Sample records for protein cp coding

  1. Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia.

    PubMed

    Klahre, U; Hemmings-Mieszczak, M; Filipowicz, W

    1995-06-01

    We have previously characterized nuclear cDNA clones encoding two RNA binding proteins, CP-RBP30 and CP-RBP-31, which are targeted to chloroplasts in Nicotiana plumbaginifolia. In this report we describe the analysis of the 3'-untranslated regions (3'-UTRs) in 22 CP-RBP30 and 8 CP-RBP31 clones which reveals that mRNAs encoding both proteins have a very complex polyadenylation pattern. Fourteen distinct poly(A) sites were identified among CP-RBP30 clones and four sites among the CP-RBP31 clones. The authenticity of the sites was confirmed by RNase A/T1 mapping of N. plumbaginifolia RNA. CP-RBP30 provides an extreme example of the heterogeneity known to be a feature of mRNA polyadenylation in higher plants. Using PCR we have demonstrated that CP-RBP genes in N. plumbaginifolia and N. sylvestris, in addition to the previously described introns interrupting the coding region, contain an intron located in the 3' non-coding part of the gene. In the case of the CP-RBP31, we have identified one polyadenylation event occurring in this intron.

  2. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  3. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    PubMed

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  4. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    PubMed

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1.

    PubMed

    Martín, A C; López, R; García, P

    1996-06-01

    Cp-1, a bacteriophage infecting Streptococcus pneumoniae, has a linear double-stranded DNA genome, with a terminal protein covalently linked to its 5' ends, that replicates by the protein-priming mechanism. We describe here the complete DNA sequence and transcriptional map of the Cp-1 genome. These analyses have led to the firm assignment of 10 genes and the localization of 19 additional open reading frames in the 19,345-bp Cp-1 DNA. Striking similarities and differences between some of these proteins and those of the Bacillus subtilis phage phi 29, a system that also replicates its DNA by the protein-priming mechanism, have been revealed. The genes coding for structural proteins and assembly factors are located in the central part of the Cp-1 genome. Several proteins corresponding to the predicted gene products were identified by in vitro and in vivo expression of the cloned genes. Mature major head protein from the virion particles results from hydrolysis of the primary gene product at the His-49 residue, whereas the phage gene is expressed in Escherichia coli without modification. We have also identified two open reading frames coding for proteins that show high degrees of similarity to the N- and C-terminal regions, respectively, of the single tail protein identified in phi 29. Sequencing and primer extension analysis suggest transcription of a small RNA showing a secondary structure similar to that of the prohead RNA required for the ATP-dependent packaging of phi 29 DNA. On the basis of its temporal expression, transcription of the Cp-1 genome takes place in two stages, early and late. Combined Northern (RNA) blot and primer extension experiments allowed us to map the 5' initiation sites of the transcripts, and we found that only three genes were transcribed from right to left. These analyses reveal that there are also noticeable differences between Cp-l and phi 29 in transcriptional organization. Considered together, the observations reported here provide new tangible evidence on phylogenetic relationships between B. subtilis and S. pneumoniae.

  6. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    PubMed Central

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  7. The CUG-initiated larger form coat protein of Chinese wheat mosaic virus binds to the cysteine-rich RNA silencing suppressor.

    PubMed

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Ratti, Claudio; Chen, Jianping

    2013-10-01

    Some viruses use alternative translation initiation at non-AUG codons as a strategy to produce multiple proteins during gene expression. Here we show that, using this strategy, Chinese wheat mosaic virus (CWMV; Furovirus) expresses a larger form of coat protein (N-ext/CP) in infected plants. Site-directed mutagenesis and transient expression analysis confirmed that CWMV N-ext/CP is initiated at an upstream in-frame CUG codon at nucleotide position 207-209 of RNA 2, which adds a 39 amino acid (aa) N-terminal extension to the major CP. Interestingly, in planta and in vitro analyses indicated that CWMV N-ext/CP but not CP interacts with the CWMV cysteine-rich protein (CRP), an RNA silencing suppressor. We further determined that the N-terminal 39 aa extension, particularly the 10 aa region immediately upstream of the major CP coding region is responsible for the interaction of N-ext/CP with CRP. In an Agrobacterium co-infiltration assay, co-expression with N-ext/CP did not affect CRP silencing suppression activity. Thus the alternative translation initiation at a CUG codon provides the CWMV N-ext/CP with the ability to bind to the viral silencing suppressor. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates.

    PubMed

    Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L

    2003-10-01

    The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.

  9. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    PubMed

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  10. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus. PMID:26513163

  11. Analysis of differential selective forces acting on the coat protein (P3) of the plant virus family Luteoviridae.

    PubMed

    Torres, Marina W; Corrêa, Régis L; Schrago, Carlos G

    2005-12-30

    The coat protein (CP) of the family Luteoviridae is directly associated with the success of infection. It participates in various steps of the virus life cycle, such as virion assembly, stability, systemic infection, and transmission. Despite its importance, extensive studies on the molecular evolution of this protein are lacking. In the present study, we investigate the action of differential selective forces on the CP coding region using maximum likelihood methods. We found that the protein is subjected to heterogeneous selective pressures and some sites may be evolving near neutrality. Based on the proposed 3-D model of the CP S-domain, we showed that nearly neutral sites are predominantly located in the region of the protein that faces the interior of the capsid, in close contact with the viral RNA, while highly conserved sites are mainly part of beta-strands, in the protein's major framework.

  12. Characterization of regulatory elements within the coat protein (CP) coding region of Tobacco mosaic virus affecting subgenomic transcription and green fluorescent protein expression from the CP subgenomic RNA promoter.

    PubMed

    Man, Michal; Epel, Bernard L

    2004-06-01

    A replicon based on Tobacco mosaic virus that was engineered to express the open reading frame (ORF) of the green fluorescent protein (GFP) gene in place of the native coat protein (CP) gene from a minimal CP subgenomic (sg) RNA promoter was found to accumulate very low levels of GFP. Regulatory regions within the CP ORF were identified that, when presented as untranslated regions flanking the GFP ORF, enhanced or inhibited sg transcription and GFP expression. Full GFP expression from the CP sgRNA promoter required more than the first 20 nt of the CP ORF but not beyond the first 56 nt. Further analysis indicated the presence of an enhancer element between nt +25 and +55 with respect to the CP translation start site. The inclusion of this enhancer sequence upstream of the GFP ORF led to elevated sg transcription and to a 50-fold increase in GFP accumulation in comparison with a minimal CP promoter in which the entire CP ORF was displaced by the GFP ORF. Inclusion of the 3'-terminal 22 nt had a minor positive effect on GFP accumulation, but the addition of extended untranslated sequences from the 3' terminus of the CP ORF downstream of the GFP ORF was basically found to inhibit sg transcription. Secondary structure analysis programs predicted the CP sgRNA promoter to reside within two stable stem-loop structures, which are followed by an enhancer region.

  13. The complete chloroplast genome of Tianshan Snow Lotus (Saussurea involucrata), a famous traditional Chinese medicinal plant of the family Asteraceae.

    PubMed

    Xie, Qing; Shen, Kang-Ning; Hao, Xiuying; Nam, Phan Nhut; Ngoc Hieu, Bui Thi; Chen, Ching-Hung; Zhu, Changqing; Lin, Yen-Chang; Hsiao, Chung-Der

    2017-03-01

    abtract We decoded the complete chloroplast DNA (cpDNA) sequence of the Tianshan Snow Lotus (Saussurea involucrata), a famous traditional Chinese medicinal plant of the family Asteraceae, by using next-generation sequencing technology. The genome consists of 152 490 bp containing a pair of inverted repeats (IRs) of 25 202 bp, which was separated by a large single-copy region and a small single-copy region of 83 446 bp and 18 639 bp, respectively. The genic regions account for 57.7% of whole cpDNA, and the GC content of the cpDNA was 37.7%. The S. involucrata cpDNA encodes 114 unigenes (82 protein-coding genes, 4 rRNA genes, and 28 tRNA genes). There are eight protein-coding genes (atpF, ndhA, ndhB, rpl2, rpoC1, rps16, clpP, and ycf3) and five tRNA genes (trnA-UGC, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC) containing introns. A phylogenetic analysis of the 11 complete cpDNA from Asteracease showed that S. involucrata is closely related to Centaurea diffusa (Diffuse Knapweed). The complete cpDNA of S. involucrata provides essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Asteraceae.

  14. Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica papaya.

    PubMed

    Yan, P; Gao, X Z; Shen, W T; Zhou, P

    2011-02-01

    The fruit flesh color of papaya is an important nutritional quality trait and is due to the accumulation of carotenoid. To elucidate the carotenoid biosynthesis pathway in Carica papaya, the phytoene desaturase (PDS) and the ζ-carotene desaturase (ZDS) genes were isolated from papaya (named CpPDS and CpZDS) using the rapid amplification of cDNA ends (RACE) approach, and their expression levels were investigated in red- and yellow-fleshed papaya varieties. CpPDS contains a 1749 bp open reading frame coding for 583 amino acids, while CpZDS contains a 1716 bp open reading frame coding for 572 amino acids. The deduced CpPDS and CpZDS proteins contain a conserved dinucleotide-binding site at the N-terminus and a carotenoid-binding domain at the C-terminus. Papaya genome sequence analysis revealed that CpPDS and CpZDS are single copy; the CpPDS was mapped to papaya chromosome LG6, and the CpZDS was mapped to chromosome LG3. Quantitative PCR showed that both CpPDS and CpZDS were expressed in all tissues examined with the highest expression in maturing fruits, and that the expression of CpPDS and CpZDS were higher in red-fleshed fruits than in yellow-fleshed fruits. These results indicated that the differential accumulation of carotenoids in red- and yellow-fleshed papaya varieties might be partly explained by the transcriptional level of CpPDS and CpZDS.

  15. Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata

    PubMed Central

    Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141

  16. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    PubMed

    Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  17. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    PubMed Central

    Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio

    2017-01-01

    Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization. PMID:29111566

  18. Genome activation by raspberry bushy dwarf virus coat protein.

    PubMed

    Macfarlane, Stuart A; McGavin, Wendy J

    2009-03-01

    Two sets of infectious cDNA clones of raspberry bushy dwarf virus (RBDV) have been constructed, enabling either the synthesis of infectious RNA transcripts or the delivery of infectious binary plasmid DNA by infiltration of Agrobacterium tumefaciens. In whole plants and in protoplasts, inoculation of RBDV RNA1 and RNA2 transcripts led to a low level of infection, which was greatly increased by the addition of RNA3, a subgenomic RNA coding for the RBDV coat protein (CP). Agroinfiltration of RNA1 and RNA2 constructs did not produce a detectable infection but, again, inclusion of a construct encoding the CP led to high levels of infection. Thus, RBDV replication is greatly stimulated by the presence of the CP, a mechanism that also operates with ilarviruses and alfalfa mosaic virus, where it is referred to as genome activation. Mutation to remove amino acids from the N terminus of the CP showed that the first 15 RBDV CP residues are not required for genome activation. Other experiments, in which overlapping regions at the CP N terminus were fused to the monomeric red fluorescent protein, showed that sequences downstream of the first 48 aa are not absolutely required for genome activation.

  19. Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain.

    PubMed

    Moreno, I M; Malpica, J M; Díaz-Pendón, J A; Moriones, E; Fraile, A; García-Arenal, F

    2004-01-05

    The genetic structure of the population of Watermelon mosaic virus (WMV) in Spain was analysed by the biological and molecular characterisation of isolates sampled from its main host plant, melon. The population was a highly homogeneous one, built of a single pathotype, and comprising isolates closely related genetically. There was indication of temporal replacement of genotypes, but not of spatial structure of the population. Analyses of nucleotide sequences in three genomic regions, that is, in the cistrons for the P1, cylindrical inclusion (CI) and capsid (CP) proteins, showed lower similar values of nucleotide diversity for the P1 than for the CI or CP cistrons. The CI protein and the CP were under tighter evolutionary constraints than the P1 protein. Also, for the CI and CP cistrons, but not for the P1 cistron, two groups of sequences, defining two genetic strains, were apparent. Thus, different genomic regions of WMV show different evolutionary dynamics. Interestingly, for the CI and CP cistrons, sequences were clustered into two regions of the sequence space, defining the two strains above, and no intermediary sequences were identified. Recombinant isolates were found, accounting for at least 7% of the population. These recombinants presented two interesting features: (i) crossover points were detected between the analysed regions in the CI and CP cistrons, but not between those in the P1 and CI cistrons, (ii) crossover points were not observed within the analysed coding regions for the P1, CI or CP proteins. This indicates strong selection against isolates with recombinant proteins, even when originated from closely related strains. Hence, data indicate that genotypes of WMV, generated by mutation or recombination, outside of acceptable, discrete, regions in the evolutionary space, are eliminated from the virus population by negative selection.

  20. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease.

    PubMed

    Dong, Yan-mei; Zhang, Guo-guang; Huang, Xiao-jun; Chen, Liang; Chen, Hao-tai

    2015-05-01

    Foot-and-mouth disease (FMD) has caused severe economic losses to millions of farmers worldwide. In this work, the coding genes of 141-160 epitope peptide (EP141-160) of VP1 were inserted into the coat protein (CP) genes of MS2 in prokaryotic expression vector, and the recombinant protein self-assembled into virus-like particles (VLP). Results showed that the CP-EP141-160 VLP had a strong immunoreaction with the FMD virus (FMDV) antigen in vitro, and also had an effective immune response in mice. Further virus challenge tests were carried out on guinea pigs and swine, high-titer neutralizing antibodies were produced and the CP-EP141-160 VLP vaccine could protect most of the animals against FMDV. Copyright © 2015. Published by Elsevier B.V.

  1. MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression.

    PubMed

    Makedonski, Kirill; Abuhatzira, Liron; Kaufman, Yotam; Razin, Aharon; Shemer, Ruth

    2005-04-15

    Rett syndrome (RS) is a severe and progressive neurodevelopmental disorder caused by heterozygous mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. MeCP2 is a nuclear protein that binds specifically to methylated DNA and functions as a general transcription repressor in the context of chromatin remodeling complexes. RS shares clinical features with those of Angelman syndrome (AS), an imprinting neurodevelopmental disorder. In AS patients, the maternally expressed copy of UBE3A that codes for the ubiquitin protein ligase 3A (E6-AP) is repressed. The similar phenotype of these two syndromes led us to hypothesize that part of the RS phenotype is due to MeCP2-associated silencing of UBE3A. Indeed, UBE3A mRNA and protein are shown here to be significantly reduced in human and mouse MECP2 deficient brains. This reduced UBE3A level was associated with biallelic production of the UBE3A antisense RNA. In addition, MeCP2 deficiency resulted in elevated histone H3 acetylation and H3(K4) methylation and reduced H3(K9) methylation at the PWS/AS imprinting center, with no effect on DNA methylation or SNRPN expression. We conclude, therefore, that MeCP2 deficiency causes epigenetic aberrations at the PWS imprinting center. These changes in histone modifications result in loss of imprinting of the UBE3A antisense gene in the brain, increase in UBE3A antisense RNA level and, consequently reduction in UBE3A production.

  2. αCP Poly(C) Binding Proteins Act as Global Regulators of Alternative Polyadenylation

    PubMed Central

    Ji, Xinjun; Wan, Ji; Vishnu, Melanie

    2013-01-01

    We have previously demonstrated that the KH-domain protein αCP binds to a 3′ untranslated region (3′UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3′ processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3′ processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5′ to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3′ processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome. PMID:23629627

  3. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  4. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis

    PubMed Central

    Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  5. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    USDA-ARS?s Scientific Manuscript database

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  6. Expression of metastasis suppressor gene AES driven by a Yin Yang (YY) element in a CpG island promoter and transcription factor YY2.

    PubMed

    Kakizaki, Fumihiko; Sonoshita, Masahiro; Miyoshi, Hiroyuki; Itatani, Yoshiro; Ito, Shinji; Kawada, Kenji; Sakai, Yoshiharu; Taketo, M Mark

    2016-11-01

    We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino-terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter-enhancer is in a typical CpG island, and contains a Yin-Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy-number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG-island promoter enhancer, and it is regulated transcriptionally. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication.

    PubMed

    Hirata, Hisae; Yamaji, Yasuyuki; Komatsu, Ken; Kagiwada, Satoshi; Oshima, Kenro; Okano, Yukari; Takahashi, Shuichiro; Ugaki, Masashi; Namba, Shigetou

    2010-09-01

    The first open-reading frame (ORF) of the genus Capillovirus encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP), while other viruses in the family Flexiviridae have separate ORFs encoding these proteins. To investigate the role of the full-length ORF1 polyprotein of capillovirus, we generated truncation mutants of ORF1 of apple stem grooving virus by inserting a termination codon into the variable region located between the putative Rep- and CP-coding regions. These mutants were capable of systemic infection, although their pathogenicity was attenuated. In vitro translation of ORF1 produced both the full-length polyprotein and the smaller Rep protein. The results of in vivo reporter assays suggested that the mechanism of this early termination is a ribosomal -1 frame-shift occurring downstream from the conserved Rep domains. The mechanism of capillovirus gene expression and the very close evolutionary relationship between the genera Capillovirus and Trichovirus are discussed. Copyright (c) 2010. Published by Elsevier B.V.

  8. The complete chloroplast genome of Sinopodophyllum hexandrum Ying (Berberidaceae).

    PubMed

    Meng, Lihua; Liu, Ruijuan; Chen, Jianbing; Ding, Chenxu

    2017-05-01

    The complete nucleotide sequence of the Sinopodophyllum hexandrum Ying chloroplast genome (cpDNA) was determined based on next-generation sequencing technologies in this study. The genome was 157 203 bp in length, containing a pair of inverted repeat (IRa and IRb) regions of 25 960 bp, which were separated by a large single-copy (LSC) region of 87 065 bp and a small single-copy (SSC) region of 18 218 bp, respectively. The cpDNA contained 148 genes, including 96 protein-coding genes, 8 ribosomal RNA genes, and 44 tRNA genes. In these genes, eight harbored a single intron, and two (ycf3 and clpP) contained a couple of introns. The cpDNA AT content of S. hexandrum cpDNA is 61.5%.

  9. Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis

    PubMed Central

    Li, Zhi-Zhong; Saina, Josphat K.; Gichira, Andrew W.; Kyalo, Cornelius M.; Wang, Qing-Feng

    2018-01-01

    The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales. PMID:29360746

  10. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses.

    PubMed

    Komatsu, Ken; Hirata, Hisae; Fukagawa, Takako; Yamaji, Yasuyuki; Okano, Yukari; Ishikawa, Kazuya; Adachi, Tatsushi; Maejima, Kensaku; Hashimoto, Masayoshi; Namba, Shigetou

    2012-07-01

    The first open-reading frame (ORF) of apple stem grooving virus (ASGV), of the genus Capillovirus, encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP). However, our previous study revealed that ASGV mutants with distinct and discontinuous Rep- and CP-coding regions successfully infect plants, indicating that CP expressed via a subgenomic RNA (sgRNA) is sufficient for viability of the virus. Here we identified a transcription start site of the CP sgRNA and revealed that CP translated from the sgRNA is essential for ASGV infection. We mapped the transcription start sites of both the CP and the movement protein (MP) sgRNAs of ASGV and found a hexanucleotide motif, UUAGGU, conserved upstream from both sgRNA transcription start sites. Mutational analysis of the putative CP initiation codon and of the UUAGGU sequence upstream from the transcription start site of CP sgRNA demonstrated their importance for ASGV accumulation. Our results also demonstrated that potato virus T (PVT), an unassigned species closely related to ASGV, produces two sgRNAs putatively deployed for the CP and MP expression and that the same hexanucleotide motif as found in ASGV is located upstream from the transcription start sites of both sgRNAs. This motif, which constituted putative core elements of the sgRNA promoter, is broadly conserved among viruses in the families Alphaflexiviridae and Betaflexiviridae, suggesting that the gene expression strategy of the viruses in both families has been conserved throughout evolution. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Structure-based functional annotation: yeast ymr099c codes for a D-hexose-6-phosphate mutarotase.

    PubMed

    Graille, Marc; Baltaze, Jean-Pierre; Leulliot, Nicolas; Liger, Dominique; Quevillon-Cheruel, Sophie; van Tilbeurgh, Herman

    2006-10-06

    Despite the generation of a large amount of sequence information over the last decade, more than 40% of well characterized enzymatic functions still lack associated protein sequences. Assigning protein sequences to documented biochemical functions is an interesting challenge. We illustrate here that structural genomics may be a reasonable approach in addressing these questions. We present the crystal structure of the Saccharomyces cerevisiae YMR099cp, a protein of unknown function. YMR099cp adopts the same fold as galactose mutarotase and shares the same catalytic machinery necessary for the interconversion of the alpha and beta anomers of galactose. The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues. This sulfate is ideally positioned to mimic the phosphate group of hexose 6-phosphate. We have subsequently successfully demonstrated that YMR099cp is a hexose-6-phosphate mutarotase with broad substrate specificity. We solved high resolution structures of some substrate enzyme complexes, further confirming our functional hypothesis. The metabolic role of a hexose-6-phosphate mutarotase is discussed. This work illustrates that structural information has been crucial to assign YMR099cp to the orphan EC activity: hexose-phosphate mutarotase.

  12. Comparative Genomics and Phylogenomics of East Asian Tulips (Amana, Liliaceae)

    PubMed Central

    Li, Pan; Lu, Rui-Sen; Xu, Wu-Qin; Ohi-Toma, Tetsuo; Cai, Min-Qi; Qiu, Ying-Xiong; Cameron, Kenneth M.; Fu, Cheng-Xin

    2017-01-01

    The genus Amana Honda (Liliaceae), when it is treated as separate from Tulipa, comprises six perennial herbaceous species that are restricted to China, Japan and the Korean Peninsula. Although all six Amana species have important medicinal and horticultural uses, studies focused on species identification and molecular phylogenetics are few. Here we report the nucleotide sequences of six complete Amana chloroplast (cp) genomes. The cp genomes of Amana range from 150,613 bp to 151,136 bp in length, all including a pair of inverted repeats (25,629–25,859 bp) separated by the large single-copy (81,482–82,218 bp) and small single-copy (17,366–17,465 bp) regions. Each cp genome equivalently contains 112 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 78 protein coding genes. Gene content, gene order, AT content, and IR/SC boundary structure are nearly identical among all Amana cp genomes. However, the relative contraction and expansion of the IR/SC borders among the six Amana cp genomes results in length variation among them. Simple sequence repeat (SSR) analyses of these Amana cp genomes indicate that the richest SSRs are A/T mononucleotides. The number of repeats among the six Amana species varies from 54 (A. anhuiensis) to 69 (Amana kuocangshanica) with palindromic (28–35) and forward repeats (23–30) as the most common types. Phylogenomic analyses based on these complete cp genomes and 74 common protein-coding genes strongly support the monophyly of the genus, and a sister relationship between Amana and Erythronium, rather than a shared common ancestor with Tulipa. Nine DNA markers (rps15–ycf1, accD–psaI, petA–psbJ, rpl32–trnL, atpH–atpI, petD–rpoA, trnS–trnG, psbM–trnD, and ycf4–cemA) with number of variable sites greater than 0.9% were identified, and these may be useful for future population genetic and phylogeographic studies of Amana species. PMID:28421090

  13. Vanilla mosaic virus isolates from French Polynesia and the Cook Islands are Dasheen mosaic virus strains that exclusively infect vanilla.

    PubMed

    Farreyrol, K; Pearson, M N; Grisoni, M; Cohen, D; Beck, D

    2006-05-01

    Sequence was determined for the coat protein (CP) gene and 3' non-translated region (3'NTR) of two vanilla mosaic virus (VanMV) isolates from Vanilla tahitensis, respectively from the Cook Islands (VanMV-CI) and French Polynesia (VanMV-FP). Both viruses displayed distinctive features in the N-terminal region of their CPs; for VanMV-CI, a 16-amino-acid deletion including the aphid transmission-related DAG motif, and for VanMV-FP, a stretch of GTN repeats that putatively belongs to the class of natively unfolded proteins. VanMV-FP CP also has a novel DVG motif in place of the DAG motif, and an uncommon Q//V protease cleavage site. The sequences were compared to a range of Dasheen mosaic virus (DsMV) strains and to potyviruses infecting orchids. Identity was low to DsMV strains across the entire CP coding region and across the 3'NTR, but high across the CP core and the CI-6K2-NIa region. In accordance with current ICTV criteria for species demarcation within the family Potyviridae, VanMV-CI and VanMV-FP are strains of DsMV that exclusively infect vanilla.

  14. Determining coding CpG islands by identifying regions significant for pattern statistics on Markov chains.

    PubMed

    Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior

    2011-09-23

    Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.

  15. Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny.

    PubMed

    Yu, Xiang-Qin; Drew, Bryan T; Yang, Jun-Bo; Gao, Lian-Ming; Li, De-Zhu

    2017-01-01

    Schima is an ecologically and economically important woody genus in tea family (Theaceae). Unresolved species delimitations and phylogenetic relationships within Schima limit our understanding of the genus and hinder utilization of the genus for economic purposes. In the present study, we conducted comparative analysis among the complete chloroplast (cp) genomes of 11 Schima species. Our results indicate that Schima cp genomes possess a typical quadripartite structure, with conserved genomic structure and gene order. The size of the Schima cp genome is about 157 kilo base pairs (kb). They consistently encode 114 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, with 17 duplicated in the inverted repeat (IR). These cp genomes are highly conserved and do not show obvious expansion or contraction of the IR region. The percent variability of the 68 coding and 93 noncoding (>150 bp) fragments is consistently less than 3%. The seven most widely touted DNA barcode regions as well as one promising barcode candidate showed low sequence divergence. Eight mutational hotspots were identified from the 11 cp genomes. These hotspots may potentially be useful as specific DNA barcodes for species identification of Schima. The 58 cpSSR loci reported here are complementary to the microsatellite markers identified from the nuclear genome, and will be leveraged for further population-level studies. Phylogenetic relationships among the 11 Schima species were resolved with strong support based on the cp genome data set, which corresponds well with the species distribution pattern. The data presented here will serve as a foundation to facilitate species identification, DNA barcoding and phylogenetic reconstructions for future exploration of Schima.

  16. The complete chloroplast genome of Sinopodophyllum hexandrum (Berberidaceae).

    PubMed

    Li, Huie; Guo, Qiqiang

    2016-07-01

    The complete chloroplast (cp) genome of the Sinopodophyllum hexandrum (Berberidaceae) was determined in this study. The circular genome is 157,940 bp in size, and comprises a pair of inverted repeat (IR) regions of 26,077 bp each, a large single-copy (LSC) region of 86,460 bp and a small single-copy (SSC) region of 19,326 bp. The GC content of the whole cp genome was 38.5%. A total of 133 genes were identified, including 88 protein-coding genes, 37 tRNA genes and eight rRNA genes. The whole cp genome consists of 114 unique genes, and 19 genes are duplicated in the IR regions. The phylogenetic analysis revealed that S. hexandrum is closely related to Nandina domestica within the family Berberidaceae.

  17. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  18. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family

    PubMed Central

    Bigot, Diane; Atyame, Célestine M; Weill, Mylène; Justy, Fabienne

    2018-01-01

    Abstract In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family. PMID:29340209

  19. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    PubMed

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  20. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    PubMed

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.

  1. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion.

    PubMed

    Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe

    2016-02-15

    Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts.

    PubMed

    Carbonell, Alberto; Maliogka, Varvara I; Pérez, José de Jesús; Salvador, Beatriz; León, David San; García, Juan Antonio; Simón-Mateo, Carmen

    2013-10-01

    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.

  3. Characterization of Helper Virus-Independent Cytopathogenic Classical Swine Fever Virus Generated by an In Vivo RNA Recombination System

    PubMed Central

    Gallei, Andreas; Rümenapf, Till; Thiel, Heinz-Jürgen; Becher, Paul

    2005-01-01

    Molecular analyses revealed that most cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In contrast to bovine viral diarrhea virus (BVDV), cp classical swine fever virus (CSFV) field isolates were rarely detected and always represented helper virus-dependent subgenomes. To investigate RNA recombination in more detail, we recently established an in vivo system allowing the efficient generation of recombinant cp BVDV strains in cell culture after transfecting a synthetic subgenomic and nonreplicatable transcript into cells being infected with noncp BVDV (A. Gallei, A. Pankraz, H.-J. Thiel, and P. Becher, J. Virol. 78:6271-6281, 2004). Using an analogous approach, the first helper virus-independent cp CSFV strain (CP G1) has now been generated by RNA recombination. Accordingly, this study demonstrates the applicability of RNA recombination for designing new viral RNA genomes. The genomic RNA of CP G1 has a calculated size of 18.139 kb, almost 6 kb larger than all previously described CSFV genomes. It contains cellular sequences encoding a polyubiquitin fragment directly upstream of the nonstructural protein NS3 coding gene together with a duplication of viral sequences. CP G1 induces a cytopathic effect on different tissue culture cell lines from pigs and cattle. Subsequent analyses addressed growth kinetics, expression of NS3, and genetic stability of CP G1. PMID:15681445

  4. Analysis of the complete genome of peach chlorotic mottle virus: identification of non-AUG start codons, in vitro coat protein expression, and elucidation of serological cross-reactions.

    PubMed

    James, D; Varga, A; Croft, H

    2007-01-01

    The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.

  5. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus.

    PubMed

    Gallo, Araiz; Valli, Adrian; Calvo, María; García, Juan Antonio

    2018-05-01

    Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans , was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection. IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus Potyvirus ), for instance, we have previously shown that the multitasking viral factor HCPro plays a role in the production of stable virions. Here, by using this potyvirus as a model, we move further to show that additional factors are also necessary for the efficient production of potyviral particles. More importantly, a comprehensive screening for such factors led us to the identification of a functional link between virus replication and packaging, unraveling a previously unknown connection of these two key events of the potyviral infection cycle. Copyright © 2018 American Society for Microbiology.

  6. Identification of two novel mammalian genes establishes a subfamily of KH-domain RNA-binding proteins.

    PubMed

    Makeyev, A V; Liebhaber, S A

    2000-08-01

    We have identified two novel human genes encoding proteins with a high level of sequence identity to two previously characterized RNA-binding proteins, alphaCP-1 and alphaCP-2. Both of these novel genes, alphaCP-3 and alphaCP-4, are predicted to encode proteins with triplicated KH domains. The number and organization of the KH domains, their sequences, and the sequences of the contiguous regions are conserved among all four alphaCP proteins. The common evolutionary origin of these proteins is substantiated by conservation of exon-intron organization in the corresponding genes. The map positions of alphaCP-1 and alphaCP-2 (previously reported) and those of alphaCP-3 and alphaCP-4 (present report) reveal that the four alphaCP loci are dispersed in the human genome; alphaCP-3 and alphaCP-4 mapped to 21q22.3 and 3p21, and the respective mouse orthologues mapped to syntenic regions of the mouse genome, 10B5 and 9F1-F2, respectively. Two additional loci in the human genome were identified as alphaCP-2 processed pseudogenes (PCBP2P1, 21q22.3, and PCBP2P2, 8q21-q22). Although the overall levels of alphaCP-3 and alphaCP-4 mRNAs are substantially lower than those of alphaCP-1 and alphaCP-2, transcripts of alphaCP-3 and alphaCP-4 were found in all mouse tissues tested. These data establish a new subfamily of genes predicted to encode closely related KH-containing RNA-binding proteins with potential functions in posttranscriptional controls. Copyright 2000 Academic Press.

  7. Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry.

    PubMed

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna

    2013-06-01

    Atypical isolates of plum pox virus (PPV) were discovered in naturally infected sour cherry in urban ornamental plantings in Moscow, Russia. The isolates were detected by polyclonal double antibody sandwich ELISA and RT-PCR using universal primers specific for the 3'-non-coding and coat protein (CP) regions of the genome but failed to be recognized by triple antibody sandwich ELISA with the universal monoclonal antibody 5B and by RT-PCR using primers specific to for PPV strains D, M, C and W. Sequence analysis of the CP genes of nine isolates revealed 99.2-100 % within-group identity and 62-85 % identity to conventional PPV strains. Phylogenetic analysis showed that the atypical isolates represent a group that is distinct from the known PPV strains. Alignment of the N-terminal amino acid sequences of CP demonstrated their close similarity to those of a new tentative PPV strain, CR.

  8. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus.

    PubMed

    Houtman, Miranda; Shchetynsky, Klementy; Chemin, Karine; Hensvold, Aase Haj; Ramsköld, Daniel; Tandre, Karolina; Eloranta, Maija-Leena; Rönnblom, Lars; Uebe, Steffen; Catrina, Anca Irinel; Malmström, Vivianne; Padyukov, Leonid

    2018-06-01

    Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4 + T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  10. Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation

    PubMed Central

    Lõhmus, Andres; Hafrén, Anders

    2016-01-01

    ABSTRACT We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3′ end of viral RNA. Progression into replication involves CP regulation by both CK2 phosphorylation and chaperones CPIP and HSP70. PMID:27852853

  11. Prunus necrotic ringspot ilarvirus: nucleotide sequence of RNA3 and the relationship to other ilarviruses based on coat protein comparison.

    PubMed

    Guo, D; Maiss, E; Adam, G; Casper, R

    1995-05-01

    The RNA3 of prunus necrotic ringspot ilarvirus (PNRSV) has been cloned and its entire sequence determined. The RNA3 consists of 1943 nucleotides (nt) and possesses two large open reading frames (ORFs) separated by an intergenic region of 74 nt. The 5' proximal ORF is 855 nt in length and codes for a protein of molecular mass 31.4 kDa which has homologies with the putative movement protein of other members of the Bromoviridae. The 3' proximal ORF of 675 nt is the cistron for the coat protein (CP) and has a predicted molecular mass of 24.9 kDa. The sequence of the 3' non-coding region (NCR) of PNRSV RNA3 showed a high degree of similarity with those of tobacco streak virus (TSV), prune dwarf virus (PDV), apple mosaic virus (ApMV) and also alfalfa mosaic virus (AIMV). In addition it contained potential stem-loop structures with interspersed AUGC motifs characteristic for ilar- and alfamoviruses. This conserved primary and secondary structure in all 3' NCRs may be responsible for the interaction with homologous and heterologous CPs and subsequent activation of genome replication. The CP gene of an ApMV isolate (ApMV-G) of 657 nt has also been cloned and sequenced. Although ApMV and PNRSV have a distant serological relationship, the deduced amino acid sequences of their CPs have an identity of only 51.8%. The N termini of PNRSV and ApMV CPs have in common a zinc-finger motif and the potential to form an amphipathic helix.

  12. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation.

    PubMed

    Law, R A; Young, F J; Patterson, D C; Kilpatrick, D J; Wylie, A R G; Mayne, C S

    2009-03-01

    Ninety autumn-calving Holstein dairy cows [45 primiparous and 45 multiparous (mean parity, 3.1)] were allocated to 1 of 3 dietary crude protein (CP) concentrations: 173, 144, or 114 g of CP/kg of DM, from calving until d 150 of lactation. On d 151, half of the animals in each treatment were allocated an alternative dietary protein concentration. Half of the animals receiving 114 g of CP/kg of DM went onto 144 g of CP/kg of DM; half of the animals receiving 144 g of CP/kg of DM went onto 173 g of CP/kg of DM; and half of the animals receiving 173 g of CP/kg of DM went onto 144 g of CP/kg of DM, with the remaining animals staying on their original treatment. This resulted in 6 treatments in the mid to late lactation period: 114/114, 144/144, 173/173, 114/144, 144/173, and 173/144 g of CP/kg of DM. An increase in dietary CP concentration significantly increased milk, fat, and protein yield in early lactation (d 1 to 150). Dry matter intake was also increased with increased dietary protein concentration; however, this was not significant between 144 and 173 g of CP/kg of DM. Increased dietary CP significantly increased plasma urea, albumin, and total protein concentrations but had no significant effect on NEFA, leptin, or IGF-1 concentrations. Decreasing the dietary CP concentration in mid-late lactation (d 151 to 305) from 173 to 144 g/kg of DM had no significant effect on milk yield, dry matter intake, or milk fat and protein yield, compared with animals that remained on 173 g of CP/kg of DM throughout lactation. Increasing dietary CP concentration from 144 to 173 g/kg of DM significantly increased dry matter intake compared with animals that remained on the 144 g of CP/kg of DM throughout lactation. There were no significant dietary treatment effects on live weight or body condition score change throughout the experiment. Results of this study indicate that high protein diets (up to 173 g of CP/kg of DM) improved feed intake and animal performance in early lactation (up to d 150), but thereafter, protein concentration can be reduced to 144 g of CP/kg of DM with no detrimental effects on animal performance.

  13. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    PubMed

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  14. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection

    PubMed Central

    Alam, Syed Benazir

    2015-01-01

    ABSTRACT RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses. PMID:26719261

  15. Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows.

    PubMed

    Amanlou, H; Farahani, T Amirabadi; Farsuni, N Eslamian

    2017-05-01

    The objective of this study was to determine the effects of feeding increased dietary crude protein (CP) on productive performance and indicators of protein and energy metabolism during 21 d postpartum. Thirty multiparous Holstein dairy cows were balanced by previous lactation milk yield, body condition score (BCS) at calving, and parity and randomly allocated to 1 of 3 dietary treatments from calving until 21 d postpartum. Dietary treatments were 16.0% CP with 5.0% rumen undegradable protein (RUP) based on dry matter (DM) (16CP), 18.7% CP with 7.0% RUP based on DM (19CP), and 21.4% CP with 9.0% RUP based on DM (21CP). Diets were similar in net energy for lactation (approximately 1.7 Mcal/kg of DM) and CP levels were increased with corn gluten meal and fish meal. Dry matter intake (DMI) was increased by increasing dietary CP levels from 16.0 to 19.0% of DM, but dietary CP beyond 19.0% had no effect on DMI. Milk yields were 4.7 and 6.5 kg/d greater in cows fed the 19CP and 21CP diets versus those fed the 16CP diet, whereas 4% fat-corrected milk was greater for cows fed the 21CP than the 16CP diet (36.0 vs. 31.4 kg/d). Milk protein content and yield, lactose yield, and milk urea nitrogen were elevated by increased dietary CP. Milk lactose content and fat yield were not different among dietary treatments, but milk fat content tended to decline with increasing content of CP in diets. High CP levels increased milk N secretion but decreased milk N efficiency. Apparent digestibility of DM, CP, and neutral detergent fiber was greater on the 19CP and 21CP diets compared with the 16CP diet. Cows fed the 19CP and 21CP diets lost less body condition relative to those fed the 16CP diet over 21 d postpartum. Feeding higher CP levels increased the concentrations of serum albumin, albumin to globulin ratio, and urea nitrogen and decreased aspartate aminotransferase, nonesterified fatty acids, and β-hydroxybutyrate, but had no effect on globulin, glucose, cholesterol, or triacylglycerol. These findings indicated that elevating dietary CP up to 19.0% of DM using RUP supplements improved DMI, productive performance and the indicators of protein and energy metabolism from calving to 21 d postpartum. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes

    PubMed Central

    Kaila, Tanvi; Chaduvla, Pavan K.; Saxena, Swati; Bahadur, Kaushlendra; Gahukar, Santosh J.; Chaudhury, Ashok; Sharma, T. R.; Singh, N. K.; Gaikwad, Kishor

    2016-01-01

    Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes. PMID:28018385

  17. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes.

    PubMed

    Kaila, Tanvi; Chaduvla, Pavan K; Saxena, Swati; Bahadur, Kaushlendra; Gahukar, Santosh J; Chaudhury, Ashok; Sharma, T R; Singh, N K; Gaikwad, Kishor

    2016-01-01

    Pigeonpea ( Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan , with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.

  18. The complete chloroplast genome of salt cress (Eutrema salsugineum).

    PubMed

    Guo, Xinyi; Hao, Guoqian; Ma, Tao

    2016-07-01

    The complete chloroplast (cp) sequence of the salt cress (Eutrema salsugineum), a plant well-adapted to salt stress, was presented in this study. The circular molecule is 153,407 bp in length and exhibit a typical quadripartite structure containing an 83,894 bp large single copy (LSC) region, a 17,607 bp small single copy (SSC) region, and the two 25,953 bp inverted repeats (IRs). The salt cress cp genome contains 135 known genes, including 87 protein-coding genes, 8 ribosomal RNA genes, and 40 tRNA genes; 21 of these are located in the inverted repeat region. As expected, phylogenetic analysis support the idea that E. salsugineum is sister to Brassiceae species within the Brassicaceae family.

  19. Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea.

    PubMed

    Herrmann, Andrea; Tillmann, Britta A M; Schürmann, Janine; Bölker, Michael; Tudzynski, Paul

    2014-04-01

    Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.

  20. EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin

    PubMed Central

    Golovnin, Anton; Melnikova, Larisa; Shapovalov, Igor; Kostyuchenko, Margarita; Georgiev, Pavel

    2015-01-01

    Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization. PMID:26489095

  1. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

    PubMed

    Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N

    2012-06-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.

  2. A Physical Interaction between Viral Replicase and Capsid Protein Is Required for Genome-Packaging Specificity in an RNA Virus

    PubMed Central

    Seo, Jang-Kyun; Kwon, Sun-Jung

    2012-01-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity. PMID:22438552

  3. Mechanism for CARMIL Protein Inhibition of Heterodimeric Actin-capping Protein*

    PubMed Central

    Kim, Taekyung; Ravilious, Geoffrey E.; Sept, David; Cooper, John A.

    2012-01-01

    Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ∼30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP. PMID:22411988

  4. The DNA Methylome of Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Ye, Mingzhi; Zheng, Hancheng; Yu, Jian; Wu, Honglong; Sun, Jihua; Zhang, Hongyu; Chen, Quan; Luo, Ruibang; Chen, Minfeng; He, Yinghua; Jin, Xin; Zhang, Qinghui; Yu, Chang; Zhou, Guangyu; Sun, Jinfeng; Huang, Yebo; Zheng, Huisong; Cao, Hongzhi; Zhou, Xiaoyu; Guo, Shicheng; Hu, Xueda; Li, Xin; Kristiansen, Karsten; Bolund, Lars; Xu, Jiujin; Wang, Wen; Yang, Huanming; Wang, Jian; Li, Ruiqiang; Beck, Stephan; Wang, Jun; Zhang, Xiuqing

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies. PMID:21085693

  5. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    PubMed

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A rare male patient with classic Rett syndrome caused by MeCP2_e1 mutation.

    PubMed

    Tokaji, Narumi; Ito, Hiromichi; Kohmoto, Tomohiro; Naruto, Takuya; Takahashi, Rizu; Goji, Aya; Mori, Tatsuo; Toda, Yoshihiro; Saito, Masako; Tange, Shoichiro; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2018-03-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder typically affecting females. It is mainly caused by loss-of-function mutations that affect the coding sequence of exon 3 or 4 of methyl-CpG-binding protein 2 (MECP2). Severe neonatal encephalopathy resulting in death before the age of 2 years is the most common phenotype observed in males affected by a pathogenic MECP2 variant. Mutations in MECP2 exon 1 affecting the MeCP2_e1 isoform are relatively rare causes of RTT in females, and only one case of a male patient with MECP2-related severe neonatal encephalopathy caused by a mutation in MECP2 exon 1 has been reported. This is the first reported case of a male with classic RTT caused by a 5-bp duplication in the open-reading frame of MECP2 exon 1 (NM_001110792.1:c.23_27dup) that introduced a premature stop codon [p.(Ser10Argfs*36)] in the MeCP2_e1 isoform, which has been reported in one female patient with classic RTT. Therefore, both males and females displaying at least some type of MeCP2_e1 mutation may exhibit the classic RTT phenotype. © 2018 Wiley Periodicals, Inc.

  7. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle

    PubMed Central

    Elena López-Calcagno, Patricia; Omar Abuzaid, Amani; Lawson, Tracy

    2017-01-01

    Abstract CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin–Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity. PMID:28430985

  8. Two complete chloroplast genome sequences of Cannabis sativa varieties.

    PubMed

    Oh, Hyehyun; Seo, Boyoung; Lee, Seunghwan; Ahn, Dong-Ha; Jo, Euna; Park, Jin-Kyoung; Min, Gi-Sik

    2016-07-01

    In this study, we determined the complete chloroplast (cp) genomes from two varieties of Cannabis sativa. The genome sizes were 153,848 bp (the Korean non-drug variety, Cheungsam) and 153,854 bp (the African variety, Yoruba Nigeria). The genome structures were identical with 131 individual genes [86 protein-coding genes (PCGs), eight rRNA, and 37 tRNA genes]. Further, except for the presence of an intron in the rps3 genes of two C. sativa varieties, the cp genomes of C. sativa had conservative features similar to that of all known species in the order Rosales. To verify the position of C. sativa within the order Rosales, we conducted phylogenetic analysis by using concatenated sequences of all PCGs from 17 complete cp genomes. The resulting tree strongly supported monophyly of Rosales. Further, the family Cannabaceae, represented by C. sativa, showed close relationship with the family Moraceae. The phylogenetic relationship outlined in our study is well congruent with those previously shown for the order Rosales.

  9. Incidence and molecular diversity of poleroviruses infecting cucurbit crops and weed plants in Thailand.

    PubMed

    Cheewachaiwit, S; Warin, N; Phuangrat, B; Rukpratanporn, S; Gajanandana, O; Balatero, C H; Chatchawankanphanich, O

    2017-07-01

    Overall, 244 samples of cucurbit crops with yellowing symptoms and selected weed species, from 15 provinces in Thailand, were screened by RT-PCR using primers Polero-CP-F and Polero-CP-R. A total of 160 samples (~66%) were infected by poleroviruses. Analysis of a 1.4 kb region covering the 3' RNA-dependent RNA polymerase (RdRp) gene, the intergenic non-coding region (iNCR), and the coat protein (CP), showed that four poleroviruses, namely, cucurbit aphid-borne yellows virus (CABYV), luffa aphid-borne yellows virus (LABYV), melon aphid-borne yellows virus (MABYV) and suakwa aphid-borne yellows virus (SABYV) were associated with the yellowing symptoms in cucurbit crops. Further analyses indicated presence of putative recombinant viruses referred to as CABYV-R and SABYV-R. CABYV-R was derived from the recombination between MABYV and the common strain of CABYV (CABYV-C). SABYV-R was derived from the recombination of MABYV and SABYV.

  10. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2.

    PubMed Central

    Nan, X; Meehan, R R; Bird, A

    1993-01-01

    MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M. Images PMID:8177735

  11. Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    PubMed Central

    Liu, Yen-Yi; Wang, Li-Fen; Hwang, Jenn-Kang; Lyu, Ping-Chiang

    2012-01-01

    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology. PMID:22359629

  12. Evaluation of genetically-improved (glandless) and genetically-modified low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern flounder Paralichthys lethostigma reared in a recirculating

    USDA-ARS?s Scientific Manuscript database

    Cottonseed meal (CSM) proteins from genetically-improved (glandless) seed (GI-CSM, 52.1% crude protein, CP), genetically-modified low-gossypol seed (GMO-CSM, 56.0% CP) and from an untreated regular (glanded) seed (R-CSM 49.9% CP) were evaluated to replace fish meal (FM) protein (59.5% CP) in juvenil...

  13. Molecular structures and metabolic characteristics of protein in brown and yellow flaxseed with altered nutrient traits.

    PubMed

    Khan, Nazir Ahmad; Booker, Helen; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to investigate the chemical profiles; crude protein (CP) subfractions; ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP); and protein molecular structures using molecular spectroscopy of newly developed yellow-seeded flax (Linum usitatissimum L.). Seeds from two yellow flaxseed breeding lines and two brown flaxseed varieties were evaluated. The yellow-seeded lines had higher (P < 0.001) contents of oil (44.54 vs 41.42% dry matter (DM)) and CP (24.94 vs 20.91% DM) compared to those of the brown-seeded varieties. The CP in yellow seeds contained lower (P < 0.01) contents of true protein subfraction (81.31 vs 92.71% CP) and more (P < 0.001) extensively degraded (70.8 vs 64.9% CP) in rumen resulting in lower (P < 0.001) content of RUP (29.2 vs 35.1% CP) than that in the brown-seeded varieties. However, the total supply of digestible RUP was not significantly different between the two seed types. Regression equations based on protein molecular structural features gave relatively good estimation for the contents of CP (R(2) = 0.87), soluble CP (R(2) = 0.92), RUP (R(2) = 0.97), and intestinal digestibility of RUP (R(2) = 0.71). In conclusion, molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their nutritive value.

  14. Amino Acid Oxidation Increases with Dietary Protein Content in Adult Neutered Male Cats as Measured Using [1-13C]Leucine and [15N2]Urea.

    PubMed

    Wester, Timothy J; Weidgraaf, Karin; Hekman, Margreet; Ugarte, Claudia E; Forsyth, Sandra F; Tavendale, Michael H

    2015-11-01

    Cats are unique among domestic animals in that they are obligate carnivores and have a high protein requirement. However, there are few data on protein turnover and amino acid (AA) metabolism in cats. The aim of this study was to examine the effects of dietary protein content on urea production and Leu metabolism in cats. Eighteen neutered male cats (4.4 ± 0.11 kg body weight, aged 4.6 ± 0.41 y) fed to maintain body weight for 3 wk with 15%, 40%, or 65% metabolizable energy intake as crude protein (CP) had [1-(13)C]Leu administered in the fed state. Urea production was measured by the infusion of [(15)N2]urea. Leu flux, nonoxidative Leu disposal (NOLD; protein synthesis), Leu rate of appearance (Ra; protein degradation), and Leu oxidation were determined. Urea production and Leu oxidation were both ∼ 3 times greater in cats fed 65% CP compared with those fed 15% CP, whereas those fed 40% CP were ∼ 1.6 times greater (P < 0.05). Leu flux was 1.9 and 1.3 times greater in cats fed 65% CP compared with those fed 15% and 40% CP (P < 0.001). Almost 39% of total Leu flux was oxidized by cats fed 15% CP, whereas this increased to 58% in cats fed 65% CP (P < 0.002). There were no differences for Ra, but cats fed 65% CP tended to have 30% greater NOLD (P = 0.09) and to be in positive protein balance (P = 0.08) compared with those fed 15% CP. The high protein requirement of cats combined with a low rate of whole-body protein synthesis ensures that an obligate demand of AAs for energy or glucose (or both) can be met in an animal that evolved with a diet high in protein with very little or no carbohydrate. © 2015 American Society for Nutrition.

  15. A conflict-based model of color categorical perception: evidence from a priming study.

    PubMed

    Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi

    2014-10-01

    Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.

  16. Heterodimerization of the Entamoeba histolytica EhCPADH virulence complex through molecular dynamics and protein-protein docking.

    PubMed

    Montaño, Sarita; Orozco, Esther; Correa-Basurto, José; Bello, Martiniano; Chávez-Munguía, Bibiana; Betanzos, Abigail

    2017-02-01

    EhCPADH is a protein complex involved in the virulence of Entamoeba histolytica, the protozoan responsible for human amebiasis. It is formed by the EhCP112 cysteine protease and the EhADH adhesin. To explore the molecular basis of the complex formation, three-dimensional models were built for both proteins and molecular dynamics simulations (MDS) and docking calculations were performed. Results predicted that the pEhCP112 proenzyme and the mEhCP112 mature enzyme were globular and peripheral membrane proteins. Interestingly, in pEhCP112, the propeptide appeared hiding the catalytic site (C167, H329, N348); while in mEhCP112, this site was exposed and its residues were found structurally closer than in pEhCP112. EhADH emerged as an extended peripheral membrane protein with high fluctuation in Bro1 and V shape domains. 500 ns-long MDS and protein-protein docking predictions evidenced different heterodimeric complexes with the lowest free energy. pEhCP112 interacted with EhADH by the propeptide and C-terminal regions and mEhCP112 by the C-terminal through hydrogen bonds. In contrast, EhADH bound to mEhCP112 by 442-479 residues, adjacent to the target cell-adherence region (480-600 residues), and by the Bro1 domain (9-349 residues). Calculations of the effective binding free energy and per residue free energy decomposition showed that EhADH binds to mEhCP112 with a higher binding energy than to pEhCP112, mainly through van der Waals interactions and the nonpolar part of solvation energy. The EhADH and EhCP112 structural relationship was validated in trophozoites by immunofluorescence, TEM, and immunoprecipitation assays. Experimental findings fair agreed with in silico results.

  17. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin

    PubMed Central

    Maksimenko, Oksana; Bartkuhn, Marek; Stakhov, Viacheslav; Herold, Martin; Zolotarev, Nickolay; Jox, Theresa; Buxa, Melanie K.; Kirsch, Ramona; Bonchuk, Artem; Fedotova, Anna; Kyrchanova, Olga

    2015-01-01

    Insulators are multiprotein–DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins. PMID:25342723

  18. Light-Regulated Transcription of Genes Encoding Peridinin Chlorophyll a Proteins and the Major Intrinsic Light-Harvesting Complex Proteins in the Dinoflagellate Amphidinium carterae Hulburt (Dinophycae)1

    PubMed Central

    ten Lohuis, Michael R.; Miller, David J.

    1998-01-01

    In the dinoflagellate Amphidinium carterae, photoadaptation involves changes in the transcription of genes encoding both of the major classes of light-harvesting proteins, the peridinin chlorophyll a proteins (PCPs) and the major a/c-containing intrinsic light-harvesting proteins (LHCs). PCP and LHC transcript levels were increased up to 86- and 6-fold higher, respectively, under low-light conditions relative to cells grown at high illumination. These increases in transcript abundance were accompanied by decreases in the extent of methylation of CpG and CpNpG motifs within or near PCP- and LHC-coding regions. Cytosine methylation levels in A. carterae are therefore nonstatic and may vary with environmental conditions in a manner suggestive of involvement in the regulation of gene expression. However, chemically induced undermethylation was insufficient in activating transcription, because treatment with two methylation inhibitors had no effect on PCP mRNA or protein levels. Regulation of gene activity through changes in DNA methylation has traditionally been assumed to be restricted to higher eukaryotes (deuterostomes and green plants); however, the atypically large genomes of dinoflagellates may have generated the requirement for systems of this type in a relatively “primitive” organism. Dinoflagellates may therefore provide a unique perspective on the evolution of eukaryotic DNA-methylation systems. PMID:9576788

  19. Effects of ractopamine hydrochloride and dietary protein content on performance, carcass traits and meat quality of Nellore bulls.

    PubMed

    Cônsolo, N R B; Mesquita, B S; Rodriguez, F D; Rizzi, V G; Silva, L F P

    2016-03-01

    Ractopamine hydrochloride (RH) alters protein metabolism and improves growth performance in Bos taurus cattle with high carcass fat. Our objective was to evaluate the effects of RH, dietary CP and RH×CP interaction on performance, blood metabolites, carcass characteristics and meat quality of young Nellore bulls. A total of 48 bulls were randomly assigned to four treatments in a 2×2 factorial arrangement. The factors were two levels of dietary CP (100% and 120% of metabolizable protein requirement, defined as CP100 and CP120, respectively), and two levels of RH (0 and 300 mg/animal·per day). Treated animal received RH for the final 35 days before slaughter. Animals were weighed at the beginning of the feedlot period (day 63), at the beginning of ractopamine supplementation (day 0), after 18 days of supplementation (day 18) and before slaughter (day 34). Animals were slaughtered and hot carcass weights recorded. After chilling, carcass data was collected and longissimus samples were obtained for determination of meat quality. The 9-11th rib section was removed for carcass composition analysis. Supplementation with RH increased ADG independently of dietary CP. There was a RH×CP interaction on dry matter intake (DMI), where RH reduced DMI at CP120, with no effect at CP100. Ractopamine improved feed efficiency, without RH×CP interaction. Ractopamine had no effect on plasma creatinine and urea concentration. Greater dietary CP tended to increase blood urea, and there was a RH×CP interaction for plasma total protein. Ractopamine supplementation increased plasma total protein at CP120, and had no effect at CP100. Ractopamine also decreased plasma glucose concentration at CP100, but had no effect at CP120. Ractopamine increased alkaline phosphatase activity at CP120 and had no effect at CP100. There was a tendency for RH to increase longissimus muscle area, independently of dietary CP. Ractopamine did not alter fat thickness; however, fat thickness was reduced by greater CP in the diet. Supplementation with RH decreased meat shear force, but only at day 0 of aging, having no effect after 7, 14 or 21 days. Greater dietary protein increased meat shear force after 0 and 7 days of aging, with no effect after 14 or 21 days. These results demonstrate for the first time the efficacy of ractopamine supplementation to improve gain and feed efficiency of intact Bos indicus males, with relatively low carcass fat content. Ractopamine effects were not further improved by increasing dietary protein content above requirements.

  20. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2.

    PubMed

    Saito, Motoki; Ishikawa, Fuyuki

    2002-09-20

    Although mammalian MBD3 contains the mCpG-binding domain (MBD) and is highly homologous with the authentic mCpG-binding protein MBD2, it was reported that the protein does not bind to mCpG specifically. Using recombinant human wild type and mutant MBD3 proteins, we demonstrated that atypical amino acids found in MBD3 MBD, namely, His-30 and Phe-34, are responsible for the inability of MBD3 to bind to mCpG. Interestingly, although H30K/F34Y MBD3 mutant protein binds to mCpG efficiently in vitro, it was not localized at the mCpG-rich pericentromeric regions in mouse cells. We also showed that Y34F MBD2b MBD, which possesses not the mCpG-specific DNA-binding activity but the nonspecific DNA-binding activity, was localized at the pericentromeric regions. These results suggested that the mCpG-specific DNA-binding activity is largely dispensable, and another factor(s) is required for the localization of MBD proteins in vivo. MBD3 was identified as a component of the NuRD/Mi2 complex that shows chromatin remodeling and histone deacetylase activities. We demonstrated that MBD3 MBD is necessary and sufficient for binding to HDAC1 and MTA2, two components of the NuRD/Mi2 complex. It was therefore suggested that mCpG-binding-defective MBD3 has evolutionarily conserved its MBD because of the secondary role played by the MBD in protein-protein interactions.

  1. Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement.

    PubMed

    Bendahmane, Mohammed; Szecsi, Judit; Chen, Iju; Berg, R Howard; Beachy, Roger N

    2002-03-19

    Expression of tobacco mosaic virus (TMV) coat protein (CP) in plants confers resistance to infection by TMV and related tobamoviruses. Certain mutants of the CP (CP(T42W)) provide much greater levels of resistance than wild-type (wt) CP. In the present work, infection induced by RNA transcripts of TMV clones that contain wt CP or mutant CP(T42W) fused to the green fluorescent protein (GFP) (TMV-CP:GFP, TMV-CP(T42W):GFP) and clones harboring TMV movement protein (MP):GFP were followed in nontransgenic and transgenic tobacco BY-2 protoplasts and Nicotiana tabaccum Xanthi-nn plants that express wt CP or CP(T42W). On nontransgenic and wt CP transgenic plants, TMV-CP:GFP produced expanding, highly fluorescent disk-shaped areas. On plants expressing CP(T42W), infection by TMV-CP:GFP or TMV-MP:GFP-CP produced infection sites of smaller size that were characterized by low fluorescence, reflecting reduced levels of virus spread and reduced accumulation of both CP:GFP and MP:GFP. TMV-CP(T42W):GFP failed to produce visible infection sites on nontransgenic plants, yet produced normal infection sites on MP-transgenic plants that produce MP. TMV infection of transgenic BY-CP(T42W) protoplasts resulted in very low levels of MP accumulation, whereas on BY-CP protoplasts (containing wt CP), infection produced higher levels of MP than in nontransgenic BY-2 cells. The results suggest that wt CP has a positive effect on the production of MP, whereas the CP(T42W) has a negative effect on MP accumulation and/or function. This effect results in very high levels of resistance to TMV infection in plants containing CP(T42W). This report shows that the CP of a plant virus regulates production of the MP, and that a mutant CP interferes with MP accumulation and cell-to-cell movement of infection.

  2. Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression.

    PubMed

    Lim, Hyoun-Sub; Vaira, Anna Maria; Domier, Leslie L; Lee, Sung Chul; Kim, Hong Gi; Hammond, John

    2010-06-20

    We have developed plant virus-based vectors for virus-induced gene silencing (VIGS) and protein expression, based on Alternanthera mosaic virus (AltMV), for infection of a wide range of host plants including Nicotiana benthamiana and Arabidopsis thaliana by either mechanical inoculation of in vitro transcripts or via agroinfiltration. In vivo transcripts produced by co-agroinfiltration of bacteriophage T7 RNA polymerase resulted in T7-driven AltMV infection from a binary vector in the absence of the Cauliflower mosaic virus 35S promoter. An artificial bipartite viral vector delivery system was created by separating the AltMV RNA-dependent RNA polymerase and Triple Gene Block (TGB)123-Coat protein (CP) coding regions into two constructs each bearing the AltMV 5' and 3' non-coding regions, which recombined in planta to generate a full-length AltMV genome. Substitution of TGB1 L(88)P, and equivalent changes in other potexvirus TGB1 proteins, affected RNA silencing suppression efficacy and suitability of the vectors from protein expression to VIGS. Published by Elsevier Inc.

  3. The Functions of Grainy Head-Like Proteins in Animals and Fungi and the Evolution of Apical Extracellular Barriers

    PubMed Central

    Paré, Adam; Kim, Myungjin; Juarez, Michelle T.; Brody, Stuart; McGinnis, William

    2012-01-01

    The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi – organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins. PMID:22590528

  4. Biological role and structural mechanism of twinfilin–capping protein interaction

    PubMed Central

    Falck, Sandra; Paavilainen, Ville O; Wear, Martin A; Grossmann, J Günter; Cooper, John A; Lappalainen, Pekka

    2004-01-01

    Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin–CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics. PMID:15282541

  5. Induction of the chemotactic S100 protein, CP-10, in monocyte/macrophages by lipopolysaccharide.

    PubMed

    Hu, S P; Harrison, C; Xu, K; Cornish, C J; Geczy, C L

    1996-05-01

    The murine S100 protein CP-10 is a potent chemotactic factor for murine and human myeloid cells in vivo and in vitro. This is the first report describing regulations of the CP-10 gene by a proinflammatory stimulus, lipopolysaccharide (LPS), in cells of the monocyte/macrophage lineage. Murine monocyte/macrophage-like WEHI 265 and RAW 264.7 cells preexposed to 5 to 50 ng/mL LPS expressed significant levels of CP-10 mRNA 4 hours, and maximal at 20 hours, after a secondary LPS challenge. This was accompanied by increasing levels of cell-associated and released CP-10 protein. In contrast, a single dose of LPS upregulated CP-10 mRNA in elicited peritoneal macrophages, whereas mRNA and protein levels decreased following LPS challenge. The state of macrophage differentiation may control responsiveness as LPS had no effect on CP-10 basal levels in bone marrow derived macrophages. LPS-induced CP-10 expression was controlled at the transcriptional level and nuclear run-on and protein synthesis inhibition assays indicated that LPS priming and challenge of RAW cells occurred via distinct pathways. MRP14, another S100 protein generally coordinately expressed with human MRP8, was not induced by LPS under the same conditions. We propose that CP-10 may play a key role in recruitment of leukocytes into tissues in response to gram-negative bacterial infection.

  6. Flagellar central pair assembly in Chlamydomonas reinhardtii

    PubMed Central

    2013-01-01

    Background Most motile cilia and flagella have nine outer doublet and two central pair (CP) microtubules. Outer doublet microtubules are continuous with the triplet microtubules of the basal body, are templated by the basal body microtubules, and grow by addition of new subunits to their distal (“plus”) ends. In contrast, CP microtubules are not continuous with basal body microtubules, raising the question of how these microtubules are assembled and how their polarity is established. Methods CP assembly in Chlamydomonas reinhardtii was analyzed by electron microscopy and wide-field and super-resolution immunofluorescence microscopy. To analyze CP assembly independently from flagellar assembly, the CP-deficient katanin mutants pf15 or pf19 were mated to wild-type cells. HA-tagged tubulin and the CP-specific protein hydin were used as markers to analyze de novo CP assembly inside the formerly mutant flagella. Results In regenerating flagella, the CP and its projections assemble near the transition zone soon after the onset of outer doublet elongation. During de novo CP assembly in full-length flagella, the nascent CP was first apparent in a subdistal region of the flagellum. The developing CP replaces a fibrous core that fills the axonemal lumen of CP-deficient flagella. The fibrous core contains proteins normally associated with the C1 CP microtubule and proteins involved in intraflagellar transport (IFT). In flagella of the radial spoke-deficient mutant pf14, two pairs of CPs are frequently present with identical correct polarities. Conclusions The temporal separation of flagellar and CP assembly in dikaryons formed by mating CP-deficient gametes to wild-type gametes revealed that the formation of the CP does not require proximity to the basal body or transition zone, or to the flagellar tip. The observations on pf14 provide further support that the CP self-assembles without a template and eliminate the possibility that CP polarity is established by interaction with axonemal radial spokes. Polarity of the developing CP may be determined by the proximal-to-distal gradient of precursor molecules. IFT proteins accumulate in flagella of CP mutants; the abnormal distribution of IFT proteins may explain why these flagella are often shorter than normal. PMID:24283352

  7. Recent advances in MeCP2 structure and function1

    PubMed Central

    Hite, Kristopher C.; Adams, Valerie H.; Hansen, Jeffrey C.

    2010-01-01

    Mutations in methyl DNA binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). The mechanism(s) by which the native MeCP2 protein operates in the cell are not well understood. Historically, MeCP2 has been characterized as a proximal gene silencer with 2 functional domains: a methyl DNA binding domain and a transcription repression domain. However, several lines of new data indicate that MeCP2 structure and function relationships are more complex. In this review, we first discuss recent studies that have advanced understanding of the basic structural biochemistry of MeCP2. This is followed by an analysis of cell-based experiments suggesting MeCP2 is a regulator, rather than a strict silencer, of transcription. The new data establish MeCP2 as a multifunctional nuclear protein, with potentially important roles in chromatin architecture, regulation of RNA splicing, and active transcription. We conclude by discussing clinical correlations between domain-specific mutations and RTT pathology to stress that all structural domains of MeCP2 are required to properly mediate cellular function of the intact protein. PMID:19234536

  8. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2.

    PubMed

    Trible, Benjamin R; Suddith, Andrew W; Kerrigan, Maureen A; Cino-Ozuna, Ada G; Hesse, Richard A; Rowland, Raymond R R

    2012-12-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169-180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169-180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43-233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169-180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169-180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169-180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection.

  9. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng.

    PubMed

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.

  10. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng

    PubMed Central

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution. PMID:26136762

  11. Noncytopathogenic Pestivirus Strains Generated by Nonhomologous RNA Recombination: Alterations in the NS4A/NS4B Coding Region

    PubMed Central

    Gallei, Andreas; Orlich, Michaela; Thiel, Heinz-Juergen; Becher, Paul

    2005-01-01

    Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses. PMID:16254361

  12. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies.

    PubMed

    Hanagata, Nobutaka

    2017-01-01

    Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide-CpG ODN conjugates and nanomaterial-CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.

  13. Regulation in free amino acid profile and protein synthesis pathway of growing pig skeletal muscles by low-protein diets for different time periods.

    PubMed

    Li, Y H; Wei, H K; Li, F N; Kim, S W; Wen, C Y; Duan, Y H; Guo, Q P; Wang, W L; Liu, H N; Yin, Y L

    2016-12-01

    The objective of the study was to explore the extent to which the dietary CP level can be reduced for maintaining muscle protein deposition in growing pigs as well as the related mechanism and whether the response to dietary protein restriction is diversely modified throughout the 2 trial periods. A total of 36 pigs (9.57 ± 0.64 kg initial BW) were individually penned and fed 1 of 3 diets for 10 or 25 d. During each period, the diets contained 20, 17, and 14% CP, respectively. Both the 17% CP diet and the 14% CP diet were supplemented with Lys, Met, Thr, and Trp to provide the same total concentrations as those in the 20% CP diet. Results showed that feeding the 14% CP diet for 10 or 25 d seriously impaired ( < 0.05) growth performance of the pigs compared with those fed the 20 or 17% CP diets. Pigs fed the 20% CP diet for 25 d had a higher ( < 0.05) serum content of urea nitrogen than those fed the 17 and 14% CP diets. In addition, the free AA (FAA) profile in skeletal muscle of the pigs was evidently changed ( < 0.05) by the low-protein diets for 25 d; of note, the 14% CP diet increased ( < 0.05) the size of muscle FAA pool compared with the 20% CP diet. Meanwhile, on d 25, reducing dietary CP levels also influenced ( < 0.05) mRNA levels of specific AA transceptors expressed in skeletal muscle, especially revealing the striking differences between the 14 and 20% CP diet-fed pigs. Most importantly, we observed a globally decreased ( < 0.05) activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway in skeletal muscle of pigs fed the 14% CP diet, whereas only partial inhibition was observed for those fed the 17% CP diet compared with those fed the 20% CP diet. However, feeding the low-protein diets for 10 d had minimal effects on serum parameters, muscle FAA profile, and muscle mTORC1 pathway of the pigs. Taken together, our results indicate that supplementing with limiting AA to the 14% CP diet is not highly effective for the pigs in restoring protein synthesis and muscle growth, whereas the 17% CP diet likely maintains the pigs' muscle mass, which were regulated, at least in part, by mediating AA transceptors expression, FAA profile, and activation of the mTORC1 pathway.

  14. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin.

    PubMed

    Maksimenko, Oksana; Bartkuhn, Marek; Stakhov, Viacheslav; Herold, Martin; Zolotarev, Nickolay; Jox, Theresa; Buxa, Melanie K; Kirsch, Ramona; Bonchuk, Artem; Fedotova, Anna; Kyrchanova, Olga; Renkawitz, Rainer; Georgiev, Pavel

    2015-01-01

    Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins. © 2015 Maksimenko et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Effect of varying the concentrations of carbohydrate and milk protein in rehydration solutions ingested after exercise in the heat.

    PubMed

    James, Lewis J; Evans, Gethin H; Madin, Joshua; Scott, Darren; Stepney, Michael; Harris, Russell; Stone, Robert; Clayton, David J

    2013-10-01

    The present study investigated the relationship between the milk protein content of a rehydration solution and fluid balance after exercise-induced dehydration. On three occasions, eight healthy males were dehydrated to an identical degree of body mass loss (BML, approximately 1·8%) by intermittent cycling in the heat, rehydrating with 150% of their BML over 1 h with either a 60 g/l carbohydrate solution (C), a 40 g/l carbohydrate, 20 g/l milk protein solution (CP20) or a 20 g/l carbohydrate, 40 g/l milk protein solution (CP40). Urine samples were collected pre-exercise, post-exercise, post-rehydration and for a further 4 h. Subjects produced less urine after ingesting the CP20 or CP40 drink compared with the C drink (P<0·01), and at the end of the study, more of the CP20 (59 (SD 12)%) and CP40 (64 (SD 6)%) drinks had been retained compared with the C drink (46 (SD 9)%) (P<0·01). At the end of the study, whole-body net fluid balance was more negative for trial C (- 470 (SD 154) ml) compared with both trials CP20 (- 181 (SD 280) ml) and CP40 (2107 (SD 126) ml) (P<0·01). At 2 and 3 h after drink ingestion, urine osmolality was greater for trials CP20 and CP40 compared with trial C (P<0·05). The present study further demonstrates that after exercise-induced dehydration, a carbohydrate--milk protein solution is better retained than a carbohydrate solution. The results also suggest that high concentrations of milk protein are not more beneficial in terms of fluid retention than low concentrations of milk protein following exercise-induced dehydration.

  16. Single-nucleotide polymorphisms and haplotypes of non-coding area in the CP gene are correlated with Parkinson's disease.

    PubMed

    Zhao, Na; Xiao, Jianqiu; Zheng, Zhiyong; Fei, Guoqiang; Zhang, Feng; Jin, Lirong; Zhong, Chunjiu

    2015-04-01

    Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson's disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.

  17. Core protein: a pleiotropic keystone in the HBV lifecycle

    PubMed Central

    Zlotnick, Adam; Venkatakrishnan, Balasubramanian; Tan, Zhenning; Lewellyn, Eric; Turner, William; Francis, Samson

    2015-01-01

    Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals -- while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on “From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story.” PMID:26129969

  18. Ceruloplasmin: Macromolecular Assemblies with Iron-Containing Acute Phase Proteins

    PubMed Central

    Samygina, Valeriya R.; Sokolov, Alexey V.; Bourenkov, Gleb; Petoukhov, Maxim V.; Pulina, Maria O.; Zakharova, Elena T.; Vasilyev, Vadim B.; Bartunik, Hans; Svergun, Dmitri I.

    2013-01-01

    Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage. PMID:23843990

  19. The Coat Protein and NIa Protease of Two Potyviridae Family Members Independently Confer Superinfection Exclusion

    PubMed Central

    French, Roy

    2016-01-01

    ABSTRACT Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement of specific viral determinants, are just beginning to be elucidated. In this study, SIE determinants encoded by two economically important wheat viruses, Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) and Triticum mosaic virus (TriMV; genus Poacevirus, family Potyviridae), were identified in gain-of-function experiments that used heterologous viruses to express individual virus-encoded proteins in wheat. Wheat plants infected with TriMV expressing WSMV P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, or NIb cistrons permitted efficient superinfection by WSMV expressing green fluorescent protein (WSMV-GFP). In contrast, wheat infected with TriMV expressing WSMV NIa-Pro or coat protein (CP) substantially excluded superinfection by WSMV-GFP, suggesting that both of these cistrons are SIE effectors encoded by WSMV. Importantly, SIE is due to functional WSMV NIa-Pro or CP rather than their encoding RNAs, as altering the coded protein products by minimally changing RNA sequences led to abolishment of SIE. Deletion mutagenesis further revealed that elicitation of SIE by NIa-Pro requires the entire protein while CP requires only a 200-amino-acid (aa) middle fragment (aa 101 to 300) of the 349 aa. Strikingly, reciprocal experiments with WSMV-mediated expression of TriMV proteins showed that TriMV CP, and TriMV NIa-Pro to a lesser extent, likewise excluded superinfection by TriMV-GFP. Collectively, these data demonstrate that WSMV- and TriMV-encoded CP and NIa-Pro proteins are effectors of SIE and that these two proteins trigger SIE independently of each other. IMPORTANCE Superinfection exclusion (SIE) is an antagonistic virus-virus interaction that prevents secondary invasions by identical or closely related viruses in the same host cells. Although known to occur in diverse viruses, SIE remains an enigma in terms of key molecular determinants and action mechanisms. In this study, we found that Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) encode two independently functioning cistrons that serve as effectors of SIE at the protein but not the RNA level. The coat protein and NIa-Pro encoded by these two viruses, when expressed from a heterologous virus, exerted SIE to the cognate viruses. The identification of virus-encoded effectors of SIE and their transgenic expression could potentially facilitate the development of virus-resistant crop plants. Additionally, functional conservation of SIE in diverse virus groups suggests that a better understanding of the underlying mechanisms of SIE could facilitate the development of novel antiviral therapies against viral diseases. PMID:27681136

  20. A set of highly conserved RNA-binding proteins, alphaCP-1 and alphaCP-2, implicated in mRNA stabilization, are coexpressed from an intronless gene and its intron-containing paralog.

    PubMed

    Makeyev, A V; Chkheidze, A N; Liebhaber, S A

    1999-08-27

    Gene families normally expand by segmental genomic duplication and subsequent sequence divergence. Although copies of partially or fully processed mRNA transcripts are occasionally retrotransposed into the genome, they are usually nonfunctional ("processed pseudogenes"). The two major cytoplasmic poly(C)-binding proteins in mammalian cells, alphaCP-1 and alphaCP-2, are implicated in a spectrum of post-transcriptional controls. These proteins are highly similar in structure and are encoded by closely related mRNAs. Based on this close relationship, we were surprised to find that one of these proteins, alphaCP-2, was encoded by a multiexon gene, whereas the second gene, alphaCP-1, was identical to and colinear with its mRNA. The alphaCP-1 and alphaCP-2 genes were shown to be single copy and were mapped to separate chromosomes. The linkage groups encompassing each of the two loci were concordant between mice and humans. These data suggested that the alphaCP-1 gene was generated by retrotransposition of a fully processed alphaCP-2 mRNA and that this event occurred well before the mammalian radiation. The stringent structural conservation of alphaCP-1 and its ubiquitous tissue distribution suggested that the retrotransposed alphaCP-1 gene was rapidly recruited to a function critical to the cell and distinct from that of its alphaCP-2 progenitor.

  1. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production.

    PubMed

    Noftsger, S; St-Pierre, N R

    2003-03-01

    Metabolizable protein (MP) supply and amino acid balance were manipulated through selection of highly digestible rumen-undegradable protein (RUP) sources and methionine (Met) supplementation. Effects on production efficiency and N utilization of lactating dairy cows were determined. Thirty-two multiparous (647 kg) and 28 primiparous (550 kg) Holstein cows were assigned during the fourth week of lactation to one of four dietary treatments. Treatments were 1) 18.3% crude protein (CP) with low estimated intestinal digestibility of RUP (HiCP-LoDRUP), 2) 18.3% CP with high digestibility RUP (HiCP-HiDRUP), 3) 16.9% CP with high digestibility RUP (LoCP-HiDRUP), and 4) 17.0% CP with high digestibility RUP and supplemental Met (LoCP-HiDRUP + Met). Diets were balanced to have equal concentrations of net energy for lactation (NE(L)), acid detergent fiber (ADF), neutral detergent fiber (NDF), and ash. Milk yields (40.8, 46.2, 42.9, 46.6 kg/d), protein percentages (2.95, 2.98, 2.99, 3.09%), and fat percentages (3.42, 3.64, 3.66, 3.73%) are reported here for HiCP-LoDRUP, HiCP-HiDRUP, LoCP-HiDRUP, and LoCP-HiDRUP + Met, respectively. Milk urea N and BUN decreased when feeding a lower CP diet. Efficiency of use of N for milk protein production was higher when feeding higher digestibility RUP, especially with the LoCP-HiDRUP + Met diet. A digestibility study followed the production trial, with six cows per treatment group continuing on the same treatment for an additional week. The experimental periods were 5 d long, with 1 d of adjustment and 4 d of total collection of urine and feces. Dry matter intake, milk production, milk protein production, and N digestibility were not significantly different among treatments during the collection trial, whereas N intake and N absorbed increased with the higher CP diets. The quantity of N in feces did not change with diet, but quantity of N in urine decreased in the low CP diets. Milk N as a percentage of intake N and milk N as a percentage of N absorbed showed a trend toward increasing as CP concentration in the diet decreased. The supplementation of Met did not improve the efficiency of N utilization during the digestibility study, in contrast to what was estimated during the production trial. Supplementing the highly digestible RUP source with rumen available and rumen escape sources of Met resulted in maximal milk and protein production and maximum N efficiency by cows during the production trial, indicating that postruminal digestibility of RUP and amino acid balance can be more important than total RUP supplementation.

  2. CP110 exhibits novel regulatory activities during centriole assembly in Drosophila

    PubMed Central

    Franz, Anna; Roque, Hélio; Saurya, Saroj; Dobbelaere, Jeroen

    2013-01-01

    CP110 is a conserved centriole protein implicated in the regulation of cell division, centriole duplication, and centriole length and in the suppression of ciliogenesis. Surprisingly, we report that mutant flies lacking CP110 (CP110Δ) were viable and fertile and had no obvious defects in cell division, centriole duplication, or cilia formation. We show that CP110 has at least three functions in flies. First, it subtly influences centriole length by counteracting the centriole-elongating activity of several centriole duplication proteins. Specifically, we report that centrioles are ∼10% longer than normal in CP110Δ mutants and ∼20% shorter when CP110 is overexpressed. Second, CP110 ensures that the centriolar microtubules do not extend beyond the distal end of the centriole, as some centriolar microtubules can be more than 50 times longer than the centriole in the absence of CP110. Finally, and unexpectedly, CP110 suppresses centriole overduplication induced by the overexpression of centriole duplication proteins. These studies identify novel and surprising functions for CP110 in vivo in flies. PMID:24297749

  3. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks.

    PubMed

    Folador, Edson Luiz; de Carvalho, Paulo Vinícius Sanches Daltro; Silva, Wanderson Marques; Ferreira, Rafaela Salgado; Silva, Artur; Gromiha, Michael; Ghosh, Preetam; Barh, Debmalya; Azevedo, Vasco; Röttger, Richard

    2016-11-04

    Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis.

  4. Self-assembly of hexahistidine-tagged tobacco etch virus capsid protein into microfilaments that induce IgG2-specific response against a soluble porcine reproductive and respiratory syndrome virus chimeric protein.

    PubMed

    Manuel-Cabrera, Carlos Alberto; Vallejo-Cardona, Alba Adriana; Padilla-Camberos, Eduardo; Hernández-Gutiérrez, Rodolfo; Herrera-Rodríguez, Sara Elisa; Gutiérrez-Ortega, Abel

    2016-11-29

    Assembly of recombinant capsid proteins into virus-like particles (VLPs) still represents an interesting challenge in virus-based nanotechnologies. The structure of VLPs has gained importance for the development and design of new adjuvants and antigen carriers. The potential of Tobacco etch virus capsid protein (TEV CP) as adjuvant has not been evaluated to date. Two constructs for TEV CP expression in Escherichia coli were generated: a wild-type version (TEV-CP) and a C-terminal hexahistidine (His)-tagged version (His-TEV-CP). Although both versions were expressed in the soluble fraction of E. coli lysates, only His-TEV-CP self-assembled into micrometric flexuous filamentous VLPs. In addition, the His-tag enabled high yields and facilitated purification of TEV VLPs. These TEV VLPs elicited broader IgG2-specific antibody response against a novel porcine reproductive and respiratory syndrome virus (PRRSV) protein when compared to the potent IgG1 response induced by the protein alone. His-TEV CP was purified by immobilized metal affinity chromatography and assembled into VLPs, some of them reaching 2-μm length. TEV VLPs administered along with PRRSV chimeric protein changed the IgG2/IgG1 ratio against the chimeric protein, suggesting that TEV CP can modulate the immune response against a soluble antigen.

  5. The complete chloroplast genome sequence of Chikusichloa aquatica (Poaceae: Oryzeae).

    PubMed

    Zhang, Jie; Zhang, Dan; Shi, Chao; Gao, Ju; Gao, Li-Zhi

    2016-07-01

    The complete chloroplast sequence of the Chikusichloa aquatica was determined in this study. The genome consists of 136 563 bp containing a pair of inverted repeats (IRs) of 20 837 bp, which was separated by a large single-copy region and a small single-copy region of 82 315 bp and 33 411 bp, respectively. The C. aquatica cp genome encodes 111 functional genes (71 protein-coding genes, four rRNA genes, and 36 tRNA genes): 92 are unique, while 19 are duplicated in the IR regions. The genic regions account for 58.9% of whole cp genome, and the GC content of the plastome is 39.0%. A phylogenomic analysis showed that C. aquatica is closely related to Rhynchoryza subulata that belongs to the tribe Oryzeae.

  6. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  7. Allosteric Coupling of CARMIL and V-1 Binding to Capping Protein Revealed by Hydrogen-Deuterium Exchange.

    PubMed

    Johnson, Britney; McConnell, Patrick; Kozlov, Alex G; Mekel, Marlene; Lohman, Timothy M; Gross, Michael L; Amarasinghe, Gaya K; Cooper, John A

    2018-05-29

    Actin assembly is important for cell motility. The ability of actin subunits to join or leave filaments via the barbed end is critical to actin dynamics. Capping protein (CP) binds to barbed ends to prevent subunit gain and loss and is regulated by proteins that include V-1 and CARMIL. V-1 inhibits CP by sterically blocking one binding site for actin. CARMILs bind at a distal site and decrease the affinity of CP for actin, suggested to be caused by conformational changes. We used hydrogen-deuterium exchange with mass spectrometry (HDX-MS) to probe changes in structural dynamics induced by V-1 and CARMIL binding to CP. V-1 and CARMIL induce changes in both proteins' binding sites on the surface of CP, along with a set of internal residues. Both also affect the conformation of CP's ββ subunit "tentacle," a second distal actin-binding site. Concerted regulation of actin assembly by CP occurs through allosteric couplings between CP modulator and actin binding sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Effect of Dietary Protein Level on the Expression of Proteins in the Gastrointestinal Tract of Young Pigs.

    PubMed

    Ma, Xianyong; Tian, Zhimei; Deng, Dun; Cui, Yiyan; Qiu, Yueqin

    2018-05-02

    The objective of this research is to investigate the effect of protein level on proteins expression in the gastrointestinal tract of young pigs. Eighteen piglets (Duroc × Landrace × Yorkshire) were weaned at 28 days of age and randomly assigned to three diets with 20%, 17%, and 14% CP level, and four essential amino acids, Lys, Met, Thr, and Trp, in three diets met the requirements of weaned piglets. The experimental period lasted 45 days. Compared with the control (20% CP level), the average daily feed intake, the average daily gain, and gain feed ratio of the 17% CP group did not decrease ( P > 0.05), but those of 14% CP group decreased ( P < 0.05). The proteomics profiles result of three tissues (gastric antrum, duodenum, and jejunum) showed that, compared with the control, the immune system, protein digestion and absorption, lipid or carbon digestion and absorption, etc. were up-regulated in 17% CP group, while most of them were down-regulated in 14% CP group. Amino acids metabolism of gastric, pancreatic secretion of duodenum or steroid hormone biosynthesis of jejunum was down-regulated in the 17% CP group, but the lipid metabolism was up-regulated in the 14% CP group. Six proteins were selected for identification by Western-blot, and their changes had the same trend as the proteomics results. The protein level decreased from 20% to 17%, the growth performance was not affected, while the nutrient digestion and absorption or the immune function were improved, which implied that 17% protein level maybe benefit for nutrients absorption of pigs.

  9. A molecular characterization of the choroid plexus and stress-induced gene regulation

    PubMed Central

    Sathyanesan, M; Girgenti, M J; Banasr, M; Stone, K; Bruce, C; Guilchicek, E; Wilczak-Havill, K; Nairn, A; Williams, K; Sass, S; Duman, J G; Newton, S S

    2012-01-01

    The role of the choroid plexus (CP) in brain homeostasis is being increasingly recognized and recent studies suggest that the CP has a more important role in physiological and pathological brain functions than currently appreciated. To obtain additional insight on the CP function, we performed a proteomics and transcriptomics characterization employing a combination of high resolution tandem mass spectrometry and gene expression analyses in normal rodent brain. Using multiple protein fractionation approaches, we identified 1400 CP proteins in adult CP. Microarray-based comparison of CP gene expression with the kidney, cortex and hippocampus showed significant overlap between the CP and the kidney. CP gene profiles were validated by in situ hybridization analysis of several target genes including klotho, CLIC 6, OATP 14 and Ezrin. Immunohistochemical analyses were performed for CP and enpendyma detection of several target proteins including cytokeratin, Rab7, klotho, tissue inhibitor of metalloprotease 1 (TIMP1), MMP9 and glial fibrillary acidic protein (GFAP). The molecular functions associated with various proteins of the CP proteome indicate that it is a blood–cerebrospinal fluid (CSF) barrier that exhibits high levels of metabolic activity. We also analyzed the gene expression changes induced by stress, an exacerbating factor for many illnesses, particularly mood disorders. Chronic stress altered the expression of several genes, downregulating 5HT2C, glucocorticoid receptor and the cilia genes IFT88 and smoothened while upregulating 5HT2A, BDNF, TNFα and IL-1b. The data presented here attach additional significance to the emerging importance of CP function in brain health and CNS disease states. PMID:22781172

  10. Presence of CP4-EPSPS Component in Roundup Ready Soybean-Derived Food Products

    PubMed Central

    Wu, Honghong; Zhang, Yu; Zhu, Changqing; Xiao, Xiao; Zhou, Xinghu; Xu, Sheng; Shen, Wenbiao; Huang, Ming

    2012-01-01

    With the widespread use of Roundup Ready soya (event 40-3-2) (RRS), the traceability of transgenic components, especially protein residues, in different soya-related foodstuffs has become an important issue. In this report, transgenic components in commercial soya (including RRS) protein concentrates were firstly detected by using polymerase chain reaction (PCR) and western blot. The results illustrated the different degradation patterns of the cp4-epsps gene and corresponding protein in RRS-derived protein concentrates. Furthermore, western blot was applied to investigate the single factor of food processing and the matrix on the disintegration of CP4-EPSPS protein in RRS powder and soya-derived foodstuffs, and trace the degradation patterns during the food production chain. Our results suggested that the exogenous full length of CP4-EPSPS protein in RRS powder was distinctively sensitive to various heat treatments, including heat, microwave and autoclave (especially), and only one degradation fragment (23.4 kD) of CP4-EPSPS protein was apparently observed when autoclaving was applied. By tracing the protein degradation during RRS-related products, including tofu, tou-kan, and bean curd sheets, however, four degradation fragments (42.9, 38.2, 32.2 and 23.4 kD) were displayed, suggesting that both boiling and bittern adding procedures might have extensive effects on CP4-EPSPS protein degradation. Our results thus confirmed that the distinctive residues of the CP4-EPSPS component could be traced in RRS-related foodstuffs. PMID:22408431

  11. Molecular characterization and intermolecular interaction of coat protein of Prunus necrotic ringspot virus: implications for virus assembly.

    PubMed

    Kulshrestha, Saurabh; Hallan, Vipin; Sharma, Anshul; Seth, Chandrika Attri; Chauhan, Anjali; Zaidi, Aijaz Asghar

    2013-09-01

    Coat protein (CP) and RNA3 from Prunus necrotic ringspot virus (PNRSV-rose), the most prevalent virus infecting rose in India, were characterized and regions in the coat protein important for self-interaction, during dimer formation were identified. The sequence analysis of CP and partial RNA 3 revealed that the rose isolate of PNRSV in India belongs to PV-32 group of PNRSV isolates. Apart from the already established group specific features of PV-32 group member's additional group-specific and host specific features were also identified. Presence of methionine at position 90 in the amino acid sequence alignment of PNRSV CP gene (belonging to PV-32 group) was identified as the specific conserved feature for the rose isolates of PNRSV. As protein-protein interaction plays a vital role in the infection process, an attempt was made to identify the portions of PNRSV CP responsible for self-interaction using yeast two-hybrid system. It was found (after analysis of the deletion clones) that the C-terminal region of PNRSV CP (amino acids 153-226) plays a vital role in this interaction during dimer formation. N-terminal of PNRSV CP is previously known to be involved in CP-RNA interactions, but our results also suggested that N-terminal of PNRSV CP represented by amino acids 1-77 also interacts with C-terminal (amino acids 153-226) in yeast two-hybrid system, suggesting its probable involvement in the CP-CP interaction.

  12. Sequence differences in the diagnostic region of the cysteine protease 8 gene of Tritrichomonas foetus parasites of cats and cattle.

    PubMed

    Sun, Zichen; Stack, Colin; Šlapeta, Jan

    2012-05-25

    In order to investigate the genetic variation between Tritrichomonas foetus from bovine and feline origins, cysteine protease 8 (CP8) coding sequence was selected as the polymorphic DNA marker. Direct sequencing of CP8 coding sequence of T. foetus from four feline isolates and two bovine isolates with polymerase chain reaction successfully revealed conserved nucleotide polymorphisms between feline and bovine isolates. These results provide useful information for CP8-based molecular differentiation of T. foetus genotypes. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus

    PubMed Central

    May, Jared; Johnson, Philip; Saleem, Huma

    2017-01-01

    ABSTRACT To maximize the coding potential of viral genomes, internal ribosome entry sites (IRES) can be used to bypass the traditional requirement of a 5′ cap and some/all of the associated translation initiation factors. Although viral IRES typically contain higher-order RNA structure, an unstructured sequence of about 84 nucleotides (nt) immediately upstream of the Turnip crinkle virus (TCV) coat protein (CP) open reading frame (ORF) has been found to promote internal expression of the CP from the genomic RNA (gRNA) both in vitro and in vivo. An absence of extensive RNA structure was predicted using RNA folding algorithms and confirmed by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing. Analysis of the IRES region in vitro by use of both the TCV gRNA and reporter constructs did not reveal any sequence-specific elements but rather suggested that an overall lack of structure was an important feature for IRES activity. The CP IRES is A-rich, independent of orientation, and strongly conserved among viruses in the same genus. The IRES was dependent on eIF4G, but not eIF4E, for activity. Low levels of CP accumulated in vivo in the absence of detectable TCV subgenomic RNAs, strongly suggesting that the IRES was active in the gRNA in vivo. Since the TCV CP also serves as the viral silencing suppressor, early translation of the CP from the viral gRNA is likely important for countering host defenses. Cellular mRNA IRES also lack extensive RNA structures or sequence conservation, suggesting that this viral IRES and cellular IRES may have similar strategies for internal translation initiation. IMPORTANCE Cap-independent translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5′ cap structure. Viral IRES, in general, contain extensive secondary structure that is critical for activity. In contrast, we demonstrate that a region of viral RNA devoid of extensive secondary structure has IRES activity and produces low levels of viral coat protein in vitro and in vivo. Our findings may be applicable to cellular mRNA IRES that also have little or no sequences/structures in common. PMID:28179526

  14. Dietary protein quality and quantity affect lactational responses to corn distillers grains: a meta-analysis.

    PubMed

    Hollmann, M; Allen, M S; Beede, D K

    2011-04-01

    Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n=44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3±3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus.

    PubMed

    Kung, Yi-Jung; Bau, Huey-Jiunn; Wu, Yi-Ling; Huang, Chiung-Huei; Chen, Tsui-Miao; Yeh, Shyi-Dong

    2009-11-01

    During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3' untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.

  16. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows

    NASA Astrophysics Data System (ADS)

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-01

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n = 4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P < 0.01) CP content (21.71-22.11 vs 12.96% DM), with higher (P < 0.05) soluble CP subfraction (59.07-70.27 vs 26.18% CP), and in situ soluble (23.44-25.85 vs 1.30% CP) and rumen degradable (RDP; 72.23-72.57 vs 58.48% CP) fractions than barley. The potentially slowly rumen degradable (D; 74.14-76.56 vs 93.31% CP) and undegradable (RUP; 27.43-27.66 vs 41.52% CP) fractions were lower (P < 0.01) in the chickpeas than barley. The effective degradability ratio of N to organic matter (OM) (36.07-38.44 g N/kg OM) of the chickpeas was higher than the optimal for achieving optimum microbial CP (MCP) synthesis. The truly digested MCP (64.94-66.43 vs. 41.43 g/kg DM); MP (81.10-83.67 vs 61.0 g/kg DM) feed milk value (1.64-1.70 vs 1.24) was higher in the chickpeas than barley grain. The chickpeas had higher (P < 0.05) amide I and II peaks area and height, and α-helix and β-sheet peaks height than barley. Multivariate analysis showed that protein molecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r = 0.94, P < 0.01) and that of RDP was negatively (r = -0.94, P < 0.01) correlated with amide I/II area ratio. The regression analysis showed that the content of CP (R2 = 0.91) D-fraction (R2 = 0.82), RDP (R2 = 0.77), RUP (R2 = 0.77), TDP (R2 = 0.98), MP (R2 = 0.80), and FMV (R2 = 0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value.

  17. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.

    2014-01-01

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263

  18. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    PubMed

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  19. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.).

    PubMed

    Diekmann, Kerstin; Hodkinson, Trevor R; Wolfe, Kenneth H; van den Bekerom, Rob; Dix, Philip J; Barth, Susanne

    2009-06-01

    Lolium perenne L. (perennial ryegrass) is globally one of the most important forage and grassland crops. We sequenced the chloroplast (cp) genome of Lolium perenne cultivar Cashel. The L. perenne cp genome is 135 282 bp with a typical quadripartite structure. It contains genes for 76 unique proteins, 30 tRNAs and four rRNAs. As in other grasses, the genes accD, ycf1 and ycf2 are absent. The genome is of average size within its subfamily Pooideae and of medium size within the Poaceae. Genome size differences are mainly due to length variations in non-coding regions. However, considerable length differences of 1-27 codons in comparison of L. perenne to other Poaceae and 1-68 codons among all Poaceae were also detected. Within the cp genome of this outcrossing cultivar, 10 insertion/deletion polymorphisms and 40 single nucleotide polymorphisms were detected. Two of the polymorphisms involve tiny inversions within hairpin structures. By comparing the genome sequence with RT-PCR products of transcripts for 33 genes, 31 mRNA editing sites were identified, five of them unique to Lolium. The cp genome sequence of L. perenne is available under Accession number AM777385 at the European Molecular Biology Laboratory, National Center for Biotechnology Information and DNA DataBank of Japan.

  20. Identification of host factors potentially involved in RTM-mediated resistance during potyvirus long distance movement.

    PubMed

    Sofer, Luc; Cabanillas, Daniel Garcia; Gayral, Mathieu; Téplier, Rachèle; Pouzoulet, Jérôme; Ducousso, Marie; Dufin, Laurène; Bréhélin, Claire; Ziegler-Graff, Véronique; Brault, Véronique; Revers, Frédéric

    2017-07-01

    The long distance movement of potyviruses is a poorly understood step of the viral cycle. Only factors inhibiting this process, referred to as "Restricted TEV Movement" (RTM), have been identified in Arabidopsis thaliana. On the virus side, the potyvirus coat protein (CP) displays determinants required for long-distance movement and for RTM-based resistance breaking. However, the potyvirus CP was previously shown not to interact with the RTM proteins. We undertook the identification of Arabidopsis factors which directly interact with either the RTM proteins or the CP of lettuce mosaic virus (LMV). An Arabidopsis cDNA library generated from companion cells was screened with LMV CP and RTM proteins using the yeast two-hybrid system. Fourteen interacting proteins were identified. Two of them were shown to interact with CP and the RTM proteins suggesting that a multiprotein complex could be formed between the RTM proteins and virions or viral ribonucleoprotein complexes. Co-localization experiments in Nicotiana benthamiana showed that most of the viral and cellular protein pairs co-localized at the periphery of chloroplasts which suggests a putative role for plastids in this process.

  1. Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation.

    PubMed

    Bahrami-Yekdangi, H; Khorvash, M; Ghorbani, G R; Alikhani, M; Jahanian, R; Kamalian, E

    2014-01-01

    This study was conducted to evaluate the effects of decreasing dietary protein and rumen-undegradable protein (RUP) on production performance, nitrogen retention, and nutrient digestibility in high-producing Holstein cows in early lactation. Twelve multiparous Holstein lactating cows (2 lactations; 50 ± 7 d in milk; 47 kg/d of milk production) were used in a Latin square design with 4 treatments and 3 replicates (cows). Treatments 1 to 4 consisted of diets containing 18, 17.2, 16.4, and 15.6% crude protein (CP), respectively, with the 18% CP diet considered the control group. Rumen-degradable protein levels were constant across the treatments (approximately 10.9% on a dry matter basis), whereas RUP was gradually decreased. All diets were calculated to supply a postruminal Lys:Met ratio of about 3:1. Dietary CP had no significant effects on milk production or milk composition. In fact, 16.4% dietary CP compared with 18% dietary CP led to higher milk production; however, this effect was not significant. Feed intake was higher for 16.4% CP than for 18% CP (25.7 vs. 24.3 kg/d). Control cows had greater CP and RUP intakes, which resulted in higher concentrations of plasma urea nitrogen and milk urea nitrogen; cows receiving 16.4 and 15.6% CP, respectively, exhibited lower concentrations of milk urea nitrogen (15.2 and 15.1 vs. 17.3 mg/dL). The control diet had a significant effect on predicted urinary N. Higher CP digestibility was recorded for 18% CP compared with the other diets. Decreasing CP and RUP to 15.6 and 4.6% of dietary dry matter, respectively, had no negative effects on milk production or composition when the amounts of Lys and Met and the Lys:Met ratio were balanced. Furthermore, decreasing CP and RUP to 16.4 and 5.4%, respectively, increased dry matter intake. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Chloroplast Genome of the Folk Medicine and Vegetable Plant Talinum paniculatum (Jacq.) Gaertn.: Gene Organization, Comparative and Phylogenetic Analysis.

    PubMed

    Liu, Xia; Li, Yuan; Yang, Hongyuan; Zhou, Boyang

    2018-04-09

    The complete chloroplast (cp) genome of Talinum paniculatum (Caryophyllale), a source of pharmaceutical efficacy similar to ginseng, and a widely distributed and planted edible vegetable, were sequenced and analyzed. The cp genome size of T. paniculatum is 156,929 bp, with a pair of inverted repeats (IRs) of 25,751 bp separated by a large single copy (LSC) region of 86,898 bp and a small single copy (SSC) region of 18,529 bp. The genome contains 83 protein-coding genes, 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes and four pseudogenes. Fifty one (51) repeat units and ninety two (92) simple sequence repeats (SSRs) were found in the genome. The pseudogene rpl23 (Ribosomal protein L23) was insert AATT than other Caryophyllale species by sequence alignment, which located in IRs region. The gene of trnK-UUU (tRNA-Lys) and rpl16 (Ribosomal protein L16) have larger introns in T. paniculatum , and the existence of matK (maturase K) genes, which usually located in the introns of trnK-UUU , rich sequence divergence in Caryophyllale. Complete cp genome comparison with other eight Caryophyllales species indicated that the differences between T. paniculatum and P. oleracea were very slight, and the most highly divergent regions occurred in intergenic spacers. Comparisons of IR boundaries among nine Caryophyllales species showed that T. paniculatum have larger IRs region and the contraction is relatively slight. The phylogenetic analysis among 35 Caryophyllales species and two outgroup species revealed that T. paniculatum and P. oleracea do not belong to the same family. All these results give good opportunities for future identification, barcoding of Talinum species, understanding the evolutionary mode of Caryophyllale cp genome and molecular breeding of T. paniculatum with high pharmaceutical efficacy.

  3. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    PubMed

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  4. Expression of Leptin and Visfatin in Gingival Tissues of Chronic Periodontitis With and Without Type 2 Diabetes Mellitus: A Study Using Enzyme-Linked Immunosorbent Assay and Real-Time Polymerase Chain Reaction.

    PubMed

    Ghallab, Noha A; Amr, Eman M; Shaker, Olfat G

    2015-07-01

    The aim of this study is to investigate the protein and gene expression of leptin and visfatin in gingival tissue from patients with chronic periodontitis (CP), patients with CP and type 2 diabetes mellitus (T2DM), and healthy individuals. The study includes 50 individuals: 10 healthy individuals, 20 patients with CP, and 20 patients with CP and T2DM. Plaque index, gingival index, probing depth, and clinical attachment loss were measured, and gingival biopsies were obtained. Leptin and visfatin protein expression in gingival tissues was determined using enzyme-linked immunosorbent assay, and messenger RNA (mRNA) expression was measured via real-time polymerase chain reaction. The highest leptin mRNA and protein expression was observed in the control group and was significantly (P ≤0.05) different from the CP and CP+T2DM groups. Gingival tissues from patients with CP and T2DM had a significant increase in visfatin and a decrease in leptin gene and protein expression (P <0.05) compared with both controls and patients with CP. Expression of leptin and visfatin in the gingival tissues suggests a possible role for these adipokines in the pathogenesis of CP and T2DM.

  5. Co-Localization of the Oncogenic Transcription Factor MYCN and the DNA Methyl Binding Protein MeCP2 at Genomic Sites in Neuroblastoma

    PubMed Central

    Murphy, Derek M.; Buckley, Patrick G.; Das, Sudipto; Watters, Karen M.; Bryan, Kenneth; Stallings, Raymond L.

    2011-01-01

    Background MYCN is a transcription factor that is expressed during the development of the neural crest and its dysregulation plays a major role in the pathogenesis of pediatric cancers such as neuroblastoma, medulloblastoma and rhabdomyosarcoma. MeCP2 is a CpG methyl binding protein which has been associated with a number of cancers and developmental disorders, particularly Rett syndrome. Methods and Findings Using an integrative global genomics approach involving chromatin immunoprecipitation applied to microarrays, we have determined that MYCN and MeCP2 co-localize to gene promoter regions, as well as inter/intragenic sites, within the neuroblastoma genome (MYCN amplified Kelly cells) at high frequency (70.2% of MYCN sites were also positive for MeCP2). Intriguingly, the frequency of co-localization was significantly less at promoter regions exhibiting substantial hypermethylation (8.7%), as determined by methylated DNA immunoprecipitation (MeDIP) applied to the same microarrays. Co-immunoprecipitation of MYCN using an anti-MeCP2 antibody indicated that a MYCN/MeCP2 interaction occurs at protein level. mRNA expression profiling revealed that the median expression of genes with promoters bound by MYCN was significantly higher than for genes bound by MeCP2, and that genes bound by both proteins had intermediate expression. Pathway analysis was carried out for genes bound by MYCN, MeCP2 or MYCN/MeCP2, revealing higher order functions. Conclusions Our results indicate that MYCN and MeCP2 protein interact and co-localize to similar genomic sites at very high frequency, and that the patterns of binding of these proteins can be associated with significant differences in transcriptional activity. Although it is not yet known if this interaction contributes to neuroblastoma disease pathogenesis, it is intriguing that the interaction occurs at the promoter regions of several genes important for the development of neuroblastoma, including ALK, AURKA and BDNF. PMID:21731748

  6. Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma.

    PubMed

    Murphy, Derek M; Buckley, Patrick G; Das, Sudipto; Watters, Karen M; Bryan, Kenneth; Stallings, Raymond L

    2011-01-01

    MYCN is a transcription factor that is expressed during the development of the neural crest and its dysregulation plays a major role in the pathogenesis of pediatric cancers such as neuroblastoma, medulloblastoma and rhabdomyosarcoma. MeCP2 is a CpG methyl binding protein which has been associated with a number of cancers and developmental disorders, particularly Rett syndrome. Using an integrative global genomics approach involving chromatin immunoprecipitation applied to microarrays, we have determined that MYCN and MeCP2 co-localize to gene promoter regions, as well as inter/intragenic sites, within the neuroblastoma genome (MYCN amplified Kelly cells) at high frequency (70.2% of MYCN sites were also positive for MeCP2). Intriguingly, the frequency of co-localization was significantly less at promoter regions exhibiting substantial hypermethylation (8.7%), as determined by methylated DNA immunoprecipitation (MeDIP) applied to the same microarrays. Co-immunoprecipitation of MYCN using an anti-MeCP2 antibody indicated that a MYCN/MeCP2 interaction occurs at protein level. mRNA expression profiling revealed that the median expression of genes with promoters bound by MYCN was significantly higher than for genes bound by MeCP2, and that genes bound by both proteins had intermediate expression. Pathway analysis was carried out for genes bound by MYCN, MeCP2 or MYCN/MeCP2, revealing higher order functions. Our results indicate that MYCN and MeCP2 protein interact and co-localize to similar genomic sites at very high frequency, and that the patterns of binding of these proteins can be associated with significant differences in transcriptional activity. Although it is not yet known if this interaction contributes to neuroblastoma disease pathogenesis, it is intriguing that the interaction occurs at the promoter regions of several genes important for the development of neuroblastoma, including ALK, AURKA and BDNF.

  7. Different visible colors and green fluorescence were obtained from the mutated purple chromoprotein isolated from sea anemone.

    PubMed

    Chiang, Cheng-Yi; Chen, Yi-Lin; Tsai, Huai-Jen

    2014-08-01

    Green fluorescent protein (GFP)-like proteins have been studied with the aim of developing fluorescent proteins. Since the property of color variation is understudied, we isolated a novel GFP-like chromoprotein from the carpet anemone Stichodactyla haddoni, termed shCP. Its maximum absorption wavelength peak (λ(max)) is located at 574 nm, resulting in a purple color. The shCP protein consists of 227 amino acids (aa), sharing 96 % identity with the GFP-like chromoprotein of Heteractis crispa. We mutated aa residues to examine any alteration in color. When E63, the first aa of the chromophore, was replaced by serine (E63S), the λ(max) of the mutated protein shCP-E63S was shifted to 560 nm and exhibited a pink color. When Q39, T194, and I196, which reside in the surrounding 5 Å of the chromophore's microenvironment, were mutated, we found that (1) the λ(max) of the mutated protein shCP-Q39S was shifted to 518 nm and exhibited a red color, (2) shCP-T194I exhibited a purple-blue color, and (3) an additional mutation at I196H of the mutated protein shCP-E63L exhibited green fluorescence. In contrast, when the aa located neither at the chromophore nor within its microenvironment were mutated, the resultant proteins shCP-L122H, -E138G, -S137D, -T95I, -D129N, -T194V, -E138Q, -G75E, -I183V, and -I70V never altered their purple color, suggesting that mutations at the shCP chromophore and the surrounding 5 Å microenvironment mostly control changes in color expression or cause fluorescence to develop. Additionally, we found that the cDNAs of shCP and its mutated varieties are faithfully and stably expressed both in Escherichia coli and zebrafish embryos.

  8. Targeting the middle region of CP4-EPSPS protein for its traceability in highly processed soy-related products.

    PubMed

    Wu, Honghong; Wang, Xiaofu; Zhou, Xinghu; Zhang, Yihua; Huang, Ming; He, Jian; Shen, Wenbiao

    2017-09-01

    Transgenic components in genetically modified organisms consist not only of the transgenic genes, but also the transgenic protein. However, compared with transgenic DNA, less attention has been paid to the detection of expressed protein, especially those degraded from genetically modified soybean after food processing. In this study, the full length 5-enolpyruvyl-shikimate-3-phosphate synthase (CP4-EPSPS, 47.6 kD) protein was probed with the SC-16 (S19-R33) and the DC-16 (D219-K233) polyclonal antibodies in immunoblots. Both antibodies were able to detect the full length CP4-EPSPS and its residues in soy powder made from Roundup-Ready soybeans after heating and microwaving treatments which also reduced the molecular weight of the protein to 45.8 and 38.7 kD, respectively. Taken together the immunoblot results suggest that the middle region of the CP4-EPSPS protein possessed better stability than its N-terminal during thermal processing. This deduction was further validated by autoclave treatment, where a 37.4 kD residue of the protein was recognized by DC-16. A similar result was obtained in processed smoked sausage containing Roundup Ready soybean protein isolate (as an extender). The additional use of a further polyclonal antibody CK-17 (C372-K388), showed that compared with only the one signal for CP4-EPSPS detected by the SC-16 and CK-17 antibodies, the DC-16 middle region antibody detected four signals for CP4-EPSPS from five market sourced soy protein concentrates. Taken together, the study suggested that the middle region of CP4-EPSPS was more useful than the N- and C-terminal for tracing transgenic CP4-EPSPS protein and its remnants in highly processed soy-related products.

  9. Crystal Structure of a Four-Layer Aggregate of Engineered TMV CP Implies the Importance of Terminal Residues for Oligomer Assembly

    PubMed Central

    Li, Xiangyang; Song, Baoan; Chen, Xi; Wang, Zhenchao; Zeng, Mengjiao; Yu, Dandan; Hu, Deyu; Chen, Zhuo; Jin, Linhong; Yang, Song; Yang, Caiguang; Chen, Baoen

    2013-01-01

    Background Crystal structures of the tobacco mosaic virus (TMV) coat protein (CP) in its helical and disk conformations have previously been determined at the atomic level. For the helical structure, interactions of proteins and nucleic acids in the main chains were clearly observed; however, the conformation of residues at the C-terminus was flexible and disordered. For the four-layer aggregate disk structure, interactions of the main chain residues could only be observed through water–mediated hydrogen bonding with protein residues. In this study, the effects of the C-terminal peptides on the interactions of TMV CP were investigated by crystal structure determination. Methodology/Principal Findings The crystal structure of a genetically engineered TMV CP was resolved at 3.06 Å. For the genetically engineered TMV CP, a six-histidine (His) tag was introduced at the N-terminus, and the C-terminal residues 155 to 158 were truncated (N-His-TMV CP19). Overall, N-His-TMV CP19 protein self-assembled into the four-layer aggregate form. The conformations of residues Gln36, Thr59, Asp115 and Arg134 were carefully analyzed in the high radius and low radius regions of N-His-TMV CP19, which were found to be significantly different from those observed previously for the helical and four-layer aggregate forms. In addition, the aggregation of the N-His-TMV CP19 layers was found to primarily be mediated through direct hydrogen-bonding. Notably, this engineered protein also can package RNA effectively and assemble into an infectious virus particle. Conclusion The terminal sequence of amino acids influences the conformation and interactions of the four-layer aggregate. Direct protein–protein interactions are observed in the major overlap region when residues Gly155 to Thr158 at the C-terminus are truncated. This engineered TMV CP is reassembled by direct protein–protein interaction and maintains the normal function of the four-layer aggregate of TMV CP in the presence of RNA. PMID:24223721

  10. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids.

    PubMed Central

    Sipos, G; Puoti, A; Conzelmann, A

    1994-01-01

    Glycosylphosphatidylinositol (GPI) anchoring of membrane proteins occurs through two distinct steps, namely the assembly of a precursor glycolipid and its subsequent transfer onto newly synthesized proteins. To analyze the structure of the yeast precursor glycolipid we made use of the pmi40 mutant that incorporates very high amounts of [3H]mannose. Two very polar [3H]mannose-labeled glycolipids named CP1 and CP2 qualified as GPI precursor lipids since their carbohydrate head group, Man alpha 1,2(X-->PO4-->6)Man alpha 1,2Man alpha 1,6Man alpha-GlcN-inositol (with X most likely being ethanolamine) comprises the core structure which is common to all GPI anchors described so far. CP1 predominates in cells grown at 24 degrees C whereas CP2 is induced by stress conditions. The apparent structural identity of the head groups suggests that CP1 and CP2 contain different lipid moieties. The lipid moieties of both CP1 and CP2 can be removed by mild alkaline hydrolysis although the protein-bound GPI anchors made by the pmi40 cells under identical labeling conditions contain mild base resistant ceramides. These findings imply that the ceramide moiety found on the majority of yeast GPI anchored proteins is added through a lipid remodeling step that occurs after the addition of the GPI precursor glycolipids to proteins. Images PMID:8026463

  11. Feed efficiency of diets with different energy and protein concentrations supplemented with methionine in laying quails

    NASA Astrophysics Data System (ADS)

    Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A. M. P.; Purwanti, E.

    2018-03-01

    The study was conducted to evaluate the feed efficiency of quail diets containing different concentrations of metabolizable energy (ME) and crude protein (CP) with constant ratio and supplemented with methionine. Four hundred laying quails (Coturnix coturnix japonica) were randomly assigned to four experimental diets in a 2×2 factorial arrangement. Each dietary treatment used 5 replicates of 20 quails. Two basal diets were formulated to contain 2,800 kcal kg-1 ME and 18.7% CP (High ME-CP) and 2,600 kcal kg-1 ME and 17.3% CP (Low ME-CP). Each basal diet was supplemented with 0 and 0.12% methionine. The High ME-CP diets generated lower feed consumption but higher egg mass and feed efficiency (P<0.01) compared with the Low ME-CP. Furthermore, supplementation of methionine increased egg mass, feed efficiency, energy efficiency ratio and protein efficiency ratio (P<0.01). The High ME-CP supplemented with methionine resulted the highest feed efficiency followed by the Low ME-CP supplemented with methionine, while both High ME-CP and Low ME-CP without methionine supplementation resulted the lowest feed efficiency (P<0.05). In addition, ME and CP consumption of the birds were not influenced by the treatments. Thus, feeding High ME-CP supplemented with 0.12% methionine provided benefit to improve the feed efficiency in laying quails.

  12. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows.

    PubMed

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-05

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n=4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P<0.01) CP content (21.71-22.11 vs 12.96% DM), with higher (P<0.05) soluble CP subfraction (59.07-70.27 vs 26.18% CP), and in situ soluble (23.44-25.85 vs 1.30% CP) and rumen degradable (RDP; 72.23-72.57 vs 58.48% CP) fractions than barley. The potentially slowly rumen degradable (D; 74.14-76.56 vs 93.31% CP) and undegradable (RUP; 27.43-27.66 vs 41.52% CP) fractions were lower (P<0.01) in the chickpeas than barley. The effective degradability ratio of N to organic matter (OM) (36.07-38.44gN/kg OM) of the chickpeas was higher than the optimal for achieving optimum microbial CP (MCP) synthesis. The truly digested MCP (64.94-66.43 vs. 41.43g/kg DM); MP (81.10-83.67 vs 61.0g/kg DM) feed milk value (1.64-1.70 vs 1.24) was higher in the chickpeas than barley grain. The chickpeas had higher (P<0.05) amide I and II peaks area and height, and α-helix and β-sheet peaks height than barley. Multivariate analysis showed that protein molecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r=0.94, P<0.01) and that of RDP was negatively (r=-0.94, P<0.01) correlated with amide I/II area ratio. The regression analysis showed that the content of CP (R2=0.91) D-fraction (R 2 =0.82), RDP (R 2 =0.77), RUP (R 2 =0.77), TDP (R 2 =0.98), MP (R 2 =0.80), and FMV (R 2 =0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  13. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform.

    PubMed

    Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping

    2015-01-01

    The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum.

  14. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species

    PubMed Central

    Park, Inkyu; Kim, Wook-jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC–trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species. PMID:28863163

  15. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    PubMed

    Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  16. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform

    PubMed Central

    Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping

    2015-01-01

    The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum. PMID:25705213

  17. Complete Sequence and Comparative Analysis of the Chloroplast Genome of Coconut Palm (Cocos nucifera)

    PubMed Central

    Huang, Ya-Yi; Matzke, Antonius J. M.; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available. PMID:24023703

  18. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera).

    PubMed

    Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  19. Nutrient digestibility and energy value of sheep rations differing in protein level, main protein source and non-forage fibre source.

    PubMed

    Milis, Ch; Liamadis, D

    2008-02-01

    Two in vivo digestion trials were conducted to evaluate the effects of diet's crude protein (CP) level, N degradability, and non-forage fibre source (NFFS) on nutrient digestibility and energy value of sheep rations. In each trial, rams were fed four isocaloric and isofibrous rations, differing in main protein and/or NFFS source. At the first trial, mean CP/metabolizable energy (ME) ratio of the diets was 17 g/MJ ME and at the second trial, 13 g/MJ ME. At both trials, the first ration contained cotton seed cake (CSC) and wheat bran (WB), the second CSC and corn gluten feed (CGF), the third corn gluten meal (CGM) and WB and the fourth CGM and CGF. Data of both trials were analysed in common as 2 x 2 x 2 factorial experimental design. Low N degradability (CGM) had positive effect on CP, neutral detergent fibre (NDF) and acid detergent fibre (ADF) digestibility of the ration. Those results suggest that an increase in rumen undegradable protein (RUP) content does not negatively affect nutrient digestibility of sheep rations. Corn gluten feed significantly elevated crude fibre (CF) digestibility, in comparison with WB. Rations having high CP/ME ratio had higher digestibility of CP in comparison with those having low CP/ME ratio; the opposite was true for ether extract, CF, NDF and ADF digestibilities. CP level x N degradability interaction negatively affected energy value of the rations that had high CP level and high N degradability. Former suggest that when CP content is high then N degradability should be low otherwise ration's ME is negatively affected. CP digestibility and coefficient q of the rations containing WB and having high N degradability (N degradability x NFFS interaction) were the lowest suggesting that the combination of CSC and WB negatively affected CP digestibility and energy value of the ration. This could be explained by a reduced microbial CP synthesis, or lower RUP digestibility or both.

  20. Effect of a low crude protein diet supplemented with different levels of threonine on growth performance, carcass traits, blood parameters, and immune responses of growing broilers.

    PubMed

    Sigolo, Samantha; Zohrabi, Zahra; Gallo, Antonio; Seidavi, Alireza; Prandini, Aldo

    2017-08-01

    A study was conducted to evaluate growth performance, carcass traits, blood serum parameters, and immune responses of Ross 308 male broilers fed diets containing 2 different crude protein (CP) levels (97.5 and 100%) and 4 threonine (Thr) levels (100, 110, 120, and 130% of Ross recommendations for starter and grower periods). A completely randomized block design was adopted and main effects (CP and Thr) were arranged in a 2 × 4 factorial approach. Optimum growth performance was achieved when broiler requirements for CP and Thr were 100% satisfied. The 110% Thr inclusion in 97.5% CP diet increased ADG, ADFI, energy intake, and protein intake (Thr, P < 0.01; quadratic, P = 0.01). The G:F (linear, P = 0.05) and energy efficiency (linear, P = 0.04) tended to decreased (Thr, P = 0.09) by increasing Thr supplementation level, whereas protein efficiency tended to increase (CP, P = 0.06) by reducing CP level. The 110% Thr inclusion in 97.5% CP diet increased eviscerated carcass weight (CP × Thr, P = 0.03) and carcass yield (Thr, P = 0.08; quadratic, P = 0.05). The reduction of CP content promoted fat abdominal deposition (CP, P = 0.05). Incremental Thr raised abdominal fat (Thr, P = 0.01; linear, P = 0.01). The 97.5% CP diets resulted in higher serum concentrations of uric acid (CP, P = 0.02), total and high- and low-density lipoprotein-linked cholesterol (CP, P≤ 0.01), and alanine aminotransferase (CP, P = 0.05) and lower (CP, P = 0.01) concentrations of triglycerides and very low density lipoproteins compared with the 100% CP diets. However, the Thr inclusion improved serum lipid profile. Irrespective of CP content, incremental Thr levels up to 120% increased (Thr, P = 0.01) broiler immune responses against Newcastle disease virus and sheep red blood cells. In order to reduce dietary CP content, strategies to increase synthetic amino acid availability, such as the use of encapsulated amino acids, should be taken into account. © 2017 Poultry Science Association Inc.

  1. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr; Nam, Jiryun, E-mail: jilyoon@naver.com; Seo, Eun-Young, E-mail: sey22@cnu.ac.kr

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution ofmore » only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.« less

  2. Protein-protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution.

    PubMed

    Daskalakis, Vangelis

    2018-05-07

    The assembly and disassembly of protein complexes within cells are crucial life-sustaining processes. In photosystem II (PSII) of higher plants, there is a delicate yet obscure balance between light harvesting and photo-protection under fluctuating light conditions, that involves protein-protein complexes. Recent breakthroughs in molecular dynamics (MD) simulations are combined with new approaches herein to provide structural and energetic insight into such a complex between the CP29 minor antenna and the PSII subunit S (PsbS). The microscopic model involves extensive sampling of bound and dissociated states at atomic resolution in the presence of photo-protective zeaxanthin (Zea), and reveals well defined protein-protein cross-sections. The complex is placed within PSII, and macroscopic connections are emerging (PsbS-CP29-CP24-CP47) along the energy transfer pathways from the antenna to the PSII core. These connections explain macroscopic observations in the literature, while the previously obscured atomic scale details are now revealed. The implications of these findings are discussed in the context of the Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence, the down-regulatory mechanism of photosynthesis, that enables the protection of PSII against excess excitation load. Zea is found at the PsbS-CP29 cross-section and a pH-dependent equilibrium between PsbS dimer/monomers and the PsbS-CP29 dissociation/association is identified as the target for engineering tolerant plants with increased crop and biomass yields. Finally, the new MD based approaches can be used to probe protein-protein interactions in general, and the PSII structure provided can initiate large scale molecular simulations of the photosynthetic apparatus, under NPQ conditions.

  3. The complete chloroplast genome sequence of Dendrobium officinale.

    PubMed

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns.

  4. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP

    PubMed Central

    Jaru-Ampornpan, Peera; Shen, Kuang; Lam, Vinh Q.; Ali, Mona; Doniach, Sebastian; Jia, Tony Z.; Shan, Shu-ou

    2010-01-01

    Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and require chaperones to keep them soluble and translocation-competent. Here we show that a novel targeting factor in the chloroplast Signal Recognition Particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to AAA+-chaperones, cpSRP43 utilizes specific binding interactions with its substrate to mediate its disaggregase activity. This ‘disaggregase’ capability can allow targeting machineries to more effectively capture their protein substrates, and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example of an ATP-independent disaggregase, and demonstrates that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate. PMID:20424608

  5. Sex-Related Differences in Rat Choroid Plexus and Cerebrospinal Fluid: A cDNA Microarray and Proteomic Analysis.

    PubMed

    Quintela, T; Marcelino, H; Deery, M J; Feret, R; Howard, J; Lilley, K S; Albuquerque, T; Gonçalves, I; Duarte, A C; Santos, C R A

    2016-01-01

    The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood and the cerebrospinal fluid (CSF), which is mostly produced by the CP itself. Because the CP transcriptome is regulated by the sex hormone background, the present study compared gene/protein expression profiles in the CP and CSF from male and female rats aiming to better understand sex-related differences in CP functions and brain physiology. We used data previously obtained by cDNA microarrays to compare the CP transcriptome between male and female rats, and complemented these data with the proteomic analysis of the CSF of castrated and sham-operated males and females. Microarray analysis showed that 17 128 and 17 002 genes are expressed in the male and female CP, which allowed the functional annotation of 141 and 134 pathways, respectively. Among the most expressed genes, canonical pathways associated with mitochondrial dysfunctions and oxidative phosphorylation were the most prominent, whereas the most relevant molecular and cellular functions annotated were protein synthesis, cellular growth and proliferation, cell death and survival, molecular transport, and protein trafficking. No significant differences were found between males and females regarding these pathways. Seminal functions of the CP differentially regulated between sexes were circadian rhythm signalling, as well as several canonical pathways related to stem cell differentiation, metabolism and the barrier function of the CP. The proteomic analysis identified five down-regulated proteins in the CSF samples from male rats compared to females and seven proteins exhibiting marked variation in the CSF of gonadectomised males compared to sham animals, whereas no differences were found between sham and ovariectomised females. These data clearly show sex-related differences in CP gene expression and CSF protein composition that may impact upon neurological diseases. © 2015 British Society for Neuroendocrinology.

  6. Status of the CP-PACS Project

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.

    1997-02-01

    The CP-PACS computer with a peak speed of 300 Gflops was completed in March 1996 and has started to operate. We describe the final specification and the hardware implementation of the CP-PACS computer, and its performance for QCD codes. A plan of the grade-up of the computer scheduled for fall of 1996 is also given.

  7. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs.

    PubMed

    He, Liuqin; Wu, Li; Xu, Zhiqi; Li, Tiejun; Yao, Kang; Cui, Zhijie; Yin, Yulong; Wu, Guoyao

    2016-01-01

    The objective of this study was to evaluate effects of dietary crude protein (CP) intake on ileal amino acid digestibilities and expression of genes for digestive enzymes in growing and finishing pigs. In Experiment 1, 18 growing pigs (average initial BW = 36.5 kg) were assigned randomly into one of three treatments (n = 6/treatment group) representing normal (18 % CP), low (15 % CP), and very low (12 % CP) protein intake. In Experiment 2, 18 finishing pigs (average initial BW = 62.3 kg) were allotted randomly into one of three treatments (n = 6/treatment group), representing normal (16 % CP), low (13 % CP) and very low (10 % CP) protein intake. In both experiments, diets with low and very low CP were supplemented with crystalline amino acids to achieve equal content of standardized ileal digestible Lys, Met, Thr, and Trp, and were provided to pigs ad libitum. Daily feed intake, BW, and feed/gain ratios were determined. At the end of each experiment, all pigs were slaughtered to collect pancreas, small-intestine samples, and terminal ileal chymes. Samples were used for determining expression of genes for digestive enzymes and ileal amino acid digestibilities. Growing pigs fed the 12 % CP and 15 % CP diets had lower final body weight (P < 0.01) and ADG (P < 0.0001) when compared with pigs fed the 18 % dietary CP diet. Growing pigs fed with the 12 % CP diet showed higher digestibilities for CP (P < 0.05), DM (P < 0.05), Lys (P < 0.0001), Met (P < 0.01), Cys (P < 0.01), Thr (P < 0.01), Trp (P < 0.05), Val (P < 0.05), Phe (P < 0.05), Ala (P < 0.05), Cys (P < 0.01), and Gly (P < 0.05) than those fed the 18 % CP diet. Finishing pigs fed the 16 % CP diet had a higher (P < 0.01) final body weight than those fed the 10 % CP diet. mRNA levels for digestive enzymes (trypsinogen, chymotrypsin B, and dipeptidases-II and III) differed among the three groups of pigs (P < 0.05), and no difference was noted in the genes expression between control group and lower CP group. These results indicated that a reduction of dietary CP by a six-percentage value limited the growth performance of growing-finishing pigs and that a low-protein diet supplemented with deficient amino acids could reduce the excretion of nitrogen into the environment without affecting weight gain.

  8. Effects of feeding canola meal or wheat dried distillers grains with solubles as a major protein source in low- or high-crude protein diets on ruminal fermentation, omasal flow, and production in cows.

    PubMed

    Mutsvangwa, T; Kiran, D; Abeysekara, S

    2016-02-01

    The objective of this study was to determine the effects of feeding canola meal (CM) or wheat dried distillers grains with solubles (W-DDGS) as the major source of protein in diets varying in crude protein (CP) content on ruminal fermentation, microbial protein production, omasal nutrient flow, and production performance in lactating dairy cows. Eight lactating dairy cows were used in a replicated 4×4 Latin square design with 29-d periods (21 d of dietary adaptation and 8 d of measurements) and a 2×2 factorial arrangement of dietary treatments. Four cows in 1 Latin square were ruminally cannulated to allow ruminal and omasal sampling. The treatment factors were (1) source of supplemental protein (CM vs. W-DDGS) and (2) dietary CP content (15 vs. 17%; DM basis). Diets contained 50% forage and 50% concentrate, and were fed twice daily at 0900 and 1600 h as total mixed rations for ad libitum intake. Dry matter intake and milk yield were unaffected by dietary treatments; however, milk yield in cows that were fed CM was numerically greater (+1.1 kg/d) when compared with cows fed W-DDGS. Feeding CM increased milk lactose content compared with feeding W-DDGS. Milk urea nitrogen and ruminal NH3-N concentrations were greater in cows fed the high-CP compared with those fed the low-CP diet. The rumen-degradable protein supply was greater in cows fed the high-CP when compared with those fed the low-CP diet when diets contained CM, whereas rumen-degradable protein supply was lower in cows fed the high-CP when compared with those fed the low-CP diet when diets contained W-DDGS. Total N flow at the omasal canal was not affected by diet; however, omasal flow of NH3-N was greater in cows fed CM when compared with those fed W-DDGS. The rumen-undegradable protein supply was greater in cows fed the low-CP when compared with those fed the high-CP diet when diets contained CM, whereas rumen-undegradable protein supply was lower in cows fed the low-CP when compared with those fed the high-CP diet when diets contained W-DDGS. Omasal flow of fluid-associated bacteria was greater and that of particle-associated bacteria tended to be greater in cows fed CM when compared with those fed W-DDGS; however, omasal flow of total microbial nonammonia N was unaffected by dietary treatment. Omasal flows of threonine and tryptophan were greater, whereas that of histidine and lysine tended to be greater in cows fed CM when compared with those fed W-DDGS. Our results show that when dairy diets are formulated to contain 15 or 17% CP, CM or W-DDGS can be used as the major source of protein and achieve similar levels of milk production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. The cognate coat protein is required for cell-to-cell movement of a chimeric brome mosaic virus mediated by the cucumber mosaic virus movement protein.

    PubMed

    Nagano, H; Mise, K; Okuno, T; Furusawa, I

    1999-12-20

    Cucumber mosaic cucumovirus (CMV) and brome mosaic bromovirus (BMV) have many similarities, including the three-dimensional structure of virions, genome organizations, and requirement of the coat protein (CP) for cell-to-cell movement. We have shown that a chimeric BMV with the CMV 3a movement protein (MP) gene instead of its own cannot move from cell to cell in Chenopodium quinoa, a common permissive host for both BMV and CMV. Another chimeric BMV was constructed by replacing both MP and CP genes of BMV with those of CMV (MP/CP-chimera) and tested for its infectivity in C. quinoa, to determine whether the CMV CP has some functions required for the CMV MP-mediated cell-to-cell movement and to exhibit functional difference between CPs of BMV and CMV. Cell-to-cell movement of the MP/CP-chimera occurred, and small local lesions were induced on the inoculated leaves. A frameshift mutation introduced in the CMV CP gene of the MP/CP-chimera resulted in a lack of cell-to-cell movement of the chimeric virus. These results indicate that the viral movement mediated by the CMV MP requires its cognate CP. Deletion of the amino-terminal region in CMV CP, which is not obligatory for CMV movement, also abolished cell-to-cell movement of the MP/CP-chimera. This may suggest some differences in cell-to-cell movement of the MP/CP-chimera and CMV. On the other hand, the sole replacement of BMV CP gene with that of CMV abolished viral cell-to-cell movement, suggesting a possibility that the viral movement mediated by the BMV MP may also require its cognate CP. Functional compatibility between MP and CP in viral cell-to-cell movement is discussed. Copyright 1999 Academic Press.

  10. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    PubMed

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs. © 2012 Institute of Food Technologists®

  11. Polyubiquitination of the B-cell translocation gene 1 and 2 proteins is promoted by the SCF ubiquitin ligase complex containing βTrCP.

    PubMed

    Sasajima, Hitoshi; Nakagawa, Koji; Kashiwayanagi, Makoto; Yokosawa, Hideyoshi

    2012-01-01

    B-cell translocation gene 1 and 2 (BTG1 and BTG2) are members of the BTG/Tob antiproliferative protein family, which is able to regulate the cell cycle and cell proliferation. We previously reported that BTG1, BTG2, Tob, and Tob2 are degraded via the ubiquitin-proteasome pathway. In this study, we investigated the mechanism of polyubiquitination of BTG1 and BTG2. Since the Skp1-Cdc53/Cullin 1-F-box protein (SCF) complex functions as one of the major ubiquitin ligases for cell cycle regulation, we first examined interactions between BTG proteins and components of the SCF complex, and found that BTG1 and BTG2 were capable of interacting with the SCF complex containing Cullin-1 (a scaffold protein) and Skp1 (a linker protein). As the SCF complex can ubiquitinate various target proteins by substituting different F-box proteins as subunits that recognize different target proteins, we next examined which F-box proteins could bind the two BTG proteins, and found that Skp2, β-transducin repeat-containing protein 1 (βTrCP1), and βTrCP2 were able to associate with both BTG1 and BTG2. Furthermore, we obtained evidence showing that βTrCP1 enhanced the polyubiquitination of both BTG1 and BTG2 more efficiently than Skp2 did, and that an F-box truncated mutant of βTrCP1 had a dominant negative effect on this polyubiquitination. Thus, we propose that BTG1 and BTG2 are subjected to polyubiquitination, more efficiently when it is mediated by SCFβTrCP than by SCFSkp2.

  12. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection.

    PubMed

    Pérez, José de Jesús; Udeshi, Namrata D; Shabanowitz, Jeffrey; Ciordia, Sergio; Juárez, Silvia; Scott, Cheryl L; Olszewski, Neil E; Hunt, Donald F; García, Juan Antonio

    2013-08-01

    O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Online immunocapture ICP-MS for the determination of the metalloprotein ceruloplasmin in human serum.

    PubMed

    Bernevic, Bogdan; El-Khatib, Ahmed H; Jakubowski, Norbert; Weller, Michael G

    2018-04-02

    The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32 S mass trace. The ICP-MS signals were normalized on a 59 Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS.

  14. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa. © 2013.

  15. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels.

    PubMed

    Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun

    2016-12-01

    This study investigated the effects of early antibiotic administration (EAA) on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Eighteen litters (total 180) of piglets on day (d) 7 were fed either a commercial creep feed or commercial creep feed + antibiotic (Olaquindox, Oxytetracycline Calcium and Kitasamycin) until d 42. On d 42, pigs within each group were further randomly fed a normal crude protein (CP) diet (20% and 18% CP from d 42 to d 77 and d 77 to d 120, respectively) or a low-CP diet (16% and 14% CP from d 42 to d 77 and d 77 to d 120, respectively), generating 4 groups, control-low CP (Con-LP), control-normal CP (Con-NP), antibiotic-low CP (Ant-LP) and antibiotic-normal CP (Ant-NP), respectively. On d 77 and d 120, 5 pigs per group were slaughtered and cecal materials were collected for bacterial analysis. With cecal bacteria, principle component analysis (PCA) of the denaturing gradient gel electrophoresis (DGGE) profile showed two distinct groups of samples from low-CP diet and samples from normal-CP diet. Real-time PCR showed that EAA did not have significant effect on major bacterial groups, only showed significant interactions (P < 0.05) with CP level for Lactobacillus counts on d 77 and Clostridium cluster XIVa counts on d 120 with higher values in the Con-NP group compared to the Ant-NP groups. Low-CP diet increased (P < 0.05) short-chain fatty acids (SCFA) producing bacteria counts (Bacteroidetes on d 77 and d 120; Clostridium cluster IV and Clostridium cluster XIVa on d 77), but decreased (P < 0.05) Escherichia coli counts on d 77 and d 120. For metabolites, EAA increased (P < 0.05) protein fermentation products (p-cresol, indole and skatole on d 77; ammonia, putrescine and spermidine on d 120), and showed significant interactions (P < 0.05) with CP level for p-cresol and skatole concentrations on d 77 and putrescine and spermidine concentrations on d 120 with higher values in the Ant-LP group compared to the Con-LP groups. Low-CP diet increased (P < 0.05) SCFA concentration (propionate and butyrate) on d 77, but reduced (P < 0.05) the protein fermentation products (ammonia, phenol and indole on d 77; branched chain fatty acid (BCFA), ammonia, tyramine, cadaverine and indole on d 120). These results indicate that EAA had less effect on bacterial communities, but increased bacterial fermentation of protein in the cecum under low-CP diet. Low-CP diet altered bacterial communities with an increase in the counts of SCFA-producing bacteria and a decrease in the counts of Escherichia coli, and markedly reduced the protein fermentation products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus

    PubMed Central

    Wang, Liping; Tan, Huang; Wu, Mengshi; Jimenez-Gongora, Tamara; Tan, Li; Lozano-Duran, Rosa

    2017-01-01

    Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host. PMID:29312406

  17. Functional conservation of MBD proteins: MeCP2 and Drosophila MBD proteins alter sleep.

    PubMed

    Gupta, T; Morgan, H R; Bailey, J A; Certel, S J

    2016-11-01

    Proteins containing a methyl-CpG-binding domain (MBD) bind 5mC and convert the methylation pattern information into appropriate functional cellular states. The correct readout of epigenetic marks is of particular importance in the nervous system where abnormal expression or compromised MBD protein function, can lead to disease and developmental disorders. Recent evidence indicates that the genome of Drosophila melanogaster is methylated and two MBD proteins, dMBD2/3 and dMBD-R2, are present. Are Drosophila MBD proteins required for neuronal function, and as MBD-containing proteins have diverged and evolved, does the MBD domain retain the molecular properties required for conserved cellular function across species? To address these questions, we expressed the human MBD-containing protein, hMeCP2, in distinct amine neurons and quantified functional changes in sleep circuitry output using a high throughput assay in Drosophila. hMeCP2 expression resulted in phase-specific sleep loss and sleep fragmentation with the hMeCP2-mediated sleep deficits requiring an intact MBD domain. Reducing endogenous dMBD2/3 and dMBD-R2 levels also generated sleep fragmentation, with an increase in sleep occurring upon dMBD-R2 reduction. To examine if hMeCP2 and dMBD-R2 are targeting common neuronal functions, we reduced dMBD-R2 levels in combination with hMeCP2 expression and observed a complete rescue of sleep deficits. Furthermore, chromosomal binding experiments indicate MBD-R2 and MeCP2 associate on shared genomic loci. Our results provide the first demonstration that Drosophila MBD-containing family members are required for neuronal function and suggest that the MBD domain retains considerable functional conservation at the whole organism level across species. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2016-02-01

    Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.

  19. Analysis of Structures, Functions, and Epitopes of Cysteine Protease from Spirometra erinaceieuropaei Spargana

    PubMed Central

    Liu, Li Na; Cui, Jing; Zhang, Xi; Wei, Tong; Jiang, Peng; Wang, Zhong Quan

    2013-01-01

    Spirometra erinaceieuropaei cysteine protease (SeCP) in sparganum ES proteins recognized by early infection sera was identified by MALDI-TOF/TOF-MS. The aim of this study was to predict the structures and functions of SeCP protein by using the full length cDNA sequence of SeCP gene with online sites and software programs. The SeCP gene sequence was of 1 053 bp length with a 1011 bp biggest ORF encoding 336-amino acid protein with a complete cathepsin propeptide inhibitor domain and a peptidase C1A conserved domain. The predicted molecular weight and isoelectric point of SeCP were 37.87 kDa and 6.47, respectively. The SeCP has a signal peptide site and no transmembrane domain, located outside the membrane. The secondary structure of SeCP contained 8 α-helixes, 7 β-strands, and 20 coils. The SeCP had 15 potential antigenic epitopes and 19 HLA-I restricted epitopes. Based on the phylogenetic analysis of SeCP, S. erinaceieuropaei has the closest evolutionary status with S. mansonoides. SeCP was a kind of proteolytic enzyme with a variety of biological functions and its antigenic epitopes could provide important insights on the diagnostic antigens and target molecular of antisparganum drugs. PMID:24392448

  20. Unusual Characteristics of the DNA Binding Domain of Epigenetic Regulatory Protein MeCP2 Determine Its Binding Specificity

    PubMed Central

    2015-01-01

    The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed. PMID:24828757

  1. Lactobacillus acidophilus CP23 with weak immunomodulatory activity lacks anchoring structure for surface layer protein.

    PubMed

    Yanagihara, Sae; Kato, Shinji; Ashida, Nobuhisa; Yamamoto, Naoyuki

    2015-05-01

    To determine the reason for the low levels of Surface layer protein A (SlpA) on CP23 cells, which might play a crucial role in the immunomodulatory effect of Lactobacillus acidophilus, the DNA sequence of the slpA gene of CP23 and L-92 strains, including the upstream region, were analyzed. Unexpectedly, there was no significant difference in the predicted amino acid sequence of the C-terminus needed for cell anchoring, and only an additional Ala-Val-Ala sequence inserted in the N-terminal region of the mature CP23 protein. Therefore, anchoring of SlpA on the cell wall of CP23 and L-92 was evaluated by a reconstitution assay, which showed that SlpA released by LiCl treatment from both CP23 and L-92 was successfully anchored on LiCl-treated L-92 cells, but not on LiCl-treated CP23 cells. Moreover, quantitative analysis of SlpA protein in the culture medium of CP23 and L-92 by ELISA revealed higher levels of SlpA secretion in CP23 cells than in L-92 cells. Collectively, these results suggest that the lower levels of SlpA on the surface of CP23 cells might be caused by less cell wall capacity for SlpA anchoring, leading to an accumulation of SlpA in the culture medium of CP23 cells. The present study supports the importance of cell surface structure of L. acidophilus L-92 for SlpA anchoring on the cell surface needed for immunomodulatory effect. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. cpSRP43 Is a Novel Chaperone Specific for Light-harvesting Chlorophyll a,b-binding Proteins*

    PubMed Central

    Falk, Sebastian; Sinning, Irmgard

    2010-01-01

    The biosynthesis of most membrane proteins is directly coupled to membrane insertion, and therefore, molecular chaperones are not required. The light-harvesting chlorophyll a,b-binding proteins (LHCPs) present a prominent exception as they are synthesized in the cytoplasm, and after import into the chloroplast, they are targeted and inserted into the thylakoid membrane. Upon arrival in the stroma, LHCPs form a soluble transit complex with the chloroplast signal recognition particle (cpSRP) consisting of an SRP54 homolog and the unique cpSRP43 composed of three chromodomains and four ankyrin repeats. Here we describe that cpSRP43 alone prevents aggregation of LHCP by formation of a complex with nanomolar affinity, whereas cpSRP54 is not required for this chaperone activity. Other stromal chaperones like trigger factor cannot replace cpSRP43, which implies that LHCPs require a specific chaperone. Although cpSRP43 does not have an ATPase activity, it can dissolve aggregates of LHCPs similar to chaperones of the Hsp104/ClpB family. We show that the LHCP-cpSRP43 interaction is predominantly hydrophobic but strictly depends on an intact DPLG motif between the second and third transmembrane region. The cpSRP43 ankyrin repeats that provide the binding site for the DPLG motif are sufficient for the chaperone function, whereas the chromodomains are dispensable. Taken together, we define cpSRP43 as a highly specific chaperone for LHCPs in addition to its established function as a targeting factor for this family of membrane proteins. PMID:20498370

  3. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    PubMed

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  4. Nitrogen metabolism and route of excretion in beef feedlot cattle fed barley-based backgrounding diets varying in protein concentration and rumen degradability.

    PubMed

    Koenig, K M; Beauchemin, K A

    2013-05-01

    The objectives of the study were to characterize the effects of CP concentration and ruminal degradability of barley-based backgrounding diets on route and chemical form of N excretion, ruminal fermentation, microbial protein synthesis, and nutrient digestion in beef cattle. Four Angus heifers (479 ± 14.6 kg average BW) with ruminal and duodenal cannulas were used in an experiment designed as a 4 × 4 Latin square. The basal diet consisted of 54% barley silage and 46% barley grain-based concentrate (DM basis). Dietary treatments included the basal diet with no added protein (12% CP) or diets formulated to contain 14% CP by supplementation with urea (UREA), urea and canola meal (UREA+CM), or urea, corn gluten meal, and xylose-treated soybean meal (UREA+CGM+xSBM). The amount of feed offered was restricted to 95% of ad libitum intake. There was no effect of the diets on DMI (P = 0.38), and therefore, N intake was less (P < 0.05) in heifers fed the 12% CP diets than the 14% CP diets. Fecal N output was not affected by the diet (P = 0.15), but urine N (P < 0.10) and urea N output were greater (P < 0.05) in heifers fed the 14% CP than the 12% CP diets. There was no effect of CP degradability (P > 0.10) on the amount of urine N output. Urine N output was 38.9 and 45.1 ± 5.50% of N intake in heifers fed the 12% CP and 14% CP diets (P < 0.05), respectively. Urea N, the form of N most susceptible to NH3-N volatilization and loss, was the major form of N in urine (75.5% in heifers fed the 12% CP diet and 81.4 ± 1.7% in heifers fed the 14% CP diets; P < 0.05). Supplemental RDP (UREA+CM) and RUP combined with urea (UREA+CGM+xSBM) to provide 14% CP increased (P < 0.05) ruminal NH3-N but had no effect on ruminal peptide N (P = 0.62) and free AA N (P = 0.18) concentration, the flow of microbial (P = 0.34) and feed (P = 0.55) N, and ruminal (starch, P = 0.11; NDF, P = 0.78) and total tract nutrient digestibility (OM, P = 0.21; starch, P = 0.16). Supplementation of barley-based backgrounding diets containing 12% CP with NPN alone or combined with ruminally degradable and undegradable true protein to attain 14% CP had no effect on fecal N output, but urine N and urea N increased irrespective of protein source. In addition, the ruminal degradability of the protein sources did not influence the composition of protein flowing to the intestine and site and extent of nutrient digestibility.

  5. Influence of low protein diets on gene expression of digestive enzymes and hormone secretion in the gastrointestinal tract of young weaned piglets.

    PubMed

    Tian, Zhi-Mei; Ma, Xian-Yong; Yang, Xue-Fen; Fan, Qiu-Li; Xiong, Yun-Xia; Qiu, Yue-Qin; Wang, Li; Wen, Xiao-Lu; Jiang, Zong-Yong

    To investigate dietary protein level effects on digestive mechanisms, weaned piglets were fed for 45 d with diets containing 20%, 17%, or 14% crude protein (CP) supplemented to meet requirements for essential amino acids. This article describes the influence of dietary protein on gastrointestinal hormones and expression of an array of digestive enzymes in the gastrointestinal tract and pancreas. Results indicated that there were no significant differences in expression of enzymes involved in carbohydrate digestion, except for maltase in the duodenum. In the jejunum, amylase expression in pigs fed 20% CP was much higher than that in pigs fed other diets (P<0.05) and maltase expression in those fed 17% CP was higher than that in other treatments (P<0.05). Although there were no remarkable differences in expression of aminopeptidase in the small intestine or carboxypeptidase in the pancreas (P>0.05), there was a trend towards higher expression of various proteases in pigs fed 17% CP. The duodenal expression of enteropeptidase in diets with 14% and 17% CP was significantly higher than that with 20% CP (P<0.05), but treatment differences did not existed in jejunum (P>0.05). The expression of GPR93 as a nutrient-responsive G protein-coupled receptor in 14% and 17% CP diets was significantly higher than that in 20% CP diet in the small intestine (P<0.05). The expressions of genes for pancreatic enzymes, lipase and elastase, were significantly higher in pigs fed diets with low CP, while similar trends occurred for carboxypeptidase, chymotrypsin and amylase. Conversely, the gastric expressions of pepsinogen A and progastricsin were lower with the 17% CP diet. Differences between treatments were found in the gastric antral contents of cholecystokinin and somatostatin: both increased in pigs fed 17% CP, accompanied by decreased content of motilin, which was also seen in plasma concentrations. These patterns were not reflected in duodenal contents. In general, 17% dietary CP was beneficial to the digestion of nutrient substance in the gastrointestinal tract.

  6. The mRNA-stabilizing factor HuR protein is targeted by β-TrCP protein for degradation in response to glycolysis inhibition.

    PubMed

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K; Chen, Ching-Shih

    2012-12-21

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, (296)EEAMAIAS(304), in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy.

  7. The mRNA-stabilizing Factor HuR Protein Is Targeted by β-TrCP Protein for Degradation in Response to Glycolysis Inhibition*

    PubMed Central

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K.; Chen, Ching-Shih

    2012-01-01

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, 296EEAMAIAS304, in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy. PMID:23115237

  8. Human Calprotectin Is an Iron-Sequestering Host-Defense Protein

    PubMed Central

    Nakashige, Toshiki G.; Zhang, Bo; Krebs, Carsten; Nolan, Elizabeth M.

    2015-01-01

    Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. The current working model states that CP sequesters manganese and zinc from pathogens. We report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of manganese, iron, and zinc. Microbial growth studies reveal that iron depletion by CP contributes to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of 57Fe(II)-bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits sub-picomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron and support a previously unappreciated role for CP in mammalian iron homeostasis. PMID:26302479

  9. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata

    USDA-ARS?s Scientific Manuscript database

    Eight iso-nitrogeneous (46% crude protein) and iso-lipidic (14% crude lipid) diets were formulated and prepared to replace menhaden fish meal (FM) protein (59.5% CP) by low-gossypol glandless meal (GCSM) protein (50.4% CP), solvent-extracted cottonseed meal (SCSM) protein (53.8% protein) and high go...

  10. Structure of a pentameric virion-associated fiber with a potential role in Orsay virus entry to host cells

    PubMed Central

    Yuan, Wang; Zhou, Ying; Wang, Tao; Demeler, Borries; Zhong, Weiwei; Tao, Yizhi J.

    2017-01-01

    Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a β-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells. PMID:28241071

  11. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  12. Dietary medium-chain triglycerides attenuate hepatic lipid deposition in growing rats with protein malnutrition.

    PubMed

    Kuwahata, Masashi; Kubota, Hiroyo; Amano, Saki; Yokoyama, Meiko; Shimamura, Yasuhiro; Ito, Shunsuke; Ogawa, Aki; Kobayashi, Yukiko; Miyamoto, Ken-ichi; Kido, Yasuhiro

    2011-01-01

    The objective of this study was to investigate the effects of dietary medium-chain triglycerides (MCT) on hepatic lipid accumulation in growing rats with protein malnutrition. Weaning rats were fed either a low-protein diet (3%, LP) or control protein diet (20%, CP), in combination with or without MCT. The four groups were as follows: CP-MCT, CP+MCT, LP-MCT, and LP+MCT. Rats in the CP-MCT, CP+MCT and LP+MCT groups were pair-fed their respective diets based on the amount of diet consumed by the LP-MCT group. Rats were fed each experimental diet for 30 d. Four weeks later, the respiratory quotient was higher in the LP-MCT group than those in the other groups during the fasting period. Hepatic triglyceride content increased in the LP groups compared with the CP groups. Hepatic triglyceride content in the LP+MCT group, however, was significantly decreased compared with that in the LP-MCT group. Levels of carnitine palmitoyltransferase (CPT) 1a mRNA and CPT2 mRNA were significantly decreased in the livers of the LP-MCT group, as compared with corresponding mRNA levels of the other groups. These results suggest that ingestion of a low-protein diet caused fatty liver in growing rats. However, when rats were fed the low-protein diet with MCT, hepatic triglyceride deposition was attenuated, and mRNA levels encoding CPT1a and CPT2 were preserved at the levels of rats fed control protein diets.

  13. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake

    PubMed Central

    Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae

    2011-01-01

    Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302

  14. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    PubMed Central

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  15. Levels of plasma ceruloplasmin protein are markedly lower following dietary copper deficiency in rodents

    PubMed Central

    Broderius, Margaret; Mostad, Elise; Wendroth, Krista; Prohaska, Joseph R.

    2010-01-01

    Ceruloplasmin (Cp) is a multicopper oxidase and the most abundant copper binding protein in vertebrate plasma. Loss of function mutations in humans or experimental deletion in mice result in iron overload consistent with a putative ferroxidase function. Prior work suggested plasma may contain multiple ferroxidases. Studies were conducted in Holtzman rats (Rattus novegicus), albino mice (Mus musculus), Cp -/- mice, and adult humans (Homo sapiens) to investigate the copper-iron interaction. Dietary copper-deficient (CuD) rats and mice were produced using a modified AIN-76A diet. Results confirmed that o-dianisidine is a better substrate than paraphenylene diamine (PPD) for assessing diamine oxidase activity of Cp. Plasma from CuD rat dams and pups, and CuD and Cp -/- mice contained no detectable Cp diamine oxidase activity. Importantly, no ferroxidase activity was detectable for CuD rats, mice, or Cp -/- mice compared to robust activity for copper-adequate (CuA) rodent controls using western membrane assay. Immunoblot protocols detected major reductions (60-90%) in Cp protein in plasma of CuD rodents but no alteration in liver mRNA levels by qRT-PCR. Data are consistent with apo-Cp being less stable than holo-Cp. Further research is needed to explain normal plasma iron in CuD mice. Reduction in Cp is a sensitive biomarker for copper deficiency. PMID:20170749

  16. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase.more » Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.« less

  17. PBOV1 Is a Human De Novo Gene with Tumor-Specific Expression That Is Associated with a Positive Clinical Outcome of Cancer

    PubMed Central

    Samusik, Nikolay; Krukovskaya, Larisa; Meln, Irina; Shilov, Evgeny; Kozlov, Andrey P.

    2013-01-01

    PBOV1 is a known human protein-coding gene with an uncharacterized function. We have previously found that PBOV1 lacks orthologs in non-primate genomes and is expressed in a wide range of tumor types. Here we report that PBOV1 protein-coding sequence is human-specific and has originated de novo in the primate evolution through a series of frame-shift and stop codon mutations. We profiled PBOV1 expression in multiple cancer and normal tissue samples and found that it was expressed in 19 out of 34 tumors of various origins but completely lacked expression in any of the normal adult or fetal human tissues. We found that, unlike the cancer/testis antigens that are typically controlled by CpG island-containing promoters, PBOV1 was expressed from a GC-poor TATA-containing promoter which was not influenced by CpG demethylation and was inactive in testis. Our analysis of public microarray data suggests that PBOV1 activation in tumors could be dependent on the Hedgehog signaling pathway. Despite the recent de novo origin and the lack of identifiable functional signatures, a missense SNP in the PBOV1 coding sequence has been previously associated with an increased risk of breast cancer. Using publicly available microarray datasets, we found that high levels of PBOV1 expression in breast cancer and glioma samples were significantly associated with a positive outcome of the cancer disease. We also found that PBOV1 was highly expressed in primary but not in recurrent high-grade gliomas, suggesting the presence of a negative selection against PBOV1-expressing cancer cells. Our findings could contribute to the understanding of the mechanisms behind de novo gene origin and the possible role of tumors in this process. PMID:23418531

  18. Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23).

    PubMed

    Alvarez-Pérez, Marco Antonio; Narayanan, Sampath; Zeichner-David, Margarita; Rodríguez Carmona, Bruno; Arzate, Higinio

    2006-03-01

    Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.

  19. Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation.

    PubMed

    Zhao, Qiong; Hu, Zhanying; Cheng, Junjun; Wu, Shuo; Luo, Yue; Chang, Jinhong; Hu, Jianming; Guo, Ju-Tao

    2018-07-01

    Hepatitis B virus (HBV) core protein consists of an N-terminal assembly domain and a C-terminal domain (CTD) with seven conserved serines or threonines that are dynamically phosphorylated/dephosphorylated during the viral replication cycle. Sulfamoylbenzamide derivatives are small molecular core protein allosteric modulators (CpAMs) that bind to the heteroaryldihydropyrimidine (HAP) pocket between the core protein dimer-dimer interfaces. CpAM binding alters the kinetics and pathway of capsid assembly and can result in the formation of morphologically "normal" capsids devoid of viral pregenomic RNA (pgRNA) and DNA polymerase. In order to investigate the mechanism underlying CpAM inhibition of pgRNA encapsidation, we developed an immunoblotting assay that can resolve core protein based on its phosphorylation status and demonstrated, for the first time, that core protein is hyperphosphorylated in free dimers and empty capsids from both mock-treated and CpAM-treated cells but is hypophosphorylated in pgRNA- and DNA-containing nucleocapsids. Interestingly, inhibition of pgRNA encapsidation by a heat shock protein 90 (HSP90) inhibitor prevented core protein dephosphorylation. Moreover, core proteins with point mutations at the wall of the HAP pocket, V124A and V124W, assembled empty capsids and nucleocapsids with altered phosphorylation status. The results thus suggest that core protein dephosphorylation occurs in the assembly of pgRNA and that interference with the interaction between core protein subunits at dimer-dimer interfaces during nucleocapsid assembly alters not only capsid structure, but also core protein dephosphorylation. Hence, inhibition of pgRNA encapsidation by CpAMs might be due to disruption of core protein dephosphorylation during nucleocapsid assembly. IMPORTANCE Dynamic phosphorylation of HBV core protein regulates multiple steps of viral replication. However, the regulatory function was mainly investigated by phosphomimetic mutagenesis, which disrupts the natural dynamics of core protein phosphorylation/dephosphorylation. Development of an immunoblotting assay capable of resolving hyper- and hypophosphorylated core proteins allowed us to track the phosphorylation status of core proteins existing as free dimers and the variety of intracellular capsids and to investigate the role of core protein phosphorylation/dephosphorylation in viral replication. Here, we found that disruption of core protein interaction at dimer-dimer interfaces during nucleocapsid assembly (by CpAMs or mutagenesis) inhibited core protein dephosphorylation and pgRNA packaging. Our work has thus revealed a novel function of core protein dephosphorylation in HBV replication and the mechanism by which CpAMs, a class of compounds that are currently in clinical trials for treatment of chronic hepatitis B, induce the assembly of empty capsids. Copyright © 2018 American Society for Microbiology.

  20. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    PubMed

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p < .05). Ruminal pH decreased (p < .05), but ruminal total VFA concentration increased (p < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate-to-propionate ratio increased (p = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p < .05) with increasing dietary CP level or MB supplementation. The results indicated that ruminal fermentation, nutrient degradability, microbial enzyme activity, ruminal bacterial populations and microbial protein synthesis improved with increasing dietary CP level or MB supplementation in steers. © 2017 Blackwell Verlag GmbH.

  1. Screening of Potential Inhibitor against Coat Protein of Apple Chlorotic Leaf Spot Virus.

    PubMed

    Purohit, Rituraj; Kumar, Sachin; Hallan, Vipin

    2018-06-01

    In this study, we analyzed Coat protein (CP) of Apple chlorotic leaf spot virus (ACLSV), an important latent virus on Apple. Incidence of the virus is upto 60% in various apple cultivars, affecting yield losses of the order of 10-40% (depending upon the cultivar). CP plays an important role as the sole building block of the viral capsid. Homology approach was used to model 193 amino acid sequence of the coat protein. We used various servers such as ConSurf, TargetS, OSML, COACH, COFACTOR for the prediction of active site residues in coat protein. Virtual screening strategy was employed to search potential inhibitors for CP. Top twenty screened molecules considered for drugability, and toxicity analysis and one potential molecule was further analyzed by docking analysis. Here, we reported a potent molecule which could inhibit the formation of viron assembly by targeting the CP protein of virus.

  2. [Relationship and interaction between folate and expression of methyl-CpG-binding protein 2 in cervical cancerization].

    PubMed

    Li, Q L; Ding, L; Nan, J; Liu, C L; Yang, Z K; Chen, F; Liang, Y L; Wang, J T

    2016-07-01

    To explore the interaction between folate and the expression of methyl-CpG-binding protein 2(MeCP2)in cervical cancerization. Forty one patients diagnosed with cervical squamous cell carcinoma(SCC), 71 patients diagnosed with cervical intraepithelial neoplasm(CIN1, n=34; CIN2 +, n=37)and 61 women with normal cervix(NC)were recruited in this study. Microbiological assay was conducted to detect the levels of serum folate and RBC folate, Western blot assay and real-time PCR were performed to detect the expression levels of MeCP2 protein and mRNA, respectively. The data were analyzed by Kruskal-Wallis H test, χ(2) test, trend χ(2) test and Spearman correlation with SPSS statistical software(version 20.0), and the interaction were evaluated by using generalized multifactor dimensionality reduction(GMDR)model. The levels of serum folate(H=44.71, P<0.001; trend χ(2)=24.48, P<0.001)and RBC folate(H=5.28, P<0.001; trend χ(2)=3.83, P<0.05)decreased gradually along with the severity of cervical lesions. There was a positive correlation between serum folate level and RBC folate level(r=0.270, P< 0.001). The expression levels of MeCP2 protein(H=33.72, P<0.001; trend χ(2)=14.74, P<0.001)and mRNA(H=19.50, P<0.001; trend χ(2)=10.74, P<0.001)increased gradually along with the severity of cervical lesions. There were negative correlation between folate level and the expression level of MeCP2 protein(serum folate: r=-0.226, P=0.003; RBC folate: r=-0.164, P=0.004). Moreover, the results by GMDR model revealed there were interaction among serum folate deficiency, RBC folate deficiency, MeCP2 protein high expression and MeCP2 mRNA high expression in SCC and CIN2 + patients. Folate deficiency and high expression of MeCP2 gene might increase the risk of cervical cancer and its precancerous lesions through interaction among serum folate deficiency, RBC folate deficiency, MeCP2 protein high expression and mRNA high expression in the progression of cervical cancerization.

  3. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA.

    PubMed

    Morishita, Masaki; Takahashi, Yuki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-12-01

    For cancer immunotherapy via tumor antigen vaccination in combination with an adjuvant, major challenges include the identification of a particular tumor antigen and efficient delivery of the antigen as well as adjuvant to antigen-presenting cells. In this study, we proposed an efficient exosome-based tumor antigens-adjuvant co-delivery system using genetically engineered tumor cell-derived exosomes containing endogenous tumor antigens and immunostimulatory CpG DNA. Murine melanoma B16BL6 cells were transfected with a plasmid vector encoding a fusion streptavidin (SAV; a protein that binds to biotin with high affinity)-lactadherin (LA; an exosome-tropic protein) protein, yielding genetically engineered SAV-LA-expressing exosomes (SAV-exo). SAV-exo were combined with biotinylated CpG DNA to prepare CpG DNA-modified exosomes (CpG-SAV-exo). Fluorescent microscopic observation revealed the successful modification of exosomes with CpG DNA by SAV-biotin interaction. CpG-SAV-exo showed efficient and simultaneous delivery of exosomes with CpG DNA to murine dendritic DC2.4 cells in culture. Treatment with CpG-SAV-exo effectively activated DC2.4 cells and enhanced tumor antigen presentation capacity. Immunization with CpG-SAV-exo exhibited stronger in vivo antitumor effects in B16BL6 tumor-bearing mice than simple co-administration of exosomes and CpG DNA. Thus, genetically engineered CpG-SAV-exo is an effective exosome-based tumor antigens-adjuvant co-delivery system that will be useful for cancer immunotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of feeding wheat or corn-wheat dried distillers grains with solubles in low- or high-crude protein diets on ruminal function, omasal nutrient flows, urea-N recycling, and performance in cows.

    PubMed

    Chibisa, G E; Mutsvangwa, T

    2013-10-01

    A study was conducted to determine the effects of including either wheat-based (W-DDGS) or corn-wheat blend (B-DDGS) dried distillers grains with solubles as the major protein source in low- or high-crude protein (CP) diets fed to dairy cows on ruminal function, microbial protein synthesis, omasal nutrient flows, urea-N recycling, and milk production. Eight lactating Holstein cows (768.5 ± 57.7 kg of body weight; 109.5 ± 40.0 d in milk) were used in a replicated 4 × 4 Latin square design with 28-d periods (18d of dietary adaptation and 10d of measurements) and a 2 × 2 factorial arrangement of dietary treatments. Four cows in one Latin square were ruminally cannulated for the measurement of ruminal fermentation characteristics, microbial protein synthesis, urea-N recycling kinetics, and omasal nutrient flow. The treatment factors were type of distillers co-product (W-DDGS vs. B-DDGS) and dietary CP content [15.2 vs. 17.3%; dry matter (DM) basis]. The B-DDGS was produced from a mixture of 15% wheat and 85% corn grain. All diets were formulated to contain 10% W-DDGS or B-DDGS on a DM basis. No diet effect was observed on DM intake. Yields of milk, fat, protein, and lactose, and plasma urea-N and milk urea-N concentrations were lower in cows fed the low-CP compared with those fed the high-CP diet. Although feeding B-DDGS tended to reduce ruminal ammonia-N (NH3-N) concentration compared with feeding W-DDGS (9.3 vs. 10.5mg/dL), no differences were observed in plasma urea-N and milk urea-N concentrations. Additionally, dietary inclusion of B-DDGS compared with W-DDGS did not affect rumen-degradable protein supply, omasal flows of total N, microbial nonammonia N (NAN), rumen-undegradable protein, and total NAN, or urea-N recycling kinetics and milk production. However, cows fed the low-CP diet had lower N intake, rumen-degradable protein supply, ruminal NH3-N concentration, and omasal flows of N, microbial NAN, and total NAN compared with those fed the high-CP diet. Feeding the low-CP compared with the high-CP diet also resulted in lower endogenous urea-N production, urea-N recycled to the gastrointestinal tract, and urea-N excretion in urine. In summary, our results indicate that both W-DDGS and B-DDGS can be included as the major protein sources in dairy cow diets without compromising nutrient supply and production performance. However, feeding the low-CP diet lowered omasal flows of microbial protein and metabolizable protein, which, in turn, resulted in lower milk production compared with feeding the high-CP diet. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium

    PubMed Central

    Yang, Jiao; Yue, Ming; Niu, Chuan; Ma, Xiong-Feng; Li, Zhong-Hu

    2017-01-01

    Notopterygium H. de Boissieu (Apiaceae) is an endangered perennial herb endemic to China. A good knowledge of phylogenetic evolution and population genomics is conducive to the establishment of effective management and conservation strategies of the genus Notopterygium. In this study, the complete chloroplast (cp) genomes of four Notopterygium species (N. incisum C. C. Ting ex H. T. Chang, N. oviforme R. H. Shan, N. franchetii H. de Boissieu and N. forrestii H. Wolff) were assembled and characterized using next-generation sequencing. We investigated the gene organization, order, size and repeat sequences of the cp genome and constructed the phylogenetic relationships of Notopterygium species based on the chloroplast DNA and nuclear internal transcribed spacer (ITS) sequences. Comparative analysis of plastid genome showed that the cp DNA are the standard double-stranded molecule, ranging from 157,462 bp (N. oviforme) to 159,607 bp (N. forrestii) in length. The circular DNA each contained a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs). The cp DNA of four species contained 85 protein-coding genes, 37 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes, respectively. We determined the marked conservation of gene content and sequence evolutionary rate in the cp genome of four Notopterygium species. Three genes (psaI, psbI and rpoA) were possibly under positive selection among the four sampled species. Phylogenetic analysis showed that four Notopterygium species formed a monophyletic clade with high bootstrap support. However, the inconsistent interspecific relationships with the genus Notopterygium were identified between the cp DNA and ITS markers. The incomplete lineage sorting, convergence evolution or hybridization, gene infiltration and different sampling strategies among species may have caused the incongruence between the nuclear and cp DNA relationships. The present results suggested that Notopterygium species may have experienced a complex evolutionary history and speciation process. PMID:28422071

  6. Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid Eutreptiella pomquetensis

    PubMed Central

    Bennett, Matthew S.; Triemer, Richard E.; Preisfeld, Angelika

    2017-01-01

    Background Over the last few years multiple studies have been published showing a great diversity in size of chloroplast genomes (cpGenomes), and in the arrangement of gene clusters, in the Euglenales. However, while these genomes provided important insights into the evolution of cpGenomes across the Euglenales and within their genera, only two genomes were analyzed in regard to genomic variability between and within Euglenales and Eutreptiales. To better understand the dynamics of chloroplast genome evolution in early evolving Eutreptiales, this study focused on the cpGenome of Eutreptiella pomquetensis, and the spread and peculiarities of introns. Methods The Etl. pomquetensis cpGenome was sequenced, annotated and afterwards examined in structure, size, gene order and intron content. These features were compared with other euglenoid cpGenomes as well as those of prasinophyte green algae, including Pyramimonas parkeae. Results and Discussion With about 130,561 bp the chloroplast genome of Etl. pomquetensis, a basal taxon in the phototrophic euglenoids, was considerably larger than the two other Eutreptiales cpGenomes sequenced so far. Although the detected quadripartite structure resembled most green algae and plant chloroplast genomes, the gene content of the single copy regions in Etl. pomquetensis was completely different from those observed in green algae and plants. The gene composition of Etl. pomquetensis was extensively changed and turned out to be almost identical to other Eutreptiales and Euglenales, and not to P. parkeae. Furthermore, the cpGenome of Etl. pomquetensis was unexpectedly permeated by a high number of introns, which led to a substantially larger genome. The 51 identified introns of Etl. pomquetensis showed two major unique features: (i) more than half of the introns displayed a high level of pairwise identities; (ii) no group III introns could be identified in the protein coding genes. These findings support the hypothesis that group III introns are degenerated group II introns and evolved later. PMID:28852596

  7. Cloning and characterisation of a putative pollen-specific polygalacturonase gene (CpPG1) differentially regulated during pollen development in zucchini (Cucurbita pepo L.).

    PubMed

    Carvajal, F; Garrido, D; Jamilena, M; Rosales, R

    2014-03-01

    Studies in zucchini (Cucurbita pepo L. spp. pepo) pollen have been limited to the viability and morphology of the mature pollen grain. The enzyme polygalacturonase (PG) is involved in pollen development and pollination in many species. In this work, we study anther and pollen development of C. pepo and present the cloning and characterisation of a putative PG CpPG1 (Accession no. HQ232488) from pollen cDNA in C. pepo. The predicted protein for CpPG1 has 416 amino acids, with a high homology to other pollen PGs, such as P22 from Oenothera organensis (76%) and PGA3 from Arabidopsis thaliana (73%). CpPG1 belongs to clade C, which comprises PGs expressed in pollen, and presents a 34 amino acid signal peptide for secretion towards the cell wall. DNA-blot analysis revealed that there are at least another two genes that code for PGs in C. pepo. The spatial and temporal accumulation of CpPG1 was studied by semi-quantitative- and qRT-PCR. In addition, mRNA was detected only in anthers, pollen and the rudimentary anthers of bisexual flowers (only present in some zucchini cultivars under certain environmental conditions that trigger anther development in the third whorl of female flowers). However, no expression was detected in cotyledons, stem or fruit. Furthermore, CpPG1 mRNA was accumulated throughout anther development, with the highest expression found in mature pollen. Similarly, exo-PG activity increased from immature anther stages to mature anthers and mature pollen. Overall, these data support the pollen specificity of this gene and suggest an involvement of CpPG1 in pollen development in C. pepo. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Raw mechanically separated chicken meat and salmon protein hydrolysate as protein sources in extruded dog food: effect on protein and amino acid digestibility.

    PubMed

    Tjernsbekk, M T; Tauson, A-H; Kraugerud, O F; Ahlstrøm, Ø

    2017-10-01

    Protein quality was evaluated for mechanically separated chicken meat (MSC) and salmon protein hydrolysate (SPH), and for extruded dog foods where MSC or SPH partially replaced poultry meal (PM). Apparent total tract digestibility (ATTD) of crude protein (CP) and amino acids (AA) in the protein ingredients and extruded foods was determined with mink (Neovison vison). The extruded dog foods included a control diet with protein from PM and grain, and two diets where MSC or SPH provided 25% of the dietary CP. Nutrient composition of the protein ingredients varied, dry matter (DM) was 944.0, 358.0 and 597.4 g/kg, CP was 670.7, 421.2 and 868.9 g/kg DM, crude fat was 141.4, 547.8 and 18.5 g/kg DM and ash was 126.4, 32.1 and 107.0 g/kg DM for PM, MSC and SPH respectively. The content of essential AA (g/100 g CP) was more than 10.0 percentage units lower in SPH than in PM and MSC. The ATTD of CP differed (p < 0.001) between protein ingredients and was 80.9%, 88.2% and 91.3% for PM, MSC and SPH respectively. The ATTD of total AA was lowest (p < 0.001) for PM, and similar (p > 0.05) for MSC and SPH. In the extruded diets, the expected higher ATTD of CP and AA from replacement of PM with MSC or SPH was not observed. The ATTD of CP was determined to be 80.3%, 81.3% and 79.0% for the PM, MSC and SPH extruded foods respectively. Furthermore, the ATTD of several AA was numerically highest for the PM diet. Possibly, extrusion affected ATTD of the diets differently due to different properties and previous processing of the three protein ingredients. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.

  9. The impact of dietary protein levels on nutrient digestibility and water and nitrogen balances in eventing horses.

    PubMed

    Oliveira, C A A; Azevedo, J F; Martins, J A; Barreto, M P; Silva, V P; Julliand, V; Almeida, F Q

    2015-01-01

    This study was performed to evaluate the impact of dietary protein levels on nutrient digestibility and water and nitrogen balances in conditioning eventing horses. Twenty-four Brazilian Sport Horses, male and female (8.0 to 15.0 yr; 488 ± 32 kg BW), were used in a randomized design with 4 levels of CP diets: 7.5%, 9.0%, 11.0%, and 13.0%. A digestion assay was performed with partial feces collection over 4 d, followed by 1 d of total urine collection. Data were submitted to regression analysis and adjusted to linear and quadratic models (P < 0.05). No differences were observed in the intake of DM, OM, EE, ADF, and NDF as a function of dietary protein levels. Dry matter intake average was 1.7% of BW. CP and N intake showed a linear increase as a function of increasing protein level in diets. A quadratic response (P < 0.05) was observed on the CP and NDF digestibility coefficients, with the maximum estimated level of digestibility at 11.6% and 11.4% CP in the diet, respectively. There was a linear effect on ADF digestibility coefficients, digestible DM and protein intake, and CP/DE ratio according to dietary protein levels. There was no impact of dietary protein levels on daily water intake, total water intake, or fecal water excretion. Urinary excretion values showed a linear increase in response to increased dietary protein levels, but no impact was observed on water balance, with an average of 8.4 L/d. Nitrogen intake (NI), N absorption (NA), and urinary N increased linearly as a function of increasing dietary protein levels. There was no impact of dietary protein levels on N retention (NR), with an average of 7.5 g N/d. Nitrogen retention as a percentage of NI or NA showed no significant changes in the function of dietary protein levels. There was an impact of dietary protein levels on the digestibility coefficient of CP, NDF, ADF, and digestible protein intake on conditioning eventing horses. The 11.6% CP level in the diet provided an intake of 2.25 g CP/kg BW and 0.37 g N/kg BW, and this intake was the most appropriate for the conditioning of intensely exercised horses, considering the responses related to NI, NA, and the estimated NR to NA ratio. The NDF and ADF responses indicated that dietary fiber was more digested with an increased amount of N in the digestive tract.

  10. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome

    PubMed Central

    Tai, Derek J. C.; Liu, Yen C.; Hsu, Wei L.; Ma, Yun L.; Cheng, Sin J.; Liu, Shau Y.; Lee, Eminy H. Y.

    2016-01-01

    The methyl-CpG-binding protein 2 (MeCP2) gene, MECP2, is an X-linked gene encoding the MeCP2 protein, and mutations of MECP2 cause Rett syndrome (RTT). However, the molecular mechanism of MECP2-mutation-caused RTT is less known. Here we find that MeCP2 could be SUMO-modified by the E3 ligase PIAS1 at Lys-412. MeCP2 phosphorylation (at Ser-421 and Thr-308) facilitates MeCP2 SUMOylation, and MeCP2 SUMOylation is induced by NMDA, IGF-1 and CRF in the rat brain. MeCP2 SUMOylation releases CREB from the repressor complex and enhances Bdnf mRNA expression. Several MECP2 mutations identified in RTT patients show decreased MeCP2 SUMOylation. Re-expression of wild-type MeCP2 or SUMO-modified MeCP2 in Mecp2-null neurons rescues the deficits of social interaction, fear memory and LTP observed in Mecp2 conditional knockout (cKO) mice. These results together reveal an important role of MeCP2 SUMOylation in social interaction, memory and synaptic plasticity, and that abnormal MeCP2 SUMOylation is implicated in RTT. PMID:26842955

  11. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNAmore » binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.« less

  12. Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection.

    PubMed

    Martínez-Turiño, Sandra; Pérez, José De Jesús; Hervás, Marta; Navajas, Rosana; Ciordia, Sergio; Udeshi, Namrata D; Shabanowitz, Jeffrey; Hunt, Donald F; García, Juan Antonio

    2018-06-01

    Phosphorylation and O-GlcNAcylation are two widespread post-translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O-GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N-terminus and the beginning of the core region. In contrast with the 'yin-yang' mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O-GlcNAcylated (serines Ser-25, Ser-81, Ser-101 and Ser-118). Our findings show that PPV CP can be concurrently phosphorylated and O-GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser-25 in virions recovered from O-GlcNAcylation-deficient plants, suggesting that crosstalk between O-GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O-GlcNAcylation in the N-proximal segment of CP allows a fine-tuning of protein stability, providing the amount of CP required in each step of viral infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  13. Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats

    PubMed Central

    Wang, Wanyi; Ding, Zhenping; Solares, Geoffrey J.; Choi, Soon-Mi; Wang, Bo; Yoon, Aram; Farrar, Roger P.; Ivy, John L.

    2017-01-01

    The objective of the study was to investigate whether co-ingestion of carbohydrate and protein as compared with protein alone augments muscle protein synthesis (MPS) during early exercise recovery. Two months old rats performed 10 repetitions of ladder climbing with 75% of body weight attached to their tails. Placebo (PLA), whey protein (WP), or whey protein plus carbohydrate (CP) was then given to rats by gavage. An additional group of sedentary rats (SED) was used as controls. Blood samples were collected immediately and at either 1 or 2 h after exercise. The flexor hallucis longus muscle was excised at 1 or 2 h post exercise for analysis of MPS and related signaling proteins. MPS was significantly increased by CP compared with PLA (p<0.05), and approached significance compared with WP at 1 h post exercise (p = 0.08). CP yielded a greater phosphorylation of mTOR compared with SED and PLA at 1 h post exercise and SED and WP at 2 h post exercise. CP also increased phosphorylation of p70S6K compared with SED at 1 and 2 h post exercise. 4E-BP1 phosphorylation was inhibited by PLA at 1 h but elevated by WP and CP at 2 h post exercise relative to SED. The phosphorylation of AMPK was elevated by exercise at 1 h post exercise, and this elevated level was sustained only in the WP group at 2 h. The phosphorylation of Akt, GSK3, and eIF2Bε were unchanged by treatments. Plasma insulin was transiently increased by CP at 1 h post exercise. In conclusion, post-exercise CP supplementation increases MPS post exercise relative to PLA and possibly WP, which may have been mediated by greater activation of the mTOR signaling pathway. PMID:28296942

  14. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Lindley, P. F.; Fox, P. L.

    1997-01-01

    Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

  15. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium.

    PubMed

    FitzGerald, Paul; Sun, Ning; Shibata, Brad; Hess, John F

    2016-01-01

    The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely exclude vimentin and α-tubulin. In the CP49 and filensin knockouts, this structure is absent, confirming the identity of CP49 and filensin in this structure, and suggesting a requirement for the physiologic coassembly of CP49 and filensin. CP49 and filensin have been considered robust markers for mouse lens fiber cell differentiation. The data reported here, however, document both proteins in the mouse lens epithelium, but only after 5 weeks of age, when lens epithelial growth and mitotic activity have slowed. Because of this, CP49 and filensin must be considered markers of differentiation for both fiber cells and the lens epithelium in the mouse. In addition, to our knowledge, no other protein has been shown to emerge so late in the development of the mouse lens epithelium, suggesting that lens epithelial differentiation may continue well into post-natal life. If this structure is related to the aggresome, it is a rare, or perhaps unique example of a large, stable aggresome in wild-type tissue.

  16. Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

    PubMed Central

    Kim, Nam-Gyu; Seo, Eun-Young; Han, Sang-Hyuk; Gong, Jun-Su; Park, Cheol-Nam; Park, Ho-Seop; Domier, Leslie L; Hammond, John; Lim, Hyoun-Sub

    2017-01-01

    Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004. PMID:28811756

  17. Effects of Static or Oscillating Dietary Crude Protein Levels on Fermentation Dynamics of Beef Cattle Diets Using a Dual-Flow Continuous Culture System

    PubMed Central

    Benedeti, Pedro Del Bianco; da Silva, Lorrayny Galoro; de Paula, Eduardo Marostegan; Monteiro, Hugo Fernando; Shenkoru, Teshome; Santos, Stefanie Alvarenga; Poulson, Simon Roger

    2016-01-01

    The objective of this study was to evaluate the effects of increasing dietary crude protein (CP) levels and also comparing the effects of static versus oscillating dietary CP on ruminal nutrient digestibility, ruminal fermentation, nitrogen (N) metabolism, and microbial efficiency in beef cattle diets using a dual-flow continuous culture system. Eight fermenters (1,223 ± 21 mL) were used in a replicated 4 x 4 Latin square design with periods lasting 12 d each (8 d for adaptation and 4 d for sampling). Dietary treatments were: 1) 10% CP, 2) 12% CP, 3) 14% CP, and 4) 10 and 14% CP diets oscillating at 48-h intervals. Experimental diets consisted of 50% orchard hay and 50% concentrate. Fermenters were fed 72 g/d and solid and liquid dilution rates were adjusted to 5.5 and 11%/h, respectively. Data were analyzed using the MIXED procedure in SAS with α = 0.05. Apparent and true ruminal digestibilities of dry matter and organic matter were not affected (P > 0.05) by increasing dietary CP, nor by oscillating dietary CP. Total volatile fatty acids concentration and molar proportions of acetate, propionate, butyrate, valerate, iso-butyrate and iso-valerate were not affected (P > 0.05) by increasing or oscillating dietary CP. Ruminal NH3-N concentration increased linearly (P < 0.01) in response to increasing dietary CP. Total N, non-ammonia N, and rumen undegraded protein flows did not differ among treatments or between oscillating dietary CP and static 12% CP. Microbial N and NH3-N flows and microbial efficiency did not differ when comparing oscillating versus static CP (P > 0.05). However, there was a quadratic effect (P < 0.05) for these variables when dietary CP was increased. These results indicate that either ruminal microorganisms do not respond to oscillating CP levels or are capable of coping with 48-h periods of undernourishment. PMID:28036405

  18. Effect of supplementing rumen-protected methionine on production and nitrogen excretion in lactating dairy cows.

    PubMed

    Broderick, G A; Stevenson, M J; Patton, R A; Lobos, N E; Olmos Colmenero, J J

    2008-03-01

    Two 4 x 4 Latin square trials (4-wk periods; 16 wk total) were conducted to see whether supplementing rumen-protected Met (RPM; fed as Mepron) would allow feeding less crude protein (CP), thereby reducing urinary N excretion, but without losing production. In trial 1, 24 Holsteins were fed 4 diets as total mixed rations containing [dry matter (DM) basis]: 18.6% CP and 0 g of RPM/d; 17.3% CP and 5 g of RPM/d; 16.1% CP and 10 g of RPM/d; or 14.8% CP and 15 g of RPM/d. Dietary CP was reduced by replacing soybean meal with high-moisture shelled corn. All diets contained 21% alfalfa silage, 28% corn silage, 4.5% roasted soybeans, 5.8% soyhulls, 0.6% sodium bicarbonate, 0.5% vitamins and minerals, and 27% neutral detergent fiber. There was no effect of diet on intake, weight gain, or yields of protein, lactose, and solids-not-fat. However, production was greater at 17.3% CP plus RPM and 16.1% CP plus RPM than on the other 2 diets. Apparent N efficiency (milk N:N intake) was greatest on the lowest CP diet containing the most RPM. Linear reductions in milk urea N and urinary N excretion were observed with lower dietary CP. In trial 2, 32 Holsteins were fed 4 diets as total mixed rations, formulated from ingredients used in trial 1 and containing 16.1 or 17.3% CP with 0 or 10 g of RPM/d. On average, cows were calculated to be in negative N balance on all diets because of lower than expected DM intake. There was no effect of RPM supplementation on any production trait. However, higher CP gave small increases in yields of milk, protein, and solids-not-fat and tended to increase DM intake and lactose yield. Apparent N efficiency was greater, and milk urea nitrogen was lower, on 16.1% CP. In trial 1, feeding lower CP diets supplemented with RPM resulted in improved N efficiency and reduced urinary N excretion. However, in trial 2, reducing dietary CP from 17.3 to 16.1% reduced milk secretion, an effect that was not reversed by RPM supplementation at low DM intakes when cows were apparently mobilizing body protein.

  19. Supplementation of protease, alone and in combination with fructooligosaccharide to low protein diet for finishing pigs.

    PubMed

    Lei, Xin Jian; Cheong, Jin Young; Park, Jae Hong; Kim, In Ho

    2017-12-01

    Effects of adding protease with or without fructooligosaccharide (FOS) to low protein diet on growth performance, nutrient digestibility and fecal noxious gas emission were evaluated in 160 finishing pigs (57.70 ± 1.16 kg) in a 9-week study. Pigs were randomly divided into four dietary treatments, PC: positive control diet (15.97% crude protein (CP)); NC: negative control diet (12.94% CP); PRO: NC supplemented with 0.05% protease; PROFOS: NC supplemented with 0.05% protease and 0.1% FOS. During weeks 4-9 and weeks 0-9, gain : feed ratio was impaired (P < 0.05) in pigs fed NC diet compared with those fed PC, PRO and PROFOS diets. Pigs fed PC, PRO and PROFOS diets had higher (P < 0.05) apparent total tract digestibility (ATTD) of CP than pigs fed NC diet. Pigs fed PROFOS diet had reduced (P < 0.05) ammonia emissions compared to pigs fed NC and PRO diets. These data indicate that reducing dietary CP concentrations impaired growth performance, decreased ATTD of CP and reduced ammonia emissions. Supplementation of protease in low CP diet improved growth performance and increased ATTD of CP. Dietary supplementation with protease and FOS in low CP diet improved growth performance, increased ATTD of CP and decreased fecal ammonia emission. © 2017 Japanese Society of Animal Science.

  20. Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana.

    PubMed

    Moon, Ju Yeon; Lee, Jeong Hee; Oh, Chang-Sik; Kang, Hong-Gu; Park, Jeong Mee

    2016-12-01

    HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance. © 2016 BSPP and John Wiley & Sons Ltd.

  1. CiPerGenesis, A Mutagenesis Approach that Produces Small Libraries of Circularly Permuted Proteins Randomly Opened at a Focused Region: Testing on the Green Fluorescent Protein.

    PubMed

    Gaytán, Paul; Roldán-Salgado, Abigail; Yáñez, Jorge A; Morales-Arrieta, Sandra; Juárez-González, Víctor R

    2018-06-12

    Circularly permuted proteins (cpPs) represent a novel type of mutant proteins with original termini that are covalently linked through a peptide connector and opened at any other place of the polypeptide backbone to create new ends. cpPs are finding wide applications in biotechnology because their properties may be quite different from those of the parental protein. However, the actual challenge for the creation of successful cpPs is to identify those peptide bonds that can be broken to create new termini and ensure functional and well-folded cpPs. Herein, we describe CiPerGenesis, a combinatorial mutagenesis approach that uses two oligonucleotide libraries to amplify a circularized gene by PCR, starting and ending from a focused target region. This approach creates small libraries of circularly permuted genes that are easily cloned in the correct direction and frame using two different restriction sites encoded in the oligonucleotides. Once expressed, the protein libraries exhibit a unique sequence diversity, comprising cpPs that exhibit ordinary breakpoints between adjacent amino acids localized at the target region as well as cpPs with new termini containing user-defined truncations and repeats of some amino acids. CiPerGenesis was tested at the lid region G134-H148 of green fluorescent protein (GFP), revealing that the most fluorescent variants were those starting at Leu141 and ending at amino acids Tyr145, Tyr143, Glu142, Leu141, Lys140, and H139. Purification and biochemical characterization of some variants suggested a differential expression, solubility and maturation extent of the mutant proteins as the likely cause for the variability in fluorescence intensity observed in colonies.

  2. Effect of replacing dietary soybean meal with canola meal on production of lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Previous research suggested that crude protein (CP) from canola meal (CM) was used more efficiently that CP from solvent soybean meal (SBM) by lactating dairy cows. We wished to test whether CM was more effective than SBM on low CP (14.9% CP) than high CP (16.8% CP) diets and to see if it was advant...

  3. Ceruloplasmin and cardiovascular disease

    NASA Technical Reports Server (NTRS)

    Fox, P. L.; Mazumder, B.; Ehrenwald, E.; Mukhopadhyay, C. K.

    2000-01-01

    Transition metal ion-mediated oxidation is a commonly used model system for studies of the chemical, structural, and functional modifications of low-density lipoprotein (LDL). The physiological relevance of studies using free metal ions is unclear and has led to an exploration of free metal ion-independent mechanisms of oxidation. We and others have investigated the role of human ceruloplasmin (Cp) in oxidative processes because it the principal copper-containing protein in serum. There is an abundance of epidemiological data that suggests that serum Cp may be an important risk factor predicting myocardial infarction and cardiovascular disease. Biochemical studies have shown that Cp is a potent catalyst of LDL oxidation in vitro. The pro-oxidant activity of Cp requires an intact structure, and a single copper atom at the surface of the protein, near His(426), is required for LDL oxidation. Under conditions where inhibitory protein (such as albumin) is present, LDL oxidation by Cp is optimal in the presence of superoxide, which reduces the surface copper atom of Cp. Cultured vascular endothelial and smooth muscle cells also oxidize LDL in the presence of Cp. Superoxide release by these cells is a critical factor regulating the rate of oxidation. Cultured monocytic cells, when activated by zymosan, can oxidize LDL, but these cells are unique in their secretion of Cp. Inhibitor studies using Cp-specific antibodies and antisense oligonucleotides show that Cp is a major contributor to LDL oxidation by these cells. The role of Cp in lipoprotein oxidation and atherosclerotic lesion progression in vivo has not been directly assessed and is an important area for future studies.

  4. A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome

    PubMed Central

    Samaco, Rodney C.; Fryer, John D.; Ren, Jun; Fyffe, Sharyl; Chao, Hsiao-Tuan; Sun, Yaling; Greer, John J.; Zoghbi, Huda Y.; Neul, Jeffrey L.

    2008-01-01

    Rett Syndrome, an X-linked dominant neurodevelopmental disorder characterized by regression of language and hand use, is primarily caused by mutations in methyl-CpG-binding protein 2 (MECP2). Loss of function mutations in MECP2 are also found in other neurodevelopmental disorders such as autism, Angelman-like syndrome and non-specific mental retardation. Furthermore, duplication of the MECP2 genomic region results in mental retardation with speech and social problems. The common features of human neurodevelopmental disorders caused by the loss or increase of MeCP2 function suggest that even modest alterations of MeCP2 protein levels result in neurodevelopmental problems. To determine whether a small reduction in MeCP2 level has phenotypic consequences, we characterized a conditional mouse allele of Mecp2 that expresses 50% of the wild-type level of MeCP2. Upon careful behavioral analysis, mice that harbor this allele display a spectrum of abnormalities such as learning and motor deficits, decreased anxiety, altered social behavior and nest building, decreased pain recognition and disrupted breathing patterns. These results indicate that precise control of MeCP2 is critical for normal behavior and predict that human neurodevelopmental disorders will result from a subtle reduction in MeCP2 expression. PMID:18321864

  5. Nucleotide sequence of the coat protein gene of Lettuce big-vein virus.

    PubMed

    Sasaya, T; Ishikawa, K; Koganezawa, H

    2001-06-01

    A sequence of 1425 nt was established that included the complete coat protein (CP) gene of Lettuce big-vein virus (LBVV). The LBVV CP gene encodes a 397 amino acid protein with a predicted M(r) of 44486. Antisera raised against synthetic peptides corresponding to N-terminal or C-terminal parts of the LBVV CP reacted in Western blot analysis with a protein with an M(r) of about 48000. RNA extracted from purified particles of LBVV by using proteinase K, SDS and phenol migrated in gels as two single-stranded RNA species of approximately 7.3 kb (ss-1) and 6.6 kb (ss-2). After denaturation by heat and annealing at room temperature, the RNA migrated as four species, ss-1, ss-2 and two additional double-stranded RNAs (ds-1 and ds-2). The Northern blot hybridization analysis using riboprobes from a full-length clone of the LBVV CP gene indicated that ss-2 has a negative-sense nature and contains the LBVV CP gene. Moreover, ds-2 is a double-stranded form of ss-2. Database searches showed that the LBVV CP most resembled the nucleocapsid proteins of rhabdoviruses. These results indicate that it would be appropriate to classify LBVV as a negative-sense single-stranded RNA virus rather than as a double-stranded RNA virus.

  6. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    PubMed

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-02

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds.

    PubMed

    Peng, Quanhui; Khan, Nazir A; Wang, Zhisheng; Yu, Peiqiang

    2014-01-01

    The objectives of the present study were to investigate the nutritive value of camelina seeds (Camelina sativa L. Crantz) in ruminant nutrition and to use molecular spectroscopy as a novel technique to quantify the heat-induced changes in protein molecular structures in relation to protein digestive behavior in the rumen and intestine of dairy cattle. In this study, camelina seeds were used as a model for feed protein. The seeds were kept as raw (control) or heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120°C for 60 min. The parameters evaluated were (1) chemical profiles, (2) Cornell Net Protein and Carbohydrate System protein subfractions, (3) nutrient digestibilities and estimated energy values, (4) in situ rumen degradation and intestinal digestibility, and (5) protein molecular structures. Compared with raw seeds, moist heating markedly decreased (52.73 to 20.41%) the content of soluble protein and increased (2.00 to 9.01%) the content of neutral detergent insoluble protein in total crude protein (CP). Subsequently, the rapidly degradable Cornell Net Protein and Carbohydrate System CP fraction markedly decreased (45.06 to 16.69% CP), with a concomitant increase in the intermediately degradable (45.28 to 74.02% CP) and slowly degradable (1.13 to 8.02% CP) fractions, demonstrating a decrease in overall protein degradability in the rumen. The in situ rumen incubation study revealed that moist heating decreased (75.45 to 57.92%) rumen-degradable protein and increased (43.90 to 82.95%) intestinal digestibility of rumen-undegradable protein. The molecular spectroscopy study revealed that moist heating increased the amide I-to-amide II ratio and decreased α-helix and α-helix-to-β-sheet ratio. In contrast, dry heating did not significantly change CP solubility, rumen degradability, intestinal digestibility, and protein molecular structures compared with the raw seeds. Our results indicated that, compared with dry heating, moist heating markedly changed protein chemical profiles, protein subfractions, rumen protein degradability, and intestinal digestibility, which were associated with changes in protein molecular structures (amide I-to-amid II ratio and α-helix-to-β-sheet ratio). Moist heating improved the nutritive value and utilization of protein in camelina seeds compared with dry heating. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity.

    PubMed

    Kimalov, Boaz; Gal-On, Amit; Stav, Ran; Belausov, Eduard; Arazi, Tzahi

    2004-11-01

    Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.

  9. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats.

    PubMed

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K

    2015-06-04

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  10. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    PubMed Central

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K.

    2015-01-01

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP. PMID:26053618

  11. The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly.

    PubMed

    Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Maejima, Kensaku; Himeno, Misako; Senshu, Hiroko; Kawanishi, Takeshi; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-06-01

    Potexvirus cell-to-cell movement requires coat protein (CP) and movement proteins. In this study, mutations in two conserved in-frame AUG codons in the 5' region of the CP open reading frame of Plantago asiatica mosaic virus (PlAMV) were introduced, and virus accumulation of these mutants was analyzed in inoculated and upper noninoculated leaves. When CP was translated only from the second AUG codon, virus accumulation in inoculated leaves was lower than that of wild-type PlAMV, and the viral spread was impaired. Trans-complementation analysis showed that the leucine residue at the third position (Leu-3) of CP is important for cell-to-cell movement of PlAMV. The 14-amino-acid N-terminal region of CP was dispensable for virion formation. Immunoprecipitation assays conducted with an anti-TGBp1 antibody indicated that PlAMV CP interacts with TGBp1 in vivo and that this interaction is not affected by alanine substitution at Leu-3. These results support the concept that the N-terminal region of potexvirus CP can be separated into two distinct functional domains.

  12. Development of Components of Reading Skill.

    ERIC Educational Resources Information Center

    Curtis, Mary E.

    1980-01-01

    Verbal coding and listening comprehension ability differed among skilled and less skilled readers in second, third, and fifth grades. As verbal coding speed increased, comprehension skill became the more important predictor of reading skill. Apparently, verbal coding processes, which are slow, inhibit other reading processes. (Author/CP)

  13. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    PubMed

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( < 0.01) CP and RDP intakes, which resulted in a trend toward greater concentrations of plasma urea N compared with other treatments. Daily N intake linearly decreased ( < 0.01) with decreasing dietary CP and RDP levels, whereas the intake of RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( < 0.01). Blood metabolites were not affected by treatments. In conclusion, to improve the efficiency of N utilization by early-lactation dairy cows, 9.3% RDP in rations provides adequate protein to optimize milk production while minimizing N excretion in urine when the amounts of lysine and methionine and the lysine to methionine ratio are balanced with sufficient dietary RUP.

  14. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.

    PubMed

    Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo

    2018-02-01

    The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.

  15. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Nishihara, Yoshifumi; Taniguchi, Makoto; Watanabe, Naoko; Hunter, Tony; Osada, Hiroyuki

    2004-01-01

    Wee1, the Cdc2 inhibitory kinase, needs to be down-regulated at the onset of mitosis to ensure rapid activation of Cdc2. Previously, we have shown that human somatic Wee1 (Wee1A) is down-regulated both by protein phosphorylation and degradation, but the underlying mechanisms had not been elucidated. In the present study, we have identified the β-transducin repeat-containing protein 1/2 (β-TrCP1/2) F-box protein-containing SKP1/Cul1/F-box protein (SCF) complex (SCFβ-TrCP1/2) as an E3 ubiquitin ligase for Wee1A ubiquitination. Although Wee1A lacks a consensus DS(p)GXXS(p) phospho-dependent binding motif for β-TrCP, recognition of Wee1A by β-TrCP depended on phosphorylation, and two serine residues in Wee1A, S53 and S123, were found to be the most important phosphorylation sites for β-TrCP recognition. We have found also that the major M-phase kinases polo-like kinase 1 (Plk1) and Cdc2 are responsible for the phosphorylation of S53 and S123, respectively, and that in each case phosphorylation generates an unconventional phospho-degron (signal for degradation) that can be recognized by β-TrCP. Phosphorylation of Wee1A by these kinases cooperatively stimulated the recognition and ubiquitination of Wee1A by SCFβ-TrCP1/2 in vitro. Mutation of these residues or depletion of β-TrCP by small-interfering RNA treatment increased the stability of Wee1A in HeLa cells. Moreover, our analysis indicates that β-TrCP-dependent degradation of Wee1A is important for the normal onset of M-phase in vivo. These results also establish the existence of a feedback loop between Cdc2 and Wee1A in somatic cells that depends on ubiquitination and protein degradation and ensures the rapid activation of Cdc2 when cells are ready to divide. PMID:15070733

  16. Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters.

    PubMed

    Dong, L F; Zhang, W B; Zhang, N F; Tu, Y; Diao, Q Y

    2017-02-01

    Eighteen Chinese Holstein heifers average age 230 ± 14 days were allocated to 1 of 3 dietary crude protein (CP) to metabolizable energy (ME) ratios to examine the effects on growth performance, blood metabolites and rumen fermentation parameters with 90-days experiment. Three different dietary CP:ME ratios were targeted based on the formulation of dietary CP contents of 10.85%, 12.78% and 14.63% on dry matter (DM) basis with similar ME contents (10.42 MJ/kg DM), which were categorized as low, medium and high dietary CP:ME ratios. The actual CP:ME ratios obtained in this study significantly increased from low to high CP:ME ratio groups with a value of 10.59, 11.83 and 13.38 g/MJ respectively. Elevated CP:ME ratios significantly increased CP intake (kg/day) and feed efficiency (FE) which was defined as dry matter intake as a proportion of average daily gain (ADG), whereas little difference was observed in body weight (kg), ADG (kg/day), DM intake (kg/day) and ME intake (MJ/day) among the three different CP:ME ratio groups. Increasing dietary CP to ME ratios significantly increased CP digestibility, whereas digestibility of DM and gross energy remained constant in the current experiment. Blood urea nitrogen and insulin-like growth factor-1 linearly increased with increasing dietary CP:ME ratios. There was significantly dietary treatment effect on rumen fermentation parameters including acetate, propionate, butyrate and total volatile fatty acids. Therefore, this study indicated that increasing dietary CP levels with similar energy content contributed to increased protein intake and its digestibility, as well as FE. Holstein heifers between 200 and 341 kg subjected to 13.38 dietary CP:ME ratio showed improved feed efficiency, nutrient digestibility, some blood metabolites and rumen fermentation characteristics for 0.90 kg/day rate of gain. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  17. Orphan and gene related CpG Islands follow power-law-like distributions in several genomes: evidence of function-related and taxonomy-related modes of distribution.

    PubMed

    Tsiagkas, Giannis; Nikolaou, Christoforos; Almirantis, Yannis

    2014-12-01

    CpG Islands (CGIs) are compositionally defined short genomic stretches, which have been studied in the human, mouse, chicken and later in several other genomes. Initially, they were assigned the role of transcriptional regulation of protein-coding genes, especially the house-keeping ones, while more recently there is found evidence that they are involved in several other functions as well, which might include regulation of the expression of RNA genes, DNA replication etc. Here, an investigation of their distributional characteristics in a variety of genomes is undertaken for both whole CGI populations as well as for CGI subsets that lie away from known genes (gene-unrelated or "orphan" CGIs). In both cases power-law-like linearity in double logarithmic scale is found. An evolutionary model, initially put forward for the explanation of a similar pattern found in gene populations is implemented. It includes segmental duplication events and eliminations of most of the duplicated CGIs, while a moderate rate of non-duplicated CGI eliminations is also applied in some cases. Simulations reproduce all the main features of the observed inter-CGI chromosomal size distributions. Our results on power-law-like linearity found in orphan CGI populations suggest that the observed distributional pattern is independent of the analogous pattern that protein coding segments were reported to follow. The power-law-like patterns in the genomic distributions of CGIs described herein are found to be compatible with several other features of the composition, abundance or functional role of CGIs reported in the current literature across several genomes, on the basis of the proposed evolutionary model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Transposon-disruption of a maize nuclear gene, tha1, encoding a chloroplast SecA homologue: in vivo role of cp-SecA in thylakoid protein targeting.

    PubMed

    Voelker, R; Mendel-Hartvig, J; Barkan, A

    1997-02-01

    A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced > or = 40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-SecA function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.

  19. Regulation of chromatin organization and inducible gene expression by a Drosophila insulator

    PubMed Central

    Wood, Ashley M.; Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Rohrbaugh, Margaret; Jones, Brian C.; Jones, Keith C.; Corces, Victor G.

    2011-01-01

    SUMMARY Insulators are multi-protein-DNA complexes thought to affect gene expression by mediating inter- and intra-chromosomal interactions. Drosophila insulators contain specific DNA binding proteins plus common components, such as CP190, that facilitate these interactions. Here we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to the DNA in order to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli. PMID:21981916

  20. Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein.

    PubMed

    Aparicio, Frederic; Pallás, Vicente; Sánchez-Navarro, Jesús

    2010-07-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for viral transport. Previous analysis with MPs of other members of the family Bromoviridae has shown that the C-terminal part of these MPs plays a critical role in the interaction with the cognate coat protein (CP) and in cell-to-cell transport. Bimolecular fluorescence complementation and overlay analysis confirm an interaction between the C-terminal 38 aa of PNRSV MP and its cognate CP. Mutational analysis of the C-terminal region of the PNRSV MP revealed that its C-terminal 38 aa are dispensable for virus transport, however, the 4 aa preceding the dispensable C terminus are necessary to target the MP to the plasmodesmata and for the functionality of the protein. The capacity of the PNRSV MP to use either a CP-dependent or a CP-independent cell-to-cell transport is discussed.

  1. An efficient method for native protein purification in the selected range from prostate cancer tissue digests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Rumana; Nicora, Carrie D.; Shukla, Anil K.

    Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in a clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead tomore » useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen.« less

  2. Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47

    PubMed Central

    Vermaas, Wim F. J.; Williams, John G. K.; Rutherford, A. William; Mathis, Paul; Arntzen, Charles J.

    1986-01-01

    CP-47 is absent in a genetically engineered mutant of cyanobacterium Synechocystis 6803, in which the psbB gene [encoding the chlorophyll-binding photosystem II (PSII) protein CP-47] was interrupted. Another chlorophyll-binding PSII protein, CP-43, is present in the mutant, and functionally inactive PSII-enriched particles can be isolated from mutant thylakoids. We interpret these data as indicating that the PSII core complex of the mutant still assembles in the absence of CP-47. The mutant lacks a 77 K fluorescence emission maximum at 695 nm, suggesting that the PSII reaction center is not functional. The absence of primary photochemistry was indicated by EPR and optical measurements: no chlorophyll triplet originating from charge recombination between P680+ and Pheo- was observed in the mutant, and there were no flash-induced absorption changes at 820 nm attributable to chlorophyll P680 oxidation. These observations lead us to conclude that CP-47 plays an essential role in the activity of the PSII reaction center. Images PMID:16593788

  3. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters

    USDA-ARS?s Scientific Manuscript database

    This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO3-N) and ammonia (NH3) losses from dairy manure applied to soil and manure N use for plant growth. Lactating dairy cows were fed diets with 16.7 (HighCP) or 14.8% (LowCP) cru...

  4. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose

    PubMed Central

    Tripathi, Siddharth Kaushal; Singh, Amar Pal; Sane, Aniruddha P.; Nath, Pravendra

    2009-01-01

    Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease. PMID:19346241

  5. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    PubMed

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  6. The Extracellular Adherence Protein from Staphylococcus aureus Inhibits the Classical and Lectin Pathways of Complement by Blocking Formation of the C3 Pro-Convertase

    PubMed Central

    Garcia, Brandon L.; Ramyar, Kasra X.; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B.; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D.; Rooijakkers, Suzan H.M.; Geisbrecht, Brian V.

    2014-01-01

    The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. While the majority of staphylococcal complement inhibitors act on the alternative pathway (AP) to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical (CP) and lectin (LP) pathways. We screened a collection of recombinant, secreted staphylococcal proteins to determine if S. aureus produces other molecules that inhibit either the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 pro-convertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits the two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion. PMID:25381436

  7. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics

    PubMed Central

    Sinnar, Shamim A.; Antoku, Susumu; Saffin, Jean-Michel; Cooper, Jon A.; Halpain, Shelley

    2014-01-01

    Capping protein (CP) binds to barbed ends of growing actin filaments and inhibits elongation. CP is essential for actin-based motility in cell-free systems and in Dictyostelium. Even though CP is believed to be critical for creating the lamellipodial actin structure necessary for protrusion and migration, CP's role in mammalian cell migration has not been directly tested. Moreover, recent studies have suggested that structures besides lamellipodia, including lamella and filopodia, may have unappreciated roles in cell migration. CP has been postulated to be absent from filopodia, and thus its role in filopodial activity has remained unexplored. We report that silencing CP in both cultured mammalian B16F10 cells and in neurons of developing neocortex impaired cell migration. Moreover, we unexpectedly observed that low levels of CP were detectable in the majority of filopodia. CP depletion decreased filopodial length, altered filopodial shape, and reduced filopodial dynamics. Our results support an expansion of the potential roles that CP plays in cell motility by implicating CP in filopodia as well as in lamellipodia, both of which are important for locomotion in many types of migrating cells. PMID:24829386

  8. In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses.

    PubMed

    Pallás, V; Sánchez-Navarro, J A; Díez, J

    1999-01-01

    The RNA binding properties of the prunus necrotic ringspot virus (PNRSV) coat protein (CP) were demonstrated by northwestern and dot-blot analyses. The capability to bind PNRSV RNA 4 was compared with viruses representing three different interactions prevailing in the assembly and architecture of virions. The results showed that cucumber mosaic virus (CMV) and PNRSV CPs, which stabilise their virions mainly through RNA-protein interactions bound PNRSV RNA 4 even at very high salt concentrations. The CP of cherry leaf roll nepovirus, whose virions are predominantly stabilised by protein-protein interactions did not bind even at the lowest salt concentration tested. Finally the CP of carnation mottle carmovirus, that has an intermediate position in which both RNA-protein and protein-protein interactions are equally important showed a salt-dependent RNA binding.

  9. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  10. V-1 regulates capping protein activity in vivo

    PubMed Central

    Jung, Goeh; Wu, Xufeng S.; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A.

    2016-01-01

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1–null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1’s ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their “actin phenotype.” PMID:27791032

  11. V-1 regulates capping protein activity in vivo.

    PubMed

    Jung, Goeh; Alexander, Christopher J; Wu, Xufeng S; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A

    2016-10-25

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

  12. Simple Common Plane contact algorithm for explicit FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-12-18

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.

  13. Influence of dietary protein level and origin on the flow of mucin along the small intestine of the preruminant calf.

    PubMed

    Montagne, L; Toullec, R; Formal, M; Lallès, J P

    2000-12-01

    The objective of this study was to investigate the effect of the dietary crude protein (CP) content and origin on the flow of mucin protein along the small intestine of the preruminant calf. Diets contained 1, 10, 20 and 28% of CP supplied by skim milk powder (SMP) in experiment 1. Diets differed by the nature of protein [soybean protein concentrate (SPC), partially hydrolyzed soybean protein isolate (HSPI) or potato protein concentrate (PPC)] in experiment 2. Duodenal, jejunal, and ileal digesta were collected from calves fitted with simple cannulae and continuously infused the milk replacers into the abomasum. In experiment 1, the basal flow of mucin protein was 1.1, 1.8, and 4.0 g/kg of dry matter intake at the duodenum, jejunum, and ileum, respectively. Mucin protein contributed to 19 and 40% of ileal loss of CP and lysine, respectively. When dietary CP rose from 1 to 28%, the flow of mucin protein increased at the duodenum (+300%). In experiment 2, the flow of mucin protein increased by 70% at the duodenum and at the jejunum when SMP was partially replaced by SPC and HSPI. With PPC, this flow increased at the duodenum (+24%) and ileum (+52%). These data demonstrate the importance of mucin as a source of endogenous nitrogen and the impact of dietary protein content and origin on this flow.

  14. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    PubMed

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  15. Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions.

    PubMed

    Liu, Maoyan; Liu, Xiangning; Li, Xun; Zhang, Deyong; Dai, Liangyin; Tang, Qianjun

    2016-03-01

    The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92% sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.

  16. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium

    PubMed Central

    Sun, Ning; Shibata, Brad; Hess, John F.

    2016-01-01

    Purpose The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. Methods Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. Results CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely exclude vimentin and α-tubulin. In the CP49 and filensin knockouts, this structure is absent, confirming the identity of CP49 and filensin in this structure, and suggesting a requirement for the physiologic coassembly of CP49 and filensin. Conclusions CP49 and filensin have been considered robust markers for mouse lens fiber cell differentiation. The data reported here, however, document both proteins in the mouse lens epithelium, but only after 5 weeks of age, when lens epithelial growth and mitotic activity have slowed. Because of this, CP49 and filensin must be considered markers of differentiation for both fiber cells and the lens epithelium in the mouse. In addition, to our knowledge, no other protein has been shown to emerge so late in the development of the mouse lens epithelium, suggesting that lens epithelial differentiation may continue well into post-natal life. If this structure is related to the aggresome, it is a rare, or perhaps unique example of a large, stable aggresome in wild-type tissue. PMID:27559293

  17. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  18. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  19. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  20. Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization.

    PubMed

    de O Barsottini, Mario R; de Oliveira, Juliana F; Adamoski, Douglas; Teixeira, Paulo J P L; do Prado, Paula F V; Tiezzi, Henrique O; Sforça, Mauricio L; Cassago, Alexandre; Portugal, Rodrigo V; de Oliveira, Paulo S L; de M Zeri, Ana C; Dias, Sandra M G; Pereira, Gonçalo A G; Ambrosio, Andre L B

    2013-11-01

    Cerato-platanins (CP) are small, cysteine-rich fungal-secreted proteins involved in the various stages of the host-fungus interaction process, acting as phytotoxins, elicitors, and allergens. We identified 12 CP genes (MpCP1 to MpCP12) in the genome of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, and showed that they present distinct expression profiles throughout fungal development and infection. We determined the X-ray crystal structures of MpCP1, MpCP2, MpCP3, and MpCP5, representative of different branches of a phylogenetic tree and expressed at different stages of the disease. Structure-based biochemistry, in combination with nuclear magnetic resonance and mass spectrometry, allowed us to define specialized capabilities regarding self-assembling and the direct binding to chitin and N-acetylglucosamine (NAG) tetramers, a fungal cell wall building block, and to map a previously unknown binding region in MpCP5. Moreover, fibers of MpCP2 were shown to act as expansin and facilitate basidiospore germination whereas soluble MpCP5 blocked NAG6-induced defense response. The correlation between these roles, the fungus life cycle, and its tug-of-war interaction with cacao plants is discussed.

  1. Genomic sequencing and in vivo footprinting of an expression-specific DNase I-hypersensitive site of avian vitellogenin II promoter reveal a demethylation of a mCpG and a change in specific interactions of proteins with DNA.

    PubMed Central

    Saluz, H P; Feavers, I M; Jiricny, J; Jost, J P

    1988-01-01

    Genomic sequencing was used to study the in vivo methylation pattern of two CpG sites in the promoter region of the avian vitellogenin gene. The CpG at position +10 was fully methylated in DNA isolated from tissues that do not express the gene but was unmethylated in the liver of mature hens and estradiol-treated roosters. In the latter tissue, this site became demethylated and DNase I hypersensitive after estradiol treatment. A second CpG (position -52) was unmethylated in all tissues examined. In vivo genomic footprinting with dimethyl sulfate revealed different patterns of DNA protection in silent and expressed genes. In rooster liver cells, at least 10 base pairs of DNA, including the methylated CpG, were protected by protein(s). Gel-shift assays indicated that a protein factor, present in rooster liver nuclear extract, bound at this site only when it was methylated. In hen liver cells, the same unmethylated CpG lies within a protected region of approximately equal to 20 base pairs. In vitro DNase I protection and gel-shift assays indicate that this sequence is bound by a protein, which binds both double- and single-stranded DNA. For the latter substrate, this factor was shown to bind solely the noncoding (i.e., mRNA-like) strand. Images PMID:3413118

  2. CDK5RAP2 Is an Essential Scaffolding Protein of the Corona of the Dictyostelium Centrosome.

    PubMed

    Pitzen, Valentin; Askarzada, Sophie; Gräf, Ralph; Meyer, Irene

    2018-04-23

    Dictyostelium centrosomes consist of a nucleus-associated cylindrical, three-layered core structure surrounded by a corona consisting of microtubule-nucleation complexes embedded in a scaffold of large coiled-coil proteins. One of them is the conserved CDK5RAP2 protein. Here we focus on the role of Dictyostelium CDK5RAP2 for maintenance of centrosome integrity, its interaction partners and its dynamic behavior during interphase and mitosis. GFP-CDK5RAP2 is present at the centrosome during the entire cell cycle except from a short period during prophase, correlating with the normal dissociation of the corona at this stage. RNAi depletion of CDK5RAP2 results in complete disorganization of centrosomes and microtubules suggesting that CDK5RAP2 is required for organization of the corona and its association to the core structure. This is in line with the observation that overexpressed GFP-CDK5RAP2 elicited supernumerary cytosolic MTOCs. The phenotype of CDK5RAP2 depletion was very reminiscent of that observed upon depletion of CP148, another scaffolding protein of the corona. BioID interaction assays revealed an interaction of CDK5RAP2 not only with the corona markers CP148, γ-tubulin, and CP248, but also with the core components Cep192, CP75, and CP91. Furthermore, protein localization studies in both depletion strains revealed that CP148 and CDK5RAP2 cooperate in corona organization.

  3. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging.

    PubMed

    Chaturvedi, Sonali; Rao, A L N

    2014-09-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Polycomb-like proteins link the PRC2 complex to CpG islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haojie; Liefke, Robert; Jiang, Junyi

    The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and has essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like (PCL) proteins, such as PHF1, MTF2 and PHF19, are PRC2-associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate the enzymatic activity of PRC2 or the recruitment of PRC2 to specific genomic loci4,5,6,7,8,9,10,11,12,13. Mammalian PRC2-binding sites are enriched in CG content, which correlates with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood.more » Here we solve the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We show that the extended homologous regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a completely different manner from the canonical winged-helix DNA recognition motif. We also show that the PCL extended homologous domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic stem cells. Our research provides the first, to our knowledge, direct evidence to demonstrate that PCL proteins are crucial for PRC2 recruitment to CpG islands, and further clarifies the roles of these proteins in transcriptional regulation in vivo.« less

  5. Computational Approaches to Identify Promoters and cis-Regulatory Elements in Plant Genomes1

    PubMed Central

    Rombauts, Stephane; Florquin, Kobe; Lescot, Magali; Marchal, Kathleen; Rouzé, Pierre; Van de Peer, Yves

    2003-01-01

    The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called “search by signal” methods) and the delineation of promoters by considering both sequence content and structural features (“search by content” methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5′-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of “putative” CpG and CpNpG islands in plants. PMID:12857799

  6. RECOVERY ACT - Thylakoid Assembly and Folded Protein Transport by the Tat Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabney-Smith, Carole

    Assembly of functional photosystems complete with necessary intrinsic (membrane-bound) and extrinsic proteins requires the function of at least 3 protein transport pathways in thylakoid membranes. Our research focuses on one of those pathways, a unique and essential protein transport pathway found in the chloroplasts of plants, bacteria, and some archaebacteria, the Twin arginine translocation (Tat) system. The chloroplast Tat (cpTat) system is thought to be responsible for the proper location of ~50% of thylakoid lumen proteins, several of which are necessary for proper photosystem assembly, maintenance, and function. Specifically, cpTat systems are unique because they transport fully folded and assembledmore » proteins across ion tight membranes using only three membrane components, Tha4, Hcf106, and cpTatC, and the protonmotive force generated by photosynthesis. Despite the importance of the cpTat system in plants, the mechanism of transport of a folded precursor is not well known. Our long-term goal is to investigate the role protein transport systems have on organelle biogenesis, particularly the assembly of membrane protein complexes in thylakoids of chloroplasts. The objective of this proposal is to correlate structural changes in the membrane-bound cpTat component, Tha4, to the mechanism of translocation of folded-precursor substrates across the membrane bilayer by using a cysteine accessibility and crosslinking approach. Our central hypothesis is that the precursor passes through a proteinaceous pore of assembled Tha4 protomers that have undergone a conformational or topological change in response to transport. This research is predicated upon the observations that Tha4 exists in molar excess in the membrane relative to the other cpTat components; its regulated assembly to the precursor-bound receptor; and our data showing oligomerization of Tha4 into very large complexes in response to transport. Our rationale for these studies is that understanding cpTat system mechanism in chloroplasts will lead to a better understanding of the biogenesis of photosynthetic membranes potentially providing a means to engineer photosynthetic complexes into synthetic membranes for energy production. We are especially well prepared to undertake this project because we have developed a novel functional replacement assay, which was used to demonstrate a correlation of Tha4 oligomerization to transport. Thylakoids of plant chloroplasts provide a very robust, reliable assay to gain mechanistic detail about cpTat systems, providing most of the biochemical analyses to date. We plan to test our central hypothesis and accomplish the overall objective of this proposal by (1) Identifying the cpTat component(s) that interact with the mature domain of precursor during transport, (2) Determining the organization of the cpTat translocon, and (3) Comparing Tha4 topology in thylakoids during active transport and at rest. The proposed studies are innovative due to our ability to correlate structural changes in cpTat protein complexes during the transport of precursor. At the completion of this project, we expect to know the cpTat component(s) that interacts directly with the mature domain of the precursor, important because it is not known which components comprise the pore for passage of the mature domain. We also expect to know the arrangement of the components in the cpTat transport complex through direct interaction between Tha4 and the other CpTat components, a key point to establishing the mechanism of translocation. Lastly, we expect to correlate topological changes of Tha4 with precursor transport, key to establishing Tha4's role in the transport process. The successful completion of these studies is expected to have an important impact in understanding chloroplast biogenesis and assembly of photosynthetic complexes in plants and photosynthetic bacteria.« less

  7. Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins.

    PubMed

    Zaparoli, Gustavo; Cabrera, Odalys García; Medrano, Francisco Javier; Tiburcio, Ricardo; Lacerda, Gustavo; Pereira, Gonçalo Guimarães

    2009-01-01

    The hemibiotrophic basidiomycete Moniliophthora perniciosa is the causal agent of witches' broom disease in cacao. This is a dimorphic species, with monokaryotic hyphae during the biotrophic phase, which is converted to dikaryotic mycelia during the saprophytic phase. The infection in pod is characterized by the formation of hypertrophic and hyperplasic tissues in the biotrophic phase, which is followed by necrosis and complete degradation of the organ. We found at least five sequences in the fungal genome encoding putative proteins similar to cerato-platanin (CP)-like proteins, a novel class of proteins initially found in the phytopathogen Ceratocystis fimbriata. One M. perniciosa CP gene (MpCP1) was expressed in vitro and proved to have necrosis-inducing ability in tobacco and cacao leaves. The protein is present in solution as dimers and is able to recover necrosis activity after heat treatment. Transcription analysis ex planta showed that MpCP1 is more expressed in biotrophic-like mycelia than saprotrophic mycelia. The necrosis profile presented is different from that caused by M. perniciosa necrosis and ethylene-inducing proteins (MpNEPs), another family of elicitors expressed by M. perniciosa. Remarkably, a mixture of MpCP1 with MpNEP2 led to a synergistic necrosis effect very similar to that found in naturally infected plants. This is the first report of a basidiomycete presenting both NEP1-like proteins (NLPs) and CPs in its genome.

  8. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants

    PubMed Central

    Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J.; Shih, J. Wai-Kuo

    2017-01-01

    Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-γ-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biasedpathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-γ demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins. PMID:18675871

  9. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants.

    PubMed

    Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J; Shih, J Wai-Kuo

    2008-10-09

    Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.

  10. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    PubMed

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Maintenance of Dimer Conformation by the Dengue Virus Core Protein α4-α4′ Helix Pair Is Critical for Nucleocapsid Formation and Virus Production

    PubMed Central

    Teoh, Pak-Guan; Huang, Zhi-Shun; Pong, Wen-Li; Chen, Po-Chiang

    2014-01-01

    ABSTRACT The virion of dengue virus (DENV) is composed of a viral envelope covering a nucleocapsid formed by a complex of viral genomic RNA and core protein (CP). DENV CP forms a dimer via the internal α2 and α4 helices of each monomer. Pairing of α2-α2′ creates a continuous hydrophobic surface, while the α4-α4′ helix pair joins the homodimer via side-chain interactions of the inner-edge residues. However, the importance of dimer conformation and the α4 helix of DENV CP in relation to its function are poorly understood. Loss of association between CP and lipid droplets (LDs) due to mutation suggests that the CP hydrophobic surface was not exposed, offering a possible explanation for the absence of dimers. Further assays suggest the connection between CP folding and protein stability. Attenuation of full-length RNA-derived virus production is associated with CP mutation, since no significant defects were detected in virus translation and replication. The in vitro characterization assays further highlighted that the α4-α4′ helix pair conformation is critical in preserving the overall α-helical content, thermostability, and dimer formation ability of CP, features correlated with the efficiency of nucleocapsid formation. Addition of Tween 20 improves in vitro nucleocapsid-like particle formation, suggesting the role of the LD in nucleocapsid formation in vivo. This study provides the first direct link between the α4-α4′ helix pair interaction and the CP dimer conformation that is the basis of CP function, particularly in nucleocapsid formation during virion production. IMPORTANCE Structure-based mutagenesis study of the dengue virus core protein (CP) reveals that the α4-α4′ helix pair is the key to maintaining its dimer conformation, which is the basis of CP function in nucleocapsid formation and virus production. Attenuation of full-length RNA-derived virus production is associated with CP mutation, since no significant defects in virus translation and replication were detected. In vitro inefficiency and size of nucleocapsid-like particle (NLP) formation offer a possible explanation for in vivo virus production inefficiency upon CP mutation. Further, the transition of NLP morphology from an incomplete state to an intact particle shown by α4-α4′ helix pair mutants in the presence of a nonionic detergent suggests the regulatory role of the intracellular lipid droplet (LD) in CP-LD interaction and in promoting nucleocapsid formation. This study provides the first direct link between the α4-α4′ helix pair interaction and CP dimer conformation that is the fundamental requirement of CP function, particularly in nucleocapsid formation during virion production. PMID:24807709

  12. Delayed translational silencing of ceruloplasmin transcript in gamma interferon-activated U937 monocytic cells: role of the 3' untranslated region

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Fox, P. L.

    1999-01-01

    Ceruloplasmin (Cp) is an acute-phase protein with ferroxidase, amine oxidase, and pro- and antioxidant activities. The primary site of Cp synthesis in human adults is the liver, but it is also synthesized by cells of monocytic origin. We have shown that gamma interferon (IFN-gamma) induces the synthesis of Cp mRNA and protein in monocytic cells. We now report that the induced synthesis of Cp is terminated by a mechanism involving transcript-specific translational repression. Cp protein synthesis in U937 cells ceased after 16 h even in the presence of abundant Cp mRNA. RNA isolated from cells treated with IFN-gamma for 24 h exhibited a high in vitro translation rate, suggesting that the transcript was not defective. Ribosomal association of Cp mRNA was examined by sucrose centrifugation. When Cp synthesis was high, i.e., after 8 h of IFN-gamma treatment, Cp mRNA was primarily associated with polyribosomes. However, after 24 h, when Cp synthesis was low, Cp mRNA was primarily in the nonpolyribosomal fraction. Cytosolic extracts from cells treated with IFN-gamma for 24 h, but not for 8 h, contained a factor which blocked in vitro Cp translation. Inhibitor expression was cell type specific and present in extracts of human cells of myeloid origin, but not in several nonmyeloid cells. The inhibitory factor bound to the 3' untranslated region (3'-UTR) of Cp mRNA, as shown by restoration of in vitro translation by synthetic 3'-UTR added as a "decoy" and detection of a binding complex by RNA gel shift analysis. Deletion mapping of the Cp 3'-UTR indicated an internal 100-nucleotide region of the Cp 3'-UTR that was required for complex formation as well as for silencing of translation. Although transcript-specific translational control is common during development and differentiation and global translational control occurs during responses to cytokines and stress, to our knowledge, this is the first report of translational silencing of a specific transcript following cytokine activation.

  13. The chromosomal association/dissociation of the chromatin insulator protein Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and two acidic regions.

    PubMed

    Oliver, Daniel; Sheehan, Brian; South, Heather; Akbari, Omar; Pai, Chi-Yun

    2010-12-31

    Chromatin insulators or boundary elements are a class of functional elements in the eukaryotic genome. They regulate gene transcription by interfering with promoter-enhancer communication. The Cp190 protein of Drosophila melanogaster is essential to the function of at least three-types of chromatin insulator complexes organized by Su(Hw), CTCF and BEAF32. We mapped functional regions of Cp190 in vivo and identified three domains that are essential for the insulator function and for the viability of flies: the BTB/POZ domain, an aspartic acid-rich (D-rich) region and a C-terminal glutamic acid-rich (E-rich) region. Other domains including the centrosomal targeting domain and the zinc fingers are dispensable. The N-terminal CP190BTB-D fragment containing the BTB/POZ domain and the D-rich region is sufficient to mediate association with all three types of insulator complexes. The fragment however is not sufficient for insulator activity or viability. The Cp190 and CP190BTB-D are regulated differently in cells treated with heat-shock. The Cp190 dissociated from chromosomes during heat-shock, indicating that dissociation of Cp190 with chromosomes can be regulated. In contrast, the CP190BTB-D fragment didn't dissociate from chromosomes in the same heat-shocked condition, suggesting that the deleted C-terminal regions have a role in regulating the dissociation of Cp190 with chromosomes. The N-terminal fragment of Cp190 containing the BTB/POZ domain and the D-rich region mediates association of Cp190 with all three types of insulator complexes and that the E-rich region of Cp190 is required for dissociation of Cp190 from chromosomes during heat-shock. The heat-shock-induced dissociation is strong evidence indicating that dissociation of the essential insulator protein Cp190 from chromosomes is regulated. Our results provide a mechanism through which activities of an insulator can be modulated by internal and external cues.

  14. CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague.

    PubMed

    Amemiya, Kei; Meyers, Jennifer L; Rogers, Taralyn E; Fast, Randy L; Bassett, Anthony D; Worsham, Patricia L; Powell, Bradford S; Norris, Sarah L; Krieg, Arthur M; Adamovicz, Jeffrey J

    2009-04-06

    The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).

  15. The effects of cytosine methylation on general transcription factors

    NASA Astrophysics Data System (ADS)

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  16. The Effect of Crude Protein Content on Meat and Fat Production in Sheep

    NASA Astrophysics Data System (ADS)

    Mawati, S.; Restitrisnani, V.; Soedarsono

    2018-02-01

    This study was undertaken to evaluate the effect of crude protein (CP) content on meat protein and fat production in sheep. Twenty four male thin tail sheep aged 6-7 months with average body weight of 13±1.56 kg were used in this study. The sheep were fed 10-14% CP. Sheep with the average body weight amount 16.75 kg were slaughter after 4 months rising. Parameters observed in this study were carcass weight, meat weight and fat weight of thin tail sheep. The data were analyzed using correlation analysis. The result of this study showed that CP content on diet had weak and negative correlation with meat production (r = -0.06) (y = -0.148x + 62.54) but had weak and possitive correlation with fat production (r = 0.3) (y = 0.807x2 -18.40x + 119.1). Based on the result, it can be concluded that the optimum CP content for sheep is 12.5% CP.

  17. The complete chloroplast genome sequence of Dendrobium nobile.

    PubMed

    Yan, Wenjin; Niu, Zhitao; Zhu, Shuying; Ye, Meirong; Ding, Xiaoyu

    2016-11-01

    The complete chloroplast (cp) genome sequence of Dendrobium nobile, an endangered and traditional Chinese medicine with important economic value, is presented in this article. The total genome size is 150,793 bp, containing a large single copy (LSC) region (84,939 bp) and a small single copy region (SSC) (13,310 bp) which were separated by two inverted repeat (IRs) regions (26,272 bp). The overall GC contents of the plastid genome were 38.8%. In total, 130 unique genes were annotated and they were consisted of 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Fourteen genes contained one or two introns.

  18. Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population.

    PubMed

    Zhang, Yi; Kent, Jack W; Lee, Adam; Cerjak, Diana; Ali, Omar; Diasio, Robert; Olivier, Michael; Blangero, John; Carless, Melanie A; Kissebah, Ahmed H

    2013-03-19

    Fatty acid-binding proteins (FABPs) play regulatory roles at the nexus of lipid metabolism and signaling. Dyslipidemia in clinical manifestation frequently co-occurs with obesity, insulin resistance and hypertension in the Metabolic Syndrome (MetS). Animal studies have suggested FABPs play regulatory roles in expressing MetS phenotypes. In our family cohort of Northern European descent, transcript levels in peripheral white blood cells (PWBCs) of a key FABPs, FABP3, is correlated with the MetS leading components. However, evidence supporting the functions of FABPs in humans using genetic approaches has been scarce, suggesting FABPs may be under epigenetic regulation. The objective of this study was to test the hypothesis that CpG methylation status of a key regulator of lipid homeostasis, FABP3, is a quantitative trait associated with status of MetS phenotypes in humans. We used a mass-spec based quantitative method, EpiTYPER®, to profile a CpG island that extends from the promoter to the first exon of the FABP3 gene in our family-based cohort of Northern European descent (n=517). We then conducted statistical analysis of the quantitative relationship of CpG methylation and MetS measures following the variance-component association model. Heritability of each methylation and the effect of age and sex on CpG methylation were also assessed in our families. We find that methylation levels of individual CpG units and the regional average are heritable and significantly influenced by age and sex. Regional methylation was strongly associated with plasma total cholesterol (p=0.00028) and suggestively associated with LDL-cholesterol (p=0.00495). Methylation at individual units was significantly associated with insulin sensitivity, lipid particle sizing and diastolic blood pressure (p<0.0028, corrected for multiple testing for each trait). Peripheral white blood cell (PWBC) expression of FABP3 in a separate group of subjects (n=128) negatively correlated with adverse profiles of metabolism (βWHR=-0.72; βLDL-c=-0.53) while positively correlated with plasma adiponectin (β=0.24). Further, we show that differential methylation of FABP3 affects binding activity with nuclear proteins from heart tissue. This region that we found under methylation regulation overlaps with a region actively modified by histone codes in the newly available ENCODE data. Our findings suggest that DNA methylation of FABP3 strongly influences MetS, and this may have important implications for cardiovascular disease.

  19. Replacing dietary soybean meal with canola meal improves production and efficiency of lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Previous research suggested that crude protein (CP) from canola meal (CM) is used more efficiently than CP from solvent soybean meal (SBM) by lactating dairy cows. We tested whether dietary CP content influenced relative effectiveness of equal supplemental CP from either CM or SBM. Fifty lactating H...

  20. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation.

    PubMed

    Renovell, Agueda; Gago, Selma; Ruiz-Ruiz, Susana; Velázquez, Karelia; Navarro, Luis; Moreno, Pedro; Vives, Mari Carmen; Guerri, José

    2010-10-25

    Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory.

    PubMed

    Li, Hongda; Zhong, Xiaofen; Chau, Kevin Fongching; Williams, Emily Cunningham; Chang, Qiang

    2011-07-17

    DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 is highly expressed in neurons and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies have shown that neuronal activity-induced phosphorylation (NAIP) of methyl CpG-binding protein 2 (MeCP2) precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knock-in mice that lack NAIP of MeCP2 and found that they performed better in hippocampus-dependent memory tests, presented enhanced long-term potentiation at two synapses in the hippocampus and showed increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein bound more tightly to several MeCP2 target gene promoters and altered the expression of these genes. Our results suggest that NAIP of MeCP2 is required for modulating dynamic functions of the adult mouse brain.

  2. Cytotoxic, Anti-Proliferative and Apoptosis Activity of l-Amino Acid Oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) Venom on Human Colon Cancer Cells.

    PubMed

    Zainal Abidin, Syafiq Asnawi; Rajadurai, Pathmanathan; Hoque Chowdhury, Md Ezharul; Othman, Iekhsan; Naidu, Rakesh

    2018-06-08

    The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC 50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer.

  3. Targeting a KH-domain protein with RNA decoys.

    PubMed

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-09-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins.

  4. Targeting a KH-domain protein with RNA decoys.

    PubMed Central

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-01-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435

  5. Unravelling the shape and structural assembly of the photosynthetic GAPDH-CP12-PRK complex from Arabidopsis thaliana by small-angle X-ray scattering analysis.

    PubMed

    Del Giudice, Alessandra; Pavel, Nicolae Viorel; Galantini, Luciano; Falini, Giuseppe; Trost, Paolo; Fermani, Simona; Sparla, Francesca

    2015-12-01

    Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.

  6. The CpG island searcher: a new WWW resource.

    PubMed

    Takai, Daiya; Jones, Peter A

    2003-01-01

    Clusters of CpG dinucleotides in GC rich regions of the genome called "CpG islands" frequently occur in the 5' ends of genes. Methylation of CpG islands plays a role in transcriptional silencing in higher organisms in certain situations. We have established a CpG-island-extraction algorithm, which we previously developed [Takai and Jones, 2002], on a web site which has a simple user interface to identify CpG islands from submitted sequences of up to 50kb. The web site determines the locations of CpG islands using parameters (lower limit of %GC, ObsCpG/ExpCpG, length) set by the user, to display the value of parameters on each CpG island, and provides a graphical map of CpG dinucleotide distribution and borders of CpG islands. A command-line version of the CpG islands searcher has also been developed for larger sequences. The CpG Island Searcher was applied to the latest sequence and mapping information of human chromosomes 20, 21 and 22, and a total of 2345 CpG islands were extracted and 534 (23%) of them contained first coding exons and 650 (28%) contained other exons. The CpG Island Searcher is available on the World Wide Web at http://www.cpgislands.com or http://www.uscnorris.com/cpgislands/cpg.cgi.

  7. ACF7 is a hair-bundle antecedent, positioned to integrate cuticular plate actin and somatic tubulin.

    PubMed

    Antonellis, Patrick J; Pollock, Lana M; Chou, Shih-Wei; Hassan, Ahmed; Geng, Ruishuang; Chen, Xi; Fuchs, Elaine; Alagramam, Kumar N; Auer, Manfred; McDermott, Brian M

    2014-01-01

    The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a-Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus--an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis.

  8. ACF7 Is a Hair-Bundle Antecedent, Positioned to Integrate Cuticular Plate Actin and Somatic Tubulin

    PubMed Central

    Antonellis, Patrick J.; Pollock, Lana M.; Chou, Shih-Wei; Hassan, Ahmed; Geng, Ruishuang; Chen, Xi; Fuchs, Elaine; Alagramam, Kumar N.; Auer, Manfred

    2014-01-01

    The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a–Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus—an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis. PMID:24381291

  9. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein.

    PubMed

    Lim, Hyoun-Sub; Nam, Jiryun; Seo, Eun-Young; Nam, Moon; Vaira, Anna Maria; Bae, Hanhong; Jang, Chan-Yong; Lee, Cheol Ho; Kim, Hong Gi; Roh, Mark; Hammond, John

    2014-03-01

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CPSP) with that from AltMV-Po (CP(Po)) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP(Po) [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CPSP but not CP(Po) interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CPSP than CP(Po) in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. Published by Elsevier Inc.

  10. Histone Variants and Composition in the Developing Brain: Should MeCP2 Care?

    PubMed

    Zago, Valentina; Pinar-CabezaDeVaca, Cristina; Vincent, John B; Ausio, Juan

    2017-01-01

    Specific compositional chromatin features distinguish brain/neuronal chromatin from that of other tissues and are critical to this organ and cell type development and neuroplasticity. These features include a significant turnover of the major constitutive chromosomal proteins, including the (canonical) replication-dependent histones, the replication-independent replacement histone variants, as well as the chromatin associated transcriptional regulator MeCP2 (methyl CpG binding protein 2). Alterations of histones and MeCP2 have already been implicated in many brain disorders. Despite the relevance of histone variants to chromatin structure and function, only recently has some exciting literature started to re-emerge that directly relates them to neuron plasticity and cognition. However, the amount of information available on the functional role of these histones is still very limited. The purpose of this review is to focus attention to this important group of chromatin proteins, which, in the brain, possess overlapping structural and functional roles with the highly abundant presence of MeCP2. There is an imperative need to understand how all these proteins communicate with each other, and future research will hopefully provide us with answers.

  11. High fidelity nanopatterning of proteins onto well-defined surfaces through subtractive contact printing.

    PubMed

    García, José R; Singh, Ankur; García, Andrés J

    2014-01-01

    In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional μCP methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified "subtractive μCP" method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. © 2014 Elsevier Inc. All rights reserved.

  12. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription.

    PubMed

    Huang, Yuehua; Tai, Andrew W; Tong, Shuping; Lok, Anna S F

    2013-06-01

    Hepatitis B virus (HBV) core promoter (CP) mutations have been associated with an increased risk of hepatocellular carcinoma (HCC) in clinical studies. We previously reported that a combination of CP mutations seen in HCC patients, expressed in HBx gene, increased SKP2 (S-phase kinase-associated protein 2) expression, thereby promoting cellular proliferation. Here, we investigate the possible mechanisms by which CP mutations upregulate SKP2. We used immunoblotting and ATPlite assay to validate the effect of CP mutations in full-length HBV genome on cell cycle regulator levels and cell proliferation. Activation of SKP2 mRNA was assessed by quantitative real-time PCR in primary human hepatocytes (PHH) and HCC cell lines. Effect of CP mutations on SKP2 promoter activity was determined by luciferase assay. Target regulation of E2F1 on SKP2 was analyzed by siRNAs. CP mutations in full-length HBV genome upregulated SKP2 expression, thereby downregulating cell cycle inhibitors and accelerating cellular proliferation. CP mutations enhanced SKP2 promoter activity but had no effect on SKP2 protein stability. Mapping of the SKP2 promoter identified a region necessary for activation by CP mutations that contains an E2F1 response element. Knocking down E2F1 reduced the effects of CP mutations on SKP2 and cellular proliferation. The effect of CP mutations on E2F1 might be mediated through hyperphosphorylation of RB. HBV CP mutations enhance SKP2 transcription by activating the E2F1 transcription factor and in turn downregulate cell cycle inhibitors, thus providing a potential mechanism for an association between CP mutations and HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  14. Delineation of Methyl-DNA Binding Protein Interactions in the Prostate Cancer Genome

    DTIC Science & Technology

    2013-07-01

    smaller portion was used for isolation of mRNAs - see below.) Chromatin immunoprecipitations were carried out using antibodies that recognize MeCP2...tissues were performed with antibodies directed against MeCP2, MBD1, MBD2 and MBD4 (methyl-CpG binding domain containing proteins) - “ChIP DNA” from...the matched tissues and these antibodies . - The analysis of NGS data was initiated. Differences in the MBD association profiles between matched

  15. Preparation of recombinant coat protein of Prunus necrotic ringspot virus.

    PubMed

    Petrzik, K; Mráz, I; Kubelková, D

    2001-02-01

    The coat protein (CP) gene of Prunus necrotic ringspot virus (PNRSV) was cloned into pET 16b vector and expressed in Escherichia coli. CP-enriched fractions were prepared from whole cell lysate by differential centrifugation. The fraction sedimenting at 20,000 x g for 30 mins was used for preparation of a rabbit antiserum to CP. This antiserum had a titer of 1:2048 and reacted in a double-antibody sandwich ELISA (DAS-ELISA).

  16. Selective preservation of cholinergic MeCP2 rescues specific Rett-syndrome-like phenotypes in MeCP2stop mice.

    PubMed

    Zhou, Huanhuan; Wu, Wei; Zhang, Ying; He, Haiyang; Yuan, Zhefeng; Zhu, Zhiwei; Zhao, Zhengyan

    2017-03-30

    RTT is a neurodevelopmental disorder characterized by growth regression, motor dysfunction, stereotypic hand movements, and autism features. Typical Rett syndrome (RTT) is predominantly caused by mutations in X-linked MeCP2 gene which encodes methyl-CpG-binding protein 2 (MeCP2). The brain-abundant MeCP2 protein mainly functions as a transcriptional regulator for neurodevelopment-associated genes. Specific functions of MeCP2 in certain neuron types remain to be known. Although cholinergic system is an important modulating system in brain, how MeCP2 in cholinergic neurons contribute to RTT has not been clearly understood. Here we use a mouse model with selectively activated endogenous MeCP2 in cholinergic neurons in otherwise MeCP2 stop mice to determine the cholinergic MeCP2 effects on rescuing the RTT-like phenotypes. We found cholinergic MeCP2 preservation could reverse some aspects of the RTT-like phenotypes in mice including hypolocomotion and increased anxiety level, and delay the onset of underweight, instead of improving the hypersocial abnormality and the poor general conditions such as short lifespan, low brain weight, and increasing severity score. Our findings suggest that selective activation of cholinergic MeCP2 is sufficient to reverse the locomotor impairment and increased anxiety-like behaviors at least in early symptomatic stage, supporting future development of RTT therapies associated with cholinergic system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Progressive response of large intestinal bacterial community and fermentation to the stepwise decrease of dietary crude protein level in growing pigs.

    PubMed

    Peng, Yu; Yu, Kaifan; Mu, Chunlong; Hang, Suqin; Che, Lianqiang; Zhu, Weiyun

    2017-07-01

    The study aimed to determine the effects of reduction of dietary crude protein (CP) level with balanced essential amino acids (EAA) on intestinal bacteria and their metabolites of growing pigs. Forty pigs (initial BW 13.50 ± 0.50 kg, 45 ± 2 days of age) were randomly assigned to four dietary treatments containing CP levels at 20.00% (normal crude protein, NP); 17.16% (medium crude protein, MP); 15.30% (low crude protein, LP); and 13.90% (extremely low crude protein, ELP), respectively. Crystalline AAs were added to meet the EAA requirement of pigs. After 4-week feeding, eight pigs per treatment (n = 8) were randomly selected and slaughtered for sampling of ileal, cecal, and colonic digesta and mucosa. Pigs with moderately reduced CP level had increased bacterial diversity, with the Shannon diversity indices for the colon digesta in the LP group and mucosa in the MP and LP groups significantly (P < 0.05) higher than those in the NP and ELP groups. As the CP level reduces, the Bifidobacterium population were linearly decreased (P < 0.05) both in ileum, cecum, and colon, and the ELP group had the lowest Bifidobacterium population in the cecum and colon, with its value significantly lower than NP and MP groups (P < 0.05). However, the ELP group had the highest population of Escherichia coli in the colon, with its value significantly higher than the LP group (P < 0.05). For bacterial metabolites, as CP level decreased, total short-chain fatty acid (T-SCFA), acetate, and butyrate were linearly increased (linear, P < 0.05) in the ileum, while all SCFAs except formate in the cecum and T-SCFA and acetate in the colon, were linearly decreased (P < 0.05). Reducing CP level led to a linear decrease of microbial crude protein (MCP) in the ileum (P < 0.05) and ammonia in all intestine segments (P < 0.05). The spermidine in cecum and total amines, cadaverine, methylamine, and spermidine in colon were shown a quadratic change (P < 0.05) as dietary CP decreases, with the highest concentration in LP group. These findings suggest that moderate reduction of dietary CP level may benefit large intestinal bacterial community and its fermentation, which was negatively affected by extremely low CP diet.

  18. Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets.

    PubMed

    Gidlund, H; Hetta, M; Krizsan, S J; Lemosquet, S; Huhtanen, P

    2015-11-01

    This study evaluated the effects of soybean meal (SBM) and heat-moisture-treated canola meal (TCM) on milk production and methane emissions in dairy cows fed grass silage-based diets. Twenty-eight Swedish Red cows were used in a cyclic change-over experiment with 4 periods of 21 d and with treatments in 2 × 4 factorial arrangement (however, the control diet without supplementary protein was not fed in replicate). The diets were fed ad libitum as a total mixed ration containing 600 g/kg of grass silage and 400 g/kg of concentrates on a dry matter (DM) basis. The concentrate without supplementary protein consisted of crimped barley and premix (312 and 88 g/kg of DM), providing 130 g of dietary crude protein (CP)/kg of DM. The other 6 concentrates were formulated to provide 170, 210, or 250 g of CP/kg of DM by replacing crimped barley with incremental amounts of SBM (50, 100, or 150 g/kg of diet DM) or TCM (70, 140, or 210 g/kg of diet DM). Feed intake was not influenced by dietary CP concentration, but tended to be greater in cows fed TCM diets compared with SBM diets. Milk and milk protein yield increased linearly with dietary CP concentration, with greater responses in cows fed TCM diets compared with SBM diets. Apparent N efficiency (milk N/N intake) decreased linearly with increasing dietary CP concentration and was lower for cows fed SBM diets than cows fed TCM diets. Milk urea concentration increased linearly with increased dietary CP concentration, with greater effects in cows fed SBM diets than in cows fed TCM diets. Plasma concentrations of total AA and essential AA increased with increasing dietary CP concentration, but no differences were observed between the 2 protein sources. Plasma concentrations of Lys, Met, and His were similar for both dietary protein sources. Total methane emissions were not influenced by diet, but emissions per kilogram of DM intake decreased quadratically, with the lowest value observed in cows fed intermediate levels of protein supplementation. Methane emissions per kilogram of energy-corrected milk decreased more when dietary CP concentration increased in TCM diets compared with SBM diets. Overall, replacing SBM with TCM in total mixed rations based on grass silage had beneficial effects on milk production, N efficiency, and methane emissions across a wide range of dietary CP concentrations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The proteolytic profile of human cancer procoagulant suggests that it promotes cancer metastasis at the level of activation rather than degradation.

    PubMed

    Kee, Nalise Low Ah; Krause, Jason; Blatch, Gregory L; Muramoto, Koji; Sakka, Kazuo; Sakka, Makiko; Naudé, Ryno J; Wagner, Leona; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; Mielicki, Wojciech P; Frost, Carminita L

    2015-10-01

    Proteases are essential for tumour progression and many are over-expressed during this time. The main focus of research was the role of these proteases in degradation of the basement membrane and extracellular matrix (ECM), thereby enabling metastasis to occur. Cancer procoagulant (CP), a protease present in malignant tumours, but not normal tissue, is a known activator of coagulation factor X (FX). The present study investigated the function of CP in cancer progression by focussing on its enzymatic specificity. FX cleavage was confirmed using SDS-PAGE and MALDI-TOF MS and compared to the proteolytic action of CP on ECM proteins, including collagen type IV, laminin and fibronectin. Contrary to previous reports, CP cleaved FX at the conventional activation site (between Arg-52 and Ile-53). Additionally, degradation of FX by CP occurred at a much slower rate than degradation by conventional activators. Complete degradation of the heavy chain of FX was only visible after 24 h, while degradation by RVV was complete after 30 min, supporting postulations that the procoagulant function of CP may be of secondary importance to its role in cancer progression. Of the ECM proteins tested, only fibronectin was cleaved. The substrate specificity of CP was further investigated by screening synthetic peptide substrates using a novel direct CP assay. The results indicate that CP is not essential for either cancer-associated blood coagulation or the degradation of ECM proteins. Rather, they suggest that this protease may be required for the proteolytic activation of membrane receptors.

  20. In vivo particle polymorphism results from deletion of a N-terminal peptide molecular switch in brome mosaic virus capsid protein

    PubMed Central

    Calhoun, Shauni L; Speir, Jeffrey A; Rao, A.L.N.

    2009-01-01

    The interaction between brome mosaic virus (BMV) coat protein (CP) and viral RNA is a carefully orchestrated process resulting in the formation of homogeneous population of infectious virions with T=3 symmetry. Expression in vivo of either wild type or mutant BMV CP through homologous replication never results in the assembly of aberrant particles. In this study, we report that deletion of amino acid residues 41–47 from the N-proximal region of BMV CP resulted in the assembly of polymorphic virions in vivo. Purified virions from symptomatic leaves remain non-infectious and Northern blot analysis of virion RNA displayed packaging defects. Biochemical of variant CP by circular dichroism and MALDI-TOF, respectively, revealed that the engineered deletion affected the protein structure and capsid dynamics. Most significantly, CP subunits dissociated from polymorphic virions are incompetent for in vitro reassembly. Based on these observations, we propose a chaperon mediated mechanism for the assembly of variant CP in vivo and also hypothesize that 41KAIKAIA47 N-proximal peptide functions as a molecular switch in regulating T= 3 virion symmetry. PMID:17449079

  1. Kinetics of interaction of Cotton Leaf Curl Kokhran Virus-Dabawali (CLCuKV-Dab) coat protein and its mutants with ssDNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyadarshini, C.G. Poornima; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.i

    Gemini viral assembly and transport of viral DNA into nucleus for replication, essentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton Leaf Curl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K{sub A}, of 2.6 +- 0.29 x 10{sup 8} M{sup -1} in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes.more » The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a crucial role in virus assembly and in nuclear transport.« less

  2. Characterization of the 5’- and 3’-terminal subgenomic RNAs produced by a capillovirus: evidence for a CP subgenomic RNA

    USDA-ARS?s Scientific Manuscript database

    The members of Capillovirus genus encode two overlapping open reading frames (ORFs): ORF1 encodes a large polyprotein containing the domains of replication-associated proteins plus a coat protein (CP), and ORF2 encodes a movement protein, located within ORF1 in a different reading frame. Organizatio...

  3. Topical CpG Adjuvantation of a Protein-Based Vaccine Induces Protective Immunity to Listeria monocytogenes

    PubMed Central

    Cheng, Wing Ki; Wee, Kathleen; Kollmann, Tobias R.

    2014-01-01

    Robust CD8+ T cell responses are essential for immune protection against intracellular pathogens. Using parenteral administration of ovalbumin (OVA) protein as a model antigen, the effect of the Toll-like receptor 9 (TLR9) agonist, CpG oligodeoxynucleotide (ODN) 1826, as an adjuvant delivered either topically, subcutaneously, or intramuscularly on antigen-specific CD8+ T cell responses in a mouse model was evaluated. Topical CpG adjuvant increased the frequency of OVA-specific CD8+ T cells in the peripheral blood and in the spleen. The more effective strategy to administer topical CpG adjuvant to enhance CD8+ T cell responses was single-dose administration at the time of antigen injection with a prime-boost regimen. Topical CpG adjuvant conferred both rapid and long-lasting protection against systemic challenge with recombinant Listeria monocytogenes expressing the cytotoxic T lymphocyte (CTL) epitope of OVA257–264 (strain Lm-OVA) in a TLR9-dependent manner. Topical CpG adjuvant induced a higher proportion of CD8+ effector memory T cells than parenteral administration of the adjuvant. Although traditional vaccination strategies involve coformulation of antigen and adjuvant, split administration using topical adjuvant is effective and has advantages of safety and flexibility. Split administration of topical CpG ODN 1826 with parenteral protein antigen is superior to other administration strategies in enhancing both acute and memory protective CD8+ T cell immune responses to subcutaneous protein vaccines. This vaccination strategy induces rapid and persistent protective immune responses against the intracellular organism L. monocytogenes. PMID:24391136

  4. Solution structure and intramolecular exchange of methyl-cytosine binding domain protein 4 (MBD4) on DNA suggests a mechanism to scan for mCpG/TpG mismatches

    PubMed Central

    Walavalkar, Ninad M.; Cramer, Jason M.; Buchwald, William A.; Scarsdale, J. Neel; Williams, David C.

    2014-01-01

    Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference formCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to mCpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain. PMID:25183517

  5. Regulation of chromatin organization and inducible gene expression by a Drosophila insulator.

    PubMed

    Wood, Ashley M; Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Rohrbaugh, Margaret; Jones, Brian C; Jones, Keith C; Corces, Victor G

    2011-10-07

    Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Production and Characterization of Monoclonal Antibody against Recombinant Virus Coat Protein CP42.

    PubMed

    Shibaei, Naeimeh; Majidi, Jafar; Razavi, Khadijeh; Karkhane, Ali Asghar; Sokhandan-Bashir, Nemat; Aghebati-Maleki, Leili

    2017-02-01

    There are many studies related to the production of a ELISA kit for diagnosing virus infections. However, production of most kits depends on purification of whole virus particles, which involves the use of costly equipment and reagents. The purpose of this study was to check out if the anti-CP42 antibodies could be used as a diagnostic assay for detection of Grapevine fanleaf Virus (GFLV). In this study, recombinant GFLV coat protein gene related to selected antigenic determinants was inserted into pET-28a bacterial expression vector and the construct (pET-28a CP42) was cloned into E. coli strain (DE3). Expressed protein was verified with western blotting assay by the use of commercially available anti-GFLV antibody. The recombinant protein was purified using nickel-nitrilotriacetic acid (Ni-NTA) resin. Balb/c mice were immunized with purified protein and splenocytes of hyperimmunized mice were fused with murine myeloma Sp2/0 cells. Positive hybridomas were selected by ELISA using CP42 as coating antigen. The results showed that monoclonal antibody (MAb) specific to CP42 has been successfully generated. Efficiency of produced antibody was analyzed by ELISA and western blotting assay using some confirmed grapevine samples. The infection was confirmed previously based on morphological features and ELISA assay, performed using commercial anti-GFLV antibody. The monoclonal antibody reacted with antigen in ELISA and immunoblot method. Our results demonstrated that anti recombinant CP42 monoclonal antibodies are able to diagnose whole virus in infected grapevine sample using ELISA test.

  7. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation.

    PubMed

    Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente

    2006-06-01

    Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.

  8. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species

    PubMed Central

    Khan, Abdul Latif; Khan, Muhammad Aaqil; Shahzad, Raheem; Lubna; Kang, Sang Mo; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2018-01-01

    Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species. PMID:29596414

  9. MBD3L2 interacts with MBD3 and components of the NuRD complex and can oppose MBD2-MeCP1-mediated methylation silencing.

    PubMed

    Jin, Seung-Gi; Jiang, Chun-Ling; Rauch, Tibor; Li, Hongwei; Pfeifer, Gerd P

    2005-04-01

    MBD2 and MBD3 are two proteins that contain methyl-CpG binding domains and have a transcriptional repression function. Both proteins are components of a large CpG-methylated DNA binding complex named MeCP1, which consists of the nucleosome remodeling and histone deacetylase complex Mi2-NuRD and MBD2. MBD3L2 (methyl-CpG-binding protein 3-like 2) is a protein with substantial homology to MBD2 and MBD3, but it lacks the methyl-CpG-binding domain. Unlike MBD3L1, which is specifically expressed in haploid male germ cells, MBD3L2 expression is more widespread. MBD3L2 interacts with MBD3 in vitro and in vivo, co-localizes with MBD3 but not MBD2, and does not localize to methyl-CpG-rich regions in the nucleus. In glutathione S-transferase pull-down assays, MBD3L2 is found associated with several known components of the Mi2-NuRD complex, including HDAC1, HDAC2, MTA1, MBD3, p66, RbAp46, and RbAp48. Gel shift experiments with nuclear extracts and a CpG-methylated DNA probe indicate that recombinant MBD3L2 can displace a form of the MeCP1 complex from methylated DNA. MBD3L2 acts as a transcriptional repressor when tethered to a GAL4-DNA binding domain. Repression by GAL4-MBD3L2 is relieved by MBD2 and vice versa, and repression by MBD2 from a methylated promoter is relieved by MBD3L2. The data are consistent with a role of MBD3L2 as a transcriptional modulator that can interchange with MBD2 as an MBD3-interacting component of the NuRD complex. Thus, MBD3L2 has the potential to recruit the MeCP1 complex away from methylated DNA and reactivate transcription.

  10. Effects crude protein levels on female Nile tilapia (Oreochromis niloticus) reproductive performance parameters.

    PubMed

    de Oliveira, Marinez Moraes; Ribeiro, Tainá; Orlando, Tamira Maria; de Oliveira, Dênio Garcia Silva; Drumond, Mariana Martins; de Freitas, Rilke Tadeu Fonseca; Rosa, Priscila Vieira

    2014-11-10

    The goal of the present work was to study the reproductive performance of Nile Tilapia (Oreochromis niloticus) female broodstock fed diets containing different levels of crude protein (CP). Two hundred and forty Nile tilapia (O. niloticus) were used at an average age of 30 months, with 180 females and 60 males. The broodstock were lodged separately in masonry tanks with continuous water flow. The females were stocked in thirty tanks with dimensions of 8 m(3) in a completely randomized design consisting of five treatments and six replications. The treatments consisted of five diets with different levels of CP (32, 34, 36, 38 and 40%) and with digestible energy per gram of protein of 9.5 kg of feed. The crude protein (CP) levels positively influenced (p<0.05) reproductive parameters (female relative and absolute fecundity, egg diameter, fasting larvae survival capacity), the somatic indexes (gonadosomatic (GSI), hepatosomatic (HIS), viscerosomatic (VSI)), total plasma protein, albumin and triglycerides. There were no significant differences (p>0.05) observed with regard to spawning weight and female weight. The reproductive parameters studied in the present research indicate that diets formulated with 38% CP with digestible energy per gram of CP of 9.5 were the best diets for tilapia females during the reproductive period. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong

    Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereasmore » GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement.« less

  12. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex

    PubMed Central

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B.

    2016-01-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer–promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and “bridging” proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior–posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. PMID:26715665

  13. Effect of crude protein concentration and dietary electrolyte balance on litter quality, foot pad dermatitis, growth performance and processing yields in two medium heavy turkey hybrids.

    PubMed

    Veldkamp, T; Hocking, P M; Vinco, L J

    2017-10-01

    1. An experiment was conducted to investigate the effect of crude protein (CP) concentration and dietary electrolyte balance (DEB) on growth performance, processing yields, litter quality and foot pad dermatitis (FPD) in male turkeys from two commercial hybrids. Soya bean meal was replaced by vegetable protein sources selected for lower K concentrations to lower DEB in order to improve litter quality and subsequent quality of foot pads. 2. Effects of CP on litter friability and wetness were not consistent during the production period. FPD in turkeys fed on diets with low CP was significantly lower than FPD in turkeys fed on diets with high CP until 84 d. Growth performance was adversely affected at low CP. Processing yields were not affected by CP. 3. Litter was significantly dryer in pens of turkeys fed on diets with low DEB than in pens of turkeys fed on diets with high DEB. FPD in turkeys fed on diets with low DEB was significantly lower than in turkeys fed on diets with high DEB. Growth performance and processing yields were adversely affected at low DEB. 4. FPD in turkey hybrid A was higher than in turkey hybrid B at 28 d of age. Thereafter, no differences in FPD between turkey hybrids were observed. Growth performance and processing yields were not affected by turkey hybrid. 5. Overall, a significant interaction effect of CP × DEB was observed for FCR: in turkeys fed on the high DEB treatment, FCR of turkeys fed on the high CP diets was lower than FCR of turkeys fed on the low CP (LCP) diets whereas on the low DEB treatment, FCR was not affected by CP treatment. 6. It was concluded that litter quality can be improved and FPD may be decreased in turkeys fed on diets containing lower CP and DEB levels.

  14. Protein and amino acid bioavailability of extruded dog food with protein meals of different quality using growing mink () as a model.

    PubMed

    Tjernsbekk, M T; Tauson, A-H; Matthiesen, C F; Ahlstrøm, Ø

    2016-09-01

    The present study evaluated growing mink () as a model for dietary protein quality assessment of protein meals used in extruded dog foods. Three foods with similar CP content but of different protein quality were produced using different protein meals. The protein meals varied with respect to CP digestibility and AA composition and included lamb meal (LBM), poultry meal (PM), and fish meal (FM) with low, intermediate, and high protein quality, respectively. Nitrogen balance, BW gain, protein efficiency ratio (PER), and apparent total tract digestibility (ATTD) were used as measures of protein and AA bioavailability in growing mink. Standardized ileal digestibility (SID) was used to measure protein and AA bioavailability in adult dogs (). The mink study (3 × 3 Latin square design) included 12 kits aged 8 to 11 wk. The dog study included 12 dogs divided in 3 groups allocated to 1 of the experimental diets. The growing mink responded in accordance with the different AA supply between diets, as determined by the first limiting AA. The LBM diet deviated from the other diets with lower ( < 0.001) values for N retention, BW gain, and PER, and the diets differed ( < 0.001) in ATTD of CP and all AA, except for hydroxyproline. Retention of N was 0.66, 1.04, and 1.18 g·kg·d; BW gain was 8.2, 26.8, and 35.3 g/d; PER was 0.38, 1.39, and 1.71; and ATTD of CP was 66.8, 73.8, and 82.1% for the LBM, PM, and FM diets, respectively. In dogs, SID of CP and AA differed ( ≤ 0.017) between diets and was generally lowest for the LBM diet, intermediate for the PM diet, and greatest for the FM diet. For CP, SID was 71.5, 80.2, and 87.0% for the LBM, PM, and FM diets, respectively. The contents of digestible CP and AA (based on SID) covered the minimal requirement for adult dogs set by the NRC for all diets, except for the content of digestible Met + Cys in the LBM diet. Despite this, dietary content of Met + Cys in the LBM diet agreed with the recommended level set by the NRC and the Association of American Feed Control Officials for adult dogs but was below the level recommended by the European Pet Food Industry Federation. It was concluded that growth studies with mink kits can provide valuable information in protein quality assessment of extruded dog foods. Furthermore, the study showed that to ensure nutritional adequacy of dog food and to be able to compare protein quality of dog foods, information on AA composition and digestibility is crucial.

  15. CPdock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics.

    PubMed

    Basu, Sankar

    2017-12-07

    The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (S m , E m ) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant E m values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CP dock , based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CP dock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CP dock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing the efficacy of CP dock to be used in the initial screening phase of a protein-protein docking scoring pipeline.

  16. Perceived Instrumentality and Normativeness of Corporal Punishment Use among Black Mothers

    PubMed Central

    Taylor, Catherine A.; Hamvas, Lauren; Paris, Ruth

    2011-01-01

    Corporal punishment (CP) remains highly prevalent in the U.S. despite its association with increased risk for child aggression and physical abuse. Five focus groups were conducted with parents (n=18) from a community at particularly high risk for using CP (Black, low socioeconomic status, Southern) in order to investigate their perceptions about why CP use is so common. A systematic qualitative analysis was conducted using grounded theory techniques within an overall thematic analysis. Codes were collapsed and two broad themes emerged. CP was perceived to be: 1) instrumental in achieving parenting goals and 2) normative within participants' key social identity groups, including race/ethnicity, religion, and family of origin. Implications for the reduction of CP are discussed using a social ecological framework. PMID:22707816

  17. Supporting Production of Milk and Milk Components on Low Protein Diets

    USDA-ARS?s Scientific Manuscript database

    There is increasing interest in minimizing crude protein (CP) content of diets fed to dairy cows to reduce production costs and to improve environmental sustainability. Dietary CP not utilized for production is lost largely in the urine, the most polluting form of excretory nitrogen (N). Because mic...

  18. Isolation and Compositional Analysis of a CP12-Associated Complex of Calvin Cycle Enzymes from Nicotiana tabacum

    USDA-ARS?s Scientific Manuscript database

    CP12 is a small intrinsically unstructured protein that forms a multiprotein complex with two Calvin Cycle enzymes, phosphoribulokinase (PRK) and NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The complex can be reconstituted in vitro from recombinant proteins under conditions t...

  19. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Launay, Hélène; Barré, Patrick; Puppo, Carine

    2016-08-12

    The redox switch protein CP12 is a key player of the regulation of the Benson–Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in themore » oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. - Highlights: • CP12 is predicted to form two helices in its N-terminal sequence. • Reduced CP12 is disordered as a random coil according to SAXS. • Limited or no transient structures are observed in reduced CP12 by NMR.« less

  20. Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage.

    PubMed

    Khorshid Ahmad, Tina; Zhou, Ting; AlTaweel, Khaled; Cortes, Claudia; Lillico, Ryan; Lakowski, Ted Martin; Gozda, Kiana; Namaka, Michael Peter

    2017-06-12

    Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2) called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE)-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS) over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC) and active control (AC) animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC). The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG). Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC may arise from the elevated MeCP2E1 vs. MeCP2E2 ratio in the SC that creates a more hostile environment thereby preventing local BDNF production. At the level of transcript, we demonstrate that EAE-induces the pathological enhanced expression of MeCP2E1 that contributes to enhanced NDS during the entire disease course. Thus, the pathological induction of the MeCP2E1 isoform contributes to the disruption of the normal homeostatic signaling equilibrium network that exists between cytokines, neurotrophins and chemokines that regulate the myelin repair process by repressing BDNF. Our research suggests that the elevated ratio of MeCP2E1 relative to MeCP2E2 may be a useful diagnostic marker that clinicians can utilize to determine the degree of neurological disability with associated myelin damage. The elevated MeCP2E1 vs. MeCP2E2 ratios (E1/E2) in the SC prevent BDNF from reaching optimal levels required for myelin repair. Thus, the lower E1/E2 ratios in the DRG, allow the DRG to serve as a weak secondary compensatory mechanism for enhanced production and delivery of BDNF to the SC to try to assist in myelin repair.

  1. The poly(rC)-binding protein αCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation

    PubMed Central

    Vishnu, Melanie R.; Sumaroka, Marina; Klein, Peter S.; Liebhaber, Stephen A.

    2011-01-01

    Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3′ UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3′ UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings. PMID:21444632

  2. Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth1[W

    PubMed Central

    Howard, Thomas P.; Fryer, Michael J.; Singh, Prashant; Metodiev, Metodi; Lytovchenko, Anna; Obata, Toshihiro; Fernie, Alisdair R.; Kruger, Nicholas J.; Quick, W. Paul; Lloyd, Julie C.; Raines, Christine A.

    2011-01-01

    The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants. PMID:21865489

  3. The Rice Tungro Bacilliform Virus Gene II Product Interacts with the Coat Protein Domain of the Viral Gene III Polyprotein

    PubMed Central

    Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas

    2000-01-01

    Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237

  4. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  5. Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chromatin sites in Drosophila.

    PubMed

    Melnikova, Larisa; Kostyuchenko, Margarita; Parshikov, Alexander; Georgiev, Pavel; Golovnin, Anton

    2018-01-01

    Su(Hw) belongs to the class of proteins that organize chromosome architecture and boundaries/insulators between regulatory domains. This protein contains a cluster of 12 zinc finger domains most of which are responsible for binding to three different modules in the consensus site. Su(Hw) forms a complex with CP190 and Mod(mdg4)-67.2 proteins that binds to well-known Drosophila insulators. To understand how Su(Hw) performs its activities and binds to specific sites in chromatin, we have examined the previously described su(Hw)f mutation that disrupts the 10th zinc finger (ZF10) responsible for Su(Hw) binding to the upstream module. The results have shown that Su(Hw)f loses the ability to interact with CP190 in the absence of DNA. In contrast, complete deletion of ZF10 does not prevent the interaction between Su(Hw)Δ10 and CP190. Having studied insulator complex formation in different mutant backgrounds, we conclude that both association with CP190 and Mod(mdg4)-67.2 partners and proper organization of DNA binding site are essential for the efficient recruitment of the Su(Hw) complex to chromatin insulators.

  6. Effects of randomized supplementation of methionine or alanine on cysteine and glutathione production during the early phase of treatment of children with edematous malnutrition123

    PubMed Central

    Green, Curtis O; Hsu, Jean W; Taylor-Bryan, Carolyn; Reid, Marvin; Forrester, Terrence; Jahoor, Farook

    2014-01-01

    Background: We have shown that a low glutathione concentration and synthesis rate in erythrocytes are associated with a shortage of protein-derived cysteine in children with edematous severe acute malnutrition (SAM). Objective: We tested the hypothesis that methionine supplementation may increase protein-derived cysteine and upregulate cysteine synthesis, thereby improving glutathione synthesis during the early treatment of edematous SAM. Design: The cysteine flux, its de novo synthesis and release from protein breakdown, and erythrocyte glutathione synthesis rate were measured in 12 children with edematous SAM in the fed state by using stable isotope tracers at 3 clinical phases as follows: 3 ± 1 d (±SE) [clinical phase 1 (CP1)], 8 ± 1 d [clinical phase 2 (CP2)], and 14 ± 2 d (clinical phase 3) after admission. Subjects were randomly assigned to receive equimolar supplements (0.5 mmol ⋅ kg−1 ⋅ d−1) of methionine or alanine (control) immediately after CP1. Results: In the methionine compared with the alanine group, cysteine flux derived from protein breakdown was faster at CP2 than CP1 (P < 0.05), and the change in plasma cysteine concentration from CP1 to CP2 was greater (P < 0.05). However, there was no evidence of a difference in cysteine de novo synthesis and its total flux or erythrocyte glutathione synthesis rate and concentration between groups. Conclusions: Methionine supplementation increased cysteine flux from body protein but had no significant effect on glutathione synthesis rates. Although cysteine is made from methionine, increased dietary cysteine may be necessary to partially fulfill its demand in edematous SAM because glutathione synthesis rates and concentrations were less than previous values shown at full recovery. This study was registered at clinicaltrials.gov as NCT00473031. PMID:24598154

  7. The nucleotide sequence and genome organization of Plasmopara halstedii virus.

    PubMed

    Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar

    2011-03-17

    Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates. Insignificant viral sequence variation indicated that the virus did not account for differences in pathogenicity of the oomycete P. halstedii.

  8. Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots.

    PubMed

    Chen, Xiaochao; Schönberger, Brigitte; Menz, Jochen; Ludewig, Uwe

    2018-05-25

    DNA methylation is a heritable chromatin modification that maintains chromosome stability, regulates transposon silencing and appears to be involved in gene expression in response to environmental conditions. Environmental stress alters DNA methylation patterns that are correlated with gene expression differences. Here, genome-wide differential DNA-methylation was identified upon prolonged Zn deficiency, leading to hypo- and hyper-methylated chromosomal regions. Preferential CpG methylation changes occurred in gene promoters and gene bodies, but did not overlap with transcriptional start sites. Methylation changes were also prominent in transposable elements. By contrast, non-CG methylation differences were exclusively found in promoters of protein coding genes and in transposable elements. Strongly Zn deficiency-induced genes and their promoters were mostly non-methylated, irrespective of Zn supply. Differential DNA methylation in the CpG and CHG, but not in the CHH context, was found close to a few up-regulated Zn-deficiency genes. However, the transcriptional Zn-deficiency response in roots appeared little correlated with associated DNA methylation changes in promoters or gene bodies. Furthermore, under Zn deficiency, developmental defects were identified in an Arabidopsis mutant lacking non-CpG methylation. The root methylome thus responds specifically to a micro-nutrient deficiency and is important for efficient Zn utilization at low availability, but the relationship of differential methylation and differentially expressed genes is surprisingly poor.

  9. A population-based study of severity in patients with acute on chronic pancreatitis.

    PubMed

    Akshintala, Venkata S; Hutfless, Susan M; Yadav, Dhiraj; Khashab, Mouen A; Lennon, Anne Marie; Makary, Martin A; Hirose, Kenzo; Andersen, Dana K; Kalloo, Anthony N; Singh, Vikesh K

    2013-11-01

    The objectives of this study were to evaluate the severity of patients with acute pancreatitis (AP) on chronic pancreatitis (CP) and compare this to patients with AP without CP. The Maryland Health Services database was queried for all adult inpatient discharges with a primary diagnosis of AP from 1994 to 2010. Acute pancreatitis on CP and AP without CP were defined by the presence of the associated diagnosis code for CP. Severity was defined as organ failure, intensive care unit stay, or mortality. Acute pancreatitis on CP accounted for 13.7% of all AP discharges (9747/70,944). The proportion of AP-on-CP discharges doubled during the study period (8.8% to 17.6%; P < 0.0001). When compared with patients with AP without CP, AP-on-CP patients were younger, were more likely to be male and black, had higher rates of alcohol and drug abuse, and had less severe disease with lower rates of mortality, organ failure, need for mechanical ventilation, and intensive care unit stay. Among AP-on-CP patients, significant predictors of severity included advanced age, weight loss, and 2 or more comorbidities. Patients with AP on CP have less severe disease than do those with AP without CP. Weight loss, advanced age, and comorbidity increase the risk of severity in patients with AP on CP.

  10. Chemical characterization, energy values, protein and carbohydrate fractions, degradation kinetics of frost damaged wheat (with severely overall weight loss) in ruminants.

    PubMed

    Yu, Peiqiang; Racz, Vern

    2009-04-01

    In Canada, frost damage can result in millions of tonnes of wheat that is not suitable for human consumption (such wheat is referred to as 'frozen') each year. There is a need to systematically evaluate the nutritive value of frozen wheat for ruminants. So far, little research has been conducted to determine the magnitude of the differences in nutritive value between frozen and normal wheat. The objectives of this study were to compare frozen wheat and normal wheat (AC Barrie) in terms of (i) chemical characteristics; (ii) protein and carbohydrate fractions; (iii) energy value; and (iv) rumen degradation kinetics. The results showed that the overall yield losses of the frozen wheat were around 24%. The frozen wheat was significantly lower (P < 0.05) in starch (47 vs. 62%DM), non-structural carbohydrates (60 vs. 70%DM), and non-protein N (63 vs. 93%SCP); and higher (P < 0.05) in crude fat (3 vs. 2%DM), acid (6 vs. 2%DM), neutral detergent fiber (22 vs. 10%DM), lignin (2 vs. 1%DM), acid (3 vs. 1%CP) and neutral detergent insoluble CP (19 vs. 14%CP). The frozen wheat was also lower in (P < 0.05) energy (TDN, DE(3X), ME(3X,) NEL(3X), DE(4X), ME(4X,) NEL(4X) for dairy; ME, NE(m), and NE(g) beef cattle). After partitioning of protein and carbohydrate (CHO) subfractions, the results showed that the frozen wheat was lower (P < 0.05) in the intermediately degradable CP (PB2: 47 vs. 59%CP); and higher in rapidly degradable CP (PB1: 12 vs. 2%CP) and unavailable CP (PC: 3 vs. 1%CP). The frozen wheat was also lower (P < 0.05) in intermediately degradable CHO (CB1: 60 vs. 77%CHO); and higher (P < 0.05) in slowly degradable CHO (CB2: 20 vs. 8%CHO) and unavailable CHO (CC: 5 vs. 2%CHO). The in situ results showed that the frozen wheat had different patterns in rumen degradation kinetics of protein and starch. The extent of the changes varied according to the specific nutrient examined. In conclusion, the frozen wheat differed in chemical characteristics, TDN and energy values, protein and carbohydrate fractions and in situ degradation behavior from normal wheat. The chemical and nutritional characterization of wheat was highly associated with climate condition (frost damage). The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants.

  11. Prokaryotic expression of CP gene of Fritillary virus Y infecting Thunberg fritillary and antiserum preparation.

    PubMed

    Wei, Chuan-Bao; Wei, Yang-Yang; Yang, Yu; Liu, Shi-Liang; Hu, Hao-Yu; He, Yue

    2011-10-01

    To prepare antiserum against Fritillary virus Y (FVY) CP for detecting FVY and study serological relationships with other viruses. Specific primer was designed according to Genbank (accession: AM039800) to amplify CP gene of FVY infecting Thunberg fritillary. Sequence relationship with other potyviruses was made by Blast. The CP gene was inserted into pSBET and expressed in Escherichia coli BL21 (DE3) plys E strain. The object protein was purified by 12% SDS-PAGE firstly and subsequently 5% - 20% gradient SDS-PAGE. The antiserum against the CP was raised in mouse and its specificity was confirmed by Western blot analysis. The reactivity of the antiserum produced to FVY CP was tested by Western blot against the over-expressed coat proteins of 17 potyviruses. The ability to combine with nature FVY particles was confirmed by ELISA analysis. It shared 81.2% nucleotide acids identities with TrVY (Tricyrtis virus Y, AY 864850) CP gene, 68.1% with SMV-P (Soybean mosaic virus Pinellia strain, AJ507388. 2) CP gene and 67.2% with ZYMV (Zucchini yellow mosaic virus Luan isolate) CP gene. The prepared antiserum was special to FVY CP, also reacted moderately to the expressed CP of SMV-P (Soybean mosaic virus Pinellia strain) and weakly to that of ZYMV (Zucchini yellow mosaic virus Luan isolate). The antibody could combine to nature FVY particles and the antiserum is suitable for FVY detection by ELISA in large scale.

  12. The effect of thermal and ultrasonic treatment on amino acid composition, radical scavenging and reducing potential of hydrolysates obtained from simulated gastrointestinal digestion of cowpea proteins.

    PubMed

    Quansah, Joycelyn K; Udenigwe, Chibuike C; Saalia, Firibu K; Yada, Rickey Y

    2013-03-01

    The effect of thermal and ultrasonic treatment of cowpea proteins (CP) on amino acid composition, radical scavenging and reducing potential of hydrolysates (CPH) obtained from in vitro simulated gastrointestinal digestion of CP was evaluated. Hydrolysis of native and treated CP with gastrointestinal pepsin and pancreatin yielded CPH that displayed antioxidant activities based on oxygen radical scavenging capacity (ORAC), ferric reducing antioxidant power (FRAP) and superoxide radical scavenging activity (SRSA). CPH derived from the treated CP yielded higher ORAC values than CPH from untreated proteins. However, lower significant FRAP and SRSA values were observed for these samples compared to untreated CPH (p < 0.05). Amino acid analysis indicated that CP processing decreased total sulphur-containing amino acids in the hydrolysates, particularly cysteine. The amount of cysteine appeared to be positively related to FRAP and SRSA values of CPH samples, but not ORAC. The results indicated that thermal and ultrasonic processing of CP can reduce the radical scavenging and reducing potential of the enzymatic hydrolysates possibly due to the decreased amounts of cysteine. Since the hydrolysates were generated with gastrointestinal enzymes, it is possible that the resulting compounds are produced to exert some health functions during normal consumption of cowpea.

  13. Hsp27 and F-box protein β-TrCP promote degradation of mRNA decay factor AUF1.

    PubMed

    Li, Mei-Ling; Defren, Jennifer; Brewer, Gary

    2013-06-01

    Activation of the mitogen-activated protein (MAP) pathway kinases p38 and MK2 induces phosphorylation of the chaperone Hsp27 and stabilization of mRNAs containing AU-rich elements (AREs) (ARE-mRNAs). Likewise, expression of phosphomimetic mutant forms of Hsp27 also stabilizes ARE-mRNAs. It appears to perform this function by promoting degradation of the ARE-mRNA decay factor AUF1 by proteasomes. In this study, we examined the molecular mechanism linking Hsp27 phosphorylation to AUF1 degradation by proteasomes. AUF1 is a target of β-TrCP, the substrate recognition subunit of the E3 ubiquitin ligase Skp1-cullin-F-box protein complex, SCF(β-TrCP). Depletion of β-TrCP stabilized AUF1. In contrast, overexpression of β-TrCP enhanced ubiquitination and degradation of AUF1 and led to stabilization of reporter mRNAs containing cytokine AREs. Enhanced AUF1 degradation required expression of phosphomimetic mutant forms of both Hsp27 and AUF1. Our results suggest that a signaling axis composed of p38 MAP kinase-MK2-Hsp27-β-TrCP may promote AUF1 degradation by proteasomes and stabilization of cytokine ARE-mRNAs.

  14. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs.

    PubMed

    Kaewtapee, Chanwit; Burbach, Katharina; Tomforde, Georgina; Hartinger, Thomas; Camarinha-Silva, Amélia; Heinritz, Sonja; Seifert, Jana; Wiltafsky, Markus; Mosenthin, Rainer; Rosenfelder-Kuon, Pia

    2017-01-01

    Bacillus spp. seem to be an alternative to antimicrobial growth promoters for improving animals' health and performance. However, there is little information on the effect of Bacillus spp. in combination with different dietary crude protein (CP) levels on the ileal digestibility and microbiota composition. Therefore, the objective of this study was to determine the effect of Bacillus spp. supplementation to low- (LP) and high-protein diets (HP) on ileal CP and amino acid (AA) digestibility and intestinal microbiota composition. Eight ileally cannulated pigs with an initial body weight of 28.5 kg were randomly allocated to a row-column design with 8 pigs and 3 periods of 16 d each. The assay diets were based on wheat-barley-soybean meal with two protein levels: LP (14% CP, as-fed) and HP diet (18% CP, as-fed). The LP and HP diets were supplemented with or without Bacillus spp. at a level of 0.04% (as-fed). The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA was determined. Bacterial community composition from ileal digesta was analyzed by Illumina amplicon sequencing and quantitative real-time PCR. Data were analyzed as a 2 × 2 factorial design using the GLIMMIX procedures of SAS. The supplementation with Bacillus spp. did not affect both AID and SID of CP and AA in growing pigs. Moreover, there was no difference in AID of CP and AA between HP and LP diets, but SID of cystine, glutamic acid, glycine, and proline was lower ( P  < 0.05) in pigs fed the HP diets. The HP diets increased abundance of Bifidobacterium spp. and Lactobacillus spp., ( P  < 0.05) and by amplicon sequencing the latter was identified as predominant genus in microbiota from HP with Bacillus spp., whereas dietary supplementation of Bacillus spp. increased ( P  < 0.05) abundance of Roseburia spp.. The HP diet increased abundance of Lactobacillus spp. and Bifidobacterium spp.. The supplementation of Bacillus spp. resulted in a higher abundance of healthy gut associated bacteria without affecting ileal CP and AA digestibility, whereas LP diet may reduce the flow of undigested protein to the large intestine of pigs.

  15. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    PubMed Central

    2012-01-01

    Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP) and four cysteine proteinase inhibitor (CPI) gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is likely to play a strong role in the programmed cell death associated with post-germination of the coffee grain. Expression analysis of the cysteine proteinase inhibitor genes suggests that CcCPI-1 could primarily be involved in modulating the activity of grain CP activity; while CcCPI-4 may play roles modulating grain CP activity and in the protection of the young coffee seedlings from insects and pathogens. CcCPI-2 and CcCPI-3, having lower and more widespread expression, could be more general "house-keeping" CPI genes. PMID:22380654

  16. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens.

    PubMed

    Zhu, Shifeng; Jeong, Rae-Dong; Lim, Gah-Hyun; Yu, Keshun; Wang, Caixia; Chandra-Shekara, A C; Navarre, Duroy; Klessig, Daniel F; Kachroo, Aardra; Kachroo, Pradeep

    2013-09-26

    Plant viruses often encode suppressors of host RNA silencing machinery, which occasionally function as avirulence factors that are recognized by host resistance (R) proteins. For example, the Arabidopsis R protein, hypersensitive response to TCV (HRT), recognizes the turnip crinkle virus (TCV) coat protein (CP). HRT-mediated resistance requires the RNA-silencing component double-stranded RNA-binding protein 4 (DRB4) even though it neither is associated with the accumulation of TCV-specific small RNA nor requires the RNA silencing suppressor function of CP. HRT interacts with the cytosolic fraction of DRB4. Interestingly, TCV infection both increases the cytosolic DRB4 pool and inhibits the HRT-DRB4 interaction. The virulent R8A CP derivative, which induces a subset of HRT-derived responses, also disrupts this interaction. The differential localization of DRB4 in the presence of wild-type and R8A CP implies the importance of subcellular compartmentalization of DRB4. The requirement of DRB4 in resistance to bacterial infection suggests a universal role in R-mediated defense signaling. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.).

    PubMed

    Ellard-Ivey, M; Hopkins, R B; White, T J; Lomax, T L

    1999-01-01

    We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.

  18. Energy efficiency of digestible protein, fat and carbohydrate utilisation for growth in rainbow trout and Nile tilapia.

    PubMed

    Schrama, Johan W; Haidar, Mahmoud N; Geurden, Inge; Heinsbroek, Leon T N; Kaushik, Sachi J

    2018-04-01

    Currently, energy evaluation of fish feeds is performed on a digestible energy basis. In contrast to net energy (NE) evaluation systems, digestible energy evaluation systems do not differentiate between the different types of digested nutrients regarding their potential for growth. The aim was to develop an NE evaluation for fish by estimating the energy efficiency of digestible nutrients (protein, fat and carbohydrates) and to assess whether these efficiencies differed between Nile tilapia and rainbow trout. Two data sets were constructed. The tilapia and rainbow data set contained, respectively, eight and nine experiments in which the digestibility of protein, fat and energy and the complete energy balances for twenty-three and forty-five diets was measured. The digestible protein (dCP), digestible fat (dFat) and digestible carbohydrate intakes (dCarb) were calculated. By multiple regression analysis, retained energy (RE) was related to dCP, dFat and dCarb. In tilapia, all digestible nutrients were linearly related to RE (P<0·001). In trout, RE was quadratically related to dCarb (P<0·01) and linearly to dCP and dFat (P<0·001). The NE formula was NE=11·5×dCP+35·8×dFAT+11·3×dCarb for tilapia and NE=13·5×dCP+33·0×dFAT+34·0×dCarb-3·64×(dCarb)2 for trout (NE in kJ/(kg0·8×d); dCP, dFat and dCarb in g/(kg0·8×d)). In tilapia, the energetic efficiency of dCP, dFat and dCarb was 49, 91 and 66 %, respectively, showing large similarity with pigs. Tilapia and trout had similar energy efficiencies of dCP (49 v. 57 %) and dFat (91 v. 84 %), but differed regarding dCarb.

  19. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions.

    PubMed

    Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E

    2012-05-04

    Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.

  20. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions

    PubMed Central

    Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.

    2012-01-01

    Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342

  1. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage-based diets.

    PubMed

    Puhakka, L; Jaakkola, S; Simpura, I; Kokkonen, T; Vanhatalo, A

    2016-10-01

    The objective of this study was to evaluate the production and physiological responses of dairy cows to the substitution of fava bean for rapeseed meal at 2 protein supplementation levels in grass silage-based diets. We used 6 primiparous and 6 multiparous Finnish Ayrshire cows in a cyclic changeover trial with a 2×3 factorial arrangement of treatments. The experimental diets consisted of formic acid-treated timothy-meadow fescue silage and 3 isonitrogenous concentrates containing either rapeseed meal, fava bean, or a 1:1 mixture of rapeseed meal and fava bean at low and high inclusion rates, resulting in concentrate crude protein (CP) levels of 15.4 and 19.0% in dry matter. Silage dry matter intake decreased linearly when rapeseed meal was replaced with fava bean, the negative effect being more distinct at the high CP level than the low (-2.3 vs. -0.9kg/d, respectively). Similarly, milk and milk protein yields decreased linearly with fava bean, the change tending to be greater at the high CP level than the low. Yield of milk fat was lower for fava bean compared with rapeseed meal, the difference showing no interaction with CP level. Especially at the high CP level, milk urea concentration was higher with fava bean compared with rapeseed meal indicating better utilization of protein from the rapeseed meal. The apparent total-tract organic matter digestibility did not differ between treatments at the low CP level, but digestibility was higher for fava bean than for rapeseed meal at the high CP level. Plasma concentrations of essential amino acids, including methionine and lysine, were lower for fava bean than for rapeseed meal. Compared with rapeseed meal, the use of fava bean in dairy cow diets as the sole protein supplement decreased silage intake and milk production in highly digestible formic acid-treated grass silage-based diets. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle--a meta-analysis.

    PubMed

    Broderick, G A; Huhtanen, P; Ahvenjärvi, S; Reynal, S M; Shingfield, K J

    2010-07-01

    Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Occurrence of Cucumber mosaic virus on vanilla (Vanilla planifolia Andrews) in India.

    PubMed

    Madhubala, R; Bhadramurthy, V; Bhat, A I; Hareesh, P S; Retheesh, S T; Bhai, R S

    2005-06-01

    Cucumber mosaic virus (CMV) causing mosaic, leaf distortion and stunting of vanilla (Vanilla planifolia Andrews) in India was characterized on the basis of biological and coat protein (CP) nucleotide sequence properties. In mechanical inoculation tests, the virus was found to infect members of Chenopodiaceae, Cucurbitaceae, Fabaceae and Solanaceae. Nicotiana benthamiana was found to be a suitable host for the propagation of CMV. The virus was purified from inoculated N. benthamiana plants and negatively stained purified preparations contained isometric particles of about 28 nm in diameter. The molecular weight of the viral coat protein subunits was found to be 25.0 kDa. Polyclonal antiserum was produced in New Zealand white rabbit, immunoglobulin G (IgG) was purified and conjugated with alkaline phosphatase enzyme. Double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) method was standardized for the detection of CMV infection in vanilla plants. CP gene of the virus was amplified using reverse transcriptase-polymerase chain reaction (RT-PCR), cloned and sequenced. Sequenced region contained a single open reading frame of 657 nucleotides potentially coding for 218 amino acids. Sequence analyses with other CMV isolates revealed the greatest identity with black pepper isolate of CMV (99%) and the phylogram clearly showed that CMV infecting vanilla belongs to subgroup IB. This is the first report of occurrence of CMV on V. planifolia from India.

  4. Effect of feeding varied levels of crude protein and absorbable methionine on milk yield in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Supplementing with limiting AA should allow less CP to be fed; reducing dietary CP will decrease urinary N and ameliorate the environmental impact of dairying. Rumen-protected Met (RPM), fed as Mepron to provide 9 g/d of absorbable Met, allowed similar milk yield at 15.8% CP as at 17.1% CP without R...

  5. Recognition of platinum-DNA adducts by HMGB1a.

    PubMed

    Ramachandran, Srinivas; Temple, Brenda; Alexandrova, Anastassia N; Chaney, Stephen G; Dokholyan, Nikolay V

    2012-09-25

    Cisplatin (CP) and oxaliplatin (OX), platinum-based drugs used widely in chemotherapy, form adducts on intrastrand guanines (5'GG) in genomic DNA. DNA damage recognition proteins, transcription factors, mismatch repair proteins, and DNA polymerases discriminate between CP- and OX-GG DNA adducts, which could partly account for differences in the efficacy, toxicity, and mutagenicity of CP and OX. In addition, differential recognition of CP- and OX-GG adducts is highly dependent on the sequence context of the Pt-GG adduct. In particular, DNA binding protein domain HMGB1a binds to CP-GG DNA adducts with up to 53-fold greater affinity than to OX-GG adducts in the TGGA sequence context but shows much smaller differences in binding in the AGGC or TGGT sequence contexts. Here, simulations of the HMGB1a-Pt-DNA complex in the three sequence contexts revealed a higher number of interface contacts for the CP-DNA complex in the TGGA sequence context than in the OX-DNA complex. However, the number of interface contacts was similar in the TGGT and AGGC sequence contexts. The higher number of interface contacts in the CP-TGGA sequence context corresponded to a larger roll of the Pt-GG base pair step. Furthermore, geometric analysis of stacking of phenylalanine 37 in HMGB1a (Phe37) with the platinated guanines revealed more favorable stacking modes correlated with a larger roll of the Pt-GG base pair step in the TGGA sequence context. These data are consistent with our previous molecular dynamics simulations showing that the CP-TGGA complex was able to sample larger roll angles than the OX-TGGA complex or either CP- or OX-DNA complexes in the AGGC or TGGT sequences. We infer that the high binding affinity of HMGB1a for CP-TGGA is due to the greater flexibility of CP-TGGA compared to OX-TGGA and other Pt-DNA adducts. This increased flexibility is reflected in the ability of CP-TGGA to sample larger roll angles, which allows for a higher number of interface contacts between the Pt-DNA adduct and HMGB1a.

  6. Response of laying hens to feeding low-protein amino acid-supplemented diets under high ambient temperature: performance, egg quality, leukocyte profile, blood lipids, and excreta pH

    NASA Astrophysics Data System (ADS)

    Torki, Mehran; Mohebbifar, Ahmad; Ghasemi, Hossein Ali; Zardast, Afshin

    2015-05-01

    An experiment was conducted to determine whether, by using a low-protein amino acid-supplemented diet, the health status, stress response, and excreta quality could be improved without affecting the productive performance of heat-stressed laying hens. The requirements for egg production, egg mass, and feed conversion ratio were also estimated using second-order equations and broken-line regression. A total of 150 Lohmann Selected Leghorn (LSL-Lite) hens were divided randomly into five groups of 30 with five replicates of six hens. The hens were raised for an 8-week period (52 to 60 weeks) in wire cages situated in high ambient temperature in an open-sided housing system. The five experimental diets (ME; 2,720 kcal/kg) varied according to five crude protein (CP) levels: normal-CP diet (control, 16.5 % CP) and low-CP diets containing 15.0, 13.5, 12.0, or 10.5 % CP. All experimental diets were supplemented with crystalline amino acids at the levels sufficient to meet their requirements. The results showed that under high temperature conditions, all productive performance and egg quality parameters in the birds fed with 15.0, 13.5, and 12.0 % CP diets were similar to those of birds fed with control diet (16.5 % CP), whereas feeding 10.5 % CP diet significantly decreased egg production and egg mass. Estimations of requirements were of 13.93 and 12.77 % CP for egg production, 14.62 and 13.22 % CP for egg mass, and 12.93 and 12.26 % CP for feed conversion ratio using quadratic and broken-line models, respectively. Egg yolk color index, blood triglyceride level, and excreta acidity were also significantly higher in birds fed with 12.0 and 10.5 % CP diets compared with those of control birds. The heterophil to lymphocyte ratio, as a stress indicator, was significantly decreased by 15.0, 13.5, and 12 % CP diets. On the basis of our findings, reducing dietary CP from 16.5 to 12.0 % and supplementing the diets with the essential amino acids showed merit for improving the stress response and excreta quality while maintaining acceptable production performance from laying hens under high ambient temperature conditions.

  7. Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry

    NASA Astrophysics Data System (ADS)

    Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge

    2014-08-01

    This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.

  8. Characterization of a Novel Polerovirus Infecting Maize in China

    PubMed Central

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-01-01

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3′ half of P3–P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved. PMID:27136578

  9. Characterization of a Novel Polerovirus Infecting Maize in China.

    PubMed

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-04-28

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.

  10. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    PubMed

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Calpeptin is neuroprotective against acrylamide-induced neuropathy in rats.

    PubMed

    Su, Benyu; Guan, Qiangdong; Wang, Miaomiao; Liu, Ning; Wei, Xiaomin; Wang, Shue; Yang, Xiwei; Jiang, Wenchong; Xu, Mengmeng; Yu, Sufang

    2018-05-01

    The aim of this study is to explore the potent neuroprotective effect of calpeptin (CP) on neuron damage induced by acrylamide (ACR) and its mechanism. Behavioural indicators such as hind limb splay, rota-rod performance, and gait analysis were assessed weekly to evaluate neurobehavioural changes after ACR and/or CP administration. The histopathological alterations and the changes of μ-calpain, m-calpain, microtubule-associated protein 2 (MAP2), and α-tubulin and β-tubulin protein levels in spinal cord were determined. Results showed that after administration of 30 mg/kg ACR, decreased body weight, attenuated neurobehavioural function, injury of motor neuron, increased protein levels of m-calpain and β-tubulin, suppressed MAP2 protein level, and no significant changes of μ-calpain and α-tubulin protein levels were observed compared with the control group rats. After administration of 200 μg/kg CP, partially restored body weight and neurobehavioural function, improvement of motor neuron injury, decreased protein levels of m- calpain and β-tubulin, and reversed effects of MAP2 protein level were observed compared with the ACR group rats. Our results suggested that CP alleviates neuropathy induced by ACR in rats. The calpain's overactivation causes the degrading of MAP2 and eventually leads to the destruction of microtubules (MTs), which may be one of the mechanisms of cytoskeletal damage induced by ACR. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. [Dietetic assessment of patients with gastroenterologic diseases at the out-patient service of the Institute National of Sciences Medicine and Nutrition Salvador Zubiran].

    PubMed

    de la Cruz Góngora, Vanesa Vianey; Pando Aguilar, Nancy Esther; Milke García, Pilar; Vargas-Voráková, Florencia

    2003-01-01

    Assessment of dietetic management is necessary for detection/correction of faults and best care of patients. Our aim was to evaluate dietetic management and nutritional status of gastroenterologic patients. Anthropometric, clinical-nutritional, biochemical, and dietetic parameters were assessed in 110 patients (150 with liver cirrhosis [LC], 30 with inflammatory bowel disease [IBD], and 30 with chronic and skin. In CP, prescribed energy, g and % carbohydrates and lipids were less than ideal and proteins were greater; in cirrhotics, less proteins and a great % of carbohydrates were prescribed; in IBD fewer lipids and more proteins than ideal were prescribed. Cirrhotics usually consumed less fat (g) and more proteins than prescribed, and patients with CP and IBD a greater amount of carbohydrates than prescribed. Cirrhotics consumed more % carbohydrates and < % lipids than ideal; CP patients lipid intake was less and protein intake above ideal and in IBD, carbohydrate intake was greater and lipid intake lower than ideal. Anthropometric and biochemical parameters were not useful for assessment of these patients. Prescribed diet was too restricted regarding proteins in LC and was inadequate in energy/nutrients in patients with CP. Fewer lipids and more proteins were prescribed in IBD. The inadequacy of prescripted diet, lack of information regarding the person who prescribed it, and lack of constant supervision may cause non-adherence to diet and thus may affect nutritional status.

  13. High-resolution analysis of CpG methylation and in vivo protein-DNA interactions at the alternative Epstein-Barr virus latency promoters Qp and Cp in the nasopharyngeal carcinoma cell line C666-1.

    PubMed

    Bakos, Agnes; Banati, Ferenc; Koroknai, Anita; Takacs, Maria; Salamon, Daniel; Minarovits-Kormuta, Susanna; Schwarzmann, Fritz; Wolf, Hans; Niller, Hans Helmut; Minarovits, Janos

    2007-10-01

    Transcripts for the Epstein-Barr virus (EBV) encoded nuclear antigens (EBNAs) are initiated at alternative promoters (Wp, Cp, for EBNA 1-6 transcripts and Qp, for EBNA 1 transcripts only) located in the BamHI W, C or Q fragment of the viral genome. To understand the host-cell dependent expression of EBNAs in EBV-associated tumors (lymphomas and carcinomas) and in vitro transformed cell lines, it is necessary to analyse the regulatory mechanisms governing the activity of the alternative promoters of EBNA transcripts. Such studies focused mainly on lymphoid cell lines carrying latent EBV genomes, due to the lack of EBV-associated carcinoma cell lines maintaining latent EBV genomes during cultivation in tissue culture. We took advantage of the unique nasopharyngeal carcinoma cell line, C666-1, harboring EBV genomes, and undertook a detailed analysis of CpG methylation patterns and in vivo protein-DNA interactions at the latency promoters Qp and Cp. We found that the active, unmethylated Qp was marked with strong footprints of cellular transcription factors and the viral protein EBNA 1. In contrast, we could not detect binding of relevant transcription factors to the methylated, silent Cp. We concluded that the epigenetic marks at Qp and Cp in C666-1 cells of epithelial origin resemble those of group I Burkitt's lymphoma cell lines.

  14. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA.

    PubMed

    Aparicio, Frederic; Vilar, Marçal; Perez-Payá, Enrique; Pallás, Vicente

    2003-08-15

    Binding of coat protein (CP) to the 3' nontranslated region (3'-NTR) of viral RNAs is a crucial requirement to establish the infection of Alfamo- and Ilarviruses. In vitro binding properties of the Prunus necrotic ringspot ilarvirus (PNRSV) CP to the 3'-NTR of its genomic RNA using purified E. coli- expressed CP and different synthetic peptides corresponding to a 26-residue sequence near the N-terminus were investigated by electrophoretic mobility shift assays. PNRSV CP bound to, at least, three different sites existing on the 3'-NTR. Moreover, the N-terminal region between amino acid residues 25 to 50 of the protein could function as an independent RNA-binding domain. Single exchange of some arginine residues by alanine eliminated the RNA-interaction capacity of the synthetic peptides, consistent with a crucial role for Arg residues common to many RNA-binding proteins possessing Arg-rich domains. Circular dichroism spectroscopy revealed that the RNA conformation is altered when amino-terminal CP peptides bind to the viral RNA. Finally, mutational analysis of the 3'-NTR suggested the presence of a pseudoknotted structure at this region on the PNRSV RNA that, when stabilized by the presence of Mg(2+), lost its capability to bind the coat protein. The existence of two mutually exclusive conformations for the 3'-NTR of PNRSV strongly suggests a similar regulatory mechanism at the 3'-NTR level in Alfamo- and Ilarvirus genera.

  15. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya.

    PubMed

    Idrovo Espín, Fabio Marcelo; Peraza-Echeverria, Santy; Fuentes, Gabriela; Santamaría, Jorge M

    2012-05-01

    The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. UNIPIC code for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Yue; Wang, Hongguang; Qiao, Hailiang; Li, Xiaoze

    2009-03-01

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  17. DNA methylation of miRNA coding sequences putatively associated with childhood obesity.

    PubMed

    Mansego, M L; Garcia-Lacarte, M; Milagro, F I; Marti, A; Martinez, J A

    2017-02-01

    Epigenetic mechanisms may be involved in obesity onset and its consequences. The aim of the present study was to evaluate whether DNA methylation status in microRNA (miRNA) coding regions is associated with childhood obesity. DNA isolated from white blood cells of 24 children (identification sample: 12 obese and 12 non-obese) from the Grupo Navarro de Obesidad Infantil study was hybridized in a 450 K methylation microarray. Several CpGs whose DNA methylation levels were statistically different between obese and non-obese were validated by MassArray® in 95 children (validation sample) from the same study. Microarray analysis identified 16 differentially methylated CpGs between both groups (6 hypermethylated and 10 hypomethylated). DNA methylation levels in miR-1203, miR-412 and miR-216A coding regions significantly correlated with body mass index standard deviation score (BMI-SDS) and explained up to 40% of the variation of BMI-SDS. The network analysis identified 19 well-defined obesity-relevant biological pathways from the KEGG database. MassArray® validation identified three regions located in or near miR-1203, miR-412 and miR-216A coding regions differentially methylated between obese and non-obese children. The current work identified three CpG sites located in coding regions of three miRNAs (miR-1203, miR-412 and miR-216A) that were differentially methylated between obese and non-obese children, suggesting a role of miRNA epigenetic regulation in childhood obesity. © 2016 World Obesity Federation.

  18. Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae).

    PubMed

    Lemieux, Claude; Vincent, Antony T; Labarre, Aurélie; Otis, Christian; Turmel, Monique

    2015-12-01

    The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages. The earliest-diverging clade displayed Hafniomonas laevis and the Crucicarteria, and was followed by the Radicarteria and then by the Chloromonadinia. The latter lineage was sister to two superclades, one consisting of the Oogamochlamydinia and Reinhardtinia and the other of the Caudivolvoxa and Xenovolvoxa. To our surprise, the Jenufa species and the two spine-bearing green algae belonging to the Golenkinia and Treubaria genera were recovered in a highly supported monophyletic group that also included three taxa representing distinct families of the Sphaeropleales (Bracteacoccaceae, Mychonastaceae, and Scenedesmaceae). Our phylogenomic study advances our knowledge regarding the circumscription and internal structure of the Chlamydomonadales, suggesting that a previously unrecognized lineage is sister to the Sphaeropleales. In addition, it offers new insights into the flagellar structures of the founding members of both the Chlamydomonadales and Sphaeropleales.

  19. The development and application of new crystallization method for tobacco mosaic virus coat protein.

    PubMed

    Li, Xiangyang; Song, Baoan; Hu, Deyu; Wang, Zhenchao; Zeng, Mengjiao; Yu, Dandan; Chen, Zhuo; Jin, Linhong; Yang, Song

    2012-11-21

    Although tobacco mosaic virus (TMV) coat protein (CP) has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His) tags or glutathione-S-transferase (GST) tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32) and TMV-CP incorporated His-tags (WT-His-TMV-CP12) simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19). The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N-terminus of TMV-CP. It indicated that short peptides influenced the resolution of TMV-CP crystals.

  20. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus.

    PubMed

    Wefers, Daniel; Dong, Jia; Abdel-Hamid, Ahmed M; Paul, Hans Müller; Pereira, Gabriel V; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I; Cann, Isaac

    2017-09-15

    The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para -nitrophenyl ( p NP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus IMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries. Copyright © 2017 American Society for Microbiology.

  1. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus

    PubMed Central

    Dong, Jia; Abdel-Hamid, Ahmed M.; Paul, Hans Müller; Pereira, Gabriel V.; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I.

    2017-01-01

    ABSTRACT The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para-nitrophenyl (pNP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus. IMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus. The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries. PMID:28710263

  2. Molecular characterization of the NADPH oxidase complex in the ergot fungus Claviceps purpurea: CpNox2 and CpPls1 are important for a balanced host-pathogen interaction.

    PubMed

    Schürmann, Janine; Buttermann, Dagmar; Herrmann, Andrea; Giesbert, Sabine; Tudzynski, Paul

    2013-10-01

    Reactive oxygen species producing NADPH oxidase (Nox) complexes are involved in defense reactions in animals and plants while they trigger infection-related processes in pathogenic fungi. Knowledge about the composition and localization of these complexes in fungi is limited; potential components identified thus far include two to three catalytical subunits, a regulatory subunit (NoxR), the GTPase Rac, the scaffold protein Bem1, and a tetraspanin-like membrane protein (Pls1). We showed that, in the biotrophic grass-pathogen Claviceps purpurea, the catalytical subunit CpNox1 is important for infection. Here, we present identification of major Nox complex partners and a functional analysis of CpNox2 and the tetraspanin CpPls1. We show that, as in other fungi, Nox complexes are important for formation of sclerotia; CpRac is, indeed, a complex partner because it interacts with CpNoxR, and CpNox1/2 and CpPls1 are associated with the endoplasmatic reticulum. However, unlike in all other fungi, Δcppls1 is more similar to Δcpnox1 than to Δcpnox2, and CpNox2 is not essential for infection. In contrast, Δcpnox2 shows even more pronounced disease symptoms, indicating that Cpnox2 controls the infection process and moderates damage to the host. These data confirm that fungal Nox complexes have acquired specific functions dependent of the lifestyle of the pathogen.

  3. Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae

    PubMed Central

    Weng, Mao-Lun; Ruhlman, Tracey A.; Jansen, Robert K.

    2016-01-01

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001

  4. Citrus psorosis virus coat protein-derived hairpin construct confers stable transgenic resistance in citrus against psorosis A and B syndromes.

    PubMed

    De Francesco, A; Costa, N; García, M L

    2017-04-01

    Citrus psorosis virus (CPsV) is the causal agent of psorosis, a serious and widespread citrus disease. Two syndromes of psorosis, PsA and PsB, have been described. PsB is the most aggressive and rampant form. Previously, we obtained Pineapple sweet orange plants transformed with a hairpin construct derived from the CPsV coat protein gene (ihpCP). Some of these plants were resistant to CPsV 90-1-1, a PsA isolate homologous to the transgene. In this study, we found that expression of the ihpCP transgene and siRNA production in lines ihpCP-10 and -15 were stable with time and propagation. In particular, line ihpCP-15 has been resistant for more than 2 years, even after re-inoculation. The ihpCP plants were also resistant against a heterologous CPsV isolate that causes severe PsB syndrome. Line ihpCP-15 manifested complete resistance while line ihpCP-10 was tolerant to the virus, although with variable behaviour, showing delay and attenuation in PsB symptoms. These lines are promising for a biotech product aimed at eradicating psorosis.

  5. NOVEL EPIGENETIC CHANGES IN CDKN2A ARE ASSOCIATED WITH PROGRESSION OF CERVICAL INTRAEPITHELIAL NEOPLASIA

    PubMed Central

    Wijetunga, N. Ari; Belbin, Thomas J.; Burk, Robert D.; Whitney, Kathleen; Abadi, Maria; Greally, John M.; Einstein, Mark H.; Schlecht, Nicolas F.

    2016-01-01

    Objective To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16INK4A and p14ARF proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. Methods We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. Results In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. Conclusion Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16INK4A/p14ARF expression prior to development of malignant disease. PMID:27401842

  6. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia.

    PubMed

    Wijetunga, N Ari; Belbin, Thomas J; Burk, Robert D; Whitney, Kathleen; Abadi, Maria; Greally, John M; Einstein, Mark H; Schlecht, Nicolas F

    2016-09-01

    To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16(INK4A) and p14(ARF) proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16(INK4A)/p14(ARF) expression prior to development of malignant disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.

    PubMed

    Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei

    2018-01-01

    Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.

  8. Molecular cloning of the alpha subunit of complement component C8 (CpC8α) of whitespotted bamboo shark (Chiloscyllium plagiosum).

    PubMed

    Wang, Ying; Zhang, Mengmeng; Wang, Conghui; Ye, Boping; Hua, Zichun

    2013-12-01

    Complement-mediated cytolysis is the important effect of immune response, which results from the assembly of terminal complement components (C5b-9). Among them, α subunit of C8 (C8α) is the first protein that traverses the lipid bilayer, and then initiates the recruitment of C9 molecules to form pore on target membranes. In this article, a full-length cDNA of C8α (CpC8α) is identified from the whitespotted bamboo shark (Chiloscyllium plagiosum) by RACE. The CpC8α cDNA is 2183 bp in length, encoding a protein of 591 amino acids. The deduced CpC8α exhibits 89%, 49% and 44% identity with nurse shark, frog and human orthologs, respectively. Sequence alignment indicates that the C8α is well conserved during the evolution process from sharks to mammals, with the same modular architecture as well as the identical cysteine composition in the mature protein. Phylogenetic analysis places CpC8α and nurse shark C8α in cartilaginous fish clade, in parallel with the teleost taxa, to form the C8α cluster with higher vertebrates. Hydrophobicity analysis also indicates a similar hydrophobicity of CpC8α to mammals. Finally, expression analysis revealed CpC8α transcripts were constitutively highly expressed in shark liver, with much less expression in other tissues. The well conserved structure and properties suggests an analogous function of CpC8α to mammalian C8α, though it remains to be confirmed by further study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    PubMed

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic specific immune responses were elicited by oral administration of B.s-CotC-CsCP spores. The spores effectively promoted intestinal health by inducing secretion of acidic mucins, with no other side effects to the liver or intestine. Oral administration of spores expressing CsCP could provide effective protection against C. sinensis. This study may be a cornerstone for development of antiparasitic agents or vaccines against clonorchiasis based on B. subtilis spore expressing CsCP on the surface.

  10. Cross-linking of CD81 by HCV-E2 protein inhibits human intrahepatic plasmacytoid dendritic cells response to CpG-ODN

    PubMed Central

    Tu, Zhengkun; Zhang, Ping; Li, Haijun; Niu, Junqi; Jin, Xia; Su, Lishan

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) are reported to be defective in HCV-infected patients, the mechanisms of which remain poorly understood. We isolated liver derived mononuclear cells (LMNCs) and pDCs from normal liver tissues of benign tumor dissections and liver transplant donors. Isolated pDCs and LMNCs were cultured with precoated HCV envelop protein E2 (HCV-E2) or anti-CD81 mAb in the presence of CpG-ODN. Our results show that cross-linking of CD81 by either HCV-E2 or anti-CD81 mAb inhibits IFN-α secretion in CpG-induced pDCs; down-regulates HLA-DR, CD80 and CD86 expression in pDCs; and suppresses CpG-ODN induced proliferation and survival of pDCs. The blockade of CD81 by soluble anti-CD81 antibody restores pDCs response to CpG-ODN. These results suggest that HCV E2 protein interacts with CD81 to inhibit pDC maturation, activation, and IFN-α production, and may thereby contribute to the impaired innate anti-viral immune response in HCV infection. PMID:23954883

  11. Protein carbonyl: An oxidative stress marker in gingival crevicular fluid in healthy, gingivitis, and chronic periodontitis subjects

    PubMed Central

    Pradeep, Avani R.; Ramchandraprasad, M. V.; Bajaj, Pavan; Rao, Nishanth S.; Agarwal, Esha

    2013-01-01

    Background: A defined role for reactive oxygen species (ROS) in the tissue destruction that characterizes periodontitis has been described. Protein carbonyl (PC) is the most widely used biomarker for oxidative damage to proteins, and reflects cellular damage induced by multiple forms of ROS. The purpose of this study is to determine the presence of PC in gingival crevicular fluid (GCF) in healthy, gingivitis, and chronic periodontitis (CP) subjects and to find an association, if any. Materials and Methods: A total number of 75 subjects (38 males and 37 females) were selected based on their clinical parameters into three groups: Group 1 (25 healthy subjects), Group 2 (25 gingivitis subjects), and Group 3 (25 CP subjects). GCF samples were collected to estimate the levels of PC. Results: The PC concentration in GCF was highest in subjects with CP as compared to gingivitis and healthy subjects and a significant association was observed between GCF PC levels and all periodontal parameters. Conclusion: There was an increase in PC levels in GCF as the disease process progressed from healthy to gingivitis and CP, suggesting a role for increased oxidative stress in CP. PMID:23853448

  12. Coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts

    USDA-ARS?s Scientific Manuscript database

    The coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. This study demonstrates that deletion of CP amino acids 58 to 84, but not 36 to 57, from WSMV genome induced severe ...

  13. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    PubMed

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in ovarian cancer cell lines. Impact statement We found that hepatitis B X-interacting protein (HBXIP) was able to activate the CD147 promoter through Sp1. In vivo, depletion of HBXIP decreased the tumor volume and weight induced by CP. Taken together, these results indicate that HBXIP promotes cisplatin resistance and regulated CD147 via Sp1 in ovarian cancer cell lines.

  14. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows.

    PubMed

    Mutsvangwa, T; Davies, K L; McKinnon, J J; Christensen, D A

    2016-08-01

    The objective of this study was to determine how interactions between dietary crude protein (CP) and rumen-degradable protein (RDP) concentrations alter urea-nitrogen recycling, nitrogen (N) balance, omasal nutrient flow, and milk production in lactating Holstein cows. Eight multiparous Holstein cows (711±21kg of body weight; 91±17d in milk at the start of the experiment) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of dietary treatments and 29-d experimental periods. Four cows in one Latin square were fitted with ruminal cannulas to allow ruminal and omasal sampling. The dietary treatment factors were CP (14.9 vs. 17.5%; dry matter basis) and RDP (63 vs. 69% of CP) contents. Dietary RDP concentration was manipulated by including unprocessed or micronized canola meal. Diet adaptation (d 1-20) was followed by 8d (d 21-29) of sample and data collection. Continuous intrajugular infusions of [(15)N(15)N]-urea (220mg/d) were conducted for 4d (d 25-29) with concurrent total collections of urine and feces to estimate N balance and whole-body urea kinetics. Proportions of [(15)N(15)N]- and [(14)N(15)N]-urea in urinary urea, and (15)N enrichment in feces were used to calculate urea kinetics. For the low-CP diets, cows fed the high-RDP diet had a greater DM intake compared with those fed the low-RDP diet, but the opposite trend was observed for cows fed the high-CP diets. Dietary treatment had no effect on milk yield. Milk composition and milk component yields were largely unaffected by dietary treatment; however, on the low-CP diets, milk fat yield was greater for cows fed the low-RDP diet compared with those fed the high-RDP diet, but it was unaffected by RDP concentration on the high-CP diets. On the high-CP diets, milk urea nitrogen concentration was greater in cows fed the high-RDP diet compared with those fed the low-RDP diet, but it was unaffected by RDP concentration on the low-CP diets. Ruminal NH3-N concentration tended to be greater in cows fed the high-CP diet compared with those fed the low-CP diet, and it was greater in cows fed the high-RDP diet as compared with those fed the low-RDP diet. Nitrogen intake and both total N and urea-N excretion in urine were greater for cows fed the high-CP diet compared with those fed the low-CP diet. However, N balance and urinary excretion of purine derivatives were unaffected by dietary treatment. Urea-N entry rate (UER) was greater in cows fed the high-CP diet compared with those fed the low-CP diet; however, UER was unaffected by dietary RDP concentration. The proportion of urea-N recycled to the gastrointestinal tract (as a percentage of UER) was greater in cows fed the low-CP diet compared with those fed the high-CP diet. In summary, reducing dietary CP concentration decreased urinary N excretion but had no effect on milk yield, thus resulting in an overall improvement in milk N efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. βTrCP controls the lysosome-mediated degradation of CDK1, whose accumulation correlates with tumor malignancy.

    PubMed

    Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Giráldez, Servando; Sáez, Carmen; Japón, Miguel A; Tortolero, Maria; Romero, Francisco

    2014-09-15

    In mammals, cell cycle progression is controlled by cyclin-dependent kinases, among which CDK1 plays important roles in the regulation of the G2/M transition, G1 progression and G1/S transition. CDK1 is highly regulated by its association to cyclins, phosphorylation and dephosphorylation, changes in subcellular localization, and by direct binding of CDK inhibitor proteins. CDK1 steady-state protein levels are held constant throughout the cell cycle by a coordinated regulation of protein synthesis and degradation. We show that CDK1 is ubiquitinated by the E3 ubiquitin ligase SCFβTrCP and degraded by the lysosome. Furthermore, we found that DNA damage not only triggers the stabilization of inhibitory phosphorylation sites on CDK1 and repression of CDK1 gene expression, but also regulates βTrCP-induced CDK1 degradation in a cell type-dependent manner. Specifically, treatment with the chemotherapeutic agent doxorubicin in certain cell lines provokes CDK1 degradation and induces apoptosis, whereas in others it inhibits destruction of the protein. These observations raise the possibility that different tumor types, depending on their pathogenic spectrum mutations, may display different sensitivity to βTrCP-induced CDK1 degradation after DNA damage. Finally, we found that CDK1 accumulation in patients' tumors shows a negative correlation with βTrCP and a positive correlation with the degree of tumor malignancy.

  16. Properties of hydrophobic free energy found by gas–liquid transfer

    PubMed Central

    Baldwin, Robert L.

    2013-01-01

    The hydrophobic free energy in current use is based on transfer of alkane solutes from liquid alkanes to water, and it has been argued recently that these values are incorrect and should be based instead on gas–liquid transfer data. Hydrophobic free energy is measured here by gas–liquid transfer of hydrocarbon gases from vapor to water. The new definition reduces more than twofold the values of the apparent hydrophobic free energy. Nevertheless, the newly defined hydrophobic free energy is still the dominant factor that drives protein folding as judged by ΔCp, the change in heat capacity, found from the free energy change for heat-induced protein unfolding. The ΔCp for protein unfolding agrees with ΔCp values for solvating hydrocarbon gases and disagrees with ΔCp for breaking peptide hydrogen bonds, which has the opposite sign. The ΔCp values for the enthalpy of liquid–liquid and gas–liquid transfer are similar. The plot of free energy against the apparent solvent-exposed surface area is given for linear alkanes, but only for a single conformation, the extended conformation, of these flexible-chain molecules. The ability of the gas–liquid hydrophobic factor to predict protein stability is tested and reasonable agreement is found, using published data for the dependences on temperature of the unfolding enthalpy of ribonuclease T1 and the solvation enthalpies of the nonpolar and polar groups. PMID:23319615

  17. Properties of hydrophobic free energy found by gas-liquid transfer.

    PubMed

    Baldwin, Robert L

    2013-01-29

    The hydrophobic free energy in current use is based on transfer of alkane solutes from liquid alkanes to water, and it has been argued recently that these values are incorrect and should be based instead on gas-liquid transfer data. Hydrophobic free energy is measured here by gas-liquid transfer of hydrocarbon gases from vapor to water. The new definition reduces more than twofold the values of the apparent hydrophobic free energy. Nevertheless, the newly defined hydrophobic free energy is still the dominant factor that drives protein folding as judged by ΔCp, the change in heat capacity, found from the free energy change for heat-induced protein unfolding. The ΔCp for protein unfolding agrees with ΔCp values for solvating hydrocarbon gases and disagrees with ΔCp for breaking peptide hydrogen bonds, which has the opposite sign. The ΔCp values for the enthalpy of liquid-liquid and gas-liquid transfer are similar. The plot of free energy against the apparent solvent-exposed surface area is given for linear alkanes, but only for a single conformation, the extended conformation, of these flexible-chain molecules. The ability of the gas-liquid hydrophobic factor to predict protein stability is tested and reasonable agreement is found, using published data for the dependences on temperature of the unfolding enthalpy of ribonuclease T1 and the solvation enthalpies of the nonpolar and polar groups.

  18. Urea synthesis in patients with chronic pancreatitis: relation to glucagon secretion and dietary protein intake.

    PubMed

    Hamberg, O; Andersen, V; Sonne, J; Larsen, S; Vilstrup, H

    2001-12-01

    Up-regulation of urea synthesis by amino acids and dietary protein intake may be impaired in patients with chronic pancreatitis (CP) due to the reduced glucagon secretion. Conversely, urea synthesis may be increased as a result of the chronic inflammation. The aims of the study were to determine urea synthesis kinetics in CP patients in relation to glucagon secretion (study I) and during an increase in protein intake (study II). In study I, urea synthesis rate, calculated as urinary excretion rate corrected for accumulation in total body water and intestinal loss, was measured during infusion of alanine in 7 CP patients and 5 control subjects on spontaneous protein intake. The functional hepatic nitrogen clearance (FHNC), i.e. urea synthesis expressed independent of changes in plasma amino acid concentration, was calculated as the slope of the linear relation between urea synthesis rate and plasma alpha -amino nitrogen concentration. In study II, 6 of the patients of study I had urea synthesis and FHNC determined before and after a period of 14 days of supplementation with a protein-enriched liquid (dietary sequence randomized). Study I: Alanine infusion increased urea synthesis rate by a factor of 10 in the control subjects, and by a factor of 5 in the CP patients (P<0.01). FHNC was 31.9+/-2.4 l/h in the control subjects and 16.5+/-2.0 l/h (P<0.05) in the CP patients. The glucagon response to alanine infusion (AUC) was reduced by 75 % in the CP patients. The reduction in FHNC paralleled the reduced glucagon response (r(2)=0.55, P<0.01). Study II: The spontaneous protein intake was 0.75+/-0.14 g/(kg x day) and increased during the high protein period to 1.77+/-0.12 g/(kg x day). This increased alanine stimulated urea synthesis by a factor of 1.3 (P<0.05), FHNC from 13.5+/-2.6 l/h to 19.4+/-3.1 l/h (P<0.01), and the glucagon response to alanine infusion (AUC) by a factor of 1.8 (P<0.05). Urea synthesis rate and FHNC are markedly reduced in CP patients. This is associated with, and probably a result of, impaired glucagon secretion, and predicts a lower than normal postprandial hepatic loss of amino nitrogen. An increase in dietary protein intake increases alanine stimulated urea synthesis and FHNC by a mechanism that involves an increase in glucagon. This indicates that the low FHNC during spontaneous protein intake included an adaptation to the low protein intake, effectuated by a further decrease in glucagon secretion. Copyright 2001 Harcourt Publishers Ltd.

  19. Speciation of the Potential Antitumor Agent Vanadocene Dichloride in the Blood Plasma and Model Systems.

    PubMed

    Sanna, Daniele; Ugone, Valeria; Micera, Giovanni; Pivetta, Tiziana; Valletta, Elisa; Garribba, Eugenio

    2015-09-08

    The speciation of the potential antitumor agent vanadocene dichloride ([Cp2VCl2], abbreviated with VDC) in the blood plasma was studied by instrumental (EPR, ESI-MS, MS-MS, and electronic absorption spectroscopy) and computational (DFT) methods. The behavior of VDC at pH 7.4 in aqueous solution, the interaction with the most important bioligands of the plasma (oxalate, carbonate, phosphate, lactate, citrate, histidine, and glycine among those with low molecular mass and transferrin and albumin between the proteins) was evaluated. The results suggest that [Cp2VCl2] transforms at physiological pH to [Cp2V(OH)2] and that only oxalate, carbonate, phosphate, and lactate are able to displace the two OH(-) ions to yield [Cp2V(ox)], [Cp2V(CO3)], [Cp2V(lactH(-1))], and [Cp2V(HPO4)]. The formation of the adducts with oxalate, carbonate, lactate, and hydrogen phosphate was confirmed also by ESI-MS and MS-MS spectra. The stability order is [Cp2V(ox)] ≫ [Cp2V(CO3)] > [Cp2V(lactH(-1))] > [Cp2V(HPO4)]. No interaction between VDC and plasma proteins was detected under our experimental conditions. Several model systems containing the bioligands (bL) in the same relative ratio as in the blood samples were also examined. Finally, the speciation of VDC in the plasma was studied. The results obtained show that the model systems behave as the blood plasma and indicate that when V concentration is low (10 μM) VDC is transported in the bloodstream as [Cp2V(ox)]; when V concentration is high (100 μM) oxalate binds only 9.2 μM of [Cp2V](2+), whereas the remaining part distributes between [Cp2V(CO3)] (main species) and [Cp2V(lactH(-1))] (minor species); and when V concentration is in the range 10-100 μM [Cp2V](2+) distributes between [Cp2V(ox)] and [Cp2V(CO3)].

  20. Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein.

    PubMed

    Todd, Richard W; Cole, N Andy; Waldrip, Heidi M; Aiken, Robert M

    2013-01-01

    Temperature controls many processes of NH volatilization. For example, urea hydrolysis is an enzymatically catalyzed reaction described by the Arrhenius equation. Diet crude protein (CP) controls NH emission by affecting N excretion. Our objectives were to use the Arrhenius equation to model NH emissions from beef cattle () feedyards and test predictions against observed emissions. Per capita NH emission rate (PCER), air temperature (), and CP were measured for 2 yr at two Texas Panhandle feedyards. Data were fitted to analogs of the Arrhenius equation: PCER = () and PCER = (,CP). The models were applied at a third feedyard to predict NH emissions and compare predicted to measured emissions. Predicted mean NH emissions were within -9 and 2% of observed emissions for the () and (T,CP) models, respectively. Annual emission factors calculated from models underestimated annual NH emission by 11% [() model] or overestimated emission by 8% [(,CP) model]. When from a regional weather station and three classes of CP drove the models, the () model overpredicted annual NH emission of the low CP class by 14% and underpredicted emissions of the optimum and high CP classes by 1 and 39%, respectively. The (,CP) model underpredicted NH emissions by 15, 4, and 23% for low, optimum, and high CP classes, respectively. Ammonia emission was successfully modeled using only, but including CP improved predictions. The empirical () and (,CP) models can successfully model NH emissions in the Texas Panhandle. Researchers are encouraged to test the models in other regions where high-quality NH emissions data are available. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress.

    PubMed

    Figueroa-Yañez, Luis; Pereira-Santana, Alejandro; Arroyo-Herrera, Ana; Rodriguez-Corona, Ulises; Sanchez-Teyer, Felipe; Espadas-Alcocer, Jorge; Espadas-Gil, Francisco; Barredo-Pool, Felipe; Castaño, Enrique; Rodriguez-Zapata, Luis Carlos

    2016-01-01

    Plants respond to stress through metabolic and morphological changes that increase their ability to survive and grow. To this end, several transcription factor families are responsible for transmitting the signals that are required for these changes. Here, we studied the transcription factor superfamily AP2/ERF, particularly, RAP2.4 from Carica papaya cv. Maradol. We isolated four genes (CpRap2.4a, CpRAap2.4b, CpRap2.1 and CpRap2.10), and an in silico analysis showed that the four genes encode proteins that contain a conserved APETALA2 (AP2) domain located within group I and II transcription factors of the AP2/ERF superfamily. Semiquantitative PCR experiments indicated that each CpRap2 gene is differentially expressed under stress conditions, such as extreme temperatures. Moreover, genetic transformants of tobacco plants overexpressing CpRap2.4a and CpRap2.4b genes show a high level of tolerance to cold and heat stress compared to non-transformed plants. Confocal microscopy analysis of tobacco transgenic plants showed that CpRAP2.4a and CpRAP2.4b proteins were mainly localized to the nuclei of cells from the leaves and roots and also in the sieve elements. Moreover, the movement of CpRap2.4a RNA in tobacco grafting was analyzed. Our results indicate that CpRap2.4a and CpRap2.4b RNA in the papaya tree have a functional role in the response to stress conditions such as exposure to extreme temperatures via direct translation outside the parental RNA cell.

  2. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress

    PubMed Central

    Arroyo-Herrera, Ana; Rodriguez-Corona, Ulises; Sanchez-Teyer, Felipe; Espadas-Alcocer, Jorge; Espadas-Gil, Francisco; Barredo-Pool, Felipe; Castaño, Enrique; Rodriguez-Zapata, Luis Carlos

    2016-01-01

    Plants respond to stress through metabolic and morphological changes that increase their ability to survive and grow. To this end, several transcription factor families are responsible for transmitting the signals that are required for these changes. Here, we studied the transcription factor superfamily AP2/ERF, particularly, RAP2.4 from Carica papaya cv. Maradol. We isolated four genes (CpRap2.4a, CpRAap2.4b, CpRap2.1 and CpRap2.10), and an in silico analysis showed that the four genes encode proteins that contain a conserved APETALA2 (AP2) domain located within group I and II transcription factors of the AP2/ERF superfamily. Semiquantitative PCR experiments indicated that each CpRap2 gene is differentially expressed under stress conditions, such as extreme temperatures. Moreover, genetic transformants of tobacco plants overexpressing CpRap2.4a and CpRap2.4b genes show a high level of tolerance to cold and heat stress compared to non-transformed plants. Confocal microscopy analysis of tobacco transgenic plants showed that CpRAP2.4a and CpRAP2.4b proteins were mainly localized to the nuclei of cells from the leaves and roots and also in the sieve elements. Moreover, the movement of CpRap2.4a RNA in tobacco grafting was analyzed. Our results indicate that CpRap2.4a and CpRap2.4b RNA in the papaya tree have a functional role in the response to stress conditions such as exposure to extreme temperatures via direct translation outside the parental RNA cell. PMID:27764197

  3. Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species.

    PubMed

    Zhang, Ying; Li, Lei; Yan, Ting Liang; Liu, Qiang

    2014-10-01

    Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Identification of Immunogenic Hot Spots within Plum Pox Potyvirus Capsid Protein for Efficient Antigen Presentation

    PubMed Central

    Fernández-Fernández, M. Rosario; Martínez-Torrecuadrada, Jorge L.; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-01-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-γ, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence. PMID:12438590

  5. Ubc13 and COOH Terminus of Hsp70-interacting Protein (CHIP) Are Required for Growth Hormone Receptor Endocytosis*

    PubMed Central

    Slotman, Johan A.; da Silva Almeida, Ana C.; Hassink, Gerco C.; van de Ven, Robert H. A.; van Kerkhof, Peter; Kuiken, Hendrik J.; Strous, Ger J.

    2012-01-01

    Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCFβTrCP (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCFβTrCP-directed Lys48 polyubiquitination. We now show that also Lys63-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR. PMID:22433856

  6. Formin and capping protein together embrace the actin filament in a ménage à trois

    PubMed Central

    Shekhar, Shashank; Kerleau, Mikael; Kühn, Sonja; Pernier, Julien; Romet-Lemonne, Guillaume; Jégou, Antoine; Carlier, Marie-France

    2015-01-01

    Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed. PMID:26564775

  7. Single-molecule visualization of a formin-capping protein ‘decision complex' at the actin filament barbed end

    PubMed Central

    Bombardier, Jeffrey P.; Eskin, Julian A.; Jaiswal, Richa; Corrêa, Ivan R.; Xu, Ming-Qun; Goode, Bruce L.; Gelles, Jeff

    2015-01-01

    Precise control of actin filament length is essential to many cellular processes. Formins processively elongate filaments, whereas capping protein (CP) binds to barbed ends and arrests polymerization. While genetic and biochemical evidence has indicated that these two proteins function antagonistically, the mechanism underlying the antagonism has remained unresolved. Here we use multi-wavelength single-molecule fluorescence microscopy to observe the fully reversible formation of a long-lived ‘decision complex' in which a CP dimer and a dimer of the formin mDia1 simultaneously bind the barbed end. Further, mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex. Quantitative kinetic analysis reveals that the CP-mDia1 antagonism that we observe in vitro occurs through the decision complex. Our observations suggest new molecular mechanisms for the control of actin filament length and for the capture of filament barbed ends in cells. PMID:26566078

  8. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis.

    PubMed

    Xiao, Xunjun; Jones, Gabrielle; Sevilla, Wednesday A; Stolz, Donna B; Magee, Kelsey E; Haughney, Margaret; Mukherjee, Amitava; Wang, Yan; Lowe, Mark E

    2016-10-28

    Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. In vitro ruminal fermentation characteristics and utilisable CP supply of sainfoin and birdsfoot trefoil silages and their mixtures with other legumes.

    PubMed

    Grosse Brinkhaus, A; Wyss, U; Arrigo, Y; Girard, M; Bee, G; Zeitz, J O; Kreuzer, M; Dohme-Meier, F

    2017-04-01

    The extensive protein degradation occurring during ensiling decreases the nutritive value of silages, but this might be counteracted by tannins. Therefore, silages from two legume species containing condensed tannins (CT) - sainfoin (SF) and birdsfoot trefoil (two cultivars: birdsfoot trefoil, cv. Bull (BTB) and birdsfoot trefoil, cv. Polom) - were compared for their in vitro ruminal fermentation characteristics. The effect of combining them with two CT-free legume silages (lucerne (LU) and red clover (RC)) was also determined. The supply of duodenally utilisable CP (uCP) in the forages was emphasised. The legumes were each harvested from three field sites. After 24 h of wilting on the field, the legumes were ensiled in laboratory silos for 86 days. Proximate constituents, silage fermentation characteristics, CT content and CP fractions were determined. Subsequently, silage samples and 1 : 1 mixtures of the CT-containing and CT-free silages were incubated for 24 h in batch cultures using ruminal fluid and buffer (1 : 2, v/v). Each treatment was replicated six times in six runs. The effects on pH, ammonia and volatile fatty acid concentrations, protozoal counts, and total gas and methane production were determined. uCP content was calculated by considering the CP in the silage and the ammonia in the incubation fluid from treatments and blanks. Statistical evaluation compared data from single plants alone and together with that from the mixtures. Among treatments, SF silage contained the least CP and the most CT. The non-protein nitrogen content was lower, favouring neutral detergent soluble and insoluble protein fractions, in the SF and RC silages. Absolute uCP content was lowest in SF and SF mixtures, although the ratio to total CP was the highest. In comparison with LU, the ammonia concentration of the incubation fluid was lower for SF, RC and BTB and for the mixture of SF with LU. The total gas and methane production was similar among the treatments, and the total volatile fatty acid production was decreased with the CT-containing legumes. Protozoal count was increased with the mixtures containing LU and either SF or BTB compared with single LU. In conclusion, compared with the other legumes, SF and RC have similar advantages as they show limited proteolysis during ensiling. In addition, SF supplies more uCP relative to total CP. The CT-containing legumes also differed in their effect on ruminal fermentation and ammonia formation, probably because of their different CT contents. Thus, SF and its mixtures appear promising for improving the protein utilisation of ruminants.

  10. Dietary protein reduction on microbial protein, amino acids digestibility, and body retention in beef cattle. I. Digestibility sites and ruminal synthesis estimated by purine bases and 15N as markers.

    PubMed

    Mariz, Lays Débora Silva; Amaral, Paloma de Melo; Valadares Filho, Sebastião de Campos; Santos, Stefanie Alvarenga; Marcondes, Marcos Inácio; Prados, Laura Franco; Carneiro Pacheco, Marcos Vinícius; Zanetti, Diego; de Castro Menezes, Gustavo Chamon; Faciola, Antonio P

    2018-06-04

    The objectives of this study were to evaluate the effect of reducing dietary CP contents on 1) total and partial nutrient digestion and nitrogen balance and 2) on microbial crude protein (MCP) synthesis and true MCP digestibility in the small intestine obtained with 15N and purine bases (PB) in beef cattle. Eight bulls (4 Nellore and 4 Crossbred Angus × Nellore) cannulated in the rumen and ileum were distributed in duplicated 4 × 4 Latin squares. The diets consisted of increasing CP contents: 100, 120, or 140 g CP/kg DM offered ad libitum, and restricted intake (RI) diet with 120 g CP/kg DM. The experiment lasted four 17-d periods, with 10 d for adaptation to diets and another 7 for data collection. Omasal digesta flow was obtained using Co-EDTA and indigestible NDF (iNDF) as markers, and to estimate ileal digesta flow only iNDF was used. From days 11 to 17 of each experimental period, ruminal infusions of Co-EDTA (5.0 g/d) and 15N (7.03 g of ammonium sulfate enriched with 10% of 15N atoms) were performed. There was no effect of CP contents (linear effect, P = 0.55 and quadratic effect, P = 0.11) on ruminal OM digestibility. Intake of CP linearly increased (P < 0.01) with greater dietary CP. The NH3-N (P < 0.01) and urinary N excretion (P < 0.01) increased in response to dietary CP, whereas retained N increased linearly (P = 0.03). Liquid-associated bacteria (LAB) in the omasum had greater N content (P < 0.05) in relation to the particle-associated bacteria (PAB). There was no difference between LAB and PAB (P = 0.12) for 15N:14N ratio. The 15N:14N ratio was greater (P < 0.01) in RI animals in relation to those fed at voluntary intake. Microbial CP had a quadratic tendency (P = 0.09) in response to CP increase. Microbial efficiency (expressed in relation to apparent ruminally degradable OM and true ruminally degradable OM) had a quadratic tendency (P = 0.07 and P = 0.08, respectively) to CP increasing and was numerically greatest at 120 g CP/kg DM. The adjusted equations for estimating true intestinal digestibility of MCP (Y1) and total CP (Y2) were, respectively, as follows: Y1 =--16.724(SEM = 40.06) + 0.86X(SEM = 0.05) and Y2 = -43.81(SEM = 49.19) + 0.75X(SEM = 0.05). It was concluded that diets with 120 g/kg of CP optimize the microbial synthesis and efficiency and ruminal ash and protein NDF digestibility, resulting in a better use of N compounds in the rumen. The PB technique can be used as an alternative to the 15N to estimate microbial synthesis.

  11. Reverse Genetic Analysis of Ourmiaviruses Reveals the Nucleolar Localization of the Coat Protein in Nicotiana benthamiana and Unusual Requirements for Virion Formation ▿ † ‡

    PubMed Central

    Crivelli, Giulia; Ciuffo, Marina; Genre, Andrea; Masenga, Vera; Turina, Massimo

    2011-01-01

    Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses. PMID:21411534

  12. Intercropping Corn with Lablab bean, Velvet Bean, and Scarlet Runner Bean for Forage

    USDA-ARS?s Scientific Manuscript database

    Low crude protein (CP) concentration in corn (Zea mays L.) forage is its major limitation in dairy rations. This experiment was designed to determine if intercropping corn with climbing beans is a viable option to increase CP concentration in forage rather than purchasing costly CP supplements for ...

  13. Rett Syndrome Mutation MeCP2 T158A Disrupts DNA Binding, Protein Stability and ERP Responses

    PubMed Central

    Goffin, Darren; Allen, Megan; Zhang, Le; Amorim, Maria; Wang, I-Ting Judy; Reyes, Arith-Ruth S.; Mercado-Berton, Amy; Ong, Caroline; Cohen, Sonia; Hu, Linda; Blendy, Julie A.; Carlson, Gregory C.; Siegel, Steve J.; Greenberg, Michael E.; Zhou, Zhaolan (Joe)

    2011-01-01

    Mutations in the MECP2 gene cause the autism spectrum disorder Rett Syndrome (RTT). One of the most common mutations associated with RTT occurs at MeCP2 Threonine 158 converting it to Methionine (T158M) or Alanine (T158A). To understand the role of T158 mutation in the pathogenesis of RTT, we generated knockin mice recapitulating MeCP2 T158A mutation. Here we show a causal role for T158A mutation in the development of RTT-like phenotypes including developmental regression, motor dysfunction, and learning and memory deficits. These phenotypes resemble those in Mecp2-null mice and manifest through a reduction in MeCP2 binding to methylated DNA and a decrease in MeCP2 protein stability. Importantly, the age-dependent development of event-related neuronal responses are disrupted by MeCP2 mutation, suggesting that impaired neuronal circuitry underlies the pathogenesis of RTT and that assessment of event-related potentials may serve as a biomarker for RTT and treatment evaluation. PMID:22119903

  14. Thermal, Chemical and pH Induced Denaturation of a Multimeric β-Galactosidase Reveals Multiple Unfolding Pathways

    PubMed Central

    Kishore, Devesh; Kundu, Suman; Kayastha, Arvind M.

    2012-01-01

    Background In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL), as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH. Methodology/Principal Findings CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class of protein. The conformational stability and thermodynamic parameters of CpGAL unfolding in different states were estimated and interpreted using circular dichroism and fluorescence spectroscopic measurements. The enzyme was found to be structurally and functionally stable in the entire pH range and upto 50°C temperature. Further increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were irreversible, non-coincidental and sigmoidal. Free energy of protein unfolding (ΔG0) and unfolding constant (Kobs) were also calculated for chemically denatured CpGAL. Significance The protein seems to use different pathways for unfolding in different environments and is a classical example of how the environment dictates the path a protein might take to fold while its amino acid sequence only defines its final three-dimensional conformation. The knowledge accumulated could be of immense biotechnological significance as well. PMID:23185611

  15. Capillary-Channeled Polymer (C-CP) Fibers as a Stationary Phase for Sample Clean-Up of Protein Solutions for Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Manard, Benjamin T.; Marcus, R. Kenneth

    2012-08-01

    Capillary-channeled polymer (C-CP) fibers are employed in a micropipette tip format to affect a stationary phase for the solid phase extraction (SPE) of proteins from buffer solutions prior to MALDI-MS analysis. Proteins readily adsorb to the polypropylene (PP) C-CP fibers while buffer species are easily washed off the tips using DI-H2O. Elution of the solutes is achieved with an aliquot of 50:50 ACN:H2O, which is compatible with the subsequent spotting on the MALDI target with the matrix solution. Lysozyme and cytochrome c are used as test species, with a primary buffer composition of 100 mM Tris-HCl. In this case, direct MALDI-MS produces no discernible protein signals. SPE on the C-CP fibers yields high fidelity mass spectra for 1 μL sample volumes. Limits of detection for cytochrome c in 100 mM Tris-HCl are on the order of 40 nM. Extraction of cytochrome c from buffer concentrations of up to 1 M Tris-HCl, provides signal recoveries that are suppressed by only ~50 % versus neat protein solutions. Finally, extraction of 3.1 μM cytochrome c from a synthetic urine matrix exhibits excellent recovery.

  16. The tissue distribution and excretion study of paeoniflorin-6'-O-benzene sulfonate (CP-25) in rats.

    PubMed

    Zhao, Mingyi; Zhou, Peng; Yu, Jun; James, Asenso; Xiao, Feng; Wang, Chun; Wei, Wei

    2018-03-09

    Paeoniflorin-6'-O-benzene sulfonate (code: CP-25) is a novel ester derivative of paeoniflorin (Pae). Compared to Pae, CP-25 has higher lipid solubility, bioavailability and better bioactivity. However, the tissue distribution and excretion of CP-25 still remain unknown. The LC-MS method was applied to investigate the tissue distribution and excretion of CP-25 in rats. As such, 50 mg/kg of CP-25 and Pae were administered to rats in multiple doses via an oral route. CP-25 and Pae were distributed widely and rapidly in all the tested tissues. Compared with Pae, the concentrations of CP-25 were almost increased evidently in most tissues. The highest CP-25 level was found in the liver (1476.33 ± 535.20 ng/g, male; 1970.38 ± 177.21 ng/g, female) at 3 h, and a high concentration of CP-25 was detected in male and female intestine, synovium, muscle, lung, and brain. Following a single oral dose of 50 mg/kg of CP-25 in rats, the total excretion of CP-25 was merely 21.8% (18.40, 3.19 and 0.22% for feces, bile and urine, respectively) in males; and was approximately 21.3% (14.04, 7.16 and 0.14% for feces, bile and urine, respectively) in females. The results indicated that the CP-25 concentration was higher in major tissues than Pae; CP-25 was primarily excreted through the feces; and there were gender-related differences in the tissue distribution and excretion.

  17. Intracellular Localization and Trafficking of Serine Proteinase AhSub and Cysteine Proteinase AhCP of Acanthamoeba healyi

    PubMed Central

    Moon, E.-K.; Lee, S.-T.; Chung, D.-I.; Kong, H.-H.

    2006-01-01

    Proteinases have been proposed to play important roles in pathogenesis and various biologic actions in Acanthamoeba. Although genetic characteristics of several proteases of Acanthamoeba have been reported, the intracellular localization and trafficking of these enzymes has yet to be studied. In the present study, we analyzed the intracellular localization and trafficking of two proteinases, AhSub and AhCP, of Acanthamoeba healyi by transient transfection. Full-length AhSub-enhanced green fluorescent protein (EGFP) fusion protein was found in intracellular vesicle-like structures of transfected amoebae. Time-lapse photographs confirmed the secretion of the fluorescent material of the vesicle toward the extracellular space. The mutated AhSub, of which the pre or prepro region was deleted, was found to localize diffusely throughout the cytoplasm of the amoeba rather than concentrated in the secretory vesicle. Transfection of the construct containing the pre region only showed the same localization and trafficking of the full-length AhSub. A cysteine proteinase AhCP-EGFP fusion protein showed similar localization in the vesicle-like structure in the amoeba. However, using Lyso Tracker analysis, these vesicular structures of AhCP were confirmed to be lysosomes rather than secretory vesicles. The AhCP construct with a deletion of the prepro region showed a dispersed distribution of fluorescence in the cytoplasm of the cells. These results indicated that AhSub and AhCP would play different roles in Acanthameoba biology and that the pre region of AhSub and pro region of AhCP are important for proper intracellular localization and trafficking of each proteinase. PMID:16400174

  18. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis.

    PubMed

    Baccelli, Ivan; Lombardi, Lara; Luti, Simone; Bernardi, Rodolfo; Picciarelli, Piero; Scala, Aniello; Pazzagli, Luigia

    2014-01-01

    Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1-5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.

  19. Laser Capture Microdissection of Pancreatic Acinar Cells to Identify Proteomic Alterations in a Murine Model of Caerulein-Induced Pancreatitis

    PubMed Central

    Shapiro, John P; Komar, Hannah M; Hancioglu, Baris; Yu, Lianbo; Jin, Ming; Ogata, Yuko; Hart, Phil A; Cruz-Monserrate, Zobeida; Lesinski, Gregory B; Conwell, Darwin L

    2017-01-01

    Objectives: Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Methods: Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Results: Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). CONCLUSIONS: This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP. PMID:28406494

  20. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma.

    PubMed

    Lin, Jinduan; Cao, Shunwang; Wang, Yu; Hu, Yanwei; Liu, Hongwei; Li, Jiehua; Chen, Jing; Li, Pan; Liu, Jumei; Wang, Qian; Zheng, Lei

    2018-06-04

    Angiogenesis is considered as an important process in the development of malignancies and is associated with cancer progression and metastasis. Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and is recognized as a typical angiogenic tumor. Thus, it is of great importance to study the underlying mechanism of angiogenesis in HCC. The long non-coding RNA (lncRNA) ubiquitin conjugating enzyme E2C pseudogene 3 (UBE2CP3) has been reported as an oncogene that promotes tumor metastasis in HCC. However, the role and underlying mechanisms of UBE2CP3 in HCC angiogenesis are still unclear. We measured the expression levels of UBE2CP3 by in situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) in HCC patient samples. We also concomitantly used CD31/PAS double-staining to measure endothelial vessel (EV) density and used qRT-PCR to measure the CD31 mRNA level. HepG2 and SMMC-7721 cells were transfected with Lv-UBE2CP3 or Sh-UBE2CP3 virus to obtain stably over-expressing or knocking-down UBE2CP3 cell lines. The indirect effects of UBE2CP3 on ECs were studied by establishing a co-culture system using Transwell chambers with a 0.4-μm pore size. HCC cells and ECs in the co-culture system were separated, but the cytokines and growth factors were able to communicate with each other. Following exposed to HCC cells, ECs were collected for functional studies. Finally, we studied the function of UBE2CP3 in vivo by chick embryo chorioallantoic membrane (CAM) angiogenesis assays and nude mouse tumorigenicity assays. In this study, we found that UBE2CP3 expression was higher in HCC tissues than in para-tumor tissues and was up-regulated in tissues with high EV density. Functionally, we found that in the co-culture systems, HCC cells overexpressing UBE2CP3 promoted HUVEC proliferation, migration and tube formation via the activation of ERK/HIF-1α/p70S6K/VEGFA signalling, increasing the level of VEGFA in HCC cell supernatant. In addition, the opposite results appeared when the expression of UBE2CP3 in HCC cells was knocked down. Consistent with these results, CAM angiogenesis assays and nude mouse tumorigenicity assays showed that UBE2CP3 expression up-regulated EV density in vivo. Our study suggests that UBE2CP3 can enhance the interaction between HCC tumor cells and HUVECs and promote HCC tumorigenicity by facilitating angiogenesis.

  1. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins

    PubMed Central

    Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty

    2012-01-01

    Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  3. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    PubMed

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection. © 2015 Wiley Periodicals, Inc.

  4. In situ study of the relevance of bacterial adherence to feed particles for the contamination and accuracy of rumen degradability estimates for feeds of vegetable origin.

    PubMed

    Rodríguez, C A; González, J

    2006-08-01

    An in situ study was conducted on four rumen-cannulated wethers to determine (using (15)N infusion techniques) the microbial contamination (mg bacterial DM or crude protein (CP)/100 mg DM or CP) and the associated error on the effective degradability of fourteen feeds: barley and maize grains, soyabean and sunflower meals, full-fat soyabean, maize gluten feed, soyabean hulls, brewers dried grains, sugarbeet pulp, wheat bran, lucerne and vetch-oat hays, and barley and lentil straws. The DM or CP contamination in residues (M) fitted to single exponential or sigmoid curves. A general model (M=m (1-e(-ft) ) (j)) was proposed to match this fit. Asymptotic values (m) varied from 2.84% to 13.3% and from 2.85% to 80.9% for DM and CP, respectively. Uncorrected results underestimated the effective degradability of both DM (P<0.05) and CP (P<0.01). For CP, this underestimation varied from 0.59 % to 13.1%, with a higher but unascertainable error for barley straw. Excluding maize grain, the microbial contamination of both DM and CP, and the associated underestimation of the effective degradability of CP, were positively related to the cellulose content of the feed. The error in the effective degradability of CP was also negatively related to the CP content and its apparent effective degradability (R(2) 0.867). This equation allows easier and more accurate estimates of effective degradability, needed to improve protein-rationing systems.

  5. Whole-genome scale identification of methylation markers specific for cerebral palsy in monozygotic discordant twins

    PubMed Central

    Jiao, Zhe; Jiang, Zhimei; Wang, Jingtao; Xu, Hui; Zhang, Qiang; Liu, Shuang; Du, Ning; Zhang, Yuanyuan; Qiu, Hongbin

    2017-01-01

    Cerebral palsy (CP) is a severe type of brain disease affecting movement and posture. Although CP has strong genetic and environmental components, considerable differences in the methylome between monozygotic (MZ) twins discordant for CP implicates epigenetic contributors as well. In order to determine the differences in methylation in patients with CP without interference of the interindividual genomic variation, four pairs of MZ twins discordant for CP were profiled for DNA methylation changes using reduced representation bisulfite sequencing on the genomic-scale. Similar DNA methylation patterns were observed in all samples. However, MZ twins demonstrated higher correlations and closer evolutionary associations compared with the other samples, indicating a stable methylome of MZ twins. A total of 190 differentially methylated genes (DMGs) were identified using Student's t-test, of which 37 genes were hypermethylated in the CP group while the remainders were hypomethylated compared with control group. The identified DMGs were enriched in several cerebral abnormalities, including cerebral cortical atrophy and cerebral atrophy, suggesting that the occurrence of CP may be associated with the methylation alterations. The neighboring genes of DMGs in the protein-protein interaction network were enriched in numerous important functions in essential processes. The results of the present study identified important genes that may epigenetically contribute to the occurrence and development of CP in MZ twins, suggesting that the different prevalence of CP in identical twins may be associated with DNA methylation alterations. PMID:29039597

  6. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2016-06-27

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats.

    PubMed

    Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei

    2016-09-01

    1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux.

  8. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis.

    PubMed

    Wang, Peng; Liang, Fu-Cheng; Wittmann, Daniel; Siegel, Alex; Shan, Shu-Ou; Grimm, Bernhard

    2018-04-10

    Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.

  9. Resveratrol Improved the Progression of Chronic Prostatitis via the Downregulation of c-kit/SCF by Activating Sirt1.

    PubMed

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Duan, Xingping; Liu, Qi; Yang, Bo

    2017-07-19

    The regulation mechanism of inflammation inducing prostate carcinogenesis remains largely unknown. Therefore, we investigated the role of the c-kit/SCF pathway, which has been associated with the control of prostate carcinogenesis, in chronic prostatitis (CP) rats and evaluated the anti-prostatitis effect of resveratrol. We performed hemolysin and eosin staining to evaluate the histopathological changes in prostates. Multiple approaches evaluated the expression levels of c-kit, stem cell factor (SCF), Sirt1, and carcinogenesis-associated proteins. The CP group exhibited severe diffuse chronic inflammation. Meanwhile, the prostate cells appeared atypia; the activity of c-kit/SCF was upregulated, and carcinogenesis-associated proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. In summary, CP could further cause prostate carcinogenesis, which may be associated with activated c-kit/SCF signaling. Resveratrol treatment could improve the progression of CP via the downregulation of c-kit/SCF by activating Sirt1.

  10. Coat protein expression strategy of oat blue dwarf virus.

    PubMed

    Edwards, Michael C; Weiland, John J

    2014-02-01

    Oat blue dwarf virus (OBDV) is a member of the genus Marafivirus whose genome encodes a 227 kDa polyprotein (p227) ostensibly processed post-translationally into its functional components. Encoded near the 3' terminus and coterminal with the p227 ORF are ORFs specifying major and minor capsid proteins (CP). Since the CP expression strategy of marafiviruses has not been thoroughly investigated, we produced a series of point mutants in the OBDV CP encoding gene and examined expression in protoplasts. Results support a model in which the 21 kDa major CP is the product of direct translation of a sgRNA, while the 24 kDa minor CP is a cleavage product derived from both the polyprotein and a larger ~26 kDa precursor translated directly from the sgRNA. Cleavage occurs at an LXG[G/A] motif conserved in many viruses that use papain-like proteases for polyprotein processing and protection against degradation via the ubiquitin-proteasome system. Published by Elsevier Inc.

  11. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage

    PubMed Central

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-01-01

    Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA. PMID:27184722

  12. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage.

    PubMed

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-05-17

    Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA.

  13. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.

    PubMed

    Gui, Yongli; Ma, Yuechao; Xu, Qingyang; Zhang, Chenglin; Xie, Xixian; Chen, Ning

    2016-02-20

    Here, we report the complete genome sequence of Corynebacterium glutamicum CP, an industrial l-leucine producing strain in China. The whole genome consists of a circular chromosome and a plasmid. The comparative genomics analysis shows that there are many mutations in the key enzyme coding genes relevant to l-leucine biosynthesis compared to C. glutamicum ATCC 13032. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    PubMed Central

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  15. Transcriptional Activation Signals Found in the Epstein-Barr Virus (EBV) Latency C Promoter Are Conserved in the Latency C Promoter Sequences from Baboon and Rhesus Monkey EBV-Like Lymphocryptoviruses (Cercopithicine Herpesviruses 12 and 15)

    PubMed Central

    Fuentes-Pananá, Ezequiel M.; Swaminathan, Sankar; Ling, Paul D.

    1999-01-01

    The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (−1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates. PMID:9847397

  16. Transcriptional activation signals found in the Epstein-Barr virus (EBV) latency C promoter are conserved in the latency C promoter sequences from baboon and Rhesus monkey EBV-like lymphocryptoviruses (cercopithicine herpesviruses 12 and 15).

    PubMed

    Fuentes-Pananá, E M; Swaminathan, S; Ling, P D

    1999-01-01

    The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (-1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates.

  17. Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales--influences of gene partitions and taxon sampling.

    PubMed

    Liu, Juan; Qi, Zhe-Chen; Zhao, Yun-Peng; Fu, Cheng-Xin; Jenny Xiang, Qiu-Yun

    2012-09-01

    The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using sufficient nuclear data remain necessary to evaluate these two phylogenetic hypotheses regarding the position of Liliales and to address the causes of signal conflict among genes and partitions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Resveratrol improves urinary dysfunction in rats with chronic prostatitis and suppresses the activity of the stem cell factor/c-Kit signaling pathway.

    PubMed

    Yu, Yang; Jiang, Jiang; He, Yi; Wang, Wei; Shen, Chen; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) is a common urological disorder, with bladder voiding dysfunction being the primary clinical manifestation. Resveratrol is polyphenolic compound isolated from numerous plants, with widely‑reported anti-inflammatory properties. The present study aimed to investigate whether resveratrol may improve overactive bladder in rats with CP and to investigate the underlying molecular mechanisms. Furthermore, the potential pharmacological synergy between resveratrol and solifenacin was also investigated as a potential treatment for CP. Following the successful establishment of a rat model of CP by subcutaneously injecting DPT vaccine, rats were treated with resveratrol or a combination of resveratrol + solifenacin. Bladder pressure and volume tests were performed to investigate the effect of resveratrol and solifenacin on urinary dysfunction in rats with chronic prostatitis. Western blot analysis and immunohistochemical staining were used to examine the expression of c‑Kit receptor, stem cell factor (SCF), AKT and phosphorylated‑AKT (p‑AKT) in the bladder tissue. The results of the bladder pressure and volume test indicated that the maximum capacity of the bladder, residual urine volume and maximum voiding pressure in the control group were 0.57 ml, 0.17 ml and 29.62 cm H2O, respectively. These values were increased by 71, 27 and 206% in rats in the CP group compared with the control group. Following treatment with resveratrol, the results in the resveratrol group were reduced by 25.77, 44.23 and 13.32% compared with the CP group. The results of western blot analysis, immunohistochemical staining and immunofluorescence labeling demonstrate that the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats in the CP group was 4.32, 6.13 and 6.31 times higher compared with the control group, respectively. Following treatment with resveratrol, protein expression was significantly reduced. However, no significant differences were observed between the protein expression of the SCF, c‑Kit and p‑AKT in the bladder between the resveratrol and combination groups. In conclusion, resveratrol may improve overactive bladder by downregulating the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats with CP. Furthermore, a combination of resveratrol and solifenacin may have potential pharmacological synergy as a treatment for patients with CP.

  19. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these observations.

  20. The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani.

    PubMed

    Baccelli, Ivan; Comparini, Cecilia; Bettini, Priscilla P; Martellini, Federica; Ruocco, Michelina; Pazzagli, Luigia; Bernardi, Rodolfo; Scala, Aniello

    2012-02-01

    Cerato-platanin (CP) is a protein produced by Ceratocystis platani, the causal agent of canker stain disease of plane trees. CP is the first member of the 'cerato-platanin family', and its role as a pathogen-associated molecular pattern (PAMP), inducing defence responses both in host and nonhost plants, is established. However, the primary role of CP and its homologues in the fungal life remains unknown. In the present work, we investigated the regulation of the cp gene during the in vitro growth of C. platani in different conditions and under the effect of potential stress factors. Fungal growth and conidiogenesis were also analysed. Results showed that cp is a single-copy gene whose expression level is strictly associated with hyphal growth and with chlamydospores formation. The analysis of a 1368 bp 5'-flanking region revealed putative motifs that could be involved in the regulation of gene expression in response to stress and developmental cues. Taking into account the localization of CP in the fungal cell wall and the recently published 3D structure of the protein, our results support a role for CP in growth and developmental processes of C. platani. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants.

    PubMed

    Hipper, Clémence; Monsion, Baptiste; Bortolamiol-Bécet, Diane; Ziegler-Graff, Véronique; Brault, Véronique

    2014-02-01

    Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

  2. βTrCP controls the lysosome-mediated degradation of CDK1, whose accumulation correlates with tumor malignancy

    PubMed Central

    Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Giráldez, Servando; Sáez, Carmen; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2014-01-01

    In mammals, cell cycle progression is controlled by cyclin-dependent kinases, among which CDK1 plays important roles in the regulation of the G2/M transition, G1 progression and G1/S transition. CDK1 is highly regulated by its association to cyclins, phosphorylation and dephosphorylation, changes in subcellular localization, and by direct binding of CDK inhibitor proteins. CDK1 steady-state protein levels are held constant throughout the cell cycle by a coordinated regulation of protein synthesis and degradation. We show that CDK1 is ubiquitinated by the E3 ubiquitin ligase SCFβTrCP and degraded by the lysosome. Furthermore, we found that DNA damage not only triggers the stabilization of inhibitory phosphorylation sites on CDK1 and repression of CDK1 gene expression, but also regulates βTrCP-induced CDK1 degradation in a cell type-dependent manner. Specifically, treatment with the chemotherapeutic agent doxorubicin in certain cell lines provokes CDK1 degradation and induces apoptosis, whereas in others it inhibits destruction of the protein. These observations raise the possibility that different tumor types, depending on their pathogenic spectrum mutations, may display different sensitivity to βTrCP-induced CDK1 degradation after DNA damage. Finally, we found that CDK1 accumulation in patients’ tumors shows a negative correlation with βTrCP and a positive correlation with the degree of tumor malignancy. PMID:25149538

  3. A CGMMV genome-replicon vector with partial sequences of coat protein gene efficiently expresses GFP in Nicotiana benthamiana.

    PubMed

    Jailani, A Abdul Kader; Solanki, Vikas; Roy, Anirban; Sivasudha, T; Mandal, Bikash

    2017-04-02

    A highly infectious clone of Cucumber green mottle mosaic virus (CGMMV), a cucurbit-infecting tobamovirus was utilized for designing of gene expression vectors. Two versions of vector were examined for their efficacy in expressing the green fluorescent protein (GFP) in Nicotiana benthamiana. When the GFP gene was inserted at the stop codon of coat protein (CP) gene of the CGMMV genome without any read-through codon, systemic expression of GFP, as well as virion formation and systemic symptoms expression were obtained in N. benthamiana. The qRT-PCR analysis showed 23 fold increase of GFP over actin at 10days post inoculation (dpi), which increased to 45 fold at 14dpi and thereafter the GFP expression was significantly declined. Further, we show that when the most of the CP sequence is deleted retaining only the first 105 nucleotides, the shortened vector containing GFP in frame of original CP open reading frame (ORF) resulted in 234 fold increase of GFP expression over actin at 5dpi in N. benthamiana without the formation of virions and disease symptoms. Our study demonstrated that a simple manipulation of CP gene in the CGMMV genome while preserving the translational frame of CP resulted in developing a virus-free, rapid and efficient foreign protein expression system in the plant. The CGMMV based vectors developed in this study may be potentially useful for the production of edible vaccines in cucurbits. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chloroplast Genome Differences between Asian and American Equisetum arvense (Equisetaceae) and the Origin of the Hypervariable trnY-trnE Intergenic Spacer

    PubMed Central

    Kim, Hyoung Tae; Kim, Ki-Joong

    2014-01-01

    Comparative analyses of complete chloroplast (cp) DNA sequences within a species may provide clues to understand the population dynamics and colonization histories of plant species. Equisetum arvense (Equisetaceae) is a widely distributed fern species in northeastern Asia, Europe, and North America. The complete cp DNA sequences from Asian and American E. arvense individuals were compared in this study. The Asian E. arvense cp genome was 583 bp shorter than that of the American E. arvense. In total, 159 indels were observed between two individuals, most of which were concentrated on the hypervariable trnY-trnE intergenic spacer (IGS) in the large single-copy (LSC) region of the cp genome. This IGS region held a series of 19 bp repeating units. The numbers of the 19 bp repeat unit were responsible for 78% of the total length difference between the two cp genomes. Furthermore, only other closely related species of Equisetum also show the hypervariable nature of the trnY-trnE IGS. By contrast, only a single indel was observed in the gene coding regions: the ycf1 gene showed 24 bp differences between the two continental individuals due to a single tandem-repeat indel. A total of 165 single-nucleotide polymorphisms (SNPs) were recorded between the two cp genomes. Of these, 52 SNPs (31.5%) were distributed in coding regions, 13 SNPs (7.9%) were in introns, and 100 SNPs (60.6%) were in intergenic spacers (IGS). The overall difference between the Asian and American E. arvense cp genomes was 0.12%. Despite the relatively high genetic diversity between Asian and American E. arvense, the two populations are recognized as a single species based on their high morphological similarity. This indicated that the two regional populations have been in morphological stasis. PMID:25157804

  5. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    PubMed

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.

  6. The effects of crude protein concentration and slow release urea on nitrogen metabolism in Holstein steers.

    PubMed

    Holder, Vaughn B; El-Kadi, Samer W; Tricarico, Juan M; Vanzant, Eric S; McLeod, Kyle R; Harmon, David L

    2013-04-01

    This experiment was conducted to determine the effects of slow release urea (SRU) and its interaction with crude protein (CP) level in the diet on N metabolism in Holstein steers. Eight rumen-cannulated Holstein steers (body weight 265 ± 18 kg) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial treatment structure. Treatment factors were the CP level in the diet, 10.9% versus 12.1% CP, and the non-protein nitrogen source used, urea versus SRU. Total collection of urine and faeces for 7 days allowed the estimation of N retention and diet digestibility. In addition, blood and rumen sampling allowed estimation of rumen fermentation and blood N profiles. Decreasing CP intake from 12.1% to 10.9% reduced urinary N output, but also reduced diet digestibility and N retention. When compared to urea, SRU did not alter N retention, but reduced ruminal ammonia and plasma urea concentrations. Although SRU did not improve N retention at either CP level, rumen ammonia and plasma urea concentrations were reduced, which may indicate that SRU may carry a lower risk for toxicity when compared to urea when fed at higher dietary concentrations.

  7. A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.

    PubMed

    Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang

    2017-10-10

    Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.

  8. Chronic Pancreatitis and Fracture: A Retrospective, Population-Based Veterans Administration Study.

    PubMed

    Munigala, Satish; Agarwal, Banke; Gelrud, Andres; Conwell, Darwin L

    2016-03-01

    There is increasing evidence that chronic pancreatitis (CP) is a risk factor for osteoporotic fracture, but data on males with CP and fracture prevalence are sparse. We determined the association of sex and age using a large Veterans Administration database. This was a retrospective analysis (1998-2007). Patients with CP (International Classification of Diseases code 577.1) and control subjects (without CP) were identified after exclusions and fracture prevalence (vertebral, hip, and wrist) were recorded. 453,912 Veterans Administration patients were identified (control subjects: 450,655 and patients with CP: 3257). Mean ages of control subjects and CP were 53.6 and 54.2 years (P < 0.014). Patients with CP had higher odds ratios of total fractures (2.35; 95% confidence interval [CI], 2.00-2.77), vertebral fracture 2.11 (95% CI, 1.44-3.01), hip fracture 3.49 (95% CI, 2.78-4.38), and wrist fracture 1.68 (95% CI, 1.29-2.18) when compared with control subjects. After adjusting for age group and etiology, patients with CP had increased odds of total fractures, vertebral fractures, and hip fractures (P < 0.05). In this male-predominate Veterans Administration study, patients with CP were at increased risk of osteoporotic fractures. The risk was higher for hip fracture (>3 times) in patients with CP compared with control subjects. All patients with CP older than 45 years, irrespective of sex, should be screened for bone mineral density loss.

  9. CpG Distribution and Methylation Pattern in Porcine Parvovirus

    PubMed Central

    Tóth, Renáta; Mészáros, István; Stefancsik, Rajmund; Bartha, Dániel; Bálint, Ádám; Zádori, Zoltán

    2013-01-01

    Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome. PMID:24392033

  10. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios

    PubMed Central

    Duan, Yehui; Li, Fengna; Wang, Wenlong; Guo, Qiuping; Wen, Chaoyue; Yin, Yulong

    2017-01-01

    There mainly exists four major myosin heavy chains (MyHC) (i.e., I, IIa, IIx, and IIb) in growing pigs. The current study aimed to explore the effects of low-protein diets supplemented with varying branched-chain amino acids (BCAAs) on muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscles. Forty growing pigs (9.85 ± 0.35 kg) were allotted to 5 groups and fed with diets supplemented with varying leucine: isoleucine: valine ratios: 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. The skeletal muscles of different muscle fiber composition, that is, longissimus dorsi muscle (LM, a fast-twitch glycolytic muscle), biceps femoris muscle (BM, a mixed slow- and fast-twitch oxido-glycolytic muscle), and psoas major muscle (PM, a slow-twitch oxidative muscle) were collected and analyzed. Results showed that relative to the control group (1:0.51:0.63, 20% CP), the low-protein diets with the leucine: isoleucine: valine ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 especially augmented the mRNA and protein abundance of MyHC I fibers in BM and lowered the mRNA abundance of MyHC IIb particularly in LM (P < 0.05), with a concurrent increase in the activation of AMPK and the mRNA abundance of SIRT and PGC-1α in BM (P < 0.05). The results reveal that low-protein diets supplemented with optimal BCAA ratio, i.e. 1:0.75:0.75-1:0.25:0.25, induce muscle more oxidative especially in oxido-glycolytic skeletal muscle of growing pigs. These effects are likely associated with the activation of the AMPK-SIRT1-PGC-1α axis. PMID:29291007

  11. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts.

    PubMed

    He, Ye; Tsou, Pei-Suen; Khanna, Dinesh; Sawalha, Amr H

    2018-05-14

    Emerging evidence supports a role for epigenetic regulation in the pathogenesis of scleroderma (SSc). We aimed to assess the role of methyl-CpG-binding protein 2 (MeCP2), a key epigenetic regulator, in fibroblast activation and fibrosis in SSc. Dermal fibroblasts were isolated from patients with diffuse cutaneous SSc (dcSSc) and from healthy controls. MeCP2 expression was measured by qPCR and western blot. Myofibroblast differentiation was evaluated by gel contraction assay in vitro. Fibroblast proliferation was analysed by ki67 immunofluorescence staining. A wound healing assay in vitro was used to determine fibroblast migration rates. RNA-seq was performed with and without MeCP2 knockdown in dcSSc to identify MeCP2-regulated genes. The expression of MeCP2 and its targets were modulated by siRNA or plasmid. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) using anti-MeCP2 antibody was performed to assess MeCP2 binding sites within MeCP2-regulated genes. Elevated expression of MeCP2 was detected in dcSSc fibroblasts compared with normal fibroblasts. Overexpressing MeCP2 in normal fibroblasts suppressed myofibroblast differentiation, fibroblast proliferation and fibroblast migration. RNA-seq in MeCP2-deficient dcSSc fibroblasts identified MeCP2-regulated genes involved in fibrosis, including PLAU , NID2 and ADA . Plasminogen activator urokinase (PLAU) overexpression in dcSSc fibroblasts reduced myofibroblast differentiation and fibroblast migration, while nidogen-2 (NID2) knockdown promoted myofibroblast differentiation and fibroblast migration. Adenosine deaminase (ADA) depletion in dcSSc fibroblasts inhibited cell migration rates. Taken together, antifibrotic effects of MeCP2 were mediated, at least partly, through modulating PLAU, NID2 and ADA. ChIP-seq further showed that MeCP2 directly binds regulatory sequences in NID2 and PLAU gene loci. This study demonstrates a novel role for MeCP2 in skin fibrosis and identifies MeCP2-regulated genes associated with fibroblast migration, myofibroblast differentiation and extracellular matrix degradation, which can be potentially targeted for therapy in SSc. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. The in vivo pharmacological profile of a 5-HT1 receptor agonist, CP-122,288, a selective inhibitor of neurogenic inflammation.

    PubMed

    Gupta, P; Brown, D; Butler, P; Ellis, P; Grayson, K L; Land, G C; Macor, J E; Robson, S F; Wythes, M J; Shepperson, N B

    1995-11-01

    1. The aim of the present study was to investigate the in vivo pharmacological profile of CP-122,288, an indole-derivative with a conformationally restricted N-methylpyrrolidinyl basic side chain in the C-3 position. This C-3 substituent structurally differentiates CP-122,288 from the 5-HT1D receptor agonist sumatriptan, which possesses an N,N-dimethylaminoethyl group. [Formula: see text] 2. When administered prior to electrical stimulation of the trigeminal ganglion, CP-122,288 (0.3-300 ng kg-1, i.v.) produced a dose-related inhibition of plasma protein extravasation in rat dura mater (minimum effective dose, MED, 3 ng kg-1 i.v., P < 0.05; maximal inhibition of plasma extravasation at 30 ng kg-1 i.v., P < 0.01). Sumatriptan produced a similar inhibition of plasma leakage in the dura, but at much higher dose levels (MED, 100 micrograms kg-1 i.v., P < 0.05). Thus, CP-122,288 is of the order of 10(4) fold more potent than sumatriptan. 3. At all doses tested, CP-122,288 did not inhibit plasma protein extravasation measured in extracranial tissues such as the lower lip, eyelid, and conjunctiva. 4. In a separate series of studies in the anaesthetized rat, CP-122,288 (0.003-3 micrograms kg-1 i.v.) produced no change in either heart rate or mean arterial blood pressure, thus demonstrating that doses of CP-122,288 which inhibit plasma protein leakage in rat dura, are devoid of hemodynamic effects. 5. Following a 5 min period of electrical stimulation of the trigeminal ganglion, a 20 min period of sustained neurogenically-driven plasma extravasation, occurring in the absence of electrical stimulation, was initiated. By administration of the compound 5 min after completing the phase of electrical stimulation, this protocol permitted the evaluation of the activity of CP-122,288 on an ongoing and established inflammatory event. CP-122,288 (30 and 300 ng kg-1, i.v., P < 0.01 and P < 0.05, respectively) produced a complete inhibition of plasma protein leakage which was consistent with its effects when administered prior to trigeminal ganglion stimulation. 6. In the anaesthetized dog, CP-122,288 and sumatriptan, at 1-300 micrograms kg-1, i.v., produced a dose-dependent reduction in carotid arterial blood flow and coronary arterial diameter. These data demonstrate that sumatriptan inhibits neurogenic inflammation in the rat (MED, 100 micrograms kg-1, i.v.), and produces vasoconstriction in the dog, over a similar dose-range. Interestingly, doses of CP-122,288 that inhibit neurogenic inflammation in rat dura mater (0.3-300 ng kg-1) were demonstrated to be devoid of vasoconstrictor activity in either the carotid or coronary vascular beds of dog. 7. These data demonstrate that in the rat, CP-122,288 is a highly potent and selective inhibitor of neurogenic inflammation in intracranial tissues, at doses which are devoid of vasoconstrictor activity in dog. Potentially, CP-122,288 may be of use for the acute treatment of migraine, without the risk of cardiovascular side-effects.

  13. Cotranslational Coat Protein-Mediated Inhibition of Potyviral RNA Translation

    PubMed Central

    Besong-Ndika, Jane; Ivanov, Konstantin I.; Hafrèn, Anders; Michon, Thierry

    2015-01-01

    ABSTRACT Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production. PMID:25631087

  14. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes.

    PubMed

    Jlali, M; Gigaud, V; Métayer-Coustard, S; Sellier, N; Tesseraud, S; Le Bihan-Duval, E; Berri, C

    2012-02-01

    The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.

  15. Activation of the Early B-Cell-Specific mb-1 (Ig-α) Gene by Pax-5 Is Dependent on an Unmethylated Ets Binding Site

    PubMed Central

    Maier, Holly; Colbert, Jeff; Fitzsimmons, Daniel; Clark, Dawn R.; Hagman, James

    2003-01-01

    Methylation of cytosine in CpG dinucleotides promotes transcriptional repression in mammals by blocking transcription factor binding and recruiting methyl-binding proteins that initiate chromatin remodeling. Here, we use a novel cell-based system to show that retrovirally expressed Pax-5 protein activates endogenous early B-cell-specific mb-1 genes in plasmacytoma cells, but only when the promoter is hypomethylated. CpG methylation does not directly affect binding of the promoter by Pax-5. Instead, methylation of an adjacent CpG interferes with assembly of ternary complexes comprising Pax-5 and Ets proteins. In electrophoretic mobility shift assays, recruitment of Ets-1 is blocked by methylation of the Ets site (5′CCGGAG) on the antisense strand. In transfection assays, selective methylation of a single CpG within the Pax-5-dependent Ets site greatly reduces mb-1 promoter activity. Prior demethylation of the endogenous mb-1 promoter is required for its activation by Pax-5 in transduced cells. Although B-lineage cells have only unmethylated mb-1 genes and do not modulate methylation of the mb-1 promoter during development, other tissues feature high percentages of methylated alleles. Together, these studies demonstrate a novel DNA methylation-dependent mechanism for regulating transcriptional activity through the inhibition of DNA-dependent protein-protein interactions. PMID:12612069

  16. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinshang, E-mail: sanmaosound@163.com; Zhao, Heng, E-mail: hengzhao2000@gmail.com; Chen, Yeyu, E-mail: cyyleaf@126.com

    2014-10-24

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosummore » Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish.« less

  17. Mecp2 deficiency leads to altered Htr2c pre-mRNA editing and HTR2C isoform distribution in mouse hippocampus and cerebellum

    USDA-ARS?s Scientific Manuscript database

    Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, a methyl-CpG binding protein and transcriptional repressor. CpG methylation plays an important role in genomic imprinting since imprinted genes are regulated by regions of differentially methylated CpGs (or ICs). A ...

  18. The complete DNA sequence of lymphocystis disease virus.

    PubMed

    Tidona, C A; Darai, G

    1997-04-14

    Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease, which has been reported to occur in over 100 different fish species worldwide. LCDV is a member of the family Iridoviridae and the type species of the genus Lymphocystivirus. The virions contain a single linear double-stranded DNA molecule, which is circularly permuted, terminally redundant, and heavily methylated at cytosines in CpG sequences. The complete nucleotide sequence of LCDV-1 (flounder isolate) was determined by automated cycle sequencing and primer walking. The genome of LCDV-1 is 102.653 bp in length and contains 195 open reading frames with coding capacities ranging from 40 to 1199 amino acids. Computer-assisted analyses of the deduced amino acid sequences led to the identification of several putative gene products with significant homologies to entries in protein data banks, such as the two major subunits of the viral DNA-dependent RNA polymerase, DNA polymerase, several protein kinases, two subunits of the ribonucleoside diphosphate reductase, DNA methyltransferase, the viral major capsid protein, insulin-like growth factor, and tumor necrosis factor receptor homolog.

  19. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.

    PubMed

    Davis, Kaitlin A; Morelli, Marco; Patton, John T

    2017-08-29

    The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1-β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1-β-TrCP complex to a cullin scaffold. Copyright © 2017 Davis et al.

  20. Yeast Mitochondrial Leucyl-tRNA Synthetase CP1 Domain Has Functionally Diverged to Accommodate RNA Splicing at Expense of Hydrolytic Editing*

    PubMed Central

    Sarkar, Jaya; Poruri, Kiranmai; Boniecki, Michal T.; McTavish, Katherine K.; Martinis, Susan A.

    2012-01-01

    The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNALeu. In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing. PMID:22383526

  1. Identification, Expression and IAA-Amide Synthetase Activity Analysis of Gretchen Hagen 3 in Papaya Fruit (Carica papaya L.) during Postharvest Process

    PubMed Central

    Liu, Kaidong; Wang, Jinxiang; Li, Haili; Zhong, Jundi; Feng, Shaoxian; Pan, Yaoliang; Yuan, Changchun

    2016-01-01

    Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya. PMID:27812360

  2. Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation.

    PubMed

    Vasu, Prasanna; Savary, Brett J; Cameron, Randall G

    2012-07-15

    We purified a Carica papaya pectin methylesterase (CpL-PME; EC 3.1.1.11) from a commercial papain preparation. This CpL-PME was separated from the abundant cysteine endopeptidases activities using sequential hydrophobic interaction and cation-exchange chromatographies and then purified by affinity chromatography using Sepharose-immobilized kiwi PME inhibitor protein to obtain a single electrophoretically homogeneous protein. The enzyme was purified 92-fold with 38% yield, providing a specific activity of 1200 U/mg. The molecular weight was determined to be 35,135 by MALDI-TOF-MS in linear mode. MALDI-TOF-MS peptide mass fingerprinting following trypsin digestion indicated CpL-PME represents a novel Carica PME isoform. The CpL-PME required salt for activity, and it showed a broad activity range (pH 6-9) and moderate thermostability (optimum ca. 70°C). A calcium-insensitive methylated lime pectin treated with CpL-PME to reduce degree of methylesterification by 6% converted the substrate to high calcium sensitivity, indicating a processive mode of action. These properties support further research to apply CpL-PME to tailor pectin nanostructure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Allexiviruses may have acquired inserted sequences between the CP and CRP genes to change the translation reinitiation strategy of CRP.

    PubMed

    Yoshida, Naoto; Shimura, Hanako; Masuta, Chikara

    2018-06-01

    Allexiviruses are economically important garlic viruses that are involved in garlic mosaic diseases. In this study, we characterized the allexivirus cysteine-rich protein (CRP) gene located just downstream of the coat protein (CP) gene in the viral genome. We determined the nucleotide sequences of the CP and CRP genes from numerous allexivirus isolates and performed a phylogenetic analysis. According to the resulting phylogenetic tree, we found that allexiviruses were clearly divided into two major groups (group I and group II) based on the sequences of the CP and CRP genes. In addition, the allexiviruses in group II had distinct sequences just before the CRP gene, while group I isolates did not. The inserted sequence between the CP and CRP genes was partially complementary to garlic 18S rRNA. Using a potato virus X vector, we showed that the CRPs affected viral accumulation and symptom induction in Nicotiana benthamiana, suggesting that the allexivirus CRP is a pathogenicity determinant. We assume that the inserted sequences before the CRP gene may have been generated during viral evolution to alter the termination-reinitiation mechanism for coupled translation of CP and CRP.

  4. A recombinant fusion protein and DNA vaccines against foot-and-mouth disease virus type Asia 1 infection in guinea pigs.

    PubMed

    Zhang, Q; Zhu, M W; Yang, Y Q; Shao, M; Zhang, Z Y; Lan, H Y; Yan, W Y; Wu, J J; Zheng, Z X

    2003-01-01

    On the basis of amino acid (aa) sequence of the tandem repeat 133-158-20-34-133-158 which consisted of aa 133-158 of VP1 and aa 20-34 of VP4 of Foot-and-mouth disease virus (FMDV) type Asia 1 a recombinant prokaryotic expression vector pAS1-P encoding a fusion protein and eukaryotic expression vectors pAS1-E and pAS1-EdeltaCpG-ODN representing DNA vaccines were constructed. Guinea pigs immunized with these vaccines showed both neutralizing antibody and T cell proliferation responses. FMDV challenge tests for the first time showed that the recombinant fusion protein and pAS1-E and pAS1-EdeltaCpG-ODN vaccines protected 86%, 60% and 43% of guinea pigs from FMDV type Asia1 challenge, respectively. The results also indicated that the immune response of animals treated with the vector pAS1-E containing an oligodeoxynucleotide (ODN), which consisted of immunostimulatory cytosine-phosphate-guanosine (CpG) motifs, was augmented by CpG ODN.

  5. The solution structures of the cucumber mosaic virus and tomato aspermy virus coat proteins explored with molecular dynamics simulations.

    PubMed

    Gellért, Akos; Balázs, Ervin

    2010-02-26

    The three-dimensional structures of two cucumovirus coat proteins (CP), namely Cucumber mosaic virus (CMV) and Tomato aspermy virus (TAV), were explored by molecular dynamics (MD) simulations. The N-terminal domain and the C-terminal tail of the CPs proved to be intrinsically unstructured protein regions in aqueous solution. The N-terminal alpha-helix had a partially unrolled conformation. The thermal factor analysis of the CP loop regions demonstrated that the CMV CP had more flexible loop regions than the TAV CP. The principal component analysis (PCA) of the MD trajectories showed that the first three eigenvectors represented the three main conformational motions in the CPs. The first motion components with the highest variance contribution described an opening movement between the hinge and the N-terminal domain of both CPs. The second eigenvector showed a closing motion, while the third eigenvector represented crosswise conformational fluctuations. These new findings, together with previous results, suggest that the hinge region of CPs plays a central role in the recognition and binding of viral RNA. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis

    PubMed Central

    Woo, Hye Ryun; Dittmer, Travis A.; Richards, Eric J.

    2008-01-01

    Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing. PMID:18704160

  7. Effect of dietary protein level and source on bone mineralization in rats.

    PubMed

    Gralak, M A; Piastowska, A W; Leontowicz, H; Leontowicz, M; Antczak, A; Kulasek, G W; Szara, T; Narojek, T

    2004-01-01

    Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 +/- 1.1 vs. 17.4 +/- 1.1 g/kg) and Zn (178.7 +/- 7.9 vs. 173.0 +/- 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 +/- 0.5 g/kg) and Zn (145.1 +/- 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves.

  8. Clinical and prognostic role of annexin A2 in adamantinomatous craniopharyngioma.

    PubMed

    Wang, Yuelong; Deng, Jiaojiao; Guo, Gang; Tong, Aiping; Peng, Xirui; Chen, Haifeng; Xu, Jianguo; Liu, Yi; You, Chao; Zhou, Liangxue

    2017-01-01

    Annexin A2 (AnxA2) is a highly conserved Ca2 + -regulated membrane binding protein, which affects cell mobility and tumor progression. Adamantinomatous craniopharyngioma (AdaCP) are a kind of epithelial tumors of the sellar region with high tendency to recur. Robust biomarkers are required to predict tumor behavior and to establish follow-up individualized treatment approaches. In this study, we firstly compared four surgical AdaCP samples with normal brain by two-dimensional gel electrophoresis (2DE) proteomic analysis. Potential prognostic biomarkers were further validated in a large cohort of 65 AdaCPs by immunohistochemistry. The effects of AnxA2 on AdaCP cells proliferation and migration were analyzed in vitro with isolated primary AdaCP cells as well as SV40T-immortalized cells. Finally, the gefitinib sensitivity of AdaCPs with differentially expressed AnxA2 and the potential molecular mechanisms were examined by flow cytometric analysis, Real-time PCR and immunoblot assays. Proteomic analysis indicated that AnxA2 was the protein spot with the most elevated expression in AdaCP samples. Immunohistochemistry assays indicated the expression level of AnxA2 was significantly higher in recurrent AdaCPs compared with primary ones. Moreover, AnxA2 + AdaCP cells exhibited enhanced proliferation and migration ability compared with AnxA2 - AdaCP cells in vitro. Further, we show that AnxA2 + AdaCP cells exhibited elevated expression of EGFR and downstream p-AKT (S308) and p-AKT (S473), and were more sensitive to tyrosine kinase inhibitor gefitinib. Our data suggest that AnxA2 may serve as a promising biomarker for AdaCP progression, recurrence and drug susceptibility. Our data support potential clinical implications for the follow-up treatment of AdaCP patients with high AnxA2 expression.

  9. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene

    PubMed Central

    Nakayama, Keiko; Hatakeyama, Shigetsugu; Maruyama, Shun-ichiro; Kikuchi, Akira; Onoé, Kazunori; Good, Robert A.; Nakayama, Keiichi I.

    2003-01-01

    β-TrCP1 (also known as Fbw1a or FWD1) is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. Although biochemical studies have suggested that β-TrCP1 targets inhibitory subunit of NF-κB(IκB) proteins and β-catenin for ubiquitylation, the physiological role of β-TrCP1 in mammals has remained unclear. We have now generated mice deficient in β-TrCP1 and shown that the degradation of IκBα and IκBβ is reproducibly, but not completely, impaired in the cells of these animals. The nuclear translocation and DNA-binding activity of NF-κB as well as the ability of this transcription factor to activate a luciferase reporter gene were also inhibited in β-TrCP1–/– cells compared with those apparent in wild-type cells. The subcellular localization of β-catenin was altered markedly in β-TrCP1–/– cells. Furthermore, the rate of proliferation was reduced and both cell size and the percentage of polyploid cells were increased in embryonic fibroblasts derived from β-TrCP1–/– mice pared with the corresponding wild-type cells. These results suggest that β-TrCP1 contributes to, but is not absolutely required for, the degradation of IκB and β-catenin and the consequent regulation of the NF-κB and Wnt signaling pathways, respectively. In addition, they implicate β-TrCP1 in the maintenance of ploidy during cell-cycle progression. PMID:12843402

  10. Murine J774 Macrophages Recognize LPS/IFN-g, Non-CpG DNA or Two-CpG DNA-containing Sequences as Immunologically Distinct

    PubMed Central

    Crosby, Lynn; Casey, Warren; Morgan, Kevin; Ni, Hong; Yoon, Lawrence; Easton, Marilyn; Misukonis, Mary; Burleson, Gary; Ghosh, Dipak K.

    2010-01-01

    Specific bacterial lipopolysaccharides (LPS), IFN-γ, and unmethylated cytosine or guanosine-phosphorothioate containing DNAs (CpG) activate host immunity, influencing infectious responses. Macrophages detect, inactivate and destroy infectious particles, and synthetic CpG sequences invoke similar responses of the innate immune system. Previously, murine macrophage J774 cells treated with CpG induced the expression of nitric oxide synthase 2 (NOS2) and cyclo-oxygenase 2 (COX2) mRNA and protein. In this study murine J774 macrophages were exposed to vehicle, interferon γ + lipopolysaccharide (IFN-g/LPS), non-CpG (SAK1), or two-CpG sequence-containing DNA (SAK2) for 0–18 hr and gene expression changes measured. A large number of immunostimulatory and inflammatory changes were observed. SAK2 was a stronger activator of TNFα- and chemokine expression-related changes than LPS/IFN-g. Up regulation included tumor necrosis factor receptor superfamily genes (TNFRSF’s), IL-1 receptor signaling via stress-activated protein kinase (SAPK), NF-κB activation, hemopoietic maturation factors and sonic hedgehog/wingless integration site (SHH/Wnt) pathway genes. Genes of the TGF-β pathway were down regulated. In contrast, LPS/IFN-g -treated cells showed increased levels for TGF-β signaling genes, which may be linked to the observed up regulation of numerous collagens and down regulation of Wnt pathway genes. SAK1 produced distinct changes from LPS/IFN-g or SAK2. Therefore, J774 macrophages recognize LPS/IFN-g, non-CpG DNA or two-CpG DNA-containing sequences as immunologically distinct. PMID:20097302

  11. Protein tyrosine phosphatase encoded in Cotesia plutellae bracovirus suppresses a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella.

    PubMed

    Kim, Jiwan; Hepat, Rahul; Lee, Daeweon; Kim, Yonggyun

    2013-09-01

    Parasitization by an endoparasitoid wasp, Cotesia plutellae, inhibits a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. This study tested an inhibitory effect of C. plutellae bracovirus (CpBV) on the metamorphosis of P. xylostella. Parasitized P. xylostella exhibited significantly reduced prothoracic gland (PTG) development at the last instar compared to nonparasitized larvae. Expression of the ecdysone receptor (EcR) was markedly suppressed during the last instar larvae parasitized by C. plutellae. By contrast, expression of the insulin receptor (InR) significantly increased in the parasitized larvae. Microinjection of CpBV significantly inhibited the larva-to-pupa metamorphosis of nonparasitized larvae in a dose-dependent manner. Injection of CpBV also inhibited the expression of the EcR and increased the expression of the InR. Individual CpBV segments were transiently expressed in its encoded genes in nonparasitized larvae and screened to determine antimetamorphic viral gene(s). Out of 21 CpBV segments, two viral segments (CpBV-S22 and CpBV-S27) were proved to inhibit larva-to-pupa metamorphosis by transient expression assay. RNA interference of each gene encoded in the viral segments was applied to determine antimetamorphic gene(s). Protein tyrosine phosphatase, early expressed gene, and four hypothetical genes were selected to be associated with the antimetamorphic activity of CpBV. These results suggest that antimetamorphosis of P. xylostella parasitized by C. plutellae is induced by inhibiting PTG development and subsequent ecdysteroid signaling with viral factors of CpBV. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Iwasaki, Jun-ichi; Shiina, Masaaki; Ogata, Kazuhiro; Hunter, Tony; Osada, Hiroyuki

    2005-01-01

    At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is down-regulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCFβ-TrCP. The F-box protein β-TrCP (β-transducin repeat-containing protein), the substrate recognition component of the ubiquitin ligase, binds to its substrates through a conserved binding motif (phosphodegron) containing two phosphoserines, DpSGXXpS. Although Wee1A lacks this motif, phosphorylation of serines 53 and 123 (S53 and S123) of Wee1A by polo-like kinase 1 (Plk1) and CDK, respectively, are required for binding to β-TrCP. The sequence surrounding phosphorylated S53 (DpSAFQE) is similar to the conserved β-TrCP-binding motif; however, the role of S123 phosphorylation (EEGFGSSpSPVK) in β-TrCP binding was not elucidated. In the present study, we show that phosphorylation of S123 (pS123) by CDK promoted the binding of Wee1A to β-TrCP through three independent mechanisms. The pS123 not only directly interacted with basic residues in the WD40 repeat domain of β-TrCP but also primed phosphorylation by two independent protein kinases, Plk1 and CK2 (formerly casein kinase 2), to create two phosphodegrons on Wee1A. In the case of Plk1, S123 phosphorylation created a polo box domain-binding motif (SpSP) on Wee1A to accelerate phosphorylation of S53 by Plk1. CK2 could phosphorylate S121, but only if S123 was phosphorylated first, thereby generating the second β-TrCP-binding site (EEGFGpS121). Using a specific inhibitor of CK2, we showed that the phosphorylation-dependent degradation of Wee1A is important for the proper onset of mitosis. PMID:16085715

  13. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes

    DOE PAGES

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...

    2015-07-28

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  14. A mutation-led search for novel functional domains in MeCP2.

    PubMed

    Guy, Jacky; Alexander-Howden, Beatrice; FitzPatrick, Laura; DeSousa, Dina; Koerner, Martha V; Selfridge, Jim; Bird, Adrian

    2018-04-27

    Most missense mutations causing Rett syndrome affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterised domains. We studied the molecular consequences of four of these "non-canonical" mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of Rett syndrome. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilise these mutant proteins may be of therapeutic value.

  15. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  16. Code Pulse: Software Assurance (SWA) Visual Analytics for Dynamic Analysis of Code

    DTIC Science & Technology

    2014-09-01

    31 4.5.1 Market Analysis...competitive market analysis to assess the tool potential. The final transition targets were selected and expressed along with our research on the topic...public release milestones. Details of our testing methodology is in our Software Test Plan deliv- erable, CP- STP -0001. A summary of this approach is

  17. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae).

    PubMed

    Brouard, Jean-Simon; Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum . The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium , it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and dispersed repeats are more abundant, but a smaller fraction of the Oedocladium genome is occupied by introns. Six additional group II introns are present, five of which lack ORFs and carry highly similar sequences to that of the ORF-less IIA intron shared with Oedogonium . Secondary structure analysis of the group IIA introns disclosed marked differences in the exon-binding sites; however, each intron showed perfect or nearly perfect base pairing interactions with its target site. Our results suggest that chloroplast genes rearrange more slowly in the Oedogoniales than in the Chaetophorales and raise questions as to what was the nature of the foreign coding sequences in the IR of the common ancestor of the Oedogoniales. They provide the first evidence for intragenomic proliferation of group IIA introns in the Viridiplantae, revealing that intron spread in the Oedocladium lineage likely occurred by retrohoming after sequence divergence of the exon-binding sites.

  18. The effect of palatability of protein source on dietary selection in dairy calves.

    PubMed

    Miller-Cushon, E K; Terré, M; DeVries, T J; Bach, A

    2014-07-01

    Evidence has shown that soybean meal is perceived as more palatable than canola meal by dairy calves in short-term preference tests. This study evaluated the effect of protein source on longer-term dietary selection of dairy calves. In experiment 1, 40 Holstein bull calves (11.4 ± 4.3 d of age) were randomly assigned to 1 of 2 choice diets for 6 wk: base starter pellet (S; 12% crude protein; CP) and high-protein pellet (40% CP) containing either (1) soybean meal (SB) or (2) canola meal (CM). In wk 7 to 8, all calves were offered a single pelleted diet containing the protein source to which they were previously exposed. In experiment 2, 22 Holstein bull calves (9.9 ± 4.6d of age) were offered, for 6 wk, a choice of 2 mixed pelleted diets: (1) 70% S and 30% SB (SB mix), or (2) 70% S and 30% CM (CM mix). In wk 7 to 8, calves were randomly assigned to 1 of 2 choice diets, as in experiment 1: (1) SB + S, or (2) CM + S. All feeds were provided ad libitum. Calves received 6 L/d of milk replacer [0.75 kg/d of dry matter (DM)] for the duration of both experiments. Feed intake was recorded daily and calves were weighed every 14 d. Feeds were sampled weekly to analyze DM and nutrient intake. Mixed diets in experiment 2 were analyzed for CP in wk 4 and 6 to assess feed sorting (calculated as actual CP intake as a percentage of predicted intake). In experiment 1, calves offered SB + S in wk 1 to 6 consumed more high-protein pellet than calves offered CM + S [73 vs. 42% of DM intake (DMI)] and, consequently, more CP (168 vs. 117 g/d). Solid feed DMI and average daily gain were similar between treatments. When offered a single diet in wk 7 to 8, calves offered starter containing soybean meal increased intake to a greater extent than calves offered the starter containing canola meal. In experiment 2, calves preferred the SB mix to CM mix (preference ratio: 0.7). Calves consumed more CP than predicted from SB mix in wk 4 and 6 (108 ± 2.0%), indicating that they were sorting in favor of SB. In contrast, calves consumed less CP than predicted from CM mix in wk 4 (81.48 ± 4.1%), indicating that they were sorting against CM. When assigned to choice treatments in wk 7 to 8 of experiment 2, calves offered SB + S consumed more protein pellet than calves offered CM + S (81 vs. 31% DMI) and consumed more CP (378 vs. 196 g/d). Average daily gain was greater for calves offered SB + S but DMI was similar. Overall, these results suggest that dietary selection was influenced by innate feed preferences, and milk-fed calves may not be sensitive to protein imbalances in their diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion

    PubMed Central

    Moreau, France; Gorman, Hayley

    2017-01-01

    Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. PMID:28837696

  20. First report of an unusual novel double mutation affecting the transcription repression domain of MeCP2 and causing a severe phenotype of Rett syndrome: Molecular analyses and computational investigation.

    PubMed

    Ghorbel, Rania; Ghorbel, Raouia; Rouissi, Aida; Fendri-Kriaa, Nourhene; Ben Salah, Ghada; Belguith, Neila; Ammar-Keskes, Leila; Gouider-Khouja, Neziha; Fakhfakh, Faiza

    2018-02-26

    Rett syndrome is an X-linked neurodevelopmental disorder that develops a profound intellectual and motor disability and affects 1 from 10 000 to 15 000 live female births. This disease is characterized by a period of apparently normal development until 6-18 months of age when motor and communication abilities regress which is caused by mutations occurred in the X-linked MECP2 gene, encoding the methyl-CpG binding protein 2. This research study reports a molecular analysis via an exhaustive gene sequencing which reveals an unusual novel double mutation (c.695 G > T; c.880C > T) located in a highly conserved region in MECP2 gene affecting the transcription repression domain (TRD) of MeCP2 protein and leading for the first time to a severe phenotype of Rett syndrome. Moreover, a computational investigation of MECP2 mutations demonstrates that the novel mutation c.695 G > T is highly deleterious which affects the MeCP2 protein showing also an adverse impact on MECP2 gene expression and resulting in an affected folding and decreased stability of MECP2 structures. Thus, the altered TRD domain engenders a disrupted process of MECP2 functions. Therefore, this is the first study which highlights a novel double mutation among the transcription repression domain (TRD) of MeCP2 protein in Rett patient with a severe clinical phenotype in North Africa region. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  2. The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity.

    PubMed

    Kirst, Henning; Melis, Anastasios

    2014-01-01

    The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated. © 2013.

  3. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens

    NASA Astrophysics Data System (ADS)

    Najafi, Pardis; Zulkifli, Idrus; Amat Jajuli, Nurfarahin; Farjam, Abdoreza Soleimani; Ramiah, Suriya Kumari; Amir, Anna Aryani; O'Reily, Emily; Eckersall, David

    2015-11-01

    An experiment was conducted to determine the effect of different stocking densities on serum corticosterone (CORT), ovotransferrin (OVT), α1-acid glycoprotein (AGP) and ceruloplasmin (CP) concentrations, brain heat shock protein (HSP) 70 expression and performance in broiler chickens exposed to unheated and heated conditions. Day-old chicks were stocked at 0.100 m2/bird (low density (LD)) or 0.063 m2/bird (high density (HD)), in battery cages and housed in environmentally controlled rooms. From 21 to 35 days of age, birds from each stocking density group were exposed to either 24 or 32 °C. Growth performance was recorded during the heat treatment period, and blood and brain samples were collected to determine CORT, OVT, AGP, CP and HSP 70 levels on day 35. Heat treatment but not stocking density was detrimental to growth performance. There were significant temperature × density interactions for CORT, CP and OVT on day 35. Although HD elevated CORT, CP and OVT when compared to LD, the effects of the former were more obvious under heated condition. Both temperature and density had significant effect on AGP and HSP 70. In conclusion, irrespective of temperature, high stocking density was physiologically stressful to broiler chickens, as indicated by CORT, AGP, CP, OVT and HSP 70, but not detrimental to growth performance and survivability. As it was shown in the present study, AGP, CP and OVT could be useful biomarkers to determine the effect of overcrowding and high temperature on the welfare of broiler chickens.

  4. Ensemble coding of face identity is present but weaker in congenital prosopagnosia.

    PubMed

    Robson, Matthew K; Palermo, Romina; Jeffery, Linda; Neumann, Markus F

    2018-03-01

    Individuals with congenital prosopagnosia (CP) are impaired at identifying individual faces but do not appear to show impairments in extracting the average identity from a group of faces (known as ensemble coding). However, possible deficits in ensemble coding in a previous study (CPs n = 4) may have been masked because CPs relied on pictorial (image) cues rather than identity cues. Here we asked whether a larger sample of CPs (n = 11) would show intact ensemble coding of identity when availability of image cues was minimised. Participants viewed a "set" of four faces and then judged whether a subsequent individual test face, either an exemplar or a "set average", was in the preceding set. Ensemble coding occurred when matching (vs. mismatching) averages were mistakenly endorsed as set members. We assessed both image- and identity-based ensemble coding, by varying whether test faces were either the same or different images of the identities in the set. CPs showed significant ensemble coding in both tasks, indicating that their performance was independent of image cues. As a group, CPs' ensemble coding was weaker than controls in both tasks, consistent with evidence that perceptual processing of face identity is disrupted in CP. This effect was driven by CPs (n= 3) who, in addition to having impaired face memory, also performed particularly poorly on a measure of face perception (CFPT). Future research, using larger samples, should examine whether deficits in ensemble coding may be restricted to CPs who also have substantial face perception deficits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st and 2nd amide groups (P < 0.10), but no difference in the 1st to 2nd amide group intensity ratios (P > 0.05). These results indicate that the sourced-origins and the internal molecular structure profiles affected biological functions, nutrient bioavailability and biodegradation.

  6. Entropy Production during Fatigue as a Criterion for Failure. The Critical Entropy Threshold: A Mathematical Model for Fatigue.

    DTIC Science & Technology

    1983-08-15

    Measurement of Material Damping," Experimental Mechanics, 297-302 (Aug 1977). 4. Feltner, C. E., and J. D. Morrow, " Microplastic Strain Hysteresis Energy as...Code OOKB, CP5, Room 606 Washington, DC 20360 Mr. Richard R. Graham, II Code 5243, Bldg. NC4 Naval Sea Systems Command "* Washington, DC 20362 Mr. Al...Harbage, Jr. Code 2723 DTNSRDC Annapolis, MD 21402 L’r. Martih Kandl Code 5231 Naval Sea Systems Command *i Washington, DC 20362 S. Karpe David W

  7. pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory Oligonucleotides

    PubMed Central

    Wilson, John T.; Keller, Salka; Manganiello, Matthew J.; Cheng, Connie; Lee, Chen-Chang; Opara, Chinonso; Convertine, Anthony; Stayton, Patrick S.

    2013-01-01

    Protein subunit vaccines offer important potential advantages over live vaccine vectors, but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a re-designed polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8+ T cell response (0.5% IFN-ɣ+ of CD8+) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8+ T cell responses (3.4% IFN-ɣ+ of CD8+) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4+IFN-ɣ+ (Th1) responses, and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ~7% antigen-specific CD8+ T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and augment cellular and humoral immune responses via dual-delivery of protein antigens and CpG ODN. Hence, pH-responsive polymeric nanoparticles offer promise as a delivery platform for protein subunit vaccines. PMID:23590591

  8. Prediction of crude protein digestibility of animal by-product meals for dogs by the protein solubility in pepsin method.

    PubMed

    Kawauchi, Iris M; Sakomura, Nilva K; Pontieri, Cristiana F F; Rebelato, Aline; Putarov, Thaila C; Malheiros, Euclides B; Gomes, Márcia de O S; Castrillo, Carlos; Carciofi, Aulus C

    2014-01-01

    Animal by-product meals have large variability in crude protein (CP) content and digestibility. In vivo digestibility procedures are precise but laborious, and in vitro methods could be an alternative to evaluate and classify these ingredients. The present study reports prediction equations to estimate the CP digestibility of meat and bone meal (MBM) and poultry by-product meal (PM) using the protein solubility in pepsin method (PSP). Total tract CP digestibility of eight MBM and eight PM samples was determined in dogs by the substitution method. A basal diet was formulated for dog maintenance, and sixteen diets were produced by mixing 70 % of the basal diet and 30 % of each tested meal. Six dogs per diet were used to determine ingredient digestibility. In addition, PSP of the MBM and PM samples was determined using three pepsin concentrations: 0·02, 0·002 and 0·0002 %. The CP content of MBM and PM ranged from 39 to 46 % and 57 to 69 %, respectively, and their mean CP digestibility by dogs was 76 (2·4) and 85 (2·6) %, respectively. The pepsin concentration with higher Pearson correlation coefficients with the in vivo results were 0·0002 % for MBM (r 0·380; P = 0·008) and 0·02 % for PM (r 0·482; P = 0·005). The relationship between the in vivo and in vitro results was better explained by the following equations: CP digestibility of MBM = 61·7 + 0·2644 × PSP at 0·0002 % (P = 0·008; R (2) 0·126); and CP digestibility of PM = 54·1 + 0·3833 × PSP at 0·02 % (P = 0·005; R (2) 0·216). Although significant, the coefficients of determination were low, indicating that the models were weak and need to be used with caution.

  9. Hairpin plum pox virus coat protein (hpPPV-CP) structure in 'HoneySweet' C5 plum provides PPV resistance when genetically engineered into plum (Prunus domestica) seedlings

    USDA-ARS?s Scientific Manuscript database

    The genetically engineered plum 'HoneySweet' (aka C5) has proven to be highly resistant to Plum pox virus (PPV) for over 10 years in field trials. The original vector used for transformation to develop 'HoneySweet' carried a single sense sequence of the full length PPV coat protein (ppv-cp) gene, y...

  10. Effects of high peanut meal with different crude protein level supplemented with amino acids on performance, carcass traits and nitrogen retention of Chinese Yellow broilers.

    PubMed

    Gou, Z Y; Jiang, S Q; Jiang, Z Y; Zheng, C T; Li, L; Ruan, D; Chen, F; Lin, X J

    2016-08-01

    This study assessed the effects of feeding high peanut meal diets of reduced crude protein (CP) content supplemented with essential amino acids (EAA) on growth performance, carcass traits, biochemical indices in plasma, and nitrogen (N) retention of male and female Lingnan Yellow broilers from day 22 to day 42 of age. Each of four dietary treatments (19%, 18%, 17% or 16% CP, dietary CP level reduced by the reduced dietary peanut meal) contained six replicate pens with 35 birds of each sex (males and females with equal number), separately (1680 in total). The three diets with reduced CP were supplemented with 5 EAA to meet the requirements and provide the same levels as in the 19% CP diet. Average daily gain decreased and feed:gain ratio was worse in both sexes with reduced CP% (linear, p < 0.05). Dressing percentage increased as CP% decreased in males (linear, p < 0.05) and thigh muscle percentage reduced slightly in females (linear, p < 0.05). Abdominal fat percentage of males fed the 17% CP was the lowest (quadratic, p < 0.05). The plasma metabolic indices, concentrations of triglycerides and malondialdehyde, showed linear responses to reduced CP% (p < 0.05) with triglycerides increasing while malondialdehyde decreased. Plasma uric acid increased in females (linear, p < 0.05), but not in males, as CP% decreased. Efficiency of N retention increased and N excretion strikingly decreased with lower CP diets (p < 0.001), and both variables showed significant (p < 0.05) linear and quadratic effects. It is concluded that there was a limit to which dietary CP of broilers could be reduced without adverse effects. Dietary CP could be reduced to 17% for males and 18% for females (or 18% when fed together) between day 22 and day 42, if diets are supplemented with synthetic EAA. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents.

    PubMed

    Zhang, Feng; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Zhang, Xian-Zheng; Han, Le; Tang, Xiao-Yu; Wang, Chen; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei

    2017-01-01

    Paeoniflorin-6'- O -benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19 + B cells, CD19 + CD20 + B cells, CD19 + CD27 + B cells and CD19 + CD20 + CD27 + B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  12. CP decomposition approach to blind separation for DS-CDMA system using a new performance index

    NASA Astrophysics Data System (ADS)

    Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss

    2014-12-01

    In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.

  13. Impact of amino acid and CP restriction from 20 to 140 kg BW on performance and dynamics in empty body protein and lipid deposition of entire male, castrated and female pigs.

    PubMed

    Ruiz-Ascacibar, I; Stoll, P; Kreuzer, M; Boillat, V; Spring, P; Bee, G

    2017-03-01

    Breeding leaner pigs during the last decades may have changed pig's empty body (EB) composition, a key trait for elaborating feeding recommendations. This research aimed to provide new experimental data on changes in the chemical composition of the EB of pigs from 20 to 140 kg BW. In addition, the impact of a reduction in the dietary CP associated with lower lysine, methionine+cystine, threonine and tryptophan levels was determined. In total, 48 males, castrates and females weighing 20 kg BW were allocated either to a control grower-finisher diet formulated according to current Swiss feeding recommendations, or a low CP grower-finisher diet (80% of control). Feed intake was monitored and pigs were weighed weekly. The chemical composition of EB (blood, hairs and hoofs, offals, bile, carcass) was determined at 20, 40, 60, 80, 100, 120 and 140 kg BW on four pigs per gender and diet (eight pigs per gender at 20 kg). The five fractions were weighed and samples were analysed for dry matter, protein, fat and energy. Nutrient deposition rates and N efficiency were calculated by using the 20 kg BW category as reference. Analysis revealed an accurate feed optimisation for the aforementioned essential amino acids (EAA), whereas digestible isoleucine content in the low CP diet was at 70% of the control diet. Despite similar feed intake, daily gain and feed efficiency were impaired (P<0.01) from 20 to 100 kg BW in the low CP compared with the control pigs. In the same growth period, castrates had the greatest feed intake but, together with females, displayed the lowest (P<0.01) feed efficiency. Protein deposition was reduced (P<0.01) by up to 31% with low CP diet and was lower (P<0.01) in castrates and females than males at 100 kg BW. The greatest fat deposition rates were found with low CP diet and castrates. N efficiency improved (P<0.05) by 10% with the low CP diet from 100 to 140 kg. The males displayed the greatest (P<0.05) N efficiency. These findings suggest that the CP content of finisher II diets could be reduced to 102, 102 and 104 g/kg for females, castrates and males, respectively, without a negative impact on protein deposition or growth. It remains unclear whether the negative effects found in the BW range from 20 to 100 kg on the EB deposition were due to the 20% reduction of the dietary CP and the five limiting EAA or to other EAA via an unbalanced EAA profile.

  14. Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT

    NASA Technical Reports Server (NTRS)

    Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.

    2015-01-01

    This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.

  15. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.

    PubMed

    Lee, Yeongjoon; Kwak, Chulhee; Jeong, Ki-Woong; Durai, Prasannavenkatesh; Ryu, Kyoung-Seok; Kim, Eun-Hee; Cheong, Chaejoon; Ahn, Hee-Chul; Kim, Hak Jun; Kim, Yangmee

    2018-05-18

    Cold-shock proteins (Csps) are expressed at lower-than-optimum temperatures, and they function as RNA chaperones; however, no structural studies on psychrophilic Csps have been reported. Here, we aimed to investigate the structure and dynamics of the Csp of psychrophile Colwellia psychrerythraea 34H, ( Cp-Csp). Although Cp-Csp shares sequence homology, common folding patterns, and motifs, including a five β-stranded barrel, with its thermophilic counterparts, its thermostability (37 °C) was markedly lower than those of other Csps. Cp-Csp binds heptathymidine with an affinity of 10 -7 M, thereby increasing its thermostability to 50 °C. Nuclear magnetic resonance spectroscopic analysis of the Cp-Csp structure and backbone dynamics revealed a flexible structure with only one salt bridge and 10 residues in the hydrophobic cavity. Notably, Cp-Csp contains Tyr51 instead of the conserved Phe in the hydrophobic core, and its phenolic hydroxyl group projects toward the surface. The Y51F mutation increased the stability of hydrophobic packing and may have allowed for the formation of a K3-E21 salt bridge, thereby increasing its thermostability to 43 °C. Cp-Csp exhibited conformational exchanges in its ribonucleoprotein motifs 1 and 2 (754 and 642 s -1 ), and heptathymidine binding markedly decreased these motions. Cp-Csp lacks salt bridges and has longer flexible loops and a less compact hydrophobic cavity resulting from Tyr51 compared to mesophilic and thermophilic Csps. These might explain the low thermostability of Cp-Csp. The conformational flexibility of Cp-Csp facilitates its accommodation of nucleic acids at low temperatures in polar oceans and its function as an RNA chaperone for cold adaptation.

  16. Diketo modification of curcumin affects its interaction with human serum albumin.

    PubMed

    Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K

    2018-06-15

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Diketo modification of curcumin affects its interaction with human serum albumin

    NASA Astrophysics Data System (ADS)

    Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.

    2018-06-01

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.

  18. Increasing dietary crude protein does not increase the methionine requirement in kittens.

    PubMed

    Strieker, M J; Morris, J G; Kass, P H; Rogers, Q R

    2007-12-01

    The objective of this study was to determine if the methionine (met) requirement of kittens is correlated with the concentration of dietary crude protein (CP). The study used 48 male kittens in two replications of six 4 x 4 Latin squares, each representing one concentration of met (1.5, 2.5, 3.5, 4.5, 6.0 or 9.0 g/kg diet) with four CP concentrations (150, 200, 300 and 500 g/kg diet) in 2-week periods. Cystine was present in the lowest CP diet at 5.3 g/kg diet and increased as dietary CP increased. Body weight gain, food intake, nitrogen balance and plasma amino acids, glucose, insulin, cortisol, somatomedin C, T(3) and T(4) concentrations on day 12 were measured. From breakpoint analysis of the nitrogen retention curves, the met requirement of kittens was found to be 3.1, 3.8, 3.1 and 2.4 g met/kg for the 150, 200, 300 and 500 g CP/kg diets, respectively. When met was limiting (1.5 or 2.5 g/kg diet), increasing dietary CP did not decrease, but rather increased food intake, body weight gain and nitrogen retention. Plasma met concentrations increased as dietary met increased and at 2.5-3.5 g met/kg diet were not different among kittens fed the various CP diets. Total plasma T(3) and T(4) increased significantly as dietary CP increased in kittens given the 2.5 and 4.5 g met/kg diets. Results indicate that food intake and possibly altered hormonal secretion play a role in this growth response. In conclusion, the met requirement of growing kittens, unlike omnivores and herbivores studied, was not positively correlated with the concentration of dietary CP.

  19. Insights into the beaded filament of the eye lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, M.-D.; Zhang Qingjiong; Quinlan, Roy A.

    2007-06-10

    Filensin (BFSP1) and CP49 (BFSP2) represent two members of the IF protein superfamily that are thus far exclusively expressed in the eye lens. Mutations in both proteins cause lens cataract and careful consideration of the detail of these cataract phenotypes alerts us to several interesting features concerning the function of filensin (BFSP1) and CP49 (BFSP2) in the lens. With the first filensin (BFSP1) mutation now having been reported to cause a recessive cataract phenotype, there is the suggestion that the mutation could predispose heterozygote carriers to the early onset of age-related nuclear cataract. In the case of CP49 (BFSP2), theremore » are now three unrelated families who have been identified with a common E233{delta} mutation. Very interestingly this is linked to myopia in one family. Despite the apparent phenotypic differences of the filensin (BFSP1) and CP49 (BFSP2) mutations, the data are still consistent with the beaded filament proteins being essential for lens function and specifically contributing to the optical properties of the lens. The fact that none of the mutations thus far reported affect either the conserved LNDR or TYRKLLEGE motifs that flank the central rod domain supports the view that this pair of IF proteins have unusual structural features and a distinctive assembly mechanism. The multiple sequence divergences suggest these proteins have been adapted to the specific functional requirements of lens fibre cells, a function that can be traced from squid to man.« less

  20. MicroRNA-15b regulates reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression in human uterine leiomyoma.

    PubMed

    Guan, Yichun; Guo, Lankai; Zukerberg, Lawrence; Rueda, Bo R; Styer, Aaron K

    2016-08-17

    Human uterine leiomyoma (fibroids; LYO) are the most common benign neoplasms in reproductive-aged women. Dysregulated extracellular matrix and irregular LYO reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression are thought to be mediated by aberrant microRNA (miR) expression. The relationship of miR-15b and RECK expression in LYO has not been studied. The expression levels of miR-15b and RECK were determined by quantitative RT-PCR, Western blot, and immunohistochemistry in cultures derived from commercial primary leiomyoma (cpLYO) and myometrial (cpMYO) cell lines and leiomyoma (pLYO) and myometrium (pMYO) tissue from surgical samples respectively. The relationship between miR-15b and RECK expression in cpLYO and pLYO (compared to their respective myometrial controls) was evaluated following transfection of cell cultures with either miR-15b mimic or inhibitor. Elevated levels of miR-15b were observed in cpLYO (2.82-fold; p = 0.04) and pLYO cell (1.30-fold; p = 0.0001) cultures respectively compared to corresponding MYO cell controls. Following transfection with miR-15b mimic, cpLYO cells (0.62-fold; p < 0.0001) and pLYO cells (0.68-fold; p < 0.0001) demonstrated reduced RECK protein expression. Following transfection with miR-15b inhibitor, cpLYO cells (1.20-fold; p < 0.0001) and pLYO cells (1.31-fold; p = 0.0007) demonstrated elevated RECK protein expression. RECK protein expression was reduced in pLYO tissues (0.73-fold; p < 0.0001) and pLYO (0.47-fold; p = 0.047) cells when compared to the corresponding MYO tissue controls. Our findings suggest that miR-15b negatively regulates RECK expression in LYO, and increased miR-15b and decreased RECK expression may contribute to the pathobiology of LYO. The functional significance of miR-15b and RECK expression warrants further investigation as potential therapeutic targets for the treatment of human LYO.

  1. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2-9 weeks of age.

    PubMed

    Mahrose, Kh M; Attia, A I; Ismail, I E; Abou-Kassem, D E; El-Hack, M E Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%).

  2. Estimation of intestinal protein digestibility of protein supplements for ruminants using a three-step enzymatic in vitro procedure.

    PubMed

    Hippenstiel, Friederike; Kivitz, Andre; Benninghoff, Jens; Südekum, Karl-Heinz

    2015-01-01

    This study included 33 samples with main focus on unprotected or rumen-protected rapeseed and soybean feedstuffs, which were analysed using an enzymatic in vitro procedure (EIVP) in order to determine intestinal crude protein (CP) digestibility (IPD) of ruminally undegraded CP. The EIVP involved the sequential digestion of samples with a protease from Streptomyces griseus, pepsin-HCl and pancreatin. Briefly, the EIVP started with determination of true protein. Feeds were incubated for 18 h in a buffer solution at a constant ratio (41 U/g) of S. griseus protease activity to feed true protein. The dried residues were incubated in pepsin-HCl solution for 1 h, and residues from this step were incubated in pancreatin solution for 24 h. Results appeared to have lower IPD dimensions than literature data of previous studies. In addition, a negative correlation became apparent between acid detergent fibre and IPD, as well as a positive correlation between CP, true protein and IPD. The EIVP in its current, strictly standardised form can be applied to develop a database that can be used for protein evaluation systems for establishing tabular values of IPD. Nevertheless, future studies may be hindered since sufficient reference values, i.e. in vivo data, are completely missing.

  3. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2–9 weeks of age

    PubMed Central

    Mahrose, Kh.M.; Attia, A.I.; Ismail, I.E.; Abou-Kassem, D.E.; El-Hack, M.E. Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%). PMID:26623373

  4. Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.

    PubMed

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Liu, Qi; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.

  5. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album.

    PubMed

    Shakeel, Samina; Haq, Noor Ul; Heckathorn, Scott A; Hamilton, E William; Luthe, Dawn S

    2011-08-01

    Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes. Published by Elsevier Masson SAS.

  6. Ruminal degradation and intestinal digestibility of protein and amino acids in high-protein feedstuffs commonly used in dairy diets.

    PubMed

    Paz, H A; Klopfenstein, T J; Hostetler, D; Fernando, S C; Castillo-Lopez, E; Kononoff, P J

    2014-10-01

    A study was conducted to determine the rumen degradation and intestinal digestibility of crude protein (CP) and AA, and AA composition of the rumen-undegradable protein (RUP) from 3 sources of blood meal (BM1, BM2, and BM3), canola meal (CM), low-fat distillers dried grains with solubles (LFDG), soybean meal (SBM), and expeller soybean meal (ESBM). Two Holstein cows fitted with ruminal and proximal duodenal cannulas were used for in situ incubation of 16h and for the mobile bag technique. To correct for bacterial contamination of the RUP, 2 methods were used: purines and DNA as bacterial markers. Ruminal degradations of CP were 85.3, 29.8, 40.7, 75.7, 76.9, 68.8, and 37.0 ± 3.93% for BM1, BM2, BM3, CM, LFDG, SBM, and ESBM, respectively. Ruminal degradation of both total essential AA and nonessential AA followed a similar pattern to that of CP across feedstuffs. Based on the ratio of AA concentration in the RUP to AA concentration in the original feedstuff, ruminal incubation decreased (ratio <1) the concentrations of His, Lys, and Trp, and increased (ratio >1) the concentrations of Ile and Met across feedstuffs. Compared with purines, the use of DNA as bacterial marker resulted in a higher estimate of bacterial CP contamination for CM and lower estimates for LFDG and ESBM. Intestinal digestibility of RUP could not be estimated for BM1, BM3, and SBM due to insufficient recovery of residue. For the remaining feedstuffs, intestinal digestibility of RUP was highest for ESBM, followed by BM2 and LFDG, and lowest for CM: 98.8, 87.9, 89.7, and 72.4 ± 1.40%, respectively. Intestinal absorbable dietary protein was higher for BM2 compared with CM and LFDG, at 61.7, 17.9, and 20.7 ± 2.73% CP, respectively. As prices fluctuate, intestinal absorbable protein or AA may be used as a tool to aid in the selection among feedstuffs with different protein quality. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs.

    PubMed

    Li, Yinghui; Li, Fengna; Wu, Li; Wei, Hongkui; Liu, Yingying; Li, Tiejun; Tan, Bie; Kong, Xiangfeng; Yao, Kang; Chen, Shuai; Wu, Fei; Duan, Yehui; Yin, Yulong

    2016-01-01

    To investigate the effects of dietary crude protein (CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs (62.30 ± 0.88 kg) were allotted to 3 groups and fed with the recommended adequate protein (AP, 16 % CP) diet, moderately restricted protein (MP, 13 % CP) diet and low protein (LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle (LDM), psoas major muscle (PMM) and biceps femoris muscle (BFM) were collected and analyzed. Results showed that growing-finishing pigs fed the MP or AP diet improved (P < 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase (P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated (P < 0.05) muscular mRNA expression of all the selected key genes, except that myosin heavy chain (MyHC) IIb, MyHC IIx, while mRNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1 (mTORC1) pathway was stimulated (P < 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet. The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and mTORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs.

  8. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  9. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    PubMed Central

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen

    2016-01-01

    Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713

  10. The Role of Trust in CenteringPregnancy: Building Interpersonal Trust Relationships in Group-Based Prenatal Care in The Netherlands.

    PubMed

    Kweekel, Liselotte; Gerrits, Trudie; Rijnders, Marlies; Brown, Patrick

    2017-03-01

    CenteringPregnancy (CP) is a specific model of group-based prenatal care for women, implemented in 44 midwifery practices in The Netherlands since 2011. Women have evaluated CP positively, especially in terms of social support, and improvements have been made in birthweight and preterm-birth outcomes; however, there is limited understanding as to why. The purpose of this study was to examine the mechanisms that create trusting relationships within CP to better understand CP outcomes and effectiveness. A qualitative study was conducted using in-depth interviews with 26 (former) CP participants, alongside observations of CP sessions. All interviews were transcribed and analyzed following open, axial, and selective coding. Most women characterized trust as a positive expectation about how others would respond to sensitive information that was shared within the group. Trust emerged within the data as a multidimensional concept and several preconditions seemed crucial in building trusting relations: vulnerability, communication, reciprocity, chemistry, and atmosphere. The facilitating of interpersonal trust among CP participants enhanced group processes, especially as a basis for social support by which women said they were more eager to share sensitive information in a trusting environment. Processes of trust were interwoven within various CP group dynamics. Trust facilitated social support which in turn enabled reassurance and the building of women's self-confidence. © 2016 Wiley Periodicals, Inc.

  11. Dietary protein during gestation affects maternal insulin-like growth factor, insulin-like growth factor binding protein, leptin concentrations, and fetal growth in heifers.

    PubMed

    Sullivan, T M; Micke, G C; Perkins, N; Martin, G B; Wallace, C R; Gatford, K L; Owens, J A; Perry, V E A

    2009-10-01

    The influence of supplemental protein during gestation on maternal hormones and fetal growth was determined in composite beef heifers. At AI, 118 heifers were stratified by BW within each composite genotype (BeefX = 1/2 Senepol, 1/4 Brahman, 1/8 Charolais, 1/8 Red Angus and CBX = 1/2 Senepol, 1/4 Brahman, 1/4 Charolais) into 4 treatment groups: high high (HH = 1.4 kg CP/d for first and second trimesters of gestation), high low (HL = 1.4 kg of CP/d for first trimester and 0.4 kg of CP/d for second trimester), low high (lowH = 0.4 kg CP/d for first trimester and 1.4 kg of CP/d and for second trimester), or low low (LL = 0.4 kg CP/d for first and second trimesters). Maternal plasma IGF-I and -II, total IGFBP, and leptin concentrations were determined at 14 d before AI and at d 28, 82, 179, and 271 post-AI (mean gestation length 286 d), and leptin concentrations were also determined at calving. Increased dietary protein increased maternal plasma IGF-I (P < 0.001 on d 28, 82, and 179), IGF-II (P = 0.01 on d 82; P = 0.04 on d 271), and total IGFBP (P = 0.002 on d 82; P = 0.005 on d 179; P = 0.03 on d 271). Maternal plasma IGF-I at d 271 was negatively associated with calf crown-rump length at birth (P = 0.003). BeefX had greater birth weight calves (P = 0.01), greater IGF-II (P < 0.001), increased ratios of IGF-I:total IGFBP (P = 0.008) and IGF-II:total IGFBP (P < 0.001), and reduced total IGFBP compared with CBX (P = 0.02). Increased dietary protein during second trimester increased maternal plasma leptin at calving (P = 0.005). Maternal plasma leptin near term was positively associated with heifer BCS (P = 0.02) and with calf birth weight (P = 0.04), and at calving was positively associated with heifer age at AI (P = 0.02). These findings suggest that maternal dietary protein, age, and genotype influence plasma concentrations of metabolic hormones and fetal growth in Bos indicus-influenced heifers.

  12. p38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest.

    PubMed

    Clements, Richard T; Feng, Jun; Cordeiro, Brenda; Bianchi, Cesario; Sellke, Frank W

    2011-05-01

    We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.

  13. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes

    PubMed Central

    Feng, Qin; Zhang, Yi

    2001-01-01

    Histone deacetylation plays an important role in methylated DNA silencing. Recent studies indicated that the methyl-CpG-binding protein, MBD2, is a component of the MeCP1 histone deacetylase complex. Interestingly, MBD2 is able to recruit the nucleosome remodeling and histone deacetylase, NuRD, to methylated DNA in vitro. To understand the relationship between the MeCP1 complex and the NuRD complex, we purified the MeCP1 complex to homogeneity and found that it contains 10 major polypeptides including MBD2 and all of the known NuRD components. Functional analysis of the purified MeCP1 complex revealed that it preferentially binds, remodels, and deacetylates methylated nucleosomes. Thus, our study defines the MeCP1 complex, and provides biochemical evidence linking nucleosome remodeling and histone deacetylation to methylated gene silencing. PMID:11297506

  14. Obesity and menopause modify the epigenomic profile of breast cancer.

    PubMed

    Crujeiras, Ana B; Diaz-Lagares, Angel; Stefansson, Olafur A; Macias-Gonzalez, Manuel; Sandoval, Juan; Cueva, Juan; Lopez-Lopez, Rafael; Moran, Sebastian; Jonasson, Jon G; Tryggvadottir, Laufey; Olafsdottir, Elinborg; Tinahones, Francisco J; Carreira, Marcos C; Casanueva, Felipe F; Esteller, Manel

    2017-07-01

    Obesity is a high risk factor for breast cancer. This relationship could be marked by a specific methylome. The current work was aimed to explore the impact of obesity and menopausal status on variation in breast cancer methylomes. Data from Infinium 450K array-based methylomes of 64 breast tumors were coupled with information on BMI and menopausal status. Additionally, DNA methylation results were validated in 18 non-tumor and 81 tumor breast samples. Breast tumors arising in either pre- or postmenopausal women stratified by BMI or menopausal status alone were not associated with a specific DNA methylation pattern. Intriguingly, the DNA methylation pattern identified in association with the high-risk group (postmenopausal women with high BMI (>25) and premenopausal women with normal or low BMI < 25) exclusively characterized by hypermethylation of 1287 CpG sites as compared with the low-risk group. These CpG sites included the promoter region of fourteen protein-coding genes of which CpG methylation over the ZNF577 promoter region represents the top scoring associated event. In an independent cohort, the ZNF577 promoter methylation remained statistically significant in association with the high-risk group. Additionally, the impact of ZNF577 promoter methylation on mRNA expression levels was demonstrated in breast cancer cell lines after treatment with a demethylating agent (5-azacytidine). In conclusion, the epigenome of breast tumors is affected by a complex interaction between BMI and menopausal status. The ZNF577 methylation quantification is clearly relevant for the development of novel biomarkers of precision therapy in breast cancer. © 2017 Society for Endocrinology.

  15. Exploring CP violation in the MSSM.

    PubMed

    Arbey, Alexandre; Ellis, John; Godbole, Rohini M; Mahmoudi, Farvah

    We explore the prospects for observing CP violation in the minimal supersymmetric extension of the Standard Model (MSSM) with six CP-violating parameters, three gaugino mass phases and three phases in trilinear soft supersymmetry-breaking parameters, using the CPsuperH code combined with a geometric approach to maximise CP-violating observables subject to the experimental upper bounds on electric dipole moments. We also implement CP-conserving constraints from Higgs physics, flavour physics and the upper limits on the cosmological dark matter density and spin-independent scattering. We study possible values of observables within the constrained MSSM (CMSSM), the non-universal Higgs model (NUHM), the CPX scenario and a variant of the phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry [Formula: see text] in [Formula: see text] decay that may be as large as 3 %, so future measurements of [Formula: see text] may provide independent information about CP violation in the MSSM. We find that CP-violating MSSM contributions to the [Formula: see text] meson mass mixing term [Formula: see text] are in general below the present upper limit, which is dominated by theoretical uncertainties. If these could be reduced, [Formula: see text] could also provide an interesting and complementary constraint on the six CP-violating MSSM phases, enabling them all to be determined experimentally, in principle. We also find that CP violation in the [Formula: see text] and [Formula: see text] couplings can be quite large, and so may offer interesting prospects for future [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] colliders.

  16. Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins

    PubMed Central

    Kemme, Catherine A.; Marquez, Rolando; Luu, Ross H.

    2017-01-01

    Abstract Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. PMID:28486614

  17. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications.

    PubMed

    Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong

    2009-03-31

    The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculiforia to Trollius chosenensis Ohwi.

  18. FRET analysis of CP12 structural interplay by GAPDH and PRK.

    PubMed

    Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme

    2015-03-13

    CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas.

    PubMed

    Deininger, M H; Zhao, Y; Schluesener, H J

    1999-01-01

    CP-10 (chemotactic protein of m.w. 10,000) is a member of the S100 superfamily of Ca2+ binding peptides, which has potent chemotactic activity for murine and human myeloid cells. Here we report on the generation of monoclonal antibodies against CP-10 and accumulation of CP-10+ cells during experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), uveitis (EAU) and in experimentally transplanted C6 gliomas. During acute inflammation, CP-10 is mainly expressed by large ED1+ monocytic perivascular cells that accumulate at days 11-14. CP-10+ cells are predominantly located in areas of cellular infiltration but are as well found in the meninges and infiltrating the brain parenchyma. In transplanted gliomas, CP-10+ cells are located exclusively within the tumor parenchyma. Using double labeling experiments, other cells participating in the inflammatory reaction were found to express CP-10, like few lymphoblastic W3/13+ cells in the vicinity of the inflammatory infiltrate.

  20. Arabidopsis thaliana telomeres exhibit euchromatic features

    PubMed Central

    Vaquero-Sedas, María I.; Gámez-Arjona, Francisco M.; Vega-Palas, Miguel A.

    2011-01-01

    Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation. PMID:21071395

  1. The three-dimensional structure of "Lonely Guy" from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like proteins.

    PubMed

    Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo

    2015-08-01

    The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.

  2. Preparation and Characterization of Monomodal Grapevine Virus A Capsid Protein.

    PubMed

    Santana, Vinícius S; Mariutti, Ricardo B; Eberle, Raphael J; Ullah, Anwar; Caruso, Icaro P; Arni, Raghuvir K

    2015-01-01

    Grapevine virus A (GVA), a flexible filament of approximately 800 nm in length is composed of capsid subunits that spontaneously assembles around a positive sense genomic RNA. In addition to encapsidation, plant viruses capsid proteins (CPs) participate in other processes throughout infection and GVA CP is involved in cell-to-cell translocation of the virus. A protocol was developed to obtain low-molecular weight GVA-CP that is not prone to aggregation and spontaneous assembly and this was characterized by circular dichroism and dynamic light scattering. These results indicate the suitably of GVA-CP for X-ray crystallographic and NMR studies that should lead to the elucidation of the first three-dimensional structure of a flexible filamentous virus from the Betaflexiviridae family.

  3. In Vitro Assembly of Alphavirus Cores by Using Nucleocapsid Protein Expressed in Escherichia coli

    PubMed Central

    Tellinghuisen, Timothy L.; Hamburger, Agnes E.; Fisher, Bonnie R.; Ostendorp, Ralf; Kuhn, Richard J.

    1999-01-01

    The production of the alphavirus virion is a multistep event requiring the assembly of the nucleocapsid core in the cytoplasm and the maturation of the glycoproteins in the endoplasmic reticulum and the Golgi apparatus. These components associate during the budding process to produce the mature virion. The nucleocapsid proteins of Sindbis virus and Ross River virus have been produced in a T7-based Escherichia coli expression system and purified. In the presence of single-stranded but not double-stranded nucleic acid, the proteins oligomerize in vitro into core-like particles which resemble the native viral nucleocapsid cores. Despite their similarities, Sindbis virus and Ross River virus capsid proteins do not form mixed core-like particles. Truncated forms of the Sindbis capsid protein were used to establish amino acid requirements for assembly. A capsid protein starting at residue 19 [CP(19–264)] was fully competent for in vitro assembly, whereas proteins with further N-terminal truncations could not support assembly. However, a capsid protein starting at residue 32 or 81 was able to incorporate into particles in the presence of CP(19–264) or could inhibit assembly if its molar ratio relative to CP(19–264) was greater than 1:1. This system provides a basis for the molecular dissection of alphavirus core assembly. PMID:10364277

  4. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis using purified recombinant immunogenic proteins.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Prescott, John F

    2009-09-01

    This study identified and assessed secreted proteins of Clostridium perfringens additional to those previously described for their ability to protect broiler chickens against necrotic enteritis (NE). Secreted proteins of virulent and avirulent C. perfringens were electrophoretically separated and reacted with serum of chickens immune to NE. Three immunoreactive protein bands unique to the virulent C. perfringens were identified by mass spectrometry as the toxin C. perfringens large cytotoxin (TpeL), endo-beta-N-acetylglucosaminidase (Naglu), and phosphoglyceromutase (Pgm). The genes encoding Naglu and Pgm proteins were cloned, and their gene products were purified as histidine-tagged recombinant proteins from Escherichia coli and used in immunizing chickens. Immunized and nonimmunized control broiler chickens were then challenged with two different strains (CP1, CP4) of C. perfringens and assessed for the development of NE. Of the two immunogens, Pgm immunization showed significant protection of broiler chickens against experimental NE, although protection reduced as challenge severity increased. However, birds immunized with Naglu were protected from challenge only with strain CP4. Birds immunized with these proteins had antigen-specific antibodies when tested in an enzyme-linked immunosorbent assay. In conclusion, this study demonstrated the partial efficacy of additional secreted proteins in immunity of broiler chickens to NE. The study also showed that there may be differences in the protective ability of immunogens depending on the infecting C. perfringens strain.

  5. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  6. Influence of fermentable carbohydrates or protein on large intestinal and urinary metabolomic profiles in piglets.

    PubMed

    Pieper, R; Neumann, K; Kröger, S; Richter, J F; Wang, J; Martin, L; Bindelle, J; Htoo, J K; Vahjen, V; Van Kessel, A G; Zentek, J

    2012-12-01

    It was recently shown that variations in the ratio of dietary fermentable carbohydrates (fCHO) and fermentable protein (fCP) differentially affect large intestinal microbial ecology and the mucosal response. Here we investigated the use of mass spectrometry to profile changes in metabolite composition in colon and urine associated with variation in dietary fCHO and fCP composition and mucosal physiology. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP and low fCHO, low fCP and high fCHO, high fCP and low fCHO, and high fCP and high fCHO. After 21 to 23 d, all pigs were euthanized and colon digesta and urine metabolite profiles were obtained by mass spectrometry. Analysis of mass spectra by partial least squares approach indicated a clustering of both colonic and urinary profiles for each pig by feeding group. Metabolite identification and annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed increased abundance of metabolites associated with arachidonic acid metabolism in colon of pigs fed a high concentration of fCP irrespective of dietary fCHO. Urinary metabolites did not show as clear patterns. Mass spectrometry can effectively differentiate metabolite profiles in colon contents and urine associated with changes in dietary composition. Whether metabolite profiling is an effective tool to identify specific metabolites (biomarkers) or metabolite profiles associated with gut function and integrity needs further elucidation.

  7. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly

    PubMed Central

    Sokolova, Vladyslava; Li, Frances; Polovin, George; Park, Soyeon

    2015-01-01

    In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1–α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome. PMID:26449534

  8. How capping protein enhances actin filament growth and nucleation on biomimetic beads.

    PubMed

    Wang, Ruizhe; Carlsson, Anders E

    2015-11-25

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  9. Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis

    PubMed Central

    Bulina, Maria E; Chudakov, Dmitry M; Mudrik, Nikolay N; Lukyanov, Konstantin A

    2002-01-01

    Background Within the family of green fluorescent protein (GFP) homologs, one can mark two main groups, specifically, fluorescent proteins (FPs) and non-fluorescent or chromoproteins (CPs). Structural background of differences between FPs and CPs are poorly understood to date. Results Here, we applied site-directed and random mutagenesis in order to to transform CP into FP and vice versa. A purple chromoprotein asCP (asFP595) from Anemonia sulcata and a red fluorescent protein DsRed from Discosoma sp. were selected as representatives of CPs and FPs, respectively. For asCP, some substitutions at positions 148 and 165 (numbering in accordance to GFP) were found to dramatically increase quantum yield of red fluorescence. For DsRed, substitutions at positions 148, 165, 167, and 203 significantly decreased fluorescence intensity, so that the spectral characteristics of these mutants became more close to those of CPs. Finally, a practically non-fluorescent mutant DsRed-NF was generated. This mutant carried four amino acid substitutions, specifically, S148C, I165N, K167M, and S203A. DsRed-NF possessed a high extinction coefficient and an extremely low quantum yield (< 0.001). These spectral characteristics allow one to regard DsRed-NF as a true chromoprotein. Conclusions We located a novel point in asCP sequence (position 165) mutations at which can result in red fluorescence appearance. Probably, this finding could be applied onto other CPs to generate red and far-red fluorescent mutants. A possibility to transform an FP into CP was demonstrated. Key role of residues adjacent to chromophore's phenolic ring in fluorescent/non-fluorescent states determination was revealed. PMID:11972899

  10. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    PubMed Central

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  11. Expression of SRY-related HMG Box Transcription Factors (Sox) 2 and 9 in Craniopharyngioma Subtypes and Surrounding Brain Tissue.

    PubMed

    Thimsen, Vivian; John, Nora; Buchfelder, Michael; Flitsch, Jörg; Fahlbusch, Rudolf; Stefanits, Harald; Knosp, Engelbert; Losa, Marco; Buslei, Rolf; Hölsken, Annett

    2017-11-20

    Stem cells have been discovered as key players in the genesis of different neoplasms including craniopharyngioma (CP), a rare tumour entity in the sellar region. Sox2 and Sox9 are well-known stem cell markers involved in pituitary development. In this study we analysed the expression of both transcription factors using immunohistochemistry in a large cohort of 64 adamantinomatous (aCP) and 9 papillary CP (pCP) and quantitative PCR in 26 aCP and 7 pCP. Whereas immunohistochemically Sox2+ cells were verifiable in only five aCP (7.8%) and in 39.1% of the respective surrounding cerebral tissue, pCP specimens appeared always negative. In contrast, Sox9 was detectable in all tumours with a significantly higher expression in aCP compared to pCP (protein, p < 0.0001; mRNA p = 0.0484) This was also true for the respective tumour adjacent CNS where 63 aCP (98.4%) and six pCP (66.7%) showed Sox9+ cells. We further confirmed absence of Sox9 expression in nuclear β-catenin accumulating cells of aCP. Our results point to the conclusion that Sox2 and Sox9, seem to play essential roles not only in the specific formation of aCP, but also in processes involving the cerebral tumour environment, which needs to be illuminated in the future.

  12. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    PubMed

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.

  13. E3 Ligase SCFβTrCP-induced DYRK1A Protein Degradation Is Essential for Cell Cycle Progression in HEK293 Cells.

    PubMed

    Liu, Qiang; Tang, Yu; Chen, Long; Liu, Na; Lang, Fangfang; Liu, Heng; Wang, Pin; Sun, Xiulian

    2016-12-16

    DYRK1A, located on the Down syndrome (DS) critical region of chromosome 21, was found to be overexpressed in brains of DS and Alzheimer's disease individuals. DYRK1A was considered to play important roles in the pathogenesis of DS and Alzheimer's disease; however, the degradation mechanism of DYRK1A was still unclear. In this study, we found that DYRK1A was degraded through the ubiquitin-proteasome pathway in HEK293 cells. The N terminus of DYRK1A that was highly unstable in HEK293 cells contributed to proteolysis of DYRK1A. E3 ligase SCF βTrCP mediated ubiquitination and promoted degradation of DYRK1A through an unconserved binding motif ( 49 SDQQVSALS 57 ) lying in the N terminus. Any Ser-Ala substitution in this motif could decrease the binding between DYRK1A and β-transducin repeat containing protein (βTrCP), resulting in stabilization of DYRK1A. We also found DYRK1A protein was elevated in the G 0 /G 1 phase and decreased in the S and G 2 /M phase, which was negatively correlated to βTrCP levels in the HEK293 cell cycle. Knockdown of βTrCP caused arrest of the G 0 /G 1 phase, which could be partly rescued by down-regulation of DYRK1A. Our study uncovered a new regulatory mechanism of DYRK1A degradation by SCF βTrCP in HEK293 cell cycle progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri.

    PubMed

    Ahmad, Abdelmonim Ali; Ogawa, Megumi; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2014-01-01

    The strains of Xanthomonas axonopodis pv. citri, the causative agent of citrus canker, are historically classified based on bacteriophage (phage) sensitivity. Nearly all X. axonopodis pv. citri strains isolated from different regions in Japan are lysed by either phage Cp1 or Cp2; Cp1-sensitive (Cp1(s)) strains have been observed to be resistant to Cp2 (Cp2(r)) and vice versa. In this study, genomic and molecular characterization was performed for the typing agents Cp1 and Cp2. Morphologically, Cp1 belongs to the Siphoviridae. Genomic analysis revealed that its genome comprises 43,870-bp double-stranded DNA (dsDNA), with 10-bp 3'-extruding cohesive ends, and contains 48 open reading frames. The genomic organization was similar to that of Xanthomonas phage phiL7, but it lacked a group I intron in the DNA polymerase gene. Cp2 resembles morphologically Escherichia coli T7-like phages of Podoviridae. The 42,963-bp linear dsDNA genome of Cp2 contained terminal repeats. The Cp2 genomic sequence has 40 open reading frames, many of which did not show detectable homologs in the current databases. By proteomic analysis, a gene cluster encoding structural proteins corresponding to the class III module of T7-like phages was identified on the Cp2 genome. Therefore, Cp1 and Cp2 were found to belong to completely different virus groups. In addition, we found that Cp1 and Cp2 use different molecules on the host cell surface as phage receptors and that host selection of X. axonopodis pv. citri strains by Cp1 and Cp2 is not determined at the initial stage by binding to receptors.

  15. RNA Polymerase II Stalling Promotes Nucleosome Occlusion and pTEFb Recruitment to Drive Immortalization by Epstein-Barr Virus

    PubMed Central

    Palermo, Richard D.; Webb, Helen M.; West, Michelle J.

    2011-01-01

    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ∼120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions. PMID:22046134

  16. Effect of protein level and urea in concentrate mixture on feed intake and rumen fermentation in swamp buffaloes fed rice straw-based diet.

    PubMed

    Kang, Sungchhang; Wanapat, Metha; Phesatcha, Kampanat; Norrapoke, Thitima

    2015-04-01

    Four rumen-fistulated Thai native swamp buffaloes were randomly assigned according to a 2 × 2 factorial arrangement in a 4 × 4 Latin square design to assess the effect of protein (CP) level and urea (U) source in concentrate diet on feed utilization and rumen ecology. The treatments were as follows: concentrate containing CP at 120 g/kg (soybean meal, SBM) (T1), 160 g/kg (SBM) (T2), 120 g/kg (U) (T3), and 160 g/kg (U) (T4), respectively. All buffaloes were fed concentrate at 10 g/kg of body weight, and rice straw was offered ad libitum. Feed intake and digestibilities of CP, neutral detergent fiber, and acid detergent fiber increased (P < 0.05) in treatments with higher level of CP especially with U source (P < 0.05). In contrast, CP level and source in concentrate did not affect on ruminal pH and temperature (P > 0.05), while concentration of ruminal ammonia (N), blood urea (U), volatile fatty acids profile, microorganism populations, and variable bacterial growth increased in buffaloes consumed concentrate containing CP at 160 g/kg (T2 and T4; P < 0.05). Fecal and urinary N excretions decreased in buffaloes consumed concentrate containing higher CP level especially with U source while purine derivatives increased which resulted in a higher N balance as compared to lower CP level and SBM source treatments (P < 0.05). In summary, higher CP level in concentrate improved feed intake, nutrient digestibility, purine derivatives, and rumen ecology, and U had shown better result than SBM. Concentrate mixtures containing 16 g/kg CP with U 40 g/kg could improved nutrients utilization with no adverse effects for swamp buffaloes fed on rice straw.

  17. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: Structure of one sensor domain from a histidine kinase and another from a chemotaxis protein

    PubMed Central

    Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-01-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711

  18. Blm10 facilitates nuclear import of proteasome core particles

    PubMed Central

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-01-01

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor–cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast. PMID:23982732

  19. Immunogenicity and therapeutic effects of recombinant Ag85AB fusion protein vaccines in mice infected with Mycobacterium tuberculosis.

    PubMed

    Liang, Yan; Zhang, Junxian; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Ning; Hou, Ying; Shi, Yingchang; Wang, Lan; Wu, Xueqiong

    2017-07-13

    The immune function of tuberculosis (TB) patients is disordered. By using immune regulators to assist chemotherapy for TB the curative effect might be improved. In this study, a vaccine containing Mycobacterium tuberculosis (M. tuberculosis) recombinant Ag85AB fusion protein (rAg85AB) was constructed and evaluated. The mice were immunized intramuscularly three times at two-week intervals with Ag85AB fusion protein combined with Corynebacterium parvum adjuvant (rAg85AB+CP). In comparison to control mice that received either CP alone or saline, the mice that received rAg85AB+CP had significantly higher number of T cells secreting IFN-γ and higher levels of specific antibodies of IgG, IgG1 and IgG2a isotypes in sera. The specific antibodies also had higher ratios of IgG2a to IgG1, indicating a predominant Th1 immune response. To test for immunotherapy of TB, M. tuberculosis infected mice were given three intramuscular doses of 20μg, 40μg or 60μg of rAg85AB in rAg85AB+CP, or phosphate-buffered saline (PBS), or CP or Mycobacterium phlei (M. Phlei) F.U.36. Compared with the PBS group, 20µg, 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups reduced the pulmonary bacterial loads by 0.13, 0.15, 0.42 and 0.40 log 10 , and the liver bacterial loads by 0.64, 0.64, 0.53 and 0.61 log 10 , respectively. Pathological changes of lungs were less, and the lesions were limited to a certain extent in 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups. These results showed that rAg85AB+CP had immunotherapeutic effect on TB, significantly increasing the cellular immune response, and inhibiting the growth of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Phosphorus and nitrogen utilization responses of broiler chickens to dietary crude protein and phosphorus levels.

    PubMed

    Xue, P C; Ajuwon, K M; Adeola, O

    2016-11-01

    A study was conducted to investigate the effect of dietary CP levels on pre-cecal digestibility and total tract retention of phosphorus (P) in broiler chickens. A total of 384 14-day-old male broiler chickens were used in a randomized complete block design with 8 treatments and 6 replicates per treatment in a 7-d experimental period. There were 8 corn-soybean meal-based diets in a 2 × 4 factorial arrangement, which included 2 CP levels (10.7 or 21.5%) and 4 apparent total tract digestible P (ATTDP) levels (0.18, 0.32, 0.45, or 0.59%). Soybean meal and mono-calcium phosphate were used to adjust the CP and ATTDP levels, respectively. At the end of the experiment, BW was recorded and digesta samples from the distal two-thirds of ileum and mucosa samples from the middle of the jejunum were collected. Total RNA also was isolated from mucosa samples and used for real-time PCR to determine the gene expression of sodium-phosphate co-transporter IIb (NaPi-IIb). Results showed that low dietary CP level limited the growth performance (P < 0.01), pre-cecal digestion, and total tract retention of P (P < 0.01), and NaPi-IIb gene expression (P < 0.05), compared with high dietary CP. Pre-cecal digestion and total tract retention of P (g/kg DM intake) linearly increased (P < 0.01) with increasing ATTDP levels in both low and high CP groups. In conclusion, this study suggests an interrelationship between N and P digestion such that CP deficiency decreased the growth performance of birds consequently reducing pre-cecal P digestion in broiler chickens. Total tract retention of CP and P are linked with each other and body tissue growth may be a driver of the deposition of these 2 nutrients. Supplementation of protein may be necessary in diets during P digestibility studies to ameliorate an effect of protein deficiency on P digestion and retention. © 2016 Poultry Science Association Inc.

Top