic/hydrophilic (HB/HL) polypeptides is important to facilitate the formation of clusters in an environment with a certain pH value and ionic strength. At HB/HL 0.8, uniform spherical clusters were observed and diameters ranged from 30 to 70 nm. At HB/HL <0.8, large spherical clusters were formed with diameters ranging from 100 to 1,000 nm, and at HB/HL >or=1.8, large hydrophobic aggregates formed, and size of aggregates can be up to 2 500 nm. When solid content increased from 3% to 38%, at I(m) or= 0.115 mol x L(-1), HB/HL ratio >or=1.8, the large aggregates became very cohesive and viscoelastic. Clear phase separation was observed during curing between hydrophobic and hydrophilic protein polymers. Phase-separation degree increased as HB/HL ratio increased.

  15. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.

    PubMed

    Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle

    2015-08-18

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive

  16. Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant hybrid nanoconstructs.

    PubMed

    Brogan, Alex P S; Sessions, Richard B; Perriman, Adam W; Mann, Stephen

    2014-12-01

    Solvent-free liquid proteins are a new class of thermally stable hybrid bionanomaterials that are produced by extensive lyophilization of aqueous solutions of protein-polymer surfactant nanoconjugates followed by thermal annealing. The hybrid constructs, which consist of a globular protein core surrounded by a monolayer of electrostatically coupled polymer surfactant molecules, exhibit nativelike structure, function, and backbone dynamics over a large temperature range. Despite the key importance of the polymer surfactant shell, very little is known about the atomistic structure of the corona and how it influences the phase behavior and properties of these novel nanoscale objects. Here we present molecular dynamics simulations of protein-polymer surfactant nanoconjugates consisting of globular cores of myoglobin or lysozyme and demonstrate that the derived structural parameters are highly consistent with experimental values. We show that the coronal layer structure is responsive to the dielectric constant of the medium and that the mobility of the polymer surfactant molecules is significantly hindered in the solvent-free state, providing a basis for the origins of retained protein dynamics in these novel biofluids. Taken together, our results suggest that the extension of molecular dynamics simulations to hybrid nanoscale objects could be of generic value in diverse areas of soft matter chemistry, bioinspired engineering, and biomolecular nanotechnology.

  17. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    NASA Astrophysics Data System (ADS)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for

  18. EPR spectroscopy of protein microcrystals oriented in a liquid crystalline polymer medium

    NASA Astrophysics Data System (ADS)

    Caldeira, Jorge; Figueirinhas, João Luis; Santos, Celina; Godinho, Maria Helena

    2004-10-01

    Correlation of the g-tensor of a paramagnetic active center of a protein with its structure provides a unique experimental information on the electronic structure of the metal site. To address this problem, we made solid films containing metalloprotein ( Desulfovibrio gigas cytochrome c3) microcrystals. The microcrystals in a liquid crystalline polymer medium (water/hydroxypropylcellulose) were partially aligned by a shear flow. A strong orientation effect of the metalloprotein was observed by EPR spectroscopy and polarizing optical microscopy. The EPR spectra of partially oriented samples were simulated, allowing for molecular orientation distribution function determination. The observed effect results in enhanced sensitivity and resolution of the EPR spectra and provides a new approach towards the correlation of spectroscopic data, obtained by EPR or some other technique, with the three-dimensional structure of a protein or a model compound.

  19. Atmospheric pressure plasma polymers for tuned QCM detection of protein adhesion.

    PubMed

    Rusu, G B; Asandulesa, M; Topala, I; Pohoata, V; Dumitrascu, N; Barboiu, M

    2014-03-15

    Our efforts have been concentrated in preparing plasma polymeric thin layers at atmospheric pressure grown on Quartz Crystal Microbalance-QCM electrodes for which the non-specific absorption of proteins can be efficiently modulated, tuned and used for QCM biosensing and quantification. Plasma polymerization reaction at atmospheric pressure has been used as a simple and viable method for the preparation of QCM bioactive surfaces, featuring variable protein binding properties. Polyethyleneglycol (ppEG), polystyrene (ppST) and poly(ethyleneglycol-styrene) (ppST-EG) thin-layers have been grown on QCM electrodes. These layers were characterized by Atomic Force Microscopy (AFM), Contact angle measurements, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The plasma ppST QCM electrodes present a higher adsorption of Concanavalin A (ConA) and Bovine Serum Albumin (BSA) proteins when compared with the commercial coated polystyrene (ppST) ones. The minimum adsorption was found for ppEG, surface, known by their protein anti-fouling properties. The amount of adsorbed proteins can be tuned by the introduction of PEG precursors in the plasma discharge during the preparation of ppST polymers.

  20. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption.

    PubMed

    Chien, Hsiu-Wen; Tsai, Chih-Chi; Tsai, Wei-Bor; Wang, Meng-Jiy; Kuo, Wei-Hsuan; Wei, Ta-Chin; Huang, Sheng-Tung

    2013-07-01

    Non-fouling surfaces that resist non-specific protein adsorption and cell adhesion are desired for many biomedical applications such as blood-contact devices and biosensors. Therefore, surface conjugation of anti-fouling molecules has been the focus of many studies. In this study, layer-by-layer polyelectrolyte deposition was applied to create an amine-rich platform for conjugation of zwitterionic polymers. A tri-layer polyelectrolyte (TLP) coating representing poly(ethylene imine) (PEI), poly(acrylic acid)-g-azide and PEI was deposited on various polymeric substrates via layer-by-layer deposition and then crosslinked via UV irradiation. Carboxyl-terminated poly(sulfobetaine methacrylate) p(SBMA) or poly(carboxybetaine methacrylate) p(CBMA) was then conjugated onto TLP coated substrates via a carbodiimide reaction. Our results demonstrate that the zwitterionic polymers could be easily conjugated over a wide pH range except under alkaline conditions, and almost completely block protein adsorption and the attachment of L929 cells and platelets. Therefore, this method has outstanding potential in biomedical applications that require low-fouling surfaces. PMID:23500725

  1. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  2. BioC-compatible full-text passage detection for protein–protein interactions using extended dependency graph

    PubMed Central

    Arighi, Cecilia; Wu, Cathy H.; Vijay-Shanker, K.

    2016-01-01

    There has been a large growth in the number of biomedical publications that report experimental results. Many of these results concern detection of protein–protein interactions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI system to detect text passages with PPIs in the full-text articles. By adopting the BioC format, the output of the system can be seamlessly added to the biocuration pipeline with little effort required for the system integration. A distinctive feature of our PPI system is that it utilizes extended dependency graph, an intermediate level of representation that attempts to abstract away syntactic variations in text. As a result, we are able to use only a limited set of rules to extract PPI pairs in the sentences, and additional rules to detect additional passages for PPI pairs. For evaluation, we used the 95 articles that were provided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID database for these articles and show that our system achieves a recall of 83.5%. In order to evaluate the detection of passages with PPIs, we further annotated Abstract and Results sections of 20 documents from the dataset and show that an f-value of 80.5% was obtained. To evaluate the generalizability of the system, we also conducted experiments on AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection and an f-value of 64.7% for unique PPI detection. Database URL: http://proteininformationresource.org/iprolink/corpora PMID:27170286

  3. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    PubMed

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  4. Impact of glucose polymer chain length on heat and physical stability of milk protein-carbohydrate nutritional beverages.

    PubMed

    Chen, Biye; O'Mahony, James A

    2016-11-15

    This study investigated the impact of glucose polymer chain length on heat and physical stability of milk protein isolate (MPI)-carbohydrate nutritional beverages containing 8.5% w/w total protein and 5% w/w carbohydrate. The maltodextrin and corn syrup solids glucose polymers used had dextrose equivalent (DE) values of 17 or 38, respectively. Increasing DE value of the glucose polymers resulted in a greater increase in brown colour development, ionic calcium, protein particle size, apparent viscosity and pseudoplastic rheological behaviour, and greater reduction in pH, hydration and heat stability on sterilisation at 120°C. Incorporation of glucose polymers with MPI retarded sedimentation of protein during accelerated physical stability testing, with maltodextrin DE17 causing a greater reduction in sedimentation velocity and compressibility of sediment formed than corn syrup solids DE38. The results demonstrate that chain length of the glucose polymer used strongly impacts heat and physical stability of MPI-carbohydrate nutritional beverages. PMID:27283657

  5. Biodegradable synthetic polymer scaffolds for reinforcement of albumin protein solders used for laser-assisted tissue repair.

    PubMed

    Hoffman, Grant T; Soller, Eric C; McNally-Heintzelman, Karen M

    2002-01-01

    Laser tissue soldering has been investigated for several years by researchers in our laboratory as an alternative to conventional tissue fasteners, including sutures, staples and clips. Laser tissue soldering is a bonding technique in which protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. Over the past four years we have been investigating the use of synthetic polymer membranes as a means for reinforcing the strength of tissue repairs formed using traditional laser tissue soldering techniques. The purpose of this study was to assess the influence of various processing parameters on the strength of tissue repairs formed using the reinforced solder. Biodegradable polymer membranes of specific porosity were fabricated by means of a solvent-casting and particulate-leaching technique, using three different poly(alpha ester)s: polyglycolic acid (PGA), polylactic acid (PLA) and poly(L-lactic-co-glycolic acid) (PLGA). In addition, several membranes were also prepared with poly(ethylene glycol) (PEG). The membranes were then doped with the traditional protein solder mixture of serum albumin and indocyanine green dye. Varied processing parameters included the polymer type, the PLGA copolymer blend ratio, the polymer/PEG blend ratio, the porosity of the polymer membrane and the initial albumin weight fraction. Variation of the polymer type had negligible effect on the strength of the repairs. Although it is known that alteration of the copolymer blend ratio of PLGA influences the degradation rate of the polymer, this variation also had no significant effect on the strength of the repairs formed. Increased membrane flexibility was observed when PEG was added during the casting stage. An increase in the porosity of the polymer membranes led to a subsequent increase in the final concentration of protein contained within the membranes, hence aiding in strengthening the resultant repairs. Likewise

  6. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  7. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    PubMed

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  8. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion

    SciTech Connect

    Kim, Byoung Chan; Lopez-Ferrer, Daniel; Lee, Sang-mok; Ahn, Hye-kyung; Nair, Sujith; Kim, Seong H.; Kim, Beom S.; Petritis, Konstantinos; Camp, David G.; Grate, Jay W.; Smith, Richard D.; Koo, Yoon-mo; Gu, Man Bock; Kim, Jungbae

    2009-04-01

    A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This new process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was also resistant to autolysis, enabling repeated digestions of bovine serum albumin over 40 days and successful peptide identification by LC-MS/MS. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e. chymotrypsin), which makes it suitable for use in “real-world” proteomic applications. Overall, the biocatalytic nanofibers with enzyme aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

  9. Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth

    PubMed Central

    Weiss, William F.; Hodgdon, Travis K.; Kaler, Eric W.; Lenhoff, Abraham M.; Roberts, Christopher J.

    2007-01-01

    Thermally induced aggregates of α-chymotrypsinogen A and bovine granulocyte-colony stimulating factor in acidic solutions were characterized by a combination of static and dynamic light scattering, spectroscopy, transmission electron microscopy, and monomer loss kinetics. The resulting soluble, high-molecular weight aggregates (∼103–105 kDa) are linear, semiflexible polymer chains that do not appreciably associate with one another under the conditions at which they were formed, with classic power-law scaling of the radius of gyration and hydrodynamic radius with weight-average molecular weight (Mw). Aggregates in both systems are composed of nonnative monomers with elevated levels of β-sheet secondary structure, and bind thioflavine T. In general, the aggregate size distributions showed low polydispersity by light scattering. Together with the inverse scaling of Mw with protein concentration, the results clearly indicate that aggregation proceeds via nucleated (chain) polymerization. For α-chymotrypsinogen A, the scaling behavior is combined with the kinetics of aggregation to deduce separate values for the characteristic timescales for nucleation (τn) and growth (τg), as well as the stoichiometry of the nucleus (x). The analysis illustrates a general procedure to noninvasively and quantitatively determine τn, τg, and x for soluble (chain polymer) aggregates, as well as the relationship between τn/τg and aggregate Mw. PMID:17704182

  10. Bioconjugation of protein-repellent zwitterionic polymer brushes grafted from silicon nitride.

    PubMed

    Nguyen, Ai T; Baggerman, Jacob; Paulusse, Jos M J; Zuilhof, Han; van Rijn, Cees J M

    2012-01-10

    A new method for attaching antibodies to protein-repellent zwitterionic polymer brushes aimed at recognizing microorganisms while preventing the nonspecific adsorption of proteins is presented. The poly(sulfobetaine methacrylate) (SBMA) brushes were grafted from α-bromo isobutyryl initiator-functionalized silicon nitride (Si(x)N(4), x ≥ 3) surfaces via controlled atom-transfer radical polymerization (ATRP). A trifunctional tris(2-aminoethyl)amine linker was reacted with the terminal alkylbromide of polySBMA chains. N-Hydroxysuccinimide (NHS) functionalization was achieved by reacting the resultant amine-terminated polySBMA brush with bifunctional suberic acid bis(N-hydroxysuccinimide ester). Anti-Salmonella antibodies were subsequently immobilized onto polySBMA-grafted Si(x)N(4) surfaces through these NHS linkers. The protein-repellent properties of the polySBMA-grafted surface after antibody attachment were evaluated by exposing the surfaces to Alexa Fluor 488-labeled fibrinogen (FIB) solution (0.1 g·L(-1)) for 1 h at room temperature. Confocal laser scanning microscopy (CLSM) images revealed the minimal adsorption of FIB onto the antibody-coated polySBMA in comparison with that of antibody-coated epoxide monolayers and also bare Si(x)N(4) surfaces. Subsequently, the interaction of antibodies immobilized onto polySBMA with SYTO9-stained Salmonella solution without using blocking solution was examined by CLSM. The fluorescent images showed that antibody-coated polySBMA efficiently captured Salmonella with only low background noise as compared to antibody-coated monolayers lacking the polymer brush. Finally, the antibody-coated polySBMA surfaces were exposed to a mixture of Alexa Fluor 647-labeled FIB and Salmonella without the prior use of a blocking solution to evaluate the ability of the surfaces to capture bacteria while simultaneously repelling proteins. The fluorescent images showed the capture of Salmonella with no adsorption of FIB as compared to

  11. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    SciTech Connect

    Koffas, Telly Stelianos

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the

  12. Maleimide–thiol coupling of a bioactive peptide to an elastin-like protein polymer

    PubMed Central

    Ravi, Swathi; Krishnamurthy, Venkata R.; Caves, Jeffrey M.; Haller, Carolyn A.; Chaikof, Elliot L.

    2013-01-01

    Recombinant elastin-like protein (ELP) polymers display several favorable characteristics for tissue repair and replacement as well as drug delivery applications. However, these materials are derived from peptide sequences that do not lend themselves to cell adhesion, migration, or proliferation. This report describes the chemoselective ligation of peptide linkers bearing the bioactive RGD sequence to the surface of ELP hydrogels. Initially, cystamine is conjugated to ELP, followed by the temperature-driven formation of elastomeric ELP hydrogels. Cystamine reduction produces reactive thiols that are coupled to the RGD peptide linker via a terminal maleimide group. Investigations into the behavior of endothelial cells and mesenchymal stem cells on the RGD-modified ELP hydrogel surface reveal significantly enhanced attachment, spreading, migration and proliferation. Attached endothelial cells display a quiescent phenotype. PMID:22061108

  13. Synthesis of genetically engineered protein polymers (recombinamers) as an example of advanced self-assembled smart materials.

    PubMed

    Rodríguez-Cabello, José Carlos; Girotti, Alessandra; Ribeiro, Artur; Arias, Francisco Javier

    2012-01-01

    In this chapter, we describe two methods for bio-producing recombinant repetitive polypeptide polymers for use in biomedical devices. These polymers, known as elastin-like recombinamers (ELRs), are derived from the repetition of selected amino acid domains of extracellular matrix proteins with the aim of recreating their mechanical and physiological features. The proteinaceous nature of ELRs allows us to make use of the natural biosynthetic machinery of heterologous hosts to express advanced and large polymers or "recombinamers." Despite the essentially unlimited possibilities for designing recombinamers, the production of synthetic genes to encode them should allow us to overcome the difficulties surrounding bioproduction of these non-natural monotonous DNA and protein sequences. The aim of this work is to supply the biotechnologist with fine-tuning methods to biosynthesize advanced self-assembled smart materials.

  14. Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.

    PubMed

    Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu

    2014-01-01

    The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.

  15. Development of porous polymer monoliths for reverse-phase chromatography of proteins.

    SciTech Connect

    Shepodd, Timothy J.; Stephens, Christopher P.

    2003-09-01

    The polymers developed in this project are intended for use as a stationary phase in reverse-phase chromatography of proteins, where the mobile phase is a solution of acetonitrile and a phosphate buffer, 6.6 pH. A full library of pore sizes have been developed ranging from 0.41{micro}m to 4.09 {micro}m; these pore sizes can be determined by the solvent ratio of tetrahydrofuran:methoxyethanol during polymerization. A column that can separate proteins in an isocratic mode would be a vast improvement from the common method of separating proteins through gradient chromatography using multiple solvents. In the stationary phase, the main monomers have hydrophobic tails, lauryl acrylate and steryl acrylate. Separations of small hydrophobic molecules and peptides (trial molecules) have efficiencies of 24,000-33,000 theoretical plates m{sup -1}. The combination of a highly non-polar stationary phase and a mobile phase where the polarity can be controlled provide for excellent separation.

  16. Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes.

    PubMed

    Tria, Maria Celeste R; Grande, Carlos David T; Ponnapati, Ramakrishna R; Advincula, Rigoberto C

    2010-12-13

    This paper introduces a novel and versatile method of grafting protein and cell-resistant poly(poly ethylene glycol methyl ether methacrylate) (PPEGMEMA) brushes on conducting Au surface. The process started with the electrochemical deposition and full characterization of an electro-active chain transfer agent (CTA) on the Au surface. The electrochemical behavior of the CTA was investigated by cyclic voltammetry (CV) while the deposition and stability of the CTA on the surface were confirmed by ellipsometry, contact angle, and X-ray photoelectron spectroscopy (XPS). The capability of the electrodeposited CTA to mediate surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization on both the polymethyl methacrylate (PMMA; model polymer) and PPEGMEMA brushes was demonstrated by the increase in thicknesses of the films after polymerization. Contact angles also decreased with the incorporation of the more hydrophilic brushes. Significant changes in the morphologies of the films before and after polymerization were also observed with atomic force microscopy (AFM) analyses. Furthermore, XPS results showed an increase in the O 1s peak intensity relative to C 1s after polymerizations, which confirmed the grafting of polyethyleneglycol (PEG) bearing brushes. The ability of the PPEGMEMA-modified Au surface to resist nonspecific adhesion of proteins and cells was monitored and confirmed by XPS, ellipsometry, contact angle, AFM, and fluorescence imaging. The new method presented has potential application as robust protein and cell-resistant coatings for electrically conducting electrodes and biomedical devices.

  17. Proteins detection by polymer optical fibers sensitised with overlayers of block and random copolymers

    NASA Astrophysics Data System (ADS)

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Pispas, Stergios; Riziotis, Christos

    2014-03-01

    A low cost and low complexity optical detection method of proteins is presented by employing a detection scheme based on electrostatic interactions, and implemented by sensitization of a polymer optical fibers' (POF) surface by thin overlayers of properly designed sensitive copolymer materials with predesigned charges. This method enables the fast detection of proteins having opposite charge to the overlayer, and also the effective discrimination of differently charged proteins like lysozyme (LYS) and bovine serum albumin (BSA). As sensitive materials the block and the random copolymers of the same monomers were employed, namely the block copolymer poly(styrene-b-2vinylpyridine) (PS-b- P2VP) and the corresponding random copolymer poly(styrene-r-2vinylpyridine) (PS-r-P2VP), of similar composition and molecular weights. Results show systematically different response between the block and the random copolymers, although of the same order of magnitude, drawing thus important conclusions on their applications' techno-economic aspects given that they have significantly different associated manufacturing method and costs. The use of the POF platform, in combination with those adaptable copolymer sensing materials could lead to efficient low cost bio-detection schemes.

  18. Molecularly imprinted poly beta-cyclodextrin polymer: application in protein refolding.

    PubMed

    Ali Esmaeili, Mohammad; Yazdanparast, Razieh

    2007-06-01

    Regarding our previous report on refolding of alkaline phosphatase [Yazdanparast and Khodagholi, 2005 Arch. Biochem. Biophys] it was found that in spite of the anti-aggregatory effect of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitteronic detergent, the recovered activity was almost the same as the recovered activity obtained through the unassisted approach. The low recovery yield is probably due to the bulky groups of the detergent that interfere with its entrance into the small cavity of the stripping agent, cyclodextrin, implying that the stripping of detergent molecules from the detergent-protein complexes plays a major role in successful refolding processes. To improve the efficiency of CHAPS stripping, we evaluated, for the first time, the stripping potential of a molecular imprinting polymer designed to replace beta-CD. In this approach, CHAPS was used as the template and the refolding of GuHCl denatured alkaline phosphatase was studied. Our results indicated that under the optimally developed refolding environment and similar to stripping by soluble beta-CD, a refolding yield of 79% was obtained for denatured alkaline phosphatase using 20 mg/ml of the molecularly imprinted poly (beta-CD) polymer. The major advantage of the new stripping agent, besides of its recycling option and ease of separation from the finished product, is its high potential of preventing aggregate formation. Based on these results, it seems that the new stripping strategy can constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble beta-cyclodextrin.

  19. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Štěpánka; Švorčík, Václav

    2014-04-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly- l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly- l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  20. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    PubMed Central

    2014-01-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly-l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly-l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation. PMID:24708858

  1. Preliminary in vivo studies on the osteogenic potential of bone morphogenetic proteins delivered from an absorbable puttylike polymer matrix.

    PubMed

    Andriano, K P; Chandrashekar, B; McEnery, K; Dunn, R L; Moyer, K; Balliu, C M; Holland, K M; Garrett, S; Huffer, W E

    2000-01-01

    This article describes preliminary in vivo studies evaluating the osteogeneic potential of bone morphogenetic proteins (BMPs) delivered from an absorbable puttylike polymer matrix. In the first study, bovine-derived bone morphogenetic proteins were incorporated in an polymer matrix consisting of 50:50 poly(DL-lactide-co-glycolide) dissolved in N-methyl-2-pyrrolidone. The matrix was implanted in an 8 mm critical-size calvarial defect created in the skull of adult Sprague-Dawley rats (n = 5 per treatment group). After 28 days, the implant sites were removed and examined for new bone formation, polymer degradation, and tissue reaction. Gamma-irradiated polymer matrices appeared to give more bone formation than nonirradiated samples (histological analysis; 2. 76 + 1.34 mm(2) of bone versus 1.30 + 0.90 mm(2) of bone, respectively and x-ray analysis; 27.2 + 15.9 mm(2) of bone versus 20. 7 + 16.7 mm(2) of bone, respectively) and less residual polymer (0.0 + 0.0 versus 0.2 + 0.4, respectively). The polymer implants with bone morphogenetic protein also gave less inflammatory response than the polymer controls (gamma irradiated polymer/BMP = 1.8 + 0.4 and nonirradiated polymer/BMP = 1.2 + 0.4 versus polymer only = 3.0 + 1. 2, respectively). However, despite trends in both the x-ray and histological data there was no statistical difference in the amount of new bone formed among the four treatment groups (P > 0.05). This was most likely due to the large variance in the data scatter and the small number of animals per group. In the second animal study, bovine-derived BMPs and the polymeric carrier were gamma irradiated separately, at doses of 1.5 or 2.5 Mrad, and their ability to form bone in a rat skull onlay model was evaluated using Sprague-Dawley rats (n = 5 per treatment group). Histomorphometry of skull caps harvested 28 days after implantation showed no significant differences as compared to non-irradiated samples, in implant area, new bone area, and percent new bone (P

  2. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer.

    PubMed

    Podust, Vladimir N; Sim, Bee-Cheng; Kothari, Dharti; Henthorn, Lana; Gu, Chen; Wang, Chia-wei; McLaughlin, Bryant; Schellenberger, Volker

    2013-11-01

    XTEN, unstructured biodegradable proteins, have been used to extend the in vivo half-life of genetically fused therapeutic proteins and peptides. To expand the applications of XTEN technology to half-life extension of other classes of molecules, XTEN protein polymers and methods for chemical XTENylation were developed. Two XTEN precursors were engineered to contain enzymatically removable purification tags. The proteins were readily expressed in bacteria and purified to homogeneity by chromatography techniques. As proof-of-principle, GLP2-2G peptide was chemically conjugated to each of the two XTEN protein polymers using maleimide-thiol chemistry. The monodisperse nature of XTEN protein polymer enabled reaction monitoring as well as the detection of peptide modifications in the conjugated state using reverse phase-high performance liquid chromatography (RP-HPLC) and electrospray ionization mass spectrometry. The resulting GLP2-2G-XTEN conjugates were purified by preparative RP-HPLC to homogeneity. In comparison with recombinantly fused GLP2-2G-XTEN, chemically conjugated GLP2-2G-XTEN molecules exhibited comparable in vitro activity, in vitro plasma stability and pharmacokinetics in rats. These data suggest that chemical XTENylation could effectively extend the half-life of a wide spectrum of biologically active molecules, therefore broadening its applicability.

  3. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume.

    PubMed

    Ushijima, Koichiro; Yamane, Hisayo; Watari, Akiko; Kakehi, Eiko; Ikeda, Kazuo; Hauck, Nathanael R; Iezzoni, Amy F; Tao, Ryutaro

    2004-08-01

    Many Prunus species, including sweet cherry and Japanese apricot, of the Rosaceae, display an S-RNase-based gametophytic self-incompatibility (GSI). The specificity of this outcrossing mechanism is determined by a minimum of two genes that are located in a multigene complex, termed the S locus, which controls the pistil and pollen specificities. SFB, a gene located in the S locus region, encodes an F-box protein that has appropriate S haplotype-specific variation to be the pollen determinant in the self-incompatibility reaction. This study characterizes SFBs of two self-compatible (SC) haplotypes, S(4') and S(f), of Prunus. S(4') of sweet cherry is a pollen-part mutant (PPM) that was produced by X-ray irradiation, while S(f) of Japanese apricot is a naturally occurring SC haplotype that is considered to be a PPM. DNA sequence analysis revealed defects in both SFB(4') and SFB(f). A 4 bp deletion upstream from the HVa coding region of SFB(4') causes a frame-shift that produces transcripts of a defective SFB lacking the two hypervariable regions, HVa and HVb. Similarly, the presence of a 6.8 kbp insertion in the middle of the SFB(f) coding region leads to transcripts for a defective SFB lacking the C-terminal half that contains HVa and HVb. As all reported SFBs of functional S haplotypes encode intact SFB, the fact that the partial loss-of-function mutations in SFB are present in SC mutant haplotypes of Prunus provides additional evidence that SFB is the pollen S gene in GSI in Prunus. PMID:15272875

  4. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through.

  5. Robust Trypsin Coating on Electrospun Polymer Nanofibers in Rigorous Conditions and Its Uses for Protein Digestion

    SciTech Connect

    Ahn, Hye-Kyung; Kim, Byoung Chan; Jun, Seung-Hyun; Chang, Mun Seock; Lopez-Ferrer, Daniel; Smith, Richard D.; Gu, Man Bock; Lee, Sang-Won; Kim, Beom S.; Kim, Jungbae

    2010-12-15

    An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently-attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 °C and 50 °C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 0.24 and 163.20 hours at 40 ºC, respectively. The improved stability of EC-TR can be explained by covalent-linkages on the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40 °C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of one week. In the same condition, CA-TR showed poor performance from the beginning, and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis, but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.

  6. Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols.

    PubMed

    Zhang, Xiaoyan; Lomora, Mihai; Einfalt, Tomaz; Meier, Wolfgang; Klein, Noreen; Schneider, Dirk; Palivan, Cornelia G

    2016-05-01

    We introduce active surfaces generated by immobilizing protein-polymer nanoreactors on a solid support for sensitive sugar alcohols detection. First, such selective nanoreactors were engineered in solution by simultaneous encapsulation of specific enzymes in copolymer polymersomes, and insertion of membrane proteins for selective conduct of sugar alcohols. Despite the artificial surroundings, and the thickness of the copolymer membrane, functionality of reconstituted Escherichia coli glycerol facilitator (GlpF) was preserved, and allowed selective diffusion of sugar alcohols to the inner cavity of the polymersome, where encapsulated ribitol dehydrogenase (RDH) enzymes served as biosensing entities. Ribitol, selected as a model sugar alcohol, was detected quantitatively by the RDH-nanoreactors with GlpF-mediated permeability in a concentration range of 1.5-9 mM. To obtain "active surfaces" for detecting sugar alcohols, the nanoreactors optimized in solution were then immobilized on a solid support: aldehyde groups exposed at the compartment external surface reacted via an aldehyde-amino reaction with glass surfaces chemically modified with amino groups. The nanoreactors preserved their architecture and activity after immobilization on the glass surface, and represent active biosensing surfaces for selective detection of sugar alcohols, with high sensitivity.

  7. Long-Term Biostability of Self-Assembling Protein Polymers in the Absence of Covalent Crosslinking

    PubMed Central

    Sallach, Rory E.; Cui, Wanxing; Balderrama, Fanor; Martinez, Adam W.; Wen, Jing; Haller, Carolyn A.; Taylor, Jeannette V.; Wright, Elizabeth R.; Long, Robert C.; Chaikof, Elliot L.

    2009-01-01

    Unless chemically crosslinked, matrix proteins, such as collagen or silk, display a limited lifetime in vivo with significant degradation observed over a period of weeks. Likewise, amphiphilic peptides, lipopeptides, or glycolipids that self-assemble through hydrophobic interactions to form thin films, fiber networks, or vesicles do not demonstrate in vivo biostability beyond a few days. We report herein that a self-assembling, recombinant elastin-mimetic triblock copolymer elicited minimal inflammatory response and displayed robust in vivo stability for periods exceeding 1 year, in the absence of either chemical or ionic crosslinking. Specifically, neither a significant inflammatory response nor calcification was observed upon implantation of test materials into the peritoneal cavity or subcutaneous space of a mouse model. Moreover, serial quantitative magnetic resonance imaging, evaluation of pre- and post-explant ultrastructure by cryo-high resolution scanning electron microscopy, and an examination of implant mechanical responses revealed substantial preservation of form, material architecture, and biomechanical properties, providing convincing evidence of a non-chemically or ionically crosslinked protein polymer system that exhibits long-term stability in vivo. PMID:19854505

  8. Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films.

    PubMed

    Wijeratne, Salinda; Liu, Weijing; Dong, Jinlan; Ning, Wenjing; Ratnayake, Nishanka Dilini; Walker, Kevin D; Bruening, Merlin L

    2016-04-27

    This paper describes a convenient synthesis of nitrilotriacetate (NTA)-containing polymers and subsequent layer-by-layer adsorption of these polymers on flat surfaces and in membrane pores. The resulting films form NTA-metal-ion complexes and capture 2-3 mmol of metal ions per mL of film. Moreover, these coatings bind multilayers of polyhistidine-tagged proteins through association with NTA-metal-ion complexes. Inclusion of acrylic acid repeat units in NTA-containing copolymers promotes swelling to increase protein binding in films on Au-coated wafers. Adsorption of NTA-containing films in porous nylon membranes gives materials that capture ∼46 mg of His-tagged ubiquitin per mL. However, the binding capacity decreases with the protein molecular weight. Due to the high affinity of NTA for metal ions, the modified membranes show modest leaching of Ni(2+) in binding and rinsing buffers. Adsorption of NTA-containing polymers is a simple method to create metal- and protein-binding films and may, with future enhancement of stability, facilitate development of disposable membranes that rapidly purify tagged proteins. PMID:27042860

  9. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution.

    PubMed

    Shih, Yu-Ju; Chang, Yung

    2010-11-16

    This work describes a tunable blood compatibility of zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymers at a wide range of high molecular weights from 50 kDa to 300 kDa controlled with a similar polydispersity via homogeneous free-radical polymerization. The control of molecular weights of polySBMA highly regulates the zwitterionic nonfouling nature to resist the adsorption of plasma proteins, the coagulant of human plasma, and the hemolysis of red blood cells. In this study, the upper critical solution temperatures (UCSTs) and hydrodynamic size of prepared polymers are determined to illustrate the correlations between intermolecular zwitterionic associations and blood compatibility of polySBMA suspension in human blood. The polySBMA exhibited clear shifts of UCSTs in the stimuli-responsive control of solution pH and ionic strength, which were strongly associated with the molecular weights of the prepared polymers. Plasma-protein adsorption onto the polySBMA polymers from single-protein solutions and the complex medium of 100% human plasma were measured by dynamic light scattering to determine the nonfouling stability of polySBMA suspension. It was found that the nonfouling nature as well as hydration capability of polySBMA can be effectively controlled via regulated molecular weights of zwitterionic polymers. This work shows that the polySBMA polymer with an optimized molecular weight of about 135 kDa at physiologic temperature is presented high hydration capability to function the best nonfouling character of anticoagulant activity and antihemolytic activity in human blood. The excellent blood compatibility of zwitterionic polySBMA along with their stimuli-responsive phase behavior in aqueous solution suggests their potential for use in blood-contacting targeted delivery and diagnostic applications. PMID:20882958

  10. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    PubMed

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions.

  11. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines.

    PubMed

    Yan, Yan; Gause, Katelyn T; Kamphuis, Marloes M J; Ang, Ching-Seng; O'Brien-Simpson, Neil M; Lenzo, Jason C; Reynolds, Eric C; Nice, Edouard C; Caruso, Frank

    2013-12-23

    Many biomolecules, mainly proteins, adsorb onto polymer particles to form a dynamic protein corona in biological environments. The protein corona can significantly influence particle-cell interactions, including internalization and pathway activation. In this work, we demonstrate the differential roles of a given protein corona formed in cell culture media in particle uptake by monocytes and macrophages. By exposing disulfide-stabilized poly(methacrylic acid) nanoporous polymer particles (PMASH NPPs) to complete cell growth media containing 10% fetal bovine serum, a protein corona, with the most abundant component being bovine serum albumin, was characterized. Upon adsorption onto the PMASH NPPs, native bovine serum albumin (BSA) was found to undergo conformational changes. The denatured BSA led to a significant decrease in internalization efficiency in human monocytic cells, THP-1, compared with the bare particles, due to reduced cell membrane adhesion. In contrast, the unfolded BSA on the NPPs triggered class A scavenger receptor-mediated phagocytosis in differentiated macrophage-like cells (dTHP-1) without a significant impact on the overall internalization efficiency. Taken together, this work demonstrates the disparate effects of a given protein corona on particle-cell interactions, highlighting the correlation between protein corona conformation in situ and relevant biological characteristics for biological functionalities.

  12. Heparin as a Bundler in a Self-Assembled Fibrous Network of Functionalized Protein-Based Polymers.

    PubMed

    Włodarczyk-Biegun, Małgorzata K; Slingerland, Cornelis J; Werten, Marc W T; van Hees, Ilse A; de Wolf, Frits A; de Vries, Renko; Stuart, Martien A Cohen; Kamperman, Marleen

    2016-06-13

    Nature shows excellent control over the mechanics of fibrous hydrogels by assembling protein fibers into bundles of well-defined dimensions. Yet, obtaining artificial materials displaying controlled bundling remains a challenge. Here, we developed genetically engineered protein-based polymers functionalized with heparin-binding KRSR domains and show controlled bundling using heparin as a binder. The protein polymer forms fibers upon increasing the pH to physiological values and at higher concentrations fibrous gels. We show that addition of heparin to the protein polymer with incorporated KRSR domains, induces bundling, which results in faster gel formation and stiffer gels. The interactions are expected to be primarily electrostatic and fiber bundling has an optimum when the positive charges of KRSR are approximately in balance with the negative charges of the heparin. Our study suggests that, generally, a straightforward method to control the properties of fibrous gels is to prepare a fiber former with specific binding domains and then simply adding an appropriate amount of binder. PMID:27129090

  13. On Software Compatibility.

    ERIC Educational Resources Information Center

    Ershov, Andrei P.

    The problem of compatibility of software hampers the development of computer application. One solution lies in standardization of languages, terms, peripherais, operating systems and computer characteristics. (AB)

  14. DNA translocation across protein channels: How does a polymer worm through a hole?

    NASA Astrophysics Data System (ADS)

    Muthukumar, M.

    2001-03-01

    Free energy barriers control the translocation of polymers through narrow channels. Based on an analogy with the classical nucleation and growth process, we have calculated the translocation time and its dependencies on the length, stiffness, and sequence of the polymer, solution conditions, and the strength of the driving electrochemical potential gradient. Our predictions will be compared with experimental results and prospects of reading polymer sequences.

  15. Theory for long time polymer and protein dynamics: Basis functions and time correlation functions

    NASA Astrophysics Data System (ADS)

    Tang, Wilfred H.; Chang, Xiao-yan; Freed, Karl F.

    1995-12-01

    We develop methods for alleviating the major impediment in the extension to larger and more complex systems of our matrix method theory for describing the long time dynamics of flexible polymers and proteins in solution. This impediment is associated with the enormous growth in size of the required basis set with the addition of higher order mode coupling basis functions, which are needed to describe the influence on the dynamics of the ``internal friction,'' or equivalently of the memory function matrices. We use the first order eigenfunctions (the generalized Rouse modes) to construct an approximate mode coupling basis. Specific applications are made to united atom models of alkanes with a white noise structureless solvent, where the theory is compared with Brownian dynamics simulations to provide a no-parameter stringent test of the theory. Good convergence is found to the full second order treatment with the new basis set whose size scales more nearly with the size of the system rather than the cube of the system with the previous full basis. These technical improvements enable us to test the need for third order contributions to the dynamics of the longer alkanes and to compute the orientational time correlation functions probed by fluorescence depolarization and NMR experiments. Additional symmetry considerations provide further reductions in the required basis set sizes.

  16. In situ gelling silk-elastinlike protein polymer for transarterial chemoembolization

    PubMed Central

    Poursaid, Azadeh; Price, Robert; Tiede, Andrea; Olson, Erik; Huo, Eugene; McGill, Lawrence; Ghandehari, Hamidreza; Cappello, Joseph

    2015-01-01

    Hepatocellular carcinoma annually affects over 700,000 people worldwide and trends indicate increasing prevalence. Patients ineligible for surgery undergo loco-regional treatments such as transarterial chemoembolization (TACE) to selectively target tumoral blood supply. Using a microcatheter, chemotherapeutics are infused followed by an embolic agent, or the drug is encapsulated by the embolic moiety; simultaneously inducing stasis while delivering localized chemotherapy. Presently, several products are used, but no universally accepted system is promoted because very disparate limitations exist. The goal of this investigation was to design and develop in situ gelling recombinant silk-elastinlike protein polymers (SELPs) for TACE. Two SELP compositions, SELP-47K and SELP-815K, with varying lengths of silk and elastin blocks, were investigated to formulate a new embolic that was injectable through commercially available microcatheters. The goal was to develop a composition providing maximal permeation of tumor vasculature while exhibiting effective embolic activity. The SELPs evaluated remain soluble until reaching 37°C, when irreversible tran sition ensues forming a solid hydrogel network. SELP-815K formulated at 12% w/w with shear processing demonstrated acceptable rheological properties and clear embolic capability under flow conditions in vitro. A rabbit model showed feasibility of embolization in vivo allowing selective occlusion of lobar hepatic arterial branches. PMID:25916502

  17. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications.

    PubMed

    Vaz, C M; Fossen, M; van Tuil, R F; de Graaf, L A; Reis, R L; Cunha, A M

    2003-04-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al(2)O(3)) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity behavior of the injection-molded thermoplastics were examined. It was possible to obtain materials and composites with a range of mechanical properties, which might allow for their application in the biomedical field. The incorporation of tricalcium phosphate into the soybean thermoplastic decreased its mechanical properties but lead to the nucleation of a bioactive calcium-phosphate film on their surface when immersed in a simulated body fluid solution. When compounded with 1% of a zirconate coupling agent, the nucleation and growth of the bioactive films on the surface of the referred to composites was accelerated. The materials degradation was studied for ageing periods up to 60 days in an isotonic saline solution. Both water uptake and weight loss were monitored as a function of the immersion time. After 1 month of immersion, the materials showed signal of chemical degradation, presenting weight losses up to 30%. However, further improvement on the mechanical performance and the enhancement of the hydrolytic stability of those materials will be highly necessary for applications in the biomedical field.

  18. Influence of Chemical Extraction on Rheological Behavior, Viscoelastic Properties and Functional Characteristics of Natural Heteropolysaccharide/Protein Polymer from Durio zibethinus Seed

    PubMed Central

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed

    2012-01-01

    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed. PMID:23203099

  19. Multicomponent polymer materials

    SciTech Connect

    Paul, D.R.; Sperling, L.H.

    1986-01-01

    Interpenetrating polymer networks are discussed, taking into account interpenetrating polymer networks based on polybutadiene and polystyrene, polyurethane-polysiloxane simultaneous interpenetrating polymer networks, extraction studies and morphology of physical-chemical interpenetrating polymer networks based on block polymer and polystyrene, twoand three-component interpenetrating polymer networks, and poly(acrylourethane)-polyepoxide semiinterpenetrating networks formed by electron-beam curing. Other topics studied are related to the characterization of polymer blends, the characterization of block copolymers, the mechanical behavior, and rheology and applications. Attention is given to a new silicone flame-retardant system for thermoplastics, recent developments in interpenetrating polymer networks and related materials, miscibility in random copolymer blends, crystallization and melting in compatible polymer blends, and fatigue in rubber-modified epoxies and other polyblends.

  20. Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein-Polymer Diblock Copolymer

    PubMed Central

    Thomas, Carla S.; Glassman, Matthew J.; Olsen, Bradley D.

    2014-01-01

    Self-assembly of three-dimensional solid-state nanostructures containing approximately 33% by weight globular protein is demonstrated using a globular protein-polymer diblock copolymer, providing a route to direct nanopatterning of proteins for use in bioelectronic and biocatalytic materials. A mutant red fluorescent protein, mCherryS131C, was prepared by incorporation of a unique cysteine residue and site-specifically conjugated to end-functionalized poly(N-isopropylacrylamide) through thiol-maleimide coupling to form a well-defined model protein-polymer block copolymer. The block copolymer was self-assembled into bulk nanostructures by solvent evaporation from concentrated solutions. Small-angle X-ray scattering and transmission electron microscopy illustrated the formation of highly disordered lamellae or hexagonally perforated lamellae depending upon the selectivity of the solvent during evaporation. Solvent annealing of bulk samples resulted in a transition towards lamellar nanostructures with mCherry packed in a bilayer configuration and a large improvement in long range ordering. Wide-angle X-ray scattering indicated that mCherry did not crystallize within the block copolymer nanodomains and that the β-sheet spacing was not affected by self-assembly. Circular dichroism showed no change in protein secondary structure after self-assembly, while UV-vis spectroscopy indicated approximately 35% of the chromophore remained optically active. PMID:21696135

  1. Testing "Compatibility Testing."

    ERIC Educational Resources Information Center

    Robins, Elliot; Huston, Ted L.

    Most models of marital choice are attempts to explain choices within the field of available eligibles. The essence of compatibility testing is that people select their mates by evaluating the match between psychological characteristics after sorting the available field on the basis of social characteristics. A compatibility model seems to require…

  2. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.

    PubMed

    Babasola, Iyabo Oladunni; Zhang, Wei; Amsden, Brian G

    2013-11-01

    In this study, the potential of low molecular weight, viscous liquid polymers based on 5-ethylene ketal ε-caprolactone for localized delivery of proteins via an osmotic pressure release mechanism was investigated. Furthermore, the osmotic release mechanism from viscous liquid polymers was elucidated. 5-Ethylene ketal ε-caprolactone was homopolymerized or copolymerized with D,L-lactide (DLLA) by ring-opening polymerization. Polymer hydrophobicity was adjusted by choice of initiator; hydrophobic polymers were prepared by initiating with octan-1-ol, while more hydrophilic polymers were prepared by initiating with 350 g/mol methoxy poly(ethylene glycol) (PEG). Particles consisting of bovine serum albumin (BSA) as a model protein drug were co-lyophilized with trehalose at 50:50 and 10:90 (w/w) ratios and were mixed into the polymers at 1% and/or 5% (w/w) particle loading. The release and mechanism of release of BSA from the polymers were assessed in vitro. BSA was released in a sustained manner, with a near zero-order release profile and with minimal burst effect for 5-80 days depending on the polymer's hydrophilicity; the release was faster from the PEG initiated polymers than from the octan-1-ol initiated polymers. Increasing the particle loading from 1% to 5% (w/w) resulted in a more noticeable burst effect, but did not significantly increase the mass fraction release rate. This release behavior was determined to proceed as follows. Release from the polymer was triggered by the water activity gradient between the surrounding aqueous medium and the saturated solution, which forms when water is absorbed from the surrounding medium to dissolve a given particle. The generated pressure initiates swelling around the particle/polymer interface and creates a superhydrated polymer region through which the solute is transported by convection, at a rate determined by the osmotic pressure generated. PMID:23665446

  3. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    PubMed

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models.

  4. Glucagon induces disaggregation of polymer-like structures of the. alpha. subunit of the stimulatory G protein in liver membranes

    SciTech Connect

    Nakamura, Shunichi; Rodbell, M. )

    1991-08-15

    The hydrodynamic behavior of G{alpha}{sub s}, the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein (G protein), in octyl glucoside extracts of rat liver membranes was investigated. As was previously shown for G proteins similarly extracted from brain synaptoneurosomes, G{alpha}{sub s} behaved as polydisperse structures with S values higher than that of heterotrimeric G proteins. When G{alpha}{sub s} in its membrane-bound form was ({sup 32}P)ADP-ribosylated by cholera toxin and the treated membranes were extracted with octyl glucoside, > 35% of the labeled G{alpha}{sub s} was found in material that sedimented through sucrose gradients and contained relatively low levels of immunoreactive G{alpha}{sub s}. These finding suggest that the glucagon receptor selectivity interacts with polymer-like structures of G{alpha}{sub 2} and that activation by GTP({gamma}S) results in disaggregation. The role of the {beta} and {gamma} subunits of G proteins in the hormone-induced process is not clear since the polymer-like structures extracted with octyl glucoside are devoid of {beta} and {gamma} subunits.

  5. Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection.

    PubMed

    Tretjakov, Aleksei; Syritski, Vitali; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres

    2016-01-01

    Molecularly imprinted polymer (MIP)-based synthetic receptors integrated with Surface Acoustic Wave (SAW) sensing platform were applied for the first time for label-free protein detection. The ultrathin polymeric films with surface imprints of immunoglobulin G (IgG-MIP) were fabricated onto the multiplexed SAW chips using an electrosynthesis approach. The films were characterized by analyzing the binding kinetics recorded by SAW system. It was revealed that the capability of IgG-MIP to specifically recognize the target protein was greatly influenced by the polymer film thickness that could be easily optimized by the amount of the electrical charge consumed during the electrodeposition. The thickness-optimized IgG-MIPs demonstrated imprinting factors towards IgG in the range of 2.8-4, while their recognition efficiencies were about 4 and 10 times lower toward the interfering proteins, IgA and HSA, respectively. Additionally, IgG-MIP preserved its capability to recognize selectively the template after up to four regeneration cycles. The presented approach of the facile integration of the protein-MIP sensing layer with SAW technology allowed observing the real-time binding events of the target protein at relevant sensitivity levels and can be potentially suitable for cost effective fabrication of a biosensor for analysis of biological samples in multiplexed manner.

  6. Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection.

    PubMed

    Tretjakov, Aleksei; Syritski, Vitali; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres

    2016-01-01

    Molecularly imprinted polymer (MIP)-based synthetic receptors integrated with Surface Acoustic Wave (SAW) sensing platform were applied for the first time for label-free protein detection. The ultrathin polymeric films with surface imprints of immunoglobulin G (IgG-MIP) were fabricated onto the multiplexed SAW chips using an electrosynthesis approach. The films were characterized by analyzing the binding kinetics recorded by SAW system. It was revealed that the capability of IgG-MIP to specifically recognize the target protein was greatly influenced by the polymer film thickness that could be easily optimized by the amount of the electrical charge consumed during the electrodeposition. The thickness-optimized IgG-MIPs demonstrated imprinting factors towards IgG in the range of 2.8-4, while their recognition efficiencies were about 4 and 10 times lower toward the interfering proteins, IgA and HSA, respectively. Additionally, IgG-MIP preserved its capability to recognize selectively the template after up to four regeneration cycles. The presented approach of the facile integration of the protein-MIP sensing layer with SAW technology allowed observing the real-time binding events of the target protein at relevant sensitivity levels and can be potentially suitable for cost effective fabrication of a biosensor for analysis of biological samples in multiplexed manner. PMID:26703269

  7. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2016-02-01

    Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.

  8. Optimization of Mass Spectrometry Compatible Surfactants for Shotgun Proteomics

    PubMed Central

    Chen, Emily I.; Cociorva, Daniel; Norris, Jeremy L.; Yates, John R.

    2008-01-01

    An optimization and comparison of trypsin digestion strategies for peptide/protein identifications by μLC-MS/MS with or without MS compatible detergents in mixed organic-aqueous and aqueous systems was carried out in this study. We determine that adding MS compatible detergents to proteolytic digestion protocols dramatically increases peptide and protein identifications in complex protein mixtures by shotgun proteomics. Protein solubilization and proteolytic efficiency are increased by including MS compatible detergents in trypsin digestion buffers. A modified trypsin digestion protocol incorporating the MS compatible detergents consistently identifies over 300 proteins from 5ug of pancreatic cell lysates and generates a greater number of peptide identifications than trypsin digestion with urea when using LC/MS/MS. Furthermore, over 700 proteins were identified by merging protein identifications from trypsin digestion with three different MS compatible detergents. We also observe that the use of mixed aqueous and organic solvent systems can influence protein identifications in combinations with different MS compatible detergents. Peptide mixtures generated from different MS compatible detergents and buffer combinations show a significant difference in hydrophobicity. Our results show that protein digestion schemes incorporating MS compatible detergents generate quantitative as well as qualitative changes in observed peptide identifications, which lead to increased protein identifications overall and potentially increased identification of low abundant proteins. PMID:17530876

  9. Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow.

    PubMed

    Sozański, Krzysztof; Wiśniewska, Agnieszka; Kalwarczyk, Tomasz; Hołyst, Robert

    2013-11-27

    We measure the activation energy Ea for the diffusion of molecular probes (dyes and proteins of radii from 0.52 to 6.9 nm) and for macroscopic flow in a model complex liquid-aqueous solutions of polyethylene glycol. We cover a broad range of polymer molecular weights, concentrations, and temperatures. Fluorescence correlation spectroscopy and rheometry experiments reveal a relationship between the excess of the activation energy in polymer solutions over the one in pure solvent ΔEa and simple parameters describing the structure of the system: probe radius, polymer hydrodynamic radius, and correlation length. ΔEa varies by more than an order of magnitude in the investigated systems (in the range of ca. 1-15 kJ/mol) and for probes significantly larger than the polymer hydrodynamic radius approaches the value measured for macroscopic flow. We develop an explicit formula describing the smooth transition of ΔEa from the diffusion of molecular probes to macroscopic flow. This formula is a reference for the quantitative analysis of specific interactions of moving nano-objects with their environment as well as active transport. For instance, the power developed by a molecular motor moving at constant velocity u is proportional to u2exp(Ea/RT).

  10. Processing and characterization of protein polymer thin films for surface modification of neural prosthetic devices

    NASA Astrophysics Data System (ADS)

    Buchko, Christopher John

    The objective of this research has been to develop methods for modifying the surfaces of neural prosthetic devices to enhance biocompatibility. Also central to this work was the characterization of the processes used to modify the surfaces, the resulting macroscopic and microscopic structure, and the relevant physical properties of the new surface. The application required a coating that could attract and adhere cells, mediate the stiffness mismatch between the device and tissue, and facilitate signal transport from the device to tissue. The materials chosen for use as surface modifiers were genetically engineered polypeptides that combine biofunctional sequences with structural segments, creating a processable bioadhesive agent. An electric field mediated deposition process was used to create thin coatings on the devices from these protein polymers. Varying the process parameters was found to exert controllable changes on the morphology, and porous thin films with a range of structures were fabricated. This deposition process was combined with lithographic techniques to generate high-fidelity patterned surfaces. It was anticipated that the surface structure of these films could augment their biochemical composition and facilitate cell adhesion. A Fourier Transform-based method of explicitly quantifying the surface topography was employed to evaluate the effects of process parameters on topography. The mechanical properties of the coatings were examined to determine a suitable morphology for joining the mechanically dissimilar device and tissue. Fibrous coatings composed of randomly oriented filaments exhibited a stiffness gradient while under compression. The films were compliant near the tissue and stiffer near the device. The biological performance of these films was assayed and the films were seen to be potent cellular adhesives. The coatings were also found to be capable of delivering biologically-relevant molecules in vitro.

  11. Protein interactions with bottle-brush polymer layers: Effect of side chain and charge density ratio probed by QCM-D and AFM.

    PubMed

    Olanya, Geoffrey; Thormann, Esben; Varga, Imre; Makuska, Ricardas; Claesson, Per M

    2010-09-01

    Silica surfaces were coated with a range of cationic bottle-brush polymers with 45 units long poly(ethylene oxide) side chains, and their efficiency in reducing protein adsorption was probed by QCM-D, reflectometry and AFM. Preadsorbed layers formed by bottle-brush polymers with different side chain to charge ratio was exposed to two proteins with different net charge, lysozyme and BSA. The reduction in protein adsorption was found to depend on both the type of protein and on the nature of the polyelectrolyte layer. The most pronounced reduction in protein adsorption was achieved when the fraction of charged backbone segments was in the range 0.25-0.5 equivalent to a fraction of poly(ethylene oxide) side chains of 0.75-0.5. It was concluded that these polymers have enough electrostatic attachment points to ensure a strong binding to the surface, and at the same time a sufficient amount of poly(ethylene oxide) side chains to counteract protein adsorption. In contrast, a layer formed by a highly charged polyelectrolyte without side chains was unable to resists protein adsorption. On such a layer the adsorption of negatively charged BSA was strongly enhanced, and positively charged lysozyme adsorbed to a similar extent as to bare silica. AFM colloidal probe force measurement between silica surfaces with preadsorbed layers of bottle-brush polymers were conducted before and after exposure to BSA and lysozyme to gain insight into how proteins were incorporated in the bottle-brush polymer layers.

  12. Novel tentacle-type polymer stationary phase grafted with anion exchange polymer chains for open tubular CEC of nucleosides and proteins.

    PubMed

    Aydoğan, Cemil; Çetin, Kemal; Denizli, Adil

    2014-08-01

    A novel and simple method for preparation of a tentacle-type polymer stationary phase grafted with polyethyleneimine (PEI) anion exchanger was developed for open tubular capillary electrochromatography (OT-CEC) of nucleosides and proteins. The polymeric stationary phase was prepared using 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl)-based reactive monomer. The preparation procedure included pretreatment of the capillary inner wall, silanization, in situ graft polymerization with HPMA-Cl and PEI modification. To compare with the tentacle-type capillary column with PEI functionalization, a monolayer capillary column without PEI functionalization was also prepared. The electrochromatographic characterization of the prepared open tubular column was performed using alkylbenzenes. The electroosmotic flow (EOF) with regard to PEI concentrations and the running buffer pH was investigated. The separation conditions of the nucleosides and the proteins were optimized. The modified tentacle-type column with high anion exchange capacity has proven to afford better retention and resolution for the separation of nucleosides and proteins. The PEI functionalization column can also provide long-term stable use for biomolecule separation using a single capillary with relative standard deviation values of retention times of less than 2%. The results indicate that the present method for open tubular capillary preparation with a HPMA-Cl-based reactive monomer is promising for OT-CEC biomolecule separation.

  13. A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers

    NASA Astrophysics Data System (ADS)

    Amiram, Miriam; Quiroz, Felipe Garcia; Callahan, Daniel J.; Chilkoti, Ashutosh

    2011-02-01

    Robust high-throughput synthesis methods are needed to expand the repertoire of repetitive protein-polymers for different applications. To address this need, we developed a new method, overlap extension rolling circle amplification (OERCA), for the highly parallel synthesis of genes encoding repetitive protein-polymers. OERCA involves a single PCR-type reaction for the rolling circle amplification of a circular DNA template and simultaneous overlap extension by thermal cycling. We characterized the variables that control OERCA and demonstrated its superiority over existing methods, its robustness, high-throughput and versatility by synthesizing variants of elastin-like polypeptides (ELPs) and protease-responsive polymers of glucagon-like peptide-1 analogues. Despite the GC-rich, highly repetitive sequences of ELPs, we synthesized remarkably large genes without recursive ligation. OERCA also enabled us to discover ‘smart’ biopolymers that exhibit fully reversible thermally responsive behaviour. This powerful strategy generates libraries of repetitive genes over a wide and tunable range of molecular weights in a ‘one-pot’ parallel format.

  14. Capillary-Channeled Polymer (C-CP) Fibers as a Stationary Phase for Sample Clean-Up of Protein Solutions for Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Manard, Benjamin T.; Marcus, R. Kenneth

    2012-08-01

    Capillary-channeled polymer (C-CP) fibers are employed in a micropipette tip format to affect a stationary phase for the solid phase extraction (SPE) of proteins from buffer solutions prior to MALDI-MS analysis. Proteins readily adsorb to the polypropylene (PP) C-CP fibers while buffer species are easily washed off the tips using DI-H2O. Elution of the solutes is achieved with an aliquot of 50:50 ACN:H2O, which is compatible with the subsequent spotting on the MALDI target with the matrix solution. Lysozyme and cytochrome c are used as test species, with a primary buffer composition of 100 mM Tris-HCl. In this case, direct MALDI-MS produces no discernible protein signals. SPE on the C-CP fibers yields high fidelity mass spectra for 1 μL sample volumes. Limits of detection for cytochrome c in 100 mM Tris-HCl are on the order of 40 nM. Extraction of cytochrome c from buffer concentrations of up to 1 M Tris-HCl, provides signal recoveries that are suppressed by only ~50 % versus neat protein solutions. Finally, extraction of 3.1 μM cytochrome c from a synthetic urine matrix exhibits excellent recovery.

  15. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-05-09

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalase (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.

  16. Protein-style dynamical transition in a non-biological polymer and a non-aqueous solvent

    DOE PAGES

    Mamontov, E.; Sharma, V. K.; Borreguero, J. M.; Tyagi, M.

    2016-03-15

    Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed.more » Ultimately, we conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.« less

  17. Stability and compatibility of morphine.

    PubMed

    Vermeire, A; Remon, J P

    1999-09-30

    Morphine is a widely used analgesic for the treatment of severe cancer pain. For a large number of terminally ill patients oral administration is no longer possible and morphine is administered parenterally using portable pumps allowing comfortable treatment of the patient at home. In this situation the storage of pre-filled reservoirs and/or the administration over a longer period of time are daily practices and require data on the stability of morphine solutions. As most of these patients suffer from several other symptoms, the administration of admixtures with other drugs is common and requires information on the compatibility of morphine. Morphine degrades in aqueous solutions with the formation of mainly pseudomorphine, to a lesser extent morphine-N-oxide and probably apomorphine. From the study of the kinetics of morphine degradation it was concluded that the degradation of morphine is accelerated in the presence of oxygen and at higher pH of the solution, whereas temperature and light have only a minor influence on the degradation rate. The data reported on the stability of morphine infusion solutions kept under ambient conditions indicated that oxygen, light, the type of reservoir, the type of diluent, the salt form and the concentration of morphine do not affect the stability of morphine solutions stored for up to 3 months. Morphine solutions should preferably be stored at room temperature in order to avoid precipitation at low temperatures and water evaporation at higher temperatures causing increase in morphine concentration when stored in polymer reservoirs. Analyzing the data available on the compatibility of morphine infusion solutions revealed that differences in the formulation of the drug solutions (drug concentration, salt form, type and concentration of additives) and diluent, as well as temperature and order and ratio of mixing might affect the compatibility. Only few reports provide all necessary information, limiting the information useful for

  18. Expansion Microscopy with Conventional Antibodies and Fluorescent Proteins

    PubMed Central

    Chozinski, Tyler J.; Halpern, Aaron R.; Okawa, Haruhisa; Kim, Hyeon-Jin; Tremel, Grant J.; Wong, Rachel O.L.; Vaughan, Joshua C.

    2016-01-01

    Expansion microscopy is a recently introduced technique in which fluorophores on fixed specimens are linked to a swellable polymer that is physically expanded to enable super-resolution microscopy with ordinary microscopes. We have developed and characterized new methods for linking fluorophores to the polymer that now enable expansion microscopy with conventional fluorescently-labeled antibodies and fluorescent proteins. Our methods simplify the procedure, expand the palette of compatible labels, and will aid in rapid dissemination of the technique. PMID:27064647

  19. Characterizing the function of unstructured proteins: Simulations of charged polymers under confinement

    NASA Astrophysics Data System (ADS)

    Bright, Joanne N.; Stevens, Mark. J.; Hoh, Jan; Woolf, Thomas B.

    2001-09-01

    Experimental findings that some polypeptides may be unstructured and behave as entropically driven polymeric spacers in biological systems motivates a study of confined polymers. Here we examine the confinement of neutral, polyampholyte, and polyelectrolyte polymers between two parallel surfaces using course grained models and molecular dynamics. Forces between the confining surfaces are determined for different polymer classes and as a function of chain length, charge sequence (pattern) and degree of confinement. Changes in chain properties are also evaluated under these conditions. The results reinforce the significance of length and net charge for predicting chain properties. In addition the clustering of charge along the chain appears to be critical, and changes in cluster size and distribution produce dramatic changes in chain behavior.

  20. Multiscale Dynamics in Soft-Matter Systems: Enzyme Catalysis, Sec-Facilitated Protein Translocation, and Ion-Conduction in Polymers

    NASA Astrophysics Data System (ADS)

    Miller, Thomas

    Nature exhibits dynamics that span extraordinary ranges of space and time. In some cases, these dynamical hierarchies are well separated, simplifying their understanding and description. But chemistry and biology are replete with examples of dynamically coupled scales. In this talk, we will discuss the use of high-performance computing and new simulation methods that enable the inclusion of nuclear quantum effects, such as zero point energy and tunneling, in the reaction dynamics of enzymes, as well as coarse-graining strategies to enable minute-timescale simulations of protein targeting to cell membranes and ion-conduction in polymer electrolytes for lithium-ion battery applications.

  1. Molecularly imprinted polymers prepared using protein-conjugated cleavable monomers followed by site-specific post-imprinting introduction of fluorescent reporter molecules.

    PubMed

    Suga, Yusuke; Sunayama, Hirobumi; Ooya, Tooru; Takeuchi, Toshifumi

    2013-10-01

    Molecularly imprinted polymers were prepared using a protein-conjugated disulfide cleavable monomer. After removing the protein by disulfide reduction, a thiol-reactive fluorophore was introduced into the thiol residue located only inside the imprinted cavity, resulting in specific transduction of the binding events into fluorescence spectral change.

  2. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo

    PubMed Central

    Shi, Pu; Aluri, Suhaas; Lin, Yi-An; Shah, Mihir; Edman-Woolcott, Maria; Dhandhukia, Jugal; Cui, Honggang; MacKay, J. Andrew

    2013-01-01

    Numerous nanocarriers of small molecules depend on either non-specific physical encapsulation or direct covalent linkage. In contrast, this manuscript explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for nanoparticulate drug delivery. To explore this approach, genetically engineered diblock copolymers were constructed from elastin-like polypeptides (ELPs) that assemble small (<100 nm) nanoparticles. ELPs are protein polymers of the sequence (Val-Pro-Gly-Xaa-Gly)n, where the identity of Xaa and n determine their assembly properties. Initially, a screening assay for model drug encapsulation in ELP nanoparticles was developed, which showed that Rose Bengal and Rapa have high non-specific encapsulation in the core of ELP nanoparticles with a sequence where Xaa = Ile or Phe. While excellent at entrapping these drugs, their release was relatively fast (2.2 h half-life) compared to their intended mean residence time in the human body. Having determined that Rapa can be non-specifically entrapped in the core of ELP nanoparticles, FK506 binding protein 12 (FKBP), which is the cognate protein target of Rapa, was genetically fused to the surface of these nanoparticles (FSI) to enhance their avidity towards Rapa. The fusion of FKBP to these nanoparticles slowed the terminal half-life of drug release to 57.8 h. To determine if this class

  3. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes. PMID:27106502

  4. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP.

    PubMed

    Xiang, Tao; Zhang, Li-Sha; Wang, Rui; Xia, Yi; Su, Bai-Hai; Zhao, Chang-Sheng

    2014-10-15

    For blood-contacting materials, good blood compatibility, especially good anticoagulant property is of great importance. Zwitterionic polymers have been proved to be resistant to nonspecific protein adsorption and platelet adhesion; however, their anticoagulant property is always inadequate. In this study, two kinds of zwitterionic copolymers (sulfobetaine methacrylate and sodium p-styrene sulfonate random copolymer and block copolymer) with sulfonic groups were covalently grafted from polysulfone (PSf) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) to improve blood compatibility. Field emission scanning electron microscopy (FE-SEM), attenuated total reflectance-Fourier transform infrared spectra (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and static water contact angle (WCA) were applied to characterize the morphologies, chemical compositions and hydrophilicity of the modified membranes. All the zwitterionic copolymer modified membranes showed improved blood compatibility, especially the anticoagulant property was obviously enhanced compared to the pristine PSf and simple zwitterionic polymer modified membranes. We also found that the random copolymer modified membranes showed better resistance to platelet adhesion than the block copolymer modified membranes. The zwitterionic copolymer modified membranes with integrated antifouling property and blood compatibility provided wide choice for specific applications such as hemodialysis, hemofiltration, and plasma separation. PMID:25072519

  5. The Chemistry of Polymers, Proteins, and Nucleic Acids: A Short Course on Macromolecules for Secondary Schools.

    ERIC Educational Resources Information Center

    Lulav, Ilan; Samuel, David

    1985-01-01

    Describes a unit on macromolecules that has been used in the 12th grade of many Israeli secondary schools. Topic areas in the unit include synthetic polymers, biological macromolecules, and nucleic acids. A unit outline is provided in an appendix. (JN)

  6. Chemical Compatibility Testing Final Report Including Test Plans and Procedures

    SciTech Connect

    NIMITZ,JONATHAN S.; ALLRED,RONALD E.; GORDON,BRENT W.; NIGREY,PAUL J.; MCCONNELL,PAUL E.

    2001-07-01

    This report provides an independent assessment of information on mixed waste streams, chemical compatibility information on polymers, and standard test methods for polymer properties. It includes a technology review of mixed low-level waste (LLW) streams and material compatibilities, validation for the plan to test the compatibility of simulated mixed wastes with potential seal and liner materials, and the test plan itself. Potential packaging materials were reviewed and evaluated for compatibility with expected hazardous wastes. The chemical and physical property measurements required for testing container materials were determined. Test methodologies for evaluating compatibility were collected and reviewed for applicability. A test plan to meet US Department of Energy and Environmental Protection Agency requirements was developed. The expected wastes were compared with the chemical resistances of polymers, the top-ranking polymers were selected for testing, and the most applicable test methods for candidate seal and liner materials were determined. Five recommended solutions to simulate mixed LLW streams are described. The test plan includes descriptions of test materials, test procedures, data collection protocols, safety and environmental considerations, and quality assurance procedures. The recommended order of testing to be conducted is specified.

  7. Multilayer polymer microchip capillary array electrophoresis devices with integrated on-chip labeling for high-throughput protein analysis

    PubMed Central

    Yu, Ming; Wang, Qingsong; Patterson, James E.; Woolley, Adam T.

    2011-01-01

    It is desirable to have inexpensive, high-throughput systems that integrate multiple sample analysis processes and procedures, for applications in biology, chemical analysis, drug discovery, and disease screening. In this paper, we demonstrate multilayer polymer microfluidic devices with integrated on-chip labeling and parallel electrophoretic separation of up to 8 samples. Microchannels were distributed in two different layers and connected through interlayer through-holes in the middle layer. A single set of electrophoresis reservoirs and one fluorescent label reservoir address parallel analysis units for up to 8 samples. Individual proteins and a mixture of cancer biomarkers have been successfully labeled on-chip and separated in parallel with this system. A detection limit of 600 ng/mL was obtained for heat shock protein 90. Our integrated on-chip labeling microdevices show great potential for low-cost, simplified, rapid and high-throughput analysis. PMID:21449615

  8. Protein-Style Dynamical Transition in a Non-Biological Polymer and a Non-Aqueous Solvent.

    PubMed

    Mamontov, E; Sharma, V K; Borreguero, J M; Tyagi, M

    2016-03-31

    Temperature-dependent onset of apparent anharmonicity in the microscopic dynamics of hydrated proteins and other biomolecules has been known as protein dynamical transition for the last quarter of a century. Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed. We conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.

  9. Structural determination of protein-based polymer blends with a promising tool: combination of FTIR and STXM spectroscopic imaging.

    PubMed

    Ling, Shengjie; Qi, Zeming; Watts, Benjamin; Shao, Zhengzhong; Chen, Xin

    2014-05-01

    Fourier transform infrared (FTIR) and scanning transmission X-ray microscopy (STXM) spectroscopic imaging techniques are introduced to determine the structure of protein-based polymer blends, using the silk fibroin/polyethylene oxide (SF/PEO) blend as a model material. We demonstrate that FTIR and STXM imaging techniques provide complementary chemical sensitivities, resolution ranges and sample thickness requirements that can enable a greater understanding of SF/PEO blend films. From the FTIR images, we find that SF shows random coil and/or helical conformation in the SF-rich domains, and β-sheet conformation in the PEO-rich matrix. In the meantime, the SF content in SF-rich domains is 74 ± 4%, and 38 ± 6% in the PEO-rich matrix from the STXM images. These findings support and give further evidence to the conclusions of the previous studies on SF/PEO blends in the literature. Our results strongly suggest that FTIR and STXM imaging techniques are two promising complementary approaches for the study of phase behaviour and molecular conformation in protein-based polymer blend materials.

  10. Memory-Compatible Instruction.

    ERIC Educational Resources Information Center

    Kiewra, Kenneth A.

    1987-01-01

    Argues that most teachers do not understand the nature of human memory. Presents an informal introduction to human memory, including information on long-term retention, prior knowledge, retrieval, and cues. States that instructors can design memory-compatible instruction that makes recording and retrieval of new knowledge easier. (TW)

  11. Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei.

    PubMed

    Dong, Yanpeng; Fan, Guoqiang; Zhao, Zhenli; Deng, Minjie

    2014-09-01

    Drought is one of the most devastating effects of global climate change. Leaves contribute significantly to the management of water deficit and plant adaptation to drought stress. In this study, we compared the transcriptomes of leaves of two genotypes of Paulownia fortunei with different drought tolerances. Solexa sequencing and qRT-PCR were used for gene expression analysis and validation. Variations in leaf growth were found between drought-treated and well-watered samples in both genotypes. Drought-treated samples from diploid and autotetraploid P. fortunei cultivars showed inward leaf rolling and smaller blade size compared with the well-watered ones. High throughput transcriptome sequencing generated 266,700,100 high-quality reads representing 110,586 unigenes from the leaves. The drought-treated samples responded to water deficiency by inducing various genes and pathways, such as photosynthesis, carbon fixation in photosynthetic organisms, stress response, plant hormone signal transduction, and flavonoid pathways. Regulatory genes, such as WRKY, and transcription factors, such as NAC, known for leaf development under drought stress, were highly expressed in the drought-treated samples, and so were the genes related to compatible solutes (sugars, sugar alcohols, amino sugars, amino acids, or betaine), hormones, and various transporters. This study illustrates changes in the expression pattern of genes induced in response to drought stress and provides a comprehensive and specific set of drought-responsive genes in P. fortunei. PMID:24801596

  12. Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei.

    PubMed

    Dong, Yanpeng; Fan, Guoqiang; Zhao, Zhenli; Deng, Minjie

    2014-09-01

    Drought is one of the most devastating effects of global climate change. Leaves contribute significantly to the management of water deficit and plant adaptation to drought stress. In this study, we compared the transcriptomes of leaves of two genotypes of Paulownia fortunei with different drought tolerances. Solexa sequencing and qRT-PCR were used for gene expression analysis and validation. Variations in leaf growth were found between drought-treated and well-watered samples in both genotypes. Drought-treated samples from diploid and autotetraploid P. fortunei cultivars showed inward leaf rolling and smaller blade size compared with the well-watered ones. High throughput transcriptome sequencing generated 266,700,100 high-quality reads representing 110,586 unigenes from the leaves. The drought-treated samples responded to water deficiency by inducing various genes and pathways, such as photosynthesis, carbon fixation in photosynthetic organisms, stress response, plant hormone signal transduction, and flavonoid pathways. Regulatory genes, such as WRKY, and transcription factors, such as NAC, known for leaf development under drought stress, were highly expressed in the drought-treated samples, and so were the genes related to compatible solutes (sugars, sugar alcohols, amino sugars, amino acids, or betaine), hormones, and various transporters. This study illustrates changes in the expression pattern of genes induced in response to drought stress and provides a comprehensive and specific set of drought-responsive genes in P. fortunei.

  13. Mixed waste chemical compatibility with packaging components

    SciTech Connect

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-05-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals.

  14. Oxygen-rich coating promotes binding of proteins and endothelialization of polyethylene terephthalate polymers.

    PubMed

    Jaganjac, Morana; Vesel, Alenka; Milkovic, Lidija; Recek, Nina; Kolar, Metod; Zarkovic, Neven; Latiff, Aishah; Kleinschek, Karin-Stana; Mozetic, Miran

    2014-07-01

    The formation of endothelial cell monolayer on prosthetic implants has not sufficiently explored. The main reasons leading to the development of thrombosis and/or intimal hyperplasia is the lack of endothelialization. In the present work, we have studied the influence of oxygen and fluorine plasma treatment of polyethylene terephthalate (PET) polymers on human microvascular endothelial cell adhesion and proliferation. We characterized the polymer surface, wettability, and oxidation potential upon plasma treatment. Moreover, binding of serum and media compounds on PET surface was monitored by Quartz crystal microbalance method, X-ray photoelectron spectroscopy, and atomic force microscopy. Cell adhesion and morphology was assessed by light and scanning electron microscopy. The influence of plasma treatment on induction of cellular oxidative stress and cell proliferation was evaluated. The results obtained showed that treatment with oxygen plasma decreased the oxidation potential of the PET surface and revealed the highest affinity for binding of serum components. Accordingly, the cells reflected the best adhesion and morphological properties on oxygen-treated PET polymers. Moreover, treatment with oxygen plasma did not induce intracellular reactive oxygen species production while it stimulated endothelial cell proliferation by 25% suggesting the possible use of oxygen plasma treatment to enhance endothelialization of synthetic vascular grafts.

  15. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  16. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  17. Polyethylenimine modified poly(ethylene terephthalate) capillary channeled-polymer fibers for anion exchange chromatography of proteins.

    PubMed

    Jiang, Liuwei; Jin, Yi; Marcus, R Kenneth

    2015-09-01

    Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been previously studied as stationary phases for reversed phase and affinity protein separations. In this study, surface modified PET C-CP fibers were evaluated for the anion exchange separation of proteins. The native PET C-CP fibers were aminated using polyethylenimine (PEI) followed by a 1,4-butanediol diglycidyl ether (BUDGE) cross-linking step. Subsequent PEI/BUDGE treatments can be employed to further develop the polyamine layer on the fiber surfaces. The PEI densities of the modified fibers were quantified through the ninhydrin reaction, yielding values of 0.43-0.89μmolg(-1). The surface modification impact on column permeability was found to be 0.66×10(-11) to 1.33×10(-11)m(2), depending on the modification time and conditions. The dynamic binding capacities of the modified fiber media were determined to be 1.99-8.54mgmL(-1) bed volume, at linear velocities of 88-438cmmin(-1) using bovine serum albumin as the model protein. It was found that increasing the mobile phase linear velocity (up to 438cmmin(-1)) had no effect on the separation quality for a synthetic protein mixture, reflecting the lack of van Deemter C-term effects for the C-CP fiber phase. The low-cost, easy modification method and the capability of fast protein separation illustrate great potential in the use of PEI/BUDGE-modified PET C-CP fibers for high-throughput protein separation and downstream processing. PMID:26253835

  18. Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.

  19. Protein-polymer nano-machines. Towards synthetic control of biological processes

    PubMed Central

    Pennadam, Sivanand S; Firman, Keith; Alexander, Cameron; Górecki, Dariusz C

    2004-01-01

    The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams [1,2]. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales [3]. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function [4]. PMID:15350203

  20. Protein-polymer nano-machines. Towards synthetic control of biological processes.

    PubMed

    Pennadam, Sivanand S; Firman, Keith; Alexander, Cameron; Górecki, Dariusz C

    2004-09-01

    The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition.The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4. PMID:15350203

  1. Site-selective red-edge spectroscopy of disordered materials and microheterogeneous systems: polymers, phospholipid membranes and proteins

    NASA Astrophysics Data System (ADS)

    Demchenko, Alexander P.; Ercelen, Sebnem; Klymchenko, Andriy S.

    2002-12-01

    For aromatic fluorophores embedded into different rigid and highly viscous media with low structural order the spectroscopic properties do not conform to classical rules. The fluorescence spectra can depend on excitation wavelength, and the excited-state energy transfer, if present, fails at the 'red' excitation edge. These Red-Edge effects are observed due to the existence of excited-state distribution of fluorophores on their interaction energy with the environment and the slow rate of dielectric relaxations. In these conditions the site-selection can be provided by variation of energy of illuminating light quanta, and the behavior of selected species can be followed as a function of time and other variables. These observations foudn extensive application in different areas of research: colloid and polymer science, photophysics and molecular biophysics. Site-selection effects were discovered for electron-transfer and proton-transfer reactions if they depend on the dynamics of the environment. In this report we concentrate on fluroescence of 3-hydroxyflavone derivatives as the probes that exhibit the excited-state proton transfer reaction. The studies in polymer films, phospholipid membranes and in complexes with proteins allow characterizing the static and dynamic disorder in these systems.

  2. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed Central

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-01-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  3. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-06-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  4. Estimation of Protein Absorption on Polymer Material by Carbon-Negative Ion Implantation

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuya; Tsuji, Hiroshi; Hattori, Mitsutaka; Sommani, Piyanuch; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    Selective cell attachment on carbon-negative-ion implanted region of polystyrene was already reported by the authors. However, the selectivity and adhesion strength in the cell pattering were partially insufficient. The adhesive proteins called extracellular matrix (ECM), in general, intervene between cell and substrate surface in the cell attachment on the solid surface. Therefore, we considered to obtain clearer selective cell attachment with tighter binding strength on the implanted region of polystyrene when these adhesive proteins precedently adsorbed on the implanted region of polystyrene. In this paper, we have investigated adsorption properties of three kinds of adhesive proteins (gelatin, fibronectin, laminin) and cell attachment properties on precedent protein adsorbed surface of polystyrene modified by carbon negative-ion implantation. Carbon negative ions were implanted into polystyrene at energy of 10 keV with dose in a range of 1×1014~1×1016 ions/cm2. After implantation, the samples were dipped in the protein solutions for 2 hours. Then, the protein adsorption ratio between implanted and unimplanted regions was evaluated by detecting amount of nitrogen atoms on the surface by X-ray photoelectron spectroscopy (XPS). As a result, the protein-precedently-absorbed sample implanted at dose more than 3×1015 ions/cm2 showed the large gelatin adsorption ratio of more than 2, where the much densely populated cell-attachment was observed more than that on the implanted region of polystyrene without precedent adsorption of protein after cell culture.

  5. Fluorescent protein senses and reports mechanical damage in glass-fiber-reinforced polymer composites.

    PubMed

    Makyła, Katarzyna; Müller, Christoph; Lörcher, Samuel; Winkler, Thomas; Nussbaumer, Martin G; Eder, Michaela; Bruns, Nico

    2013-05-21

    Yellow fluorescent protein (YFP) is used as a mechanoresponsive layer at the fiber/resin interface in glass-fiber-reinforced composites. The protein loses its fluorescence when subjected to mechanical stress. Within the material, it reports interfacial shear debonding and barely visible impact damage by a transition from a fluorescent to a non-fluorescent state. PMID:23423911

  6. Induction of tumor necrosis factor production from monocytes stimulated with mannuronic acid polymers and involvement of lipopolysaccharide-binding protein, CD14, and bactericidal/permeability-increasing factor.

    PubMed Central

    Jahr, T G; Ryan, L; Sundan, A; Lichenstein, H S; Skjåk-Braek, G; Espevik, T

    1997-01-01

    Well-defined polysaccharides, such as beta1-4-linked D-mannuronic acid (poly[M]) derived from Pseudomonas aeruginosa, induce monocytes to produce tumor necrosis factor (TNF) through a pathway involving membrane CD14. In this study we have investigated the effects of soluble CD14 (sCD14), lipopolysaccharide-binding protein (LBP), and bactericidal/permeability-increasing factor (BPI) on poly(M) binding to monocytes and induction of TNF production. We show that LBP increased the TNF production from monocytes stimulated with poly(M). Addition of sCD14 alone had only minor effects, but when it was added together with LBP, a rise in TNF production was seen. BPI was found to inhibit TNF production from monocytes stimulated with poly(M) in the presence of LBP, LBP-sCD14, or 10% human serum. Binding studies showed that poly(M) bound to LBP- and BPI-coated immunowells, while no significant binding of poly(M) to sCD14-coated wells in the absence of serum was observed. Binding of poly(M) to monocytes was also examined by flow cytometry, and it was shown that the addition of LBP or 10% human serum clearly increased the binding of poly(M) to monocytes. BPI inhibited the binding of poly(M) to monocytes in the presence of LBP, LBP-sCD14, or 10% human serum. Our data demonstrate a role for LBP, LBP-sCD14, and BPI in modulating TNF responses of defined polysaccharides. PMID:8975896

  7. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers.

    PubMed

    Srividhya, M; Preethi, S; Gnanamani, A; Reddy, B S R

    2006-12-01

    Amphiphilic comb like macromonomer containing hydrophilic poly(ethylene glycol) groups covalently linked to poly(hydromethyl siloxane) (PHMS) were prepared by hydrosilylation reaction. The epoxy reacting sites were introduced to this amphiphilic system by the reaction with allyl epoxy propyl ether (AEPE). Bovine serum albumin (BSA), a model protein drug was loaded to the PEG-PDMS system and very thin membranes were made from this macromonomer adopting solution casting technique. The in vitro protein release studies at various pH conditions showed a controlled release profile without exhibiting any initial burst. The control of the initial burst might be due to the strong linkages of the protein with the membrane and the aggregation of the protein at the surface. The morphology of the membrane before and after the protein release, and the mechanical strength were evaluated. The surface properties of the membrane were studied using the contact angle measurements. PMID:16930885

  8. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.

    PubMed

    Xia, Xiao-Xia; Wang, Ming; Lin, Yinan; Xu, Qiaobing; Kaplan, David L

    2014-03-10

    Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.

  9. Combining polymers with the functionality of proteins: new concepts for atom transfer radical polymerization, nanoreactors and damage self-reporting materials.

    PubMed

    Bruns, Nico; Lörcher, Samuel; Makyła, Katarzyna; Pollarda, Jonas; Renggli, Kasper; Spulber, Mariana

    2013-01-01

    Proteins are macromolecules with a great diversity of functions. By combining these biomolecules with polymers, exciting opportunities for new concepts in polymer sciences arise. This highlight exemplifies the aforementioned with current research results of our group. We review our discovery that the proteins horseradish peroxidase and hemoglobin possess ATRPase activity, i.e. they catalyze atom transfer radical polymerizations. Moreover, a permeabilization method for polymersomes is presented, where the photo-reaction of an α-hydroxyalkylphenone with block copolymer vesicles yields enzyme-containing nanoreactors. A further intriguing possibility to obtain functional nanoreactors is to enclose a polymerization catalyst into the thermosome, a protein cage from the family of chaperonins. Last but not least, fluorescent proteins are discussed as mechanoresponsive molecular sensors that report microdamages within fiber-reinforced composite materials.

  10. From compatible factorization to near-compatible factorization

    NASA Astrophysics Data System (ADS)

    Aldiabat, Raja'i.; Ibrahim, Haslinda

    2014-12-01

    A compatible factorization of order ν, is an ν× ν-1/2 array in which the entries in row i form a near-one-factor with focus i, and the triples associated with the rows contain no repetitions. In this paper, we aim to amend this compatible factorization so that we can display ν(ν-1)/2 - 2ν/3 triples with the minimum repeated triples. Throughout this paper we propose a new type of factorization called near-compatible factorization. First, we present the compatible factorization towards developing a near-compatible factorization. Second, we discuss briefly the necessary and sufficient conditions for the existence of near-compatible factorization. Then, we exemplify the construction for case ν = 9 as a groundwork in developing near-compatible factorization.

  11. Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water

    PubMed Central

    Brown, André E. X.; Litvinov, Rustem I.; Discher, Dennis E.; Purohit, Prashant K.; Weisel, John W.

    2010-01-01

    Blood clots and thrombi consist primarily of a mesh of branched fibers made of the protein fibrin. We propose a molecular basis for the marked extensibility and negative compressibility of fibrin gels based on the structural and mechanical properties of clots at the network, fiber, and molecular levels. The force required to stretch a clot initially rises linearly and is accompanied by a dramatic decrease in clot volume and a peak in compressibility. These macroscopic transitions are accompanied by fiber alignment and bundling after forced protein unfolding. Constitutive models are developed to integrate observations at spatial scales that span six orders of magnitude and indicate that gel extensibility and expulsion of water are both manifestations of protein unfolding, which is not apparent in other matrix proteins such as collagen. PMID:19661428

  12. Spatial patterns of gluten protein and polymer distribution in wheat grain.

    PubMed

    He, Jibin; Penson, Simon; Powers, Stephen J; Hawes, Chris; Shewry, Peter R; Tosi, Paola

    2013-07-01

    The starchy endosperm is the major storage tissue in the mature wheat grain and exhibits quantitative and qualitative gradients in composition, with the outermost cell layers being rich in protein, mainly gliadins, and the inner cells being low in protein but enriched in high-molecular-weight (HMW) subunits of glutenin. We have used sequential pearling to produce flour fractions enriched in particular cell layers to determine the protein gradients in four different cultivars grown at two nitrogen levels. The results show that the steepness of the protein gradient is determined by both genetic and nutritional factors, with three high-protein breadmaking cultivars being more responsive to the N treatment than a low-protein cultivar suitable for livestock feed. Nitrogen also affected the relative abundances of the three main classes of wheat prolamins: the sulfur-poor ω-gliadins showed the greatest response to nitrogen and increased evenly across the grain; the HMW subunits also increased in response to nitrogen but proportionally more in the outer layers of the starchy endosperm than near the core, while the sulfur-rich prolamins showed the opposite trend.

  13. Polymer Uncrossing and Knotting in Protein Folding, and Their Role in Minimal Folding Pathways

    PubMed Central

    Mohazab, Ali R.; Plotkin, Steven S.

    2013-01-01

    We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold , , , and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation “alignment”. The consensus minimal pathway is constructed and shown schematically for representative cases of an , , and knotted protein. An overlap parameter is defined between pathways; we find that proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding. PMID:23365638

  14. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  15. Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells.

    PubMed

    Scott, Daniel J; Plückthun, Andreas

    2013-02-01

    G protein-coupled receptors (GPCRs) are the largest class of pharmaceutical protein targets, yet drug development is encumbered by a lack of information about their molecular structure and conformational dynamics. Most mechanistic and structural studies as well as in vitro drug screening with purified receptors require detergent solubilization of the GPCR, but typically, these proteins exhibit only low stability in detergent micelles. We have developed the first directed evolution method that allows the direct selection of GPCRs stable in a chosen detergent from libraries containing over 100 million individual variants. The crucial concept was to encapsulate single Escherichia coli cells of a library, each expressing a different GPCR variant, to form detergent-resistant, semipermeable nano-containers. Unlike naked cells, these containers are not dissolved by detergents, allowing us to solubilize the GPCR proteins in situ while maintaining an association with the protein's genetic information, a prerequisite for directed evolution. The pore size was controlled to permit GPCR ligands to permeate but the solubilized receptor to remain within the nanocapsules. Fluorescently labeled ligands were used to bind to those GPCR variants inside the nano-containers that remained active in the detergent tested. With the use of fluorescence-activated cell sorting, detergent-stable mutants derived from two different family A GPCRs could be identified, some with the highest stability reported in short-chain detergents. In principle, this method (named cellular high-throughput encapsulation, solubilization and screening) is not limited to engineering stabilized GPCRs but could be used to stabilize other proteins for biochemical and structural studies.

  16. Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita.

    PubMed

    Oliveira, J T A; Andrade, N C; Martins-Miranda, A S; Soares, A A; Gondim, D M F; Araújo-Filho, J H; Freire-Filho, F R; Vasconcelos, I M

    2012-02-01

    This study aimed to evaluated the resistance and susceptibility of 10 cowpea cultivars to Meloidogyne incognita in field studies and to analyze the kinetics of the enzymes superoxide dismutase, catalase, peroxidase, chitinase, β-1,3-glucanases and cystein proteinase inhibitors in the root system of two contrasting cowpea cultivars after inoculation with M. incognita. The cultivars CE-31 and Frade Preto were highly resistant; CE-28, CE-01, CE-315, CE-237, were very resistant; CE-70 and CE-216 were moderately resistant, whereas Vita-3 and CE-109 were slightly resistant. In the roots of the highly resistant cultivar CE-31 the activity of the antioxidant enzyme superoxide dismutase increased and catalase decreased and those of the pathogenesis-related proteins chitinase, β-1,3-glucanase, peroxidase and cystein proteinase inhibitor increased in comparison with the root system of the slightly resistant CE-109, during the course of M. incognita infestation. Thus the changes in the activities of these enzymes might be related to the smaller final population of M. incognita in CE-31 and may contribute to the high resistance of this cowpea cultivar against infection and colonization by this nematode species.

  17. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  18. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    NASA Astrophysics Data System (ADS)

    Sawle, Lucas; Ghosh, Kingshuk

    2015-08-01

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R2 = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.

  19. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    SciTech Connect

    Sawle, Lucas; Ghosh, Kingshuk

    2015-08-28

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R{sup 2} = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.

  20. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W. D.; Exarhos, Gregory J.

    1995-01-01

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  1. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W.D.; Exarhos, G.J.

    1995-06-06

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  2. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity

    PubMed Central

    Cabré, Elisa J.; Monterroso, Begoña; Alfonso, Carlos; Sánchez-Gorostiaga, Alicia; Reija, Belén; Jiménez, Mercedes

    2015-01-01

    Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ. PMID:25950808

  3. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings.

    PubMed

    Xu, Qing; Guo, Shi-Rong; Li, Lin; An, Ya-Hong; Shu, Sheng; Sun, Jin

    2016-08-01

    Graft compatibility between rootstock and scion is the most important factor influencing the survival of grafted plants. In this study, we used two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to investigate differences in leaf proteomes of graft-compatible and graft-incompatible cucumber (Cucumis sativus L.)/pumpkin (Cucurbita L.) combinations. Cucumber seedlings were used as the scions and two pumpkin cultivars with strongly contrasting grafting compatibilities were used as the rootstocks. Non-grafted and self-grafted cucumber seedlings served as control groups. An average of approximately 500 detectable spots were observed on each 2-DE gel. A total of 50 proteins were differentially expressed in response to self-grafting, compatible-rootstock grafting, and incompatible-rootstock grafting and were all successfully identified by MALDI-TOF/TOF MS. The regulation of Calvin cycle, photosynthetic apparatus, glycolytic pathway, energy metabolism, protein biosynthesis and degradation, and reactive oxygen metabolism will probably contribute to intensify the biomass and photosynthetic capacity in graft-compatible combinations. The improved physiological and growth characteristics of compatible-rootstock grafting plants are the result of the higher expressions of proteins involved in photosynthesis, carbohydrate and energy metabolism, and protein metabolism. At the same time, the compatible-rootstock grafting regulation of stress defense, amino acid metabolism, and other metabolic functions also plays important roles in improvement of plant growth. PMID:27070289

  4. 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction.

    PubMed

    Fernandez, Diana; Tisserant, Emilie; Talhinhas, Pedro; Azinheira, Helena; Vieira, Ana; Petitot, Anne-Sophie; Loureiro, Andreia; Poulain, Julie; Da Silva, Corinne; Silva, Maria Do Céu; Duplessis, Sébastien

    2012-01-01

    Coffee (Coffea arabica L.), one of the key export and cash crops in tropical and subtropical countries, suffers severe losses from the rust fungus Hemileia vastatrix. The transcriptome of H. vastatrix was analysed during a compatible interaction with coffee to obtain an exhaustive repertoire of the genes expressed during infection and to identify potential effector genes. Large-scale sequencing (454-GS-FLEX Titanium) of mixed coffee and rust cDNAs obtained from 21-day rust-infected leaves generated 352 146 sequences which assembled into 22 774 contigs. In the absence of any reference genomic sequences for Coffea or Hemileia, specific trinucleotide frequencies within expressed sequence tags (ESTs) and blast homology against a set of dicots and basidiomycete genomes were used to distinguish pathogen from plant sequences. About 30% (6763) of the contigs were assigned to H. vastatrix and 61% (13 951) to C. arabica. The majority (60%) of the rust sequences did not show homology to any genomic database, indicating that they were potential novel fungal genes. In silico analyses of the 6763 H. vastatrix contigs predicted 382 secreted proteins and identified homologues of the flax rust haustorially expressed secreted proteins (HESPs) and bean rust transferred protein 1 (RTP1). These rust candidate effectors showed conserved amino-acid domains and conserved patterns of cysteine positions suggestive of conserved functions during infection of host plants. Quantitative reverse transcription-polymerase chain reaction profiling of selected rust genes revealed dynamic expression patterns during the time course of infection of coffee leaves. This study provides the first valuable genomic resource for the agriculturally important plant pathogen H. vastatrix and the first comprehensive C. arabica EST dataset.

  5. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment.

    PubMed

    Cao, Jiali; Zhang, Xihao; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2014-02-01

    A protein imprinting approach for the synthesis of core-shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation-precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface-modified with 3-(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high-density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross-linking agent N,N'-methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g(-1)) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as-prepared Fe3O4@Lyz-MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz-MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g(-1)) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz-MIP could selectively extract a target protein from real egg-white samples under an external magnetic field. PMID:24203562

  6. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment.

    PubMed

    Cao, Jiali; Zhang, Xihao; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2014-02-01

    A protein imprinting approach for the synthesis of core-shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation-precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface-modified with 3-(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high-density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross-linking agent N,N'-methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g(-1)) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as-prepared Fe3O4@Lyz-MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz-MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g(-1)) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz-MIP could selectively extract a target protein from real egg-white samples under an external magnetic field.

  7. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  8. Compatibility: drugs and parenteral nutrition

    PubMed Central

    Miranda, Talita Muniz Maloni; Ferraresi, Andressa de Abreu

    2016-01-01

    ABSTRACT Objective Standardization and systematization of data to provide quick access to compatibility of leading injectable drugs used in hospitals for parenteral nutrition. Methods We selected 55 injectable drugs analyzed individually with two types of parenteral nutrition: 2-in-1 and 3-in-1. The following variables were considered: active ingredient, compatibility of drugs with the parenteral nutrition with or without lipids, and maximum drug concentration after dilution for the drugs compatible with parenteral nutrition. Drugs were classified as compatible, incompatible and untested. Results After analysis, relevant information to the product’s compatibility with parental nutrition was summarized in a table. Conclusion Systematization of compatibility data provided quick and easy access, and enabled standardizing pharmacists work. PMID:27074235

  9. Peptide–polymer ligands for a tandem WW-domain, an adaptive multivalent protein–protein interaction: lessons on the thermodynamic fitness of flexible ligands

    PubMed Central

    Koschek, Katharina; Durmaz, Vedat; Krylova, Oxana; Wieczorek, Marek; Gupta, Shilpi; Richter, Martin; Bujotzek, Alexander; Fischer, Christina; Haag, Rainer; Freund, Christian; Weber, Marcus

    2015-01-01

    Summary Three polymers, poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), hyperbranched polyglycerol (hPG), and dextran were investigated as carriers for multivalent ligands targeting the adaptive tandem WW-domain of formin-binding protein (FBP21). Polymer carriers were conjugated with 3–9 copies of the proline-rich decapeptide GPPPRGPPPR-NH2 (P1). Binding of the obtained peptide–polymer conjugates to the tandem WW-domain was investigated employing isothermal titration calorimetry (ITC) to determine the binding affinity, the enthalpic and entropic contributions to free binding energy, and the stoichiometry of binding for all peptide–polymer conjugates. Binding affinities of all multivalent ligands were in the µM range, strongly amplified compared to the monovalent ligand P1 with a K D > 1 mM. In addition, concise differences were observed, pHPMA and hPG carriers showed moderate affinity and bound 2.3–2.8 peptides per protein binding site resulting in the formation of aggregates. Dextran-based conjugates displayed affinities down to 1.2 µM, forming complexes with low stoichiometry, and no precipitation. Experimental results were compared with parameters obtained from molecular dynamics simulations in order to understand the observed differences between the three carrier materials. In summary, the more rigid and condensed peptide–polymer conjugates based on the dextran scaffold seem to be superior to induce multivalent binding and to increase affinity, while the more flexible and dendritic polymers, pHPMA and hPG are suitable to induce crosslinking upon binding. PMID:26124884

  10. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.

    PubMed

    Qin, Weijie; Song, Zifeng; Fan, Chao; Zhang, Wanjun; Cai, Yun; Zhang, Yangjun; Qian, Xiaohong

    2012-04-01

    In recent years, quantitative proteomic research attracts great attention because of the urgent needs in biological and clinical research, such as biomarker discovery and verification. Currently, mass spectrometry (MS) based bottom up strategy has become the method of choice for proteomic quantification. In this strategy, the amount of proteins is determined by quantifying the corresponding proteolytic peptides of the proteins, therefore highly efficient and complete protein digestion is crucial for achieving accurate quantification results. However, the digestion efficiency and completeness obtained using conventional free protease digestion is not satisfactory for highly complex proteomic samples. In this work, we developed a new type of immobilized trypsin using hairy noncross-linked polymer chains hybrid magnetic nanoparticle as the matrix aiming at ultra fast, highly efficient proteomic digestion and facile (18)O labeling for absolution protein quantification. The hybrid nanoparticle is synthesized by in situ growth of hairy polymer chains from the magnetic nanoparticle surface using surface initiated atom transfer radical polymerization technique. The flexible noncross-linked polymer chains not only provide large amount of binding sites but also work as scaffolds to support three-dimensional trypsin immobilization which leads to increased loading amount and improved accessibility of the immobilized trypsin. For complex proteomic samples, obviously increased digestion efficiency and completeness was demonstrated by 27.2% and 40.8% increase in the number of identified proteins and peptides as well as remarkably reduced undigested proteins residues compared with that obtained using conventional free trypsin digestion. The successful application in absolute protein quantification of enolase from Thermoanaerobacter tengcongensis protein extracts using (18)O labeling and MRM strategy further demonstrated the potential of this hybrid nanoparticle immobilized trypsin

  11. C lostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII

    PubMed Central

    Willing, Stephanie E.; Candela, Thomas; Shaw, Helen Alexandra; Seager, Zoe; Mesnage, Stéphane; Fagan, Robert P.

    2015-01-01

    Summary Gram‐positive surface proteins can be covalently or non‐covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non‐identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock‐down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram‐positive bacteria. PMID:25649385

  12. Influences of process and formulation parameters on powder flow properties and immunogenicity of spray dried polymer particles entrapping recombinant pneumococcal surface protein A.

    PubMed

    Anish, Chakkumkal; Upadhyay, Arun K; Sehgal, Devinder; Panda, Amulya Kumar

    2014-05-15

    Particle size, antigen load and its release characteristic are the three the main attributes of polymer particles based vaccine delivery systems. The present studies focus on the formulation of spray dried polylactide microparticles entrapping pneumococcal surface protein A (PspA). Influence of process variables during polymer particle formation were optimized by using half-factorial design. Feed rate and atomization pressure during spray drying were found to be the most important parameters for achieving uniform size particles. Spray drying of preformed particles from different stages of solvent evaporation method resulted in formation of particle having different porosity and protein release profile. Presence of polyvinyl alcohol in the external aqueous phase not only contributed towards regulating the size of particles but also influenced the burst release of protein from particles. Polymer particles entrapping PspA elicited robust IgG responses both in mice and in rats. Antigen load in microparticles correlated with the antibody titer indicating the maintenance of protein integrity during particle formation using spray drying. Both, process engineering and formulation parameters during spray drying influenced the particles in terms of size, load and antigen release characteristics.

  13. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  14. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles

    PubMed Central

    Wang, Wan; Despanie, Jordan; Shi, Pu; Edman-Woolcott, Maria C.; Lin, Yi-An; Cui, Honggang; Heur, J. Martin; Fini, M. Elizabeth; Hamm-Alvarez, Sarah F.; MacKay, J. Andrew

    2014-01-01

    The avascular corneal epithelium plays an important role in maintaining normal vision and protecting the corneal interior from environmental infections. Delayed recovery of ocular wounds caused by trauma or refractive surgery strengthens the need to accelerate corneal wound healing and better restore the ocular surface. To address this need, we fused elastin-like polypeptide (ELP) based nanoparticles SI with a model mitogenic protein called lacritin. Lacritin fused at the N-terminus of the SI diblock copolymer is called LSI. This LSI fusion protein undergoes thermo-responsive assembly of nanoparticles at physiologically relevant temperatures. In comparison to ELP nanoparticles without lacritin, LSI showed potent signs of lacritin specific effects on a human corneal epithelial cell line (HCE-T), which included enhancement of cellular uptake, calcium-mediated signaling, and closure of a scratch. In vivo, the corneas of non-obese diabetic mice (NOD) were found to be highly responsive to LSI. Fluorescein imaging and corneal histology suggested that topical administration of LSI onto the ocular surface significantly promoted corneal wound healing and epithelial integrity compared to mice treated with or without plain ELP. Most interestingly, it appears that ELP-mediated assembly of LSI is essential to produce this potent activity. This was confirmed by comparison to a control lacritin ELP fusion called LS96, which does not undergo thermally-mediated assembly at relevant temperatures. In summary, fusion of a mitogenic protein to ELP nanoparticles appears to be a promising new strategy to bioengineer more potent biopharmaceuticals with potential applications in corneal wound healing. PMID:25530855

  15. Streptococcus agalactiae capsule polymer length and attachment is determined by the proteins CpsABCD.

    PubMed

    Toniolo, Chiara; Balducci, Evita; Romano, Maria Rosaria; Proietti, Daniela; Ferlenghi, Ilaria; Grandi, Guido; Berti, Francesco; Ros, Immaculada Margarit Y; Janulczyk, Robert

    2015-04-10

    The production of capsular polysaccharides (CPS) or secreted exopolysaccharides is ubiquitous in bacteria, and the Wzy pathway constitutes a prototypical mechanism to produce these structures. Despite the differences in polysaccharide composition among species, a group of proteins involved in this pathway is well conserved. Streptococcus agalactiae (group B Streptococcus; GBS) produces a CPS that represents the main virulence factor of the bacterium and is a prime target in current vaccine development. We used this human pathogen to investigate the roles and potential interdependencies of the conserved proteins CpsABCD encoded in the cps operon, by developing knock-out and functional mutant strains. The mutant strains were examined for CPS quantity, size, and attachment to the cell surface as well as CpsD phosphorylation. We observed that CpsB, -C, and -D compose a phosphoregulatory system where the CpsD autokinase phosphorylates its C-terminal tyrosines in a CpsC-dependent manner. These Tyr residues are also the target of the cognate CpsB phosphatase. An interaction between CpsD and CpsC was observed, and the phosphorylation state of CpsD influenced the subsequent action of CpsC. The CpsC extracellular domain appeared necessary for the production of high molecular weight polysaccharides by influencing CpsA-mediated attachment of the CPS to the bacterial cell surface. In conclusion, although having no impact on cps transcription or the synthesis of the basal repeating unit, we suggest that these proteins are fine-tuning the last steps of CPS biosynthesis (i.e. the balance between polymerization and attachment to the cell wall).

  16. Phase diagram of a semiflexible polymer chain in a θ solvent: Application to protein folding

    NASA Astrophysics Data System (ADS)

    Doniach, S.; Garel, T.; Orland, H.

    1996-07-01

    We consider a lattice model of a semiflexible homopolymer chain in a bad solvent. Beside the temperature T, this model is described by (i) a curvature energy ɛh, representing the stiffness of the chain; (ii) a nearest-neighbor attractive energy ɛv, representing the solvent; and (iii) the monomer density ρ=N/Ω, where N and Ω denote, respectively, the number of monomers and the number of lattice sites. This model is a simplified view of the protein folding problem, which encompasses the geometrical competition between secondary structures (the curvature term modelling helix formation) and the global compactness (modeled here by the attractive energy), but contains no side chain information. By allowing the monomer density ρ to depart from unity one has made a first (albeit naive) step to include the role of the water. In previous analytical studies, we considered only the (fully compact) case ρ=1, and found a first order freezing transition towards a crystalline ground state (also called the native state in the protein literature). In this paper, we extend this calculation to the description of both compact and noncompact phases. The analysis is done first at a mean-field level. We then find that the transition from the high temperature swollen coil state to the crystalline ground state is a two-step process for which (i) there is first a θ collapse transition towards a compact ``liquid'' globule, and (ii) at low temperature, this ``liquid'' globule undergoes a discontinuous freezing transition. The mean-field value of the θ collapse temperature is found to be independent of the curvature energy ɛh. This mean-field analysis is improved by a variational bound, which confirms the independence of the θ collapse temperature with respect to ɛh. This result is confirmed by a Monte Carlo simulation, although with a much lower value of the θ temperature. This lowering of the collapse transition allows the possibility (for large ɛh) of a direct first order

  17. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cc04647e Click here for additional data file.

    PubMed Central

    Mitchell, Daniel E.; Cameron, Neil R.

    2015-01-01

    Antifreeze (glyco) proteins AF(G)Ps are potent ice recrystallization inhibitors, which is a desirable property to enhance cryopreservation of donor tissue/cells. Here we present the rational synthesis of a new, biomimetic, ice-recrystallization inhibiting polymer derived from a cheap commodity polymer, based on an ampholyte structure. The polymer is used to enhance the cryopreservation of red blood cells, demonstrating a macromolecular solution to tissue storage. PMID:26176027

  18. Combination of ethylene polymer, normal paraffinic wax and nitrogen containing compound (stabilized, if desired, with one or more compatibility additives) to improve cold flow properties of distillate fuel oils

    SciTech Connect

    Dooley, M.; Feldman, N.; Ryer, J.

    1980-07-01

    A description is given of a wax-containing petroleum fuel oil comprising a major proportion of a distillate oil boiling in the range of 120/sup 0/ to 42 5/sup 0/ C, which fuel oil has been improved in its low temperature flow properties, containing in the range of about 0.001 to 2.5 wt. %, based on the weight of the total composition, of a flow improving combination of: (A) one part by weight of an oil-soluble ethylene backbone distillate flow improving polymer having a number average molecular weight in the range of about 500 to 50,000; (B) 0.1 to 30 parts by weight of wax comprising principally n-paraffins having from 20 to 60 carbons; and (C) 0.01 to 10 parts weight of an oil-soluble nitrogen compound containing a total of about 30 to 300 carbon atoms and having at least one straight chain alkyl segment of 8 to 40 carbons, and selected from the class consisting of amine salts and/or amides of hydrocarbyl carboxylic acids or anhydrides having 1 to 4 carbonyl groups.

  19. Role of protein environment and bioactive polymer grafting in the S. epidermidis response to titanium alloy for biomedical applications.

    PubMed

    Vasconcelos, Daniel M; Falentin-Daudré, Céline; Blanquaert, Daniel; Thomas, Damien; Granja, Pedro L; Migonney, Veronique

    2014-12-01

    Joint implant-related infections, namely by Staphylococci, are a worldwide problem, whose consequences are dramatic. Various methods are studied to fight against these infections. Here, the proposed solution consists in grafting a bioactive polymer on joint implant surfaces in order to allow the control of the interactions with the living system. In this study, sodium styrene sulfonate, bearing sulfonate groups, was grafted on the surface of titanium alloys. Scanning Electron Microscopy, colorimetric method, Fourier-transformed infrared spectroscopy and contact angle measurements were applied to characterize the surfaces. Bacterial adhesion studies were studied on poly(sodium styrene sulfonate) grafted Ti6Al4V and Ti6Al4V surfaces previously adsorbed by proteins involved in the bacteria adhesion process. Fibrinogen and fibronectin were demonstrated to increase staphylococcal adhesion on Ti6Al4V surfaces. Ti6Al4V grafted sodium styrene sulfonate surfaces inhibited the adhesion of Staphylococcus epidermidis in 37% and 13% on pre-adsorbed surfaces with fibrinogen and fibronectin, respectively. The mechanism of the observed inhibiting bacteria adhesion properties is related to the differences of proteic conformations induced by poly(sodium styrene sulfonate) grafting.

  20. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition.

    PubMed

    Li, Xiangjie; Zhang, Baoliang; Li, Wei; Lei, Xingfeng; Fan, Xinlong; Tian, Lei; Zhang, Hepeng; Zhang, Qiuyu

    2014-01-15

    A novel bovine serum albumin surface-imprinted thermosensitive magnetic composite microsphere was successfully prepared by the surface grafting copolymerization method in the presence of temperature-sensitive monomer N-isopropylacrylamide (NIPAM), functional monomer methacrylic acid (MAA) and cross-linking agent N,N'-methylenebisacrylamide (MBA). The structure and component of the thermosensitive magnetic molecularly imprinted microsphere were investigated by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The results of thermosensitivity, adsorption capacity, selectivity and reusability showed the formation of a thermosensitivity grafting polymer layer P(NIPAM-MAA-MBA) on the surface of Fe3O4@SiO2 and the good adsorption capacity and specific recognition for template protein. When the adsorption temperature was higher than the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM), shape memory effect of imprinted cavities would be more effective. In other words, it was more conducive to capture template molecules under this condition and the imprinting factor would be higher. On the other hand, when the desorption temperature was lower than LCST of PNIPAM, the decrease of shape memory effect between imprinted cavities and template molecules would facilitate the release of template molecules from the imprinted cavities. Based on this property, the adsorption and desorption of template molecules could be regulated by system temperature indirectly which benefited from the existence of thermosensitivity imprinting layer.

  1. Molecular modeling directed by an interfacial test apparatus for the evaluation of protein and polymer ingredient function in situ.

    PubMed

    Collins, George W; Patel, Avani; Dilley, Alan; Sarker, Dipak K

    2008-05-28

    A simplified apparatus is described that measures the damping of a suspended measuring device. The movement of the device (bob) is damped by the properties of the air-water surface adsorbed material. Its value lies in describing the surface chemomechanical properties of ingredients and excipients used in food, nutraceutical, cosmetic (cosmeceutical), and natural drug-food product formulations that traverse the food sciences. Two surfactants, two food and drug-grade polymers, and five naturally occurring food and serum proteins were tested and used to estimate and model interfacial viscoelasticity. Equilibration times of >15 min were found to give sufficiently stable interfaces for routine assessment. The viscoelasticity of the air-water interface was estimated with reference to model solutions. These model solutions and associated self-assembled interfacial nanostructured adsorbed layers were fabricated using a preliminary screening process with the aid of a specialized foaming apparatus ( C(300) values), surface tension measurements (23-73 mN/m), and referential surface shear and dilation experiments. The viscoelasticity measured as a percentage of surface damping ( D) of a pendulum was found to range from 1.0 to 22.4% across the samples tested, and this represented interfacial viscosities in the range of 0-4630 microNs/m. The technique can distinguish between interfacial compositions and positions itself as an easily accessible valuable addition to tensiometric and analytical biochemistry-based techniques.

  2. Exploring Interpersonal Compatibility in Groups.

    ERIC Educational Resources Information Center

    Keyton, Joann

    This study investigated William Schutz's three-dimensional theory of interpersonal behavior and compatibility (FIRO) to determine its validity as a group measure of compatibility. Data were collected from 248 students enrolled in a multi-section course in small group communications at a large midwestern university. Subjects self-selected…

  3. Compatibility Conditions of Structural Mechanics

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1999-01-01

    The theory of elasticity has camouflaged a deficiency in the compatibility formulation since 1860. In structures the ad hoc compatibility conditions through virtual "cuts" and closing "gaps" are not parallel to the strain formulation in elasticity. This deficiency in the compatibility conditions has prevented the development of a direct stress determination method in structures and in elasticity. We have addressed this deficiency and attempted to unify the theory of compatibility. This work has led to the development of the integrated force method for structures and the completed Beltrami-Michell formulation for elasticity. The improved accuracy observed in the solution of numerical examples by the integrated force method can be attributed to the compliance of the compatibility conditions. Using the compatibility conditions allows mapping of variables and facile movement among different structural analysis formulations. This paper reviews and illustrates the requirement of compatibility in structures and in elasticity. It also describes the generation of the conditions and quantifies the benefits of their use. The traditional analysis methods and available solutions (which have been obtained bypassing the missed conditions) should be verified for compliance of the compatibility conditions.

  4. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  5. Compatibility and incompatibility in S-RNase-based systems

    PubMed Central

    McClure, Bruce; Cruz-García, Felipe; Romero, Carlos

    2011-01-01

    Background S-RNase-based self-incompatibility (SI) occurs in the Solanaceae, Rosaceae and Plantaginaceae. In all three families, compatibility is controlled by a polymorphic S-locus encoding at least two genes. S-RNases determine the specificity of pollen rejection in the pistil, and S-locus F-box proteins fulfill this function in pollen. S-RNases are thought to function as S-specific cytotoxins as well as recognition proteins. Thus, incompatibility results from the cytotoxic activity of S-RNase, while compatible pollen tubes evade S-RNase cytotoxicity. Scope The S-specificity determinants are known, but many questions remain. In this review, the genetics of SI are introduced and the characteristics of S-RNases and pollen F-box proteins are briefly described. A variety of modifier genes also required for SI are also reviewed. Mutations affecting compatibility in pollen are especially important for defining models of compatibility and incompatibility. In Solanaceae, pollen-side mutations causing breakdown in SI have been attributed to the heteroallelic pollen effect, but a mutation in Solanum chacoense may be an exception. This has been interpreted to mean that pollen incompatibility is the default condition unless the S-locus F-box protein confers resistance to S-RNase. In Prunus, however, S-locus F-box protein gene mutations clearly cause compatibility. Conclusions Two alternative mechanisms have been proposed to explain compatibility and incompatibility: compatibility is explained either as a result of either degradation of non-self S-RNase or by its compartmentalization so that it does not have access to the pollen tube cytoplasm. These models are not necessarily mutually exclusive, but each makes different predictions about whether pollen compatibility or incompatibility is the default. As more factors required for SI are identified and characterized, it will be possible to determine the role each process plays in S-RNase-based SI. PMID:21803740

  6. An effective and in-situ method based tresyl-functionalized porous polymer material for enrichment and digestion of membrane proteins and its application in extraction tips.

    PubMed

    Wang, Jiaxi; Gao, Mingxia; Yan, Guoquan; Zhang, Xiangmin

    2015-06-23

    Membrane proteins are one of promising targets for drug discovery because of the unique properties in physiological processes. Due to their low abundance and extremely hydrophobic nature, the analysis of membrane proteins is still a great challenge. In this work, an effective and in-situ method were developed to enrich and digest membrane proteins by adopting tresyl-functionalized porous polymer material. With tresyl groups, the material can effectively immobilize membrane proteins via covalent bonding on the surface. The material became a facile carrier to enrich membrane proteins from the rat liver in detergents and organic solvents owing to its outstanding binding capacity and excellent biocompatibility. Moreover, it was further applied in extraction tips to capture and in-situ digest the pretreatment membrane proteins in two different solutions. A total of 600 membrane proteins (51% of total protein groups) and 359 transmembrane proteins were identified by nano-LC-ESI-MS/MS in 4% sodium dodecyl sulfate (SDS), and similar results were achieved in the 60% methanol solution. All these results demonstrated that the new approach is of great promise for large-scale characterization of membrane proteins.

  7. Compatible quantum theory.

    PubMed

    Friedberg, R; Hohenberg, P C

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call 'compatible quantum theory (CQT)', consists of a 'microscopic' part (MIQM), which applies to a closed quantum system of any size, and a 'macroscopic' part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths ('c-truths'), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory

  8. Solubilization of native integral membrane proteins in aqueous buffer by non-covalent chelation with monomethoxy polyethylene glycol (mPEG) polymers

    PubMed Central

    Janaratne, Thamara K.; Okach, Linda; Brock, Ansgar; Lesley, Scott A.

    2011-01-01

    Highly hydrophobic integral membrane proteins (IMPs) are typically purified in excess detergent media, often resulting in rapid inactivation and denaturation of the protein. One promising approach to solve this problem is to couple hydrophilic polymers, such as monomethoxypolyethylene glycol (mPEG) to IMPs under mild conditions in place of detergents. However, the broad application of this approach is hampered by poor reaction efficiencies, low tolerance of detergent stabilized membrane proteins to reaction conditions and a lack of proper site-specific reversible approaches. Here we have developed a straightforward, efficient and mild approach to site-specific non-covalent binding of long-chain polymers to recombinant IMPs. This method uses the hexa-histidine tag (His-Tag) often used for purification of recombinant proteins as an attachment site for mPEGs. Solubility studies performed using five different IMPs confirmed that all tested mPEG-bound IMPs were completely soluble and stable in detergent free aqueous buffer compared to their precipitated native proteins under the identical circumstances. Activity assays and circular dichroism (CD) spectroscopy confirmed the structural integrity of modified IMPs. PMID:21740061

  9. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  10. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  11. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hye

    patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to

  12. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hye

    patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to

  13. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    PubMed

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. PMID:21388227

  14. COMPATIBILITY OF BENTONITE AND DNAPLS

    EPA Science Inventory

    The compatibility of dense non-aqueous phase liquids (DNAPLs), trichloroethylene (TCE), methylene chloride (MC), and creosote with commercially available sodium bentonite pellets was evaluated using stainless steel, double-ring, falling-head permeameters. The Hydraulic conductiv...

  15. Effectiveness of charged noncovalent polymer coatings against protein adsorption to silica surfaces studied by evanescent-wave cavity ring-down spectroscopy and capillary electrophoresis.

    PubMed

    Haselberg, Rob; van der Sneppen, Lineke; Ariese, Freek; Ubachs, Wim; Gooijer, Cees; de Jong, Gerhardus J; Somsen, Govert W

    2009-12-15

    Protein adsorption to silica surfaces is a notorious problem in analytical separations. Evanescent-wave cavity ring-down spectroscopy (EW-CRDS) and capillary electrophoresis (CE) were employed to investigate the capability of positively charged polymer coatings to minimize the adsorption of basic proteins. Adsorption of cytochrome c (cyt c) to silica coated with a single layer of polybrene (PB), or a triple layer of PB, dextran sulfate (DS), and PB, was studied and compared to bare silica. Direct analysis of silica surfaces by EW-CRDS revealed that both coatings effectively reduce irreversible protein adsorption. Significant adsorption was observed only for protein concentrations above 400 microM, whereas the PB-DS-PB coating was shown to be most effective and stable. CE analyses of cyt c were performed with and without the respective coatings applied to the fused-silica capillary wall. Monitoring of the electroosmotic flow and protein peak areas indicated a strong reduction of irreversible protein adsorption by the positively charged coatings. Determination of the electrophoretic mobility and peak width of cyt c revealed reversible protein adsorption to the PB coating. It is concluded that the combination of results from EW-CRDS and CE provides highly useful information on the adsorptive characteristics of bare and coated silica surfaces toward basic proteins.

  16. Dewetting-induced globule-coil transitions of model polymers and possible implications high-temperature and low-pressure unfolding of proteins.

    PubMed

    Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo

    2010-04-28

    A thermodynamic analysis of high-temperature and low-pressure unfolding of proteins using a coarse-grained multiscale simulation combined with a liquid-state density-functional theory is presented. In this study, a hydrophobic polymer chain is employed as a probe molecule for investigating qualitative changes in a hydration free energy surface acting on proteins with changes in temperature and pressure. When water is heated so that its vapor pressure is equal to the atmospheric pressure, it boils. Long-ranged dewetting or drying caused by a hydrophobic planar wall and a large hydrophobic solute surface is significantly enhanced as it approaches the liquid-vapor coexistence curve of water. In this study, we demonstrate that high-temperature and low-pressure unfolding of the polymer chain is interpreted as dewetting-induced unfolding that occurs as it approaches the liquid-vapor coexistence. The unfolding of proteins due to high-temperature and low-pressure denaturation enhances the long-ranged dewetting or drying around them. The long-ranged dewetting phenomenon is considered to be originating from positive changes in both volume and entropy due to the high-temperature and low-pressure denaturation of the proteins.

  17. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  18. Chemically optimized antimyosin Fab conjugates with chelating polymers: importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarction localization.

    PubMed

    Trubetskoy, V S; Narula, J; Khaw, B A; Torchilin, V P

    1993-01-01

    Murine antimyosin Fab fragment was conjugated with 111In-labeled N-terminal-modified DTPA-polylysine using three bifunctional reagents: N-hydroxysuccinimide esters of 3-(2-pyridyldithio)propionic acid (SPDP conjugate), 4-(maleimidomethyl)cyclohexanecarboxylic acid (SMCC conjugate) and bromoacetic acid (BrAc conjugate) for potential localization of experimental myocardial infarction. Using various antibody preparations and a rabbit acute myocardial infarction model the following parameters were observed: (1) an in vitro antigen binding activity of SPDP conjugate = SMCC conjugate > BrAc conjugate, (2) a blood clearance rate of SPDP conjugate > BrAc conjugate > SMCC conjugate, (3) a liver and splenic accumulation of SPDP conjugate > BrAc conjugate > SMCC conjugate, and (4) the infarcted tissue activity showed an accumulation of SMCC conjugate > SPDP conjugate > BrAc conjugate. This study exemplifies the importance of rational chemical design of antimyosin Fab-chelating polymer conjugate for improved target tissue localization in vivo.

  19. UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCalpha/ERK/cPLA2 pathway.

    PubMed

    Formosa, Fabio; Anfuso, Carmelina D; Satriano, Cristina; Lupo, Gabriella; Giurdanella, Giovanni; Ragusa, Nicola; Marletta, Giovanni; Alberghina, Mario

    2008-04-01

    We examined the adhesion and proliferation of immortalized endothelial cells GP8.39 (ECs) onto polyethyleneterephtalate (PET) and polyhydroxymethylsiloxane (PHMS) thin films, functionalized by UV-O(3) treatment and/or protein immobilization. The modified surface topography showed partial oxidation for both polymers, a slight increase in wettability and monopolar basic character for PET, and a hydrophilic bipolar acid-base behaviour for PHMS. UV-O(3) treatment did not induce significant roughness changes (under 1 nm) as shown by atomic force spectroscopy measurements (AFM). The EC adhesion and spreading onto untreated and modified surfaces were investigated both before and after immobilization of collagen (CA) and fibronectin (FN) adlayers. AFM analyses showed an open-weave protein layer on both untreated polymers which became a tight-woven net after UV-O(3) irradiation of underlying films. On day 5 after seeding, cell count analyses on irradiated PET surfaces, CA/FN-coated or not, showed EC adhesion and proliferation significantly greater than those on untreated polymers, indicating that UV-O(3) irradiation promoted fast endothelialization. A less pronounced EC spreading behaviour on treated PHMS was observed. In ECs grown on irradiated and CA- or FN-coated PET, the levels of phospho-protein kinase Calpha (p-PKCalpha, phospho-ERK1/2, and phospho-cytosolic phospholipase A(2) (p-cPLA(2)), all enzymes taken as signaling markers of cell adhesion and proliferation, decreased in comparison to those in CA- or FN-coated untreated PET. In contrast, in ECs grown on UV-O(3)-treated PHMS, Western blot analyses showed increased levels of p-PKCalpha, p-ERK1/2 and p-cPLA(2) in comparison with cells grown onto untreated polymer. The growth response of ECs to the substrates was related to the changes of polarity properties of UV-O(3)-treated polymer films, from hydrophobic/neutral towards hydrophilic/charged layers, and the signaling pathway remodelling to the cell proliferation

  20. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  1. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  2. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  3. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-01

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography.

  4. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-01

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. PMID:26947166

  5. Chemical compatibility of cartridge materials

    NASA Technical Reports Server (NTRS)

    Ambrose, Bryan; Wilcox, R. C.; Zee, R. H.

    1992-01-01

    The objectives were to determine the chemical compatibility of titanium-zirconium-molybdenum (TZM) with GaAs and CdZnTe, and Inconel with HgCdTe and HgZnTe. At the present time, no other studies regarding the compatibility of these crystal components and their respective cartridge materials have been performed. This study was to identify any possible problems between these materials to insure proper containment of possibly hazardous fumes during crystal growth experiments. In this study, the reaction zone between the materials was studied and the amount of degradation to the system was measured. Detailed results are presented.

  6. Electromagnetic compatibility - A general overview

    NASA Astrophysics Data System (ADS)

    Wood, M. J.

    The initial flight was not known to be affected by electromagnetic interference. Had it of done it would have sown the seeds for electromagnetic compatibility (EMC). however, it was not until the introduction of electric / electronic navigational aids and communications that the effects were realized. The definition of electromagnetic compatibility (EMC) is: The ability of electrical and electronic equipments, sub systems and systems to share the electomagnetic spectrum and perform their desired function without unacceptable degradation from or to the specified electomagnetic enviromnment. In other words the equipment must work without causing interference or being upset by interference from d. c. to light frequencies.

  7. Solid phase extraction of proteins from buffer solutions employing capillary-channeled polymer (C-CP) fibers as the stationary phase.

    PubMed

    Burdette, Carolyn Q; Marcus, R Kenneth

    2013-02-21

    Polypropylene (PP) capillary-channeled polymer (C-CP) fibers are applied for solid phase extraction (SPE) of proteins from aqueous buffer solutions using a micropipette tip-based format. A process was developed in which centrifugation is used as the moving force for solution passage in the loading/washing steps instead of the previously employed manual aspiration. The complete procedure requires ~15 minutes, with the number of samples run in parallel limited only by the capacity of the centrifuge. The method performance was evaluated based on adsorption and elution characteristics of several proteins (cytochrome c, lysozyme, myoglobin, and glucose oxidase) from 150 mM phosphate buffered saline (PBS) solutions. Protein concentration ranges of ~2 to 100 μg mL(-1) were employed and the recovery characteristics determined through UV-Vis absorbance spectrophotometry for protein quantification. The protein loading capacities across the range of proteins was ~1.5 μg for the 5 mg fiber tips. Average recoveries from PBS were determined for each protein sample; cytochrome c ~86%, lysozyme ~80%, myoglobin ~86%, and glucose oxidase ~89%. Recoveries from more complex matrices, synthetic urine and synthetic saliva, were determined to be ~90%. A 10× dilution study for a fixed 1 μg protein application yielded 94 ± 3.2% recoveries. The C-CP tips provided significantly higher recoveries for myoglobin in a 150 mM PBS matrix in comparison to a commercially available protein SPE product, with the added advantages of low cost, rapid processing, and reusability.

  8. Rubber composition compatible with hydrazine

    NASA Technical Reports Server (NTRS)

    Repar, J.

    1973-01-01

    Formulation improves compatibility of butyl rubbers with hydrazine while reducing permeation to low levels necessary for prolonged storage in space. This is accomplished by replacing carbon-black filler with inert materials such as hydrated silica or clay. Pressure increases suggest that hydrazine is decomposed only slightly by new type of rubber.

  9. Atuarfitsialak: Greenland's Cultural Compatible Reform

    ERIC Educational Resources Information Center

    Wyatt, Tasha R.

    2012-01-01

    In 2002, Greenlandic reform leaders launched a comprehensive, nation-wide reform to create culturally compatible education. Greenland's reform work spans the entire educational system and includes preschool through higher education. To assist their efforts, reform leaders adopted the Standards for Effective Pedagogy developed at the Center for…

  10. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I: Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions.

    PubMed

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-01

    Despite the many efforts to develop efficient protein purification techniques, the isolation of peptides and small proteins on a larger than analytical scale remains a significant challenge. Recovery of small biomolecules from diluted complex biological mixtures, such as human serum, employing porous adsorbents is a difficult task mainly due to the presence of concentrated large biomolecules that can add undesired effects in the system such as blocking of adsorbent pores, impairing diffusion of small molecules, or competition for adsorption sites. Adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide matrix, have been developed and explored in this work to overcome such effects and to preferentially adsorb small molecules while rejecting large ones. In the first part of this work, adsorption studies were performed with small peptides and proteins from synthetic mixtures using controlled access polymer permeation adsorption (CAPPA) media created by effectively grafting PEG on an immobilized metal affinity chromatography (IMAC) agarose resin, where chelating agents and immobilized metal ions were used as the primary affinity binding sites. Synthetic mixtures consisted of bovine serum albumin (BSA) with small proteins, peptides, amino acids (such as histidine or Val⁴-Angiotensin III), and small molecules-spiked human serum. The synthesized hybrid adsorbent consisted of agarose beads modified with iminodiacetic (IDA) groups, loaded with immobilized Cu(II) ions, and PEG. These CAPPA media with grafted PEG on the interior and exterior surfaces of the agarose matrix were effective in rejecting high molecular weight proteins. Different PEG grafting densities and PEG of different molecular weight were tested to determine their effect in rejecting and controlling adsorbent permeation properties. Low grafting density of high molecular weight PEG was found to be as

  11. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6bm00214e Click here for additional data file.

    PubMed Central

    Hammad, Moamen; Rao, Wei; Smith, James G. W.; Anderson, Daniel G.; Langer, Robert; Young, Lorraine E.; Barrett, David A.; Davies, Martyn C.; Denning, Chris

    2016-01-01

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture ‘hits’ that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  12. Trehalose limits BSA aggregation in spray-dried formulations at high temperatures: implications in preparing polymer implants for long-term protein delivery.

    PubMed

    Rajagopal, Karthikan; Wood, Joseph; Tran, Benjamin; Patapoff, Thomas W; Nivaggioli, Thierry

    2013-08-01

    Polymer implants are promising systems for sustained release applications but their utility for protein delivery has been hindered because of concerns over drug stability at elevated temperatures required for processing. Using bovine serum albumin (BSA) as a model, we have assessed whether proteins can be formulated for processing at elevated temperatures. Specifically, the effect of trehalose and histidine-HCl buffer on BSA stability in a spray-dried formulation has been investigated at temperatures ranging from 80°C to 110°C. When both the sugar and buffer are present, aggregation is suppressed even when exposed to 100°C, the extrusion temperature of poly(lactide-co-glycolide) (PLGA), a bioresorbable polymer. Estimation of aggregation rate constants (k) indicate that though both trehalose and histidine-HCl buffer contribute to BSA stability, the effect because of trehalose alone is more pronounced. BSA-loaded PLGA implants were prepared using hot-melt extrusion process and in vitro release was conducted in phosphate buffered saline at 37°C. Comparison of drug released from implants prepared using four different formulations confirmed that maximal release was achieved from the formulation in which BSA was least aggregated. These studies demonstrate that when trehalose and histidine-HCl buffer are included in spray-dried formulations, BSA stability is maintained both during processing at 100°C and long-term residence within implants.

  13. Effective down-regulation of breast cancer resistance protein (BCRP) by siRNA delivery using lipid-substituted aliphatic polymers.

    PubMed

    Aliabadi, Hamidreza Montazeri; Landry, Breanne; Mahdipoor, Parvin; Hsu, Charlie Y M; Uludağ, Hasan

    2012-05-01

    Breast Cancer Resistance Protein (BCRP, ABCG2) is an efflux protein whose aberrant activity has been linked to multidrug resistance in cancer. Although siRNA delivery to down-regulate BCRP expression is promising to sensitize tumor cells against drugs, therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on target cells. This study explored the feasibility of special class of cationic polymers, namely lipid-substituted low molecular weight (2kDa) polyethyleneimine (PEI), as a carrier for siRNA-mediated BCRP down-regulation. Structure-function studies methodically evaluated the effect of a range of lipophilic substitutions for siRNA delivery and BCRP down-regulation. Our results showed a significant increase in siRNA delivery as a function of lipid substitution for a range of lipids ranging from C8 to C18. The BCRP silencing was correlated to siRNA delivery efficiency of the polymers, and effectively lasted for ∼5days after a single treatment of siRNA. BCRP down-regulation sensitized the drug-resistant cells to cytotoxic effect of mitoxantrone by a ∼14-fold decrease in the IC(50) value, whose effect was evident even after 14days. This study demonstrated the possibility of functional siRNA delivery by lipid-modified low molecular weight PEI and highlighted the importance of the extent and nature of lipid substitution in effective siRNA delivery. PMID:22311298

  14. Evaluation of a new wide-pore superficially porous material with carbon core and nanodiamond-polymer shell for the separation of proteins.

    PubMed

    Fekete, Szabolcs; Jensen, David S; Zukowski, Janusz; Guillarme, Davy

    2015-10-01

    In this study, reversed phase liquid chromatographic columns packed with superficially porous material made of a carbon core and nanodiamond-polymer shell were evaluated for the analytical characterization of proteins. The emphasis was put on the impact of pore size on the kinetic performance when analyzing large molecules. Three different types of columns possessing an average pore size of 120, 180, and 250Å were thus evaluated. As expected, the peak capacities were improved with the 180 and above all the 250Å pore size, while the kinetic performance achieved with the 120Å were systematically lower. It was also shown that a trifluoroacetic acid (TFA) concentration of 0.3-0.5% was required when analyzing proteins, to achieve suitable peak shapes (limited broadening and tailing) with this material. Elevated temperature (>60°C) is mandatory when analyzing proteins with silica-based stationary phases, but this was not the case with this particular column made with a carbon core and nanodiamond-polymer shell, since the peak capacities were not improved at high temperature. However, there was a need to increase mobile phase temperature in the range 70-90°C when analyzing monoclonal antibodies (mAbs), to limit adsorption that often occur in RPLC with this specific class of biomolecules. Finally, the FLARE(®) wide-pore column was applied to real life samples of native, oxidative stressed and reduced therapeutic proteins as well as reduced, digested mAbs and antibody drug conjugates (ADCs), to highlight the possibilities offered by this column technology. PMID:26456222

  15. Evaluation of a new wide-pore superficially porous material with carbon core and nanodiamond-polymer shell for the separation of proteins.

    PubMed

    Fekete, Szabolcs; Jensen, David S; Zukowski, Janusz; Guillarme, Davy

    2015-10-01

    In this study, reversed phase liquid chromatographic columns packed with superficially porous material made of a carbon core and nanodiamond-polymer shell were evaluated for the analytical characterization of proteins. The emphasis was put on the impact of pore size on the kinetic performance when analyzing large molecules. Three different types of columns possessing an average pore size of 120, 180, and 250Å were thus evaluated. As expected, the peak capacities were improved with the 180 and above all the 250Å pore size, while the kinetic performance achieved with the 120Å were systematically lower. It was also shown that a trifluoroacetic acid (TFA) concentration of 0.3-0.5% was required when analyzing proteins, to achieve suitable peak shapes (limited broadening and tailing) with this material. Elevated temperature (>60°C) is mandatory when analyzing proteins with silica-based stationary phases, but this was not the case with this particular column made with a carbon core and nanodiamond-polymer shell, since the peak capacities were not improved at high temperature. However, there was a need to increase mobile phase temperature in the range 70-90°C when analyzing monoclonal antibodies (mAbs), to limit adsorption that often occur in RPLC with this specific class of biomolecules. Finally, the FLARE(®) wide-pore column was applied to real life samples of native, oxidative stressed and reduced therapeutic proteins as well as reduced, digested mAbs and antibody drug conjugates (ADCs), to highlight the possibilities offered by this column technology.

  16. Interfacial polymerization for colorimetric labeling of protein expression in cells.

    PubMed

    Lilly, Jacob L; Sheldon, Phillip R; Hoversten, Liv J; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium.

  17. The role of the small rubber particle protein in determining rubber yields and polymer length in Russian dandelion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro s...

  18. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: the surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein.

    PubMed

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst B

    2010-12-01

    Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb™ and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

  19. Capillary-Channeled Polymer (C-CP) Films as Processing Platforms for Protein Analysis by Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry (MALDI-MS)

    NASA Astrophysics Data System (ADS)

    Pittman, Jennifer J.; Manard, Benjamin T.; Kowalski, Paul J.; Marcus, R. Kenneth

    2012-01-01

    Polypropylene (PP) capillary-channeled polymer (C-CP) films have parallel, μm-sized channels that induce solution wicking via capillary action. Efficient mass transport from the solution phase to the channel surface leads to adsorption of hydrophobic protein solutes. The basic premise by which C-CP films can be used as media to manipulate analyte solutions (e.g., proteins in buffer), for the purpose of desalting or chromatographic separation prior to MALDI-MS analysis is presented here. Cytochrome c and myoglobin prepared in a Tris-HCl buffer, and ribonuclease A, lysozyme, and transferrin prepared in phosphate buffered saline (PBS), are used as the test solutions to demonstrate the desalting concept. Protein analysis is performed after deposition on a C-CP film with and without a water washing step, followed by spray deposition of a typical sinapinic acid matrix. Extracted MALDI mass spectra exhibit much improved signal-to-noise characteristics after water washing. A mixture of cytochrome c and myoglobin (2 μL of 2.5 μM each in Tris-HCl buffer) was applied, washed with water and spatially separated via simple capillary action (wicking) using a reversed-phase solvent composition of 0.1% trifluoroacetic acid (TFA) in 50:50 acetonitrile (ACN):H2O. Subsequent application of sinapinic acid followed by imaging of the film using MALDI-MS reveals that as the protein solution is wicked down the film, separation occurs.

  20. Capillary-channeled polymer (C-CP) films as processing platforms for protein analysis by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS).

    PubMed

    Pittman, Jennifer J; Manard, Benjamin T; Kowalski, Paul J; Marcus, R Kenneth

    2012-01-01

    Polypropylene (PP) capillary-channeled polymer (C-CP) films have parallel, μm-sized channels that induce solution wicking via capillary action. Efficient mass transport from the solution phase to the channel surface leads to adsorption of hydrophobic protein solutes. The basic premise by which C-CP films can be used as media to manipulate analyte solutions (e.g., proteins in buffer), for the purpose of desalting or chromatographic separation prior to MALDI-MS analysis is presented here. Cytochrome c and myoglobin prepared in a Tris-HCl buffer, and ribonuclease A, lysozyme, and transferrin prepared in phosphate buffered saline (PBS), are used as the test solutions to demonstrate the desalting concept. Protein analysis is performed after deposition on a C-CP film with and without a water washing step, followed by spray deposition of a typical sinapinic acid matrix. Extracted MALDI mass spectra exhibit much improved signal-to-noise characteristics after water washing. A mixture of cytochrome c and myoglobin (2 μL of 2.5 μM each in Tris-HCl buffer) was applied, washed with water and spatially separated via simple capillary action (wicking) using a reversed-phase solvent composition of 0.1% trifluoroacetic acid (TFA) in 50:50 acetonitrile (ACN):H(2)O. Subsequent application of sinapinic acid followed by imaging of the film using MALDI-MS reveals that as the protein solution is wicked down the film, separation occurs. PMID:22012690

  1. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  2. Chemical compatibility of cartridge materials

    NASA Technical Reports Server (NTRS)

    Wilcox, Roy C.; Zee, R. H.

    1991-01-01

    This twelve month progress report deals with the chemical compatibility of semiconductor crystals grown in zero gravity. Specifically, it studies the chemical compatibility between TZM, a molybdenum alloy containing titanium and zirconium, and WC 103, a titanium alloy containing Niobium and Hafnium, and Gallium arsenide (GaAs) and Cadmium Zinc Tellurite (CdZnTe). Due to the health hazards involved, three approaches were used to study the chemical compatibility between the semiconductor and cartridge materials: reaction retort, thermogravimetric analysis, and bulk cylindrical cartridge containers. A scanning electron microscope with an energy dispersive X-ray analyzer was used to examine all samples after testing. The first conclusion drawn is that reaction rates with TZM were not nearly as great as they were with WC 103. Second, the total reaction between GaAs and WC 103 was almost twice that with TZM. Therefore, even though WC 103 is easier to fabricate, at least half of the cartridge thickness will be degraded if contact is made with one of the semiconductor materials leading to a loss of strength properties.

  3. Chemical Compatibility of Polymeric Materials.

    ERIC Educational Resources Information Center

    Solen, Kenneth A.; Kuchar, Marvin C.

    1990-01-01

    Presents some principles for specifying general classes of polymers for predicting relative chemical attack from acids, bases, oxidants, and certain common antagonists. Also discusses predicting relative solvent effects. Suggests uses of this information in two or three lectures in a chemical engineering materials course. (YP)

  4. Biofiber composites - environmentally compatible materials

    SciTech Connect

    Narayan, R.; Krishnan, M.

    1995-12-01

    A number of thermoplastics have been evaluated as potential materials for composite and blend formulations with natural polymers such as cellulosics, lignocellulose, and starches. The use of biofibers, derived from annually renewable resources, as reinforcing fibers provides positive environmental benefits.An important aspect that affects the processing and ultimate performance is the interfacial adhesion between the biofibers and the plastic.

  5. Liquid oxygen-compatible filament-winding matrix resin

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1973-01-01

    Polyurethanes derived from hydroxy terminated polyperfluoro propylene oxide prepolymers were evaluated as matrix resins for filament wound composites which would be exposed to liquid (and 100% gaseous) oxygen environments. A number of structural modifications were brought about by variations in prepolymer molecular weight, and alternative curing agents which allowed retention of the oxygen compatibility. Although satisfactory performance was achieved at sub-ambient temperatures, the derived composites suffered considerable property loss at ambient or slightly elevated temperatures. To attain overall effectiveness of the composite system, upgrading of the polymer thermomechanical properties must first be achieved.

  6. Antihyperglycaemic mechanisms of an aceteoside polymer from rose flowers and a polysaccharide-protein complex from abalone mushroom.

    PubMed

    Chen, Rong-Rong; Liu, Zhao-Kun; Liu, Fang; Ng, Tzi Bun

    2015-01-01

    Oral administration of an aceteoside polymer from rose Rosa rugosa (P1-b) and a polysaccharide-peptide complex from abalone mushroom Pleurotus abalonus (LB-1b), both with antioxidant activity, produced antihyperglycaemic effects in alloxan-induced diabetic mice. The expression of insulin, superoxide dismutase and pancreas duodenum homeobox factor-1 essential for pancreatic islet function as estimated by real-time PCR was augmented. The reactive oxygen species-scavenging ability of the rose constituent was notably stronger than the mushroom constituent. Thus, the two biomolecules protected the pancreas from oxidative stress, elevated pancreatic insulin expression and lowered circulating glucose level.

  7. Antihyperglycaemic mechanisms of an aceteoside polymer from rose flowers and a polysaccharide-protein complex from abalone mushroom.

    PubMed

    Chen, Rong-Rong; Liu, Zhao-Kun; Liu, Fang; Ng, Tzi Bun

    2015-01-01

    Oral administration of an aceteoside polymer from rose Rosa rugosa (P1-b) and a polysaccharide-peptide complex from abalone mushroom Pleurotus abalonus (LB-1b), both with antioxidant activity, produced antihyperglycaemic effects in alloxan-induced diabetic mice. The expression of insulin, superoxide dismutase and pancreas duodenum homeobox factor-1 essential for pancreatic islet function as estimated by real-time PCR was augmented. The reactive oxygen species-scavenging ability of the rose constituent was notably stronger than the mushroom constituent. Thus, the two biomolecules protected the pancreas from oxidative stress, elevated pancreatic insulin expression and lowered circulating glucose level. PMID:25200621

  8. 36 CFR 1193.51 - Compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TELECOMMUNICATIONS ACT ACCESSIBILITY GUIDELINES Requirements for Compatibility With Peripheral Devices and..., telecommunications equipment and customer premises equipment shall be compatible with peripheral devices and... output, alerts, icons, on-line help, and documentation) shall be available in a standard electronic...

  9. 46 CFR 151.03-17 - Compatible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-17 Compatible. Compatible means that a cargo will... prime considerations are the chemical, physical, or thermal properties of the reaction including...

  10. 46 CFR 151.03-17 - Compatible.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-17 Compatible. Compatible means that a cargo will... prime considerations are the chemical, physical, or thermal properties of the reaction including...

  11. 46 CFR 151.03-17 - Compatible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-17 Compatible. Compatible means that a cargo will... prime considerations are the chemical, physical, or thermal properties of the reaction including...

  12. Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer.

    PubMed

    Su, Yuan; Liu, Jia; Yue, Qinyan; Li, Qian; Gao, Baoyu

    2014-01-01

    A new feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol (FP-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was produced through graft copolymerization with FP as a basic macromolecular skeletal material, acrylic acid as a monomer and PVA as a semi-IPNs polymer. The adsorption of ammonium and phosphate ions from aqueous solution using the new hydrogel as N and P controlled-release fertilizer with water-retention capacity was studied. The effects of pH value, concentration, contact time and ion strength on NH4+ and PO3-4 removal by FP-g-PKA/PVA semi-IPNs hydrogel were investigated using batch adsorption experiments. The results indicated that the hydrogel had high adsorption capacities and fast adsorption rates for NH4+ and PO3-4 in wide pH levels ranging from 4.0 to 9.0. Kinetic analysis presented that both NH4+ and PO3-4 removal were closely fitted with the pseudo-second-order model. Furthermore, the adsorption isotherms of hydrogel were best represented by the Freundlich model. The adsorption-desorption experimental results showed the sustainable stability of FP-g-PKA/PVA semi-IPNs hydrogel for NH4+ and PO3-4 removal. Overall, FP-g-PKA/PVA could be considered as an efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer. PMID:24600885

  13. Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer.

    PubMed

    Su, Yuan; Liu, Jia; Yue, Qinyan; Li, Qian; Gao, Baoyu

    2014-01-01

    A new feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol (FP-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was produced through graft copolymerization with FP as a basic macromolecular skeletal material, acrylic acid as a monomer and PVA as a semi-IPNs polymer. The adsorption of ammonium and phosphate ions from aqueous solution using the new hydrogel as N and P controlled-release fertilizer with water-retention capacity was studied. The effects of pH value, concentration, contact time and ion strength on NH4+ and PO3-4 removal by FP-g-PKA/PVA semi-IPNs hydrogel were investigated using batch adsorption experiments. The results indicated that the hydrogel had high adsorption capacities and fast adsorption rates for NH4+ and PO3-4 in wide pH levels ranging from 4.0 to 9.0. Kinetic analysis presented that both NH4+ and PO3-4 removal were closely fitted with the pseudo-second-order model. Furthermore, the adsorption isotherms of hydrogel were best represented by the Freundlich model. The adsorption-desorption experimental results showed the sustainable stability of FP-g-PKA/PVA semi-IPNs hydrogel for NH4+ and PO3-4 removal. Overall, FP-g-PKA/PVA could be considered as an efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer.

  14. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication and further separated by size exclusion chromatography into monomeric and polymeric fractions. Proteins in each fraction were analyzed by quantitative two-dimensional gel...

  15. Compatible poliomyelitis cases in India during 2000.

    PubMed Central

    Kohler, Kathryn A.; Hlady, W. Gary; Banerjee, Kaushik; Gupta, Dhananjoy; Francis, Paul; Durrani, Sunita; Zuber, Patrick L. F.; Sutter, Roland W.

    2003-01-01

    OBJECTIVE: To describe the characteristics of compatible poliomyelitis cases and to assess the programmatic implications of clusters of such cases in India. METHODS: We described the characteristics of compatible poliomyelitis cases, identified clusters of compatible cases (two or more in the same district or neighbouring districts within two months), and examined their relationship to wild poliovirus cases. FINDINGS: There were 362 compatible cases in 2000. The incidence of compatible cases was higher in districts with laboratory-confirmed poliomyelitis cases than in districts without laboratory-confirmed cases. Of 580 districts, 96 reported one compatible case and 72 reported two or more compatible cases. Among these 168 districts with at least one compatible case, 123 had internal or cross- border clusters of compatible cases. In 27 districts with clusters of compatible cases, no wild poliovirus was isolated either in the same district or in neighbouring districts. Three of these 27 districts presented laboratory-confirmed poliomyelitis cases during 2001. CONCLUSION: Most clusters of compatible cases occurred in districts identified as areas with continuing wild poliovirus transmission and where mopping-up vaccination campaigns were carried out. As certification nears, areas with compatible poliomyelitis cases should be investigated and deficiencies in surveillance should be corrected in order to ensure that certification is justified. PMID:12640469

  16. From polymers to proteins: the effect of side chains and broken symmetry on the formation of secondary structures within a Wang-Landau approach.

    PubMed

    Škrbić, Tatjana; Badasyan, Artem; Hoang, Trinh Xuan; Podgornik, Rudolf; Giacometti, Achille

    2016-05-25

    We use a micro-canonical Wang-Landau technique to study the equilibrium properties of a single flexible homopolymer where consecutive monomers are represented by impenetrable hard spherical beads tangential to each other, and non-consecutive monomers interact via a square-well potential. To mimic the characteristics of a protein-like system, the model is then refined in two different directions. Firstly, by allowing partial overlap between consecutive beads, we break the spherical symmetry and thus provide a severe constraint on the possible conformations of the chain. Alternatively, we introduce additional spherical beads at specific positions in the direction normal to the backbone, to represent the steric hindrance of the side chains in real proteins. Finally, we consider also a combination of these two ingredients. In all three systems, we obtain the full phase diagram in the temperature-interaction range plane and find the presence of helicoidal structures at low temperatures in the intermediate range of interactions. The effect of the range of the square-well attraction is highlighted, and shown to play a role similar to that found in simple liquids and polymers. Perspectives in terms of protein folding are finally discussed. PMID:27137225

  17. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein.

    PubMed

    Zhao, Jun; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2014-09-01

    Multifunctional injectable thermo-/pH-responsive hydrogels as release systems for the oral delivery of small molecule drugs and the local delivery of protein are presented. The injectable interpenetrating polymer network (IPN) hydrogels based on poly(ethylene glycol) methacrylate, N-isopropylacrylamide, and methacrylated alginate were prepared by using ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED) as a redox initiator system at body temperature, and the obtained hydrogels overcame the instability of calcium cross-linked alginate hydrogels under physiological conditions. The hydrogels showed good mechanical strength by rheometer and exhibited temperature and pH sensitivity by a swelling test. Diclofenac sodium (DCS) as a model for small molecule water-soluble anti-inflammatory drugs and bovine serum albumin (BSA) as a model for protein drugs were encapsulated in situ in the hydrogel. The DCS and BSA release results indicated that these hydrogels, as carriers, have great potential for use in the oral delivery of small molecule drugs and for long-term localized protein release. Furthermore, the cytotoxicity of these hydrogels was studied via live/dead viability and alamarBlue assays using adipose tissue-derived mesenchymal stem cells. PMID:25102223

  18. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

  19. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2016-10-01

    Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the

  20. Compatibility, contamination and ir microspectrophotometry

    SciTech Connect

    Carlson, R.S.

    1985-01-01

    Infrared microspectrophotometry, a new technique in DOE, has been successfully employed in the resolution of several contamination problems involving energetic materials. Foreign particles as small as 10 x 10 ..mu..m in B/KNO/sub 3/ powder, LX-16 (plastic-bonded PETN) pellets, and on the MSAD (mechanical safe and arm detonator) were examined and identified. The presence of boric acid crystals on B/KNO/sub 3/ pellets was discovered, and compatibility problems involving MSAD and an experimental detonator were investigated. This instrument gives Mound a unique problem solving and investigative capability. 1 fig.

  1. Compatibility, contamination and IR microspectrophotometry

    NASA Astrophysics Data System (ADS)

    Carlson, R. S.

    Infrared microspectrophotometry, a new technique in DOE, has been successfully employed in the resolution of several contamination problems involving energetic materials. Foreign particles as small as 10 x 20 (micro)m in B/KNO3 powder, LX-16 (plastic-bonded PETN) pellets, and on the MSAD (mechanical safe and arm detonator) were examined and identified. The presence of boric acid crystals on B/KNO3 pellets was discovered, and compatibility problems involving MSAD and an experimental detonator were investgated. This instrument gives Mound a unique problem solving and investigative capability.

  2. Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol-gel process for protein recognition.

    PubMed

    Li, Feng; Li, Jing; Zhang, Shusheng

    2008-02-15

    An interfacial organic-inorganic hybridization concept was applied to the preparation of a new spherical imprinted material for protein recognition. The functional biopolymer chitosan (CS), shaped as microsphere and high-density cross-linked, constituted of the polysaccharide core for surface imprinting. After the model template protein, bovine serum albumin, was covalently immobilized by forming imine bonds with the functional amine groups of CS, two kinds of organic siloxane (3-aminopropyltrimethoxysiloxane: APTMS, and tetraethoxysiloxane: TEOS) assembled and polymerized on the polysaccharide-protein surface via sol-gel process in aqueous solution at room temperature. After template removal, the protein-imprinted sol-gel surface exhibited a prevalent preference for the template protein in adsorption experiments, as compared with four contrastive proteins. Bioinformatics methods were also employed to investigate the imprinting process and the recognition effect. The influence of siloxane type, pH, siloxane/water ratio on template removal and recognition selectivity was assessed. Under optimized imprinting conditions, a large quantity of well-distributed pores was observed on the immobilized-template imprinted surface. The surface-imprinted adsorbent offered a fast kinetics for template re-adsorption and could be reused. Compared with the imprinted material prepared with free-template, material prepared with immobilized-template possessed higher adsorption capacity towards template protein. Easy preparation of the described imprinted material, high affinity and good reusability make this approach attractive and broadly applicable in biotechnology for down-stream processing and biosensor. PMID:18371777

  3. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures.

    PubMed

    Liu, Xiao; Yi, Qiaolian; Han, Yongzhen; Liang, Zhenning; Shen, Chaohua; Zhou, Zhengyang; Sun, Jun-Liang; Li, Yizhi; Du, Wenbin; Cao, Rui

    2015-02-01

    A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods.

  4. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  5. Detergent-compatible bacterial amylases.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  6. Rational designed bipolar, conjugated polymer-DNA composite beacon for the sensitive detection of proteins and ions.

    PubMed

    Jia, Yongmei; Zuo, Xiaolei; Lou, Xiaoding; Miao, Mao; Cheng, Yong; Min, Xuehong; Li, Xinchun; Xia, Fan

    2015-04-01

    Nature owns remarkable capabilities in sensing target molecules, while the artificial biosensor lags far behind nature. Inspired by nature, we devise a new sensing platform that can specifically bind the molecules and synchronously initiate a specific signal response. We rationally designed a type of bipolar probe that is comprised of a hydrophilic DNA part and a hydrophobic conjugated polymer (CP) unit. In aqueous solution, they can form micelles with a hydrophobic CP core and a hydrophilic DNA shell. The aggregation-caused quenching suppresses the fluorescence of CP. Adding telomerase, the hydropathical profile of the bipolar probes is drastically regulated that results in the collapse of micelles and liberates fluorescence simultaneously. The probe has been used in both mimic systems and real urine samples (38 samples). We achieve sensitive and specific detection of telomerase and obtain clearly classification for normal people and cancer patients. It can also be used in a signal off sensor that is used to detect mercury ions.

  7. Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms

    PubMed Central

    Mitta, G.; Adema, C.M.; Gourbal, B.; Loker, E.S.; Theron, A.

    2013-01-01

    Coevolutionary dynamics in host–parasite interactions potentially lead to an arms race that results in compatibility polymorphism. The mechanisms underlying compatibility have remained largely unknown in the interactions between the snail Biomphalaria glabrata and Schistosoma mansoni, one of the agents of human schistosomiasis. This review presents a combination of data obtained from field and laboratory studies arguing in favor of a matching phenotype model to explain compatibility polymorphism. Investigations focused on the molecular determinants of compatibility have revealed two repertoires of polymorphic and/or diversified molecules that have been shown to interact: the parasite antigens S. mansoni polymorphic mucins and the B. glabrata fibrinogen-related proteins immune receptors. We hypothesize their interactions define the compatible/incompatible status of a specific snail/schistosome combination. This line of thought suggests concrete approaches amenable to testing in field-oriented studies attempting to control schistosomiasis by disrupting schistosome–snail compatibility. PMID:21945832

  8. Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra

    PubMed Central

    Gallagher, John

    2015-01-01

    Heparan sulphate (HS) sits at the interface of the cell and the extracellular matrix. It is a member of the glycosaminoglycan family of anionic polysaccharides with unique structural features designed for protein interaction and regulation. Its client proteins include soluble effectors (e.g. growth factors, morphogens, chemokines), membrane receptors and cell adhesion proteins such as fibronectin, fibrillin and various types of collagen. The protein-binding properties of HS, together with its strategic positioning in the pericellular domain, are indicative of key roles in mediating the flow of regulatory signals between cells and their microenvironment. The control of transmembrane signalling is a fundamental element in the complex biology of HS. It seems likely that, in some way, HS orchestrates diverse signalling pathways to facilitate information processing inside the cell. A dictionary definition of an orchestra is ‘a large group of musicians who play together on various instruments …’ to paraphrase, the HS orchestra is ‘a large group of proteins that play together on various receptors’. HS conducts this orchestra to ensure that proteins hit the right notes on their receptors but, in the manner of a true conductor, does it also set ‘the musical pulse’ and create rhythm and harmony attractive to the cell? This is too big a question to answer but fun to think about as you read this review. PMID:26173450

  9. 77 FR 59702 - Promoting U.S. EC Regulatory Compatibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... greater transatlantic regulatory compatibility generally. Concrete ideas on how greater compatibility.... We also invite you to share your concrete ideas on how greater compatibility could be achieved in...

  10. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  11. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function.

    PubMed

    Xiao, Fengjuan; Yue, Lin; Li, Song; Li, Xinxin

    2016-06-01

    Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated using cyclic voltammogram(CV), differential pulse voltammetry (DPV), circular dichroism (CD), fluorescence, synchronous fluorescence and absorbance spectroscopy technique. The peroxidase activity of cyt c in the presence of HPU-Fc was also studied. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc without obvious perturbation of the heme pocket and significant changes in protein secondary structure. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the electrochemical behavior and the absorption spectra. Reasonable amount of HPU-Fc has no significant influence on the protein enzymatic activity, while excess HPU-Fc may cause a conformation not suitable for H2O2 activation and guaiacol oxidation. The interaction of HPU-Fc with cyt c and the conservation of protein function at suitable HPU-Fc amount make prepared complex promising for the synergistic anticancer therapy. PMID:26978787

  12. Polymer Science Pilot Program

    NASA Astrophysics Data System (ADS)

    Maier, Mary L.

    1996-07-01

    Natural polymers such as cellulose, proteins, and DNA have been part of earth's store of chemicals long before chemists existed. However, polymers synthesized by chemists first appeared on this planet only sixty years ago. A veritable explosion of materials first known as plastics, later polymers, followed. Today polymers, natural and synthetic, are everywhere, and it is appropriate to include an introduction to polymers in the education of future scientists. The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function. The modular format makes it possible for educators to select specific sections of the program for integration into other college chemistry courses. The team learning aspect of he program can also be recommended to educators who select a specific module. When this program was presented at a Middle Atlantic Regional Meeting of the American Chemical Society, some attendees were concerned about the limited number of participants as compared with the seemingly large number of college instructors. It was explained that the concentrated format of the four day program necessitates this instructor-to-student ratio; one class consisting of eighteen participants was tried and it was found that some aspects of the program, especially the research paper preparation, were not as thoroughly moderated.

  13. Electrochemical Sensors Based on Organic Conjugated Polymers

    PubMed Central

    Rahman, Md. Aminur; Kumar, Pankaj; Park, Deog-Su; Shim, Yoon-Bo

    2008-01-01

    Organic conjugated polymers (conducting polymers) have emerged as potential candidates for electrochemical sensors. Due to their straightforward preparation methods, unique properties, and stability in air, conducting polymers have been applied to energy storage, electrochemical devices, memory devices, chemical sensors, and electrocatalysts. Conducting polymers are also known to be compatible with biological molecules in a neutral aqueous solution. Thus, these are extensively used in the fabrication of accurate, fast, and inexpensive devices, such as biosensors and chemical sensors in the medical diagnostic laboratories. Conducting polymer-based electrochemical sensors and biosensors play an important role in the improvement of public health and environment because rapid detection, high sensitivity, small size, and specificity are achievable for environmental monitoring and clinical diagnostics. In this review, we summarized the recent advances in conducting polymer-based electrochemical sensors, which covers chemical sensors (potentiometric, voltammetric, amperometric) and biosensors (enzyme based biosensors, immunosensors, DNA sensors).

  14. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function

    NASA Astrophysics Data System (ADS)

    Xiao, Fengjuan; Yue, Lin; Li, Song; Li, Xinxin

    2016-06-01

    Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated using cyclic voltammogram(CV), differential pulse voltammetry (DPV), circular dichroism (CD), fluorescence, synchronous fluorescence and absorbance spectroscopy technique. The peroxidase activity of cyt c in the presence of HPU-Fc was also studied. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc without obvious perturbation of the heme pocket and significant changes in protein secondary structure. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the electrochemical behavior and the absorption spectra. Reasonable amount of HPU-Fc has no significant influence on the protein enzymatic activity, while excess HPU-Fc may cause a conformation not suitable for H2O2 activation and guaiacol oxidation. The interaction of HPU-Fc with cyt c and the conservation of protein function at suitable HPU-Fc amount make prepared complex promising for the synergistic anticancer therapy. CV curves of 10 μM HPU-Fc, 10 μM cyt c and HPU-Fc/cyt c complex (n HPU-Fc: n cyt c = 3.5:1) in 0.5 M KCl (versus SCE) at a sweep rate of 100 mV ṡ s- 1 (b). Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the

  15. [Compatible low target feature coatings].

    PubMed

    Huang, Wei; Gao, Hai-chao; Dai, Song-tao

    2008-09-01

    Indium tin oxide (ITO) film has low reflectance in near infrared band while high reflectance in infrared band, and its dielectric constant can be described by Drude free-electron model. SiO film has very strong absorption at certain infrared wavelength By combining them, certain spectral selectivity can be realized. In the present paper, the authors investigated SiO/ITO films in terms of spectrum selectivity, and discussed the influence of film structure on reflection spectrum. By means of the computation of reflection spectrum with characteristic matrix, the authors found that SiO/ITO film can be used as a compatible infrared low target feature coating by properly adjusting film arrangement and selecting suitable film parameters.

  16. Optimized Wang-Landau sampling of lattice polymers: ground state search and folding thermodynamics of HP model proteins.

    PubMed

    Wüst, Thomas; Landau, David P

    2012-08-14

    Coarse-grained (lattice-) models have a long tradition in aiding efforts to decipher the physical or biological complexity of proteins. Despite the simplicity of these models, however, numerical simulations are often computationally very demanding and the quest for efficient algorithms is as old as the models themselves. Expanding on our previous work [T. Wüst and D. P. Landau, Phys. Rev. Lett. 102, 178101 (2009)], we present a complete picture of a Monte Carlo method based on Wang-Landau sampling in combination with efficient trial moves (pull, bond-rebridging, and pivot moves) which is particularly suited to the study of models such as the hydrophobic-polar (HP) lattice model of protein folding. With this generic and fully blind Monte Carlo procedure, all currently known putative ground states for the most difficult benchmark HP sequences could be found. For most sequences we could also determine the entire energy density of states and, together with suitably designed structural observables, explore the thermodynamics and intricate folding behavior in the virtually inaccessible low-temperature regime. We analyze the differences between random and protein-like heteropolymers for sequence lengths up to 500 residues. Our approach is powerful both in terms of robustness and speed, yet flexible and simple enough for the study of many related problems in protein folding.

  17. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for "PEGylaided" bioprocesses.

    PubMed

    González-Valdez, José; Rito-Palomares, Marco; Benavides, Jorge

    2012-06-01

    In addition to their use as therapeutics and because of their enhanced properties, PEGylated proteins have potential application in fields such as bioprocessing. However, the use of PEGylated conjugates to improve the performance of bioprocess has not been widely explored. This limited additional industrial use of PEG-protein conjugates can be attributed to the fact that PEGylation reactions, separation of the products, and final characterization of the structure and activity of the resulting species are not trivial tasks. The development of bioprocessing operations based on PEGylated proteins relies heavily in the use of analytical tools that must sometimes be adapted from the strategies used in pharmaceutical conjugate development. For instance, to evaluate conjugate performance in bioprocessing operations, both chromatographic and non-chromatographic steps must be used to separate and quantify the resulting reaction species. Characterization of the conjugates by mass spectrometry, circular dichroism, and specific activity assays, among other adapted techniques, is then required to evaluate the feasibility of using the conjugates in any operation. Correct selection of the technical and analytical methods in each of the steps from design of the PEGylation reaction to its final engineering application will ensure success in implementing a "PEGylaided" process. In this context, the objective of this review is to describe technological and analytical trends in developing successful applications of PEGylated conjugates in bioprocesses and to describe potential fields in which these proteins can be exploited.

  18. Photoaddressable Polymers

    NASA Astrophysics Data System (ADS)

    Bieringer, T.

    Polymers are the perfect materials for a variety of applications in almost every field of technical as well as human life. Because of their macromolecular architecture there are a lot of degrees of freedom in the synthesis of polymers. Owing to the change of their functional composition, they can be tailored even for quite difficult demands. Since a whole industry deals with the processing of polymers, cheap production lines have been developed for almost every polymer. This is the reason why not only the molecular composition but even the price of polymers has been optimized. Therefore these materials can be considered as encouraging components even in highly sophisticated areas of applications.

  19. Click Grafting of Alkyne-containing Vinyl Polymers onto Biosynthesized Extracellular Matrix Protein Containing Azide Functionality and Adhesion Control of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Yamada, Tomoki

    2015-01-01

    In vivo incorporation of a phenylalanine (Phe) analogue, p-azidophenylalanine (p-N3Phe) into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged binding pocket, in which the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) was expressed under the control of T7 promoters. In this study, biosynthesized aECM-CS5-ELF containing p-N3Phe (aECM-CS5-ELF-N3) was coupled with alkyne-containing vinyl polymers prepared via controlled radical polymerization of three vinyl monomers, (styrene, acrylamide, and N-isopropylacrylamide) using a trithiocarbonate as the RAFT agent. Grafting of the vinyl polymers onto the aECM was accomplished via a copper-catalyzed alkyne-azide click reaction. The lower critical transition temperature (LCST) was evaluated, as well as the solubility in aqueous and organic media, which are dependent on the incorporation ratio of p-N3Phe and species of graft chains, in which the LCST behavior was altered remarkably when poly(N-isopropylacrylamide) moieties were attached as side chains. Circular dichroism measurements indicate conformational change was not induced by the grafting. Specific adhesion of human umbilical vein endothelial cells (HUVECs) onto the aECM-CS5-ELF-N3-graft-poly(N-isopropylacrylamide) composite surface and subsequent temperature-sensitive detachment were also demonstrated. PMID:26294960

  20. Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release.

    PubMed

    Soell, M; Lett, E; Holveck, F; Schöller, M; Wachsmann, D; Klein, J P

    1995-01-15

    The present work was initiated to define mechanisms that account for the binding on human monocytes of streptococcal cell wall polysaccharides formed by rhamnose glucose polymers (RGPs), and subsequent stimulatory activities. We show here that RGPs bind to and stimulate human monocytes to produce TNF-alpha in a dose-dependent manner. To detect cell surface RGPs binding proteins, intact monocytes were biotinylated before lysis with Nonidet P-40 and solubilized proteins were incubated with RGPs Affi-Prep beads. One major membrane protein of 55 kDa was specifically detected and identified as CD14 because it reacted with anti-CD14 mAbs. Furthermore, anti-CD14 mAbs were able to perform a dose-dependent inhibition of RGPs binding, and suppressed TNF-alpha release from RGPs-stimulated monocytes. Moreover, we demonstrated that RGPs also bind to CD11b; however, this binding is not implicated in synthesis of TNF-alpha. Interestingly, RGPs binding to monocytes was enhanced by human normal serum (HNS) whereas HNS inhibits the TNF-alpha-stimulating activity of RGPs. Western blotting analysis of HNS proteins purified on RGPs Affi-prep beads revealed three specific bands of 75, 55, and 32 kDa reactive with anti-C3 Abs, anti-CD14 mAbs (TUK4), and anti-human mannan binding protein (hMBP)-derived peptide IgG, respectively. These results suggest that C3, soluble CD14, and hMBP form complexes that are probably active in enhancing the binding of RGPs to monocytes. Additional studies have shown that hMBP that recognizes RGPs prevents, unlike the LPS binding protein, TNF-alpha release by inhibiting the binding of RGPs to CD14 Ag. By incubating cells with a constant amount of RGPs-hMBP complexes in the presence or absence of increasing concentrations of C1q, we also demonstrated that C1q receptor mediates the binding and probably the uptake of RGPs-hMBP complexes by human monocytes. PMID:7529289

  1. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    PubMed Central

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  2. Initial evaluation of protein throughput and yield characteristics on nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases by frontal analysis.

    PubMed

    Randunu, K Manoj; Marcus, R Kenneth

    2013-01-01

    Nylon 6 capillary-channeled polymer (C-CP) fibers are investigated as an alternative support/stationary phase for downstream processing of macromolecules. Ionizable amine and carboxylic acid end groups on the native fiber surface allow for ion exchange chromatography (IEC). The low cost and ability to operate at high linear velocities and low back pressures are practical advantages of C-CP fibers for preparative-scale macromolecule separations. The lack of fiber porosity ensures facile adsorption/desorption that is conducive to high throughput and recoveries/yields. Described here is a preliminary investigation of the processing characteristics of lysozyme on nylon 6 fibers with an eye toward downstream processing applications. Fibers were packed into microbore (0.8 mm i.d.) and analytical-size (2.1 mm i.d.) columns for the evaluation of the role of linear velocity on pressure drop, frontal throughput, and yield. Protein isolation by frontal development involved three steps: loading of the column to breakthrough, an aqueous wash, and a salt wash to recover the protein. Frontal throughput was evaluated with different salt concentrations (0-1000 mM NaCl) and different linear velocities (6-24 mm s(-1)). The observed throughput values are in the range of 0.12-0.20 mg min(-1) when 0.25 mg mL(-1) lysozyme (in 20 mM Tris-HCl) is loaded onto 78 mg of C-CP fiber in 0.52 mL volume analytical columns. Increased throughput and yield were found when protein was loaded and eluted at high linear velocity. Results of this study lend credence to the further development of C-CP fibers for biomacromolecule processing on larger scales.

  3. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    NASA Astrophysics Data System (ADS)

    Krishnasamy Navaneetha, Pandiyaraj; Jan, Heeg; Andreas, Lampka; Fabian, Junge; Torsten, Barfels; Marion, Wienecke; Young, Ha Rhee; Hyoung, Woo Kim

    2012-09-01

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from carbonaceous precursors and some means that incorporate other elements. In this study, we investigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  4. Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging.

    PubMed

    Liu, Zhongyun; Chen, Na; Dong, Chunhong; Li, Wei; Guo, Weisheng; Wang, Hanjie; Wang, Sheng; Tan, Jian; Tu, Yu; Chang, Jin

    2015-09-01

    A simple, straightforward, and reproducible strategy for the construction of a near-infrared (NIR) fluorescence nanoprobe was developed by coating CuInS2/ZnS quantum dots (CIS/ZnS QDs) with a novel amphiphilic bioconjugate. The amphiphilic bioconjugate with a tailor-designed structure of bovine serum albumin (BSA) as the hydrophilic segment and poly(ε-caprolactone) (PCL) as the hydrophobic part was fabricated by chemical coupling the hydrophobic polymer chain to BSA via the maleimide-sulfhydryl reaction. By incorporating CIS/ZnS QDs into the hydrophobic cores of the self-assembly of BSA-PCL conjugate, the constructed NIR fluorescence nanoprobe exhibited excellent fluorescent properties over a wide pH range (pH 3-10) and a good colloidal stability in PBS buffer (pH = 7.4) with or without 10% fetal bovine serum. The presence of the outer BSA shell effectively reduced the nonspecific cellular binding and imparted high biocompatibility and low-toxicity to the probe. Moreover, the NIR fluorescence nanoprobe could be functionalized by conjugating cyclic Arg-Gly-Asp (cRGD) peptide, and the decorated nanoprobe was shown to be highly selective for targeted integrin αvβ3-overexpressed tumor cell imaging. The feasibility of the constructed NIR fluorescence probe in vivo application was further investigated and the results demonstrated its great potential for in vivo imaging. This developed protocol for phase transfer of the CIS/ZnS QDs was universal and applicable to other nanoparticles stabilized with hydrophobic ligands. PMID:26262596

  5. Ring finger protein 146/Iduna is a Poly (ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase

    PubMed Central

    Zhou, Zhi-dong; Chan, Christine Hui-shan; Xiao, Zhi-cheng

    2011-01-01

    Recent findings suggest that Ring finger protein 146 (RNF146), also called Iduna, have neuroprotective property due to its inhibition of Parthanatos via binding with Poly(ADP-ribose) (PAR). The Parthanatos is a PAR dependent cell death that has been implicated in many human diseases. RNF146/Iduna acts as a PARsylation-directed E3 ubquitin ligase to mediate tankyrase-dependent degradation of axin, thereby positively regulates Wnt signaling. RNF146/Iduna can also facilitate DNA repair and protect against cell death induced by DNA damaging agents or γ-irradiation. It can translocate to the nucleus after cellular injury and promote the ubiquitination and degradation of various nuclear proteins involved in DNA damage repair. The PARsylation-directed ubquitination mediated by RNF146/Iduna is analogous to the phosphorylation-directed ubquitination catalyzed by Skp1-Cul1-F-box (SCF) E3 ubiquitin complex. RNF146/Iduna has been found to be implicated in neurodegenerative disease and cancer development. Therefore modulation of the PAR-binding and PARsylation dependent E3 ligase activity of RNF146/Iduna could have therapeutic significance for diseases, in which PAR and PAR-binding proteins play key pathophysiologic roles. PMID:22274711

  6. 36 CFR 1193.51 - Compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BOARD TELECOMMUNICATIONS ACT ACCESSIBILITY GUIDELINES Requirements for Compatibility With Peripheral... peripheral devices and specialized customer premises equipment commonly used by individuals with...

  7. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Deshmukh, R. R.; Arunkumar, A.; Ramkumar, M. C.; Ruzybayev, I.; Ismat Shah, S.; Su, Pi-Guey; Periayah, Mercy Halleluyah; Halim, A. S.

    2015-08-01

    The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O2, air and Ar + O2 for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility as well as adhesive strength of the PP films without affecting materials bulk which may be due to the significant morphological and chemical changes induced by the gaseous plasma treatment. Among the various gaseous plasma treatments, Ar + O2 mixture has provided remarkable physico-chemical changes compared with other plasma treatments studied.

  8. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    PubMed

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  9. Steganalysis based on JPEG compatibility

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav; Du, Rui

    2001-11-01

    In this paper, we introduce a new forensic tool that can reliably detect modifications in digital images, such as distortion due to steganography and watermarking, in images that were originally stored in the JPEG format. The JPEG compression leave unique fingerprints and serves as a fragile watermark enabling us to detect changes as small as modifying the LSB of one randomly chosen pixel. The detection of changes is based on investigating the compatibility of 8x8 blocks of pixels with JPEG compression with a given quantization matrix. The proposed steganalytic method is applicable to virtually all steganongraphic and watermarking algorithms with the exception of those that embed message bits into the quantized JPEG DCT coefficients. The method can also be used to estimate the size of the secret message and identify the pixels that carry message bits. As a consequence of our steganalysis, we strongly recommend avoiding using images that have been originally stored in the JPEG format as cover-images for spatial-domain steganography.

  10. Investigation on mineralization behaviour of Type I collagen and noncollageneous extracellular matrix protein immobilized on polymer thin film

    NASA Astrophysics Data System (ADS)

    Ba, Xiaolan; Kristal, Ariella; Dimisi, Elaine; Rafailovich, Miriam

    2009-03-01

    The effects of the components of extracellular matrix on the bone formation and the kinetics of crystal growth of calcium phosphate have remained unknown. Here we reported a method to investigate the role of Type I collagen and the interactions with other ECM proteins such as fibronectin and elastin during biomineralization process. The early stage of mineralization was characterized by atomic force microscopy (AFM) and shear modulation force microscopy (SMFM). The late stage of mineralization was investigated by scanning electron microscopy (SEM), grazing incident x-ray diffraction (GIXD). The results showed the calcium phosphate biomineralization only occurred when the collagen interacted with fibronectin or elastin.

  11. Fundamentals of Polymer Physics and Molecular Biophysics

    NASA Astrophysics Data System (ADS)

    Bohidar, Himadri B.

    2015-01-01

    List of figures; Preface; 1. Essential thermodynamic and statistical concepts; 2. Polymer structure and nomenclature; 3. Polymer solutions; 4. Phase stability and phase transitions; 5. Static properties of single chains; 6. Diffusion; 7. Viscosity of polymer solutions; 8. Sedimentation; 9. Concentration regimes and scaling; 10. Internal dynamics; 11. Dynamics in polymer gels; 12. Molecular biophysics; 13. Structure of biopolymers; 14. Physics of proteins; 15. Physics of nucleic acids; 16. Special topics; Index.

  12. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  13. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  14. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    SciTech Connect

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  15. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  16. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry

    PubMed Central

    Watkinson, Thomas G.; Calabrese, Antonio N.; Giusti, Fabrice; Zoonens, Manuela; Radford, Sheena E.; Ashcroft, Alison E.

    2015-01-01

    Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-β-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS–MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations. PMID:26869850

  17. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  18. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  19. 36 CFR 1193.51 - Compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Compatibility. 1193.51 Section 1193.51 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE... Devices and Specialized Customer Premises Equipment § 1193.51 Compatibility. When required by subpart B...

  20. 32 CFR 552.95 - Compatible use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.95 Compatible use. (a... 32 National Defense 3 2014-07-01 2014-07-01 false Compatible use. 552.95 Section 552.95 National... closed. (4) Motorized infantry operations that will use the majority of the road net in a training...

  1. 32 CFR 552.95 - Compatible use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.95 Compatible use. (a... 32 National Defense 3 2010-07-01 2010-07-01 true Compatible use. 552.95 Section 552.95 National... closed. (4) Motorized infantry operations that will use the majority of the road net in a training...

  2. 32 CFR 552.95 - Compatible use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.95 Compatible use. (a... 32 National Defense 3 2011-07-01 2009-07-01 true Compatible use. 552.95 Section 552.95 National... closed. (4) Motorized infantry operations that will use the majority of the road net in a training...

  3. 32 CFR 552.95 - Compatible use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.95 Compatible use. (a... 32 National Defense 3 2012-07-01 2009-07-01 true Compatible use. 552.95 Section 552.95 National... closed. (4) Motorized infantry operations that will use the majority of the road net in a training...

  4. 32 CFR 552.95 - Compatible use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.95 Compatible use. (a... 32 National Defense 3 2013-07-01 2013-07-01 false Compatible use. 552.95 Section 552.95 National... closed. (4) Motorized infantry operations that will use the majority of the road net in a training...

  5. 40 CFR 280.32 - Compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Compatibility. 280.32 Section 280.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) TECHNICAL...) General Operating Requirements § 280.32 Compatibility. Owners and operators must use an UST system made...

  6. 40 CFR 280.32 - Compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Compatibility. 280.32 Section 280.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) TECHNICAL...) General Operating Requirements § 280.32 Compatibility. Owners and operators must use an UST system made...

  7. 40 CFR 280.32 - Compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Compatibility. 280.32 Section 280.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) TECHNICAL...) General Operating Requirements § 280.32 Compatibility. Owners and operators must use an UST system made...

  8. 40 CFR 280.32 - Compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Compatibility. 280.32 Section 280.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) TECHNICAL...) General Operating Requirements § 280.32 Compatibility. Owners and operators must use an UST system made...

  9. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations.

    PubMed

    Wang, Zhengxin; Marcus, R Kenneth

    2014-07-18

    Capillary-channeled polymer (C-CP) fibers have been utilized as liquid chromatography stationary phases, primarily for biomacromolecule separations on the analytical and preparative scales. The collinear packing of the eight-channeled C-CP fibers provides for very efficient flow, allowing operation at high linear velocity (u>100mm s(-1)) and low backpressure (<2000psi) in analytical-scale separations. To take advantage of these fluid transport properties, there must not be mass transfer limitations as would be imposed by having an appreciably porous phase, wherein solute diffusion limits the overall mass transport rates. To better understand the physical nano-/micro- structure of C-CP fibers, inverse size exclusion chromatography (iSEC) has been employed to determine the pore size distribution (PSD) within C-CP fibers. A diversity of test species (from metal ions to large proteins) was used as probes under non-retaining conditions to obtain a response curve reflecting the apparent partition coefficient (Kd) versus hydrodynamic radii (rm). A mean pore radius (rp) of 4.2nm with standard deviation (sp) of ±1.1nm was calculated by fitting the Kd versus rm data to model equations with a Gaussian pore size distribution, and a pore radius of 4.0±0.1nm was calculated based on a log-normal distribution. The derived mean pore radius is much smaller than traditional support materials, with the standard deviation showing a relatively uniform pore distribution. van Deemter plots were analyzed to provide practical confirmation of the structural implications. Large molecules (e.g., proteins) that are fully excluded from pores have no significant C-terms in the van Deemter plots whereas small molecules that can access the pore volumes display appreciable C-terms, as expected. Fitting of retention data to the Knox equation suggests that the columns operate with a characteristic particle diameter (dp) of ∼53μm. PMID:24877979

  10. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1). PMID:25783194

  11. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    PubMed

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110 nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420 ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50 ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20 nm and about 110 nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio.

  12. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1).

  13. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  14. Nanoparticles from renewable polymers

    PubMed Central

    Wurm, Frederik R.; Weiss, Clemens K.

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications. PMID:25101259

  15. Nanoparticles from Renewable Polymers

    NASA Astrophysics Data System (ADS)

    Wurm, Frederik; Weiss, Clemens

    2014-07-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  16. Nanoparticles from renewable polymers.

    PubMed

    Wurm, Frederik R; Weiss, Clemens K

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications. PMID:25101259

  17. Nanoparticles from renewable polymers.

    PubMed

    Wurm, Frederik R; Weiss, Clemens K

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  18. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    SciTech Connect

    Lim, Wei Kang; Denton, Alan R.

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  19. Chemical interactions between protein molecules and polymer membrane materials. Annual progress report, February 1, 1994--October 31, 1994

    SciTech Connect

    Koehler, J.A.; Belfort, G.

    1994-08-25

    During the past year, the authors have used the Surface Forces Apparatus (SFA) to measure the intermolecular forces between a model protein (hen egg-white lysozyme) and a model hydrophilic surface (mica), between lysozyme and itself and between lysozyme and a model hydrophobic surface composed of a crosslinked alkoxysilane surfactant (hexadecyltriethoxysilane, HTE). As expected, repulsive forces are dominant between the hydrophilic surfaces with the same charge (lysozyme-lysozyme) while attractive forces are dominant between oppositely charged surfaces (lysozyme-mica) and between the lysozyme and the hydrophobic surface. The DLVO theory for charged surfaces was found to agree with the results of the lysozyme-lysozyme interaction. Efforts also have been focused on trying to create a well-formed, defect-free monolayer of the HTE on the surface of the mica using a Langmuir-Blodgett (LB) apparatus. A smooth, defect-free surface is desired for the intermolecular force studies. Atomic force microscopy has been used to determine the topography of the HTE films.

  20. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  1. High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Márquez, A.; Ortuño, M.; Marini, S.; Francés, J.

    2011-01-01

    In holographic applications the direct parameters determination of photopolymers as optical recording media is a very difficult task due to the presence of two different phenomena: polymer formation and monomer diffusion. We propose a direct method based on zero spatial frequency recording, to eliminate the diffusion influence, and on interferometric techniques, both in transmission and in reflection, to obtain quantitative values of: shrinkage, polymerization rate, polymer refractive index and relation between polymerization and recording intensity. Recent investigations confirm the toxic potential of acrylamide. Starting from polyvinylalcohol/acrylamide photopolymer we have proposed different compositions of new competitive photopolymers with high environmental compatibility. We have studied the ways to optimize the optical behavior and the environmental compatibility. Parameters comparison with the polyvinylalcohol/acrylamide photopolymers shows significant differences.

  2. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.

    1998-01-01

    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  3. [Survey of research on acupoints compatibility].

    PubMed

    Li, Zhong-Ren

    2010-05-01

    The research papers that meet the criteria of evidence-based medicine and randomized controlled trial were retrieved in Chinese journals data bases (CNKI knowledge network) from 1992 to 2009. Twenty-five papers indicate that acupoints compatibility rules are closely related to organism regional anatomy, nerve, the blood vessel and the endocrine gland; acupoints compatibility rules produce synergism, inhibit or antagonistic effect that affect the clinical effectiveness. The acupoints compatibility rules based on experimental researches are applied to clinic practice is the key to improve the acupuncture clinical effectiveness.

  4. Assessment of The Compatibility of Composite Materials With High-Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Griffin, Dennis E. (Technical Monitor)

    2000-01-01

    The compatibility of composite materials with high-test hydrogen peroxide (HTP) was assessed using various chemical and mechanical techniques. Methods included classical schemes combining concentration assay with accelerated aging by means of a heated water bath. Exothermic reactivity was observed using Isothermal Microcalorimetry. Mechanical Properties testing determined degradation of the composite material. Photoacoustic Infrared Spectroscopy was used to monitor chemical alteration of the resin matrix. Other materials were examined including some polymers and metals.

  5. Tri-Axial MRI Compatible Fiber-optic Force Sensor

    PubMed Central

    Tan, U-Xuan; Yang, Bo; Gullapalli, Rao; Desai, Jaydev P.

    2011-01-01

    Magnetic resonance imaging (MRI) has been gaining popularity over standard imaging modalities like ultrasound and CT because of its ability to provide excellent soft-tissue contrast. However, due to the working principle of MRI, a number of conventional force sensors are not compatible. One popular solution is to develop a fiber-optic force sensor. However, the measurements along the principal axes of a number of these force sensors are highly cross-coupled. One of the objectives of this paper is to minimize this coupling effect. In addition, this paper describes the design of elastic frame structures that are obtained systematically using topology optimization techniques for maximizing sensor resolution and sensor bandwidth. Through the topology optimization approach, we ensure that the frames are linked from the input to output. The elastic frame structures are then fabricated using polymers materials, such as ABS and Delrin®, as they are ideal materials for use in MRI environment. However, the hysteresis effect seen in the displacement-load graph of plastic materials is known to affect the accuracy. Hence, this paper also proposes modeling and addressing this hysteretic effect using Prandtl-Ishlinskii play operators. Finally, experiments are conducted to evaluate the sensor’s performance, as well as its compatibility in MRI under continuous imaging. PMID:21666783

  6. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  7. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  8. Polymer nanolithography

    NASA Astrophysics Data System (ADS)

    Vance, Jennifer M.

    Nanolithography involves making patterns of materials with at least one dimension less than 100 nanometers. Surprisingly, writable CDs can provide polymer nanostructures for pennies a piece. Building on work previously done in the Drain lab, with an inherited home-built oven press, this research will explore the relationships between polymer chemical reactivity, polymer printing, and material surface energies. In addition, a relatively inexpensive entry point into high school and undergraduate education in nanolithography is presented. The ability to pattern cheaply at the nanoscale and microscale is necessary and attractive for many technologies towards biosensors, organic light emitting diodes, identification tags, layered devices, and transistors.

  9. Joint SatOPS Compatibility Efforts

    NASA Technical Reports Server (NTRS)

    Smith, Danford

    2010-01-01

    This slide presentation reviews NASA Goddard Space Flight Center's (GSFC) participation in the interagency cooperation committee, the Joint SatOps Compatibility Committee (JSCC), and the compatible Sat 2 efforts. Part of GSFC's participation in the JSCC is to work with the Goddard Mission Systems Evolution Center (GMSEC) to provides a publish/subscribe framework to enable rapid integration of commercially available satellite control products.

  10. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  11. Precipitation of lamellar gold nanocrystals in molten polymers

    NASA Astrophysics Data System (ADS)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  12. Solute exclusion by polymer and protein-do