Science.gov

Sample records for protein delivery activity

  1. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  2. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    PubMed

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases.

  3. Biodegradable nanoparticles for protein delivery: analysis of preparation conditions on particle morphology and protein loading, activity and sustained release properties.

    PubMed

    Coleman, Jason; Lowman, Anthony

    2012-01-01

    PLGA particles have been extensively used as a sustained drug-delivery system, but there are multiple drawbacks when delivering proteins. The focus of this work is to address the most significant disadvantages to the W/O/W double emulsion procedure and demonstrate that simple changes to this procedure can have significant changes to particle size and dispersity and considerable improvements to protein loading, activity and sustained active protein release. A systematic approach was taken to analyze the effects of the following variables: solvent miscibility (dichloromethane (DCM), ethyl acetate, acetone), homogenization speed (10 000-25 000 rpm), PLGA concentration (10-30 mg/ml) and additives in both the organic (sucrose acetate isobutyrate (SAIB)) and aqueous (bovine serum albumin (BSA)) phases. Increasing solvent miscibility decreased particle size, dispersity and protein denaturation, while maintaining adequate protein loading. Increasing solvent miscibility also lowered the impact of homogenization on particle size and dispersity and protein activity. Changes to PLGA concentration demonstrated a minimum impact on particle size and dispersity, but showed an inverse relationship between protein encapsulation efficiency and particle protein weight percent. Most particles tested provided sustained release of active protein over 60 days. Increasing solvent miscibility resulted in increases in the percent of active protein released. When subjected to synthesis conditions with DCM as the solvent, BSA as a stabilizer resulted in the maximum stabilization of protein at a concentration of 100 mg/ml. At this concentration, BSA allowed for increases in the total amount of active protein delivered for all three solvents. The benefit of SAIB was primarily increased protein loading.

  4. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  5. Development of Protein Mimics for Intracellular Delivery

    PubMed Central

    deRonde, Brittany M.; Tew, Gregory N.

    2015-01-01

    Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo’s solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 TAT and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides and how structure-activity relationships with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents. PMID:25858701

  6. Nanochemistry of Protein-Based Delivery Agents

    PubMed Central

    Rajendran, Subin R. C. K.; Udenigwe, Chibuike C.; Yada, Rickey Y.

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior. PMID:27489854

  7. Nanochemistry of Protein-Based Delivery Agents.

    PubMed

    Rajendran, Subin R C K; Udenigwe, Chibuike C; Yada, Rickey Y

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  8. Nanochemistry of protein-based delivery agents

    NASA Astrophysics Data System (ADS)

    Rajendran, Subin; Udenigwe, Chibuike; Yada, Rickey

    2016-07-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  9. Nanochemistry of Protein-Based Delivery Agents.

    PubMed

    Rajendran, Subin R C K; Udenigwe, Chibuike C; Yada, Rickey Y

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior. PMID:27489854

  10. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  11. Breakable Hybrid Organosilica Nanocapsules for Protein Delivery.

    PubMed

    Prasetyanto, Eko Adi; Bertucci, Alessandro; Septiadi, Dedy; Corradini, Roberto; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-01

    The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule-containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms. PMID:26643574

  12. Combined neurothrombectomy or thrombolysis with adjunctive delivery of 3K3A-activated protein C in acute ischemic stroke

    PubMed Central

    Amar, Arun Paul; Griffin, John H.; Zlokovic, Berislav V.

    2015-01-01

    In the treatment of acute ischemic stroke (AIS), vessel recanalization correlates with improved functional status and reduced mortality. Mechanical neurothrombectomy achieves a higher likelihood of revascularization than intravenous thrombolysis (IVT), but there remains significant discrepancy between rates of recanalization and rates of favorable outcome. The poor neurological recovery among some stroke patients despite successful recanalization confirms the need for adjuvant therapy, such as pharmacological neuroprotection. Prior clinical trials of neuroprotectant drugs failed perhaps due to inability of the agent to reach the ischemic tissue beyond the occluded artery. A protocol that couples mechanical neurothrombectomy with concurrent delivery of a neuroprotectant overcomes this pitfall. Activated protein C (APC) exerts pleiotropic anti-inflammatory, anti-apoptotic, antithrombotic, cytoprotective, and neuroregenerative effects in stroke and appears a compelling candidate for this novel approach. PMID:26388732

  13. Enhanced Tumor Delivery and Antitumor Activity in Vivo of Liposomal Doxorubicin Modified with MCF-7-Specific Phage Fusion Protein

    PubMed Central

    Wang, Tao; Hartner, William C.; Gillespie, James W.; Praveen, Kulkarni P.; Yang, Shenghong; Mei, Leslie A.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2013-01-01

    A novel strategy to improve the therapeutic index of chemotherapy has been developed by the integration of nanotechnology with phage technique. The objective of this study was to combine phage display, identifying tumor-targeting ligands, with a liposomal nanocarrier for targeted delivery of doxorubicin. Following the proof of concept in cell-based experiments, this study focused on in vivo assessment of antitumor activity and potential side-effects of phage fusion protein-modified liposomal doxorubicin. MCF-7-targeted phage-Doxil treatments led to greater tumor remission and faster onset of antitumor activity than the treatments with non-targeted formulations. The enhanced anticancer effect induced by the targeted phage-Doxil correlated with an improved tumor accumulation of doxorubicin. Tumor sections consistently revealed enhanced apoptosis, reduced proliferation activity and extensive necrosis. Phage-Doxil-treated mice did not show any sign of hepatotoxicity and maintained overall health. Therefore, MCF-7-targeted phage-Doxil seems to be an active and tolerable chemotherapy for breast cancer treatment. PMID:24028893

  14. Efficacy, Safety and Anticancer Activity of Protein Nanoparticle-Based Delivery of Doxorubicin through Intravenous Administration in Rats

    PubMed Central

    Golla, Kishore; Cherukuvada, Bhaskar; Ahmed, Farhan; Kondapi, Anand K.

    2012-01-01

    Background and Aims Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC). The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity. Methods Doxorubicin loaded apotransferrin (Apodoxonano) and lactoferrin nanoparticles (Lactodoxonano) were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA) in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers. Results In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g). Both nanoformulations showed higher localization compared to doxorubicin (Doxo) when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g) were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g), suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation. Conclusion Drug delivery through nanoformulations not

  15. Lentiviral Delivery of Proteins for Genome Engineering.

    PubMed

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering. PMID:27228988

  16. Synthetic nanocarriers for intracellular protein delivery.

    PubMed

    Du, Juanjuan; Jin, Jing; Yan, Ming; Lu, Yunfeng

    2012-01-01

    Introducing exogenous proteins intracellularly presents tremendous chances in scientific research and clinical applications. The effectiveness of this method, however, has been limited by lack of efficient ways to achieve intracellular protein delivery and poor stability of the delivered proteins. Over the years, a variety of nanomaterials have been explored as intracellular protein delivery vectors, including liposomes, polymers, gold nanoparticles, mesoporous silica particles, and carbon nanotubes. Nanomaterials stand out in various protein delivery systems due to various advantages, such as efficient intracellular delivery, long circulation time, and passive tumor targeting. Additionally, chemistry behind these nanomaterials provides readily engineered materials, enabling versatile designs of delivery agents. Intracellular delivery mediated by such nanocarriers achieved varying degrees of success. Different problems associated with these nanocarriers, however, still hamper their real-world applications. Developing new delivery methods or vectors remains essential but challenging. This review surveys the current developments in protein delivery based on synthetic nanocarriers, including liposomes, polymers and inorganic nanocarriers; Prospects for future development of protein delivery nanocarriers are also provided.

  17. Design of biodegradable particles for protein delivery.

    PubMed

    Vila, A; Sánchez, A; Tobío, M; Calvo, P; Alonso, M J

    2002-01-17

    Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate protein carriers in order to overcome mucosal barriers. We have attempted to combine both issues through the conception of new biodegradable polymer nanoparticles: (i) poly(ethylene glycol) (PEG)-coated poly(lactic acid) (PLA) nanoparticles, chitosan (CS)-coated poly(lactic acid-glycolic acid (PLGA) nanoparticles and chitosan (CS) nanoparticles. These nanoparticles have been tested for their ability to load proteins, to deliver them in an active form, and to transport them across the nasal and intestinal mucosae. Additionally, the stability of some of these nanoparticles in simulated physiological fluids has been studied. Results showed that the PEG coating improves the stability of PLA nanoparticles in the gastrointestinal fluids and helps the transport of the encapsulated protein, tetanus toxoid, across the intestinal and nasal mucosae. Furthermore, intranasal administration of these nanoparticles provided high and long-lasting immune responses. On the other hand, the coating of PLGA nanoparticles with the mucoadhesive polymer CS improved the stability of the particles in the presence of lysozyme and enhanced the nasal transport of the encapsulated tetanus toxoid. Finally, nanoparticles made solely of CS were also stable upon incubation with lysozyme. Moreover, these particles were very efficient in improving the nasal absorption of insulin as well as the local and systemic immune responses to tetanus toxoid, following intranasal administration. In summary, these results show that a rational modification in the composition and structure of the nanoparticles, using safe materials, increases the prospects of their usefulness for mucosal protein delivery and transport.

  18. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  19. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.

  20. Lipid nanoparticles for parenteral delivery of actives.

    PubMed

    Joshi, Medha D; Müller, Rainer H

    2009-02-01

    The present review compiles the applications of lipid nanoparticles mainly solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid drug conjugates (LDC) in parenteral delivery of pharmaceutical actives. The attempts to incorporate anticancer agents, imaging agents, antiparasitics, antiarthritics, genes for transfection, agents for liver, cardiovascular and central nervous system targeting have been summarized. The utility of lipid nanoparticles as adjuvant has been discussed separately. A special focus of this review is on toxicity caused by these kinds of lipid nanoparticles with a glance on the fate of lipid nanoparticles after their parenteral delivery in vivo viz the protein adsorption patterns. PMID:18824097

  1. Long-Term Delivery of Protein Therapeutics

    PubMed Central

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-01-01

    Introduction Proteins are effective biotherapetics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. Areas covered This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Expert opinion Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery related issues. A large number of protein molecules are under clinical trials and hence there is an urgent need to develop new methods to deliver these highly potent biologics. PMID:25251334

  2. NANOMATERIALS FOR PROTEIN MEDIATED THERAPY AND DELIVERY

    PubMed Central

    Barry, John N.; Vertegel, Alexey A.

    2014-01-01

    There has been a significant amount of research done on liposomes and nanoparticles as drug carriers for protein drugs. Proteins and enzymes have been used both as targeting moieties and for their therapeutic potential. High specificity and rapid reaction rates make proteins and enzymes excellent candidates for therapeutic treatment, but some limitations exist. Many of these limitations can be addressed by a well studied nanotechnology based delivery system. Such a system can provide a medium for delivery, stabilization of the drugs, and enable site specific accumulation of drugs. Nanomedicines such as these have great potential to revolutionize the pharmaceutical industry and improve healthcare worldwide. PMID:25414730

  3. Graphene Nanoribbons Elicit Cell Specific Uptake and Delivery Via Activation of Epidermal Growth Factor Receptor Enhanced by Human PapillomaVirus E5 Protein

    PubMed Central

    Chowdhury, Sayan Mullick; Mannepalli, Prady; Sitharaman, Balaji

    2014-01-01

    Ligands such as peptides, antibodies or other epitopes bind and activate specific cell receptors, and are employed for targeted cellular delivery of pharmaceuticals such as drugs, genes and imaging agents. Herein, we show that oxidized graphene nanoribbons, non-covalently functionalized with PEG-DSPE (1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(polyethyleneglycol)]) (O-GNR-PEG-DSPE) activate epidermal growth factor receptors (EGFRs). This activation generates predominantly dynamin-dependent macropinocytosis-like response, and results in significant O-GNR-PEG-DSPE uptake into cells with high EGFR expression. Cells with an integrated human papillomavirus (HPV) genome also show increased uptake due to the modulation of the activated EFGR by the viral protein E5. We demonstrate that this cell specific uptake of O-GNR-PEG-DSPE can be exploited to achieve significantly enhanced drug efficacies even in drug resistant cells. These results have implications towards the development of active targeting and delivery agents without ligand functionalization for use in the diagnosis and treatment of pathologies that overexpress EGFR or mediated by HPV. PMID:24980059

  4. Copper Delivery by Metallochaperone Proteins

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.

  5. Ultrasound-Mediated Transdermal Protein Delivery

    NASA Astrophysics Data System (ADS)

    Mitragotri, Samir; Blankschtein, Daniel; Langer, Robert

    1995-08-01

    Transdermal drug delivery offers a potential method of drug administration. However, its application has been limited to a few low molecular weight compounds because of the extremely low permeability of human skin. Low-frequency ultrasound was shown to increase the permeability of human skin to many drugs, including high molecular weight proteins, by several orders of magnitude, thus making transdermal administration of these molecules potentially feasible. It was possible to deliver and control therapeutic doses of proteins such as insulin, interferon γ, and erythropoeitin across human skin. Low-frequency ultrasound is thus a potential noninvasive substitute for traditional methods of drug delivery, such as injections.

  6. Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact Xenopus tadpoles.

    PubMed

    Cantallops, Isabel; Cline, Hollis T

    2008-05-01

    CPG15 (aka neuritin) is an activity-induced GPI-anchored axonal protein that promotes dendritic and axonal growth, and accelerates synaptic maturation in vivo. Here we show that CPG15 is distributed inside axons and on the axon surface. CPG15 is trafficked to and from the axonal surface by membrane depolarization. To assess CPG15 trafficking in vivo, we expressed an ecliptic pHluorin (EP)-CPG15 fusion protein in optic tectal explants and in retinal ganglion cells of intact Xenopus tadpoles. Depolarization by KCl increased EP-CPG15 fluorescence on axons. Intraocular kainic acid (KA) injection rapidly increased cell-surface EP-CPG15 in retinotectal axons, but coinjection of TTX and KA did not. Consistent with this, we find that intracellular CPG15 is localized to vesicles and endosomes in presynaptic terminals and colocalizes with synaptic vesicle proteins. The results indicate that the delivery of the neurotrophic protein CPG15 to the axon surface can be regulated on a rapid time scale by activity-dependent mechanisms in vivo. PMID:18383547

  7. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers

    PubMed Central

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  8. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    PubMed

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  9. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    PubMed

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries.

  10. Cry Protein Crystals: A Novel Platform for Protein Delivery

    PubMed Central

    Bonnegarde-Bernard, Astrid; Wallace, Julie A.; Dean, Donald H.; Ostrowski, Michael C.; Burry, Richard W.; Boyaka, Prosper N.; Chan, Michael K.

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer’s patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues. PMID:26030844

  11. Cry protein crystals: a novel platform for protein delivery.

    PubMed

    Nair, Manoj S; Lee, Marianne M; Bonnegarde-Bernard, Astrid; Wallace, Julie A; Dean, Donald H; Ostrowski, Michael C; Burry, Richard W; Boyaka, Prosper N; Chan, Michael K

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer's patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues. PMID:26030844

  12. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1.

    PubMed

    Dubey, S; Kalia, Y N

    2011-06-30

    Cathodal iontophoresis of anionic macromolecules has been considered a major challenge owing to (i) the presence of a negative charge on the skin under physiological conditions and (ii) the electroosmotic solvent flow in the (opposite) anode-to-cathode direction. Moreover, electroosmosis, and not electromigration, was considered as the likely electrotransport mechanism for high molecular weight cations. However, it was recently shown that electromigration governed anodal iontophoretic transport of Cytochrome c (12.4 kDa) and Ribonuclease A (RNAse A; 13.6 kDa). Thus, the objective of this study was to investigate the feasibility of iontophoresing a negatively charged protein, the enzyme Ribonuclease T1 (RNAse T1, 11.1 kDa), from the cathode across intact skin. Cumulative permeation and skin deposition of RNAse T1 were investigated as a function of current density (0.15, 0.3 and 0.5 mA/cm(2) applied for 8h) using porcine ear skin and quantified by an enzymatic activity assay. Although RNAse T1 permeation was dependent upon current density (22.41 ± 8.10, 76.41 ± 56.98 and 142.19 ± 62.23μg/cm(2), respectively), no such relationship was observed with respect to skin deposition (9.78 ± 2.39, 7.76 ± 4.34 and 8.70 ± 2.94 μg/cm(2), respectively). MALDI-TOF spectra and the activity assay confirmed that RNAse T1 retained structural integrity and enzymatic function post-iontophoresis. Acetaminophen iontophoresis demonstrated the anode-to-cathode directionality of electroosmotic solvent flow confirming that RNAse T1 electrotransport was due entirely to electromigration. Interestingly, despite its lower net charge and higher molecular weight, electromigration of cationic Ribonuclease A was superior to that of RNAse T1 after iontophoresis at 0.5 mA/cm(2) for 8h. These results provide further evidence that charge to mass ratio and hence electric mobility might not alone be sufficient to predict protein electrotransport across the skin; three dimensional structures and the

  13. Gramicidin A-based peptide vector for intracellular protein delivery.

    PubMed

    Stoilova, Tatiana B; Kovalchuk, Sergey I; Egorova, Natalya S; Surovoy, Andrey Y; Ivanov, Vadim T

    2008-10-01

    The development of the peptide-based vectors for the intracellular delivery of biologically active macromolecules has opened new prospects of their application in research and therapy. Earlier the amphipathic cell-penetrating peptide (CPP) Pep-1 was reported to mediate cellular uptake of proteins without covalent binding to them. In this work we studied the ability of a series of membrane-active amphipathic peptides, based on the gramicidin A sequence, to transport a model protein across the eukaryotic cell membrane. Among them the positively charged Cys-containing peptide P10C demonstrated the most effective beta-galactosidase intracellular delivery. Besides, this peptide was shown to form noncovalent associates with beta-galactosidase as judged from electrophoresis and enzymatic activity assays. In addition, a series of new gramicidin analogues were prepared and the effect of N-terminus modification of gramicidin on the protein transduction efficiency was studied.

  14. Protein and Peptide drug delivery: oral approaches.

    PubMed

    Shaji, Jessy; Patole, V

    2008-01-01

    Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery.

  15. Protein-Based Nanomedicine Platforms for Drug Delivery

    SciTech Connect

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also

  16. Nanostructured Thin Film Polymer Devices for Constant-Rate Protein Delivery

    PubMed Central

    Bernards, Daniel A.; Lance, Kevin D.; Ciaccio, Natalie A.; Desai, Tejal A.

    2012-01-01

    Herein long-term delivery of proteins from biodegradable thin film devices is demonstrated, where a nanostructured polymer membrane controls release. Protein was sealed between two poly(caprolactone) films, which generated the thin film devices. Protein release for 210 days was shown in vitro, and stable activity was established through 70 days with a model protein. These thin film devices present a promising delivery platform for biologic therapeutics, particularly for application in constrained spaces. PMID:22985294

  17. Targeted Intracellular Delivery of Proteins with Spatial and Temporal Control

    PubMed Central

    2015-01-01

    While a host of methods exist to deliver genetic materials or small molecules to cells, very few are available for protein delivery to the cytosol. We describe a modular, light-activated nanocarrier that transports proteins into cells by receptor-mediated endocytosis and delivers the cargo to the cytosol by light triggered endosomal escape. The platform is based on hollow gold nanoshells (HGN) with polyhistidine tagged proteins attached through an avidity-enhanced, nickel chelation linking layer; here, we used green fluorescent protein (GFP) as a model deliverable cargo. Endosomal uptake of the GFP loaded nanocarrier was mediated by a C-end Rule (CendR) internalizing peptide fused to the GFP. Focused femtosecond pulsed-laser excitation triggered protein release from the nanocarrier and endosome disruption, and the released protein was capable of targeting the nucleoli, a model intracellular organelle. We further demonstrate the generality of the approach by loading and releasing Sox2 and p53. This method for targeting of individual cells, with resolution similar to microinjection, provides spatial and temporal control over protein delivery. PMID:25490248

  18. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    PubMed

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-01-01

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects. PMID:27483234

  19. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery

    PubMed Central

    Yun, Yeonhee; Cho, Yong Woo; Park, Kinam

    2012-01-01

    As the field of biotechnology has advanced, oral protein delivery has also made significant progress. Oral delivery is the most common method of drug administration with high levels of patient acceptance. Despite the preference of oral delivery, administration of therapeutic proteins has been extremely difficult. Increasing the bioavailability of oral protein drugs to the therapeutically acceptable level is still a challenging goal. Poor membrane permeability, high molecular weight, and enzymatic degradation of protein drugs have remained unsolved issues. Among diverse strategies, nanotechnology has provided a glimpse of hope in oral delivery of protein drugs. Nanoparticles have advantages, such as small size, high surface area, and modification using functional groups for high capacity or selectivity. Nanoparticles with peptidic ligands are especially worthy of notice because they can be used for specific targeting in the gastrointestinal (GI) tract. This article reviews the transport mechanism of the GI tract, barriers to protein absorption, current status and limitations of nanotechnology for oral protein delivery system. PMID:23123292

  20. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants

    PubMed Central

    Ng, Kiaw Kiaw; Motoda, Yoko; Watanabe, Satoru; Sofiman Othman, Ahmad; Kigawa, Takanori; Kodama, Yutaka; Numata, Keiji

    2016-01-01

    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology. PMID:27100681

  1. Bioreducible Lipid-like Nanoparticles for Intracellular Protein Delivery

    NASA Astrophysics Data System (ADS)

    Arellano, Carlos Luis

    Protein-based therapy is one of the most direct ways to manipulate cell function and treat human disease. Although protein therapeutics has made its way to clinical practice, with five of the top fifteen global pharmaceuticals being peptide or protein-based drugs, one common limitation is that the effects of protein therapy are only achieved through the targeting of cell surface receptors and intracellular domains. Due to the impermeability of the cell membrane to most foreign materials, entire classes of potentially therapeutic proteins cannot thoroughly be studied without a safe and efficient method of transporting proteins into the cytosol. We report the use of a combinatorially-designed bioreducible lipid-like material (termed "lipidoid") - based protein delivery platform for the transfection of human cancer cell lines. Lipidoid nanoparticles are synthesized through a thin film dispersion method. The degradation of the bioreducible nanoparticles was observed when exposed to glutathione, a highly reductive compound present in the cytosol. We demonstrate that the nanoparticles are capable of transfecting a dose-dependent concentration of our model protein, beta-galactosidase into HeLa cells. Furthermore, formulations of the lipidoid containing the cytotoxic proteins saporin and RNase-A are both capable of inhibiting tumor cell proliferation as observed in in vitro treatment of different human cancer cell lines. There was no observed loss in protein activity after lyophilization and long--term storage, indicating the potential of pre-clinical applications. Overall, we demonstrate an effective approach to protein formulation and intracellular delivery. We believe that our formulations will lead to the study of a whole class of previously untapped therapeutics that may generate new solutions for previously untreatable diseases.

  2. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  3. Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery

    PubMed Central

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-01-01

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983

  4. Bacterial Delivery of TALEN Proteins for Human Genome Editing

    PubMed Central

    Bian, Ting; Wu, Donghai; Yang, Lijun; Terada, Naohiro; Wu, Weihui; Jin, Shouguang

    2014-01-01

    Transcription Activator-Like Effector Nucleases (TALENs) are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of TALEN delivery involves introduction of foreign genetic materials, such as plasmid DNA or mRNA, through transfection. Here, we show an alternative way of TALEN delivery, bacterial type III secretion system (T3SS) mediated direct injection of the TALEN proteins into human cells. Bacterially injected TALEN was shown to efficiently target host cell nucleus where it persists for almost 12 hours. Using a pair of TALENs targeting venus gene, such injected nuclear TALENs were shown functional in introducing DNA mutation in the target site. Interestingly, S-phase cells seem to show greater sensitivity to the TALEN mediated target gene modification. Accordingly, efficiency of such genome editing can easily be manipulated by the infection dose, number of repeated infections as well as enrichment of S phase cells. This work further extends the utility of T3SS in the delivery of functional proteins into mammalian cells to alter their characters for biomedical applications. PMID:24618838

  5. Bacterial delivery of TALEN proteins for human genome editing.

    PubMed

    Jia, Jingyue; Jin, Yongxin; Bian, Ting; Wu, Donghai; Yang, Lijun; Terada, Naohiro; Wu, Weihui; Jin, Shouguang

    2014-01-01

    Transcription Activator-Like Effector Nucleases (TALENs) are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of TALEN delivery involves introduction of foreign genetic materials, such as plasmid DNA or mRNA, through transfection. Here, we show an alternative way of TALEN delivery, bacterial type III secretion system (T3SS) mediated direct injection of the TALEN proteins into human cells. Bacterially injected TALEN was shown to efficiently target host cell nucleus where it persists for almost 12 hours. Using a pair of TALENs targeting venus gene, such injected nuclear TALENs were shown functional in introducing DNA mutation in the target site. Interestingly, S-phase cells seem to show greater sensitivity to the TALEN mediated target gene modification. Accordingly, efficiency of such genome editing can easily be manipulated by the infection dose, number of repeated infections as well as enrichment of S phase cells. This work further extends the utility of T3SS in the delivery of functional proteins into mammalian cells to alter their characters for biomedical applications. PMID:24618838

  6. A novel intracellular protein delivery platform based on single-protein nanocapsules

    NASA Astrophysics Data System (ADS)

    Yan, Ming; Du, Juanjuan; Gu, Zhen; Liang, Min; Hu, Yufang; Zhang, Wenjun; Priceman, Saul; Wu, Lily; Zhou, Z. Hong; Liu, Zheng; Segura, Tatiana; Tang, Yi; Lu, Yunfeng

    2010-01-01

    An average cell contains thousands of proteins that participate in normal cellular functions, and most diseases are somehow related to the malfunctioning of one or more of these proteins. Protein therapy, which delivers proteins into the cell to replace the dysfunctional protein, is considered the most direct and safe approach for treating disease. However, the effectiveness of this method has been limited by its low delivery efficiency and poor stability against proteases in the cell, which digest the protein. Here, we show a novel delivery platform based on nanocapsules consisting of a protein core and a thin permeable polymeric shell that can be engineered to either degrade or remain stable at different pHs. Non-degradable capsules show long-term stability, whereas the degradable ones break down their shells, enabling the core protein to be active once inside the cells. Multiple proteins can be delivered to cells with high efficiency while maintaining low toxicity, suggesting potential applications in imaging, therapy and cosmetics fields.

  7. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  8. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  9. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells.

    PubMed

    Wang, Ya-Hui; Chen, Chung-Pin; Chan, Ming-Huan; Chang, Microsugar; Hou, Yu-Wun; Chen, Hwei-Hsien; Hsu, Hui-Ru; Liu, Kevin; Lee, Han-Jung

    2006-08-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or beta-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo.

  10. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    SciTech Connect

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-08-04

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or {beta}-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo.

  11. Recent developments in protein and peptide parenteral delivery approaches

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K

    2014-01-01

    Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration. PMID:24592957

  12. Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2.

    PubMed

    van der Gun, Bernardina T F; Monami, Amélie; Laarmann, Sven; Raskó, Tamás; Slaska-Kiss, Krystyna; Weinhold, Elmar; Wasserkort, Reinhold; de Leij, Lou F M H; Ruiters, Marcel H J; Kiss, Antal; McLaughlin, Pamela M J

    2007-11-20

    Cationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Labeling studies demonstrated equal delivery efficiency for protein as for DNA and siRNA. Moreover, proteins complexed with Saint-2:DOPE were successfully delivered, irrespective of the presence of serum, and the profection efficiency was not influenced by the size or the charge of the protein:cationic liposomal complex. Using beta-galactosidase as a reporter protein, enzymatic activity was detected in up to 98% of the adherent cells, up to 83% of the suspension cells and up to 70% of the primary cells after profection. A delivered antibody was detected in the cytoplasm for up to 7 days after profection. Delivery of the methyltransferase M.SssI resulted in DNA methylation, leading to a decrease in E-cadherin expression. The lipid-mediated multipurpose transport system reported here can introduce proteins into the cell with an equal delivery efficiency as for nucleotides. Delivery is irrespective of the presence of serum, and the protein can exert its function both in the cytoplasm and in the nucleus. Furthermore, DNA methylation by M.SssI delivery as a novel tool for gene silencing has potential applications in basic research and therapy. PMID:17884225

  13. Intracellular delivery of functional proteins via decoration with transporter peptides.

    PubMed

    Siprashvili, Zurab; Reuter, Jason A; Khavari, Paul A

    2004-05-01

    Despite numerous attractive intracellular targets, protein therapeutics have been principally confined to the extracellular space due to the lack of a straightforward way to deliver functional polypeptides to the cell interior. Peptide sequences facilitating intracellular protein delivery have been identified; however, current strategies to apply them require problematic steps, such as generation of new in-frame fusion proteins, covalent chemical conjugation, and denaturation. We have developed a new approach to protein transfer into cells and tissues that relies on single-step decoration by cysteine-flanked, arginine-rich transporter peptides. This approach facilitated cell and tissue delivery of a variety of functional proteins, including antibodies and enzymes. Decoration with transporter peptides thus provides an attractive general means of intracellular delivery of functional proteins in vitro and in tissue.

  14. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development.

    PubMed

    Rao, Sripriya Venkata Ramana; Shao, Jun

    2008-10-01

    The global aim of this research project was to develop a self-nanoemulsifying drug delivery system (SNEDDS) for non-invasive delivery of protein drugs. The specific aim of this study was to develop SNEDDS formulations. An experimental design was adopted to develop SNEDDS. Fluorescent labeled beta-lactamase (FITC-BLM), a model protein, was loaded into SNEDDS through solid dispersion technique. The experimental design provided 720 compositions of different oil, surfactant, and co-surfactant at various ratios, of which 33 SNEDDS prototypes were obtained. Solid dispersion of FITC-BLM in SoyPC prepared was able to dissolve in 16 SNEDDS prototypes (approximately 2200 mU BLM in 1g SNEDDS). SNEDDS NE-12-7 (composition: Lauroglycol FCC, Cremophor EL and Transcutol; ratio: 5:4:3) formed O/W nanoemulsion with mean droplet size in the range of 22-50 nm when diluted with various pH media and different dilution factor with PBS (pH 7.4). The phase diagram of NE-12-7 indicated a broad region of nanoemulsion. BLM-loaded SNEDDS (NE-12-7) stored at 4 degrees C for 12 weeks indicated 10% loss of BLM activity. A SNEDDS was developed to load FITC-BLM into the oil phase which can spontaneously form O/W nanoemulsion upon the addition of water.

  15. Generation and characterization of novel DNA aptamers against coat protein of grouper nervous necrosis virus (GNNV) with antiviral activities and delivery potential in grouper cells.

    PubMed

    Zhou, Lingli; Li, Pengfei; Yang, Min; Yu, Yepin; Huang, Youhua; Wei, Jingguang; Wei, Shina; Qin, Qiwei

    2016-05-01

    Nervous necrosis virus (NNV) infected larvae and juveniles of more than 50 fish species, resulting in mortality rates of greater than 95%. However, there is no efficient method to control NNV infections. Aptamers generated by selective evolution of ligands by exponential enrichment (SELEX) are short, single-stranded nucleic acid oligomers. They display a high degree of affinity and specificity for many targets, such as viruses and viral proteins. In this study, three novel DNA aptamers (A5, A10, and B11) that specifically target the coat protein (CP) of grouper nervous necrosis virus (GNNV) were selected using SELEX. Secondary structures and minimum free energy (ΔG) predictions indicated that these aptamers could form stable, secondary stem-loop structures. Electrophoretic mobility shift assays, enzyme-linked immunosorbent assays, Kd measurements, the co-localization of tetramethylrhodamine (TAMRA) labeled-aptamers with the CP and flow cytometry analysis revealed that these aptamers could specifically bind the CP with high (nanomolar) affinities. In addition, competition analysis suggested the aptamers shared some common CP binding sites with the anti-CP antibody. Moreover, all three aptamers did not show any cytotoxic effects in vitro or in vivo, and anti-viral analysis indicated the selected aptamers could inhibit NNV infection in vitro and in vivo. Compared with controls, mortality of GNNV-infected fish decreased by 40% and 80% after 10 days infection, when the GNNV was pre-incubated with the 1000 nM A10 and B11, respectively. TAMRA-labeled aptamers could bind to NNV virions and directly enter NNV-infected cells, suggesting they could be used as tracers to study the mechanism of viral infection, as well as for targeted therapy. This is the first time that aptamers targeting a viral protein of marine fish have been generated and characterized. These aptamers hold promise as diagnostic, therapeutic, and targeted drug delivery agents for controlling NNV infections.

  16. Basics and recent advances in peptide and protein drug delivery

    PubMed Central

    Bruno, Benjamin J; Miller, Geoffrey D; Lim, Carol S

    2014-01-01

    While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed. PMID:24228993

  17. Characterization of carbohydrate-protein matrices for nutrient delivery.

    PubMed

    Zhou, Yankun; Roos, Yrjö H

    2011-05-01

    Amorphous carbohydrates may show glass transition and crystallization as a result of thermal or water plasticization. Proteins often affect the state transitions of carbohydrates in carbohydrate-protein systems. Water sorption behavior and effects of water on glass transition and crystallization in freeze-dried lactose, trehalose, lactose-casein (3: 1), lactose-soy protein isolate (3:1), trehalose-casein (3:1), and trehalose-soy protein isolate (3:1) systems were studied. Water sorption was determined gravimetrically as a function of time, and Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models were fitted to the experimental data. Glass transition temperature (T(g)) and instant crystallization temperature (T(ic)) in anhydrous and water plasticized systems were measured using differential scanning calorimetry (DSC). The Gordon-Taylor equation was used to model water content dependence of the T(g) values. The critical water content and water activity (a(w)) at 24 °C were calculated and crystallization of lactose and trehalose in the systems was followed at and above 0.54 a(w). Carbohydrate-protein systems showed higher amounts of sorbed water and less rapid sugar crystallization than pure sugars. A greater sugar crystallization delay was found in carbohydrate-casein systems than in carbohydrate-soy protein isolate systems. The T(g) and T(ic) values decreased with increasing water content and a(w). However, higher T(ic) values for lactose-protein systems were found than for lactose at the same a(w). Trehalose showed lower T(ic) value than lactose at 0.44 a(w) but no instant crystallization was measured below 0.44 a(w). State diagrams for each system are useful in selecting processing parameters and storage conditions in nutrient delivery applications. PMID:22417357

  18. Coacervate delivery systems for proteins and small molecule drugs

    PubMed Central

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future. PMID:25138695

  19. Coacervate delivery systems for proteins and small molecule drugs.

    PubMed

    Johnson, Noah R; Wang, Yadong

    2014-12-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.

  20. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy.

    PubMed

    Ferrer-Miralles, Neus; Rodríguez-Carmona, Escarlata; Corchero, José Luis; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2015-06-01

    Lack of targeting and improper biodistribution are major flaws in current drug-based therapies that prevent reaching high local concentrations of the therapeutic agent. Such weaknesses impose the administration of high drug doses, resulting in undesired side effects, limited efficacy and enhanced production costs. Currently, missing nanosized containers, functionalized for specific cell targeting will be then highly convenient for the controlled delivery of both conventional and innovative drugs. In an attempt to fill this gap, health-focused nanotechnologies have put under screening a growing spectrum of materials as potential components of nanocages, whose properties can be tuned during fabrication. However, most of these materials pose severe biocompatibility concerns. We review in this study how proteins, the most versatile functional macromolecules, can be conveniently exploited and adapted by conventional genetic engineering as efficient building blocks of fully compatible nanoparticles for drug delivery and how selected biological activities can be recruited to mimic viral behavior during infection. Although engineering of protein self-assembling is still excluded from fully rational approaches, the exploitation of protein nano-assemblies occurring in nature and the direct manipulation of protein-protein contacts in bioinspired constructs open intriguing possibilities for further development. These methodologies empower the construction of new and potent vehicles that offer promise as true artificial viruses for efficient and safe nanomedical applications.

  1. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy. PMID:24772414

  2. Capsosomes as Long-Term Delivery Vehicles for Protein Therapeutics.

    PubMed

    Maina, James W; Richardson, Joseph J; Chandrawati, Rona; Kempe, Kristian; van Koeverden, Martin P; Caruso, Frank

    2015-07-21

    We report the preparation of polymer capsules containing liposomal subcompartments, termed capsosomes, and their ability for the sustained delivery of protein therapeutics. Capsosomes were formed through the layer-by-layer (LbL) assembly of polymers and protein-loaded liposomes, followed by the formation of a capsule membrane based on disulfide cross-linked poly(methacrylic acid). The loading capacities of a model cargo (lysozyme) and brain-derived neurotrophic factor (BDNF), an important neurotrophin that has significant physiological functions on the nervous system, were determined, and the long-term release kinetics of the proteins was investigated in simulated physiological conditions. The capsosomes exhibited protein loading and release behavior that can be tuned by the lipid composition of the liposomal compartments, where inclusion of anionic lipids resulted in enhanced protein loading and slower release over the course of 80 days. These findings highlight the potential of capsosomes for the long-term delivery of protein therapeutics.

  3. Encapsulated cellular implants for recombinant protein delivery and therapeutic modulation of the immune system.

    PubMed

    Lathuilière, Aurélien; Mach, Nicolas; Schneider, Bernard L

    2015-05-08

    Ex vivo gene therapy using retrievable encapsulated cellular implants is an effective strategy for the local and/or chronic delivery of therapeutic proteins. In particular, it is considered an innovative approach to modulate the activity of the immune system. Two recently proposed therapeutic schemes using genetically engineered encapsulated cells are discussed here: the chronic administration of monoclonal antibodies for passive immunization against neurodegenerative diseases and the local delivery of a cytokine as an adjuvant for anti-cancer vaccines.

  4. Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System

    PubMed Central

    Lathuilière, Aurélien; Mach, Nicolas; Schneider, Bernard L.

    2015-01-01

    Ex vivo gene therapy using retrievable encapsulated cellular implants is an effective strategy for the local and/or chronic delivery of therapeutic proteins. In particular, it is considered an innovative approach to modulate the activity of the immune system. Two recently proposed therapeutic schemes using genetically engineered encapsulated cells are discussed here: the chronic administration of monoclonal antibodies for passive immunization against neurodegenerative diseases and the local delivery of a cytokine as an adjuvant for anti-cancer vaccines. PMID:26006227

  5. Proteolistics: a biolistic method for intracellular delivery of proteins.

    PubMed

    Martin-Ortigosa, Susana; Wang, Kan

    2014-10-01

    In this work, an intracellular protein delivery methodology termed "proteolistics" is described. This method utilizes a biolistic gun apparatus and involves a simple protein/projectile preparation step. The protein to be delivered is mixed with a gold particle microprojectile suspension and is placed onto a gene gun cartridge, where it is dehydrated using either lyophilization or room-temperature air-drying. Subsequent intracellular protein delivery is achieved in plant and mammalian tissues upon bombardment. Because the method does not require modification of delivery agents or cargo biomolecules and involves a simple physical deposition of the protein onto the microprojectiles, there is no restriction on protein type in terms of molecular weight, isoelectric point or tertiary structure. Because the method delivers protein through the widely used gene gun system, it can be readily applied to any tissue or organism amenable to biolistics. A variety of proteins with molecular weight ranging from 24 to 68 kDa and isoelectric point from 4.8 to 10.1 were tested in this work. It is anticipated that this simple and versatile technique will offer biologists a powerful tool for basic research in areas such as understanding of cell and gene functions and for biotechnological applications such as genome editing. PMID:25092532

  6. Bioengineered Silk Protein-Based Gene Delivery Systems

    PubMed Central

    Numata, Keiji; Subramanian, Balajikarthick; Currie, Heather A.; Kaplan, David L.

    2009-01-01

    Silk proteins self-assemble into mechanically robust material structures that are also biodegradable and non-cytotoxic, suggesting utility for gene delivery. Since silk proteins can also be tailored in terms of chemistry, molecular weight and other design features via genetic engineering, further control of this system for gene delivery can be considered. In the present study, silk-based block copolymers were bioengineered with poly(l-lysine) domains for gene delivery. Ionic complexes of these silk-polylysine based block copolymers with plasmid DNA (pDNA) were prepared for gene delivery to human embryonic kidney (HEK) cells. The material systems were characterized by agarose gel electrophoresis, atomic force microscopy, and dynamic light scattering. The polymers self-assembled in solution and complexed plasmid DNA through ionic interactions. The pDNA complexes with 30-lysine residues prepared at a polymer/nucleotide ratio of 10 and with a solution diameter of 380 nm, showed the highest efficiency for transfection. The pDNA complexes were also immobilized on silk films and demonstrated direct cell transfection from these surfaces. The results demonstrate the potential of bioengineered silk proteins as a new family of highly tailored gene delivery systems. PMID:19577803

  7. Copper Delivery to Chloroplast Proteins and its Regulation

    PubMed Central

    Aguirre, Guadalupe; Pilon, Marinus

    2016-01-01

    Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase, but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field. PMID:26793223

  8. Feasibility of Tissue Plasminogen Activator Formulated for Pulmonary Delivery

    PubMed Central

    Dunn, John S.; Nayar, Rajiv; Campos, Jackie; Hybertson, Brooks M.; Zhou, Yue; Manning, Mark Cornell; Repine, John E.; Stringer, Kathleen A.

    2007-01-01

    Purpose This study was conducted to assess the feasibility of a pulmonary formulation of tissue plasminogen activator (tPA) for nebulization into the airway by measuring protein stability, biologic activity, particle size, and estimating human lung distribution. Methods Formulations were derived by varying the surfactant and protein concentrations. Protein stability and recovery of each nebulized tPA formulation were assessed by ultraviolet spectroscopy. Formulations that met protein stability feasibility criteria were assessed for biologic and fibrinolytic activities. Biologic activity was determined by their ability to inhibit superoxide anion production by human neutrophils. Fibrinolytic activity was assessed by the cleavage of plasminogen to plasmin. Aerodynamic properties were assessed using a cascade impactor, and an estimation of human airway deposition was made via a human lung replica. Results Twenty-seven tPA formulations were initially assessed, 15 of which met protein stability criteria. Subsequently, three of these formulations maintained biologic and fibrinolytic activities. These formulations exhibited particle sizes of 2.4–3.1 μm, and had respirable doses ≥65%. A formulation of 1 mg mL−1 tPA and 0.1% Tween 80 exhibited a 45% deposition in the lower airways of a human lung replica. Conclusions A suitable pulmonary tPA formulation was identified that, following nebulization, maintained protein stability as well as biologic and fibrinolytic activities, and resulted in an optimal respirable dose and human airway deposition. This formulation may be applicable in the treatment of lung diseases, such as acute respiratory distress syndrome by permitting targeted pulmonary delivery of a therapeutic protein to the lungs. PMID:16180128

  9. Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo

    PubMed Central

    Zuris, John A.; Thompson, David B.; Shu, Yilai; Guilinger, John P.; Bessen, Jeffrey L.; Hu, Johnny H.; Maeder, Morgan L.; Joung, J. Keith; Chen, Zheng-Yi; Liu, David R.

    2014-01-01

    Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains, or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells. PMID:25357182

  10. Synthetic materials and macromolecular assemblies for control over the delivery of DNA and proteins

    NASA Astrophysics Data System (ADS)

    Jewell, Christopher M.

    The work described in this thesis is focused on the design, characterization, and application of synthetic materials that can be used to manipulate and control the delivery of biomacromolecules such as DNA and proteins to cells. The work described herein was conducted in two primary contexts: (1) the fabrication and characterization of multilayered films comprised of DNA and degradable polyamines, with applications to the surface-mediated delivery of DNA and proteins, and (2) the formation of self-assembled aggregates of DNA and redox-active lipids that could allow active control over the delivery of DNA. The first approach described in this thesis is based on the layer-by-layer assembly and characterization of thin films fabricated from hydrolytically-degradable polyamines and biomacromolecules. When contacted with cells in culture, these assemblies permit the surface-mediated delivery of DNA and proteins and may prove useful in the development of methods seeking the localized delivery of therapeutics. Additional work involving DNA-containing multilayered films deposited on the surfaces of biomedical devices such as intravascular stents has demonstrated that these assemblies are able to withstand mechanical stresses similar to those associated with stent deployment in vivo, and further, that film-coated stents are able to mediate high levels of cell transfection in vitro. The second approach described in this thesis demonstrates that lipoplexes formed from DNA and a ferrocene-containing, redox-active cationic lipid can be used to control the delivery of DNA to cells in ways that depend critically upon the redox-state of the lipid. Additional studies demonstrate that these assemblies can be chemically transformed from an inactive state (e.g., a state this is unable to mediate cell transfection) to an active state (e.g., a state that mediates high levels of cell transfection) using a chemical reducing agent. This approach could thus serve as a platform for exerting

  11. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    PubMed Central

    2010-01-01

    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo. PMID:20672079

  12. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    NASA Astrophysics Data System (ADS)

    Purtov, K. V.; Petunin, A. I.; Burov, A. E.; Puzyr, A. P.; Bondar, V. S.

    2010-03-01

    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody-antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo.

  13. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  14. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  15. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  16. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  17. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  18. Multi-protein delivery by nanodiamonds promotes bone formation.

    PubMed

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  19. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells

    PubMed Central

    Kwon, Kwang-Chul; Daniell, Henry

    2016-01-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood–brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery. PMID:27378236

  20. Multi-protein Delivery by Nanodiamonds Promotes Bone Formation

    PubMed Central

    Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  1. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.

    PubMed

    Kwon, Kwang-Chul; Daniell, Henry

    2016-08-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery. PMID:27378236

  2. Factorial Analyses of Photopolymerizable Thermoresponsive Composite Hydrogels for Protein Delivery

    PubMed Central

    Sabnis, Abhimanyu; Wadajkar, Aniket S.; Aswath, Pranesh; Nguyen, Kytai T.

    2008-01-01

    A smart protein delivery system for wound healing applications was developed using composite nanoparticle hydrogels that can release protein in a temperature-responsive manner. This system can also be formed in situ in the presence of ultraviolet light and Irgacure 2959 photoinitiator. The system consists of temperature sensitive poly(N-isopropylacrylamide-co-acrylamide) (PNIPAM-AAm) nanoparticles embedded in a poly(ethylene glycol) diacrylate (PEGDA) matrix. A factorial analysis was performed to evaluate the effects of PEGDA concentration (10% and 15% w/v) and PEGDA molecular weight (3.4 kDa and 8 kDa), as well as PNIPAM-AAm nanoparticle concentration (2% and 4% w/v) and temperature (23°C and 40°C) on the protein release profiles and swelling ratios of the hydrogels. Results indicate PNIPAM-AAm nanoparticle concentration and temperature were the most important factors affecting the protein release during the burst release phase. Additionally, PEGDA molecular weight was the most important factor affecting the protein release in the plateau region. It was also an important factor that controlled the hydrogel swelling ratio. A dual layered hydrogel was further developed to produce a protein delivery system with a better sustained release. These findings have improved our understanding of the composite hydrogel systems and will help in tailoring future systems with desired release profiles. PMID:19231314

  3. Clinical impact of serum proteins on drug delivery.

    PubMed

    Kratz, Felix; Elsadek, Bakheet

    2012-07-20

    Among serum proteins albumin and transferrin have attracted the most interest as drug carriers in the past two decades. Prior to that, their potential use was overshadowed by the advent of monoclonal antibodies that was initiated by Milstein and Koehler in 1975. Meanwhile intensive pursuit of exploiting transferrin, but above all albumin as an exogenous or endogenous carrier protein for treating various diseases, primarily cancer, rheumatoid arthritis, diabetes and hepatitis has resulted in several marketed products and numerous clinical trials. While the use of transferrin has clinically been primarily restricted to immunotoxins, albumin-based drug delivery systems ranging from albumin drug nanoparticles, albumin fusion protein, prodrugs and peptide derivatives that bind covalently to albumin as well as physically binding antibody fragments and therapeutically active peptides are in advanced clinical trials or approved products. For treating diabetes, Levemir and Victoza that are myristic acid derivatives of human insulin or glucagon-like peptide 1 (GLP-1) act as long-acting peptides by binding to the fatty acid binding sites on circulating albumin to control glucose levels. Levemir from Novo Nordisk has already developed into a blockbuster since its market approval in 2004. Abraxane, an albumin paclitaxel nanoparticle as a water-soluble galenic formulation avoiding the use of cremophor/ethanol, transports paclitaxel through passive targeting as an albumin paclitaxel complex to the tumor site and is superior to conventional Taxol against metastatic breast cancer. INNO-206, an albumin-binding doxorubicin prodrug that also accumulates in solid tumors due to the enhanced permeability and retention (EPR) effect but releases the parent drug through acid cleavage, either intra- or extracellularly, is entering phase II studies against sarcoma. An expanding field is the use of albumin-binding antibody moieties which do not contain the fragment crystallizable (Fc) portion

  4. Controlling chitosan-based encapsulation for protein and vaccine delivery

    PubMed Central

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  5. Controlling chitosan-based encapsulation for protein and vaccine delivery.

    PubMed

    Koppolu, Bhanu Prasanth; Smith, Sean G; Ravindranathan, Sruthi; Jayanthi, Srinivas; Suresh Kumar, Thallapuranam K; Zaharoff, David A

    2014-05-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, were inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters.

  6. Photo-synthesis of protein-based nanoparticles and the application in drug delivery

    SciTech Connect

    Xie, Jinbing; Wang, Hongyang; Cao, Yi; Qin, Meng Wang, Wei

    2015-07-15

    Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also be dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy.

  7. Role of Nanotechnology in Delivery of Protein and Peptide Drugs.

    PubMed

    Patil, Sushilkumar; Vhora, Imran; Amrutiya, Jitendra; Lalani, Rohan; Misra, Ambikanandan

    2015-01-01

    The advent of recombinant DNA technology and computational designing has fueled the emergence of proteins and peptides as a new class of modern therapeutics such as vaccines, antigens, antibodies and hormones. Demand for such therapeutics has increased recently due to their distinct pharmacodynamic characteristics of specificity of action and high potency. However, their potential clinical applications are often hindered by involvement of factors which impact their therapeutic potential negatively. Large size, low permeability, conformational fragility, immunogenicity, metabolic degradation and short half-life results in poor bioavailability and inferior efficacy. These challenges have encouraged researchers to devise strategies for effective delivery of proteins and peptides. Recent advances made in nanotechnology are being sought to overcome aforesaid problems and to offer advantages such as higher drug loading, improved stability, sustained release, amenability for non-parenteral administration and targeting through surface modifications. This review focuses on elaborating the role of nanotechnology based formulations and associated challenges in protein and peptide delivery, their clinical outlook and future perspective. PMID:26323432

  8. Role of Nanotechnology in Delivery of Protein and Peptide Drugs.

    PubMed

    Patil, Sushilkumar; Vhora, Imran; Amrutiya, Jitendra; Lalani, Rohan; Misra, Ambikanandan

    2015-01-01

    The advent of recombinant DNA technology and computational designing has fueled the emergence of proteins and peptides as a new class of modern therapeutics such as vaccines, antigens, antibodies and hormones. Demand for such therapeutics has increased recently due to their distinct pharmacodynamic characteristics of specificity of action and high potency. However, their potential clinical applications are often hindered by involvement of factors which impact their therapeutic potential negatively. Large size, low permeability, conformational fragility, immunogenicity, metabolic degradation and short half-life results in poor bioavailability and inferior efficacy. These challenges have encouraged researchers to devise strategies for effective delivery of proteins and peptides. Recent advances made in nanotechnology are being sought to overcome aforesaid problems and to offer advantages such as higher drug loading, improved stability, sustained release, amenability for non-parenteral administration and targeting through surface modifications. This review focuses on elaborating the role of nanotechnology based formulations and associated challenges in protein and peptide delivery, their clinical outlook and future perspective.

  9. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    PubMed Central

    2011-01-01

    This report describes the combined use of an enzyme-based glucose release system (EnBase®) and high-aeration shake flask (Ultra Yield Flask™). The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved. PMID:22152005

  10. Sequence-defined shuttles for targeted nucleic acid and protein delivery.

    PubMed

    Röder, Ruth; Wagner, Ernst

    2014-01-01

    Molecular medicine opens into a space of novel specific therapeutic agents: intracellularly active drugs such as peptides, proteins or nucleic acids, which are not able to cross cell membranes and enter the intracellular space on their own. Through the development of cell-targeted shuttles for specific delivery, this restriction in delivery has the potential to be converted into an advantage. On the one hand, due to the multiple extra- and intracellular barriers, such carrier systems need to be multifunctional. On the other hand, they must be precise and reproducibly manufactured due to pharmaceutical reasons. Here we review the design of precise sequence-defined delivery carriers, including solid-phase synthesized peptides and nonpeptidic oligomers, or nucleotide-based carriers such as aptamers and origami nanoboxes.

  11. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules.

    PubMed

    Tang, Rui; Kim, Chang Soo; Solfiell, David J; Rana, Subinoy; Mout, Rubul; Velázquez-Delgado, Elih M; Chompoosor, Apiwat; Jeong, Youngdo; Yan, Bo; Zhu, Zheng-Jiang; Kim, Chaekyu; Hardy, Jeanne A; Rotello, Vincent M

    2013-08-27

    Intracellular protein delivery is an important tool for both therapeutic and fundamental applications. Effective protein delivery faces two major challenges: efficient cellular uptake and avoiding endosomal sequestration. We report here a general strategy for direct delivery of functional proteins to the cytosol using nanoparticle-stabilized capsules (NPSCs). These NPSCs are formed and stabilized through supramolecular interactions between the nanoparticle, the protein cargo, and the fatty acid capsule interior. The NPSCs are ~130 nm in diameter and feature low toxicity and excellent stability in serum. The effectiveness of these NPSCs as therapeutic protein carriers was demonstrated through the delivery of fully functional caspase-3 to HeLa cells with concomitant apoptosis. Analogous delivery of green fluorescent protein (GFP) confirmed cytosolic delivery as well as intracellular targeting of the delivered protein, demonstrating the utility of the system for both therapeutic and imaging applications.

  12. Engineering and Identifying Supercharged Proteins for Macromolecule Delivery into Mammalian Cells

    PubMed Central

    Thompson, David B.; Cronican, James J.; Liu, David R.

    2012-01-01

    Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high net positive or negative theoretical charge. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells. Associating cargo with these proteins, such as plasmid DNA, siRNA, or other proteins, can enable the functional delivery of these macromolecules into mammalian cells both in vitro and in vivo. The potency of functional delivery in some cases can exceed that of other current methods for macromolecule delivery, including the use of cell-penetrating peptides such as Tat, and adenoviral delivery vectors. This chapter summarizes methods for engineering supercharged proteins, optimizing cell penetration, identifying naturally occurring supercharged proteins, and using these proteins for macromolecule delivery into mammalian cells. PMID:22230574

  13. DNA Binding Proteins and Drug Delivery Vehicles: Tales of Elephants and Snakes.

    PubMed

    Karpel, Richard L

    2015-01-01

    We compare the DNA-interactive properties of bacteriophage T4 gene 32 protein (gp32) with those of crotamine, a component of the venom of the South American rattlesnake. Gene 32 protein is a classical single-stranded DNA binding protein that has served as a model for this class of proteins. We discuss its biological functions, structure, binding specificities, and how it controls its own expression. In addition, we delineate the roles of the structural domains of gp32 and how they regulate the protein's various activities. Crotamine, a component of the venom of the South American rattlesnake, is probably not a DNA binding protein in nature, but clearly shows significant DNA binding in vitro. Crotamine has been shown to selectively disrupt rapidly dividing cells and this specificity has been demonstrated for crotamine-facilitated delivery of plasmid DNA Thus, crotamine, or a variant of the protein, could have important clinical and/or diagnostic roles. Understanding its DNA binding properties may therefore lead to more effective drug delivery vehicles.

  14. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array.

    PubMed

    Witting, Madeleine; Obst, Katja; Pietzsch, Markus; Friess, Wolfgang; Hedtrich, Sarah

    2015-01-01

    Solid microneedles (MN) are a promising tool for dermal drug delivery. Particular focus lies on the field of vaccination due to pain-free, safe, hygienic and patient compliant antigen deposition. Diverse coating techniques and formulations have been developed to preserve vaccine activity and to enable targeted drug deposition in the skin. Process and long-term storage stability of coated MN, however, have not yet been studied in detail. Hence, a feasibility study was conducted determining the appropriate needle length (300 μm) for local intraepidermal protein delivery. Moreover, a protein-stabilizing coating formulation was developed. Coating of the MN resulted in protein concentrations between 10 and 23 μg, 90% of the bioactivity of the model protein asparaginase was maintained for 3 months. Skin experiments verified the intraepidermal deposition of 68.0 ± 11.7% of the coated model protein after single application. Slightly increased interleukin 8 levels right after MN insertion indicated minor skin irritation due to the mechanical piercing stress. Thus, specifically highlighting protein stabilization during storage, we demonstrated that selective intraepidermal deposition of proteins or peptides' using solid MN is a feasible approach. PMID:25819344

  15. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat.

    PubMed

    Upadhyaya, Narayana M; Mago, Rohit; Staskawicz, Brian J; Ayliffe, Michael A; Ellis, Jeffrey G; Dodds, Peter N

    2014-03-01

    Large numbers of candidate effectors from fungal pathogens are being identified through whole-genome sequencing and in planta expression studies. Although Agrobacterium-mediated transient expression has enabled high-throughput functional analysis of effectors in dicot plants, this assay is not effective in cereal leaves. Here, we show that a nonpathogenic Pseudomonas fluorescens engineered to express the type III secretion system (T3SS) of P. syringae and the wheat pathogen Xanthomonas translucens can deliver fusion proteins containing T3SS signals from P. syringae (AvrRpm1) and X. campestris (AvrBs2) avirulence (Avr) proteins, respectively, into wheat leaf cells. A calmodulin-dependent adenylate cyclase reporter protein was delivered effectively into wheat and barley by both bacteria. Absence of any disease symptoms with P. fluorescens makes it more suitable than X. translucens for detecting a hypersensitive response (HR) induced by an effector protein with avirulence activity. We further modified the delivery system by removal of the myristoylation site from the AvrRpm1 fusion to prevent its localization to the plasma membrane which could inhibit recognition of an Avr protein. Delivery of the flax rust AvrM protein by the modified delivery system into transgenic tobacco leaves expressing the corresponding M resistance protein induced a strong HR, indicating that the system is capable of delivering a functional rust Avr protein. In a preliminary screen of effectors from the stem rust fungus Puccinia graminis f. sp. tritici, we identified one effector that induced a host genotype-specific HR in wheat. Thus, the modified AvrRpm1:effector-Pseudomonas fluorescens system is an effective tool for large-scale screening of pathogen effectors for recognition in wheat. PMID:24156769

  16. Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery.

    PubMed

    Xu, Chun; Yu, Meihua; Noonan, Owen; Zhang, Jun; Song, Hao; Zhang, Hongwei; Lei, Chang; Niu, Yuting; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2015-11-25

    A new type of monodispersed mesoporous silica nanoparticles with a core-cone structure (MSN-CC) has been synthesized. The large cone-shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN-CC has a large pore size of 45 nm and a high pore volume of 2.59 cm(3) g(-1). MSN-CC demonstrates a high loading capacity of large proteins and successfully delivers active β-galactosidase into cells, showing their potential as efficient nanocarriers for the cellular delivery of proteins with large molecular weights. PMID:26426420

  17. A fusogenic peptide from a sea urchin fertilization protein promotes intracellular delivery of biomacromolecules by facilitating endosomal escape.

    PubMed

    Niikura, Keisuke; Horisawa, Kenichi; Doi, Nobuhide

    2015-08-28

    The low efficiency of endosomal escape has been considered a bottleneck for the cytosolic delivery of biomacromolecules such as proteins and DNA. Although fusogenic peptides (FPs) such as HA2 have been employed to improve the intracellular delivery of biomacromolecules, the FPs studied thus far are not adequately efficient in enabling endosomal escape; therefore, novel FPs with higher activity are required. In this context, we focused on FPs derived from a sea urchin fertilization protein, bindin, which is involved in gamete recognition (B18, residues 103-120 and B55, residues 83-137 of mature bindin). We show that enhanced green fluorescent protein (EGFP)-fused B55 peptide binds to plasma membranes more strongly than EGFP-B18 and promotes the intracellular delivery of dextrans, which were co-administered using the trans method in a pH-dependent manner without affecting cell viability and proliferation, whereas conventional EGFP-HA2 did not affect dextran internalization. Furthermore, EGFP-B55 promoted the intracellular delivery of biomacromolecules such as antibodies, ribonuclease and plasmidic DNA using the trans method. Because the promotion of intracellular delivery by EGFP-B55 was suppressed by endocytosis inhibitors, EGFP-B55 is considered to have facilitated the endosomal escape of co-administered cargos. These results suggested that an FP that promotes the intracellular delivery of a variety of biomacromolecules with no detectable cytotoxicity should be useful for the cytosolic delivery of membrane-impermeable molecules for biomedical and biotechnological applications.

  18. Aerosol delivery of programmed cell death protein 4 using polysorbitol-based gene delivery system for lung cancer therapy.

    PubMed

    Kim, You-Kyoung; Xing, Lei; Chen, Bao-An; Xu, Fengguo; Jiang, Hu-Lin; Zhang, Can

    2014-11-01

    The development of a safe and effective gene delivery system is the most challenging obstacle to the broad application of gene therapy in the clinic. In this study, we report the development of a polysorbitol-based gene delivery system as an alternative gene carrier for lung cancer therapy. The copolymer was prepared by a Michael addition reaction between sorbitol diacrylate (SD) and spermine (SPE); the SD-SPE copolymer effectively condenses with DNA on the nanoscale and protects it from nucleases. SD-SPE/DNA complexes showed excellent transfection with low toxicity both in vitro and in vivo, and aerosol delivery of SD-SPE complexes with programmed cell death protein 4 DNA significantly suppressed lung tumorigenesis in K-ras(LA1) lung cancer model mice. These results demonstrate that SD-SPE has great potential as a gene delivery system based on its excellent biocompatibility and high gene delivery efficiency for lung cancer gene therapy. PMID:24983766

  19. Self-assembling polymeric nanoparticles for enhanced intra-articular anti-inflammatory protein delivery

    NASA Astrophysics Data System (ADS)

    Whitmire, Rachel Elisabeth

    Osteoarthritis (OA) affects 26 million Americans, or approximately 14% of the adult population. The incidence of OA is predicted to dramatically increase in the next 20 years as the US grows older and the rate of obesity continues to increase. There are currently no clinical interventions that cure OA. Current biomaterial delivery systems exhibit several limitations. First, most drug-delivery particles are hydrophobic, which is not optimal for hydrophilic protein encapsulation. Second, hydrophobic particles, such as PLGA, could cause wear damage to the already-fragile OA cartilage structure. Additionally, these particles usually suffer from non-specific protein adsorption, which causes increased phagocytosis and can lead to increased inflammation. New therapies that increase the effectiveness of OA treatments or reverse OA disease progression will greatly decrease the economic costs and individual pain associated with this disease. The goal of this thesis was to develop a new drug-delivering material to deliver anti-inflammatory protein for treating OA. Our central hypothesis for this work is that a controlled release/presentation system will more effectively deliver anti-inflammatory protein therapies to the OA joint. The primary goal of this work was to synthesize a block copolymer that could self-assemble into injectable, sub-micron-scale particles and would allow an anti-inflammatory protein, IL-1ra, to be tethered to its surface for efficient protein delivery. The block copolymer incorporated an oligo-ethylene monomer for tissue compatibility and non-fouling behavior, a 4-nitrophenol group for efficient protein tethering, and cyclohexyl methacrylate, a hydrophobic monomer, for particle stability. We engineered the copolymer and tested it in both in vitro culture experiments and an in vivo model to evaluate protein retention in the knee joint. The rationale for this project was that the rational design and synthesis of a new drug- and protein

  20. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    PubMed

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P < 0.05) greater conformational stability and biological activity in comparison to the control (lysozyme in buffer solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  1. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery.

    PubMed

    Assal, Yasmine; Mizuguchi, Yoshinori; Mie, Masayasu; Kobatake, Eiry

    2015-08-19

    Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery.

  2. Self-assembling bubble carriers for oral protein delivery.

    PubMed

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects.

  3. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    PubMed

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions.

  4. Recent Advances in Protein and Peptide Drug Delivery: A Special Emphasis on Polymeric Nanoparticles

    PubMed Central

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K.

    2015-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly employed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transdermal, and ocular administrations. PMID:25106908

  5. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.

    PubMed

    Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya

    2016-04-28

    RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. PMID:26948382

  6. Active nanodiamond hydrogels for chemotherapeutic delivery.

    PubMed

    Huang, Houjin; Pierstorff, Erik; Osawa, Eiji; Ho, Dean

    2007-11-01

    Nanodiamond materials can serve as highly versatile platforms for the controlled functionalization and delivery of a wide spectrum of therapeutic elements. In this work, doxorubicin hydrochloride (DOX), an apoptosis-inducing drug widely used in chemotherapy, was successfully applied toward the functionalization of nanodiamond materials (NDs, 2-8 nm) and introduced toward murine macrophages as well as human colorectal carcinoma cells with preserved efficacy. The adsorption of DOX onto the NDs and its reversible release were achieved by regulating Cl- ion concentration, and the NDs were found to be able to efficiently ferry the drug inside living cells. Comprehensive bioassays were performed to assess and confirm the innate biocompatibility of the NDs, via real-time quantitative polymerase chain reaction (RT-PCR), and electrophoretic DNA fragmentation as well as MTT analysis confirmed the functional apoptosis-inducing mechanisms driven by the DOX-functionalized NDs. We extended the applicability of the DOX-ND composites toward a translational context, where MTT assays were performed on the HT-29 colon cancer cell line to assess DOX-ND induced cell death and ND-mediated chemotherapeutic sequestering for potential slow/sustained released capabilities. These and other medically relevant capabilities enabled by the NDs forge its strong potential as a therapeutically significant nanomaterial.

  7. GFP-complementation assay to detect functional CPP and protein delivery into living cells

    PubMed Central

    Milech, Nadia; Longville, Brooke AC; Cunningham, Paula T; Scobie, Marie N; Bogdawa, Heique M; Winslow, Scott; Anastasas, Mark; Connor, Theresa; Ong, Ferrer; Stone, Shane R; Kerfoot, Maria; Heinrich, Tatjana; Kroeger, Karen M; Tan, Yew-Foon; Hoffmann, Katrin; Thomas, Wayne R; Watt, Paul M; Hopkins, Richard M

    2015-01-01

    Efficient cargo uptake is essential for cell-penetrating peptide (CPP) therapeutics, which deliver widely diverse cargoes by exploiting natural cell processes to penetrate the cell’s membranes. Yet most current CPP activity assays are hampered by limitations in assessing uptake, including confounding effects of conjugated fluorophores or ligands, indirect read-outs requiring secondary processing, and difficulty in discriminating internalization from endosomally trapped cargo. Split-complementation Endosomal Escape (SEE) provides the first direct assay visualizing true cytoplasmic-delivery of proteins at biologically relevant concentrations. The SEE assay has minimal background, is amenable to high-throughput processes, and adaptable to different transient and stable cell lines. This split-GFP-based platform can be useful to study transduction mechanisms, cellular imaging, and characterizing novel CPPs as pharmaceutical delivery agents in the treatment of disease. PMID:26671759

  8. Integration of Drug, Protein, and Gene Delivery Systems with Regenerative Medicine

    PubMed Central

    Lorden, Elizabeth R.; Levinson, Howard M.; Leong, Kam W.

    2013-01-01

    Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g. hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and micro-particle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein and gene delivery in the context of regenerative medicine. Next we will present case examples of how delivery technologies are being applied to promote angiogenesis in non-healing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench-to-bedside for the clinical translation of these novel therapeutics. PMID:25787742

  9. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module

    PubMed Central

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R.; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Do Heo, Won; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named ‘exosomes for protein loading via optically reversible protein–protein interactions' (EXPLORs). By integrating a reversible protein–protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  10. Cuboplexes: Topologically Active siRNA Delivery.

    PubMed

    Kim, Hojun; Leal, Cecilia

    2015-10-27

    RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems. PMID:26390340

  11. Active probes and microfluidic ink delivery for Dip Pen Nanolithography

    NASA Astrophysics Data System (ADS)

    Rosner, Bjoern; Duenas, Terrisa; Banerjee, Debjyoti; Shile, Roger; Amro, Nabil; Rendlen, Jeff

    2004-03-01

    Dip Pen Nanolithography (DPNTM) is a scanning probe technique for nanoscale lithography: A sharp tip is coated with a functional molecule (the "ink") and then brought into contact with a surface where it deposits ink via a water meniscus. The DPN process is a direct-write pattern transfer technique with nanometer resolution and is inherently general with respect to usable inks and substrates including biomolecules such as proteins and oligonucleotides. We present functional extensions of the basic DPN process by showing actuated multi-probes as well as microfluidic ink delivery. We present the fabrication process and characterization of such active probes that use the bimorph effect to induce deflection of individual cantilevers as well as the integration of these probes. We also developed the capability to write with multiple inks on the probe array permitting the fabrication of multi-component nanodevices in one writing session. For this purpose, we fabricate passive microfluidic devices and present microfluidic behavior and ink loading performance of these components.

  12. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  13. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs: III. In vivo oral absorption study.

    PubMed

    Rao, Sripriya Venkata Ramana; Yajurvedi, Kavya; Shao, Jun

    2008-10-01

    To use self-nanoemulsifying drug delivery system (SNEDDS) to deliver hydrophilic proteins orally. beta-Lactamase (BLM), a 29 kDa protein was used as a model protein, and formulated into the oil phase of a SNEDDS through solid dispersion technique. The oral absorption of BLM in rats when delivered by such a SNEDDS was investigated. Oral delivery of 4500 mU/kg of BLM in SNEDDS nanoemulsion resulted in the relative bioavailability of 6.34%, C(max) of 1.9 mU/ml and mean residence time of 12.12h which was 1.5-, 2.7- and 1.3-fold higher than that by free solution, respectively. Delivery of BLM in the aqueous phase of the nanoemulsion resulted in a PK profile similar to that by the free solution. BLM when loaded in oil phase of SNEDDS, can significantly enhance the oral bioavailability of BLM. SNEDDS has a great potential for oral protein delivery.

  14. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.

    PubMed

    Lee, Fan; Chung, Joo Eun; Kurisawa, Motoichi

    2009-03-19

    Previously, we reported the independent tuning of mechanical strength (crosslinking density) and gelation rate of an injectable hydrogel system composed of hyaluronic acid-tyramine (HA-Tyr) conjugates. The hydrogels were formed through the oxidative coupling of tyramines which was catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). Herein, we studied the encapsulation and release of model proteins using the HA-Tyr hydrogel. It was shown that the rapid gelation achieved by an optimal concentration of HRP could effectively encapsulate the proteins within the hydrogel network and thus prevented the undesired leakage of proteins into the surrounding tissues after injection. Hydrogels with different mechanical strengths were formed by changing the concentration of H(2)O(2) while maintaining the rapid gelation rate. The mechanical strength of the hydrogel controlled the release rate of proteins: stiff hydrogels released proteins slower compared to weak hydrogels. In phosphate buffer saline, alpha-amylase (negatively charged) was released sustainably from the hydrogel. Conversely, the release of lysozyme (positively charged) discontinued after the fourth hour due to electrostatic interactions with HA. In the presence of hyaluronidase, lysozymes were released continuously and completely from the hydrogel due to degradation of the hydrogel network. The activities of the released proteins were mostly retained which suggested that the HA-Tyr hydrogel is a suitable injectable and biodegradable system for the delivery of therapeutic proteins. PMID:19121348

  15. Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery.

    PubMed

    Gao, Ping; Xia, Guixue; Bao, Zixian; Feng, Chao; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Chen, Xiguang

    2016-10-01

    This study aimed to investigate the efficacy of nanoparticles based on chitosan as a vehicle for oral antigen delivery in fish vaccination. Carboxymethyl chitosan/chitosan nanoparticles (CMCS/CS-NPs) loaded extracellular products (ECPs) of Vibrio anguillarum were successfully developed by ionic gelation method. The prepared ECPs-loaded CMCS/CS-NPs were characterized for various parameters including morphology, particle size (312±7.18nm), zeta potential (+17.4±0.38mV), loading efficiency (57.8±2.54%) and stability under the simulated gastrointestinal (GI) tract conditions in turbot. The in vitro profile showed that the cumulative release of ECPs from nanoparticles was higher in pH 7.4 (58%) than in pH 2.0 (37%) and pH 4.5 (29%) after 48h. Fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) was used as model protein antigen and encapsulated in CMCS/CS-NPs for investigating the biodistribution of antigen after oral delivery to turbot in 24h. Oral immunization of ECPs-loaded CMCS/CS-NPs group in turbot showed elevated specific antibody and higher concentrations of lysozyme activity and complement activity in fish serum than ECPs solution. CMCS/CS-NPs loaded with ECPs could enhance both adaptive and innate immune responses than the group treated with ECPs solution and suggested to be a potential antigen delivery system. PMID:27287772

  16. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications.

    PubMed

    Sun, Wenchao; Araci, Zeynep; Inayathullah, Mohammed; Manickam, Sathish; Zhang, Xuexiang; Bruce, Marc A; Marinkovich, M Peter; Lane, Alfred T; Milla, Carlos; Rajadas, Jayakumar; Butte, Manish J

    2013-08-01

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy.

  17. Selecting Improved Peptidyl Motifs for Cytosolic Delivery of Disparate Protein and Nanoparticle Materials

    PubMed Central

    Boeneman, Kelly; Delehanty, James B.; Blanco-Canosa, Juan B.; Susumu, Kimihiro; Stewart, Michael H.; Oh, Eunkeu; Huston, Alan L.; Dawson, Glyn; Ingale, Sampat; Walters, Ryan; Domowicz, Miriam; Deschamps, Jeffrey R.; Algar, W. Russ; DiMaggio, Stassi; Manono, Janet; Spillmann, Christopher M.; Thompson, Darren; Jennings, Travis L.; Dawson, Philip E.; Medintz, Igor L.

    2013-01-01

    Cell penetrating peptides facilitate efficient intracellular uptake of diverse materials ranging from small contrast agents to larger proteins and nanoparticles. However, a significant impediment remains in the subsequent compartmentalization/endosomal sequestration of most of these cargoes. Previous functional screening suggested that a modular peptide originally designed to deliver palmitoyl-protein thioesterase inhibitors to neurons could mediate endosomal escape in cultured cells. Here, we detail properties relevant to this peptide’s ability to mediate cytosolic delivery of quantum dots (QDs) to a wide range of cell-types, brain tissue culture and a developing chick embryo in a remarkably non-toxic manner. The peptide further facilitated efficient endosomal escape of large proteins, dendrimers and other nanoparticle materials. We undertook an iterative structure-activity relationship analysis of the peptide by discretely modifying key components including length, charge, fatty acid content and their order using a comparative, semi-quantitative assay. This approach allowed us to define the key motifs required for endosomal escape, to select more efficient escape sequences, along with unexpectedly identifying a sequence modified by one methylene group that specifically targeted QDs to cellular membranes. We interpret our results within a model of peptide function and highlight implications for in vivo labeling and nanoparticle-mediated drug delivery by using different peptides to co-deliver cargoes to cells and engage in multifunctional labeling. PMID:23710591

  18. pH responsive Janus-like supramolecular fusion proteins for functional protein delivery.

    PubMed

    Kuan, Seah Ling; Ng, David Y W; Wu, Yuzhou; Förtsch, Christina; Barth, Holger; Doroshenko, Mikheil; Koynov, Kaloian; Meier, Christoph; Weil, Tanja

    2013-11-20

    A facile, noncovalent solid-phase immobilization platform is described to assemble Janus-like supramolecular fusion proteins that are responsive to external stimuli. A chemically postmodified transporter protein, DHSA, is fused with (imino)biotinylated cargo proteins via an avidin adaptor with a high degree of spatial control. Notably, the derived heterofusion proteins are able to cross cellular membranes, dissociate at acidic pH due to the iminobiotin linker and preserve the enzymatic activity of the cargo proteins β-galactosidase and the enzymatic subunit of Clostridium botulinum C2 toxin. The mix-and-match strategy described herein opens unique opportunities to access macromolecular architectures of high structural definition and biological activity, thus complementing protein ligation and recombinant protein expression techniques. PMID:24156787

  19. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  20. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    NASA Astrophysics Data System (ADS)

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-05-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (A549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

  1. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8.

    PubMed

    Gautam, Ankur; Nanda, Jagpreet Singh; Samuel, Jesse S; Kumari, Manisha; Priyanka, Priyanka; Bedi, Gursimran; Nath, Samir K; Mittal, Garima; Khatri, Neeraj; Raghava, Gajendra Pal Singh

    2016-01-01

    Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications. PMID:27189051

  2. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8

    PubMed Central

    Gautam, Ankur; Nanda, Jagpreet Singh; Samuel, Jesse S.; Kumari, Manisha; Priyanka, Priyanka; Bedi, Gursimran; Nath, Samir K.; Mittal, Garima; Khatri, Neeraj; Raghava, Gajendra Pal Singh

    2016-01-01

    Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications. PMID:27189051

  3. Polyethylenimine-cyclodextrin-tegafur conjugate shows anti-cancer activity and a potential for gene delivery*

    PubMed Central

    Hu, Qi-da; Fan, Hui; Lou, Wei-jian; Wang, Qing-qing; Tang, Gu-ping

    2011-01-01

    Polyethylenimine-cyclodextrin-tegafur (PEI-CyD-tegafur) conjugate was synthesized as a novel multifunctional prodrug of tegafur for co-delivery of chemotherapeutic agent tegafur and enhanced green fluorescent protein (EGFP) reporter plasmid DNA. Conjugation of tegafur to PEI-CyD via chemical linkage was characterized by 1H NMR spectrometry and ultraviolet (UV) spectrometry. PEI-CyD-tegafur was able to condense plasmid DNA into complexes of around 150 nm with positive charge at the N/P ratio of 25, in accordance with electron microscopy observation of compact and monodisperse nanoparticles. The results of in vitro experiments showed enhanced cytotoxicity and considerable transfection efficiency in B16F10 cell line. Therefore, PEI-CyD-tegafur may have great potential as a co-delivery system with anti-cancer activity and potential for gene delivery. PMID:21887847

  4. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery

    PubMed Central

    2015-01-01

    We report on the synergy between catalytic propulsion and mesoporous silica nanoparticles (MSNPs) for the design of Janus nanomotors as active cargo delivery systems with sizes <100 nm (40, 65, and 90 nm). The Janus asymmetry of the nanomotors is given by electron beam (e-beam) deposition of a very thin platinum (2 nm) layer on MSNPs. The chemically powered Janus nanomotors present active diffusion at low H2O2 fuel concentration (i.e., <3 wt %). Their apparent diffusion coefficient is enhanced up to 100% compared to their Brownian motion. Due to their mesoporous architecture and small dimensions, they can load cargo molecules in large quantity and serve as active nanocarriers for directed cargo delivery on a chip. PMID:25844893

  5. Delivery of a secreted soluble protein to the vacuole via a membrane anchor

    SciTech Connect

    Barrieu, F.; Chrispeels, M.J.

    1999-08-01

    To further understand how membrane proteins are sorted in the secretory system, the authors devised a strategy that involves the expression of a membrane-anchored yeast invertase in transgenic plants. The construct consisted of a signal peptide followed by the coding region of yeast invertase and the transmembrane domain and cytoplasmic tail of calnexin. The substitution of a lysine near the C terminus of calnexin with a glutamic acid residue ensured progression through the secretory system rather than retention in or return to the endoplasmic reticulum. In the transformed plants, invertase activity and a 70-kD cross-reacting protein were found in the vacuoles. This yeast invertase had plant-specific complex glycans, indicating that transport to the vacuole was mediated by the Golgi apparatus. The microsomal fraction contained a membrane-anchored 90-kD cross-reacting polypeptide, but was devoid of invertase activity. Their results indicate that this membrane-anchored protein proceeds in the secretory system beyond the point where soluble proteins are sorted for secretion, and is detached from its membrane anchor either just before or just after delivery to the vacuole.

  6. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.

    PubMed

    Hung, Michelle E; Leonard, Joshua N

    2016-01-01

    Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of

  7. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery

    PubMed Central

    Rajapaksa, Thejani E.; Stover-Hamer, Mary; Fernandez, Xiomara; Eckelhoefer, Holly A.; Lo, David D.

    2009-01-01

    Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system. PMID:19896996

  8. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery

    PubMed Central

    Görtz, Dieter; Braun, Gerald S.; Maruta, Yuichi; Djudjaj, Sonja; van Roeyen, Claudia R.; Martin, Ina V.; Küster, Andrea; Schmitz-Van de Leur, Hildegard; Scheller, Jürgen; Ostendorf, Tammo; Floege, Jürgen; Müller-Newen, Gerhard

    2015-01-01

    Anti-cytokine therapies have substantially improved the treatment of inflammatory and autoimmune diseases. Cytokine-targeting drugs are usually biologics such as antibodies or other engineered proteins. Production of biologics, however, is complex and intricate and therefore expensive which might limit therapeutic application. To overcome this limitation we developed a strategy that involves the design of an optimized, monogenic cytokine inhibitor and the protein producing capacity of the host. Here, we engineered and characterized a receptor fusion protein, mIL-6-RFP-Fc, for the inhibition of interleukin-6 (IL-6), a well-established target in anti-cytokine therapy. Upon application in mice mIL-6-RFP-Fc inhibited IL-6-induced activation of the transcription factor STAT3 and ERK1/2 kinases in liver and kidney. mIL-6-RFP-Fc is encoded by a single gene and therefore most relevant for gene transfer approaches. Gene transfer through hydrodynamic plasmid delivery in mice resulted in hepatic production and secretion of mIL-6-RFP-Fc into the blood in considerable amounts, blocked hepatic acute phase protein synthesis and improved kidney function in an ischemia and reperfusion injury model. Our study establishes receptor fusion proteins as promising agents in anti-cytokine therapies through gene therapeutic approaches for future targeted and cost-effective treatments. The strategy described here is applicable for many cytokines involved in inflammatory and other diseases. PMID:26423228

  9. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery.

    PubMed

    Görtz, Dieter; Braun, Gerald S; Maruta, Yuichi; Djudjaj, Sonja; van Roeyen, Claudia R; Martin, Ina V; Küster, Andrea; Schmitz-Van de Leur, Hildegard; Scheller, Jürgen; Ostendorf, Tammo; Floege, Jürgen; Müller-Newen, Gerhard

    2015-01-01

    Anti-cytokine therapies have substantially improved the treatment of inflammatory and autoimmune diseases. Cytokine-targeting drugs are usually biologics such as antibodies or other engineered proteins. Production of biologics, however, is complex and intricate and therefore expensive which might limit therapeutic application. To overcome this limitation we developed a strategy that involves the design of an optimized, monogenic cytokine inhibitor and the protein producing capacity of the host. Here, we engineered and characterized a receptor fusion protein, mIL-6-RFP-Fc, for the inhibition of interleukin-6 (IL-6), a well-established target in anti-cytokine therapy. Upon application in mice mIL-6-RFP-Fc inhibited IL-6-induced activation of the transcription factor STAT3 and ERK1/2 kinases in liver and kidney. mIL-6-RFP-Fc is encoded by a single gene and therefore most relevant for gene transfer approaches. Gene transfer through hydrodynamic plasmid delivery in mice resulted in hepatic production and secretion of mIL-6-RFP-Fc into the blood in considerable amounts, blocked hepatic acute phase protein synthesis and improved kidney function in an ischemia and reperfusion injury model. Our study establishes receptor fusion proteins as promising agents in anti-cytokine therapies through gene therapeutic approaches for future targeted and cost-effective treatments. The strategy described here is applicable for many cytokines involved in inflammatory and other diseases.

  10. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes.

    PubMed

    Liu, Guijing; Ma, Shoubao; Li, Shaoke; Cheng, Ru; Meng, Fenghua; Liu, Haiyan; Zhong, Zhiyuan

    2010-10-01

    Biodegradable chimaeric polymersomes based on asymmetric PEG-PCL-PDEA triblock copolymers were prepared and investigated for delivery of exogenous proteins into cells. PEG-PCL-PDEA copolymers with M(n)(PEG) = 5 kg/mol, M(n)(PCL) = 18.2 kg/mol, and short PDEA blocks ranging from 1.1, 2.7 to 4.1 kg/mol (denoted as copolymer 1, 2 and 3, respectively) were obtained by controlled reversible addition-fragmentation chain transfer (RAFT) polymerization. The direct hydration of copolymer thin films in MES buffer (pH 5.3) yielded uniform polymersomes with sizes of 130-175 nm. These polymersomes had close to neutral zeta potentials (-2 approximately +2.7 mV) at pH 7.4. The polymersomal structures were confirmed by confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and catalytic activity experiment on 3,3',3''-phosphinidyne(trisbenzenesulfonic acid)-loaded polymersomes. MTT assays showed that these polymersomes were non-toxic up to a concentration of 0.5mg/mL. These chimaeric polymersomes, in particular polymersome 2, showed remarkably high protein loading efficiencies and loading contents for bovine serum albumin (BSA), cytochrome C (CC), lysozyme (Lys), ovalbumin (OVA) and immunoglobulin G (IgG). The encapsulation of proteins did not significantly alter the polymersome size distributions and zeta potentials. The protein release studies showed that both BSA and CC were released in a controlled manner. Importantly, the released CC fully maintained its activity. Notably, CLSM studies showed that FITC-CC loaded polymersomes efficiently delivered and released proteins into the cytoplasm of RAW 264.7 cells. Moreover, these chimaeric polymersomes were able to simultaneously load and transport proteins and doxorubicin into the cytoplasm as well as the cell nucleus. We are convinced that these biodegradable chimaeric polymersomes have great potentials in protein therapy.

  11. The Platin-X series: activation, targeting, and delivery.

    PubMed

    Basu, Uttara; Banik, Bhabatosh; Wen, Ru; Pathak, Rakesh K; Dhar, Shanta

    2016-08-16

    Anticancer platinum (Pt) complexes have long been considered to be one of the biggest success stories in the history of medicinal inorganic chemistry. Yet there remains the hunt for the "magic bullet" which can satisfy the requirements of an effective chemotherapeutic drug formulation. Pt(iv) complexes are kinetically more inert than the Pt(ii) congeners and offer the opportunity to append additional functional groups/ligands for prodrug activation, tumor targeting, or drug delivery. The ultimate aim of functionalization is to enhance the tumor selective action and attenuate systemic toxicity of the drugs. Moreover, an increase in cellular accumulation to surmount the resistance of the tumor against the drugs is also of paramount importance in drug development and discovery. In this review, we will address the attempts made in our lab to develop Pt(iv) prodrugs that can be activated and delivered using targeted nanotechnology-based delivery platforms. PMID:27493131

  12. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  13. Activity-based costing for integrated delivery systems.

    PubMed

    Baker, J J

    1995-01-01

    The paradigm shift toward managed care is fueling new cost-finding demands. More sophisticated methods are emerging to meet these demands. Foremost among the new methods is activity-based costing (ABC). ABC is designed to eliminate cross-subsidies between products or services. Because costs are traced by activities across departments and cost centers, costs can also be traced by activities across integrated delivery systems (IDSs). The methodology makes ABC very applicable to combinations of providers including chains, affiliated groups, and IDS participants. PMID:8820298

  14. Activity-based costing for integrated delivery systems.

    PubMed

    Baker, J J

    1995-01-01

    The paradigm shift toward managed care is fueling new cost-finding demands. More sophisticated methods are emerging to meet these demands. Foremost among the new methods is activity-based costing (ABC). ABC is designed to eliminate cross-subsidies between products or services. Because costs are traced by activities across departments and cost centers, costs can also be traced by activities across integrated delivery systems (IDSs). The methodology makes ABC very applicable to combinations of providers including chains, affiliated groups, and IDS participants.

  15. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: II. In vitro transport study.

    PubMed

    Rao, Sripriya Venkata Ramana; Agarwal, Payal; Shao, Jun

    2008-10-01

    To develop a self-nanoemulsifying drug delivery system (SNEDDS) for protein drugs, and particularly, to test the in vitro transport of beta-lactamase (BLM) by SNEDDS across the cell monolayer. Fluorescently labeled BLM (FITC-BLM), a model protein, formulated into 16 SNEDDS preparations through a solid dispersion technique were studied for transport across MDCK monolayer. All the SNEDDS nanoemulsions resulted in higher transport rate than the free solution. The transport rate by SNEDDS depends on the SNEDDS composition. SNEDDS NE-12-7 (oil: Lauroglycol FCC, surfactant: Cremophor EL and a cosurfactant: Transcutol HP) at the ratio of 5:4:3, rendered the highest transportation rate, 33% as compared to negligible transport by the free solution. FITC-BLM solution mixed with the surfactant and the cosurfactant of SNEDDS NE-12-7 or with blank SNEDDS NE-12-7 increased the transport only by 3.3 and 1.5 folds, respectively, compared to free solution alone. It was found that the monolayer integrity was not compromised in the presence of SNEDDS NE-12-7 or its surfactant/cosurfactant. The SNEDDS significantly increased the transport of FITC-BLM across MDCK monolayer in vitro. SNEDDS may be a potential effective delivery system for non-invasive protein drug delivery.

  16. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles

    PubMed Central

    Wang, Ming; Zuris, John A.; Meng, Fantao; Rees, Holly; Sun, Shuo; Deng, Pu; Han, Yong; Gao, Xue; Pouli, Dimitra; Wu, Qi; Georgakoudi, Irene; Liu, David R.; Xu, Qiaobing

    2016-01-01

    A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing. PMID:26929348

  17. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology

    PubMed Central

    Ittig, Simon J.; Schmutz, Christoph; Kasper, Christoph A.; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M. Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R.; Nigg, Erich A.

    2015-01-01

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. PMID:26598622

  18. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Kashi, Brenda B.; Celia, Samuel A.; Tamrazian, Eric; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.

  19. A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs

    PubMed Central

    Danielson, Dana C; Sachrajda, Natalie; Wang, Wei; Filip, Roxana; Pezacki, John Paul

    2016-01-01

    RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the “TAT” peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects. PMID:27045207

  20. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    PubMed

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups.

  1. Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery.

    PubMed

    Li, Hui; Fierens, Kaat; Zhang, Zhiyue; Vanparijs, Nane; Schuijs, Martijn J; Van Steendam, Katleen; Feiner Gracia, Natàlia; De Rycke, Riet; De Beer, Thomas; De Beuckelaer, Ans; De Koker, Stefaan; Deforce, Dieter; Albertazzi, Lorenzo; Grooten, Johan; Lambrecht, Bart N; De Geest, Bruno G

    2016-01-20

    Nanomaterials hold potential of altering the interaction between therapeutic molecules and target cells or tissues. High aspect ratio nanomaterials in particular have been reported to possess unprecedented properties and are intensively investigated for their interaction with biological systems. Graphene oxide (GOx) is a water-soluble graphene derivative that combines high aspect ratio dimension with functional groups that can be exploited for bioconjugation. Here, we demonstrate that GOx nanosheets can spontaneously adsorb proteins by a combination of interactions. This property is then explored for intracellular protein vaccine delivery, in view of the potential of GOx nanosheets to destabilize lipid membranes such as those of intracellular vesicles. Using a series of in vitro experiments, we show that GOx nanosheet adsorbed proteins are efficiently internalized by dendritic cells (DCs: the most potent class of antigen presenting cells of the immune system) and promote antigen cross-presentation to CD8 T cells. The latter is a hallmark in the induction of potent cellular antigen-specific immune responses against intracellular pathogens and cancer. PMID:26694764

  2. Liposome-protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines.

    PubMed

    Caracciolo, Giulio

    2015-04-01

    Active targeting that exploits the (over)expression of surface receptors in target cells by ligand incorporation is a central concept in nanomedicine research. Despite unprecedented efforts, no targeted liposome-based therapeutics is commercially available for clinical practice. What is inhibiting the efficient translation of targeted liposome technology from bench to bedside? After introduction in the bloodstream, the lipid surface is immediately modified by the adsorption of a "protein corona" and preserving the surface functionality appears to be challenging. On the other hand, a long-standing corona with receptor-binding sites could associate with the target cell long enough to activate the cell's uptake machinery, triggering liposome endocytosis and intracellular cargo delivery. This opens the intriguing possibility to manipulate the corona composition by liposome design. This review will focus on the emerging field of liposome-protein corona research from basic, descriptive research to readily applicable knowledge and technologies for implementation in drug improvement and development. From the clinical editor: This review is addressing the liposome protein corona research concerning the potential gains in drug improvement and for drug development.

  3. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  4. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Heinemann, D.; Kalies, S.; Schomaker, M.; Ertmer, W.; Murua Escobar, H.; Meyer, H.; Ripken, T.

    2014-06-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking.

  5. Engineering Escherichia coli into a Protein Delivery System for Mammalian Cells

    PubMed Central

    2015-01-01

    Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications. PMID:25853840

  6. Tunable Lipidoid-Telodendrimer Hybrid Nanoparticles for Intracellular Protein Delivery in Brain Tumor Treatment.

    PubMed

    Wang, Xu; Bodman, Alexa; Shi, Changying; Guo, Dandan; Wang, Lili; Luo, Juntao; Hall, Walter A

    2016-08-01

    A strategy to precisely engineer lipidoid-telodendrimer binary hybrid nanoparticles that offer enhanced cell membrane permeability for therapeutic proteins to reach the intracellular targets is established. The highly controllable biochemical and physical properties of the nanoparticles make them promising for protein-based brain cancer treatment with the assistance of convection-enhanced delivery. PMID:27375237

  7. Engineering Escherichia coli into a protein delivery system for mammalian cells.

    PubMed

    Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F

    2015-05-15

    Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications. PMID:25853840

  8. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection.

    PubMed

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Murua Escobar, H; Meyer, H; Ripken, T

    2014-06-20

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking.

  9. Development of Lentiviral Vectors for Targeted Integration and Protein Delivery.

    PubMed

    Schenkwein, Diana; Ylä-Herttuala, Seppo

    2016-01-01

    The method in this chapter describes the design of human immunodeficiency virus type 1 (HIV-1) integrase (IN)-fusion proteins which we have developed to transport different proteins into the nuclei of lentiviral vector (LV)-transduced cells. The IN-fusion protein cDNA is incorporated into the LV packaging plasmid, which leads to its incorporation into vector particles as part of a large Gag-Pol polyprotein. This specific feature of protein packaging enables also the incorporation of cytotoxic and proapoptotic proteins, such as frequently cutting endonucleases and P53. The vectors can hence be used for various protein transduction needs. An outline of the necessary methods is also given to study the functionality of a chosen IN-fusion protein in a cell culture assay. PMID:27317182

  10. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer.

    PubMed

    Wadia, Jehangir S; Dowdy, Steven F

    2005-02-28

    The direct intracellular delivery of proteins, or active peptide domains, has, until recently, been difficult to achieve due primarily to the bioavailability barrier of the plasma membrane, which effectively prevents the uptake of macromolecules by limiting their passive entry. Traditional approaches to modulate protein function have largely relied on the serendipitous discovery of specific drugs and small molecules which could be delivered easily into the cell. However, the usefulness of these pharmacological agents is limited by their tissue distribution and unlike 'information-rich' macromolecules, they often suffer from poor target specificity, unwanted side-effects, and toxicity. Likewise, the development of molecular techniques, over the past several decades, for gene delivery and expression of proteins has provided for tremendous advances in our understanding of cellular processes but has been of surprisingly little benefit for the management of genetic disorders. Apart from these gains however, the transfer of genetic material into eukaryotic cells either using viral vectors or by non-viral mechanisms such as microinjection, electroporation, or chemical transfection remains problematic. Moreover, in vivo, gene therapy approaches relying on adenoviral vectors are associated with significant difficulties relating to a lack of target specificity and toxicity which have contributed to poor performance in several clinical trials. Remarkably, the recent identification of a particular group of proteins with enhanced ability to cross the plasma membrane in a receptor-independent fashion has led to the discovery of a class of protein domains with cell membrane penetrating properties. The fusion of these protein transduction domain peptide sequences with heterologous proteins is sufficient to cause their rapid transduction into a variety of different cells in a rapid, concentration-dependent manner. Moreover, this novel technique for protein and peptide delivery

  11. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers.

    PubMed

    Witting, Madeleine; Obst, Katja; Friess, Wolfgang; Hedtrich, Sarah

    2015-11-01

    Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances.

  12. Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs

    PubMed Central

    Sun, Hongwu; Liu, Kaiyun; Liu, Wei; Wang, Wenxiu; Guo, Chunliang; Tang, Bin; Gu, Jiang; Zhang, Jinyong; Li, Haibo; Mao, Xuhu; Zou, Quanming; Zeng, Hao

    2012-01-01

    Background: The stability of protein drugs remains one of the key hurdles to their success in the market. The aim of the present study was to design a novel nanoemulsion drug-delivery system (NEDDS) that would encapsulate a standard-model protein drug – bovine serum albumin (BSA) – to improve drug stability. Methods: The BSA NEDDS was prepared using a phase-inversion method and pseudoternary phase diagrams. The following characteristics were studied: morphology, size, zeta potential, drug loading, and encapsulation efficiency. We also investigated the stability of the BSA NEDDS, bioactivity of BSA encapsulated within the NEDDS, the integrity of the primary, secondary, and tertiary structures, and specificity. Results: The BSA NEDDS consisted of Cremophor EL-35, propylene glycol, isopropyl myristate, and normal saline. The average particle diameter of the BSA NEDDS was about 21.8 nm, and the system showed a high encapsulation efficiency (>90%) and an adequate drug-loading capacity (45 mg/mL). The thermodynamic stability of the system was investigated at different temperatures and pH levels and in room-temperature conditions for 180 days. BSA NEDDS showed good structural integrity and specificity for the primary, secondary, and tertiary structures, and good bioactivity of the loaded BSA. Conclusions: BSA NEDDS showed the properties of a good nanoemulsion-delivery system. NEDDS can greatly enhance the stability of the protein drug BSA while maintaining high levels of drug bioactivity, good specificity, and integrity of the primary, secondary, and tertiary protein structures. These findings indicate that the nanoemulsion is a potential formulation for oral administration of protein drugs. PMID:23118537

  13. Tat-mediated protein delivery in living Caenorhabditis elegans

    SciTech Connect

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric . E-mail: eric.chevet@mcgill.ca

    2007-01-19

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm.

  14. Tissue plasminogen activator-based clot busting: Controlled delivery approaches

    PubMed Central

    El-Sherbiny, Ibrahim M.; Elkholi, Islam E.; Yacoub, Magdi H.

    2014-01-01

    Cardiovascular diseases are the leading cause of death worldwide. Thrombosis, the formation of blood clot (thrombus) in the circulatory system obstructing the blood flow, is one of the main causes behind various ischemic arterial syndromes such as ischemic stroke and myocardial infarction, as well as vein syndromes such as deep vein thrombosis, and consequently, pulmonary emboli. Several thrombolytic agents have been developed for treating thrombosis, the most common being tissue plasminogen activator (tPA), administrated systemically or locally via IV infusion directly proximal to the thrombus, with the aim of restoring and improving the blood flow. TPA triggers the dissolution of thrombi by inducing the conversion of plasminogen to protease plasmin followed by fibrin digestion that eventually leads to clot lysis. Although tPA provides powerful thrombolytic activity, it has many shortcomings, including poor pharmacokinetic profiles, impairment of the reestablishment of normal coronary flow, and impairment of hemostasis, leading to life-threatening bleeding consequences. The bleeding consequence is ascribed to the ability of tPA to circulate throughout the body and therefore can lysis all blood clots in the circulation system, even the good ones that prevent the bleeding and promote injury repair. This review provides an overview of the different delivery approaches for tPA including: liposomes, ultrasound-triggered thrombolysis, anti-fibrin antibody-targeted tPA, camouflaged-tPA, tpA-loaded microcarriers, and nano-modulated delivery approaches. PMID:25780787

  15. Past, Present, and Future Technologies for Oral Delivery of Therapeutic Proteins

    PubMed Central

    SINGH, RAJESH; SINGH, SHAILESH; LILLARD, JAMES W.

    2015-01-01

    Biological drugs are usually complex proteins and cannot be orally delivered due to problems related to degradation in the acidic and protease-rich environment of the gastrointestinal (GI) tract. The high molecular weight of these drugs often results in poor absorption into the periphery when administered orally. The most common route of administration for these therapeutic proteins is injection. Most of these proteins have short serum half-lives and need to be administered frequently or in high doses to be effective. So, difficulties in the administration of protein-based drugs provides the motivation for developing drug delivery systems (DDSs) capable of maintaining therapeutic drug levels without side effects as well as traversing the deleterious mucosal environment. Employing a polymer as an entrapment matrix is a common feature among the different types of systems currently being pursued for protein delivery. Protein release from these matrices can occur through various mechanisms, such as diffusion through or erosion of the polymer matrix, and sometimes a combination of both. Encapsulation of proteins in liposomes has also been a widely investigated technology for protein delivery. All of these systems have merit and our worthy of pursuit. PMID:17918721

  16. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications

    PubMed Central

    Sun, Wenchao; Araci, Zeynep; Inayathullah, Mohammed; Manickam, Sathish; Zhang, Xuexiang; Bruce, Marc A.; Marinkovich, M. Peter; Lane, Alfred T.; Milla, Carlos; Rajadas, Jayakumar; Butte, Manish J.

    2013-01-01

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy. PMID:23648574

  17. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics

    PubMed Central

    Huang, Wenwen; Rollett, Alexandra; Kaplan, David L.

    2015-01-01

    Introduction Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semicrystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli responsive properties and tenability, thereby, becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. Areas covered An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties, and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli responsive features, and current and potential drug delivery applications. Expert opinion The tunable material properties allow SELPs to be pursued as promising biomaterials for nano-carriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration. PMID:25476201

  18. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines.

    PubMed

    Vajdy, Michael; Srivastava, Indresh; Polo, John; Donnelly, John; O'Hagan, Derek; Singh, Manmohan

    2004-12-01

    Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related

  19. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  20. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity.

    PubMed

    Farinha, Carlos M; Swiatecka-Urban, Agnieszka; Brautigan, David L; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  1. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  2. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    SciTech Connect

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki; Kim, Woo-Taek; Kim, Ho-Guen; Lee, Sang-Kyou

    2010-01-29

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  3. A Generic Polymer-Protein Ligation Strategy for Vaccine Delivery.

    PubMed

    Lybaert, Lien; Vanparijs, Nane; Fierens, Kaat; Schuijs, Martijn; Nuhn, Lutz; Lambrecht, Bart N; De Geest, Bruno G

    2016-03-14

    Although the field of cancer immunotherapy is intensively investigated, there is still a need for generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we report on a generic polymer-protein ligation strategy to formulate protein antigens into reversible polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8 T-cells. A N-hydroxypropylmethacrylamide (HPMA)-based copolymer was synthesized via RAFT polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation efficiency to ovalbumin, which is used as a model protein antigen, protected thiols were introduced onto lysine residues and deprotected in situ in the presence of the polymer. The ligation efficiency was compared for both the thiol-modified versus unmodified ovalbumin, and the reversibility was confirmed. Furthermore, the obtained nanoconjugates were tested in vitro for their interaction and association with dendritic cells, showing enhanced cellular uptake and antigen cross-presentation to CD8 T-cells.

  4. Clinical translation of controlled protein delivery systems for tissue engineering

    PubMed Central

    Spiller, Kara L.; Vunjak-Novakovic, Gordana

    2013-01-01

    Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736

  5. Development of an in situ forming PLGA drug delivery system I. Characterization of a non-aqueous protein precipitation.

    PubMed

    Körber, Martin; Bodmeier, Roland

    2008-11-15

    The incorporation of the model protein hen egg white lysozyme into liquid in situ forming poly(lactide-co-glycolide) (PLGA) implant or microparticle formulations was investigated. Ternary solvent blends of dimethyl sulfoxide (DMSO), ethyl acetate and water were used to adjust the protein solubility in order to facilitate the incorporation of either dispersed or dissolved protein into the polymer solution. Lysozyme formed large gel particles when dispersed directly in the polymer solution. These formulations had a pronounced initial release. Non-aqueous precipitation of lysozyme from solutions in DMSO with ethyl acetate led to a reversible aggregation without loss in biological activity. Lysozyme could be incorporated in a finely dispersed state through an in situ precipitation by non-solvent or polymer addition. Non-aqueous precipitation could thus be utilized to manufacture biodegradable in situ forming drug delivery systems containing homogeneously distributed and bioactive protein. PMID:18721875

  6. Subunit Protein Vaccine Delivery System for Tuberculosis Based on Hepatitis B Virus Core VLP (HBc-VLP) Particles.

    PubMed

    Dhanasooraj, Dhananjayan; Kumar, R Ajay; Mundayoor, Sathish

    2016-01-01

    Despite the development of modern medicine, tuberculosis (TB), caused by the pathogenic bacterium, Mycobacterium tuberculosis (Mtb), remains one of the deadliest diseases. This bacterium can lay dormant in individuals and get activated when immunity goes down and has also shown considerable prowess in mutating into drug resistant forms. The global emergence of such drug resistant Mtb and the lack of efficacy of Bacille Calmette Guérin (BCG), the only vaccine available so far, have resulted in a situation which cries out for a safe and effective tuberculosis vaccine.Number of different strategies has been used for developing new anti-TB vaccines and several protective antigens have been identified so far. One strategy, the use of protein subunits, has the potential to develop into a powerful tuberculosis vaccine, not only because of its efficacy and safety, but also because they are economical. The proper delivery of protein subunit vaccines with adjuvants or novel delivery systems is necessary for inducing protective immune responses. The available adjuvants or delivery systems are inadequate for generating such a response. In the present method, we have constructed a vaccine delivery system for tuberculosis based on Virus-Like Particles (VLPs). Hepatitis B Virus core antigen gene was recombinantly modified using Overlap Extension PCR (OEPCR). The final construct was designed to express HBc-VLP carrying external antigen (fusion VLP). Mycobacterium tuberculosis antigen CFP-10 was used for the construction of fusion VLP. The recombinant gene for the construct was cloned into a pET expression system and transformed into E. coli BL21(DE3) and induced with IPTG to express the protein. The fusion protein was purified using the Histidine tag and allowed to form VLPs. The preformed VLPs were purified by sucrose density gradient centrifugation. The VLPs were characterized using Transmission Electron Microscopy (TEM). PMID:27076312

  7. Plasminogen Activators and Ischemic Stroke: Conditions for Acute Delivery

    PubMed Central

    del Zoppo, Gregory J

    2013-01-01

    Appropriate acute treatment with plasminogen activators (PAs) can significantly increase the probability of minimal or no disability in selected ischemic stroke patients. There is a great deal of evidence showing that intravenous recombinant tissue PAs (rt-PA) infusion accomplishes this goal, recanalization with other PAs has also been demonstrated in the development of this treatment. Recanalization of symptomatic, documented carotid or vertebrobasilar arterial territory occlusions have also been achieved by local intra-arterial PA delivery, although only a single prospective double-blinded randomized placebo-controlled study has been reported. The increase in intracerebral hemorrhage with these agents by either delivery approach underscores the need for careful patient selection, dose-appropriate safety and efficacy, proper clinical trial design, and an understanding of the evolution of cerebral tissue injury due to focal ischemia. Principles underlying the evolution of focal ischemia have been expanded by experience with acute PA intervention. Several questions remain open that concern the manner in which PAs can be applied acutely in ischemic stroke and how injury development can be limited. PMID:23539414

  8. Gene Delivery from Supercharged Coiled-coil Protein and Cationic Lipid Hybrid Complex

    PubMed Central

    More, Haresh T.; Frezzo, Joseph A.; Dai, Jisen; Yamano, Seiichi; Montclare, Jin K.

    2014-01-01

    A lipoproteoplex comprised of an engineered supercharged coiled-coil protein (CSP) bearing multiple arginines and the cationic lipid formulation FuGENE HD (FG) was developed for effective condensation and delivery of nucleic acids. The CSP was able to maintain helical structure and self-assembly properties while exhibiting binding to plasmid DNA. The ternary CSP•DNA(8:1)•FG lipoproteoplex complex demonstrated enhanced transfection of β-galactosidase DNA into MC3T3-E1 mouse preosteoblasts. The lipoproteoplexes showed significant increases in transfection efficiency when compared to conventional FG and an mTat•FG lipopolyplex with a 6- and 2.5-fold increase in transfection, respectively. The CSP•DNA(8:1)•FG lipoproteoplex assembled into spherical particles with a net positive surface charge, enabling efficient gene delivery. These results support the application of lipoproteoplexes with protein engineered CSP for non-viral gene delivery. PMID:24875765

  9. Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery.

    PubMed

    Ahmad, Naveed; Amin, Mohd Cairul Iqbal Mohd; Mahali, Shalela Mohd; Ismail, Ismanizan; Chuang, Victor Tuan Giam

    2014-11-01

    Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.

  10. Lysine-based polycation:heparin coacervate for controlled protein delivery.

    PubMed

    Johnson, Noah Ray; Ambe, Trisha; Wang, Yadong

    2014-01-01

    Polycations have good potential as carriers of proteins and genetic material. However, poor control over the release rate and safety issues currently limit their use as delivery vehicles. Here we introduce a new lysine-based polycation, poly(ethylene lysinylaspartate diglyceride) (PELD), which exhibits high cytocompatibility. PELD self-assembles with the biological polyanion heparin into a coacervate that incorporates proteins with high loading efficiency. Coacervates of varying surface charge were obtained by simple alteration of the PELD:heparin ratio and resulted in diverse release profiles of the model protein bovine serum albumin. Therefore, coacervate charge represents a direct means of control over release rate and duration. The PELD coacervate also rapidly adsorbed onto a porous polymeric scaffold, demonstrating potential use in tissue engineering applications. This coacervate represents a safe and tunable protein delivery system for biomedical applications.

  11. Light activated, In situ Forming Gel for Sustained Suprachoroidal Delivery of Bevacizumab

    PubMed Central

    Tyagi, Puneet; Barros, Matthew; Stansbury, Jeffrey W.; Kompella, Uday B.

    2014-01-01

    dichroism confirmed that secondary β-sheet structure of bevacizumab was maintained after release from the gel. As the cross-linking duration was increased to 10 minutes, the gel/antibody was better confined at the injection site in excised rabbit eye suprachoroidal space. Delivery of Alexa Fluor® 488 dye conjugated bevacizumab was sustained for at least 60 days in the suprachoroidal space of SD rats. Conclusion PCM and HEMA gel sustained bevacizumab release for 4 months and maintained the stability and VEGF-binding activity of bevacizumab. Light activated PCM and HEMA gel is suitable for in situ gel formation and sustained protein delivery in the suprachoroidal space. PMID:23734705

  12. Co-Administration of Protein Drugs with Gold Nanoparticles to Enable Percutaneous Delivery

    PubMed Central

    Huang, Yongzhuo; Yu, Faquan; Park, Yoon-Shin; Wang, Jianxin; Shin, Meong-Cheol; Chung, Hee Sun; Yang, Victor C.

    2010-01-01

    An interesting nanoscale interfacial phenomenon mediated by gold nanoparticles (Au-NPs) was found, in that co-administration with Au-NPs enables percutaneous delivery of protein drugs. The Au-NPs with a mean size of 5 nm were revealed to be skin permeable, presumably due to the nano-bio interaction with skin lipids and the consequent induction of transient and reversible openings on the stratum corneum. Importantly, when simultaneously applied with Au-NPs, the protein drugs were also granted the ability to penetrate the skin barrier and migrate into the deep layers. This indicated that co-administration with the skin-permeable Au-NPs could mediate proteins across the skin barrier. Such co-delivery effect highlights a simple yet effective method for overcoming the skin barrier for percutaneous protein drug delivery. Employing this method, a noninvasive vaccine delivery strategy was developed, and by topically co-administrating antigens with Au-NPs, robust immune responses were elicited in the tested animals. The results provide the promise for achieving a needleless and self-administrable transcutaneous vaccination. PMID:20828812

  13. Allostery in BAX protein activation.

    PubMed

    Jiang, Zhenyan; Zhang, Hansi; Böckmann, Rainer A

    2016-11-01

    BAX is a member of the proapoptotic BCL-2 family of proteins, which is involved in the regulation of the intrinsic pathway of apoptosis. In the process of apoptosis, BH3-only molecules activate cytosolic BAX. Activated BAX molecules insert into the mitochondrial outer membrane with their [Formula: see text]-helix and form oligomers that lead to membrane poration, resulting in the release of apoptogenic factors including cytochrome c. Recently, a novel interaction site for the binding of the BIM SAHB ligand to BAX was reported. BIM SAHB binding was shown to invoke the exposure of the 6A7 epitope (amino acids 13-19) and of the BH3 domain of BAX, followed by mobilization of the BAX [Formula: see text]-helix. However, the intramolecular pathway for signal transmission in BAX, from BIM SAHB binding to mobilization of the [Formula: see text]-helix largely remained elusive. For a molecular understanding of the activation of BAX, and thus the first steps in apoptosis, we performed microsecond atomistic molecular dynamics simulations both of the BAX protein and of the BAX:BIM SAHB complex in aqueous solution. In agreement with experiment, the 6A7 and BH3 domains adopt a more solvent-exposed conformation within the BAX:BIM SAHB complex. BIM SAHB binding was found to stabilize the secondary structure of the [Formula: see text]9-helix. A force distribution analysis revealed a force network of residue-residue interactions responsible for signal transmission from the BIM SAHB binding site predominantly via the [Formula: see text]4- and [Formula: see text]6-helices to the [Formula: see text]9-helix on the opposite site of the protein.

  14. Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers.

    PubMed

    Sun, Xue; Li, Ke; Chen, Sainan; Yao, Bing; Zhou, Yifa; Cui, Sisi; Hu, Junli; Liu, Yichun

    2016-10-15

    Particle preloading method by first loading proteins onto nano- or microparticles and then integrating these particles into electrospun polyester nanofibers has been widely used to encapsulate therapeutic proteins into polyester nanofibers. However, poor method design has resulted in unsatisfactory protein delivery performance. For example, the harsh conditions involved in preloading procedures damage the bioactivities of proteins, the improper integration leads to an uneven distribution of particles in nanofibers or insecure attachment of particles to nanofibers, producing uncontrolled protein release profiles. This study aimed to improve the protein delivery performance of polyester nanofibers by rationally designing a particle preloading method. Positively charged chitosan nanoparticles (CNPs) were used as carriers to adsorb negatively charged proteins in mild conditions and as primary barriers for protein release. The polar CNPs were then homogeneously dispersed in a polar polyester solution and subjected to electrospinning. Microscope observations indicated that CNPs were homogeneously embedded within polyester nanofibers. In vitro release behaviour and cell studies showed that proteins retained their bioactivity and could release from polyester nanofibers in a sustained manner for more than 4 weeks without any initial burst. Epidermal growth factor encapsulated in polyester nanofibers enhanced diabetic wound healing in vivo, demonstrating an application potential in biomedicine. Other properties of the nanofibers, including composition, wettability, cytotoxicity, and cell adhesion and spreading, were examined in detail as well. PMID:27568495

  15. Food-grade protein-based nanoparticles and microparticles for bioactive delivery: fabrication, characterization, and utilization.

    PubMed

    Davidov-Pardo, Gabriel; Joye, Iris J; McClements, David Julian

    2015-01-01

    Proteins can be used to fabricate nanoparticles and microparticles suitable for use as delivery systems for bioactive compounds in pharmaceutical, food, cosmetic, and other products. Food proteins originate from various animal or vegetal sources and exhibit a wide diversity of molecular and physicochemical characteristics, e.g., molecular weight, conformation, flexibility, polarity, charge, isoelectric point, solubility, and interactions. As a result, protein particles can be assembled using numerous different preparation methods, from one or more types of protein or from a combination of a protein and another type of biopolymer (usually a polysaccharide). The final characteristics of the particles produced are determined by the proteins and/or polysaccharides used, as well as the fabrication techniques employed. This chapter provides an overview of the functional properties of food proteins that can be used to assemble nanoparticles and microparticles, the fabrication techniques available to create those particles, the factors that influence their stability, and their potential applications within the food industry.

  16. Controlled, sustained release of proteins via an injectable, mineral-coated microsphere delivery vehicle

    NASA Astrophysics Data System (ADS)

    Franklin-Ford, Travelle

    Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.

  17. Design and characterization of novel recombinant listeriolysin O-protamine fusion proteins for enhanced gene delivery.

    PubMed

    Kim, Na Hyung; Provoda, Chester; Lee, Kyung-Dall

    2015-02-01

    To improve the efficiency of gene delivery for effective gene therapy, it is essential that the vector carries functional components that can promote overcoming barriers in various steps leading to the transport of DNA from extracellular to ultimately nuclear compartment. In this study, we designed genetically engineered fusion proteins as a platform to incorporate multiple functionalities in one chimeric protein. Prototypes of such a chimera tested here contain two domains: one that binds to DNA; the other that can facilitate endosomal escape of DNA. The fusion proteins are composed of listeriolysin O (LLO), the endosomolytic pore-forming protein from Listeria monocytogenes, and a 22 amino acid sequence of the DNA-condensing polypeptide protamine (PN), singly or as a pair: LLO-PN and LLO-PNPN. We demonstrate dramatic enhancement of the gene delivery efficiency of protamine-condensed DNA upon incorporation of a small amount of LLO-PN fusion protein and further improvement with LLO-PNPN in vitro using cultured cells. Additionally, the association of anionic liposomes with cationic LLO-PNPN/protamine/DNA complexes, yielding a net negative surface charge, resulted in better in vitro transfection efficiency in the presence of serum. An initial, small set of data in mice indicated that the observed enhancement in gene expression could also be applicable to in vivo gene delivery. This study suggests that incorporation of a recombinant fusion protein with multiple functional components, such as LLO-protamine fusion protein, in a nonviral vector is a promising strategy for various nonviral gene delivery systems.

  18. Delivery.

    PubMed

    Miller, Thomas A

    2013-11-01

    Enthusiasm greeted the development of synthetic organic insecticides in the mid-twentieth century, only to see this give way to dismay and eventually scepticism and outright opposition by some. Regardless of how anyone feels about this issue, insecticides and other pesticides have become indispensable, which creates something of a dilemma. Possibly as a result of the shift in public attitude towards insecticides, genetic engineering of microbes was first met with scepticism and caution among scientists. Later, the development of genetically modified crop plants was met with an attitude that hardened into both acceptance and hard-core resistance. Transgenic insects, which came along at the dawn of the twenty-first century, encountered an entrenched opposition. Those of us responsible for studying the protection of crops have been affected more or less by these protagonist and antagonistic positions, and the experiences have often left one thoughtfully mystified as decisions are made by non-participants. Most of the issues boil down to concerns over delivery mechanisms.

  19. Delivery

    PubMed Central

    Miller, Thomas A

    2013-01-01

    Enthusiasm greeted the development of synthetic organic insecticides in the mid-twentieth century, only to see this give way to dismay and eventually scepticism and outright opposition by some. Regardless of how anyone feels about this issue, insecticides and other pesticides have become indispensable, which creates something of a dilemma. Possibly as a result of the shift in public attitude towards insecticides, genetic engineering of microbes was first met with scepticism and caution among scientists. Later, the development of genetically modified crop plants was met with an attitude that hardened into both acceptance and hard-core resistance. Transgenic insects, which came along at the dawn of the twenty-first century, encountered an entrenched opposition. Those of us responsible for studying the protection of crops have been affected more or less by these protagonist and antagonistic positions, and the experiences have often left one thoughtfully mystified as decisions are made by non-participants. Most of the issues boil down to concerns over delivery mechanisms. © 2013 Society of Chemical Industry PMID:23852646

  20. Is Heparin Effective for the Controlled Delivery of High-Dose Bone Morphogenetic Protein-2?

    PubMed

    Kim, Ri Youn; Lee, Beomseok; Park, Si-Nae; Ko, Jae-Hyung; Kim, In Sook; Hwang, Soon Jung

    2016-05-01

    Sustained release of bone morphogenetic protein (BMP)-2 by heparin-contained biomaterials is advantageous for bone tissue regeneration using low-dose BMP-2. However, its effect with high-dose BMP-2 is still unclear and should be clarified considering the clinical use of a high dose of BMP-2 in spine and oral surgery. This study aimed to evaluate the efficacy of a heparin-conjugated collagen sponge (HCS) with high-dose BMP-2 delivery by investigating in vivo initial osteogenic regulation and bone healing over 12 weeks in comparison with that of an absorbable collagen sponge (ACS). The in vitro BMP-2 release profile in the HCS exhibited a lower burst followed by a sustained release of BMP-2, whereas that of the ACS showed an initial burst phase only. As a result of a lower burst, the HCS-BMP group showed higher expression of bone-forming/resorbing markers and enhanced activation of osteoclasts than the ACS-BMP group within the scaffold of defect after 7 days, which is presumed to be because of retention of relatively higher amounts of BMP-2. However, the surrounding calvariae were less resorbed in the HCS-BMP group, compared with the aggressive resorptive response in the ACS-BMP group. Microcomputed tomography and histology revealed that HCS-BMP guided more effective bone regeneration of central defect over time inducing minor ossification at the defect exterior, whereas ACS-BMP exhibited excessive ossification at the defect exterior. These results showed that HCS-mediated BMP-2 delivery at a high dose has advantages over ACS, including less early resorption of surrounding bone tissue and higher efficacy in compact bone regeneration over a longer period, highlighting a clinical feasibility of this technology. PMID:27098389

  1. Spatiotemporally synchronized cancer combination therapy using photo-activated nanoparticle drug delivery systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hasan, Tayyaba

    2016-03-01

    This talk will introduce a new nanotechnology platform for cancer combination therapy that utilizes near infrared light activation not only for photodynamic damage but also as an extrinsic mechanism to initiate release of complimentary drugs to suppress dynamic bursts in molecular signaling networks that promote tumor cell survival and treatment escape. The goal is to achieve co-delivery with concomitant activity of photodynamic, molecular inhibitor and chemotherapeutic agents, selectively within the tumor. This approach overcomes challenges in achieving synergistic interactions using sequential drug delivery. Conventional drug delivery is compromised by the differential pharmacokinetics of individual agents and potentially antagonistic effects—such as vascular shutdown by one agent that limits delivery of the second. Here, photodynamic damage—which efficiently kills drug-resistant cells via damage of common proteins involved in drug-resistance (such as anti-apoptosis factors and drug-efflux transporters)—is synchronized spatially and temporally with the photo-initiated release of complimentary agents—to enable full interaction amongst the individual therapies. This spatiotemporal synchronization offers new prospects for exploiting time-sensitive synergistic interactions. Specific implementations of these concepts will be presented in preclinical models of cancer. Strategies to enable molecular-targeting of cancer cells via site-specific attachment of targeting moieties to the outer lipid shell of these nanovehicles will also be discussed. If successful in humans, this new paradigm for synchronized, tumor-focused combination therapy will ultimately supersede the present use of chronic drug injection by increasing efficacy per cycle whilst reducing systemic exposure to toxic drugs.

  2. Oral Delivery of Bioencapsulated Proteins Across Blood–Brain and Blood–Retinal Barriers

    PubMed Central

    Kohli, Neha; Westerveld, Donevan R; Ayache, Alexandra C; Verma, Amrisha; Shil, Pollob; Prasad, Tuhina; Zhu, Ping; Chan, Sic L; Li, Qiuhong; Daniell, Henry

    2014-01-01

    Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer's disease (3×TgAD) mice, across the blood–brain barriers (BBB) and blood–retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S–stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB. PMID:24281246

  3. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    PubMed

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy. PMID:26356810

  4. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    PubMed

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  5. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

    NASA Astrophysics Data System (ADS)

    Whitehead, Kathryn A.; Dorkin, J. Robert; Vegas, Arturo J.; Chang, Philip H.; Veiseh, Omid; Matthews, Jonathan; Fenton, Owen S.; Zhang, Yunlong; Olejnik, Karsten T.; Yesilyurt, Volkan; Chen, Delai; Barros, Scott; Klebanov, Boris; Novobrantseva, Tatiana; Langer, Robert; Anderson, Daniel G.

    2014-06-01

    One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg-1). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.

  6. Heterologous Expression and Delivery of Biologically Active Exendin-4 by Lactobacillus paracasei L14

    PubMed Central

    Zeng, Zhu; Yu, Rui; Zuo, Fanglei; Zhang, Bo; Peng, Deju; Ma, Huiqin; Chen, Shangwu

    2016-01-01

    Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, is an excellent therapeutic peptide drug for type 2 diabetes due to longer lasting biological activity compared to GLP-1. This study explored the feasibility of using probiotic Lactobacillus paracasei as an oral vector for recombinant exendin-4 peptide delivery, an alternative to costly chemical synthesis and inconvenient administration by injection. L. paracasei transformed with a plasmid encoding the exendin-4 gene (L. paracasei L14/pMG76e-exendin-4) with a constitutive promotor was successfully constructed and showed efficient secretion of exendin-4. The secreted exendin-4 significantly enhanced insulin secretion of INS-1 β-cells, along with an increment in their proliferation and inhibition of their apoptosis, corresponding to the effect of GLP-1 on these cells. The transcription level of the pancreatic duodenal homeobox-1 gene (PDX-1), a key transcription factor for cellular insulin synthesis and secretion, was upregulated by the treatment with secreted exendin-4, paralleling the upregulation of insulin gene expression. Caco-2 cell monolayer permeability assay showed a 34-fold increase in the transport of exendin-4 delivered by L. paracasei vs. that of free exendin-4 (control), suggesting effective facilitation of exendin-4 transport across the intestinal barrier by this delivery system. This study demonstrates that the probiotic Lactobacillus can be engineered to secrete bioactive exendin-4 and facilitate its transport through the intestinal barrier, providing a novel strategy for oral exendin-4 delivery using this lactic acid bacterium. PMID:27764251

  7. Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems.

    PubMed

    Cambronne, Eric D; Roy, Craig R

    2006-08-01

    The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport. PMID:16734660

  8. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.

  9. Differential analysis of "protein corona" profile adsorbed onto different nonviral gene delivery systems.

    PubMed

    Capriotti, Anna Laura; Caracciolo, Giulio; Caruso, Giuseppe; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà, Aldo

    2011-12-15

    A shotgun proteomics approach was used to characterize and compare the proteins that lead to the formation of a rich "protein corona" adsorbed onto the surfaces of cationic liposomes (CLs), lipoplexes, and lipid/polycation/DNA (LPD) complexes, when they come into contact with plasma. After separation of the nanoparticle-protein complex from plasma, the protein mixture was digested, and peptides were analyzed by nanoliquid chromatography-Orbitrap LTQ-XL mass spectrometry. The number of proteins bound to lipoplexes was double that of those identified in the corona of CLs (208 vs 105), while 77 proteins were common to both coronas. The number of proteins bound to the surface of the LPD complexes (158, 133 of which are common to lipoplexes) is intermediate between those found in the protein corona of both CLs and lipoplexes. About half of them were found in the protein corona of CLs. By overlapping the three formulations, it can be seen that only 12 proteins are peculiar to LPD complexes. These results may help in designing gene delivery systems capable of binding the minimum possible quantity of proteins that influence transfection negatively, binding selectively proteins capable of helping in steering in vivo the vector toward the target, and obtaining more efficient and effective gene therapy.

  10. Construction and evaluation of novel fusion proteins for targeted delivery of micro particles to cellulose surfaces.

    PubMed

    Lewis, William; Keshavarz-Moore, Eli; Windust, John; Bushell, Donna; Parry, Neil

    2006-07-01

    The use of IgG antibodies and fragments has been limited to specific sectors of the biotechnology industry due to the high cost of producing large batches of product necessary for alternative applications. A novel class of Camelid antibodies, known as V(HH) offer a more economical opportunity to meet a wider application in industry. In this study, we report the evaluation of four llama V(HH)-cellulose binding domain fusion proteins displaying varying formats of V(HH) and CBD domains. Proteins were characterized in a targeted particle delivery system as a method of delivering agents such as perfume to laundry in the wash cycle. Fusion proteins were shown to be stable at high pH and in the presence of a detergent base. They were also shown to bind effectively to both the designated antigen, the azo-dye reactive-red 6 (either conjugated to BSA or attached to coacervate microparticles), and cellulose. Binding strength differences were observed between the different fusion protein formats using surface plasmon resonance. The effect of key laundry ingredients was also studied. Combining the fusion proteins and particles into a delivery and deposition study generated clear microscopy evidence for bifunctionality. Confirmation of this was validated by GC-MS analysis of retained fragrance. This research, reporting the construction and characterization of a variety of fusion proteins, illustrates that the single multidomain fusion protein route offers a new technology for successful targeted delivery of encapsulated benefit agents. Furthermore, the potential to modify or select for proteins to recognize a wide range of surfaces is also possible.

  11. Delivery Mode, Duration of Labor, and Cord Blood Adiponectin, Leptin, and C-Reactive Protein: Results of the Population-Based Ulm Birth Cohort Studies

    PubMed Central

    Logan, Chad A.; Thiel, Larissa; Bornemann, Rebecca; Koenig, Wolfgang; Reister, Frank; Brenner, Hermann; Rothenbacher, Dietrich; Genuneit, Jon

    2016-01-01

    Background Numerous studies have reported associations between delivery mode and health outcomes in infancy and later life. Previous smaller studies indicated a relationship between delivery mode and newborn inflammation potentially constituting a mediating factor. We aimed to determine the influence of delivery mode and duration of labor on cord blood concentrations of adiponectin, leptin, and high-sensitivity C-reactive protein (hs-CRP). Methods In the Ulm SPATZ Health Study, 934 singleton newborns and their mothers were recruited during their hospital stay in the University Medical Center Ulm, Southern Germany, from 04/2012-05/2013. Inflammatory biomarkers were measured by ELISAs (n = 836). Delivery mode was analyzed categorically (elective cesarean (reference), active labor delivery: emergency cesarean, assisted vaginal, and spontaneous vaginal); duration of labor continuously. Following log-transformation, linear regression was used to estimate geometric means ratios (GMR) adjusted for potential confounders for the effects of delivery mode and duration of labor on each biomarker separately. Independent replication was sought in the similarly conducted Ulm Birth Cohort Study recruited from 11/2000-11/2001. Results Individually, active labor delivery modes as well as increasing duration of labor were associated with higher leptin and hs-CRP concentrations. After mutual adjustment, the associations with delivery modes were attenuated but those for duration of labor remained statistically significant (GMR (95%CI) 1.10 (1.00; 1.21) and 1.15 (1.04; 1.27) for leptin and hs-CRP per hour of labor, respectively). No significant adjusted associations were observed between delivery modes and adiponectin concentrations. These findings were replicated in an independent birth cohort study. Conclusions Cord blood leptin and hs-CRP concentrations were associated with duration of labor rather than delivery mode. Further research is warranted to investigate these associations

  12. The potential of protein-nanomaterial interaction for advanced drug delivery.

    PubMed

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented.

  13. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  14. SPE-39 Family Proteins Interact with the HOPS Complex and Function in Lysosomal Delivery

    PubMed Central

    Zhu, Guang-dan; Salazar, Gloria; Zlatic, Stephanie A.; Fiza, Babar; Doucette, Michele M.; Heilman, Craig J.; Levey, Allan I.

    2009-01-01

    Yeast and animal homotypic fusion and vacuole protein sorting (HOPS) complexes contain conserved subunits, but HOPS-mediated traffic in animals might require additional proteins. Here, we demonstrate that SPE-39 homologues, which are found only in animals, are present in RAB5-, RAB7-, and RAB11-positive endosomes where they play a conserved role in lysosomal delivery and probably function via their interaction with the core HOPS complex. Although Caenorhabditis elegans spe-39 mutants were initially identified as having abnormal vesicular biogenesis during spermatogenesis, we show that these mutants also have disrupted processing of endocytosed proteins in oocytes and coelomocytes. C. elegans SPE-39 interacts in vitro with both VPS33A and VPS33B, whereas RNA interference of VPS33B causes spe-39–like spermatogenesis defects. The human SPE-39 orthologue C14orf133 also interacts with VPS33 homologues and both coimmunoprecipitates and cosediments with other HOPS subunits. SPE-39 knockdown in cultured human cells altered the morphology of syntaxin 7-, syntaxin 8-, and syntaxin 13-positive endosomes. These effects occurred concomitantly with delayed mannose 6-phosphate receptor-mediated cathepsin D delivery and degradation of internalized epidermal growth factor receptors. Our findings establish that SPE-39 proteins are a previously unrecognized regulator of lysosomal delivery and that C. elegans spermatogenesis is an experimental system useful for identifying conserved regulators of metazoan lysosomal biogenesis. PMID:19109425

  15. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery.

    PubMed

    Jin, Kwang-Mi; Kim, Yong-Hee

    2008-05-01

    Injectable and thermo-reversible physical combination gels were formed in aqueous solution by preparing complex coacervate with two oppositely charged biomacromolecules that composed of negatively charged chondroitin 6-sulfate and positively charged high molecular weight gelatin type A and co-formulating with a negative, thermo-sensitive polysaccharide, methylcellulose containing a salting-out salt, ammonium sulfate. The combination of complex coacervation and a thermo-reversible gel demonstrated synergistic effects on the complex coacervate formation the release rates of model proteins and in situ gel depot formation. Gels indicated sustained release patterns of the protein over 25 days with minimal initial bursts. Optimized novel in situ gel depot systems containing dual advantages of complex coacervation and temperature responsiveness demonstrated a potential for efficient protein drug delivery in terms of high protein loading, sustained protein release, ease of administration, an aqueous environment without toxic organic solvents, and a simple fabrication method.

  16. Oral films as breakthrough tools for oral delivery of proteins/peptides.

    PubMed

    Castro, Pedro M; Fonte, Pedro; Sousa, Flávia; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2015-08-10

    Therapeutic proteins and peptides demonstrate unique, peerless, pharmacological characteristics such as high specificity to receptors and superior biological mimicking of physiological mechanisms, resulting in a better therapeutic index compared to conventional chemical-derived drugs. However, proteins also present inherent bioavailability limitations. Thus, this paper proposes several effective tools to improve protein/peptide drugs stability, permeability and pharmacokinetics with special emphasis on oral polymeric films as oral delivery platforms. Indeed, oral films present inherent characteristics that can greatly enhance biological performance of proteins and peptides and patient compliance along with other advantages that are critically discussed in this review. A rational choice of excipients addressed in and manufacture processes are also focused. In addition, possible toxicity issues to be overtaken and critical analysis regarding current market tendencies respecting oral films and protein/peptides along with future prospects are disclosed.

  17. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease.

    PubMed

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T

    2016-02-22

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.

  18. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease

    PubMed Central

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T.

    2016-01-01

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects. PMID:26907261

  19. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    PubMed

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions.

  20. Cell Penetrating Peptide POD Mediates Delivery of Recombinant Proteins to Retina, Cornea and Skin

    PubMed Central

    Johnson, Leslie N.; Cashman, Siobhan M.; Read, Sarah Parker; Kumar-Singh, Rajendra

    2009-01-01

    Recently we described a novel cell penetrating peptide, POD (peptide for ocular delivery) that could deliver small molecules including fluorescent dyes into retinal cells. The objective of the current study was to examine whether biologically relevant macromolecules such as proteins, genetically fused with POD could also be delivered into retinal tissues in vivo. We generated a POD-GFP fusion protein and examined its cell and tissue penetrating properties. We found that endogenously expressed POD-GFP fusion protein localized to the nucleus, suggesting that POD acts as a nuclear localization signal. Adenovirus (Ad) vectors expressing POD-GFP fusion protein were constructed and the recombinant protein was purified from Ad-infected human embryonic retinoblasts (HER). Exogenously supplied POD-GFP fusion protein rapidly transduced A549 and HER cells and colocalized in part with markers of late endosomes, from which it could escape. Following subretinal delivery, POD-GFP localized to the retinal pigment epithelium and the photoreceptor cell bodies. When injected into the vitreous, POD-GFP localized to the ganglion cells and the inner nuclear layer of the retina as well as the lens capsule. Topical application of POD-GFP to ocular surfaces resulted in uptake by the corneal epithelium. POD-GFP also transduced non-ocular tissues, including the epidermis of the skin following topical application. PMID:19733192

  1. Quantitative ToF-SIMS studies of protein drug release from biodegradable polymer drug delivery membranes

    NASA Astrophysics Data System (ADS)

    Burns, Sarah A.; Gardella, Joseph A.

    2008-12-01

    Biodegradable polymers are of interest in developing strategies to control protein drug delivery. The protein that was used in this study is Keratinocyte Growth Factor (KGF) which is a protein involved in the re-epithelialization process. The protein is stabilized in the biodegradable polymer matrix during formulation and over the course of polymer degradation with the use of an ionic surfactant Aerosol-OT (AOT) which will encapsulate the protein in an aqueous environment. The release kinetics of the protein from the surface of these materials requires precise timing which is a crucial factor in the efficacy of this drug delivery system. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used in the same capacity to identify the molecular ion peak of the surfactant and polymer and use this to determine surface concentration. In the polymer matrix, the surfactant molecular ion peak was observed in the positive and negative mode at m/ z 467 and 421, respectively. These peaks were determined to be [AOT + Na +] and [AOT - Na +]. These methods are used to identify the surfactant and protein from the polymer matrix and are used to measure the rate of surface accumulation. The second step was to compare this accumulation rate with the release rate of the protein into an aqueous solution during the degradation of the biodegradable film. This rate is compared to that from fluorescence spectroscopy measurements using the protein autofluorescence from that released into aqueous solution [C.M. Mahoney, J. Yu, A. Fahey, J.A.J. Gardella, SIMS depth profiling of polymer blends with protein based drugs, Appl. Surf. Sci. 252 (2006), 6609-6614.].

  2. Elaboration and characterization of soy/zein protein microspheres for controlled nutraceutical delivery.

    PubMed

    Chen, Lingyun; Subirade, Muriel

    2009-12-14

    Microspheres (15-25 microm) of soy protein isolate (SPI), zein, and SPI/zein blends were prepared using a cold gelation method as possible delivery systems for nutraceutical products. Microsphere matrix crystalline structure, swelling behavior, and nutrient load release kinetics in simulated gastrointestinal fluids were investigated. SPI microspheres showed early burst release of the model nutrient, whereas zein microspheres showed very slow release in both simulated gastric and intestinal fluids. Blending of SPI and zein provides a convenient method of adjusting the hydrophobicity and crystallinity of the protein matrix and hence its swelling behavior and in vivo nutrient release kinetics. Diffusion plays a major role in regulating nutrient release. SPI/zein microspheres blended at ratios of 5:5 and 3:7 showed near zero-order release kinetics over the test period in simulated intestinal buffer and thus have potential as delivery vehicles for nutraceutical products in functional foods.

  3. Protein-gold hybrid nanocubes for cell imaging and drug delivery.

    PubMed

    Ding, Han; Yang, Dongying; Zhao, Chen; Song, Zhuokun; Liu, Pengchang; Wang, Yu; Chen, Zhijun; Shen, Jiacong

    2015-03-01

    Multifunctional biocompatible nanomaterials containing both fluorescent and vehicle functions are highly favored in bioimaging, therapeutic, and drug delivery applications. Nevertheless, the rational design and synthesis of highly biocompatible multifunctional materials remain challenging. We present here the development of novel protein-gold hybrid nanocubes (PGHNs), which were assembled using gold nanoclusters, bovine serum albumin, and tryptophan as building blocks. The green-synthesized PGHNs in this study are blue-emitting under UV exposure and cube-shaped with a size of approximately 100 nm. These hybrid nanomaterials are highly biocompatible as shown by cytotoxicity experiments and can be readily internalized by different types of cells. Moreover, PGHNs can act as nanovehicles that successfully deliver dyes or drugs into the cells. The protein-metal hybrid nanocubes can serve as a new type of dual-purpose tool: a blue-emitting cell marker in bioimaging investigation and a nanocarrier in drug delivery studies. PMID:25669930

  4. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery

    PubMed Central

    Dai, Min; Frezzo, JA; Sharma, E; Chen, R; Singh, N; Yuvienco, C; Caglar, E; Xiao, S; Saxena, A; Montclare, JK

    2016-01-01

    We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising candidates for drug delivery vehicles. PMID:27081576

  5. Effective down-regulation of breast cancer resistance protein (BCRP) by siRNA delivery using lipid-substituted aliphatic polymers.

    PubMed

    Aliabadi, Hamidreza Montazeri; Landry, Breanne; Mahdipoor, Parvin; Hsu, Charlie Y M; Uludağ, Hasan

    2012-05-01

    Breast Cancer Resistance Protein (BCRP, ABCG2) is an efflux protein whose aberrant activity has been linked to multidrug resistance in cancer. Although siRNA delivery to down-regulate BCRP expression is promising to sensitize tumor cells against drugs, therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on target cells. This study explored the feasibility of special class of cationic polymers, namely lipid-substituted low molecular weight (2kDa) polyethyleneimine (PEI), as a carrier for siRNA-mediated BCRP down-regulation. Structure-function studies methodically evaluated the effect of a range of lipophilic substitutions for siRNA delivery and BCRP down-regulation. Our results showed a significant increase in siRNA delivery as a function of lipid substitution for a range of lipids ranging from C8 to C18. The BCRP silencing was correlated to siRNA delivery efficiency of the polymers, and effectively lasted for ∼5days after a single treatment of siRNA. BCRP down-regulation sensitized the drug-resistant cells to cytotoxic effect of mitoxantrone by a ∼14-fold decrease in the IC(50) value, whose effect was evident even after 14days. This study demonstrated the possibility of functional siRNA delivery by lipid-modified low molecular weight PEI and highlighted the importance of the extent and nature of lipid substitution in effective siRNA delivery. PMID:22311298

  6. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  7. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    PubMed Central

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  8. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches

    PubMed Central

    Velasco-Aguirre, Carolina; Morales, Francisco; Gallardo-Toledo, Eduardo; Guerrero, Simon; Giralt, Ernest; Araya, Eyleen; Kogan, Marcelo J

    2015-01-01

    An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood–brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed. PMID:26300639

  9. Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array.

    PubMed

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan; Prausnitz, Mark R; Allen, Mark G

    2012-04-10

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, intracellular delivery of molecules and transfection with plasmid DNA by electroporation is presented using a novel microneedle electrode array designed for the targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50% of cells and transfection of 12% of cells with a gene for green fluorescent protein is demonstrated at high cell viability. It is concluded that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA, and other biopharmaceuticals. PMID:22328093

  10. Ultrasonic-Activated Micellar Drug Delivery for Cancer Treatment

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    The use of nanoparticles and ultrasound in medicine continues to evolve. Great strides have been made in the areas of producing micelles, nanoemulsions and solid nanoparticles that can be used in drug delivery. An effective nanocarrier allows for the delivery of a high concentration of potent medications to targeted tissue while minimizing the side effect of the agent to the rest of the body. Polymeric micelles have been shown to encapsulate therapeutic agents and maintain their structural integrity at lower concentrations. Ultrasound is currently being used in drug delivery as well as diagnostics, and has many advantages that elevate its importance in drug delivery. The technique is non-invasive, thus no surgery is needed; the ultrasonic waves can be easily controlled by advanced electronic technology so that they can be focused on the desired target volume. Additionally, the physics of ultrasound are widely used and well understood; thus ultrasonic application can be tailored towards a particular drug delivery system. In this article, we review the recent progress made in research that utilizes both polymeric micelles and ultrasonic power in drug delivery. PMID:18506804

  11. PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery

    PubMed Central

    de Guzman, Roche C.; Rabbany, Sina Y.

    2016-01-01

    Protein drugs like growth factors are promising therapeutics for damaged-tissue repair. Their local delivery often requires biomaterial carriers for achieving the therapeutic dose range while extending efficacy. In this study, polyethylene glycol (PEG) and keratin were crosslinked and used as sponge-like scaffolds (KTN-PEG) to absorb test proteins with different isoelectric points (pI): albumin (~5), hemoglobin (~7), and lysozyme (~11). The protein release kinetics was influenced by charge at physiological pH 7.4. The keratin network, with pI 5.3, electrostatically attracted lysozyme and repulsed albumin generating the release rate profile: albumin > hemoglobin > lysozyme. However, under acidic conditions (pH 4), all proteins including keratins were positively charged and consequently intermolecular repulsion altered the release hierarchy, now determined by size (MW) diffusion: lysozyme (14 kDa) > hemoglobin (64 kDa) > albumin (66 kDa). Vascular endothelial growth factor C (VEGF-C), with properties comparable to lysozyme, was absorbed into the KTN-PEG scaffold. Endothelial cells cultured on this substrate had significantly larger numbers than on scaffolds without VEGF-C suggesting that the ionically bound and retained growth factor at neutral pH indirectly increased acute cell attachment and viability. PEG and keratin based sequestrations of proteins with basic pIs are therefore a feasible strategy with potential applications for selective biologics delivery. PMID:26904294

  12. Acidic domain in dentin phosphophoryn facilitates cellular uptake: implications in targeted protein delivery.

    PubMed

    Ravindran, Sriram; Snee, Preston T; Ramachandran, Amsaveni; George, Anne

    2013-05-31

    Dentin phosphophoryn is nature's most acidic protein found predominantly in the dentin extracellular matrix. Its unique amino acid composition containing Asp-Ser (DS)-rich repeats makes it highly anionic. It has a low isoelectric point (pI 1.1) and, therefore, tends to be negatively charged at physiological pH. Phosphophoryn is normally associated with matrix mineralization as it can bind avidly to Ca(2+). It is well known that several macromolecules present in the extracellular matrix can be internalized and localized to specific intracellular compartments. In this study we demonstrate that dentin phosphophoryn (DPP) is internalized by several cell types via a non-conventional endocytic process. Utilizing a DSS polypeptide derived from DPP, we demonstrate the repetitive DSS-rich domain facilitates that endocytosis. As a proof-of-concept, we further demonstrate the use of this polypeptide as a protein delivery vehicle by delivering the osteoblast transcription factor Runx2 to the nucleus of mesenchymal cells. The functionality of the endocytosed Runx2 protein was demonstrated by performing gene expression analysis of Runx2 target genes. Nuclear localization was also demonstrated with the fusion protein DSS-Runx2 conjugated to quantum dots in two- and three-dimensional culture models in vitro and in vivo. Overall, we demonstrate that the DSS domain of DPP functions as a novel cell-penetrating peptide, and these findings demonstrate new opportunities for intracellular delivery of therapeutic proteins and cell tracking in vivo.

  13. Endogenous protein phosphorylation and protein kinase activity in winged bean.

    PubMed

    Mukhopadhyay, K; Singh, M

    1997-10-01

    In winged bean (Psophocarpus tetragonolobus) protein kinases (E.C. 2.7.1.37) were found in all tissues studied. There was a significant increase in kinase activity during seed development, with a concomitant enhancement in the phosphorylation of a number of polypeptides; this was reversed in germinating seed cotyledons. Protein phosphorylation was apparently correlated with the increase in the protein content of the developing seed and the growing axis. At least three distinct autophosphorylating proteins could be distinguished in the developing seeds after SDS-PAGE, indicating the presence of different types of protein kinases in winged bean.

  14. Comparative analysis of the methods of drug and protein delivery for the treatment of cancer, genetic diseases and diagnostics.

    PubMed

    Todorova, Roumiana

    2011-11-01

    The methods of protein and drug delivery for the treatment of cancer, genetic diseases and diagnostics were summarized. The potential of protein transduction is discussed and the recent developments in the field are reviewed. An overview is provided of the non-viral delivery methods such as liposomes, polymer-based delivery, cell-penetrating peptides, bacterial secretion, cells, virosomes, physical methods including electroporation, microinjection, osmotic lysis, nanoparticles, sonoporation to locally inject therapeutic molecules. The characteristic properties of non-viral vectors and their use for the delivery of therapeutic molecules for the diagnosis and treatment of disorders and to target tumors are also discussed. The potential of the transduced peptides and proteins was used as new therapeutic compounds against infectious diseases, to complement deficiencies in specific genes, to specifically kill tumour cells, for gene therapy. The protein delivery vectors can enhance the transfection at low concentrations and help to develop future gene delivery systems with reduced toxicity. Vitamin B12, folic acid, biotin, and riboflavin are essential in the treatment of cancer. Ultrasound has a potential in the delivery of therapeutic agents. The new developing technologies of drug delivery and targeting offer the possibility to improve the therapeutic possibilities of the existing drugs and to develop novel therapeutics.

  15. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines

    PubMed Central

    2011-01-01

    Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials. PMID:21995317

  16. Development of novel drug delivery systems using phage display technology for clinical application of protein drugs

    PubMed Central

    NAGANO, Kazuya; TSUTSUMI, Yasuo

    2016-01-01

    Attempts are being made to develop therapeutic proteins for cancer, hepatitis, and autoimmune conditions, but their clinical applications are limited, except in the cases of drugs based on erythropoietin, granulocyte colony–stimulating factor, interferon-alpha, and antibodies, owing to problems with fundamental technologies for protein drug discovery. It is difficult to identify proteins useful as therapeutic seeds or targets. Another problem in using bioactive proteins is pleiotropic actions through receptors, making it hard to elicit desired effects without side effects. Additionally, bioactive proteins have poor therapeutic effects owing to degradation by proteases and rapid excretion from the circulatory system. Therefore, it is essential to establish a series of novel drug delivery systems (DDS) to overcome these problems. Here, we review original technologies in DDS. First, we introduce antibody proteomics technology for effective selection of proteins useful as therapeutic seeds or targets and identification of various kinds of proteins, such as cancer-specific proteins, cancer metastasis–related proteins, and a cisplatin resistance–related protein. Especially Ephrin receptor A10 is expressed in breast tumor tissues but not in normal tissues and is a promising drug target potentially useful for breast cancer treatment. Moreover, we have developed a system for rapidly creating functional mutant proteins to optimize the seeds for therapeutic applications and used this system to generate various kinds of functional cytokine muteins. Among them, R1antTNF is a TNFR1-selective antagonistic mutant of TNF and is the first mutein converted from agonist to antagonist. We also review a novel polymer-conjugation system to improve the in vivo stability of bioactive proteins. Site-specific PEGylated R1antTNF is uniform at the molecular level, and its bioactivity is similar to that of unmodified R1antTNF. In the future, we hope that many innovative protein drugs will

  17. Expression of cholera toxin B-lumbrokinase fusion protein in Pichia pastoris--the use of transmucosal carriers in the delivery of therapeutic proteins to protect rats against thrombosis.

    PubMed

    Chunfeng, Guan; Xiaozhou, Li; Gang, Wang; Jing, Ji; Chao, Jin; Josine, Tchouopou Lontchi

    2013-01-01

    Cholera toxin B-subunit (CTB) has been widely used to facilitate antigen delivery by serving as an effective mucosal carrier molecule for the induction of oral tolerance. However, whether CTB can be used as a transmucosal carrier in the delivery of not only vaccines but also therapeutic proteins has not been widely studied. Thus, we investigate here the concept of receptor-mediated oral delivery of lumbrokinase (LK) proteins which is an important fibrinolytic enzyme derived from earthworm. CTB and LK, separated by a furin cleavage site, was expressed via Pichia pastoris. The activity and proper folding of recombinant protein in yeast were confirmed by Western blot analysis, fibrin plate assays, and G(M1)-ganglioside ELISA. Following oral administration of recombinant protein, the thrombosis model of rats and mice revealed that the oral treatment of rCTB-LK has a more significant anti-thrombotic effect on animals compared with rLK. It is possible to conclude that CTB can successfully enhance its fusion protein LK to be absorbed. The use of CTB as a transmucosal carrier in the delivery of not only vaccines but also therapeutic proteins was supported. PMID:23269637

  18. Magnetically-Enabled and MR-Monitored Selective Brain Tumor Protein Delivery in Rats via Magnetic Nanocarriers

    PubMed Central

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2011-01-01

    The delivery of bioactive proteins to tumors is associated with many difficulties that have impeded clinical translation of these promising therapeutics. Herein we present an approach, including (1) use of magnetically-responsive and MRI-visible nanoparticles as drug carriers, (2) topography-optimized intra-arterial magnetic targeting, (3) MRI-guided subject alignment within the magnetic field, and (4) surface modification of the protein drug with membrane-permeable polyethyleneimine (PEI), to prevail over the obstacles in protein delivery. Applying these methodologies, we demonstrated the delivery of a significant quantity of β-Galactosidase selectively into brain tumors of glioma-bearing rats, while limiting the exposure of normal brain regions. Clinical viability of the technologies utilized, and the ability to deliver proteins at high nanomolar-range tumor concentrations, sufficient to completely eradicate a tumor lesion with existing picomolar-potency protein toxins, renders the prospect of enabling protein-based cancer therapy extremely promising. PMID:21632104

  19. Targeted delivery of siRNA to cell death proteins in sepsis

    PubMed Central

    Brahmamdam, Pavan; Watanabe, Eizo; Unsinger, Jacqueline; Chang, Katherine C.; Schierding, William; Hoekzema, Andrew S.; Zhou, Tony T.; McDonough, Jacquelyn S.; Holemon, Heather; Heidel, Jeremy D.; Coopersmith, Craig M.; McDunn, Jonathan E.; Hotchkiss, Richard S.

    2010-01-01

    Immune suppression is a major cause of morbidity and mortality in the septic patient. Apoptotic loss of immune effector cells such as CD4 T and B cells is a key component in the loss immune competence in sepsis. Inhibition of lymphocyte apoptosis has led to improved survival in animal models of sepsis. Using qRT-PCR of isolated splenic CD4 T and B cells, we determined that Bim and PUMA, two key cell death proteins, are markedly up-regulated during sepsis. Lymphocytes have been notoriously difficult to transfect with siRNA. Consequently a novel, cyclodextrin polymer-based, transferrin receptor-targeted, delivery vehicle was employed to co-administer siRNA to Bim and PUMA to mice immediately after cecal ligation and puncture. Anti-apoptotic siRNA based therapy markedly decreased lymphocyte apoptosis and prevented the loss of splenic CD4 T and B cells. Flow cytometry confirmed in vivo delivery of siRNA to CD4 T and B cells and also demonstrated decreases in intracellular Bim and PUMA protein. In conclusion, Bim and PUMA are two critical mediators of immune cell death in sepsis. Use of a novel cyclodextrin polymer-based, transferrin receptor-targeted siRNA delivery vehicle enables effective administration of anti-apoptotic siRNAs to lymphocytes and reverses the immune cell depletion that is a hallmark of this highly lethal disorder. PMID:19033888

  20. Gene Delivery Mediated by Recombinant Silk Proteins Containing Cationic and Cell Binding Motifs

    PubMed Central

    Numata, Keiji; Hamasaki, Juliana; Subramanian, Balajikarthick; Kaplan, David L

    2010-01-01

    Silk proteins are biodegradable and biocompatible, and can also be tailored to contain additional features via genetic engineering, suggesting utility for gene delivery. In the present study, novel silk-based block copolymers were bioengineered both with poly(L-lysine) domains to interact with plasmid DNA (pDNA) and RGD, to enhance cell-binding and transfection efficiency. Ionic complexes of these silk-polylysine-RGD block copolymers with pDNA were prepared, characterized and utilized for gene delivery to HeLa cells and human embryonic kidney (HEK) cells. The material systems were characterized by agarose gel electrophoresis, zeta-potentialmeter, atomic force microscopy, and dynamic light scattering. Sizes and charges of the pDNA complexes were regulated by the polymer/nucleotide molar ratio. Samples with 30-lysine residues and 11 RGD sequences, prepared at the ratio of number of amines/phosphates from pDNA (N/P) of 2, had an average solution diameter of 186 nm and showed the highest transfection efficiency. The intracellular distribution of complexes of Cy5-labeled pDNA was investigated by confocal laser scanning microscopy. The Cy5-labeled pDNA was distributed near the cell membrane and around the nuclei, indicating that the pDNA was transferred near the nucleus. The results demonstrated the potential of bioengineered silk proteins with additional functional features as a new family of highly tailored gene delivery systems. PMID:20457191

  1. [Development of heat shock proteins with controlled distribution properties and their application to vaccine delivery].

    PubMed

    Nishikawa, Makiya; Takemoto, Seiji; Takakura, Yoshinobu

    2007-02-01

    Antigen delivery to antigen-presenting cells (APCs) is a key issue in developing effective cancer vaccines. Controlling the tissue distribution of antigens, which are administered in a peptide/protein or DNA form, can increase antigen-specific immune responses, including the induction of cytotoxic T lymphocytes. Heat-shock protein 70 (Hsp70), a member of a highly conserved family of molecular chaperones, forms complexes with a variety of tumor-related antigens via its polypeptide binding domain. Because Hsp70 is taken up by APCs through the recognition by Hsp receptors, such as CD91 and LOX-1, its application to antigen delivery systems has been examined both in experimental and clinical settings. A tissue distribution study revealed that Hsp70 is mainly taken up by the liver, especially by hepatocytes, after intravenous injection in mice. A significant amount of Hsp70 was also delivered to regional lymph nodes when it was injected subcutaneously, supporting the hypothesis that Hsp70 is a natural targeting system to APCs. Model antigens were complexed with or conjugated to Hsp70, by which greater antigen-specific immune responses were achieved. Cytoplasmic delivery of Hsp70-antigen further increased the efficacy of the Hsp70-based vaccines. These findings indicate that effective cancer therapy can be achieved by developing Hsp70-based anticancer vaccines when their tissue and intracellular distribution is properly controlled. PMID:17268149

  2. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    NASA Astrophysics Data System (ADS)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  3. DELIVERY OF siRNA INTO BREAST CANCER CELLS VIA PHAGE FUSION PROTEIN-TARGETED LIPOSOMES

    PubMed Central

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A.; Gillespie, James W.; Deinnocentes, Patricia; Bird, R. Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P.; Petrenko, Valery A.

    2011-01-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers an unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF- 7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. PMID:21050894

  4. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hye

    patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to

  5. Electrothermally activated microchips for implantable drug delivery and biosensing.

    PubMed

    Maloney, John M; Uhland, Scott A; Polito, Benjamin F; Sheppard, Norman F; Pelta, Christina M; Santini, John T

    2005-12-01

    Novel drug delivery and biosensing devices have the potential to increase the efficacy of drug therapy by providing physicians and patients the ability to precisely control key therapy parameters. Such "intelligent" systems can enable control of dose amount and the time, rate, and location of drug delivery. We have developed and demonstrated the operation of an electrothermal mechanism to precisely control the delivery of drugs and exposure of biosensors. These microchip devices contain an array of individually sealed and actuated reservoirs, each capped by a thin metal membrane comprised of either gold or multiple layers of titanium and platinum. The passage of a threshold level of electric current through the membrane causes it to disintegrate, thereby exposing the protected contents (drugs or biosensors) of the reservoir to the surrounding environment. This paper describes the theory and experimental characterization of the electrothermal method and includes in vitro release results for a model compound.

  6. Cytoplasmic Delivery of Liposomes into MCF-7 Breast Cancer Cells Mediated by Cell-Specific Phage Fusion Coat Protein

    PubMed Central

    Wang, Tao; Yang, Shenghong; Petrenko, Valery A; Torchilin, Vladimir P

    2010-01-01

    Earlier, we have shown that doxorubicin-loaded liposomes (Doxil) modified with a chimeric phage fusion coat protein specific towards MCF-7 breast cancer cells identified from a phage landscape library demonstrated a significantly enhanced association with target cells and an increased cytotoxicity. Based on some structural similarities between the N-terminus of the phage potein and known fusogenic peptides, we hypothesized that, in addition to the specific targeting, the phage protein may possess endosome-escaping potential and an increased cytotoxicity of drug-loaded phage protein-targeted liposomes may be explained by an advantageous combination of both, cell targeting and endosomal escape of drug-loaded nanocarrier. The use of the fluorescence resonance energy transfer (FRET) technique allowed us to clearly demonstrate the pH-dependent membrane fusion activity of the phage protein. Endosomal escape and cytosolic delivery of phage-liposomes was visualized with fluorescence microscopy. Endosome acidification inhibition by bafilomycin A 1 resulted in decreased cytotoxicity of the phage-Doxil, while the endosome disruption by chloroquine had a negligible effect on efficacy of phage-Doxil, confirming its endosomal escape. Our results demonstrated an endosome-escaping property of the phage protein and provided an insight on mechanism of the enhanced cytotoxicity of phage-Doxil. PMID:20438086

  7. Complement activation and protein adsorption by carbon nanotubes.

    PubMed

    Salvador-Morales, Carolina; Flahaut, Emmanuel; Sim, Edith; Sloan, Jeremy; Green, Malcolm L H; Sim, Robert B

    2006-02-01

    As a first step to validate the use of carbon nanotubes as novel vaccine or drug delivery devices, their interaction with a part of the human immune system, complement, has been explored. Haemolytic assays were conducted to investigate the activation of the human serum complement system via the classical and alternative pathways. Western blot and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques were used to elucidate the mechanism of activation of complement via the classical pathway, and to analyse the interaction of complement and other plasma proteins with carbon nanotubes. We report for the first time that carbon nanotubes activate human complement via both classical and alternative pathways. We conclude that complement activation by nanotubes is consistent with reported adjuvant effects, and might also in various circumstances promote damaging effects of excessive complement activation, such as inflammation and granuloma formation. C1q binds directly to carbon nanotubes. Protein binding to carbon nanotubes is highly selective, since out of the many different proteins in plasma, very few bind to the carbon nanotubes. Fibrinogen and apolipoproteins (AI, AIV and CIII) were the proteins that bound to carbon nanotubes in greatest quantity.

  8. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: Preparation, magnetic targeting, cell cytotoxicity, and protein delivery research.

    PubMed

    Liu, Min-Chao; Jin, Shu-Fang; Zheng, Min; Wang, Yan; Zhao, Peng-Liang; Tang, Ding-Tong; Chen, Jiong; Lin, Jia-Qi; Wang, Xia-Hong; Zhao, Ping

    2016-08-01

    The clinical use of daunomycin is restricted by dose-dependent toxicity and low specificity against cancer cells. In the present study, modified superparamagnetic iron oxide nanoparticles were employed to load daunomycin and the drug-loaded nanospheres exhibited satisfactory size and smart pH-responsive release. The cellular uptake efficiency, targeted cell accumulation, and cell cytotoxicity experimental results proved that the superparamagnetic iron oxide nanoparticle-loading process brings high drug targeting without decreasing the cytotoxicity of daunomycin. Moreover, a new concern for the evaluation of nanophase drug delivery's effects was considered, with monitoring the interactions between human serum albumin and the drug-loaded nanospheres. Results from the multispectroscopic techniques and molecular modeling calculation elucidate that the drug delivery has detectable deleterious effects on the frame conformation of protein, which may affect its physiological function. PMID:27288463

  9. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates.

    PubMed

    Seras-Franzoso, Joaquin; Peebo, Karl; García-Fruitós, Elena; Vázquez, Esther; Rinas, Ursula; Villaverde, Antonio

    2014-03-01

    Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types.

  10. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  11. Delivery of Proteins, Peptides or Cell-impermeable Small Molecules into Live Cells by Incubation with the Endosomolytic Reagent dfTAT.

    PubMed

    Najjar, Kristina; Erazo-Oliveras, Alfredo; Pellois, Jean-Philippe

    2015-09-02

    Macromolecular delivery strategies typically utilize the endocytic pathway as a route of cellular entry. However, endosomal entrapment severely limits the efficiency with which macromolecules penetrate the cytosolic space of cells. Recently, we have circumvented this problem by identifying the reagent dfTAT, a disulfide bond dimer of the peptide TAT labeled with the fluorophore tetramethylrhodamine. We have generated a fluorescently labeled dimer of the prototypical cell-penetrating peptide (CPP) TAT, dfTAT, which penetrates live cells and reaches the cytosolic space of cells with a particularly high efficiency. Cytosolic delivery of dfTAT is achieved in multiple cell lines, including primary cells. Moreover, delivery does not noticeably impact cell viability, proliferation or gene expression. dfTAT can deliver small molecules, peptides, antibodies, biologically active enzymes and a transcription factor. In this report, we describe the protocols involved in dfTAT synthesis and cellular delivery. The manuscript describes how to control the amount of protein delivered to the cytosolic space of cells by varying the amount of protein administered extracellularly. Finally, the current limitations of this new technology and steps involved in validating delivery are discussed. The described protocols should be extremely useful for cell-based assays as well as for the ex vivo manipulation and reprogramming of cells.

  12. Activity-Based Protein Profiling of Microbes

    SciTech Connect

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  13. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    PubMed

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  14. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system

    PubMed Central

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2012-01-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins. PMID:16603603

  15. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system.

    PubMed

    Langella, P; Le Loir, Y

    1999-02-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria and are generally regarded as safe (GRAS) organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc) was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE) of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV) epitopeprotein fusion (BCV-Nuc). BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  16. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS.

    PubMed

    Peluffo, Hugo; Unzueta, Ugutz; Negro-Demontel, María Luciana; Xu, Zhikun; Váquez, Esther; Ferrer-Miralles, Neus; Villaverde, Antonio

    2015-01-01

    The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.

  17. Normal flora: living vehicles for non-invasive protein drug delivery.

    PubMed

    Shao, Jun; Kaushal, Gagan

    2004-11-22

    Feasibility to use probiotic bacteria as a living protein delivery system through oral route was assessed in vitro. Lactococcus lactis transformed with a plasmid to express and secret beta-lactamase was used to deliver beta-lactamase through Caco-2 monolayer, an intestine epithelium. Transport of beta-lactamase through Caco-2 monolayer was carried out in the transwells. The viability and integrity of the cell monolayers co-cultured with L. lactis was examined by trypan blue exclusion method and by measuring the transport of mannitol and propranolol as well as the transepithelial electrical resistance (TEER). Results show that it is feasible to use cell culture technique to evaluate the drug delivery by normal flora. The transport rate of beta-lactamase when delivered by L. lactis was 2.0 +/- 0.1 x 10(-2)h(-1) (n = 9) and through free solution form was 1.0 +/- 0.1 x 10(-2)h-1. When co-cultured with L. lactis, Caco-2 cell viability decreased to 98, 96, and 94% at 6, 8, and 10h, respectively. Transport of mannitol through Caco-2 cell monolayer was significantly increased and the transport of propranolol through Caco-2 cell monolayer was significantly decreased in the presence of L. lactis. Increase in the amount of protein delivered is probably due to the concentrate of the protein by L. lactis on the monolayer (absorption surface) and the opening of the tight junction of Caco-2 monolayer by L. lactis.

  18. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  19. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    PubMed

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  20. Low-activity waste feed delivery -- Minimum duration between successive batches

    SciTech Connect

    Peters, B.B.

    1998-08-25

    The purpose of this study is to develop a defensible basis for establishing what ``minimum duration`` will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates.

  1. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery.

    PubMed

    Wu, Jinhui; Song, Chenchen; Jiang, Chenxiao; Shen, Xin; Qiao, Qian; Hu, Yiqiao

    2013-10-01

    Over recent years, cell surface nucleolin as an anticancer target has attracted many researchers' attentions. To improve the antitumor efficacy, we developed a nucleolin targeted protein nanoparticle (NTPN) delivery system in which human serum albumin (HSA) was used as drug carrier and a DNA aptamer named AS1411, which had high affinity to nucleolin, was used as a bullet. The HSA nanoparticles (NPs-PTX) were fabricated by a novel self-assembly method and then modified with AS1411 (Apt-NPs-PTX). The resulted Apt-NPs-PTX were spherical. Compared with NPs-PTX, the uptake of Apt-NPs-PTX displayed a significant increase in MCF-7 cells while there was a decrease in nontumor cell lines such as MCF-10A and 3T3 cells. In a cytotoxic study, Apt-NPs-PTX displayed an enhanced cytotoxicity in MCF-7 tumor cells while there was almost no cytotoxicity in MCF-10A cells. Endostatin, a nucleolin inhibitor, could significantly decrease the internalization of Apt-NPs-PTX, suggesting nucleolin mediates the transmembrane process of Apt-NPs-PTX. Therefore, the AS1411 modified NTPN delivery system might be a promising targeted drug delivery system. PMID:23679916

  2. Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System.

    PubMed

    Osswald, Christian R; Kang-Mieler, Jennifer J

    2015-11-01

    In extended ocular drug delivery applications, it is necessary to exert control over the release characteristics of the drug. Design considerations must be made to limit the initial burst (IB) and ensure complete release of drug from the drug delivery system (DDS). In this study, ovalbumin was used as a model protein to explore the effects on release of polymer formulation and fabrication technique in poly(lactic-co-glycolic acid) (PLGA) microspheres. Furthermore, the effect on release of suspending these microspheres in an injectable, thermo-responsive poly(N-isopropylacrylamide)-based hydrogel was determined. To characterize release, ovalbumin was radiolabeled with iodine-125. Regardless of polymer formulation or fabrication technique, pulsatile release was achieved with a second burst occurring after ~70 days for microspheres alone. Suspending PLGA 75:25 microspheres within hydrogel reduced the IB by ~75%, delayed the second burst by 28 days, and extended release out to ~200 days with steadier, consistent release throughout compared to microspheres alone. The combined microsphere-hydrogel DDS remains injectable through small-gauge needles and may have many applications, namely ocular drug delivery to the posterior segment.

  3. Heat shock protein derivatives for delivery of antigens to antigen presenting cells.

    PubMed

    Nishikawa, Makiya; Takemoto, Seiji; Takakura, Yoshinobu

    2008-04-16

    Delivery of antigens to antigen presenting cells (APCs) is a key issue for developing effective cancer vaccines. Controlling the tissue distribution of antigens can increase antigen-specific immune responses, including the induction of cytotoxic T lymphocytes (CTL). Heat shock protein 70 (Hsp70) forms complexes with a variety of tumor-related antigens via its polypeptide-binding domain. Because Hsp70 is taken up by APCs through recognition by Hsp receptors, such as CD91 and LOX-1, its application to antigen delivery systems has been examined both in experimental and clinical settings. A tissue distribution study revealed that Hsp70 is mainly taken up by the liver, especially by hepatocytes, after intravenous injection in mice. A significant amount of Hsp70 was also delivered to regional lymph nodes when it was injected subcutaneously, supporting the hypothesis that Hsp70 is a natural targeting system for APCs. Model antigens were complexed with or conjugated to Hsp70, resulting in greater antigen-specific immune responses. Cytoplasmic delivery of Hsp70-antigen further increased the efficacy of the Hsp70-based vaccines. These findings indicate that effective cancer therapy can be achieved by developing Hsp70-based anticancer vaccines when their tissue and intracellular distribution is properly controlled. PMID:17980980

  4. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    PubMed

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  5. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  6. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  7. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients. PMID:26907692

  8. Biocompatibility of a Coacervate-Based Controlled Release System for Protein Delivery to the Injured Spinal Cord

    PubMed Central

    Rauck, Britta M.; Novosat, Tabitha L.; Oudega, Martin; Wang, Yadong

    2014-01-01

    The efficacy of protein-based therapies for treating injured nervous tissue is limited by the short half-life of free proteins in the body. Affinity-based biomaterial delivery systems provide sustained release of proteins, thereby extending the efficacy of such therapies. Here, we investigated the biocompatibility of a novel coacervate delivery system based on poly(ethylene argininylaspartate diglyceride) (PEAD) and heparin in the damaged spinal cord. We found that the presence of the [PEAD:heparin] coacervate did not affect the macrophage response, glial scarring, or nervous tissue loss, which are hallmarks of spinal cord injury. Moreover, the density of axons, including serotonergic axons, at the injury site and the recovery of motor and sensorimotor function were comparable in rats with and without the coacervate. These results revealed the biocompatibility of our delivery system and supported its potential to deliver therapeutic proteins to the injured nervous system. PMID:25266504

  9. Biocompatibility of a coacervate-based controlled release system for protein delivery to the injured spinal cord.

    PubMed

    Rauck, Britta M; Novosat, Tabitha L; Oudega, Martin; Wang, Yadong

    2015-01-01

    The efficacy of protein-based therapies for treating injured nervous tissue is limited by the short half-life of free proteins in the body. Affinity-based biomaterial delivery systems provide sustained release of proteins, thereby extending the efficacy of such therapies. Here, we investigated the biocompatibility of a novel coacervate delivery system based on poly(ethylene argininylaspartate diglyceride) (PEAD) and heparin in the damaged spinal cord. We found that the presence of the [PEAD:heparin] coacervate did not affect the macrophage response, glial scarring or nervous tissue loss, which are hallmarks of spinal cord injury. Moreover, the density of axons, including serotonergic axons, at the injury site and the recovery of motor and sensorimotor function were comparable in rats with and without the coacervate. These results revealed the biocompatibility of our delivery system and supported its potential to deliver therapeutic proteins to the injured nervous system.

  10. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents

    PubMed Central

    Peppas, Nicholas A.; Carr, Daniel A

    2009-01-01

    The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist. Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists. PMID:20161384

  11. Computational Introduction of Catalytic Activity into Proteins.

    PubMed

    Bertolani, Steve J; Carlin, Dylan Alexander; Siegel, Justin B

    2016-01-01

    Recently, there have been several successful cases of introducing catalytic activity into proteins. One method that has been used successfully to achieve this is the theozyme placement and enzyme design algorithms implemented in Rosetta Molecular Modeling Suite. Here, we illustrate how to use this software to recapitulate the placement of catalytic residues and ligand into a protein using a theozyme, protein scaffold, and catalytic constraints as input. PMID:27094294

  12. Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles

    PubMed Central

    Martins, Susana; Sarmento, Bruno; Ferreira, Domingos C; Souto, Eliana B

    2007-01-01

    This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns. PMID:18203427

  13. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles.

    PubMed

    Martins, Susana; Sarmento, Bruno; Ferreira, Domingos C; Souto, Eliana B

    2007-01-01

    This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns. PMID:18203427

  14. Design and characterization of calcium alginate microparticles coated with polycations as protein delivery system.

    PubMed

    Zarate, J; Virdis, L; Orive, G; Igartua, M; Hernández, R M; Pedraz, J L

    2011-01-01

    Bovine serum albumin (BSA) loaded calcium alginate microparticles (MPs) produced in this study by a w/o emulsification and external gelation method exhibited spherical and fairly smooth and porous morphology with 1.052 ± 0.057 µm modal particle size. The high permeability of the calcium alginate hydrogel lead to a potent burst effect and too fast protein release. To overcome these problems, MPs were coated with polycations, such as chitosan, poly-L-lysine and DEAE-dextran. Our results demonstrated that coated MPs showed slower release and were able to significantly reduce the release of BSA in the first hour. Therefore, this method can be applied to prepare coated alginate MPs which could be an optimal system for the controlled release of biotherapeutic molecules. Nevertheless, further studies are needed to optimize delivery properties which could provide a sustained release of proteins.

  15. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  16. Nanoporous membrane based on block copolymer thin film for protein drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yun; Yang, Jeong-A.; Kim, Eung-Sam; Jeon, Gumhye; Oh, Eun Ju; Choi, Kwan Yong; Hahn, Sei Kwang; Kim, Jin Kon

    2010-03-01

    We studied long term and controlled release of protein drugs by using nanoporous membranes with various pore sizes. Nanoporous membrane consists of the separation layer prepared by polystyrene-block-poly(methylmethacrylate) copolymer thin film and conventional microfiltration membrane as a support. We demonstrate a long-term constant in vitro release of bovine serum albumin (BSA)and human growth hormone ) (hGH) without their denaturation up to 2 months. A nearly constant serum concentration of hGH was maintained up to 3 weeks in SD rats. The long-term constant delivery based on this membrane for protein drugs within the therapeutic range can be highly appreciated for the patients with hormone- deficiency.

  17. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines.

    PubMed

    Rizwan, S B; Assmus, D; Boehnke, A; Hanley, T; Boyd, B J; Rades, T; Hook, S

    2011-09-01

    Different delivery strategies to improve the immunogenicity of peptide/protein-based vaccines are currently under investigation. In this study, the preparation and physicochemical characterisation of cubosomes, a novel lipid-based particulate system currently being explored for vaccine delivery, was investigated. Cubosomes were prepared from a liquid precursor mixture containing phytantriol or glycerylmonooleate (GMO), F127 for particle stabilisation, and a hydrotrope (ethanol or polyethylene glycol (PEG(200)) or propylene glycol (PG)). Several liquid precursors were prepared, and the effect of varying the concentrations of F127 and the hydrotrope on cubosome formation was investigated. Formulations were prepared by fragmentation for comparison. The model protein ovalbumin (Ova) was also entrapped within selected formulations. Submicron-sized particles (180-300 nm) were formed spontaneously upon dilution of the liquid precursors, circumventing the need for the preformed cubic phase used in traditional fragmentation-based methods. The nanostructure of the phytantriol dispersions was determined to be cubic phase using SAXS whilst GMO dispersions had a reverse hexagonal nanostructure coexisting with cubic phase. The greatest entrapment of Ova was within phytantriol cubosomes prepared from liquid precursors. Release of Ova from the various formulations was sustained; however, release was significantly faster and the extent of release was greater from fragmented dispersions compared to liquid precursor formulations. Taken together, these results suggest that phytantriol cubosomes can be prepared using liquid precursors and that it is a suitable alternative to GMO. Furthermore, the high entrapment and the slow release of Ova in vitro highlight the potential of phytantriol cubosomes prepared using liquid precursors as a novel vaccine delivery system.

  18. Shiga-like toxin-based high-efficiency and receptor-specific intracellular delivery system for a protein.

    PubMed

    Ryou, Jeong-Hyun; Sohn, Yoo-Kyoung; Hwang, Da-Eun; Kim, Hak-Sung

    2015-09-01

    The cell-specific cytosolic delivery of functional macromolecules with high efficiency is of great significance in molecular medicine and biotechnology. Herein, we present a Shiga-like toxin II-based high-efficiency and receptor-specific intracellular delivery system. We designed and constructed the Shiga-like toxin-based carrier (STC) to comprise the targeting and translocation domains, and used it for delivering a protein cargo. The STC was shown to deliver a protein cargo into the cytosol with high efficiency in a receptor-specific manner, exhibiting much higher efficiency than the most widely used cell-penetrating peptide. The general utility of the STC was demonstrated by modulating the targeting domain. The present delivery platform can be widely used for the intracellular delivery of diverse biomolecules in a receptor-specific and genetically encodable manner.

  19. Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ernenwein, Dawn M.

    2011-12-01

    Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an

  20. A novel protocol allowing oral delivery of a protein complement inhibitor that subsequently targets to inflamed colon mucosa and ameliorates murine colitis.

    PubMed

    Elvington, M; Blichmann, P; Qiao, F; Scheiber, M; Wadsworth, C; Luzinov, I; Lucero, J; Vertegel, A; Tomlinson, S

    2014-08-01

    While there is evidence of a pathogenic role for complement in inflammatory bowel disease, there is also evidence for a protective role that relates to host defence and protection from endotoxaemia. There is thus concern regarding the use of systemic complement inhibition as a therapeutic strategy. Local delivery of a complement inhibitor to the colon by oral administration would ameliorate such concerns, but while formulations exist for oral delivery of low molecular weight drugs to the colon, they have not been used successfully for oral delivery of proteins. We describe a novel pellet formulation consisting of cross-linked dextran coated with an acrylic co-polymer that protects the complement inhibitor CR2-Crry from destruction in the gastrointestinal tract. CR2-Crry containing pellets administered by gavage, were characterized using a therapeutic protocol in a mouse model of dextran sulphate sodium (DSS)-induced colitis. Oral treatment of established colitis over a 5-day period significantly reduced mucosal inflammation and injury, with similar therapeutic benefit whether or not the proton pump inhibitor, omeprazole, was co-administered. Reduction in injury was associated with the targeting of CR2-Crry to the mucosal surface and reduced local complement activation. Treatment had no effect on systemic complement activity. This novel method for oral delivery of a targeted protein complement inhibitor will reduce systemic effects, thereby decreasing the risk of opportunistic infection, as well as lowering the required dose and treatment cost and improving patient compliance. Furthermore, the novel delivery system described here may provide similar benefits for administration of other protein-based drugs, such as anti-tumour necrosis factor-α antibodies.

  1. A novel protocol allowing oral delivery of a protein complement inhibitor that subsequently targets to inflamed colon mucosa and ameliorates murine colitis

    PubMed Central

    Elvington, M; Blichmann, P; Qiao, F; Scheiber, M; Wadsworth, C; Luzinov, I; Lucero, J; Vertegel, A; Tomlinson, S

    2014-01-01

    While there is evidence of a pathogenic role for complement in inflammatory bowel disease, there is also evidence for a protective role that relates to host defence and protection from endotoxaemia. There is thus concern regarding the use of systemic complement inhibition as a therapeutic strategy. Local delivery of a complement inhibitor to the colon by oral administration would ameliorate such concerns, but while formulations exist for oral delivery of low molecular weight drugs to the colon, they have not been used successfully for oral delivery of proteins. We describe a novel pellet formulation consisting of cross-linked dextran coated with an acrylic co-polymer that protects the complement inhibitor CR2-Crry from destruction in the gastrointestinal tract. CR2-Crry containing pellets administered by gavage, were characterized using a therapeutic protocol in a mouse model of dextran sulphate sodium (DSS)-induced colitis. Oral treatment of established colitis over a 5-day period significantly reduced mucosal inflammation and injury, with similar therapeutic benefit whether or not the proton pump inhibitor, omeprazole, was co-administered. Reduction in injury was associated with the targeting of CR2-Crry to the mucosal surface and reduced local complement activation. Treatment had no effect on systemic complement activity. This novel method for oral delivery of a targeted protein complement inhibitor will reduce systemic effects, thereby decreasing the risk of opportunistic infection, as well as lowering the required dose and treatment cost and improving patient compliance. Furthermore, the novel delivery system described here may provide similar benefits for administration of other protein-based drugs, such as anti-tumour necrosis factor-α antibodies. PMID:24730624

  2. A novel protocol allowing oral delivery of a protein complement inhibitor that subsequently targets to inflamed colon mucosa and ameliorates murine colitis.

    PubMed

    Elvington, M; Blichmann, P; Qiao, F; Scheiber, M; Wadsworth, C; Luzinov, I; Lucero, J; Vertegel, A; Tomlinson, S

    2014-08-01

    While there is evidence of a pathogenic role for complement in inflammatory bowel disease, there is also evidence for a protective role that relates to host defence and protection from endotoxaemia. There is thus concern regarding the use of systemic complement inhibition as a therapeutic strategy. Local delivery of a complement inhibitor to the colon by oral administration would ameliorate such concerns, but while formulations exist for oral delivery of low molecular weight drugs to the colon, they have not been used successfully for oral delivery of proteins. We describe a novel pellet formulation consisting of cross-linked dextran coated with an acrylic co-polymer that protects the complement inhibitor CR2-Crry from destruction in the gastrointestinal tract. CR2-Crry containing pellets administered by gavage, were characterized using a therapeutic protocol in a mouse model of dextran sulphate sodium (DSS)-induced colitis. Oral treatment of established colitis over a 5-day period significantly reduced mucosal inflammation and injury, with similar therapeutic benefit whether or not the proton pump inhibitor, omeprazole, was co-administered. Reduction in injury was associated with the targeting of CR2-Crry to the mucosal surface and reduced local complement activation. Treatment had no effect on systemic complement activity. This novel method for oral delivery of a targeted protein complement inhibitor will reduce systemic effects, thereby decreasing the risk of opportunistic infection, as well as lowering the required dose and treatment cost and improving patient compliance. Furthermore, the novel delivery system described here may provide similar benefits for administration of other protein-based drugs, such as anti-tumour necrosis factor-α antibodies. PMID:24730624

  3. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration.

    PubMed

    Badieyan, Zohreh Sadat; Berezhanskyy, Taras; Utzinger, Maximilian; Aneja, Manish Kumar; Emrich, Daniela; Erben, Reinhold; Schüler, Christiane; Altpeter, Philipp; Ferizi, Mehrije; Hasenpusch, Günther; Rudolph, Carsten; Plank, Christian

    2016-10-10

    Transcript therapies using chemically modified messenger RNAs (cmRNAs) are emerging as safe and promising alternatives for gene and recombinant protein therapies. However, their applications have been limited due to transient translation and relatively low stability of cmRNAs compared to DNA. Here we show that vacuum-dried cmRNA-loaded collagen sponges, termed transcript activated matrices (TAMs), can serve as depots for sustained delivery of cmRNA. TAMs provide steady state protein production for up to six days, and substantial residual expression until 11days post transfection. Another advantage of this technology was nearly 100% transfection efficiency as well as low toxicity in vitro. TAMs were stable for at least 6months at room temperature. Human BMP-2-encoding TAMs induced osteogenic differentiation of MC3T3-E1 cells in vitro and bone regeneration in a non-critical rat femoral bone defect model in vivo. In summary, TAMs are a promising tool for bone regeneration and potentially also for other applications in regenerative medicine and tissue engineering. PMID:27586186

  4. Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells.

    PubMed

    Lu, Ling; Zou, Yan; Yang, Weijing; Meng, Fenghua; Deng, Chao; Cheng, Ru; Zhong, Zhiyuan

    2015-06-01

    In spite of their high potency and specificity, few protein drugs have advanced to the clinical settings due to lack of safe and efficient delivery vehicles. Here, novel anisamide-decorated pH-sensitive degradable chimaeric polymersomes (Anis-CPs) were designed, prepared, and investigated for efficient and targeted delivery of apoptotic protein, granzyme B (GrB), to lung cancer cells. Anis-CPs were readily prepared with varying Anis surface densities from anisamide end-capped poly(ethylene glycol)-b-poly(2,4,6- trimethoxybenzylidene-1,1,1-tris(hydroxymethyl)ethane methacrylate)-b-poly(acrylic acid) (Anis-PEG-PTTMA-PAA) and PEG-PTTMA-PAA copolymers. Using cytochrome C (CC) as a model protein, Anis-CPs displayed high protein loading efficiencies (40.5-100%) and loading contents (up to 16.8 wt %). CC-loaded Anis-CPs had narrow distribution (PDI 0.04-0.13) and small sizes ranging from 152 to 171 nm, which increased with increasing CC contents. Notably, the release of proteins from Anis-CPs was accelerated under mildly acidic conditions, due to the hydrolysis of acetal bonds in PTTMA. MTT assays showed that GrB-loaded Anis-CPs (GrB-Anis-CPs) displayed high targetability to sigma receptor overexpressing cancer cells such as H460 and PC-3 cells. For example, GrB-Anis-CPs exhibited increasing antitumor efficacy to H460 cells with increasing Anis contents from 0 to 80%. The antitumor activity of GrB-Anis-CPs was significantly reduced upon pretreating H460 cells with haloperidol (a competitive antagonist). Notably, the half-maximal inhibitory concentrations (IC50) of GrB-Anis70-CPs were determined to be 6.25 and 5.94 nM for H460 and PC-3 cells, respectively, which were 2-3 orders of magnitude lower than that of chemotherapeutic drugs, such as paclitaxel. Flow cytometry studies demonstrated that GrB-Anis70-CPs induced widespread apoptosis of H460 cells. The confocal laser scanning microscopy (CLSM) experiments using FITC-labeled CC-loaded Anis-CPs confirmed fast

  5. Intramuscular delivery of a naked DNA plasmid encoding proinsulin and pancreatic regenerating III protein ameliorates type 1 diabetes mellitus.

    PubMed

    Hou, Wen-Rui; Xie, Sheng-Nan; Wang, Hong-Jie; Su, Yu-Yong; Lu, Jing-Li; Li, Lu-Lu; Zhang, Sha-Sha; Xiang, Ming

    2011-04-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by inflammation of pancreatic islets and destruction of β cells. Up to now, there is still no cure for this devastating disease and alternative approach should be developed. To explore a novel gene therapy strategy combining immunotherapy and β cell regeneration, we constructed a non-viral plasmid encoding proinsulin (PI) and pancreatic regenerating (Reg) III protein (pReg/PI). Therapeutic potentials of this plasmid for T1DM were investigated. Intramuscular delivery of pReg/PI resulted in a significant reduction in hyperglycemia and diabetes incidence, with an increased insulin contents in the serum of T1DM mice model induced by STZ. Treatment with pReg/PI also restored the balance of Th1/Th2 cytokines and expanded CD4(+)CD25(+)Foxp3(+) T regulatory cells, which may attribute to the establishment of self-immune tolerance. Additionally, in comparison to the mice treated with empty vector pBudCE4.1 (pBud), attenuated insulitis and apoptosis achieved by inhibiting activation of NF-κB in the pancreas of pReg/PI treated mice were observed. In summary, these results indicate that intramuscular delivery of pReg/PI distinctly ameliorated STZ-induced T1DM by reconstructing the immunological self-tolerance and promoting the regeneration of β cells, which might be served as a promising candidate for the gene therapy of T1DM.

  6. A heparin-mimicking reverse thermal gel for controlled delivery of positively charged proteins

    PubMed Central

    Peña, Brisa; Shandas, Robin; Park, Daewon

    2014-01-01

    Positively charged therapeutic proteins have been used extensively for biomedical applications. However, the safety and efficacy of proteins are mostly limited by their physical and chemical instability and short half-lives in physiological conditions. To this end, we created a heparin-mimicking sulfonated reverse thermal gel as a novel protein delivery system by sulfonation of a graft copolymer, poly(serinol hexamethylene urea)-co-poly(N-isopropylacylamide), or PSHU-NIPAAm. The net charge of the sulfonated PSHU-NIPAAm was negative due to the presence of sulfonate groups. The sulfonated PSHU-NIPAAm showed a typical temperature-dependent sol-gel phase transition, where polymer solutions turned to a physical gel at around 32°C and maintained gel status at body temperature. Both in vitro cytotoxicity tests using C2C12 myoblast cells and in vivo cytotoxicity tests by subcutaneous injections demonstrated excellent biocompatibility. In vitro release tests using bovine serum albumin (BSA) revealed that the release from the sulfonated PSHU-NIPAAm was more sustained than that from the plain PSHU-NIPAAm. Furthermore, this sulfonated PSHU-NIPAAm system did not affect protein structure after 70-day observation periods. PMID:25294242

  7. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells.

    PubMed

    Galán, Jorge E; Lara-Tejero, Maria; Marlovits, Thomas C; Wagner, Samuel

    2014-01-01

    One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.

  8. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells

    PubMed Central

    Galán, Jorge E.; Lara-Tejero, Maria; Marlovits, Thomas C.; Wagner, Samuel

    2015-01-01

    One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilized complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen’s benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants, but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies. PMID:25002086

  9. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles

    SciTech Connect

    Asteriti, Sabrina; Dal Cortivo, Giuditta; Pontelli, Valeria; Cangiano, Lorenzo; Buffelli, Mario; Dell’Orco, Daniele

    2015-06-12

    The potential of liposomes to deliver functional proteins in retinal photoreceptors and modulate their physiological response was investigated by two experimental approaches. First, we treated isolated mouse retinas with liposomes encapsulating either recoverin, an important endogenous protein operating in visual phototransduction, or antibodies against recoverin. We then intravitrally injected in vivo liposomes encapsulating either rhodamin B or recoverin and we investigated the distribution in retina sections by confocal microscopy. The content of liposomes was found to be released in higher amount in the photoreceptor layer than in the other regions of the retina and the functional effects of the release were in line with the current model of phototransduction. Our study sets the basis for quantitative investigations aimed at assessing the potential of intraocular protein delivery via biocompatible nanovesicles, with promising implications for the treatment of retinal diseases affecting the photoreceptor layer. - Highlights: • Recombinant proteins encapsulated in nano-sized liposomes injected intravitreally reach retinal photoreceptors. • The phototransduction cascade in rods is modulated by the liposome content. • Mathematical modeling predicts the alteration of the photoresponses following liposome fusion.

  10. Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins

    PubMed Central

    Fu, Hailuo; Day, Delbert E.; Brown, Roger F.

    2011-01-01

    Hollow hydroxyapatite (HA) microspheres were prepared by reacting solid microspheres of Li2O–CaO–B2O3 glass (106–150 μm) in K2HPO4 solution, and evaluated as a controlled delivery device for a model protein, bovine serum albumin (BSA). Reaction of the glass microspheres for 2 days in 0.02 M K2HPO4 solution (pH = 9) at 37°C resulted in the formation of biocompatible HA microspheres with a hollow core diameter equal to 0.6 the external diameter, high surface area (~100 m2/g), and a mesoporous shell wall (pore size ≈13 nm). After loading with a solution of BSA in phosphate-buffered saline (PBS) (5 mg BSA/ml), the release kinetics of BSA from the HA microspheres into a PBS medium were measured using a micro bicinchoninic acid (BCA) protein assay. Release of BSA initially increased linearly with time, but almost ceased after 24–48 h. Modification of the BSA release kinetics was achieved by modifying the microstructure of the as-prepared HA microspheres using a controlled heat treatment (1–24 h at 600–900°C). Sustained release of BSA was achieved over 7–14 days from HA microspheres heated for 5 h at 600°C. The amount of BSA released at a given time was dependent on the concentration of BSA initially loaded into the HA microspheres. These hollow HA microspheres could provide a novel inorganic device for controlled local delivery of proteins and drugs. PMID:21290170

  11. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the

  12. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    PubMed

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  13. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.

    PubMed

    Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C

    2016-01-01

    Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. PMID:26616142

  14. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin.

    PubMed

    Lim, Hui-Peng; Tey, Beng-Ti; Chan, Eng-Seng

    2014-07-28

    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.

  15. TALE proteins bind to both active and inactive chromatin.

    PubMed

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  16. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  17. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity.

    PubMed

    Fernández-Ulibarri, Inés; Hammer, Katharina; Arndt, Michaela A E; Kaufmann, Johanna K; Dorer, Dominik; Engelhardt, Sarah; Kontermann, Roland E; Hess, Jochen; Allgayer, Heike; Krauss, Jürgen; Nettelbeck, Dirk M

    2015-05-01

    Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof.

  18. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  19. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug.

    PubMed

    Lee, Jong Hyun; Sahu, Abhishek; Choi, Won Il; Lee, Jae Young; Tae, Giyoong

    2016-10-01

    In this study, we developed a dual ligand functionalized pluronic-based nanocarrier (NC) for oral delivery of insulin. Chitosan and zonula occludins toxin (ZOT)-derived, tight junction opening peptide were conjugated to NC to increase the permeability of loaded insulin across the small intestine through the paracellular pathway. Surface functionalized NC, either by chitosan or peptide, could modulate the tight junction (TJ) integrity in contrast to no effect of unmodified NC, as evidenced by the change in transepithelial electrical resistance (TEER) and immunostaining of Claudin-4, a tight junction marker, in Caco-2 cell monolayer. On the other hand, dual ligand (chitosan and peptide) functionalized NC significantly further increased the permeation of insulin across Caco-2 cell monolayer. More importantly, insulin loaded, dual ligand functionalized NC could increase the plasma insulin level and efficiently regulate the glycemic response for a prolonged period of time (∼1 day) upon oral administration to diabetic rats, whereas delivery of insulin by single ligand functionalized NCs, either by chitosan or peptide, as well as by unmodified NC and free insulin, could not induce the effective regulation of the blood glucose level. The use of fluorescence dye labeled insulin (FITC-insulin) and Cy5.5 labeled NC revealed that both insulin and dual ligand functionalized NC were adequately penetrated across the whole intestine villi in contrast to limited adsorption of insulin and NC mainly onto the epithelial surface of the intestine for single ligand functionalized NCs. These results suggest that dual conjugation of ZOT-derived peptide and chitosan is a promising approach to functionalize the surface of nanocarrier for oral delivery of protein drugs. PMID:27380442

  20. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug.

    PubMed

    Lee, Jong Hyun; Sahu, Abhishek; Choi, Won Il; Lee, Jae Young; Tae, Giyoong

    2016-10-01

    In this study, we developed a dual ligand functionalized pluronic-based nanocarrier (NC) for oral delivery of insulin. Chitosan and zonula occludins toxin (ZOT)-derived, tight junction opening peptide were conjugated to NC to increase the permeability of loaded insulin across the small intestine through the paracellular pathway. Surface functionalized NC, either by chitosan or peptide, could modulate the tight junction (TJ) integrity in contrast to no effect of unmodified NC, as evidenced by the change in transepithelial electrical resistance (TEER) and immunostaining of Claudin-4, a tight junction marker, in Caco-2 cell monolayer. On the other hand, dual ligand (chitosan and peptide) functionalized NC significantly further increased the permeation of insulin across Caco-2 cell monolayer. More importantly, insulin loaded, dual ligand functionalized NC could increase the plasma insulin level and efficiently regulate the glycemic response for a prolonged period of time (∼1 day) upon oral administration to diabetic rats, whereas delivery of insulin by single ligand functionalized NCs, either by chitosan or peptide, as well as by unmodified NC and free insulin, could not induce the effective regulation of the blood glucose level. The use of fluorescence dye labeled insulin (FITC-insulin) and Cy5.5 labeled NC revealed that both insulin and dual ligand functionalized NC were adequately penetrated across the whole intestine villi in contrast to limited adsorption of insulin and NC mainly onto the epithelial surface of the intestine for single ligand functionalized NCs. These results suggest that dual conjugation of ZOT-derived peptide and chitosan is a promising approach to functionalize the surface of nanocarrier for oral delivery of protein drugs.

  1. Increased flexibility decreases antifreeze protein activity

    PubMed Central

    Patel, Shruti N; Graether, Steffen P

    2010-01-01

    Antifreeze proteins protect several cold-blooded organisms from subzero environments by preventing death from freezing. The Type I antifreeze protein (AFP) isoform from Pseudopleuronectes americanus, named HPLC6, is a 37-residue protein that is a single α-helix. Mutational analysis of the protein showed that its alanine-rich face is important for binding to and inhibiting the growth of macromolecular ice. Almost all structural studies of HPLC6 involve the use of chemically synthesized protein as it requires a native N-terminal aspartate and an amidated C-terminus for full activity. Here, we examine the role of C-terminal amide and C-terminal arginine side chain in the activity, structure, and dynamics of nonamidated Arg37 HPLC6, nonamidated HPLC6 Ala37, amidated HPLC6 Ala37, and fully native HPLC6 using a recombinant bacterial system. The thermal hysteresis (TH) activities of the nonamidated mutants are 35% lower compared with amidated proteins, but analysis of the NMR data and circular dichroism spectra shows that they are all still α-helical. Relaxation data from the two nonamidated mutants indicate that the C-terminal residues are considerably more flexible than the rest of the protein because of the loss of the amide group, whereas the amidated Ala37 mutant has a C-terminus that is as rigid as the wild-type protein and has high TH activity. We propose that an increase in flexibility of the AFP causes it to lose activity because its dynamic nature prevents it from binding strongly to the ice surface. PMID:20936690

  2. Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors

    PubMed Central

    Lai, Zhennan; Han, Ina; Zirzow, Gregory; Brady, Roscoe O.; Reiser, Jakob

    2000-01-01

    Effective gene therapy depends on the efficient transfer of therapeutic genes and their protein products to target cells. Lentiviral vectors appear promising for virus-mediated gene delivery and long-term expression in nondividing cells. The herpes simplex virus type 1 tegument protein VP22 has recently been shown to mediate intercellular transport of proteins, raising the possibility that it may be helpful in a setting where the global delivery of therapeutic proteins is desired. To investigate the effectiveness of lentiviral vectors to deliver genes encoding proteins fused to VP22, and to test whether the system is sufficiently potent to allow protein delivery from transduced cells in vitro and in vivo, fusion constructs of VP22 and the enhanced green fluorescent protein (EGFP) were prepared and delivered into target cells by using HIV-1-based lentiviral vectors. To follow the spread of VP22-EGFP to other cells, transduced COS-7 cells were coplated with a number of different cell types, including brain choroid plexus cells, human endothelial cells, H9 cells, and HeLa cells. We found that VP22-EGFP fusion proteins were transported from transduced cells to recipient cells and that such fusion proteins accumulated in the nucleus and in the cytoplasm of such cells. To determine the ability to deliver fusion proteins in vivo, we injected transduced H9 cells as well as the viral vector directly into the brain of mice. We present evidence that VP22-EGFP fusion proteins were transported effectively from lentivirus transduced cells in vivo. We also show that the VP22-EGFP fusion protein encoded by the lentivirus is transported between cells. Our data indicate that such fusion proteins are present in the nucleus and in the cytoplasm of neighboring cells. Therefore, lentiviral vectors may provide a potent biological system for delivering genes encoding therapeutic proteins fused to VP22. PMID:11027330

  3. Self-assembly of DNA and cell-adhesive proteins onto pH-sensitive inorganic crystals for precise and efficient transgene delivery.

    PubMed

    Chowdhury, E H

    2008-01-01

    Intracellular delivery of a functional gene or a gene-silencing DNA or RNA sequence is expected to be a powerful tool for treating critical human diseases very precisely and effectively. One of the major hurdles to the successful delivery of a nucleic acid with nanoparticles is the transport across the plasma membrane. The existence of various and numerous cell surface receptors with potential capability of being internalized by cells upon ligand binding unveils the ways of overcoming the barrier by targeting the nanoparticles to specific receptor. This review will reveal the current progress on utilizing the cell adhesion molecules as targeting receptors for transgene delivery, with a special focus on the design of bio-functionalized inorganic nanocrystals using both naturally occurring and genetically engineered cell adhesive proteins for high efficiency transfection of embryonic stem cells. Self-assembly of both DNA and cell-adhesive proteins, such as fibronectin and E-cadherin-Fc into the growing nanocrystals of carbonate apatite leads to their high affinity interactions with fibronectin-specific integrins and E-cadherin in embryonic stem cell surface and accelerates transgene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced transgene delivery with a value notably higher than that of commercially available lipofection system. Activation of protein kinase C (PKC) dramatically enhances transgene expression probably by up-regulating both integrin and E-cadherin. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  4. pH and reduction dual-bioresponsive polymersomes for efficient intracellular protein delivery.

    PubMed

    Zhang, Jinchao; Wu, Liangliang; Meng, Fenghua; Wang, Zhongjuan; Deng, Chao; Liu, Haiyan; Zhong, Zhiyuan

    2012-01-31

    , flow cytometry assays showed that CC-loaded PEG-SS-PDEA (9.2 k) polymersomes induced markedly enhanced apoptosis of MCF-7 cells as compared to free CC and CC-loaded PEG-PDEA (8.9 k) polymersomes (reduction-insensitive control). These dual-bioresponsive polymersomes have appeared to be highly promising for intracellular delivery of protein drugs.

  5. Multilayered Graphene Nano-Film for Controlled Protein Delivery by Desired Electro-Stimuli

    PubMed Central

    Choi, Moonhyun; Kim, Kyung-Geun; Heo, Jiwoong; Jeong, Hyejoong; Kim, Sung Yeol; Hong, Jinkee

    2015-01-01

    Recent research has highlighted the potential use of “smart” films, such as graphene sheets, that would allow for the controlled release of a variety of therapeutic drugs. Taking full advantage of these versatile conducting sheets, we investigated the novel concept of applying graphene oxide (GO) and reduced graphene oxide (rGO) materials as both barrier and conducting layers that afford controlled entrapment and release of any molecules of interest. We fabricated multilayered nanofilm architectures using a hydrolytically degradable cationic poly(β-amino ester) (PAE), a model protein antigen, ovalbumin (OVA) as a building block along with the GO and rGO. We successfully showed that these multilayer films are capable of blocking the initial burst release of OVA, and they can be triggered to precisely control the release upon the application of electrochemical potential. This new drug delivery platform will find its usefulness in various transdermal drug delivery devices where on-demand control of drug release from the surface is necessary. PMID:26621344

  6. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines.

    PubMed

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel ('nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination. PMID:20562880

  7. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    NASA Astrophysics Data System (ADS)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  8. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    Highlights: •The disruption of PREG/PROG hydroxylation activity by T306A showed the participation of Cpd I. •T306A supports the involvement of a nucleophilic peroxo-anion during lyase activity. •The presence of cytochrome b{sub 5} augments C–C lyase activity. •Δ5-Steroids are preferred substrates for CYP17 catalysis. -- Abstract: Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing

  9. Whey protein mucoadhesive properties for oral drug delivery: Mucin-whey protein interaction and mucoadhesive bond strength.

    PubMed

    Hsein, Hassana; Garrait, Ghislain; Beyssac, Eric; Hoffart, Valérie

    2015-12-01

    Whey protein is a natural polymer recently used as an excipient in buccoadhesive tablets but its mucoadhesive properties were barely studied. In this work, we characterize mucoadhesion of whey protein in order to determine the mechanisms and optimal conditions for use as excipient in oral drug delivery. Thus, native and denatured whey protein (NWP and DWP) were investigated and the effect of concentration and pH were also studied. Many methods of characterization were selected to allow the study of chemical and physical interactions with mucin and then the results were bound with an ex vivo experiments. Turbidity of WP-mucin mixture increased at acidic pH 1.2 till 4.5 indicating interaction with mucin but not at pH 6.8. No interaction with mucin was also found by ITC method at pH 6.8 for native and denatured whey protein used at 1% (w/w). Forces of bioadhesion evaluated by viscosity measurements were the best for high concentrated (10.8%) DWP solutions at pH 6.8 and were low at pH 1.2 for NWP and DWP solutions. Addition of chemical blockers indicated that hydrogen bondings and disulfide bridges were the main mechanisms of interactions with mucin. Reticulation of DWP with calcium ions to obtain microparticles (MP) did not influence the ability of interaction with mucin as shown by FTIR analysis. These results correlated with ex vivo study on rat tissue demonstrating important adhesion (75%) of WP MP on the intestine and null on the stomach after 2h of deposit.

  10. A novel cell penetrating peptide carrier for the delivery of nematocidal proteins drug

    NASA Astrophysics Data System (ADS)

    Kim, Jea Hyun

    Nematodes have recently become a primary source of harmful diseases to the environment that inflict harsh damages to pine trees and marine species. However, nematodes cannot be killed by normal pesticides or chemicals due to their thick outer protective layer mainly composed of collagen and cuticles. Thus, a novel approach to trigger intracellular delivery of chemicals through the layers of nematodes is required. In this study, the selection of the novel CPP was carefully progressed through protein database and serial digested fragmentation, internalization of each amino sequence was analyzed through flow cytometry and confocal microscope. As one of the most effective CPP material, JH 1.6 was compared with other major CPPs and its cellular toxicity was investigated. Furthermore, JH 1.6 was attached to various RNA, DNA, and proteins and internalization efficiency was evaluated for mammalian cells. To examine its effects on nematodes in vivo, JH 1.6 was conjugated with nematocidal protein - botulinum neurotoxin (BnT) and treated in C.elegans as a model animal. The results showed that JH 1.6 had high relative internalization rate and low cellular toxicity compared to other major CPP such as TAT and GV1001 peptides.

  11. MiniTn7-transposon delivery vectors for inducible or constitutive fluorescent protein expression in Enterobacteriaceae

    PubMed Central

    Remus-Emsermann, Mitja N. P.; Gisler, Pascal; Drissner, David

    2016-01-01

    Here we present the generation and function of two sets of bacterial plasmids that harbor fluorescent genes encoding either blue, cyan, yellow or red fluorescent proteins. In the first set, protein expression is controlled by the strong and constitutive nptII promoter whereas in the second set, the strong tac promoter was chosen that underlies LacIq regulation. Furthermore, the plasmids are mobilizable, contain Tn7 transposons and a temperature-sensitive origin of replication. Using Escherichia coli S17-1 as donor strain, the plasmids allow fast and convenient Tn7-transposon delivery into many enterobacterial hosts, such as the here-used E. coli O157:H7. This procedure omits the need of preparing competent recipient cells and antibiotic resistances are only transiently conferred to the recipients. As the fluorescence proteins show little to no overlap in fluorescence emission, the constructs are well suited for the study of multicolored synthetic bacterial communities during biofilm production or in host colonization studies, e.g. of plant surfaces. Furthermore, tac promoter-reporter constructs allow the generation of so-called reproductive success reporters, which allow to estimate past doublings of bacterial individuals after introduction into environments, emphasizing the role of individual cells during colonization. PMID:27445318

  12. Stability of β-carotene in protein-stabilized oil-in-water delivery systems.

    PubMed

    Cornacchia, Leonardo; Roos, Yrjo H

    2011-07-13

    Inclusion of liposoluble bioactive compounds in fortified foods represents a complex challenge due to the labile nature of such compounds and the instability of oil-in-water emulsion-based delivery systems. In the present study, dispersions prepared with 10% (w/w) sunflower oil (SO) or hydrogenated palm kernel oil (HPKO) containing 0.05% (w/w) β-carotene were stabilized by various concentrations of whey protein isolate (WPI) or sodium caseinate (NaCas) (0.1 to 2.0% w/w) in 30% (w/w) sucrose aqueous solutions. Physicochemical characterization of emulsions was done considering the particle size, the particle surface protein coverage, and the physical state of continuous and dispersed phases. Physical stability of the systems and their protection properties on β-carotene were compared. The lipid carrier type and interfacial structure were investigated as the two key factors which regulate the stability of labile lipophilic bioactive molecules in food model systems. Our results showed high β-carotene stability when O/W systems were stable (protein concentration ≥0.8% w/w.) A (partially) solid lipid carrier (HPKO) enhanced protection compared to the liquid carrier (SO) as the bioactive molecules were entrapped in isolated domains within the solid lattice and kept apart from reactive species in the surroundings. NaCas provided a better barrier than WPI due to the different amino acid composition and interface structure which significantly reduced β-carotene degradation rate.

  13. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution.

    PubMed

    Sarparanta, Mirkka; Bimbo, Luis M; Rytkönen, Jussi; Mäkilä, Ermei; Laaksonen, Timo J; Laaksonen, Päivi; Nyman, Markus; Salonen, Jarno; Linder, Markus B; Hirvonen, Jouni; Santos, Hélder A; Airaksinen, Anu J

    2012-03-01

    Rapid immune recognition and subsequent elimination from the circulation hampers the use of many nanomaterials as carriers to targeted drug delivery and controlled release in the intravenous route. Here, we report the effect of a functional self-assembled protein coating on the intravenous biodistribution of (18)F-labeled thermally hydrocarbonized porous silicon (THCPSi) nanoparticles in rats. (18)F-Radiolabeling enables the sensitive and easy quantification of nanoparticles in tissues using radiometric methods and allows imaging of the nanoparticle biodistribution with positron emission tomography. Coating with Trichoderma reesei HFBII altered the hydrophobicity of (18)F-THCPSi nanoparticles and resulted in a pronounced change in the degree of plasma protein adsorption to the nanoparticle surface in vitro. The HFBII-THCPSi nanoparticles were biocompatible in RAW 264.7 macrophages and HepG2 liver cells making their intravenous administration feasible. In vivo, the distribution of the nanoparticles between the liver and spleen, the major mononuclear phagocyte system organs in the body, was altered compared to that of uncoated (18)F-THCPSi. Identification of the adsorbed proteins revealed that certain opsonins and apolipoproteins are enriched in HFBII-functionalized nanoparticles, whereas the adsorption of abundant plasma components such as serum albumin and fibrinogen is decreased.

  14. Mathematical model accurately predicts protein release from an affinity-based delivery system.

    PubMed

    Vulic, Katarina; Pakulska, Malgosia M; Sonthalia, Rohit; Ramachandran, Arun; Shoichet, Molly S

    2015-01-10

    Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile. PMID:25449806

  15. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro; Toledano Furman, Naama E; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. PMID:26653875

  16. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    PubMed

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-09-20

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include

  17. Novel Thermosensitive Pentablock Copolymers for Sustained Delivery of Proteins in the Treatment of Posterior Segment Diseases

    PubMed Central

    Patel, Sulabh P.; Vaishya, Ravi; Yang, Xiaoyan; Pal, Dhananjay; Mitra, Ashim K.

    2015-01-01

    Biodegradable and injectable in situ thermosensitive hydrogels were investigated for sustained delivery of protein therapeutics in the treatment of ocular posterior segment neovascular diseases. A series of triblock (TB, polycaprolac-tone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL), B-A-B) and pentablock copolymers (PBCs) (polylactic acid (PLA)-PCL-PEG-PCL-PLA (C-B-A-B-C) and PEG-PCL-PLA-PCL-PEG (A-B-C-B-A)) were synthesized and evaluated for their thermosensitive behavior. Effects of molecular weight, hydrophobicity and block arrangement on polymer crystallinity, sol-gel transition, micelle size, viscosity and in vitro drug release were examined. Results from sol-gel transition studies demonstrated that aqueous solutions of block copolymers can immediately transform to hydrogel upon exposure to physiological temperature. PBC provide significantly longer sustained release (more than 20 days) of IgG relative to TB copolymers. Moreover, kinematic viscosity of aqueous solution at 25°C for A-B-C-B-A type of PBCs was noticeably lower than the TB (B-A-B) copolymers and other PBCs with C-B-A-B-C block arrangements suggesting desired syringeability. The presence of PLA blocks in PBCs (C-B-A-B-C and A-B-C-B-A) significantly reduces crystallinity. Hence, it is anticipated that PBCs will have a faster rate of degradation relative to PCL-PEG-PCL based TB copolymers. PBCs also exhibited excellent cell viability and biocompatibility on ARPE-19 (human retinal pigment epithelial cell line) and RAW-264.7 (mouse macrophage cells), likely rendering it safe for ocular applications. Owing to biodegradability, thermosensitivity, ease of handling and biocompatibility PBC hydrogels can be considered as promising biomaterial for sustained delivery of protein therapeutics to the back of the eye. PMID:25315374

  18. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    PubMed

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-01-01

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include

  19. Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion.

    PubMed

    Singh, Manoj K; Krüger, Falco; Beckmann, Hauke; Brumm, Sabine; Vermeer, Joop E M; Munnik, Teun; Mayer, Ulrike; Stierhof, York-Dieter; Grefen, Christopher; Schumacher, Karin; Jürgens, Gerd

    2014-06-16

    Plasma-membrane proteins such as ligand-binding receptor kinases, ion channels, or nutrient transporters are turned over by targeting to a lytic compartment--lysosome or vacuole--for degradation. After their internalization, these proteins arrive at an early endosome, which then matures into a late endosome with intraluminal vesicles (multivesicular body, MVB) before fusing with the lysosome/vacuole in animals or yeast. The endosomal maturation step involves a SAND family protein mediating Rab5-to-Rab7 GTPase conversion. Vacuolar trafficking is much less well understood in plants. Here we analyze the role of the single-copy SAND gene of Arabidopsis. In contrast to its animal or yeast counterpart, Arabidopsis SAND protein is not required for early-to-late endosomal maturation, although its role in mediating Rab5-to-Rab7 conversion is conserved. Instead, Arabidopsis SAND protein is essential for the subsequent fusion of MVBs with the vacuole. The inability of sand mutant to mediate MVB-vacuole fusion is not caused by the continued Rab5 activity but rather reflects the failure to activate Rab7. In conclusion, regarding the endosomal passage of cargo proteins for degradation, a major difference between plants and nonplant organisms might result from the relative timing of endosomal maturation and SAND-dependent Rab GTPase conversion as a prerequisite for the fusion of late endosomes/MVBs with the lysosome/vacuole.

  20. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: in vivo and drug loading study.

    PubMed

    Xu, Helan; Shen, Li; Xu, Lan; Yang, Yiqi

    2015-02-01

    In this research, controlled delivery of hollow nanoparticles from zein, the corn storage protein, to different organs of mice was achieved via crosslinking using citric acid, a non-toxic polycarboxylic acid derived from starch. Besides, crosslinking significantly enhanced water stability of nanoparticles while preserving their drug loading efficiency. Protein nanoparticles have been widely investigated as vehicles for delivery of therapeutics. However, protein nanoparticles were not stable in physiological conditions, easily cleared by mononuclear phagocyte system (MPS), and thus mainly accumulated and degraded in spleen and liver, the major MPS organs. Effective delivery to major non-MPS organs, such as kidney, was usually difficult to achieve, as well as long resident time of nanoparticles. In this research, hollow zein nanoparticles were chemically crosslinked with citric acid. Controlled delivery and prolonged accumulation of the nanoparticles in kidney, one major non-MPS organ, were achieved. The nanoparticles showed improved stability in aqueous environment at pH 7.4 without affecting the adsorption of 5-FU, a common anticancer drug. In summary, citric acid crosslinked hollow zein nanoparticles could be potential vehicles for controllable delivery of anticancer therapeutics.

  1. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

  2. Active Nuclear Import of Membrane Proteins Revisited.

    PubMed

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker's yeast. PMID:26473931

  3. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  4. [Protein transduction domain peptide mediates delivery to the brain via the blood-brain barrier in Drosophila].

    PubMed

    Sarantseva, S V; Bol'shakova, O I; Timoshenko, S I; Kolobov, A A; Vitek, M P; Shvartsman, A L

    2009-01-01

    Protein transduction domain (PTD)-peptides greatly facilitate the delivery of high molecular weight macromolecules across the blood-brain barrier (BBB). This BBB-transport function is highly desirable and helps to enable the development of new therapeutics for treatment of brain disorders. However, the drug discovery process is limited by the generation of a simple and reliable BBB model that is amenable to testing of large number of samples and simultaneously, reproduces the physiological and functional characteristics of the human BBB. To address these challenges, we have studied whether the PTD-peptide penetratin, derived from a Drosophila Antennapedia homeodomain protein, is capable of crossing the BBB in Drosophila while carrying a cargo into the fly brain. An initial in vivo experiment in Drosophila showed that abdominal injection of biotin-tagged penetratin permeated the BBB. The same effect was observed for biotin-tagged penetratin fused with apoE mimetic peptide with demonstrated anti-inflammatory and neuroprotective activities. PMID:19351032

  5. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins

    PubMed Central

    Klyachko, Natalia L; Haney, Matthew J; Zhao, Yuling; Manickam, Devika S; Mahajan, Vivek; Suresh, Poornima; Hingtgen, Shawn D; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V

    2013-01-01

    Aims Active targeted transport of the nanoformulated redox enzyme, catalase, in macrophages attenuates oxidative stress and as such increases survival of dopaminergic neurons in animal models of Parkinson’s disease. Optimization of the drug formulation is crucial for the successful delivery in living cells. We demonstrated earlier that packaging of catalase into a polyion complex micelle (‘nanozyme’) with a synthetic polyelectrolyte block copolymer protected the enzyme against degradation in macrophages and improved therapeutic outcomes. We now report the manufacture of nanozymes with superior structure and therapeutic indices. Methods Synthesis, characterization and therapeutic efficacy of optimal cell-based nanoformulations are evaluated. Results A formulation design for drug carriers typically works to avoid entrapment in monocytes and macrophages focusing on small-sized nanoparticles with a polyethylene glycol corona (to provide a stealth effect). By contrast, the best nanozymes for delivery in macrophages reported in this study have a relatively large size (~200 nm), which resulted in improved loading capacity and release from macrophages. Furthermore, the cross-linking of nanozymes with the excess of a nonbiodegradable linker ensured their low cytotoxicity, and efficient catalase protection in cell carriers. Finally, the ‘alternatively activated’ macrophage phenotype (M2) utilized in these studies did not promote further inflammation in the brain, resulting in a subtle but statistically significant effect on neuronal regeneration and repair in vivo. Conclusion The optimized cross-linked nanozyme loaded into macrophages reduced neuroinflammatory responses and increased neuronal survival in mice. Importantly, the approach for nanoformulation design for cell-mediated delivery is different from the common requirements for injectable formulations. PMID:24237263

  6. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  7. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts.

  8. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  9. CW/pulsed NIR irradiation of gold nanorods: effect on transdermal protein delivery mediated by photothermal ablation.

    PubMed

    Tang, Hengmin; Kobayashi, Hiroaki; Niidome, Yasuro; Mori, Takeshi; Katayama, Yoshiki; Niidome, Takuro

    2013-10-28

    Transdermal delivery is a useful and attractive method for drug delivery, even though the stratum corneum is a major barrier of protein translocation into the skin. To achieve protein delivery through the stratum corneum, we first cast gold nanorods, acting as a heating device in response to near-infrared light irradiation, onto the skin surface. After applying an aqueous solution of ovalbumin to the skin, the skin was irradiated by near-infrared laser light. Irradiation of the skin using a continuous-wave laser increased the skin temperature resulting in an efficient translocation of ovalbumin into the skin. Furthermore, migration of inflammation cells and induction heat shock protein 70 (HSP70) were observed. Irradiation of the skin using a pulsed laser caused an enhanced permeability of the stratum corneum without an increase in skin temperature, migration of inflammation cells, or HSP70 induction. This effect is due to the pulsed-laser irradiation increasing the temperature of a limited part of the skin surface. Thus, the physiological response of skin is dependent on the type of laser light used. It is anticipated that this phenomenon will find wide application in such applications as, for example, general transdermal protein delivery and transdermal vaccination.

  10. Biphasic Synthesis of Large-Pore and Well-Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery.

    PubMed

    Yang, Yannan; Niu, Yuting; Zhang, Jun; Meka, Anand Kumar; Zhang, Hongwei; Xu, Chun; Lin, Chun Xiang Cynthia; Yu, Meihua; Yu, Chengzhong

    2015-06-01

    Large pore (4.6-7.6 nm) and well-dispersed benzene bridged mesoporous organosilica nanoparticles with uniform particle size of ≈50 nm are prepared via a biphasic approach. They can be directly used as nanocarriers without surface modification for the intracellular delivery of therapeutic proteins.

  11. Protein-engineered block-copolymers as stem cell delivery vehicles

    NASA Astrophysics Data System (ADS)

    Heilshorn, Sarah

    2015-03-01

    Stem cell transplantation is a promising therapy for a myriad of debilitating diseases and injuries; however, current delivery protocols are inadequate. Transplantation by direct injection, which is clinically preferred for its minimal invasiveness, commonly results in less than 5% cell viability, greatly inhibiting clinical outcomes. We demonstrate that mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we show that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. Building on these fundamental studies, we have designed a reproducible, bio-resorbable, customizable hydrogel using protein-engineering technology. In our Mixing-Induced Two-Component Hydrogel (MITCH), network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics models, we manipulate the polypeptide chain interactions and demonstrate the direct ability to tune the network crosslinking density, sol-gel phase behavior, and gel mechanics. This is in contrast to many other physical hydrogels, where predictable tuning of bulk mechanics from the molecular level remains elusive due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. Furthermore, the hydrogel network can be easily modified to deliver a variety of bioactive payloads including growth factors, peptide drugs, and hydroxyapatite nanoparticles. Through a series of in vitro and in vivo studies, we demonstrate that these materials may significantly improve transplanted stem cell retention and function.

  12. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion.

    PubMed

    Nur, M; Ramchandran, L; Vasiljevic, T

    2016-06-01

    Biopolymers such as tragacanth, an anionic polysaccharide gum, can be alternative polymeric carrier for physiologically important peptides and proteins. Characterization of tragacanth is thus essential for providing a foundation for possible applications. Rheological studies colloidal solution of tragacanth at pH 3, 5 or 7 were carried out by means of steady shear and small amplitude oscillatory measurements. Tragacanth mucoadhesivity was also analyzed using an applicable rheological method and compared to chitosan, alginate and PVP. The particle size and zeta potential were measured by a zetasizer. Thermal properties of solutions were obtained using a differential scanning calorimetry. The solution exhibited shear-thinning characteristics. The value of the storage modulus (G') and the loss modulus (G″) increased with an increase in angular frequency (Ω). In all cases, loss modulus values were higher than storage values (G″>G') and viscous character was, therefore, dominant. Tragacanth and alginate showed a good mucoadhesion. Tragacanth upon dispersion created particles of a submicron size with a negative zeta potential (-7.98 to -11.92 mV). These properties were pH dependant resulting in acid gel formation at pH 3.5. Tragacanth has thus a potential to be used as an excipient for peptide/protein delivery.

  13. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    SciTech Connect

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  14. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy.

    PubMed

    Wang, Ming; Sun, Shuo; Neufeld, Caleb I; Perez-Ramirez, Bernardo; Xu, Qiaobing

    2014-12-01

    Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A-NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A-NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A-NBC reactivation, RNase A-NBC shows a significant specific cytotoxicity against tumor cells.

  15. Caspase-resistant VirD2 protein provides enhanced gene delivery and expression in plants.

    PubMed

    Reavy, Brian; Bagirova, Svetlana; Chichkova, Nina V; Fedoseeva, Svetlana V; Kim, Sang Hyon; Vartapetian, Andrey B; Taliansky, Michael E

    2007-08-01

    Agrobacterium tumefaciens VirD2 protein is one of the key elements of Agrobacterium-mediated plant transformation, a process of transfer of T-DNA sequence from the Agrobacterium tumour inducing plasmid into the nucleus of infected plant cells and its integration into the host genome. The VirD2 protein has been shown to be a substrate for a plant caspase-like protease activity (PCLP) in tobacco. We demonstrate here that mutagenesis of the VirD2 protein to prevent cleavage by PCLP increases the efficiency of reporter gene transfer and expression. These results indicate that PCLP cleavage of the Agrobacterium VirD2 protein acts to limit the effectiveness of T-DNA transfer and is a novel resistance mechanism that plants utilise to combat Agrobacterium infection. PMID:17370074

  16. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration.

  17. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  18. Platelet-rich plasma and fibrin as delivery systems for recombinant human bone morphogenetic protein-2.

    PubMed

    Jung, Ronald E; Schmoekel, Hugo G; Zwahlen, Roger; Kokovic, Vladimir; Hammerle, Christoph H F; Weber, Franz E

    2005-12-01

    The aim of the present study was (1) to test whether or not platelet-rich plasma (PRP) or commercially available fibrin can increase bone regeneration compared with non-treated defects and (2) to test whether or not PRP or fibrin increases bone regeneration when used as a delivery system for recombinant human bone morphogenetic protein-2 (rhBMP-2). In 16 New Zealand White rabbits, four evenly distributed 6 mm diameter defects were drilled into the calvarial bone. The following five treatment modalities were randomly allocated to all 64 defects: (0) untreated control, (1) fibrin alone, (2) PRP alone, (3) fibrin with 15 microg rhBMP-2 and (4) PRP with 15 microg rhBMP-2. For the fibrin gels and the PRP containing rhBMP-2, the 15 microg rhBMP-2 was incorporated by precipitation within the matrices before their gelation. After 4 weeks, the animals were sacrificed and the calvarial bones were removed for histological preparation. The area fraction of newly formed bone was determined in vertical sections from the middle of the defect by applying histomorphometrical analysis. A mean area fraction of newly formed bone was found within the former defect of 23.4% (+/-13.5%) in the control sites, of 28.4% (+/-17.4%) in the fibrin sites and of 34.5% (+/-17.4%) in the PRP sites. The statistical analysis revealed no significant difference in bone formation between the three groups (ANOVA). Addition of 15 microg rhBMP-2 in the fibrin gel (59.9+/-20.3%) and the PRP gels (63.1+/-25.3%) increased bone formation significantly. No significant difference was observed between sites, where PRP or fibrin has been used as a delivery system for rhBMP-2 (ANOVA). In conclusion, the application of fibrin gels or PRP gels to bone defects is not superior to leaving the defect untreated. Regarding the amount of bone formation, the application of 15 microg rhBMP-2 in bone defects enhances the healing significantly at 4 weeks. In this animal model, commercially available fibrin and autologous PRP

  19. Keratin sponge/hydrogel II, active agent delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  20. Nitroxide delivery system for Nrf2 activation and skin protection.

    PubMed

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Sasson, Shmuel Ben; Bianco-Peled, Havazelet; Bitton, Ronit; Kohen, Ron

    2015-08-01

    Cyclic nitroxides are a large group of compounds composed of diverse stable radicals also known as synthetic antioxidants. Although nitroxides are valuable for use in several skin conditions, in in vivo conditions they have several drawbacks, such as nonspecific dispersion in normal tissue, preferential renal clearance and rapid reduction of the nitroxide to the corresponding hydroxylamine. However, these drawbacks can be easily addressed by encapsulating the nitroxides within microemulsions. This approach would allow nitroxide activity and therefore their valuable effects (e.g. activation of the Keap1-Nrf2-EpRE pathway) to continue. In this work, nitroxides were encapsulated in a microemulsion composed of biocompatible ingredients. The nanometric size and shape of the vehicle microemulsion and nitroxide microemulsion displayed high similarity, indicating that the stability of the microemulsions was preserved. Our studies demonstrated that nitroxide microemulsions were more potent inducers of the Keap1-Nrf2-EpRE pathway than the free nitroxides, causing the activation of phase II enzymes. Moreover, microemulsions containing nitroxides significantly reduced UVB-induced cytotoxicity in the skin. Understanding the mechanism of this improved activity may expand the usage of many other Nrf2 modulating molecules in encapsulated form, as a skin protection strategy against oxidative stress-related conditions.

  1. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    PubMed

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-03-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders. PMID:26727042

  2. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages

    PubMed Central

    Guedj, Anne-Sophie; Kell, Arnold J; Barnes, Michael; Stals, Sandra; Gonçalves, David; Girard, Denis; Lavigne, Carole

    2015-01-01

    Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =−5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA

  3. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    PubMed

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  4. Utilization of modified surfactant-associated protein B for delivery of DNA to airway cells in culture.

    PubMed Central

    Baatz, J E; Bruno, M D; Ciraolo, P J; Glasser, S W; Stripp, B R; Smyth, K L; Korfhagen, T R

    1994-01-01

    Pulmonary surfactant lines the airway epithelium and creates a potential barrier to successful transfection of the epithelium in vivo. Based on the functional properties of pulmonary surfactant protein B (SP-B) and the fact that this protein is neither toxic nor immunogenic in the airway, we hypothesized that SP-B could be modified to deliver DNA to airway cells. We have modified native bovine SP-B by the covalent linkage of poly(lysine) (average molecular mass of 3.3 or 10 kDa) to the N terminus of SP-B and formed complexes between a test plasmid and the modified SP-B. Transfection efficiency was determined by transfection of pulmonary adenocarcinoma cells (H441) in culture with the test plasmid pCPA-RSV followed by measurement of activity of the reporter gene encoding chloramphenicol acetyltransferase (CAT). Transfections were performed with DNA.protein complexes using poly(lysine)10kDa-SP-B ([Lys]10kDa-SP-B) or poly(lysine)3.3kDa-SP-B ([Lys]3.3kDa-SP-B), and results were compared with transfections using unmodified poly(lysine).DNA, unmodified SP-B.DNA, or DNA only. For [Lys]10kDa-SP-B.pCPA-RSV preparations, CAT activity was readily detectable above the background of [Lys]3.3kDa-SP-B or unmodified SP-B. The SP-B-poly(lysine) conjugates were effective over a broad range of protein-to-DNA molar ratios, although they were optimal at approximately 500:1-1000:1. Transfection efficiency varied with the tested cell line but was not specific to airway cells. Addition of replication-defective adenovirus to the [Lys]10kDa-SP-B.pCPA-RSV complex enhanced CAT activity about 30-fold with respect to that produced by the [Lys]10kDa-SP-B.pCPA-RSV complex alone. This increase suggests routing of the adenoviral.[Lys]10kDa-SP-B.pCPA-RSV complex through an endosomal pathway. Effects of covalent modification on the secondary structure of SP-B were examined by Fourier transform infrared spectrometry (FTIR). Results of FTIR indicated that the conformation of [Lys]10kDa-SP-B was

  5. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    PubMed Central

    Kristensen, Mie; Birch, Ditlev; Mørck Nielsen, Hanne

    2016-01-01

    The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies. PMID:26840305

  6. Acidity-Activated Shielding Strategies of Cationic Gene Delivery for Cancer Therapy.

    PubMed

    Xia, Jialiang; Feng, Zongcai; Yang, Hongyan; Lin, Sanqing; Han, Bing

    2016-01-01

    Cationic gene vectors increased attractive for gene therapy. However, unstable systemic circulation due to the interaction of gene delivery system with blood cells limited the further application. Therefore, pH sensitive shielding systems were exploited, by which, the positive surface charge density of polyplexes was reduced, circulation time was improved and pH-triggered targeting delivery was promised. This mini review mainly focuses on the development of solid tumors pH environment activated shielding systems for cationic gene vectors. This shielding strategy shows great potential for enhancing efficient gene transporting and achieving better therapeutic effects in acidic tumor treatment.

  7. Development of new drug delivery system for protein drugs using silicone (I).

    PubMed

    Kajihara, M; Sugie, T; Mizuno, M; Tamura, N; Sano, A; Fujioka, K; Kashiwazaki, Y; Yamaoka, T; Sugawara, S; Urabe, Y

    2000-05-01

    A novel technique, by which protein drugs effective in small doses can be released over a long period, was developed using silicone and a water-soluble substance. In this study, interferon (IFN) was used as a model of the protein drugs. The IFN-silicone formulation released IFN over long periods of time in vitro and suppressed tumor growth in nude mice for about 100 days after a single administration. This indicates that physiologically active IFN is released over a prolonged period of time from the IFN-silicone formulation in vivo. Silicone formulations are expected to be a practically feasible sustained-release formulation. PMID:10708878

  8. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery.

    PubMed

    Bae, Hae-Duck; Lee, Joohyun; Jin, Xing-Hai; Lee, Kyunglim

    2016-09-01

    Nasal vaccination offers a promising alternative to intramuscular (i.m.) vaccination because it can induce both mucosal and systemic immunity. However, its major drawback is poor absorption of large antigens in the nasal epithelium. Protein transduction domains (PTDs), also called cell-penetrating peptides, have been proposed as vehicles for nasal delivery of therapeutic peptides and proteins. Here, we evaluated the potential of a mutant PTD derived from translationally controlled tumor protein (designated TCTP-PTD 13) as an antigen carrier for nasal vaccines. We first compared the l- and d-forms of TCTP-PTD 13 isomers (l- or d-TCTP-PTD 13) as antigen carriers. Studies in mice demonstrated that nasally administered mixtures of the model antigen ovalbumin (OVA) and d-TCTP-PTD 13 induced higher plasma IgG titers and secretory IgA levels in nasal washes than nasally administered OVA alone, OVA/l-TCTP-PTD 13, or i.m.-injected OVA. Plasma IgG subclass responses (IgG1 and IgG2a) of mice nasally administered OVA/d-TCTP-PTD 13 showed that the predominant IgG subclass was IgG1, indicating a Th2-biased immune response. We also used synthetic CpG oligonucleotides (CpG) as a Th1 immune response-inducing adjuvant. Nasally administered CpG plus OVA/d-TCTP-PTD 13 was superior in eliciting systemic and mucosal immune responses compared to those induced by nasally administered OVA/d-TCTP-PTD 13. Furthermore, the OVA/CpG/d-TCTP-PTD 13 combination skewed IgG1 and IgG2a profiles of humoral immune responses toward a Th1 profile. These findings suggest that TCTP-derived PTD is a suitable vehicle to efficiently carry antigens and to induce more powerful antigen-specific immune responses and a more balanced Th1/Th2 response when combined with a DNA adjuvant. PMID:27454469

  9. Active Wnt proteins are secreted on exosomes.

    PubMed

    Gross, Julia Christina; Chaudhary, Varun; Bartscherer, Kerstin; Boutros, Michael

    2012-10-01

    Wnt signalling has important roles during development and in many diseases. As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions. Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question. Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells. We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells. Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6. Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins.

  10. Total Cellular RNA Modulates Protein Activity.

    PubMed

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  11. Electrochemical Activation of Engineered Protein Switches

    PubMed Central

    Choi, Jay H.; Zayats, Maya; Searson, Peter C.; Ostermeier, Marc

    2016-01-01

    Engineered protein switches have a large dynamic range, high specificity for the activating ligand, and a modular architecture, and have been explored for a wide range of applications including biosensors and therapeutics. The ability to externally control switch function is important in extending applications for protein switches. We recently demonstrated that the on/off state could be controlled by the redox state of disulfide bonds introduced into the switches at select locations. Here, we demonstrate that an electrochemical signal can be used as an exogenous input to control switch function via reduction of the engineered disulfide bonds. This study suggests that disulfide-containing protein switch is a potentially useful platform for bioelectronic sensors with remote control of the sensing ability. PMID:26241391

  12. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising.

  13. Analysis of mitogen-activated protein kinase activity in yeast.

    PubMed

    Elion, Elaine A; Sahoo, Rupam

    2010-01-01

    Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well. PMID:20811996

  14. Cationic Polyrotaxanes as a Feasible Framework for the Intracellular Delivery and Sustainable Activity of Anionic Enzymes: A Comparison Study with Methacrylate-Based Polycations.

    PubMed

    Tamura, Atsushi; Ikeda, Go; Nishida, Kei; Yui, Nobuhiko

    2015-08-01

    We have developed cationic polyrotaxanes composed of N,N-dimethylaminoethyl (DMAE) group-modified α-cyclodextrins (α-CDs) threaded along a poly(ethylene glycol) (PEG) chain capped with a terminal bulky stopper (DMAE-PRX) for the intracellular delivery of proteins through the polyelectrolyte complexation. Herein, to ascertain the effect of supramolecular backbone structure of cationic polyrotaxanes, the physicochemical properties and biological activity of polyelectrolyte complex with anionic β-galactosidase (β-gal) were investigated in comparison to a cationic linear polymer, poly[2-(N,N-dimethylaminoethyl) methacrylate] (PDMAEMA). In the cellular experiments, the DMAE-PRX/β-gal complexes exhibited higher intracellular uptake of β-gal and sustainable enzymatic activity of delivered β-gal than the PDMAEMA/β-gal complexes. It is considered that the cationic polyrotaxanes are promising supramolecular backbone structure for the intracellular protein delivery.

  15. De Novo Construction of Redox Active Proteins.

    PubMed

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. PMID:27586341

  16. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles.

    PubMed

    Mahony, D; Cavallaro, A S; Mody, K T; Xiong, L; Mahony, T J; Qiao, S Z; Mitter, N

    2014-06-21

    Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine. PMID:24811899

  17. Synaptic Vesicle Proteins and Active Zone Plasticity.

    PubMed

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  18. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  19. G-quartet oligonucleotide mediated delivery of proteins into photoreceptors and retinal pigment epithelium via intravitreal injection.

    PubMed

    Leaderer, Derek; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2016-04-01

    There is currently no available method to efficiently deliver proteins across the plasma membrane of photoreceptor or retinal pigment epithelium (RPE) cells in vivo. Thus, current clinical application of recombinant proteins in ophthalmology is limited to the use of proteins that perform their biological function extracellularly. The ability to traverse biological membranes would enable the mobilization of a significantly larger number of proteins with previously well characterized properties. Nucleolin is abundantly present on the surface of rapidly dividing cells including cancer cells. Surprisingly, nucleolin is also present on the surface of photoreceptor cell bodies. Here we investigated whether nucleolin can be utilized as a gateway for the delivery of proteins into retinal cells following intravitreal injection. AS1411 is a G-quartet aptamer capable of targeting nucleolin. Subsequent to intravitreal injection, fluorescently labeled AS1411 localized to various retinal cell types including the photoreceptors and RPE. AS1411 linked to streptavidin (a ∼50 kDa protein) via a biotin bridge enabled the uptake of Streptavidin into photoreceptors and RPE. AS1411-Streptavidin conjugate applied topically to the cornea allowed for uptake of the conjugate into the nucleus and cytoplasm of corneal endothelial cells. Clinical relevance of AS1411 as a delivery vehicle was strongly indicated by demonstration of the presence of cell surface nucleolin on the photoreceptors, inner neurons and ganglion cells of human retina. These data support exploration of AS1411 as a means of delivering therapeutic proteins to diseased retina. PMID:26923800

  20. Development of Novel Adenosine Monophosphate-Activated Protein Kinase Activators

    PubMed Central

    Guh, Jih-Hwa; Chang, Wei-Ling; Yang, Jian; Lee, Su-Lin; Wei, Shuo; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2010-01-01

    In light of the unique ability of thiazolidinediones to mediate peroxisome proliferator-activated receptor (PPAR)γ-independent activation of adenosine monophosphate-activated protein kinase (AMPK) and suppression of interleukin (IL)-6 production, we conducted a screening of an in-house, thiazolidinedione-based focused compound library to identify novel agents with these dual pharmacological activities. Cell-based assays pertinent to the activation status of AMPK and mammalian homolog of target of rapamycin (i.e., phosphorylation of AMPK and p70 ribosomal protein S6 kinase, respectively), and IL-6/IL-6 receptor signaling (i.e., IL-6 production and signal transducer and activator of transcription 3 phosphorylation, respectively) in lipopolysaccharide (LPS)-stimulated THP-1 human macrophages were used to screen this compound library, which led to the identification of compound 53 (N-{4-[3-(1-Methylcyclohexylmethyl)-2,4-dioxo-thiazolidin-5-ylidene-methyl]-phenyl}-4-nitro-3-trifluoromethyl-benzenesulfonamide) as the lead agent. Evidence indicates that this drug-induced suppression of LPS-stimulated IL-6 production was attributable to AMPK activation. Furthermore, compound 53-mediated AMPK activation was demonstrated in C-26 colon adenocarcinoma cells, indicating that it is not a cell line-specific event. PMID:20170185

  1. Local delivery of mutant CCL2 protein-reduced orthopaedic implant wear particle-induced osteolysis and inflammation in vivo.

    PubMed

    Jiang, Xinyi; Sato, Taishi; Yao, Zhenyu; Keeney, Michael; Pajarinen, Jukka; Lin, Tzu-Hua; Loi, Florence; Egashira, Kensuke; Goodman, Stuart; Yang, Fan

    2016-01-01

    Total joint replacement (TJR) has been widely used as a standard treatment for late-stage arthritis. One challenge for long-term efficacy of TJR is the generation of ultra-high molecular weight polyethylene wear particles from the implant surface that activates an inflammatory cascade which may lead to bone loss, prosthetic loosening and eventual failure of the procedure. Here, we investigate the efficacy of local administration of mutant CCL2 proteins, such as 7ND, on reducing wear particle-induced inflammation and osteolysis in vivo using a mouse calvarial model. Mice were treated with local injection of 7ND or phosphate buffered saline (PBS) every other day for up to 14 days. Wear particle-induced osteolysis and the effects of 7ND treatment were evaluated using micro-CT, histology, and immunofluorescence staining. Compared with the PBS control, 7ND treatment significantly decreased wear particle-induced osteolysis, which led to a higher bone volume fraction and bone mineral density. Furthermore, immunofluorescence staining showed 7ND treatment decreased the number of recruited inflammatory cells and osteoclasts. Together, our results support the feasibility of local delivery of 7ND for mitigating wear particle-induced inflammation and osteolysis, which may offer a promising strategy for extending the life time of TJRs. PMID:26174978

  2. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers.

    PubMed

    Shan, Wei; Zhu, Xi; Tao, Wei; Cui, Yi; Liu, Min; Wu, Lei; Li, Lian; Zheng, Yaxian; Huang, Yuan

    2016-09-28

    Oral delivery of protein drugs based on nanoparticulate delivery system requires permeation of the nanoparticles through the mucus layer and subsequent absorption via epithelial cells. However, overcoming these two barriers requires very different or even contradictory surface properties of the nanocarriers, which greatly limits the oral bioavailability of macromolecular drugs. Here we report a simple zwitterions-based nanoparticle (NP) delivery platform, which showed a great potency in simultaneously overcoming both the mucus and epithelium barriers. The dense and hydrophilic coating of zwitterions endows the NPs with excellent mucus penetrating ability. Moreover, the zwitterions-based NPs also possessed excellent affinity with epithelial cells, which significantly improved (4.5-fold) the cellular uptake of DLPC NPs, compared to PEGylated NPs. Our results also indicated that this affinity was due to the interaction between zwitterions and the cell surface transporter PEPT1. Moreover, the developed NPs loaded with insulin could induce a prominent hypoglycemic response in diabetic rats following oral administration. These results suggest that zwitterions-based NPs might provide a new perspective for oral delivery of protein therapeutics.

  3. Zwitterionic Phosphorylcholine-TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging.

    PubMed

    Chen, Yangjun; Han, Haijie; Tong, Hongxin; Chen, Tingting; Wang, Haibo; Ji, Jian; Jin, Qiao

    2016-08-24

    Polymeric micelles have emerged as a promising nanoplatform for cancer theranostics. Herein, we developed doxorubicin (DOX) encapsulated pH-responsive polymeric micelles for combined aggregation induced emission (AIE) imaging and chemotherapy. The novel zwitterionic copolymer poly(2-methacryloyloxyethylphosphorylcholine-co-2-(4-formylphenoxy)ethyl methacrylate) (poly(MPC-co-FPEMA)) was synthesized via RAFT polymerization and further converted to PMPC-hyd-TPE after conjugation of tetraphenylethene (TPE, a typical AIE chromophore) via acid-cleavable hydrazone bonds. The AIE activatable copolymer PMPC-hyd-TPE could self-assemble into spherical PC-hyd-TPE micelles, and DOX could be loaded through hydrophobic interactions. The zwitterionic micelles exhibited excellent physiological stability and low protein adsorption due to the stealthy phosphorylcholine (PC) shell. In addition, the cleavage of hydrophobic TPE molecules under acidic conditions could induce swelling of micelles, which was verified by size changes with time at pH 5.0. The in vitro DOX release profile also exhibited accelerated release rate with pH value decreasing from 7.4 to 5.0. Fluorescent microscopy and flow cytometry studies further demonstrated fast internalization and accumulation of drug loaded PC-hyd-TPE-DOX micelles in HepG2 cells, resulting in considerable time/dose-dependent cytotoxicity. Meanwhile, high-quality AIE imaging of PC-hyd-TPE micelles was confirmed in HepG2 cells. Notably, ex vivo imaging study exhibited efficient accumulation and drug release of PC-hyd-TPE-DOX micelles in the tumor tissue. Consequently, the multifunctional micelles with combined nonfouling surface, AIE active imaging, and pH-responsive drug delivery showed great potential as novel nanoplatforms for a new generation of cancer theranostics. PMID:27482632

  4. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids.

    PubMed

    Bonning, Bryony C; Pal, Narinder; Liu, Sijun; Wang, Zhaohui; Sivakumar, S; Dixon, Philip M; King, Glenn F; Miller, W Allen

    2014-01-01

    The sap-sucking insects (order Hemiptera), including aphids, planthoppers, whiteflies and stink bugs, present one of the greatest challenges for pest management in global agriculture. Insect neurotoxins offer an alternative to chemical insecticides for controlling these pests, but require delivery into the insect hemocoel. Here we use the coat protein of a luteovirus, an aphid-vectored plant virus, to deliver a spider-derived, insect-specific toxin that acts within the hemocoel. The luteovirid coat protein is sufficient for delivery of fused proteins into the hemocoel of pea aphids, Acyrthosiphon pisum, without virion assembly. We show that when four aphid pest species-A. pisum, Rhopalosiphum padi, Aphis glycines and Myzus persicae-feed on a recombinant coat protein-toxin fusion, either in an experimental membrane sachet or in transgenic Arabidopsis plants, they experience significant mortality. Aphids fed on these fusion proteins showed signs of neurotoxin-induced paralysis. Luteovirid coat protein-insect neurotoxin fusions represent a promising strategy for transgenic control of aphids and potentially other hemipteran pests.

  5. Comparison of Metalloproteinase Protein and Activity Profiling

    PubMed Central

    Giricz, Orsi; Lauer, Janelle L.; Fields, Gregg B.

    2010-01-01

    Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The present study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer and one normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media, both in amount and in variety. TIMP-1 was produced in all cell lines. MMP activity assays with three different FRET substrates were then utilized to determine if protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was only confirmed in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays. PMID:20920458

  6. Crowding Activates Heat Shock Protein 90.

    PubMed

    Halpin, Jackson C; Huang, Bin; Sun, Ming; Street, Timothy O

    2016-03-18

    Hsp90 is a dimeric ATP-dependent chaperone involved in the folding, maturation, and activation of diverse target proteins. Extensive in vitro structural analysis has led to a working model of Hsp90's ATP-driven conformational cycle. An implicit assumption is that dilute experimental conditions do not significantly perturb Hsp90 structure and function. However, Hsp90 undergoes a dramatic open/closed conformational change, which raises the possibility that this assumption may not be valid for this chaperone. Indeed, here we show that the ATPase activity of Hsp90 is highly sensitive to molecular crowding, whereas the ATPase activities of Hsp60 and Hsp70 chaperones are insensitive to crowding conditions. Polymer crowders activate Hsp90 in a non-saturable manner, with increasing efficacy at increasing concentration. Crowders exhibit a non-linear relationship between their radius of gyration and the extent to which they activate Hsp90. This experimental relationship can be qualitatively recapitulated with simple structure-based volume calculations comparing open/closed configurations of Hsp90. Thermodynamic analysis indicates that crowding activation of Hsp90 is entropically driven, which is consistent with a model in which excluded volume provides a driving force that favors the closed active state of Hsp90. Multiple Hsp90 homologs are activated by crowders, with the endoplasmic reticulum-specific Hsp90, Grp94, exhibiting the highest sensitivity. Finally, we find that crowding activation works by a different mechanism than co-chaperone activation and that these mechanisms are independent. We hypothesize that Hsp90 has a higher intrinsic activity in the cell than in vitro. PMID:26797120

  7. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hye

    patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to

  8. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis.

    PubMed

    Sun, Huanli; Meng, Fenghua; Cheng, Ru; Deng, Chao; Zhong, Zhiyuan

    2014-05-01

    The clinical applications of protein drugs are restricted because of the absence of viable protein delivery vehicles. Here, we report on reduction- and pH--sensitive crosslinked polymersomes based on the poly(ethylene glycol)-poly(acrylic acid)-poly(2-(diethyl amino)ethyl methacrylate) (PEG-PAA-PDEA) triblock copolymer for efficient intracellular delivery of proteins and the potent induction of cancer cell apoptosis. PEG-PAA-PDEA (1.9-0.8-8.2kgmol(-1)) was synthesized by controlled reversible addition-fragmentation chain transfer polymerization and further modified with cysteamine to yield the thiol-containing PEG-PAA(SH)-PDEA copolymer. PEG-PAA(SH)-PDEA was water-soluble at acidic and physiological pH but formed robust and monodisperse polymersomes with an average size of ∼35nm upon increasing the pH to 7.8 or above followed by oxidative crosslinking. These disulfide-crosslinked polymersomes, while exhibiting excellent colloidal stability, were rapidly dissociated in response to 10mM glutathione at neutral or mildly acidic conditions. Notably, these polymersomes could efficiently load proteins like bovine serum albumin and cytochrome C (CC). The in vitro release studies revealed that protein release was fast and nearly quantitative under the intracellular-mimicking reducing environment. Confocal microscopy observations showed that these dual-sensitive polymersomes efficiently released fluorescein isothiocyanate-CC into MCF-7 cells in 6h. Most remarkably, MTT assays showed that CC-loaded dual-sensitive polymersomes induced potent cancer cell apoptosis, in which markedly decreased cell viabilities of 11.3%, 8.1% and 52.7% were observed for MCF-7, HeLa and 293T cells, respectively, at a CC dosage of 160μgml(-1). In contrast, free CC caused no cell death under otherwise the same conditions. These dual-bioresponsive polymersomes have appeared as a multifunctional platform for active intracellular protein release.

  9. Development of novel protein-Ag nanocomposite for drug delivery and inactivation of bacterial applications.

    PubMed

    Vimala, Kanikireddy; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Kanny, Krishnan

    2014-02-01

    The potential applications, in the biomedical fields, of curcumin loaded silver nanocomposite were studied by using bovine serum albumin (protein) and acrylamide. The design and development of silver nanoparticles with small size and adequate stability are very important, in addition to their applicability, particularly in bio-medicine. In this study, silver nanoparticles were prepared by chemical reduction method, employing sodium borohydride as the reducing agent for silver nanoparticles. The properties of the protein hydrogels formed were characterized via Fourier transform infrared spectroscopy and X-ray diffraction analyses. The size and its distribution, and formation of metal nanoparticles were confirmed by transmission electron microscopy indicating the diameter of the silver nanoparticles in the range of 3-8 nm. The thermal study of curcumin-silver nanocomposite hydrogels was determined by thermo-gravimetric analysis. In order to increase the antibacterial activity of theses inorganic nanomaterials, natural biological curcumin was incorporated into the protein hydrogel. The main emphasis in this investigation is to increase the antibacterial activity of the hydrogels by loading curcumin, for advanced medical application and as a model drug.

  10. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    PubMed

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  11. Pulmonary Delivery of Butyrylcholinesterase as a Model Protein to the Lung.

    PubMed

    Rahhal, Tojan B; Fromen, Catherine A; Wilson, Erin M; Kai, Marc P; Shen, Tammy W; Luft, J Christopher; DeSimone, Joseph M

    2016-05-01

    Pulmonary delivery has great potential for delivering biologics to the lung if the challenges of maintaining activity, stability, and ideal aerosol characteristics can be overcome. To study the interactions of a biologic in the lung, we chose butyrylcholinesterase (BuChE) as our model enzyme, which has application for use as a bioscavenger protecting against organophosphate exposure or for use with pseudocholinesterase deficient patients. In mice, orotracheal administration of free BuChE resulted in 72 h detection in the lungs and 48 h in the broncheoalveolar lavage fluid (BALF). Free BuChE administered to the lung of all mouse backgrounds (Nude, C57BL/6, and BALB/c) showed evidence of an acute cytokine (IL-6, TNF-α, MIP2, and KC) and cellular immune response that subsided within 48 h, indicating relatively safe administration of this non-native biologic. We then developed a formulation of BuChE using Particle Replication in Non-Wetting Templates (PRINT). Aerosol characterization demonstrated biologically active BuChE 1 μm cylindrical particles with a mass median aerodynamic diameter of 2.77 μm, indicative of promising airway deposition via dry powder inhalers (DPI). Furthermore, particulate BuChE delivered via dry powder insufflation showed residence time of 48 h in the lungs and BALF. The in vivo residence time, immune response, and safety of particulate BuChE delivered via a pulmonary route, along with the cascade impaction distribution of dry powder PRINT BuChE, showed promise in the ability to deliver active enzymes with ideal deposition characteristics. These findings provide evidence for the feasibility of optimizing the use of BuChE in the clinic; PRINT BuChE particles can be readily formulated for use in DPIs, providing a convenient and effective treatment option. PMID:27012934

  12. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    PubMed Central

    Selmin, Francesca; Puoci, Francesco; Parisi, Ortensia I.; Franzé, Silvia; Musazzi, Umberto M.; Cilurzo, Francesco

    2015-01-01

    This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C). By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. PMID:25569163

  13. Microfluidic Directed Synthesis of Alginate Nanogels with Tunable Pore Size for Efficient Protein Delivery.

    PubMed

    Bazban-Shotorbani, Salime; Dashtimoghadam, Erfan; Karkhaneh, Akbar; Hasani-Sadrabadi, Mohammad Mahdi; Jacob, Karl I

    2016-05-17

    Alginate is a biopolymer with favorable pH-sensitive properties for oral delivery of peptides and proteins. However, conventional alginate nanogels have limitations such as low encapsulation efficiency because of drug leaching during bead preparation and burst release in high pH values. These shortcomings originate from large pore size of the nanogels. In this work, we proposed an on-chip hydrodynamic flow focusing approach for synthesis of alginate nanogels with adjustable pore size to achieve fine-tunable release profile of the encapsulated bioactive agents. It is demonstrated that the microstructure of nanogels can be controlled through adjusting flow ratio and mixing time directed on microfluidic platforms consisting of cross-junction microchannels. In this study, the average pore size of alginate nanogels (i.e., average molecular weight between cross-links, Mc) was related to synthesis parameters. Mc was calculated from equations based on equilibrium swelling theory and proposed methods to modify the theory for pH-sensitive nanogels. In the equations we derived, size and compactness of nanogels are key factors, which can be adjusted by controlling the flow ratio. It was found that increase in flow ratio increases the size of nanogels and decreases their compactness. The size of on-chip generated nanogels for flow ratio of 0.02-0.2 was measured to be in the range of 68-138 nm. Moreover, a method based on the Mie theory was implemented to estimate the aggregation number (Nagg) of polymer chains inside the nanogels as an indicator of compactness. According to the size and compactness results along with equations of modified swelling theory, Mc obtained to be in the range of 0.5-0.8 kDa. The proposed method could be considered as a promising approach for efficient polypeptides encapsulation and their sustained release. PMID:26938744

  14. Disc-shaped polyoxyethylene glycol glycerides gel nanoparticles as novel protein delivery vehicles.

    PubMed

    Codoni, Doroty; Cowan, Jonathan; Bradley, Jenna; McAuley, William J; O'Connell, Maria A; Qi, Sheng

    2015-12-30

    Disc-shaped nanoparticles with high aspect ratios have been reported to show preferential cellular uptake in vitro by mammalian cells. However, engineering and producing such disc-shaped nanoparticles are often complex. This study reports for the first time the use of a single, approved pharmaceutical excipient to prepare stable disc-shaped nanoparticles with a high aspect ratio via a simple, organic solvent free process. These disc-shaped nanoparticles were formed by fragmentation of stearoyl macrogol-32 glycerides (Gelucire 50/13) hydrogels. The nanoparticles showed good physical stability as a result of their outer coating of polyethylene glycol (PEG) that is a part of Gelucire composition. Using lysozyme as a model hydrophilic protein, these nanoparticles demonstrated a good loading capacity for hydrophilic macromolecules, mainly via surface adsorption. As a result of the higher hydrophobicity of the core of the nano-discs, the loading efficiency of hydrophobic model components, such as Coumarin-6, was significantly increased in comparison to the model hydrophilic compound. These Gelucire nano-discs exhibited no cytotoxicity at the tested level of 600μg/ml for Caco-2 cells. Rapid in vitro cellular uptake of the disc-shaped nanoparticles by Caco-2 cells was observed. This rapid internalisation was attributed to the high aspect ratio of the disc-shape nanoparticles which provides a high contact surface area between the particles and cells and may lower the strain energy required for membrane deformation during uptake. The results of this study demonstrate the promising potential of Gelucire nano-discs as effective nanocarriers for drug delivery and which can be manufactured using a simple solvent-free process.

  15. LASER ENGINEERED DISSOLVING MICRONEEDLES FOR ACTIVE TRANSDERMAL DELIVERY OF NADROPARIN CALCIUM

    PubMed Central

    Gomaa, Yasmine A.; Garland, Martin J.; McInnes, Fiona; El-Khordagui, Labiba K.; Wilson, Clive; Donnelly, Ryan F.

    2014-01-01

    There is an urgent need to replace the injection currently used for low molecular weight heparin (LMWH) multi-dose therapy with a non-invasive delivery device. In this study, laser-engineered dissolving microneedle (DMN) arrays fabricated from aqueous blends of 15% w/w poly (methylvinylether co maleic anhydride) have been fabricated as a potential device for the active transdermal delivery of nadroparin calcium (NC) as a model LMWH. An array loading of 630 IU of NC was achieved without compromising the array mechanical strength or the drug bioactivity. Application of NC-DMNs to dermatomed human skin (DHS) using the single step “poke and release” approach allowed permeation of approximately 10.6 % of the total NC load over a 48 h-study period. The cumulative amount of NC that permeated DHS at 24 h and 48 h attained 12.28 ± 4.23 IU/cm2 and 164.84 ± 8.47 IU/cm2, respectively. Skin permeation of NC could be modulated by controlling the DMN array variables, such as MN length and array density as well as application force to meet various clinical requirements including adjustment for body mass and renal function. NC-loaded DMN offer potentials as a relatively low cost functional delivery system for the transdermal delivery of LMWH and other macromolecules. PMID:22836025

  16. Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization

    PubMed Central

    Vergarajauregui, Silvia; Miguel, Anitza San; Puertollano, Rosa

    2006-01-01

    Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions. PMID:16683917

  17. Polycarboxylates Enhance Beetle Antifreeze Protein Activity

    PubMed Central

    Amornwittawat, Natapol; Wang, Sen; Duman, John G.; Wen, Xin

    2008-01-01

    Summary Antifreeze proteins (AFPs) lower the noncolligative freezing point of water in the presence of ice below the ice melting point. The temperature difference between the melting point and the noncolligative freezing point is termed thermal hysteresis (TH). The magnitude of the TH depends on the specific activity and the concentration of AFP, and the concentration of enhancers in the solution. Known enhancers are certain low molecular mass molecules and proteins. Here, we investigated a series of polycarboxylates that enhance the TH activity of an AFP from the beetle Dendroides canadensis (DAFP) using differential scanning calorimetry (DSC). Triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetate, the most efficient enhancer identified in this work, can increase the TH of DAFP by nearly 1.5 fold over than that of the published best enhancer, citrate. The Zn2+ coordinated carboxylate results in loss of the enhancement ability of the carboxylate on antifreeze activity. There is not an additional increase in TH when a weaker enhancer is added to a stronger enhancer solution. These observations suggest that the more carboxylate groups per enhancer molecule the better the efficiency of the enhancer and that the freedom of motion of these molecules is necessary for them to serve as enhancers for AFP. The hydroxyl groups in the enhancer molecules can also positively affect their TH enhancement efficiency, though not as strongly as carboxylate groups. Mechanisms are discussed. PMID:18620083

  18. Production of recombinant human growth hormone conjugated with a transcytotic peptide in Pichia pastoris for effective oral protein delivery.

    PubMed

    Lee, Jun-Yeong; Kang, Sang-Kee; Li, Hui-Shan; Choi, Chang-Yun; Park, Tae-Eun; Bok, Jin-Duck; Lee, Seung-Ho; Cho, Chong-Su; Choi, Yun-Jaie

    2015-05-01

    Among the possible delivery routes, the oral administration of a protein is simple and achieves high patient compliance without pain. However, the low bioavailability of a protein drug in the intestine due to the physical barriers of the intestinal epithelia is the most critical problem that needs to be solved. To overcome the low bioavailability of a protein drug in the intestine, we aimed to construct a recombinant Pichia pastoris expressing a human growth hormone (hGH) fusion protein conjugated with a transcytotic peptide (TP) that was screened through peroral phage display to target goblet cells in the intestinal epithelia. The TP-conjugated hGH was successfully produced in P. pastoris in a secreted form at concentrations of up to 0.79 g/l. The function of the TP-conjugated hGH was validated by in vitro and in vivo assays. The transcytotic function of the TP through the intestinal epithelia was verified only in the C terminus conjugated hGH, which demonstrated the induction of IGF-1 in a HepG2 cell culture assay, a higher translocation of recombinant hGH into the ileal villi after oral administration in rats and both IGF-1 induction and higher body weight gain in rats after oral administration. The present study introduces the possibility for the development of an effective oral protein delivery system in the pharmaceutical and animal industries through the introduction of an effective TP into hGH.

  19. Determination of the composition, encapsulation efficiency and loading capacity in protein drug delivery systems using circular dichroism spectroscopy.

    PubMed

    Peng, Zhili; Li, Shanghao; Han, Xu; Al-Youbi, Abdulrahman O; Bashammakh, Abdulaziz S; El-Shahawi, Mohammad S; Leblanc, Roger M

    2016-09-21

    Peptides and proteins have become very promising drug candidates in recent decades due to their unique properties. However, the application of these drugs has been limited by their high enzymatic susceptibility, low membrane permeability and poor bioavailability when administered orally. Considerable efforts have been made to design and develop drug delivery systems that could transport peptides and proteins to targeted area. Although it is of great importance to determine the composition after loading a drug to the carrier, the ability to do so is significantly limited by current analytical methods. In this letter, five important proteins, α1-antitrypsin, hemoglobin human, human serum albumin, human transferrin and r-globulin were chemically conjugated to two model drug carriers, namely carbon dots and polymer O-(2-carboxyethyl) polyethylene glycol. A simple yet convenient method based on circular dichroism spectroscopy was developed to determine the compositions of the various protein-carrier conjugates. PMID:27590552

  20. [Protein kinase C activation induces platelet apoptosis].

    PubMed

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  1. ACTIVE DELIVERY CABLE TUNED TO DEVICE DEPLOYMENT STATE: ENHANCED VISIBILITY OF NITINOL OCCLUDERS DURING PRE-CLINICAL INTERVENTIONAL MRI

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur

    2012-01-01

    Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441

  2. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes. PMID:27106502

  3. pH/sugar dual responsive core-cross-linked PIC micelles for enhanced intracellular protein delivery.

    PubMed

    Ren, Jie; Zhang, Yanxin; Zhang, Ju; Gao, Hongjun; Liu, Gan; Ma, Rujiang; An, Yingli; Kong, Deling; Shi, Linqi

    2013-10-14

    Herein, a series of biocompatible, robust, pH/sugar-sensitive, core-cross-linked, polyion complex (PIC) micelles based on phenylboronic acid-catechol interaction were developed for protein intracellular delivery. The rationally designed poly(ethylene glycol)-b-poly(glutamic acid-co-glutamicamidophenylboronic acid) (PEG-b-P(Glu-co-GluPBA)) and poly(ethylene glycol)-b-poly(l-lysine-co-ε-3,4-dihydroxyphenylcarboxyl-L-lysine) (PEG-b-P(Lys-co-LysCA)) copolymers were successfully synthesized and self-assembled under neutral aqueous condition to form uniform micelles. These micelles possessed a distinct core-cross-linked core-shell structure comprised of the PEG outer shell and the PGlu/PLys polyion complex core bearing boronate ester cross-linking bonds. The cross-linked micelles displayed superior physiological stabilities compared with their non-cross-linked counterparts while swelling and disassembling in the presence of excess fructose or at endosomal pH. Notably, either negatively or positively charged proteins can be encapsulated into the micelles efficiently under mild conditions. The in vitro release studies showed that the release of protein cargoes under physiological conditions was minimized, while a burst release occurred in response to excess fructose or endosomal pH. The cytotoxicity of micelles was determined by cck-8 assay in HepG2 cells. The cytochrome C loaded micelles could efficiently delivery proteins into HepG2 cells and exhibited enhanced apoptosis ability. Hence, this type of core-cross-linked PIC micelles has opened a new avenue to intracellular protein delivery.

  4. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins

    PubMed Central

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E.; Ha, Un-Hwan; Wu, Donghai

    2015-01-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. Significance The present study describes a novel and powerful tool for the delivery of the genome editing enzyme transcription activator-like effector nuclease (TALEN) directly into pluripotent stem cells (PSCs), achieving desired base changes on the genomes of PSCs with high efficiency. This novel approach uses bacteria as a protein delivery

  5. Intracellular Delivery and Antibacterial Activity of Gentamicin Encapsulated in pH-Sensitive Liposomes

    PubMed Central

    Lutwyche, Peter; Cordeiro, Carol; Wiseman, David J.; St-Louis, Maryse; Uh, Mitchell; Hope, Michael J.; Webb, Murray S.; Finlay, B. Brett

    1998-01-01

    Cell membranes are relatively impermeable to the antibiotic gentamicin, a factor that, along with the toxicity of gentamicin, precludes its use against many important intracellular bacterial infections. Liposomal encapsulation of this drug was used in order to achieve intracellular antibiotic delivery and therefore increase the drug’s therapeutic activity against intracellular pathogens. Gentamicin encapsulation in several dipalmitoylphosphatidylcholine (DPPC) and pH-sensitive dioleoylphosphatidylethanolamine (DOPE)-based carrier systems was characterized. To systematically test the antibacterial efficacies of these formulations, a tissue culture assay system was developed wherein murine macrophage-like J774A.1 cells were infected with bacteria and were then treated with encapsulated drug. Of these formulations, DOPE–N-succinyl-DOPE and DOPE–N-glutaryl-DOPE (70:30;mol:mol) containing small amounts of polyethyleneglycol-ceramide showed appreciable antibacterial activities, killing greater than 75% of intracellular vacuole-resident wild-type Salmonella typhimurium compared to the level of killing of the control formulations. These formulations also efficiently eliminated intracellular infections caused by a recombinant hemolysin-expressing S. typhimurium strain and a Listeria monocytogenes strain, both of which escape the vacuole and reside in the cytoplasm. Control non-pH-sensitive liposomal formulations of gentamicin had poor antibacterial activities. A fluorescence resonance energy transfer assay indicated that the efficacious formulations undergo a pH-dependent lipid mixing and fusion event. Intracellular delivery of the fluorescent molecules encapsulated in these formulations was confirmed by confocal fluorescence microscopy and was shown to be dependent on endosomal acidification. This work shows that encapsulation of membrane-impermeative antibiotics in appropriately designed lipid-based delivery systems can enable their use in treating intracellular

  6. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahony, D.; Cavallaro, A. S.; Mody, K. T.; Xiong, L.; Mahony, T. J.; Qiao, S. Z.; Mitter, N.

    2014-05-01

    Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral

  7. Heat dissipation guides activation in signaling proteins

    PubMed Central

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    Life is fundamentally a nonequilibrium phenomenon. At the expense of dissipated energy, living things perform irreversible processes that allow them to propagate and reproduce. Within cells, evolution has designed nanoscale machines to do meaningful work with energy harnessed from a continuous flux of heat and particles. As dictated by the Second Law of Thermodynamics and its fluctuation theorem corollaries, irreversibility in nonequilibrium processes can be quantified in terms of how much entropy such dynamics produce. In this work, we seek to address a fundamental question linking biology and nonequilibrium physics: can the evolved dissipative pathways that facilitate biomolecular function be identified by their extent of entropy production in general relaxation processes? We here synthesize massive molecular dynamics simulations, Markov state models (MSMs), and nonequilibrium statistical mechanical theory to probe dissipation in two key classes of signaling proteins: kinases and G-protein–coupled receptors (GPCRs). Applying machinery from large deviation theory, we use MSMs constructed from protein simulations to generate dynamics conforming to positive levels of entropy production. We note the emergence of an array of peaks in the dynamical response (transient analogs of phase transitions) that draw the proteins between distinct levels of dissipation, and we see that the binding of ATP and agonist molecules modifies the observed dissipative landscapes. Overall, we find that dissipation is tightly coupled to activation in these signaling systems: dominant entropy-producing trajectories become localized near important barriers along known biological activation pathways. We go on to classify an array of equilibrium and nonequilibrium molecular switches that harmonize to promote functional dynamics. PMID:26240354

  8. Phospholipases as GTPase activity accelerating proteins (GAPs) in plants.

    PubMed

    Pandey, Sona

    2016-05-01

    GTPase activity accelerating proteins (GAPs) are key regulators of the G-protein signaling cycle. By facilitating effective hydrolysis of the GTP bound on Gα proteins, GAPs control the timing and amplitude of the signaling cycle and ascertain the availability of the inactive heterotrimer for the next round of activation. Until very recently, the studies of GAPs in plants were focused exclusively on the regulator of G-protein signaling (RGS) protein. We now show that phospholipase Dα1 (PLDα1) is also a bona fide GAP in plants and together with the RGS protein controls the level of activeprotein. PMID:27124090

  9. Development of Potent Adenosine Monophosphate Activated Protein Kinase (AMPK) Activators.

    PubMed

    Dokla, Eman M E; Fang, Chun-Sheng; Lai, Po-Ting; Kulp, Samuel K; Serya, Rabah A T; Ismail, Nasser S M; Abouzid, Khaled A M; Chen, Ching-Shih

    2015-11-01

    Previously, we reported the identification of a thiazolidinedione-based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N-[4-({3-[(1-methylcyclohexyl)methyl]-2,4-dioxothiazolidin-5-ylidene}methyl)phenyl]-4-nitro-3-(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial-mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK-activating activities of individual derivatives revealed a distinct structure-activity relationship and identified 59 (N-(3-nitrophenyl)-N'-{4-[(3-{[3,5-bis(trifluoromethyl)phenyl]methyl}-2,4-dioxothiazolidin-5-ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1, compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT-associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)-null PC-3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN-negative cancer and warrants continued investigation in this regard.

  10. [In vitro transdermal delivery of the active fraction of xiangfusiwu decoction based on principal component analysis].

    PubMed

    Li, Zhen-Hao; Liu, Pei; Qian, Da-Wei; Li, Wei; Shang, Er-Xin; Duan, Jin-Ao

    2013-06-01

    The objective of the present study was to establish a method based on principal component analysis (PCA) for the study of transdermal delivery of multiple components in Chinese medicine, and to choose the best penetration enhancers for the active fraction of Xiangfusiwu decoction (BW) with this method. Improved Franz diffusion cells with isolated rat abdomen skins were carried out to experiment on the transdermal delivery of six active components, including ferulic acid, paeoniflorin, albiflorin, protopine, tetrahydropalmatine and tetrahydrocolumbamine. The concentrations of these components were determined by LC-MS/MS, then the total factor scores of the concentrations at different times were calculated using PCA and were employed instead of the concentrations to compute the cumulative amounts and steady fluxes, the latter of which were considered as the indexes for optimizing penetration enhancers. The results showed that compared to the control group, the steady fluxes of the other groups increased significantly and furthermore, 4% azone with 1% propylene glycol manifested the best effect. The six components could penetrate through skin well under the action of penetration enhancers. The method established in this study has been proved to be suitable for the study of transdermal delivery of multiple components, and it provided a scientific basis for preparation research of Xiangfusiwu decoction and moreover, it could be a reference for Chinese medicine research. PMID:23984531

  11. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems. PMID:26041190

  12. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems.

  13. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  14. Three-dimensionally presented anti-fouling zwitterionic motifs sequester and enable high-efficiency delivery of therapeutic proteins

    PubMed Central

    Liu, Pingsheng; Skelly, Jordan D.; Song, Jie

    2014-01-01

    Zwitterions are well known for their anti-biofouling properties. Past investigations of zwitterionic materials for biomedical uses have been centered on exploiting their ability to inhibit non-specific adsorption of proteins. Here, we report that zwitterionic motifs, when 3-dimensionally (3D) presented (e.g. in crosslinked hydrogels), could effectively sequester osteogenic bone morphogenetic protein-2 (rhBMP-2). The ionic interactions between rhBMP-2 and the 3D zwitterionic network enabled dynamic sequestering and sustained release of the protein with preserved bioactivity. We further demonstrated that the zwitterionic hydrogel confers high-efficiency in vivo local delivery of rhBMP-2. It can template the functional healing of critical-size femoral segmental defects in rats with rhBMP-2 at a loading dose substantially lower than those required for current natural or synthetic polymeric carriers. These findings reveal a novel function of zwitterionic materials beyond their commonly perceived anti-biofouling property, and may establish 3D zwitterionic matrices as novel high-efficiency vehicles for protein/ionic drug therapeutic delivery. PMID:24956565

  15. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  16. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  17. pH-Responsive Fe3O4 Nanopartilces-Capped Mesoporous Silica Supports for Protein Delivery.

    PubMed

    Gan, Qi; Zhu, Jiaoyang; Yuan, Yuan; Liu, Changsheng

    2016-06-01

    Delivery of proteins and peptides with excellent bioactivity and controlled release still is a great challenge nowadays. In this study, a pH-responsive delivery system obtained by anchoring 8-nm Fe3O4 nanoparticles (NPs) onto SBA-15 supports with a particle diameter in the range of 0.6-1 μm and a pore size of 6.2 nm was synthesized and investigated. The pH-stimulative response is based on the interaction between the tris(aminomethyl)ethane (TAE) groups anchored onto the pore outlet of mesoporous silica scaffolds and the carboxybenzaldehyde (CBA) groups coated on the Fe3O4 NPs, which can lead to a rapid release under the acid condition (pH = 5) and a zero release with the increase of pH value (pH = 7.4). With BMP-2 as a model protein, this Fe3O4 nanopartilces-capped mesoporous silica showed a rapid response to the change of pH for protein delivery. Furthermore, the released BMP-2 could still maintain its bioactivity and induce the osteoblast differentiation of BMSCs. Besides, the magnetic orientation mainly attributes to the Fe3O4 NPs served as the nanocaps. The excellent bio-compatibility is demonstrated by the MTT assay on BMSCs model cells. These results show that Fe3O4 NPs-capped SBA-15 materials have an effective load for large molecule size proteins, such as BMP-2, and show an excellent applied prospect in pH-responsive controlled release system. PMID:27427586

  18. The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles.

    PubMed

    Oun, Rabbab; Floriano, Rafael S; Isaacs, Lyle; Rowan, Edward G; Wheate, Nial J

    2014-11-01

    The cucurbituril family of drug delivery vehicles have been examined for their tissue specific toxicity using ex vivo models. Cucurbit[6]uril (CB[6]), cucurbit[7]uril (CB[7]) and the linear cucurbituril-derivative Motor2 were examined for their neuro-, myo- and cardiotoxic activity and compared with β-cyclodextrin. The protective effect of drug encapsulation by CB[7] was also examined on the platinum-based anticancer drug cisplatin. The results show that none of the cucurbiturils have statistically measurable neurotoxicity as measured using mouse sciatic nerve compound action potential. Cucurbituril myotoxicity was measured by nerve-muscle force of contraction through chemical and electrical stimulation. Motor2 was found to display no myotoxicity, whereas both CB[6] and CB[7] showed myotoxic activity via a presynaptic effect. Finally, cardiotoxicity, which was measured by changes in the rate and force of right and left atria contraction, was observed for all three cucurbiturils. Free cisplatin displays neuro-, myo- and cardiotoxic activity, consistent with the side-effects seen in the clinic. Whilst CB[7] had no effect on the level of cisplatin's neurotoxic activity, drug encapsulation within the macrocycle had a marked reduction in both the drug's myo- and cardiotoxic activity. Overall the results are consistent with the relative lack of toxicity displayed by these macrocycles in whole animal acute systemic toxicity studies and indicate continued potential of cucurbiturils as drug delivery vehicles for the reduction of the side effects associated with platinum-based chemotherapy.

  19. Light-controlled active release of photocaged ciprofloxacin for lipopolysaccharide-targeted drug delivery using dendrimer conjugates.

    PubMed

    Wong, Pamela T; Tang, Shengzhuang; Mukherjee, Jhindan; Tang, Kenny; Gam, Kristina; Isham, Danielle; Murat, Claire; Sun, Rachel; Baker, James R; Choi, Seok Ki

    2016-08-16

    We report an active delivery mechanism targeted specifically to Gram(-) bacteria based on the photochemical release of photocaged ciprofloxacin carried by a cell wall-targeted dendrimer nanoconjugate. PMID:27476878

  20. Metamorphic protein IscU alternates conformations in the course of its role as the scaffold protein for iron-sulfur cluster biosynthesis and delivery.

    PubMed

    Markley, John L; Kim, Jin Hae; Dai, Ziqi; Bothe, Jameson R; Cai, Kai; Frederick, Ronnie O; Tonelli, Marco

    2013-04-17

    IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and delivery, populates a complex energy landscape. IscU exists as two slowly interconverting species: one (S) is largely structured with all four peptidyl-prolyl bonds trans; the other (D) is partly disordered but contains an ordered domain that stabilizes two cis peptidyl-prolyl peptide bonds. At pH 8.0, the S-state is maximally populated at 25 °C, but its population decreases at higher or lower temperatures or at lower pH. The D-state binds preferentially to the cysteine desulfurase (IscS), which generates and transfers sulfur to IscU cysteine residues to form persulfides. The S-state is stabilized by Fe-S cluster binding and interacts preferentially with the DnaJ-type co-chaperone (HscB), which targets the holo-IscU:HscB complex to the DnaK-type chaperone (HscA) in its ATP-bound from. HscA is involved in delivery of Fe-S clusters to acceptor proteins by a mechanism dependent on ATP hydrolysis. Upon conversion of ATP to ADP, HscA binds the D-state of IscU ensuring release of the cluster and HscB. These findings have led to a more complete model for cluster biosynthesis and delivery.

  1. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: a novel adjuvant and delivery system.

    PubMed

    Carneiro, Catarina; Correia, Alexandra; Collins, Tony; Vilanova, Manuel; Pais, Célia; Gomes, Andreia C; Real Oliveira, M Elisabete C D; Sampaio, Paula

    2015-01-01

    We describe the preparation and characterization of DODAB:MO-based liposomes and demonstrate their adjuvant potential and use in antigen delivery. Liposomes loaded with Candida albicans proteins assembled as stable negatively charged spherical nanoparticles with a mean size of 280 nm. High adsorption efficiency (91.0 ± 9.0%) is attained with high lipid concentrations. The nanoparticles were non-toxic, avidly taken up by macrophage cells and accumulated in membrane rich regions with an internalization time of 20 min. Immunized mice displayed strong humoral and cell-mediated immune responses, producing antibodies (IgGs) against specific cell wall proteins, Cht3p and Xog1p. DODAB:MO-based liposomes loaded with C. albicans proteins have an excellent immunogenic potential and can be explored for the development of an immunoprotective strategy against Candida infections. PMID:25499956

  2. Arabinogalactan proteins: focus on carbohydrate active enzymes

    PubMed Central

    Knoch, Eva; Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/) involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development. PMID:24966860

  3. Observation of microtubule-based motor protein activity.

    PubMed

    Sloboda, Roger D

    2015-02-01

    It is possible to detect the presence of motor proteins that have the ability to translocate particles along microtubules. The two procedures described here were developed to detect microtubule-dependent motor protein activity in cell lysates or of purified proteins. In the first procedure, latex beads bound to the putative motor protein are assayed for their ability to translocate along microtubules in an ATP-dependent fashion. If motor protein activity is present, it will bind to the beads and translocate them unidirectionally along the microtubules. In the second procedure, motor proteins induce microtubule gliding over a glass coverslip surface that is coated with active motor protein. Because the mass of a microtubule is negligible compared to that of a coverslip or slide, the microtubule glides over the glass surface when the surface is coated with active motor protein. Also included here are descriptions of assays designed to determine the directionality of movement of microtubule-based motor proteins. PMID:25646501

  4. Glyceryl monooleate-based otic delivery system of ofloxacin: release profile and bactericidal activity.

    PubMed

    Adwan, Samer; Abu-Dahab, Rana; Al-Bakri, Amal G; Sallam, Alsayyed

    2015-05-01

    This study investigated the preparation and characterization of glyceryl monooleate- (GMO) based drug delivery system containing ofloxacin for the treatment of otitis externa. Acetate buffer (pH 4.5) containing dissolved ofloxacin was added to molten GMO as an aqueous phase, this resulted in the formation of a cubic and a reverse hexagonal phases. The release behavior of ofloxacin from the drug delivery system was studied using three different methods. The mechanism of drug release using paddles/dissolution apparatus and Franz diffusion cells followed Higuchi and Fickian diffusion models; whereas intrinsic release rate method showed zero-order kinetics. The intrinsic release rate was estimated and found to be 187.2 µg/cm(2)/h. The release mechanisms were similar irrespective of the loaded ofloxacin amount, however, the higher drug load displayed higher release rate. The drug delivery system was proven to be microbiologically effective by using agar diffusion method, against Staphylococcus aureus, and Pseudomonas aeruginosa. The GMO/ofloxacin formulation was stable for 6 months after preparation at room temperature as measured with respect to phase stability and antibacterial activity.

  5. Thermogelling Biodegradable Copolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering

    SciTech Connect

    Jeong, Byeongmoon; Lee, Kyeonghee M.; Gutowska, Anna; An, Yuehuei H.

    2002-07-01

    This paper reports on the thermogelling, biodegradable polymer formulations based on poly(DL-lactic acid-co-glycolic acid)(polyethylene glycol) graft copolymers for in-vivo biomedical applications. The description includes diabetic control by sustained insulin delivery and cartilage repair by chondrocyte cell delivery. With one injection of the formula, the blood glucose level could be controlled from 5 to 16 days in diabetic rats by varying the polymer composition. Promising cartilage repair was observed using chondrocyte suspension in the thermogelling biodegradable depot.

  6. Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery.

    PubMed

    Affolter, Michael; Garcia-Rodenas, Clara L; Vinyes-Pares, Gerard; Jenni, Rosemarie; Roggero, Iris; Avanti-Nigro, Ornella; de Castro, Carlos Antonio; Zhao, Ai; Zhang, Yumei; Wang, Peiyu; Thakkar, Sagar K; Favre, Laurent

    2016-01-01

    Human breast milk (BM) protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG) and transforming growth factor (TGF) β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors. PMID:27548208

  7. Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery.

    PubMed

    Affolter, Michael; Garcia-Rodenas, Clara L; Vinyes-Pares, Gerard; Jenni, Rosemarie; Roggero, Iris; Avanti-Nigro, Ornella; de Castro, Carlos Antonio; Zhao, Ai; Zhang, Yumei; Wang, Peiyu; Thakkar, Sagar K; Favre, Laurent

    2016-08-17

    Human breast milk (BM) protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG) and transforming growth factor (TGF) β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors.

  8. Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery

    PubMed Central

    Affolter, Michael; Garcia-Rodenas, Clara L.; Vinyes-Pares, Gerard; Jenni, Rosemarie; Roggero, Iris; Avanti-Nigro, Ornella; de Castro, Carlos Antonio; Zhao, Ai; Zhang, Yumei; Wang, Peiyu; Thakkar, Sagar K.; Favre, Laurent

    2016-01-01

    Human breast milk (BM) protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG) and transforming growth factor (TGF) β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors. PMID:27548208

  9. Quantitative measurement of delivery and gene silencing activities of siRNA polyplexes containing pyridylthiourea-grafted polyethylenimines.

    PubMed

    Pinel, Sophie; Aman, Emmanuel; Erblang, Felix; Dietrich, Jonathan; Frisch, Benoit; Sirman, Julien; Kichler, Antoine; Sibler, Annie-Paule; Dontenwill, Monique; Schaffner, Florence; Zuber, Guy

    2014-05-28

    The activity of synthetic interfering nucleic acids (siRNAs) relies on the capacity of delivery systems to efficiently transport nucleic acids into the cytosol of target cells. The pyridylthiourea-grafted 25KDa polyethylenimine (πPEI) is an excellent carrier for siRNA delivery into cells and it was extensively investigated in this report. Quantification of the siRNA-mediated gene silencing efficiency indicated that the πPEI specific delivery activity at the cell level may be measured and appears relatively constant in various cell lines. Delivery experiments assaying inhibitors of various entry pathways or concanamycin A, an inhibitor of the H(+)/ATPase vacuolar pump showed that the πPEI/siRNA polyplexes did not require any specific entry mode but strongly relied on vacuolar acidification for functional siRNA delivery. Next, πPEI polyplexes containing a siRNA targeting the transcription factor HIF-1α, known to be involved in tumor progression, were locally injected into mice xenografted with a human glioblastoma. A 55% reduction of the level of the target mRNA was observed at doses comparable to those used in vitro when the πPEI delivery activity was calculated per cell. Altogether, our study underscores the usefulness of "simple"/rough cationic polymers for siRNA delivery despite their intrinsic limitations. The study underscores as well as that bottom-up strategies make sense. The in vitro experiments can precede in vivo administration and be of high value for selection of the carrier with enhanced specific delivery activity and parallel other research aiming at improving synthetic delivery systems for resilience in the blood and for enhanced tissue-targeting capacity. PMID:24631860

  10. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    PubMed

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned.

  11. siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells.

    PubMed

    Ho, Theodore T; You, Jin-Oh; Auguste, Debra T

    2016-04-01

    Leukocyte recruitment plays a key role in chronic inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, and cancer. Leukocyte rolling and arrest are mediated in part by the temporally-regulated surface expression of vascular cell adhesion molecule-1 (VCAM1) on endothelial cells (ECs). In this paper, we engineered a pH-responsive vehicle comprised of 30 mol% dimethylaminoethyl methacrylate (30D) and 70 mol% hydroxyethyl methacrylate (70H) to encapsulate, protect, and deliver VCAM1 small interfering RNA (siRNA). The ability of siRNA to reduce VCAM1 gene expression is in direct opposition to its activation by cytokines. At 12 h post-activation, VCAM1 gene knockdown was 90.1 ± 7.5% when delivered via 30D/70H nanoparticles, which was on par with a leading commercial transfection agent. This translated into a 68.8 ± 6.7% reduction in the surface density of VCAM1 on cytokine-activated ECs. The pH-responsive delivery of VCAM1 siRNA efficiently reduced temporal surface protein expression, which may be used to avert leukocyte recruitment.

  12. Recent insights into the biological activities and drug delivery systems of tanshinones.

    PubMed

    Cai, Yuee; Zhang, Wenji; Chen, Zirong; Shi, Zhi; He, Chengwei; Chen, Meiwan

    2016-01-01

    Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications. PMID:26792989

  13. Effect of innate glutathione levels on activity of redox-responsive gene delivery vectors

    PubMed Central

    Manickam, Devika S.; Li, Jing; Putt, David A.; Zhou, Qing-Hui; Wu, Chao; Lash, Lawrence H.; Oupický, David

    2009-01-01

    Redox-responsive polyplexes represent a promising class of non-viral gene delivery vectors. The reducible disulfide bonds in the polyplexes undergo intracellular reduction owing to the presence of high concentrations of reduced glutathione (GSH). Available evidence suggests improved transfection activity of redox-sensitive polyplexes upon artificial modulation of intracellular GSH. This study investigates the effect of innate differences in GSH concentration in a panel of human pancreatic cancer cell lines on activity of reducible polyplexes of the four major classes of nucleic acid therapeutics: plasmid DNA (pDNA), messenger RNA (mRNA), antisense oligodeoxynucleotides (AON) and siRNA. In general, reducible polyplexes of linear poly(amido amines) (PAA) show improved activity compared to non-reducible polyplexes of PAA. Results demonstrate that increased GSH levels are associated with improved transfection of mRNA polyplexes but no clear trend is observed for pDNA, AON and siRNA polyplexes. PMID:19720098

  14. Recent insights into the biological activities and drug delivery systems of tanshinones

    PubMed Central

    Cai, Yuee; Zhang, Wenji; Chen, Zirong; Shi, Zhi; He, Chengwei; Chen, Meiwan

    2016-01-01

    Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications. PMID:26792989

  15. Recent insights into the biological activities and drug delivery systems of tanshinones.

    PubMed

    Cai, Yuee; Zhang, Wenji; Chen, Zirong; Shi, Zhi; He, Chengwei; Chen, Meiwan

    2016-01-01

    Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications.

  16. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser

    PubMed Central

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc’h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3–57.3) of CECs with low mortality (0.5%, range (0.55–1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for

  17. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser.

    PubMed

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc'h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3-57.3) of CECs with low mortality (0.5%, range (0.55-1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for future

  18. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser.

    PubMed

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc'h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3-57.3) of CECs with low mortality (0.5%, range (0.55-1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for future

  19. Nanosize drug delivery system.

    PubMed

    Mukherjee, Biswajit

    2013-01-01

    Nanosize materials provide hopes, speculations and chances for an unprecedented change in drug delivery in near future. Nanotechnology is an emerging field to produce nanomaterials for drug delivery that can offer a new tool, opportunities and scope to provide more focused and fine-tuned treatment of diseases at a molecular level, enhancing the therapeutic potential of drugs so that they become less toxic and more effective. Nanodimensional drug delivery systems are of great scientific interest as they project their tremendous utility because of their capability of altering biodistribution of therapeutic agents so that they can concentrate more in the target tissues. Nanosize drug delivery systems generally focus on formulating bioactive molecules in biocompatible nanosystems such as nanocrystals, solid lipid nanoparticles, nanostructure lipid carriers, lipid drug conjugates, nanoliposomes, dendrimers, nanoshells, emulsions, nanotubes, quantum dots etc. Extensively versatile molecules like synthetic chemicals to naturally occurring complex macromolecules such as nucleic acids and proteins could be dispensed in such formulations maintaining their stability and efficacy. Empty viral capsids are being tried to deliver drug as these uniformly sized bionanomaterials can be utilized to load drug to improve solubility, reduce toxicity and provide site specific targeting. Nanomedicines offer a wide scope for delivery of smart materials from tissue engineering to more recently artificial RBCs. Nanocomposites are the future hope for tailored and personalized medicines as well as for bone repairing and rectification of cartilage impairment. Nanosize drug delivery systems are addressing the challenges to overcome the delivery problems of wide ranges of drugs through their narrow submicron particle size range, easily manipulatable surface characteristics in achievement of versatile tissue targeting (includes active and passive drug targeting), controlled and sustained drug

  20. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods.

    PubMed

    Fan, Guangping; Cang, Long; Gomes, Helena I; Zhou, Dongmei

    2016-02-01

    Persulfate-based in-situ chemical oxidation (ISCO) for the remediation of organic polluted soils has gained much interest in last decade. However, the transportation of persulfate in low-permeability soil is very low, which limits its efficiency in degrading soil pollutants. Additionally, the oxidation-reduction process of persulfate with organic contaminants takes place slowly, while, the reaction will be greatly accelerated by the production of more powerful radicals once it is activated. Electrokinetic remediation (EK) is a good way for transporting persulfate in low-permeability soil. In this study, different activation methods, using zero-valent iron, citric acid chelated Fe(2+), iron electrode, alkaline pH and peroxide, were evaluated to enhance the activity of persulfate delivered by EK. All the activators and the persulfate were added in the anolyte. The results indicated that zero-valent iron, alkaline, and peroxide enhanced the transportation of persulfate at the first stage of EK test, and the longest delivery distance reached sections S4 or S5 (near the cathode) on the 6th day. The addition of activators accelerated decomposition of persulfate, which resulted in the decreasing soil pH. The mass of persulfate delivered into the soil declined with the continuous decomposition of persulfate by activation. The removal efficiency of PCBs in soil followed the order of alkaline activation > peroxide activation > citric acid chelated Fe(2+) activation > zero-valent iron activation > without activation > iron electrode activation, and the values were 40.5%, 35.6%, 34.1%, 32.4%, 30.8% and 30.5%, respectively. The activation effect was highly dependent on the ratio of activator and persulfate.

  1. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods.

    PubMed

    Fan, Guangping; Cang, Long; Gomes, Helena I; Zhou, Dongmei

    2016-02-01

    Persulfate-based in-situ chemical oxidation (ISCO) for the remediation of organic polluted soils has gained much interest in last decade. However, the transportation of persulfate in low-permeability soil is very low, which limits its efficiency in degrading soil pollutants. Additionally, the oxidation-reduction process of persulfate with organic contaminants takes place slowly, while, the reaction will be greatly accelerated by the production of more powerful radicals once it is activated. Electrokinetic remediation (EK) is a good way for transporting persulfate in low-permeability soil. In this study, different activation methods, using zero-valent iron, citric acid chelated Fe(2+), iron electrode, alkaline pH and peroxide, were evaluated to enhance the activity of persulfate delivered by EK. All the activators and the persulfate were added in the anolyte. The results indicated that zero-valent iron, alkaline, and peroxide enhanced the transportation of persulfate at the first stage of EK test, and the longest delivery distance reached sections S4 or S5 (near the cathode) on the 6th day. The addition of activators accelerated decomposition of persulfate, which resulted in the decreasing soil pH. The mass of persulfate delivered into the soil declined with the continuous decomposition of persulfate by activation. The removal efficiency of PCBs in soil followed the order of alkaline activation > peroxide activation > citric acid chelated Fe(2+) activation > zero-valent iron activation > without activation > iron electrode activation, and the values were 40.5%, 35.6%, 34.1%, 32.4%, 30.8% and 30.5%, respectively. The activation effect was highly dependent on the ratio of activator and persulfate. PMID:26347936

  2. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    PubMed

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-01

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD. PMID:21262823

  3. Intranuclear Delivery of a Novel Antibody-Derived Radiosensitizer Targeting the DNA-Dependent Protein Kinase Catalytic Subunit

    SciTech Connect

    Xiong Hairong; Lee, Robert J.; Haura, Eric B.; Edwards, John G.; Dynan, William S.; Li Shuyi

    2012-07-01

    Purpose: To inhibit DNA double-strand break repair in tumor cells by delivery of a single-chain antibody variable region fragment (ScFv 18-2) to the cell nucleus. ScFv 18-2 binds to a regulatory region of the DNA-dependent protein kinase (DNA-PK), an essential enzyme in the nonhomologous end-joining pathway, and inhibits DNA end-joining in a cell-free system and when microinjected into single cells. Development as a radiosensitizer has been limited by the lack of a method for intranuclear delivery to target cells. We investigated a delivery method based on folate receptor-mediated endocytosis. Methods and Materials: A recombinant ScFv 18-2 derivative was conjugated to folate via a scissile disulfide linker. Folate-ScFv 18-2 was characterized for its ability to be internalized by tumor cells and to influence the behavior of ionizing radiation-induced repair foci. Radiosensitization was measured in a clonogenic survival assay. Survival curves were fitted to a linear-quadratic model, and between-group differences were evaluated by an F test. Sensitization ratios were determined based on mean inhibitory dose. Results: Human KB and NCI-H292 lung cancer cells treated with folate-conjugated ScFv 18-2 showed significant radiosensitization (p < 0.001). Sensitization enhancement ratios were 1.92 {+-} 0.42 for KB cells and 1.63 {+-} 0.13 for NCI-H292 cells. Studies suggest that treatment inhibits repair of radiation-induced DSBs, as evidenced by the persistence of {gamma}-H2AX-stained foci and by inhibition of staining with anti-DNA-PKcs phosphoserine 2056. Conclusions: Folate-mediated endocytosis is an effective method for intranuclear delivery of an antibody-derived DNA repair inhibitor.

  4. Novel pH/Temperature-Sensitive Hydrogels Based on Poly(β-Amino Ester) for Controlled Protein Delivery

    NASA Astrophysics Data System (ADS)

    Huynh, Dai Phu; He, Chaoliang; Lee, Doo Sung

    The concept of this research was to use poly(β-amino ester) (PAE) as a bi-functional group for synthesis of the novel stimuli-sensitive injectable hydrogels for controlled drug/protein delivery. Firstly, PAE was used as a pH-sensitive moiety to conjugate with the temperature-sensitive biodegradable triblock copolymer of poly(ethylene glycol)-poly(ɛ-caprolactone)(PCL-PEG-PCL) or poly(ethylene glycol)-poly(ɛ-caprolactone-co-D,L-lactide) (PACL-PEG-PCLA). Secondly, the cationic nature of PAE was used as the second function to make ionic complexes with anionic biomolecules loaded onto the hydrogel such as insulin. As a result, the release of the drug/protein from the hydrogel device can be controlled by the degradation of the copolymer.

  5. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin.

    PubMed

    Jin, Bei; Zhou, Xiaosong; Li, Xiangzhong; Lin, Weiqin; Chen, Guangbin; Qiu, Riji

    2016-01-01

    A simple and green approach was developed to produce a novel nanogel via self-assembly of modified soy protein and dextran, to efficiently deliver riboflavin. First, modified soy protein was prepared by heating denaturation at 60 °C for 30 min or Alcalase hydrolysis for 40 min. Second, modified soy protein was mixed with dextran and ultrasonicated for 70 min so as to assemble nanogels. The modified soy protein-dextran nanogels were characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) and ζ-potential studies to confirm the formation of NGs. Transmission electron microscopy (TEM) revealed the NGs to be spherical with core-shell structures, in the range of 32-40 nm size. The nanogels were stable against various environmental conditions. Furthermore, the particle size of the nanogels hardly changed with the incorporation of riboflavin. The encapsulation efficiency of nanogels was found to be up to 65.9% at a riboflavin concentration of 250 μg/mL. The nanogels exhibited a faster release in simulated intestine fluid (SIF) compared with simulated gastric fluid (SGF). From the results obtained it can be concluded that modified soy protein-dextran nanogels can be considered a promising carrier for drugs and other bioactive molecule delivery purposes. PMID:26999081

  6. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM).

    PubMed

    Liu, Ying; Feng, Nianping

    2015-07-01

    Traditional Chinese medicine (TCM) has been practiced for thousands of years with a recent increase in popularity. Despite promising biological activities of active ingredients and fractions from TCM, their poor solubility, poor stability, short biological half-life, ease of metabolism and rapid elimination hinder their clinical application. Therefore, overcoming these problems to improve the therapeutic efficacy of TCM preparations is a major focus of pharmaceutical sciences. Recently, nanocarriers have drawn increasing attention for their excellent and efficient delivery of active TCM ingredients or fractions. This review discusses problems in the delivery of active TCM ingredients or fractions; focuses on recent advances in nanocarriers that represent potential solutions to these problems, including lipid-based nanoparticles and polymeric, inorganic, and hybrid nanocarriers; and discusses unanswered questions in the field and criteria for the development of better nanocarriers for the delivery of active TCM ingredients or fractions to be focused on in future studies.

  7. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors

    PubMed Central

    Daldrup-Link, Heike E.; Mohanty, Suchismita; Ansari, Celina; Ito, Ken; Hong, Su Hyun; Hoffmann, Matthias; Pisani, Laura; Boudreau, Nancy; Gambhir, Sanjiv Sam; Coussens, Lisa M.

    2016-01-01

    Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies. PMID:27182558

  8. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery

    PubMed Central

    Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf

    2016-01-01

    Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy. PMID:27264609

  9. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery

    NASA Astrophysics Data System (ADS)

    Park, Hee Sung; Kim, Chan Woo; Lee, Hong Jae; Hye Choi, Ji; Lee, Se Geun; Yun, Young-Pil; Kwon, Ick Chan; Lee, Seung Jin; Jeong, Seo Young; Lee, Sang Cheon

    2010-06-01

    We report a smart mesoporous silica nanoparticle (MSN) with a pore surface designed to undergo charge conversion in intracellular endosomal condition. The surface of mesopores in the silica nanoparticles was engineered to have pH-hydrolyzable citraconic amide. Solid-state nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) analyses confirmed the successful modification of the pore surfaces. MSNs (MSN-Cit) with citraconic amide functionality on the pore surfaces exhibited a negative zeta potential (-10 mV) at pH 7.4 because of the presence of carboxylate end groups. At cellular endosomal pH (~5.0), MSN-Cit have a positive zeta potential (16 mV) indicating the dramatic charge conversion from negative to positive by hydrolysis of surface citraconic amide. Cytochrome c (Cyt c) of positive charges could be incorporated into the pores of MSN-Cit by electrostatic interactions. The release of Cyt c can be controlled by adjusting the pH of the release media. At pH 7.4, the Cyt c release was retarded, whereas, at pH 5.0, MSN-Cit facilitated the release of Cyt c. The released Cyt c maintained the enzymatic activity of native Cyt c. Hemolytic activity of MSN-Cit over red blood cells (RBCs) was more pronounced at pH 5.0 than at pH 7.0, indicating the capability of intracellular endosomal escape of MSN carriers. Confocal laser scanning microscopy (CLSM) studies showed that MSN-Cit effectively released Cyt c in endosomal compartments after uptake by cancer cells. The MSN developed in this work may serve as efficient intracellular carriers of many cell-impermeable therapeutic proteins.

  10. Enhanced delivery of an anti-dandruff active in a shampoo vehicle.

    PubMed

    Georgalas, Art

    2004-01-01

    Formulating a delivery vehicle to enhance activity can potentially give higher activity or allow for adjustment to a lesser percent of active. A study was conducted in which the anti-dandruff active, Octopirox, INCI Piroctone Olamine [1-Hydroxy-4-methyl-6-(2,4,4-trimethylpentyl)-2(1H)-pyridinone], was incorporated into a simple shampoo base at two levels as well as in the same base with an added amphiphilic surfactant blend (Biobase SMC) at the lower level. A group of thirty (30) male subjects with moderate to severe dandruff were divided into three groups each of which evaluated one of three products for four weeks. Methods of evaluation included gravimetric determination of actual dandruff flakes, fluorescent staining of suspect yeast populations, blind evaluation by trained clinical personnel and panelist self assessment. The study demonstrated that the Octopirox at 0.2% active delivered in the amphiphile blend was superior to the same level in the simple shampoo base and equivalent in activity to a much higher level (0.5%) in the base only. A proposed mechanism postulates the formation of liposome-like association structures that solubilize and entrap the Octopirox and deposit is substantively to the scalp for enhanced longer lasting activity. PMID:15645098

  11. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies.

  12. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies. PMID:27279586

  13. Herpes simplex virus type 1 VP22-mediated intercellular delivery of PTEN increases the antitumor activity of PTEN in esophageal squamous cell carcinoma cells in vitro and in vivo.

    PubMed

    Yu, Xian; Li, Tingting; Xia, Yifan; Lei, Jun; Wang, Yan; Zhang, Lijuan

    2016-05-01

    In the past decade, studies have revealed that the phosphatase and tensin homolog (PTEN) protein, a tumor suppressor, comprises a potential biological marker and therapeutic target for esophageal squamous cell carcinoma (ESCC). As such, the delivery of the PTEN gene represents a powerful strategy for ESCC therapy. The tegument protein VP22 of herpes simplex virus type 1 (HSV-1) has been reported to act as a transporter of heterologous proteins across the host cell membrane, thereby enhancing the biological functions of these proteins. In the present study, the intercellular delivery and antitumor activity of the fusion protein PTEN-VP22 were examined in the esophageal squamous cell carcinoma cell line Eca109 both in vitro and in vivo. VP22-mediated PTEN intercellular delivery was confirmed in the Eca109 cells by western blot analysis and by quantitation of immunofluorescence. VP22 alone did not exert antiproliferative effects or induce cell cycle arrest, induction of apoptosis, blockage of the Akt and focal adhesion kinase (FAK) pathways, tumor growth inhibition, or antiangiogenic effects in Eca109 cells. However, compared with PTEN alone, PTEN-VP22 exerted significantly higher antiproliferative effects and induced cell cycle arrest at G1 stage, apoptosis and antiangiogenic effects in Eca109 cells. Together, our findings demonstrate that VP22 alone does not exert antitumor activity directly; however, this protein mediates the intercellular delivery of PTEN and thereby increases its intracellular concentration to achieve a therapeutic steady state, leading to an overall increase in the antitumor activity of PTEN. This study provides further experimental data to confirm the potential of VP22-based intercellular delivery strategies for enhancing the efficacy of gene therapy for cancer treatment.

  14. Systemic protein delivery by muscle-gene transfer is limited by a local immune response

    PubMed Central

    Wang, Lixin; Dobrzynski, Eric; Schlachterman, Alexander; Cao, Ou; Herzog, Roland W.

    2005-01-01

    Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene transfer. Administration to immune competent mice resulted in transient systemic OVA expression. Within 10 days, OVA-specific T-helper cells had been activated in draining lymph nodes, an inflammatory immune response ensued, and OVA-expressing muscle fibers were destroyed by a cytotoxic CD8+ T-cell response. Use of a muscle-specific promoter did not prevent this immune response. Adoptively transferred CD4+ cells transgenic for a T-cell receptor specific to OVA peptide-major histocompatibility complex class II showed antigen-specific, vector dose-dependent proliferation confined to the draining lymph nodes of AAV-OVA–transduced muscle within 5 days after gene transfer and subsequently participated in lymphocytic infiltration of transduced muscle. This study documents that a local immune response limits sustained expression of a secreted protein in muscle gene transfer, a finding that may have consequences for design of clinical protocols. PMID:15713796

  15. Transdermal delivery of biomacromolecules using lipid-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Bello, Evelyn A.

    The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.

  16. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  17. G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?

    PubMed

    Roberts, David J; Waelbroeck, Magali

    2004-09-01

    G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).

  18. Hetero-modification of TRAIL trimer for improved drug delivery and in vivo antitumor activities

    PubMed Central

    Pan, Li-Qiang; Zhao, Wen-Bin; Lai, Jun; Ding, Ding; Wei, Xiao-Yue; Li, Yang-Yang; Liu, Wen-Hui; Yang, Xiao-Yue; Xu, Ying-Chun; Chen, Shu-Qing

    2015-01-01

    Poor pharmacokinetics and resistance within some tumor cell lines have been the major obstacles during the preclinical or clinical application of TRAIL (tumor-necrosis-factor (TNF)-related apoptosis-inducing ligand). The half-life of TRAIL114-281 (114 to 281 amino acids) was revealed to be no more than 30 minutes across species. Therefore maleimido activated PEG (polyethylene glycol) and MMAE (Monomethyl Auristatin E) were applied to site-specifically conjugate with the mutated cysteines from different monomers of TRAIL successively, taking advantage of steric effects involved within TRAIL mutant conjugations. As a result, TRAIL trimer was hetero-modified for different purposes. And the resulting PEG-TRAIL-vcMMAE conjugate exhibited dramatically improved half-life (11.54 h), favourable in vivo targeting capability and antitumor activities while no sign of toxicity in xenograft models, suggesting it’s a viable therapeutic and drug delivery strategy. PMID:26445897

  19. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes.

    PubMed

    Li, Xiang; Yang, Weijing; Zou, Yan; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2015-12-28

    Protein drugs as one of the most potent biotherapeutics have a tremendous potential in cancer therapy. Their application is, nevertheless, restricted by absence of efficacious, biocompatible, and cancer-targeting nanosystems. In this paper, we report that 2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid (Acupa)-decorated pH-responsive chimaeric polymersomes (Acupa-CPs) efficiently deliver therapeutic proteins into prostate cancer cells. Acupa-CPs had a unimodal distribution with average sizes ranging from 157-175 nm depending on amounts of Acupa. They displayed highly efficient loading of both model proteins, bovine serum albumin (BSA) and cytochrome C (CC), affording high protein loading contents of 9.1-24.5 wt.%. The in vitro release results showed that protein release was markedly accelerated at mildly acidic pH due to the hydrolysis of acetal bonds in the vesicular membrane. CLSM and MTT studies demonstrated that CC-loaded Acupa10-CPs mediated efficient delivery of protein drugs into PSMA positive LNCaP cells leading to pronounced antitumor effect, in contrast to their non-targeting counterparts and free CC. Remarkably, granzyme B (GrB)-loaded Acupa10-CPs caused effective apoptosis of LNCaP cells with a low half-maximal inhibitory concentration (IC50) of 1.6 nM. Flow cytometry and CLSM studies using MitoCapture™ revealed obvious depletion of mitochondria membrane potential in LNCaP cells treated with GrB-loaded Acupa10-CPs. The preliminary in vivo experiments showed that Acupa-CPs had a long circulation time with an elimination phase half-life of 3.3h in nude mice. PSMA-targeted, pH-responsive, and chimaeric polymersomes have appeared as efficient protein nanocarriers for targeted prostate cancer therapy.

  20. Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2.

    PubMed

    Brekhman, Vera; Lugassie, Jennie; Zaffryar-Eilot, Shelly; Sabo, Edmond; Kessler, Ofra; Smith, Victoria; Golding, Hana; Neufeld, Gera

    2011-01-01

    Lysyl oxidase-like protein-2 (LOXL2) induces epithelial to mesenchymal transition and promotes invasiveness. To understand the mechanisms involved, we examined the effect of LOXL2 overexpression in MCF-7 cells on gene expression. We found that LOXL2 up-regulated the expression of receptor activity modifying protein-3 (RAMP3). Expression of RAMP3 in MDA-MB-231 cells in which LOXL2 expression was inhibited restored vimentin expression, invasiveness, and tumor development. Inhibition of RAMP3 expression in MDA-MB-231 cells mimicked the effects produced by inhibition of LOXL2 expression and was accompanied by inhibition of p38 phosphorylation. LOXL2 overexpression in these cells did not restore invasiveness, suggesting that RAMP3 functions downstream to LOXL2. LOXL2 and RAMP3 are strongly coexpressed in human colon, breast, and gastric carcinomas but not in normal colon or gastric epithelial cells. RAMP3 associates with several G-protein-coupled receptors forming receptors for peptides, such as adrenomedullin and amylin. We hypothesized that RAMP3 could function as a transducer of autocrine signals induced by such peptides. However, the proinvasive effects of RAMP3 could not be abrogated following inhibition of the expression or activity of these peptides. Our experiments suggest that the protumorigenic effects of LOXL2 are partially mediated by RAMP3 and that RAMP3 inhibitors may function as antitumorigenic agents. -

  1. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase

    PubMed Central

    Schmitz, Karl R.; Sauer, Robert T.

    2014-01-01

    Summary Mycobacterial Clp-family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologs in other bacteria. Both ClpX and ClpC1 catalyze ATP-dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein-substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators. PMID:24976069

  2. Modeling Protein Folding and Applying It to a Relevant Activity

    ERIC Educational Resources Information Center

    Nelson, Allan; Goetze, Jim

    2004-01-01

    The different levels of protein structure that can be easily understood by creating a model that simulates protein folding, which can then be evaluated by applying it to a relevant activity, is presented. The materials required and the procedure for constructing a protein folding model are mentioned.

  3. Acoustically-Active Microbubbles Conjugated to Liposomes: Characterization of a Proposed Drug Delivery Vehicle

    PubMed Central

    Kheirolomoom, Azadeh; Dayton, Paul A.; Lum, Aaron F. H.; Little, Erika; Paoli, Eric E.; Zheng, Hairong; Ferrara, Katherine W.

    2009-01-01

    A new acoustically-active delivery vehicle was developed by conjugating liposomes and microbubbles, using the high affinity interaction between avidin and biotin. Binding between microbubbles and liposomes each containing 5% DSPE-PEG2kBiotin was highly dependent on avidin concentration and observed above an avidin concentration of 10 nM. With an optimized avidin and liposome concentration, we measured and calculated as high as 1000 to 10,000 liposomes with average diameters of 200 and 100 nm, respectively, attached to each microbubble. Replacing avidin with neutravidin resulted in 3-fold higher binding, approaching the calculated saturation level. High-speed photography of this new drug delivery vehicle demonstrated that the liposome-bearing microbubbles oscillate in response to an acoustic pulse similar to microbubble contrast agents. Additionally, microbubbles carrying liposomes could be spatially concentrated on a monolayer of PC-3 cells at the focal point of ultrasound beam. As a result of cell-vehicle contact, the liposomes fused with the cells and internalization of NBD-cholesterol occurred shortly after incubation at 37°C, with internalization of NBD-cholesterol substantially enhanced in the acoustic focus. PMID:17300849

  4. Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle.

    PubMed

    Kheirolomoom, Azadeh; Dayton, Paul A; Lum, Aaron F H; Little, Erika; Paoli, Eric E; Zheng, Hairong; Ferrara, Katherine W

    2007-04-23

    A new acoustically-active delivery vehicle was developed by conjugating liposomes and microbubbles, using the high affinity interaction between avidin and biotin. Binding between microbubbles and liposomes, each containing 5% DSPE-PEG2kBiotin, was highly dependent on avidin concentration and observed above an avidin concentration of 10 nM. With an optimized avidin and liposome concentration, we measured and calculated as high as 1000 to 10,000 liposomes with average diameters of 200 and 100 nm, respectively, attached to each microbubble. Replacing avidin with neutravidin resulted in 3-fold higher binding, approaching the calculated saturation level. High-speed photography of this new drug delivery vehicle demonstrated that the liposome-bearing microbubbles oscillate in response to an acoustic pulse in a manner similar to microbubble contrast agents. Additionally, microbubbles carrying liposomes could be spatially concentrated on a monolayer of PC-3 cells at the focal point of ultrasound beam. As a result of cell-vehicle contact, the liposomes fused with the cells and internalization of NBD-cholesterol occurred shortly after incubation at 37 degrees C, with internalization of NBD-cholesterol substantially enhanced in the acoustic focus.

  5. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  6. Determination of Protein Carbonylation and Proteasome Activity in Seeds.

    PubMed

    Xia, Qiong; El-Maarouf-Bouteau, Hayat; Bailly, Christophe; Meimoun, Patrice

    2016-01-01

    Reactive oxygen species (ROS) have been shown to be toxic but also function as signaling molecules in a process called redox signaling. In seeds, ROS are produced at different developmental stages including dormancy release and germination. Main targets of oxidation events by ROS in cell are lipids, nucleic acids, and proteins. Protein oxidation has various effects on their function, stability, location, and degradation. Carbonylation represents an irreversible and unrepairable modification that can lead to protein degradation through the action of the 20S proteasome. Here, we present techniques which allow the quantification of protein carbonyls in complex protein samples after derivatization by 2,4-dinitrophenylhydrazine (DNPH) and the determination proteasome activity by an activity-based protein profiling (ABPP) using the probe MV151. These techniques, routinely easy to handle, allow the rapid assessment of protein carbonyls and proteasome activity in seeds in various physiological conditions where ROS may act as signaling or toxic elements. PMID:27424756

  7. Activated protein C anticoagulant system dysfunction and thrombophilia in Asia.

    PubMed

    Hamasaki, Naotaka; Kuma, Hiroyuki; Tsuda, Hiroko

    2013-01-01

    Thrombophilia that is common among Caucasians is caused by genetic polymorphisms of coagulation factor V Leiden (R506Q) and prothrombin G20210A. Unlike that in Caucasians, thrombophilia that is common in the Japanese and Chinese involve dysfunction of the activated protein C (APC) anticoagulant system caused by abnormal protein S and protein C molecules. Approximately 50% of Japanese and Chinese individuals who develop venous thrombosis have reduced activities of protein S. The abnormal sites causing the protein S molecule abnormalities are distributed throughout the protein S gene, PROS1. One of the most common abnormalities is protein S Tokushima (K155E), which accounts for about 30% of the protein S molecule abnormalities in the Japanese. Whether APC dysfunction occurs in other Asian countries is an important aspect of mapping thrombophilia among Asians. International surveys using an accurate assay system are needed to determine this.

  8. The Prediabetes Detection and Physical Activity Intervention Delivery (PRE-PAID) program.

    PubMed

    Rowan, Chip P; Riddell, Michael C; Jamnik, Veronica K

    2013-12-01

    Inspired by increases in the prevalence and incidence of prediabetes, the Pre-diabetes Detection and Physical Activity Intervention Delivery Project (PRE-PAID) is a multiphasic program that identifies persons at high risk for developing type 2 diabetes, provides an opportunity for culturally appropriate, community-based physical activity and facilitates training of qualified exercise professionals on diabetes screening as well as prediabetes-specific training recommendations. This article provides an overview of the PRE-PAID project and includes some preliminary screening data, as well as lessons learned from the implementation of community-based physical activity programs that target specific, high-risk ethnicities. Recommendations and special considerations involving physical activity that targets persons with prediabetes also are discussed. A total of 691 individuals have undergone the PRE-PAID risk-identification process, which involves a brief questionnaire and point-of-care finger-prick hemoglobin A1C testing. The mean hemoglobin A1C level was 6.0±0.90% (mean ± standard deviation). Questionnaire scores showed that, on average, the individuals screened had 3 to 5 typical risk factors for type 2 diabetes, such as high body mass index, waist circumference, physical inactivity or family history of diabetes. Community-specific breakdowns of these results also are presented in this article. Sharing experiences from the PRE-PAID project can help formulate a framework for future prediabetes screening and physical activity interventions that are community based, target persons with prediabetes and are culturally appropriate.

  9. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  10. Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems.

    PubMed

    Lavin, Danya M; Zhang, Linda; Furtado, Stacia; Hopkins, Richard A; Mathiowitz, Edith

    2013-01-01

    Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8±2 MPa to 16±1 MPa) in tensile strength and a fourfold increase (3±1% to 12±6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.

  11. Surface Engineered Protein Nanoparticles With Hyaluronic Acid Based Multilayers For Targeted Delivery Of Anticancer Agents.

    PubMed

    Pulakkat, Sreeranjini; Balaji, Sai A; Rangarajan, Annapoorni; Raichur, Ashok M

    2016-09-14

    Layer-by-layer (LbL) technique was employed to modify the surface of doxorubicin (Dox)-loaded bovine serum albumin (BSA) nanoparticles using hyaluronic acid (HA) to enable targeted delivery to overexpressed CD44 receptors in metastatic breast cancer cells. LbL technique offers a versatile approach to modify the surface of colloidal nanoparticles without any covalent modification. Dox-loaded BSA (Dox Ab) nanoparticles optimized for their size, zeta potential, and drug encapsulation efficiency were prepared by modified desolvation technique. The cellular uptake and cytotoxicity of the LbL coated Dox Ab nanoparticles were analyzed in CD44 overexpressing breast cancer cell line MDA-MB-231. Nanoparticles with HA as the final layer (Dox Ab HA) showed maximum cellular uptake in MDA-MB-231 cells owing to the CD44 receptor-mediated endocytosis and hence, exhibited more cytotoxicity as compared to free Dox. Further, luciferase-transfected MDA-MB-231 cells were used to induce tumor in BALB/c female nude mice to enable whole body tumor imaging. The mice were imaged before and after Dox treatment to visualize the tumor growth. The in vivo biodistribution of Dox Ab HA nanoparticles in nude mice showed maximum accumulation in tumor, and importantly, better tumor reduction in comparison with free Dox, thus paving the way for improved drug delivery into tumors. PMID:27560126

  12. Surface Engineered Protein Nanoparticles With Hyaluronic Acid Based Multilayers For Targeted Delivery Of Anticancer Agents.

    PubMed

    Pulakkat, Sreeranjini; Balaji, Sai A; Rangarajan, Annapoorni; Raichur, Ashok M

    2016-09-14

    Layer-by-layer (LbL) technique was employed to modify the surface of doxorubicin (Dox)-loaded bovine serum albumin (BSA) nanoparticles using hyaluronic acid (HA) to enable targeted delivery to overexpressed CD44 receptors in metastatic breast cancer cells. LbL technique offers a versatile approach to modify the surface of colloidal nanoparticles without any covalent modification. Dox-loaded BSA (Dox Ab) nanoparticles optimized for their size, zeta potential, and drug encapsulation efficiency were prepared by modified desolvation technique. The cellular uptake and cytotoxicity of the LbL coated Dox Ab nanoparticles were analyzed in CD44 overexpressing breast cancer cell line MDA-MB-231. Nanoparticles with HA as the final layer (Dox Ab HA) showed maximum cellular uptake in MDA-MB-231 cells owing to the CD44 receptor-mediated endocytosis and hence, exhibited more cytotoxicity as compared to free Dox. Further, luciferase-transfected MDA-MB-231 cells were used to induce tumor in BALB/c female nude mice to enable whole body tumor imaging. The mice were imaged before and after Dox treatment to visualize the tumor growth. The in vivo biodistribution of Dox Ab HA nanoparticles in nude mice showed maximum accumulation in tumor, and importantly, better tumor reduction in comparison with free Dox, thus paving the way for improved drug delivery into tumors.

  13. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery.

    PubMed

    Wang, Yuchun; Fu, Liqi; Liu, Bo; Wang, Xiaomin; Wang, Kai; Ye, Ming

    2015-02-01

    Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells.

  14. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery.

    PubMed

    Wang, Yuchun; Fu, Liqi; Liu, Bo; Wang, Xiaomin; Wang, Kai; Ye, Ming

    2015-02-01

    Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells. PMID:25661388

  15. iTRAQ-Based Proteomic Analysis of Visual Cycle-Associated Proteins in RPE of rd12 Mice before and after RPE65 Gene Delivery

    PubMed Central

    Zheng, Qinxiang; Ren, Yueping; Tzekov, Radouil; Hua, Shanshan; Li, Minghan; Pang, Jijing; Qu, Jia; Li, Wensheng

    2015-01-01

    Purpose. To investigate the iTRAQ-based proteomic changes of visual cycle-associated proteins in RPE of rd12 mice before and after RPE65 gene delivery. Mehtods. The right eyes of rd12 mice underwent RPE65 gene delivery by subretinal injection at P14, leaving the left eyes as control. C57BL/6J mice were served as a wide-type control group. ERGs were recorded at P42, and RPE-choroid-sclera complex was collected to evaluate the proteomic changes in visual cycle-associated proteins by iTRAQ-based analysis. Western blot was used to confirm the changes in the differentially expressed proteins of interest. Results. ERG parameters improved dramatically at P42 after RPE65 delivery. The proteomics analysis identified a total 536 proteins with a global false discovery rate of 0.21%, out of which 7 were visual cycle-associated proteins. RALBP-1, RBP-1, and IRBP were reduced in the untreated rd12 eyes and the former two were improved after gene therapy, confirmed by Western blot analysis. Conclusions. RPE65 gene delivery restored retinal function at P42 and modified the expression of other functional proteins implicated in the visual cycle. The level of RALBP-1 was still below the normal level after gene therapy in rd12 mice, which may explain the delayed dark adaption in LCA patients undergoing similar therapy. PMID:26124962

  16. Using online computer tailoring to promote physical activity: a randomized trial of text, video, and combined intervention delivery modes.

    PubMed

    Soetens, Katja C M; Vandelanotte, Corneel; de Vries, Hein; Mummery, Kerry W

    2014-12-01

    Website-delivered interventions are increasingly used to deliver physical activity interventions, yet problems with engagement and retention result in reduced effectiveness. Hence, alternative modes of online intervention delivery need to be explored. Therefore, this study aimed to evaluate the acceptability and effectiveness of a computer-tailored physical activity intervention delivered on the Internet in 3 delivery modes: video, text, or both. Australian adults (N = 803), recruited through e-mail, were randomized into the three delivery modes and received personal physical activity advice. Intervention content was identical across groups. Repeated measures analyses of variance were used to compare the three groups regarding acceptability, website usability, and physical activity. Participants in the video group accepted the content of the physical activity advice significantly better (F = 5.59; p < .01), and spent significantly more time on the website (F = 21.19; p < .001) compared with the text and combination groups. Total physical activity improved significantly over time in all groups (F = 3.95; p < .01). Although the combination group increased physical activity the most, few significant differences between groups were observed. Providing video-tailored feedback has advantages over the conventional text-tailored interventions; however, this study revealed few behavioral differences. More studies, examining alternative delivery modes, that can overcome the limitations of the present study, are needed.

  17. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-01

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity.

  18. Protein Nanocages for Delivery and Release of Luminescent Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Li, Xiao; Zhang, Yajie; Chen, Hong; Sun, Jian; Feng, Fude

    2016-09-01

    In this report, noncovalent encapsulation of hydrophobic ruthenium(II) polyridyl complexes, Ru(bpy)2dppz(2+) and Ru(phen)2dppz(2+), into apoferritin cavity was achieved with high loading contents by effective prevention of Ru complex-induced protein aggregation, without disruption of protein native architecture. The Ru-loaded luminescent nanocomposites have demonstrated improved water solubility, easy manipulation, reduced cytotoxicity, and enhanced cellular uptake as compared to the nontreated Ru complexes. PMID:27547981

  19. Recombinant human bone morphogenetic protein-2 binding and incorporation in PLGA microsphere delivery systems.

    PubMed

    Schrier, J A; DeLuca, P P

    1999-01-01

    The objective of this research was to determine the binding capacity and kinetics, and total incorporation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in microspheres made from hydrophilic and hydrophobic poly(lactide-co-glycolide) (PLGA). Polymers were characterized by molecular weight, polydispersity, and acid number. Microspheres were produced via a water-in-oil-in-water double emulsion system and characterized for bulk density, size, specific surface area, and porosity. Protein concentrations were determined by reversed phase HPLC. Protein was loaded by soaking microspheres in a buffered solution, pH 4.5, of rhBMP-2, decanting excess liquid, and vacuum drying the wetted particles. Total loading and binding were determined by comparing protein concentration remaining to non-microsphere containing samples. Polymer acid number was the dominant polymer feature affecting the binding. Higher acid values correlated with increased rhBMP-2 binding. The amount of non-bound incorporated rhBMP-2 linearly correlated with the concentration of protein used in binding. High rhBMP-2 concentrations inhibit binding to PLGA microspheres. Binding was also inhibited by increased lactide content in the PLGA polymer. The polymer characteristics controlling rhBMP-2 binding to PLGA microspheres are acid value foremost followed by molecular weight and lactide/glycolide ratio. The total amount of rhBMP-2 incorporated depends on the bound amount and on the amount of free protein present.

  20. Delivery of prolamins to the protein storage vacuole in maize aleurone cells.

    PubMed

    Reyes, Francisca C; Chung, Taijoon; Holding, David; Jung, Rudolf; Vierstra, Richard; Otegui, Marisa S

    2011-02-01

    Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.

  1. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  2. Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs.

    PubMed

    Ho, H O; Hsiao, C C; Sheu, M T

    1996-02-01

    Phase diagrams containing the microemulsion region were constructed for pseudo-ternary systems composed for polyglycerol fatty acid ester/cosurfactant/Captex 300/water. It was found necessary to add ethanol, 1-propanol, 1-butanol as cosurfactant to produce microemulsions. The results also demonstrated microemulsions were only able to form when employing polyglycerol fatty acid esters with hydrophile-lipophile balances (HLBs) between 8 and 13, such as MO500, MO750, SO750, and ML310. Most microemulsions were determined to be Winsor type IV by dilution and dye solubility tests. Microemulsions stored at ambient temperature maintained constant viscosity, indicating that the system was thermodynamically stable for long periods. Further, several microemulsion formulations were demonstrated to be promising for oral delivery of insulin based on the results of stability tests and acid-protection efficiency.

  3. In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications.

    PubMed

    Long, Jie; Yu, Xiaoqin; Xu, Enbo; Wu, Zhengzong; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-10-20

    We present a simple method to develop magnetite chitosan/carrageenan nanocomposites by in situ synthesis under mild conditions, and then their potential for controlled release of macromolecules was also evaluated. The structural, morphological and magnetic properties of the as-prepared materials were studied by vibrating sample magnetometer, X-ray diffractometer, Fourier transform infrared spectroscopy, thermogravimetric analyzer and transmission electron microscopy. With the varying mass ratio (chitosan to Fe3O4-carrageenan nanocomposite), the developed nanocarriers presented sizes within 73-355nm and zeta potentials of -42-32mV. Using bovine serum albumin as model protein, the adsorption and release behaviors were investigated. Nanocarriers evidenced excellent loading capacity of 181mgg(-1) at protein concentration of 0.2mgmL(-1), and demonstrated capacity to provide a sustained release up to 85% of adsorbed protein in 30min in intestinal medium rather than acidic medium. These results suggest that the developed magnetite chitosan/carrageenan nanocomposites are promising in the application of magnetically targeted delivery of therapeutic macromolecules. PMID:26256165

  4. Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice.

    PubMed

    Ando, Mitsuru; Takahashi, Yuki; Yamashita, Takuma; Fujimoto, Mai; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2014-01-01

    Sustained gene delivery of interferon (IFN) γ can be an effective treatment, but our previous study showed high levels of IFNγ-induced adverse events, including the loss of body weight. These unwanted events could be reduced by target-specific delivery of IFNγ after in vivo gene transfer. To achieve this, we selected the heparin-binding domain (HBD) of extracellular superoxide dismutase as a molecule to anchor IFNγ to the cell surface. We designed three IFNγ derivatives, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, each of which had 1, 2, or 3 HBDs, respectively. Each plasmid-encoding fusion proteins was delivered to the liver, a model target in this study, by hydrodynamic tail vein injection. The serum concentration of IFNγ-HBD2 and IFNγ-HBD3 after gene delivery was lower than that of IFNγ or IFNγ-HBD1. Gene delivery of IFNγ-HBD2, but not of IFNγ-HBD3, effectively increased the mRNA expression of IFNγ-inducible genes in the liver, suggesting liver-specific distribution of IFNγ-HBD2. Gene delivery of IFNγ-HBD2-suppressed tumor growth in the liver as efficiently as that of IFNγ with much less symptoms of adverse effects. These results indicate that the adverse events of IFNγ gene transfer can be prevented by gene delivery of IFNγ-HBD2, a fusion protein with high cell surface affinity. PMID:26015966

  5. Co-delivery and controlled release of stromal cell-derived factor-1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein-2-driven osteogenesis in rats

    PubMed Central

    SUN, HAIPENG; WANG, JINMING; DENG, FEILONG; LIU, YUN; ZHUANG, XIUMEI; XU, JIAYUN; LI, LONG

    2016-01-01

    There has been considerable focus in investigations on the delivery systems and clinical applications of bone morphogenetic protein-2 (BMP-2) for novel bone formation. However, current delivery systems require high levels of BMP-2 to exert a biological function. There are several concerns in using of high levels of BMP-2, including safety and the high cost of treatment. Therefore, the development of strategies to decrease the levels of BMP-2 required in these delivery systems is required. In our previous studies, a controlled-release system was developed, which used Traut's reagent and the cross-linker, 4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC), to chemically conjugate BMP-2 directly on collagen discs. In the current study, retention efficiency and release kinetics of stromal cell-derived factor-1α (SDF-1α) cross-linked on collagen scaffolds were detected. In addition, the osteogenic activity of SDF-1α and suboptimal doses of BMP-2 cross-linked on collagen discs following subcutaneous implantation in rats were evaluated. Independent two-tailed t-tests and one-way analysis of variance were used for analysis. In the present study, the controlled release of SDF-1α chemically conjugated on collagen scaffolds was demonstrated. By optimizing the concentrations of Traut's reagent and the Sulfo-SMCC cross-linker, a significantly higher level of SDF-1α was covalently retained on the collagen scaffold, compared with that retained using a physical adsorption method. Mesenchymal stem cell homing indicated that the biological function of the SDF-1α cross-linked on the collagen scaffolds remained intact. In rats, co-treatment with SDF-1α and a suboptimal dose of BMP-2 cross-linked on collagen scaffolds using this chemically conjugated method induced higher levels of ectopic bone formation, compared with the physical adsorption method. No ectopic bone formation was observed following treatment with a

  6. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.

    PubMed

    Xia, Xiao-Xia; Wang, Ming; Lin, Yinan; Xu, Qiaobing; Kaplan, David L

    2014-03-10

    Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.

  7. Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes.

    PubMed

    Mayerhofer, Peter U

    2016-05-01

    The importance of peroxisomes is highlighted by severe inherited human disorders linked to impaired peroxisomal biogenesis. Besides the simple architecture of these ubiquitous and dynamic organelles, their biogenesis is surprisingly complex and involves specialized proteins, termed peroxins, which mediate targeting and insertion of peroxisomal membrane proteins (PMPs) into the peroxisomal bilayer, and the import of soluble proteins into the protein-dense matrix of the organelle. The long-standing paradigm that all peroxisomal proteins are imported directly into preexisting peroxisomes has been challenged by the detection of PMPs inside the endoplasmic reticulum (ER). New models propose that the ER originates peroxisomal biogenesis by mediating PMP trafficking to the peroxisomes via budding vesicles. However, the relative contribution of this ER-derived pathway to the total peroxisome population in vivo, and the detailed mechanisms of ER entry and exit of PMPs are controversially discussed. This review aims to summarize present knowledge about how PMPs are targeted to the ER, instead of being inserted directly into preexisting peroxisomes. Moreover, molecular mechanisms that facilitate bilayer insertion of PMPs among different species are discussed.

  8. Intracellular delivery of fluorescent protein into viable wheat microspores using cationic peptides

    PubMed Central

    Bilichak, Andriy; Luu, Justin; Eudes, François

    2015-01-01

    Microspores are specialized generative cells with haploid genome that demonstrate the amenability toward embryogenesis under certain conditions. The induced microspore culture technique is largely exploited by the breeding programs of wheat and other crops due to its high efficiency for generation of the large number of haploid plants in the relatively short period of time. The ability to produce mature double haploid plant from a single cell has also attracted attention of the plant biotechnologists in the past few years. More importantly, the possibility to deliver proteins for improvement of embryogenesis and the genome modification purposes holds great potential for transgene-free wheat biotechnology. In the present study, we examined the ability of cationic and amphipathic cell penetrating peptides (CPPs) to convey a covalently-linked mCherry protein inside the viable microspores. We demonstrate that the affinity of CPPs to the microspore cells dependents on their charge with the highest efficiency of CPP-mCherry binding to the cells achieved by cationic CPPs (penetratin and R9). Additionally, due to overall negative charge of the microspore cell wall, the successful uptake of the protein cargo by live microspore cells is attained by utilization of a reversible disulfide bond between the R9 CPP and mCherry protein. Overall, the approach proposed herein can be applied by the other biotechnology groups for the fast and efficient screening of the different CPP candidates for their ability to deliver proteins inside the viable plant cells. PMID:26379691

  9. A novel double-coating carrier produced by solid-in-oil and solid-in-water nanodispersion technology for delivery of genes and proteins into cells.

    PubMed

    Tahara, Yoshiro; Kaneko, Takeshi; Toita, Riki; Yoshiyama, Chiharu; Kitaoka, Takuya; Niidome, Takuro; Katayama, Yoshiki; Kamiya, Noriho; Goto, Masahiro

    2012-08-10

    A novel intracellular delivery method both for genes and proteins is one of the most coveted systems in the drug delivery field. In the present study, we developed a double-coating carrier loaded with gene and protein produced by solid-in-oil and solid-in-water nanodispersion technology. The double-coating carriers did not require electrostatic interactions during the preparation so were able to encapsulate plasmid DNA, ovalbumin (pI 4.5), horseradish peroxidase (pI 7.2), and cytochrome-c (pI 10.5) in a consistent manner. The carriers had practical encapsulation efficiencies and release profiles for genes and proteins. Furthermore, effective gene expression and cellular uptakes of both anionic and cationic proteins were achieved by modification of carriers with functional molecules. These findings indicate that the double-coating carrier has high potential for cellular delivery of various drugs and is a novel, superior method for both gene and protein delivery into cells. PMID:22580226

  10. Redox activation of metal-based prodrugs as a strategy for drug delivery

    PubMed Central

    Graf, Nora

    2012-01-01

    This review provides an overview of metal-based anticancer drugs and drug candidates. In particular, we focus on metal complexes that can be activated in the reducing environment of cancer cells, thus serving as prodrugs. There are many reports of Pt and Ru complexes as redox-activatable drug candidates, but other d-block elements with variable oxidation states have a similar potential to serve as prodrugs in this manner. In this context are compounds based on Fe, Co, or Cu chemistry, which are also covered. A trend in the field of medicinal inorganic chemistry has been toward molecularly targeted, metal-based drugs obtained by functionalizing complexes with biologically active ligands. Another recent activity is the use of nanomaterials for drug delivery, exploiting passive targeting of tumors with nanosized constructs made from Au, Fe, carbon, or organic polymers. Although complexes of all of the above mentioned metals will be described, this review focuses primarily on Pt compounds, including constructs containing nanomaterials. PMID:22289471

  11. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system.

    PubMed

    Lim, Yong Taik; Cho, Mi Young; Lee, Jung Min; Chung, Sang Jeon; Chung, Bong Hyun

    2009-02-01

    Cellular internalization of functional nanoparticles that have optical and magnetic properties is very important in the cellular imaging and manipulation of specifically targeted biomolecules. In this study, a robust method to deliver functional nanoparticles and targeting antibodies into cells was suggested. The engineered protein G system, which contains an affinity tag and a cell penetration peptide in the N- and C-terminals, respectively, can capture surface-modified nanoparticles and antibodies without chemical reaction, and then non-invasively deliver them into the cells. Finally, gold-coated iron oxide nanoparticle/engineered protein G hybrid systems were successfully employed as multifunctional cargo systems for the targeting, imaging, and manipulation of mitochondria.

  12. Protein C activity in dogs envenomed by Vipera palaestinae.

    PubMed

    Hadar, Gil; Kelmer, Efrat; Segev, Gilad; Bruchim, Yaron; Aroch, Itamar

    2014-09-01

    Vipera palaestinae is responsible for most envenomations in humans and domestic animal in Israel. Its venom has pro- and anticoagulant properties. Protein C is a major natural anticoagulant, preventing excess clotting and thrombosis. This study investigated protein C activity and its prognostic value, as well as several other hemostatic analytes in dogs (Canis familiaris) accidently envenomed by V. palaestinae. Protein C activity was compared between envenomed dogs and 33 healthy control dogs. Mean protein C was lower in dogs envenomed by V. palaestinae compared to controls (12.9% vs. 22.9%, respectively; P < 0.01). It was positively correlated with antithrombin activity (r = 0.3, P = 0.04), but not with other hemostatic analytes. The overall mortality rate was 13%, and at presentation no significant protein C activity difference was noted between survivors and non-survivors. A receiver operator characteristics analysis of protein C activity as a predictor of mortality had an area under the curve of 0.7 (95% confidence interval 0.52-0.87). A protein C cutoff point of 8% corresponded to sensitivity and specificity of 70% and 57%, respectively. Dogs diagnosed with consumptive coagulopathy (14%) tended to have lower protein C activity compared to others; however, their mortality did differ from that of other dogs. This is the first study assessing protein C activity in V. palaestinae victims. Decreased protein C activity in such dogs may play a role in formation of thrombosis and hemostatic derangement as well as inflammation in V. palaestinae envenomations.

  13. Calcium pectinate gel bead intended for oral protein delivery: preparation improvement and formulation development.

    PubMed

    Si, Luqin; Zhao, Ying; Huang, Jiangeng; Li, Sha; Zhai, Xuezhen; Li, Gao

    2009-07-01

    Calcium pectinate gel (CPG) micrometer-sized beads (microbeads) containing insulin, as a model amphoteric protein, were prepared by ionotropic gelation technique together with an air compressor. The influences of phosphate buffer, pH as well as calcium and pectin concentrations of cross-linking solution on the characteristics and release profiles of microbeads were investigated. With the aid of compressed air flow, the mean diameters of beads were successfully decreased to micron-sized. The results showed that all the factors investigated greatly affected the entrapment efficiencies and release profiles of the microbeads. Suitable formulation concentrations should be considered and great care should be taken to maintain the pH of working solutions at or close to isoelectric point of protein loaded during the whole preparation process. Hence, CPG microbeads of perfect spherical shape, uniform sizes, enhanced mechanical strength, good entrapment efficiencies and delayed release profiles were prepared for a load of amphoteric protein and peptide drugs, without any use of organic solvents or harsh ingredients. Therefore, CPG microbeads could be a promising carrier for oral controlled-release systems of amphoteric protein and peptide drugs.

  14. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal po...

  15. Controlled intra- and transdermal protein delivery using a minimally invasive Erbium:YAG fractional laser ablation technology.

    PubMed

    Bachhav, Y G; Heinrich, A; Kalia, Y N

    2013-06-01

    The aim of the study was (i) to investigate the feasibility of using fractional laser ablation to create micropore arrays in order to deliver proteins into and across the skin and (ii) to demonstrate how transport rates could be controlled by variation of poration and formulation conditions. Four proteins with very different structures and properties were investigated - equine heart cytochrome c (Cyt c; 12.4 kDa), recombinant human growth hormone expressed in Escherichia coli (hGH; 22 kDa), urinary follicle stimulating hormone (FSH; 30 kDa) and FITC-labelled bovine serum albumin (FITC-BSA; 70 kDa). The transport experiments were performed using a scanning Er:YAG diode pumped laser (P.L.E.A.S.E.®; Precise Laser Epidermal System). The distribution of FITC-BSA in the micropores following P.L.E.A.S.E.® poration was visualised by using confocal laser scanning microscopy (CLSM). Porcine skin was used for the device parameter and CLSM studies; its validity as a model was confirmed by subsequent comparison with transport of Cyt c and FITC-BSA across P.L.E.A.S.E.® porated human skin. No protein transport (deposition or permeation) was observed across intact skin; however, P.L.E.A.S.E.® poration enabled total delivery after 24h of 48.2±8.9, 8.1±4.2, 0.2±0.1 and 273.3±30.6 μg/cm(2) for Cyt c, hGH, FSH and FITC-BSA, respectively, using 900 pores/135.9 cm(2). Calculation of permeability coefficients showed that there was no linear dependence of transport on molecular weight ((1.6±0.3), (0.1±0.05), (0.08±0.03) and (0.9±0.1)×10(-3) cm/h, for Cyt c, hGH, FSH and FITC-BSA, respectively); indeed, a U-shaped curve was observed. This suggested that molecular weight was not a sufficiently sensitive descriptor and that transport was more likely to be determined by the surface properties of the respective proteins since these would govern interactions with the local microenvironment. Increasing pore density (i.e. the number of micropores per unit area) had a statistically

  16. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    SciTech Connect

    Sunavala-Dossabhoy, Gulshan; Palaniyandi, Senthilnathan; Richardson, Charles; De Benedetti, Arrigo; Schrott, Lisa; Caldito, Gloria

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

  17. Protection and Delivery of Anthelmintic Protein Cry5B to Nematodes Using Mesoporous Silicon Particles.

    PubMed

    Wu, Chia-Chen; Hu, Yan; Miller, Melanie; Aroian, Raffi V; Sailor, Michael J

    2015-06-23

    The ability of nano- and microparticles of partially oxidized mesoporous silicon (pSi) to sequester, protect, and deliver the anthelmintic pore-forming protein Cry5B to nematodes is assessed in vitro and in vivo. Thermally oxidized pSi particles are stable under gastric conditions and show relatively low toxicity to nematodes. Fluorescence images of rhodamine-labeled pSi particles within the nematodes Caenorhabditis elegans and Ancylostoma ceylanicum show that ingestion is dependent on particle size: particles of a 0.4 ± 0.2 μm size are noticeably ingested by both species within 2 h of introduction in vitro, whereas 5 ± 2 μm particles are excluded from C. elegans but enter the pharynx region of A. ceylanicum after 24 h. The anthelmintic protein Cry5B, a pore-forming crystal (Cry) protein derived from Bacillus thuringiensis, is incorporated into the pSi particles by aqueous infiltration. Feeding of Cry5B-loaded pSi particles to C. elegans leads to significant intoxication of the nematode. Protein-loaded particles of size 0.4 μm display the highest level of in vitro toxicity toward C. elegans on a drug-mass basis. The porous nanostructure protects Cry5B from hydrolytic and enzymatic (pepsin) degradation in simulated gastric fluid (pH 1.2) for time periods up to 2 h. In vivo experiments with hookworm-infected hamsters show no significant reduction in worm burden with the Cry5B-loaded particles, which is attributed to slow release of the protein from the particles and/or short residence time of the particles in the duodenum of the animal.

  18. Protection and Delivery of Anthelmintic Protein Cry5B to Nematodes Using Mesoporous Silicon Particles.

    PubMed

    Wu, Chia-Chen; Hu, Yan; Miller, Melanie; Aroian, Raffi V; Sailor, Michael J

    2015-06-23

    The ability of nano- and microparticles of partially oxidized mesoporous silicon (pSi) to sequester, protect, and deliver the anthelmintic pore-forming protein Cry5B to nematodes is assessed in vitro and in vivo. Thermally oxidized pSi particles are stable under gastric conditions and show relatively low toxicity to nematodes. Fluorescence images of rhodamine-labeled pSi particles within the nematodes Caenorhabditis elegans and Ancylostoma ceylanicum show that ingestion is dependent on particle size: particles of a 0.4 ± 0.2 μm size are noticeably ingested by both species within 2 h of introduction in vitro, whereas 5 ± 2 μm particles are excluded from C. elegans but enter the pharynx region of A. ceylanicum after 24 h. The anthelmintic protein Cry5B, a pore-forming crystal (Cry) protein derived from Bacillus thuringiensis, is incorporated into the pSi particles by aqueous infiltration. Feeding of Cry5B-loaded pSi particles to C. elegans leads to significant intoxication of the nematode. Protein-loaded particles of size 0.4 μm display the highest level of in vitro toxicity toward C. elegans on a drug-mass basis. The porous nanostructure protects Cry5B from hydrolytic and enzymatic (pepsin) degradation in simulated gastric fluid (pH 1.2) for time periods up to 2 h. In vivo experiments with hookworm-infected hamsters show no significant reduction in worm burden with the Cry5B-loaded particles, which is attributed to slow release of the protein from the particles and/or short residence time of the particles in the duodenum of the animal. PMID:25950754

  19. Tailored delivery of active keratinocyte growth factor from biodegradable polymer formulations.

    PubMed

    Cho, Eun Jeong; Tao, Zunyu; Tang, Ying; Tehan, Elizabeth C; Bright, Frank V; Hicks, Wesley L; Gardella, Joseph A; Hard, Robert

    2003-08-01

    We report the results of a high throughput screening campaign that is aimed to develop a biodegradable polymer-based formulation to deliver active keratinocyte growth factor (KGF) and provide a means to tune the KGF delivery rate. A statistical design strategy was used to prepare and screen a series of polymer blends that were composed of poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and the surfactant sodium bis(ethylhexyl)sulfosuccinate (Aerosol-OT, AOT). Chloroform was the solvent. Our high throughput screening method used a two-tiered assessment strategy. At Level 1, we identified "lead" KFG-loaded formulations that exhibited KGF emission spectra that were the most similar to the native KGF spectrum recorded in buffer. At Level 2, we used steady-state emission and a homogeneous polarization immunoassay strategy to determine the concentration of total and active KGF, respectively, liberated from the lead formulations during biodegradation. After preparing and screening 2500 formulations, we identified several viable, lead formulations. An analysis of the data showed that the combination of PLA, PGA, and AOT were important to yield a high fraction of active KGF upon release from the formulation; no combination of any two together produced an effect as good as the ternary formulation. The optimum formulations that yielded the highest fraction of active KGF upon release had the following general features: PLA/PGA (w/w) near unity, AOT loading of 100-200 mM, water/AOT mole ratio of 10-20, and a pH between 6 and 8. PLA alone cast from chloroform delivered KGF, but that KGF did not bind to anti-KGF antibodies (i.e., it was inactive). We can tune the KGF release kinetics by more than two orders of magnitude while maintaining the KGF activity upon liberation from the formulation by adjusting the PLA molecular weight.

  20. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins. PMID:14514663

  1. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins.

  2. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  3. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers

    NASA Astrophysics Data System (ADS)

    Truskett, Thomas M.; Johnston, Keith; Maynard, Jennifer; Borwankar, Ameya; Miller, Maria; Wilson, Brian; Dinin, Aileen; Khan, Tarik; Kaczorowski, Kevin

    2012-02-01

    Stabilizing concentrated protein solutions is of wide interest in drug delivery. However, a major challenge is how to reliably formulate concentrated, low viscosity (i.e., syringeable) solutions of biologically active proteins. Unfortunately, proteins typically undergo irreversible aggregation at intermediate concentrations of 100-200 mg/ml. In this talk, I describe how they can effectively avoid these intermediate concentrations by reversibly assembling into nanoclusters. Nanocluster assembly is achieved by balancing short-ranged, cosolute-induced attractions with weak, longer-ranger electrostatic repulsions near the isoelectric point. Theory predicts that native proteins are stabilized by a self-crowding mechanism within the concentrated environment of the nanoclusters, while weak cluster-cluster interactions can result in colloidally-stable dispersions with moderate viscosities. I present experimental results where this strategy is used to create concentrated antibody dispersions (up to 260 mg/ml) comprising nanoclusters of proteins [monoclonal antibody 1B7, polyclonal sheep Immunoglobin G and bovine serum albumin], which upon dilution in vitro or administration in vivo, are conformationally stable and retain activity.

  4. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    PubMed

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-03-01

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.

  5. Visualizing active membrane protein complexes by electron cryotomography

    PubMed Central

    Gold, Vicki A.M.; Ieva, Raffaele; Walter, Andreas; Pfanner, Nikolaus; van der Laan, Martin; Kühlbrandt, Werner

    2014-01-01

    Unravelling the structural organization of membrane protein machines in their active state and native lipid environment is a major challenge in modern cell biology research. Here we develop the STAMP (Specifically TArgeted Membrane nanoParticle) technique as a strategy to localize protein complexes in situ by electron cryotomography (cryo-ET). STAMP selects active membrane protein complexes and marks them with quantum dots. Taking advantage of new electron detector technology that is currently revolutionizing cryotomography in terms of achievable resolution, this approach enables us to visualize the three-dimensional distribution and organization of protein import sites in mitochondria. We show that import sites cluster together in the vicinity of crista membranes, and we reveal unique details of the mitochondrial protein import machinery in action. STAMP can be used as a tool for site-specific labelling of a multitude of membrane proteins by cryo-ET in the future. PMID:24942077

  6. Antioxidant activities of protein hydrolysates obtained from the housefly larvae.

    PubMed

    Zhang, Huan; Wang, Pan; Zhang, Ai-Jun; Li, Xuan; Zhang, Ji-Hong; Qin, Qi-Lian; Wu, Yi-Jun

    2016-09-01

    The housefly is an important resource insect and the housefly larvae are ideal source of food additives. The housefly larvae protein hydrolysates were obtained by enzymatic hydrolysis by alcalase and neutral proteinase. Their antioxidant activities were investigated, including the superoxide and hydroxyl radicalscavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, reducing power and metal chelating activity. The antioxidant activities of both hydrolysates increased with their increasing concentrations. The alcalase hydrolysate (AH) showed higher scavenging activities against hydroxyl radical and superoxide anion radical at low concentrations and higher metal-chelating activity than the neutral proteinase hydrolysate (NPH). The NPH exhibited higher scavenging activity against DPPH free radical and higher reducing power than the AH. Both hydrolysates showed more than 50% superoxide anion radical-scavenging activity at 10 μg/mL. These results indicate that both housefly larvae protein hydrolysates display high antioxidant activities and they could serve as potential natural antioxidant food additives. PMID:27630047

  7. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    SciTech Connect

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.