2014-01-01
Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel representations to extract information about protein structures, as well as organizing and mining protein structure space with mature text mining tools. PMID:25080993
A universal DNA-based protein detection system.
Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan
2013-09-25
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.
A Universal DNA-Based Protein Detection System
Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan
2014-01-01
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265
Han, Daehoon; Hong, Jinkee; Kim, Hyun Cheol; Sung, Jong Hwan; Lee, Jong Bum
2013-11-01
Many highly sensitive protein detection techniques have been developed and have played an important role in the analysis of proteins. Herein, we report a novel technique that can detect proteins sensitively and effectively using aptamer-based DNA nanostructures. Thrombin was used as a target protein and aptamer was used to capture fluorescent dye-labeled DNA nanobarcodes or thrombin on a microsphere. The captured DNA nanobarcodes were replaced by a thrombin and aptamer interaction. The detection ability of this approach was confirmed by flow cytometry with different concentrations of thrombin. Our detection method has great potential for rapid and simple protein detection with a variety of aptamers.
Duellman, Tyler; Burnett, John; Yang, Jay
2015-03-15
Traditional assays for secreted proteins include methods such as Western blot and enzyme-linked immunosorbent assay (ELISA) detection of the protein in the cell culture medium. We describe a method for the detection of a secreted protein based on fluorescent measurement of an mCherry fusion reporter. This microplate reader-based mCherry fluorescence detection method has a wide dynamic range of 4.5 orders of magnitude and a sensitivity that allows detection of 1 to 2fmol fusion protein. Comparison with the Western blot detection method indicated greater linearity, wider dynamic range, and a similar lower detection threshold for the microplate-based fluorescent detection assay of secreted fusion proteins. An mCherry fusion protein of matrix metalloproteinase-9 (MMP-9), a secreted glycoprotein, was created and expressed by transfection of human embryonic kidney (HEK) 293 cells. The cell culture medium was assayed for the presence of the fluorescent signal up to 32 h after transfection. The secreted MMP-9-mCherry fusion protein was detected 6h after transfection with a linear increase in signal intensity over time. Treatment with chloroquine, a drug known to inhibit the secretion of many proteins, abolished the MMP-9-mCherry secretion, demonstrating the utility of this method in a biological experiment. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yanfang; Yang, Na; Liu, Yi
2018-04-01
A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10 s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560 nm. The detection limit for phosphorylated proteins was estimated to be 100 nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection.
Protein-protein interaction network-based detection of functionally similar proteins within species.
Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli
2012-07-01
Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.
Wang, Yanfang; Yang, Na; Liu, Yi
2018-04-05
A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.
Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie
2018-05-18
As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.
Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy
Xiang, Yun; Zhang, Yuyong; Qian, Xiaoqing; Chai, Yaqin; Wang, Joseph; Yuan, Ruo
2010-01-01
We present an ultrasensitive aptasensor for electronic monitoring of proteins through a dual amplified strategy in this paper. The target protein thrombin is sandwiched between an electrode surface confined aptamer and an aptamer-enzyme-carbon nanotube bioconjugate. The analytical signal amplification is achieved by coupling the signal amplification nature of multiple enzymes with the biocatalytic signal enhancement of redox-recycling. Our novel dramatic signal amplification strategy, with a detection limit of 8.3 fM, shows about 4 orders of magnitude improvement in sensitivity for thrombin detection compared to other universal single enzyme-based assay. This makes our approach an attractive alternative to other common PCR-based signal amplification in ultralow level of protein detection. PMID:20452761
van den Broek, Irene; Blokland, Marco; Nessen, Merel A; Sterk, Saskia
2015-01-01
Detection of misuse of peptides and proteins as growth promoters is a major issue for sport and food regulatory agencies. The limitations of current analytical detection strategies for this class of compounds, in combination with their efficacy in growth-promoting effects, make peptide and protein drugs highly susceptible to abuse by either athletes or farmers who seek for products to illicitly enhance muscle growth. Mass spectrometry (MS) for qualitative analysis of peptides and proteins is well-established, particularly due to tremendous efforts in the proteomics community. Similarly, due to advancements in targeted proteomic strategies and the rapid growth of protein-based biopharmaceuticals, MS for quantitative analysis of peptides and proteins is becoming more widely accepted. These continuous advances in MS instrumentation and MS-based methodologies offer enormous opportunities for detection and confirmation of peptides and proteins. Therefore, MS seems to be the method of choice to improve the qualitative and quantitative analysis of peptide and proteins with growth-promoting properties. This review aims to address the opportunities of MS for peptide and protein analysis in veterinary control and sports-doping control with a particular focus on detection of illicit growth promotion. An overview of potential peptide and protein targets, including their amino acid sequence characteristics and current MS-based detection strategies is, therefore, provided. Furthermore, improvements of current and new detection strategies with state-of-the-art MS instrumentation are discussed for qualitative and quantitative approaches. © 2013 Wiley Periodicals, Inc.
Silva, Christopher J
2018-06-13
Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15 N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.
Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin
2016-06-15
Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Kallemeijn, Wouter W; Scheij, Saskia; Voorn-Brouwer, Tineke M; Witte, Martin D; Verhoek, Marri; Overkleeft, Hermen S; Boot, Rolf G; Aerts, Johannes M F G
2016-09-15
β-Glucoside-configured cyclophellitols are activity-based probes (ABPs) that allow sensitive detection of β-glucosidases. Their applicability to detect proteins fused with β-glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M-777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4-methylumbelliferyl β-d-lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre-blocking with conduritol β-epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β-glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high-resolution detection moieties) should assist further research in living cells and organisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ICPD-a new peak detection algorithm for LC/MS.
Zhang, Jianqiu; Haskins, William
2010-12-01
The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.
Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D
2017-08-01
We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.
Using distances between Top-n-gram and residue pairs for protein remote homology detection.
Liu, Bin; Xu, Jinghao; Zou, Quan; Xu, Ruifeng; Wang, Xiaolong; Chen, Qingcai
2014-01-01
Protein remote homology detection is one of the central problems in bioinformatics, which is important for both basic research and practical application. Currently, discriminative methods based on Support Vector Machines (SVMs) achieve the state-of-the-art performance. Exploring feature vectors incorporating the position information of amino acids or other protein building blocks is a key step to improve the performance of the SVM-based methods. Two new methods for protein remote homology detection were proposed, called SVM-DR and SVM-DT. SVM-DR is a sequence-based method, in which the feature vector representation for protein is based on the distances between residue pairs. SVM-DT is a profile-based method, which considers the distances between Top-n-gram pairs. Top-n-gram can be viewed as a profile-based building block of proteins, which is calculated from the frequency profiles. These two methods are position dependent approaches incorporating the sequence-order information of protein sequences. Various experiments were conducted on a benchmark dataset containing 54 families and 23 superfamilies. Experimental results showed that these two new methods are very promising. Compared with the position independent methods, the performance improvement is obvious. Furthermore, the proposed methods can also provide useful insights for studying the features of protein families. The better performance of the proposed methods demonstrates that the position dependant approaches are efficient for protein remote homology detection. Another advantage of our methods arises from the explicit feature space representation, which can be used to analyze the characteristic features of protein families. The source code of SVM-DT and SVM-DR is available at http://bioinformatics.hitsz.edu.cn/DistanceSVM/index.jsp.
NASA Astrophysics Data System (ADS)
Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.
2017-10-01
Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.
[Detection of protein-protein interactions by FRET and BRET methods].
Matoulková, E; Vojtěšek, B
2014-01-01
Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.
Protein detection through different platforms of immuno-loop-mediated isothermal amplification
NASA Astrophysics Data System (ADS)
Pourhassan-Moghaddam, Mohammad; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Daraee, Hadis; Nejati-Koshki, Kazem; Hanifehpour, Younes; Joo, Sang Woo
2013-11-01
Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins. Here we propose a new method nominated as `immuno-loop-mediated isothermal amplification' or `iLAMP'. This new method is free from the problems of the previous methods and has significant advantages over them. In this paper we also offer various configurations in order to improve the applicability of this method in real-world sample analyses. Important potential applications of this method are stated as well.
ICPD-A New Peak Detection Algorithm for LC/MS
2010-01-01
Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790
Geometric Detection Algorithms for Cavities on Protein Surfaces in Molecular Graphics: A Survey
Simões, Tiago; Lopes, Daniel; Dias, Sérgio; Fernandes, Francisco; Pereira, João; Jorge, Joaquim; Bajaj, Chandrajit; Gomes, Abel
2017-01-01
Detecting and analyzing protein cavities provides significant information about active sites for biological processes (e.g., protein-protein or protein-ligand binding) in molecular graphics and modeling. Using the three-dimensional structure of a given protein (i.e., atom types and their locations in 3D) as retrieved from a PDB (Protein Data Bank) file, it is now computationally viable to determine a description of these cavities. Such cavities correspond to pockets, clefts, invaginations, voids, tunnels, channels, and grooves on the surface of a given protein. In this work, we survey the literature on protein cavity computation and classify algorithmic approaches into three categories: evolution-based, energy-based, and geometry-based. Our survey focuses on geometric algorithms, whose taxonomy is extended to include not only sphere-, grid-, and tessellation-based methods, but also surface-based, hybrid geometric, consensus, and time-varying methods. Finally, we detail those techniques that have been customized for GPU (Graphics Processing Unit) computing. PMID:29520122
Enzyme Functionalized AuNPs and Glucometer-based Protein Detection
NASA Astrophysics Data System (ADS)
Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming
2017-12-01
We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.
He, Jintang; Schepmoes, Athena A.; Shi, Tujin; ...
2015-01-01
Background: The established methods for detecting prostate cancer (CaP) are based on tests using PSA (blood), PCA3 (urine), and AMACR (tissue) as biomarkers in patient samples. The demonstration of ERG oncoprotein overexpression due to gene fusion in CaP has thus provided ERG as an additional biomarker. Based on this, we hypothesized that ERG protein quantification methods can be of use in the diagnosis of prostate cancer. Methods: Therefore, an antibody-free assay for ERG3 protein detection was developed based on PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry. We utilized TMPRSS2-ERG positive VCaP and TMPRSS2-ERGmore » negative LNCaP cells to simulate three different sample types (cells, tissue, and post-DRE urine sediment). Results: Recombinant ERG3 protein spiked into LNCaP cell lysates could be detected at levels as low as 20 pg by PRISM-SRM analysis. The sensitivity of the PRISM-SRM assay was around approximately 10,000 VCaP cells in a mixed cell population model of VCaP and LNCaP cells. Interestingly, ERG protein could be detected in as few as 600 VCaP cells spiked into female urine. The sensitivity of the in-house enzyme-linked immunosorbent assay (ELISA) was similar to the PRISM-SRM assay, with detection of 30 pg of purified recombinant ERG3 protein and 10,000 VCaP cells. On the other hand, qRT-PCR exhibited a higher sensitivity, as TMPRSS2-ERG transcripts were detected in as few as 100 VCaP cells, in comparison to NanoString methodologies which detected ERG from 10,000 cells. Conclusions: Based on this data, we propose that the detection of both ERG transcriptional products with RNA-based assays, as well as protein products of ERG using PRISM-SRM assays, may be of clinical value in developing diagnostics and prognostics assays for prostate cancer given their sensitivity, specificity, and reproducibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowlkes, Jason Davidson; Owens, Elizabeth T; Standaert, Robert F
2009-01-01
Identifying and characterizing protein interactions are fundamental steps towards understanding and modeling biological networks. Methods that detect protein interactions in intact cells rather than buffered solutions are likely more relevant to natural systems since molecular crowding events in the cytosol can influence the diffusion and reactivity of individual proteins. One in vivo, imaging-based method relies on the co-localization of two proteins of interest fused to DivIVA, a cell division protein from Bacillus subtilis, and green fluorescent protein (GFP). We have modified this imaging-based assay to facilitate rapid cloning by constructing new vectors encoding N- and C-terminal DivIVA or GFP molecularmore » tag fusions based on site-specific recombination technology. The sensitivity of the assay was defined using a well-characterized protein interaction system involving the eukaryotic nuclear import receptor subunit, Importin (Imp ) and variant nuclear localization signals (NLS) representing a range of binding affinities. These data demonstrate that the modified co-localization assay is sensitive enough to detect protein interactions with Kd values that span over four orders of magnitude (1nM to 15 M). Lastly, this assay was used to confirm numerous protein interactions identified from mass spectrometry-based analyses of affinity isolates as part of an interactome mapping project in Rhodopseudomonas palustris« less
High-throughput kinase assays with protein substrates using fluorescent polymer superquenching.
Rininsland, Frauke; Stankewicz, Casey; Weatherford, Wendy; McBranch, Duncan
2005-05-31
High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Using a modified QTL Lightspeed assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP), Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1). Phosphorylation of the proteins was detected by Protein Kinase Calpha (PKCalpha) and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4). Enzyme inhibition yielded IC50 values that were comparable to those obtained using peptide substrates. Statistical parameters that are used in the high-throughput community to determine assay robustness (Z'-value) demonstrate the suitability of this format for high-throughput screening applications for detection of inhibitors of enzyme activity. The QTL Lightspeed protein detection system provides a simple mix and measure "turn on" assay for the detection of kinase activity using natural protein substrates. The platform is robust and allows for identification of inhibitors of kinase activity.
A brief review of other notable protein detection methods on acrylamide gels.
Kurien, Biji T; Scofield, R Hal
2012-01-01
Several methods have been described to stain proteins analyzed on acrylamide gels. These include ultrasensitive protein detection in one-dimensional and two-dimensional gel electrophoresis using a fluorescent product from the fungus Epicoccum nigrum; a fluorescence-based Coomassie Blue protein staining; visualization of proteins in acrylamide gels using ultraviolet illumination; fluorescence visualization of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution; and increasing the sensitivity four- to sixfold for detecting trace proteins in dye or silver stained polyacrylamide gels using polyethylene glycol 6000. All these methods are reviewed briefly in this chapter.
A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis
USDA-ARS?s Scientific Manuscript database
AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...
Karain, Wael I
2017-11-28
Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein. We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal component analysis technique. The recurrence quantification analysis based bootstrap technique is able to detect transitions between different dynamics states for a protein over different time scales. It is not limited to linear dynamics regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this method is the need to have large enough time windows to insure good statistical quality for the recurrence complexity measures needed to detect the transitions.
NASA Astrophysics Data System (ADS)
Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha
2016-05-01
Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2014-04-01
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2011-06-07
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2015-07-14
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Krejcova, Ludmila; Dospivova, Dana; Ryvolova, Marketa; Kopel, Pavel; Hynek, David; Krizkova, Sona; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene
2012-11-01
Currently, the influenza virus infects millions of individuals every year. Since the influenza virus represents one of the greatest threats, it is necessary to develop a diagnostic technique that can quickly, inexpensively, and accurately detect the virus to effectively treat and control seasonal and pandemic strains. This study presents an alternative to current detection methods. The flow-injection analysis-based biosensor, which can rapidly and economically analyze a wide panel of influenza virus strains by using paramagnetic particles modified with glycan, can selectively bind to specific viral A/H5N1/Vietnam/1203/2004 protein-labeled quantum dots. Optimized detection of cadmium sulfide quantum dots (CdS QDs)-protein complexes connected to paramagnetic microbeads was performed using differential pulse voltammetry on the surface of a hanging mercury drop electrode (HMDE) and/or glassy carbon electrode (GCE). Detection limit (3 S/N) estimations based on cadmium(II) ions quantification were 0.1 μg/mL or 10 μg/mL viral protein at HMDE or GCE, respectively. Viral protein detection was directly determined using differential pulse voltammetry Brdicka reaction. The limit detection (3 S/N) of viral protein was estimated as 0.1 μg/mL. Streptavidin-modified paramagnetic particles were mixed with biotinylated selective glycan to modify their surfaces. Under optimized conditions (250 μg/mL of glycan, 30-min long interaction with viral protein, 25°C and 400 rpm), the viral protein labeled with quantum dots was selectively isolated and its cadmium(II) content was determined. Cadmium was present in detectable amounts of 10 ng per mg of protein. Using this method, submicrogram concentrations of viral proteins can be identified. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LUSH-based SPR sensor for the detection of alcohols and pheromone
NASA Astrophysics Data System (ADS)
Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok
2013-05-01
Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.
Zhang, Manjun; Li, Ruimin; Ling, Liansheng
2017-06-01
This work proposed a homogenous fluorescence assay for proteins, based on the target-triggered proximity DNA hybridization in combination with strand displacement amplification (SDA). It benefited from target-triggered proximity DNA hybridization to specifically recognize the target and SDA making recycling signal amplification. The system included a molecular beacon (MB), an extended probe (EP), and an assistant probe (AP), which were not self-assembly in the absence of target proteins, due to the short length of the designed complementary sequence among MB, EP, and AP. Upon addition of the target proteins, EP and AP are bound to the target proteins, which induced the occurrence of proximity hybridization between MB, EP, and AP and followed by strand displacement amplification. Through the primer extension, a tripartite complex of probes and target was displaced and recycled to hybridize with another MB, and the more opened MB enabled the detection signal to amplify. Under optimum conditions, it was used for the detection of streptavidin and thrombin. Fluorescence intensity was proportional to the concentration of streptavidin and thrombin in the range of 0.2-30 and 0.2-35 nmol/L, respectively. Furthermore, this fluorescent method has a good selectivity, in which the fluorescence intensity of thrombin was ~37-fold or even larger than that of the other proteins at the same concentration. It is a new and simple method for SDA-involved target protein detection and possesses a great potential for other protein detection in the future. Graphical abstract A homogenous assay for protein detection is based on proximity DNA hybridization and strand displacement amplification reaction.
Advantages and application of label-free detection assays in drug screening.
Cunningham, Brian T; Laing, Lance G
2008-08-01
Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaohui; Wang, Ying; Wang, Jun
2010-08-15
A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescencemore » intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.« less
Lee, Ji-Yun; Kim, Chang Jong
2010-01-01
Egg allergy is one of the most common food allergies in both adults and children, and foods including eggs and their byproducts should be declared under food allergen labeling policies in industrial countries. Therefore, to develop and validate a sensitive and specific method to detect hidden egg allergens in foods, we compared immunochemical, DNA-based, and proteomic methods for detecting egg allergens in foods using egg allergen standards such as egg whole protein, egg white protein, egg yolk protein, ovomucoid, ovalbumin, ovotransferrin, lysozyme, and alpha-livetin. Protein-based immunochemical methods, including ELISA as an initial screening quantitative analysis and immunoblotting as a final confirmatory qualitative analysis, were very sensitive and specific in detecting potentially allergenic egg residues in processed foods in trace amounts. In contrast, the proteomics-based, matrix-assisted laser desorption/ionization time-of-flight MS and LC-tandem quadrupole time-of-flight MS methods were not able to detect some egg allergens, such as ovomucoid, because of its nondenaturing property under urea and trypsin. The DNA-based PCR method could not distinguish between egg and chicken meat because it is tissue-nonspecific. In further studies for the feasibility of these immunochemical methods on 100 real raw dietary samples, four food samples without listed egg ingredients produced a positive response by ELISA, but exhibited negative results by immunoblotting.
Development of a novel protein chip for the detection of bluetongue virus in China.
Xu, Q Y; Sun, E C; Feng, Y F; Li, J P; Lv, S; Zhang, Q; Wang, H X; Zhang, J K; Wu, D L
2016-08-01
Bluetongue (BT), which is caused by the BT virus (BTV), is an important disease in ruminants that leads to significant economic losses in the husbandry industry. To detect BTV-specific antibodies in serum, a protein chip detection method based on a novel solid supporting material known as polymer-coated initiator-integrated poly (dimethyl siloxane) (iPDMS) was developed. With a threshold of 25% (signal-to-noise percentage), the sensitivity and specificity of the protein chip were 98.6% and 94.8%, respectively. Furthermore, spot serum samples obtained from six provinces of China were tested with the protein chip and a commercially available BTV enzyme-linked immunosorbent assay (ELISA) kit (IDEXX). Of 615 samples, BTV-specific antibodies were detected in 200 (32.52%) by the protein chip and in 176 (28.62%) by the IDEXX BTV ELISA kit. Comparison of the protein chip with the commercial IDEXX BTV ELISA kit yielded the following spot serum detection results: a total coincidence, a negative coincidence and a positive coincidence of 95.12%, 99.28% and 86.5%, respectively. With the protein chip, the BTV-specific serum antibody was detected in samples from all six provinces, and the positive rates ranged from 4.12 to 74.4%. These results indicate that this protein chip detection method based on iPDMS is useful for the serological diagnosis of BTV infection and for epidemiological investigation. Copyright © 2016. Published by Elsevier B.V.
Zhang, Juanni; Tian, Jianniao; He, Yanlong; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-09-07
We report a fluorescence polarization platform for H1N1 detection based on the construction of a DNA functional QD fluorescence polarization probe and a bi-functional protein binding aptamer (Apt-DNA). The assay has a linear range from 10 nM to 100 nM with a detection limit of 3.45 nM and is selective over the mismatched bases.
Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.
Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia
2015-07-07
In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.
Anderson, Caitlin E; Holstein, Carly A; Strauch, Eva-Maria; Bennett, Steven; Chevalier, Aaron; Nelson, Jorgen; Fu, Elain; Baker, David; Yager, Paul
2017-06-20
Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 10 7 and 1.34 × 10 7 CEID 50 /mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.
Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing
2015-01-01
Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.
A water-soluble conjugated polymer for protein identification and denaturation detection.
Xu, Qingling; Wu, Chunxian; Zhu, Chunlei; Duan, Xinrui; Liu, Libing; Han, Yuchun; Wang, Yilin; Wang, Shu
2010-12-03
Rapid and sensitive methods to detect proteins and protein denaturation have become increasingly needful in the field of proteomics, medical diagnostics, and biology. In this paper, we have reported the synthesis of a new cationic water-soluble conjugated polymer that contains fluorene and diene moieties in the backbone (PFDE) for protein identification by sensing an array of PFDE solutions in different ionic strengths using the linear discriminant analysis technique (LDA). The PFDE can form complexes with proteins by electrostatic and/or hydrophobic interactions and exhibits different fluorescence response. Three main factors contribute to the fluorescence response of PFDE, namely, the net charge density on the protein surface, the hydrophobic nature of the protein, and the metalloprotein characteristics. The denaturation of proteins can also be detected using PFDE as a fluorescent probe. The interactions between PFDE and proteins were also studied by dynamic light scattering (DLS) and isothermal titration microcalorimetry (ITC) techniques. In contrast to other methods based on conjugated polymers, the synthesis of a series of quencher or dye-labeled acceptors or protein substrates has been avoided in our method, which significantly reduces the cost and the synthetic complexity. Our method provides promising applications on protein identification and denaturation detection in a simple, fast, and label-free manner based on non-specific interaction-induced perturbation of PFDE fluorescence response.
Rehman, Zia Ur; Idris, Adnan; Khan, Asifullah
2018-06-01
Protein-Protein Interactions (PPI) play a vital role in cellular processes and are formed because of thousands of interactions among proteins. Advancements in proteomics technologies have resulted in huge PPI datasets that need to be systematically analyzed. Protein complexes are the locally dense regions in PPI networks, which extend important role in metabolic pathways and gene regulation. In this work, a novel two-phase protein complex detection and grouping mechanism is proposed. In the first phase, topological and biological features are extracted for each complex, and prediction performance is investigated using Bagging based Ensemble classifier (PCD-BEns). Performance evaluation through cross validation shows improvement in comparison to CDIP, MCode, CFinder and PLSMC methods Second phase employs Multi-Dimensional Scaling (MDS) for the grouping of known complexes by exploring inter complex relations. It is experimentally observed that the combination of topological and biological features in the proposed approach has greatly enhanced prediction performance for protein complex detection, which may help to understand various biological processes, whereas application of MDS based exploration may assist in grouping potentially similar complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.
You, Zhu-Hong; Li, Shuai; Gao, Xin; Luo, Xin; Ji, Zhen
2014-01-01
Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection.
Nucleic Acids for Ultra-Sensitive Protein Detection
Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen
2013-01-01
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi
2017-12-01
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
Luo, Yuan; Zhu, Xu; Zhang, Pengjun; Shen, Qian; Wang, Zi; Wen, Xinyu; Wang, Ling; Gao, Jing; Dong, Jin; Yang, Caie; Wu, Tangming; Zhu, Zheng; Tian, Yaping
2015-01-01
We aimed to develop and validate two novel protein chips, which are based on microarray chemiluminescence immunoassay and can simultaneously detected 11 biomarkers, and then to evaluate their clinical diagnostic value by comparing with the traditional methods. Protein chips were evaluated for limit of detection, specificity, common interferences, linearity, precision and accuracy. 11 biomarkers were simultaneously detected by traditional methods and protein chips in 3683 samples, which included 1723 cancer patients, 1798 benign diseases patients and 162 healthy controls. After assay validation, protein chips demonstrated high sensitivity, high specificity, good linearity, low imprecision and were free of common interferences. Compared with the traditional methods, protein chips have good correlation in the detection of all the 13 kinds of biomarkers (r≥0.935, P<0.001). For specific cancer detection, there were no statistically significant differences between the traditional method and novel protein chips, except that male protein chip showed significantly better diagnostic value on NSE detection (P=0.004) but significantly worse value on pro-GRP detection (P=0.012), female chip showed significantly better diagnostic value on pro-GRP detection (P=0.005). Furthermore, both male and female multivariate diagnostic models had significantly better diagnostic value than single detection of PGI, PG II, pro-GRP, NSE and CA125 (P<0.05). In addition, male models had significantly better diagnostic value than single CA199 and free-PSA (P<0.05), while female models observed significantly better diagnostic value than single CA724 and β-HCG (P<0.05). For total disease or cancer detection, the AUC of multivariate logistic regression for the male and female disease detection was 0.981 (95% CI: 0.975-0.987) and 0.836 (95% CI: 0.798-0.874), respectively. While, that for total cancer detection was 0.691 (95% CI: 0.666-0.717) and 0.753 (95% CI: 0.731-0.775), respectively. The new designed protein chips are simple, multiplex and reliable clinical assays and the multi-parameter diagnostic models based on them could significantly improve their clinical performance.
Luo, Yuan; Zhu, Xu; Zhang, Pengjun; Shen, Qian; Wang, Zi; Wen, Xinyu; Wang, Ling; Gao, Jing; Dong, Jin; Yang, Caie; Wu, Tangming; Zhu, Zheng; Tian, Yaping
2015-01-01
We aimed to develop and validate two novel protein chips, which are based on microarray chemiluminescence immunoassay and can simultaneously detected 11 biomarkers, and then to evaluate their clinical diagnostic value by comparing with the traditional methods. Protein chips were evaluated for limit of detection, specificity, common interferences, linearity, precision and accuracy. 11 biomarkers were simultaneously detected by traditional methods and protein chips in 3683 samples, which included 1723 cancer patients, 1798 benign diseases patients and 162 healthy controls. After assay validation, protein chips demonstrated high sensitivity, high specificity, good linearity, low imprecision and were free of common interferences. Compared with the traditional methods, protein chips have good correlation in the detection of all the 13 kinds of biomarkers (r≥0.935, P<0.001). For specific cancer detection, there were no statistically significant differences between the traditional method and novel protein chips, except that male protein chip showed significantly better diagnostic value on NSE detection (P=0.004) but significantly worse value on pro-GRP detection (P=0.012), female chip showed significantly better diagnostic value on pro-GRP detection (P=0.005). Furthermore, both male and female multivariate diagnostic models had significantly better diagnostic value than single detection of PGI, PG II, pro-GRP, NSE and CA125 (P<0.05). In addition, male models had significantly better diagnostic value than single CA199 and free-PSA (P<0.05), while female models observed significantly better diagnostic value than single CA724 and β-HCG (P<0.05). For total disease or cancer detection, the AUC of multivariate logistic regression for the male and female disease detection was 0.981 (95% CI: 0.975-0.987) and 0.836 (95% CI: 0.798-0.874), respectively. While, that for total cancer detection was 0.691 (95% CI: 0.666-0.717) and 0.753 (95% CI: 0.731-0.775), respectively. The new designed protein chips are simple, multiplex and reliable clinical assays and the multi-parameter diagnostic models based on them could significantly improve their clinical performance. PMID:26884957
NASA Astrophysics Data System (ADS)
Tsao, Yu-Chia; Yang, Yi-Wen; Tsai, Woo-Hu; Yan, Tsong-Rong
2008-02-01
Side-polished fiber immunosensor based on surface plasmon resonance (SPR) onto self-assembled protein A layer was proposed for the detection of Legionella pneumophila. A self-assembled protein A layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and activated by N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS). The formation of self-assembled protein A and gold layer on side-polished surface and the binding of antibody and antigen in series were confirmed by SPR response on spectrum. The binding protein A layer can improve the sensitivity, which indirectly supports the configurations that antibody layer is immobilized on the binding protein A layer with a well-ordered orientation. The surface morphology analyses of self-assembled protein A layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein A were demonstrated by SPR dip shifts on optical spectrum analyzer. The SPR fiber immunosensor for detection of L. pneumophila was developed and the detection limit was 10 CFU/ml with the SPR dip shift in wavelength from 1070 to 1105nm. The current fabrication technique of a SPR immunosensor using optical fiber for the detection of Legionella pneumophila could be applied to construct other biosensor.
Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.
Sitaraman, Kalavathy; Chatterjee, Deb K
2011-01-01
In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.
Parallel seed-based approach to multiple protein structure similarities detection
Chapuis, Guillaume; Le Boudic-Jamin, Mathilde; Andonov, Rumen; ...
2015-01-01
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a quality guarantee—the returned alignments have both root mean squared deviations (coordinate-based as well as internal-distances based) lower than a given threshold, if such exist. We do not require the alignments to be order preserving (i.e., we consider nonsequential alignments), which makesmore » our algorithm suitable for detecting similar domains when comparing multidomain proteins as well as to detect structural repetitions within a single protein. Because the search space for nonsequential alignments is much larger than for sequential ones, the computational burden is addressed by extensive use of parallel computing techniques: a coarse-grain level parallelism making use of available CPU cores for computation and a fine-grain level parallelism exploiting bit-level concurrency as well as vector instructions.« less
Novel Cell-Based Assays for Detecting Low Levels of Active Ricin Following Decontamination
2011-12-01
fluorescent protein, are powerful tools, which have been used for detection assays for ricin protein ( DeWet , 1987). Zhao et al. (2005) have reported a...toxic Type 2 Ribosome-Inactivating Proteins. FEBS Lett. 2004, 563, pp 219–222. DeWet , J.R. et al. Firefly Luciferase Gene: Structure and
1993-01-25
10 DISCUSSION ............................................... 14 FIELD TESTS OF ANTIBODY DETECTION OF HEAT SHOCK PROTEIN ACCUMULATION IN... TESTS OF ANTIBODY DETECTION OF HEAT SHOCK PROTEIN ACCUMULATION IN ASIAN CLAMS (CORBICULA FLUMINEA) INTRODUCTION The Trinity River flows through...the utility of induction of heat shock proteins as an indicator of stress in another test organism, the Asian clam (Corbicula fluminea). This organism
Goonesekere, Nalin Cw
2009-01-01
The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.
Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics
2011-01-01
Background High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin) make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum. Results The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent) displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma) in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance proteins. Conclusions The immunoaffinity based kits exceeded the immobilized dye based kit in high abundance protein depletion of umbilical cord serum samples and dramatically improved 2DE gel quality for detection of trace biomarkers. PMID:21554704
Zhang, Yun; Liu, Fang; Nie, Jinfang; Jiang, Fuyang; Zhou, Caibin; Yang, Jiani; Fan, Jinlong; Li, Jianping
2014-05-07
In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).
Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing
2015-01-01
Background Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. Methods A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. Results This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. Conclusion This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice. PMID:25848224
The Detection of Protein via ZnO Resonant Raman Scattering Signal
NASA Astrophysics Data System (ADS)
Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun
2008-03-01
Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.
Mechanism-based Proteomic Screening Identifies Targets of Thioredoxin-like Proteins*
Nakao, Lia S.; Everley, Robert A.; Marino, Stefano M.; Lo, Sze M.; de Souza, Luiz E.; Gygi, Steven P.; Gladyshev, Vadim N.
2015-01-01
Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes. PMID:25561728
Exo-Dye-based assay for rapid, inexpensive, and sensitive detection of DNA-binding proteins.
Chen, Zaozao; Ji, Meiju; Hou, Peng; Lu, Zuhong
2006-07-07
We reported herein a rapid, inexpensive, and sensitive technique for detecting sequence-specific DNA-binding proteins. In this technique, the common exonuclease III (ExoIII) footprinting assay is coupled with simple SYBR Green I staining for monitoring the activities of DNA-binding proteins. We named this technique as ExoIII-Dye-based assay. In this assay, a duplex probe was designed to detect DNA-binding protein. One side of the probe contains one protein-binding site, and another side of it contains five protruding bases at 3' end for protection from ExoIII digestion. If a target protein is present, it will bind to binding sites of probe and produce a physical hindrance to ExoIII, which protects the duplex probe from digestion of ExoIII. SYBR Green I will bind to probe, which results in high fluorescence intensity. On the contrary, in the absence of the target protein, the naked duplex probe will be degraded by ExoIII. SYBR Green I will be released, which results in a low fluorescence intensity. In this study, we employed this technique to successfully detect transcription factor NF-kappaB in crude cell extracts. Moreover, it could also be used to evaluate the binding affinity of NF-kappaB. This technique has therefore wide potential application in research, medical diagnosis, and drug discovery.
Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng
2018-05-10
CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.
Aspinall-O'Dea, Mark; Pierce, Andrew; Pellicano, Francesca; Williamson, Andrew J; Scott, Mary T; Walker, Michael J; Holyoake, Tessa L; Whetton, Anthony D
2015-01-01
This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.
Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming
2012-06-01
With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs. © 2012 Institute of Food Technologists®
Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone
Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.
2015-01-01
Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444
Detection of Protein Interactions in T3S Systems Using Yeast Two-Hybrid Analysis.
Nilles, Matthew L
2017-01-01
Two-hybrid systems, sometimes termed interaction traps, are genetic systems designed to find and analyze interactions between proteins. The most common systems are yeast based (commonly Saccharomyces cerevisae) and rely on the functional reconstitution of the GAL4 transcriptional activator. Reporter genes, such as the lacZ gene of Escherichia coli (encodes β-galactosidase), are placed under GAL4-dependent transcriptional control to provide quick and reliable detection of protein interactions. In this method the use of a yeast-based two-hybrid system is described to study protein interactions between components of type III secretion systems.
The rational development of molecularly imprinted polymer-based sensors for protein detection.
Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian
2011-03-01
The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).
Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis
2016-01-01
Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963
Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis
2016-11-05
Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface.
A new approach for rapid detection and typing of serum monoclonal components.
Cacoub, P; Camproux, A C; Thiolières, J M; Assogba, U; Hausfater, P; Mallet, A; Foglietti, M J; Piette, J C; Bernard, M
2000-12-01
When used independently, none of the routine methods to explore serum monoclonal components (MC), including: serum protein electrophoresis (SPE), immunoelectrophoresis (IEP), kappa to lambda ratio (KLR) and immunofixation (IFE), provides a comprehensive quantitative and qualitative identification of the MC. In the past few years the concept of 'protein profile', based on immunonephelometric quantifications of serum proteins, has become widely used. It consists of a qualitative and quantitative graphic representation of numerous serum proteins including immunoglobulins. Aim of study was to develop a multidimensional model based exclusively on protein profiles labeled the protein profile prediction method (PPPM) to improve routine MC detection and typing. Serum samples from 127 hospitalized patients and 99 healthy blood donors were submitted to all of the following: SPE, IFE, KLR and a protein profile (which included IgM, IgA, IgG, kappa and lambda chain detections and quantification). The presence of a MC using IFE was chosen as the gold standard. Healthy donors and patients were randomly divided into two groups defined as testing and validation groups. A logistic model was designed based on the protein profiles of the testing group leading to the determination of a threshold value (called Z(r)) for MC detection. It was then tested to detect MC in the validation group. Using IFE, 73 MC were found in the 127 hospitalized patients. Using the threshold value for MC detection of Z(r)=1.86, the PPPM showed greater sensitivity (94.6%) in detecting a MC compared to either SPE (64.8%) or KLR (89.2%). This result was obtained without diminished specificity (80.8%). The association of SPE or KLR to PPPM did not significantly increase the sensitivity of the PPPM. In the validation group, for samples which had a high predictive probability of a MC using PPPM, the correct MC typing was identified in up to 77% of sera using PPPM only. These results may be interesting in helping to determine when supplementary IFE analysis is required to qualitatively analyze a MC. PPPM allows MC detection with great sensitivity. The immune protein profile dramatically increases the sensitivity of either SPE and/or KLR in detecting MC and may also allow heavy and light chain typing.
The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions. Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches.
The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions. Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches.
Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong
2014-08-04
We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.
Patil, Ajeetkumar; Bhat, Sujatha; Pai, Keerthilatha M; Rai, Lavanya; Kartha, V B; Chidangil, Santhosh
2015-09-08
An ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique has been developed by our group at Manipal, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from volunteers (normal, and different pre-malignant/malignant conditions) were recorded using this set-up. The protein profiles were analyzed using principal component analysis (PCA) to achieve objective detection and classification of malignant, premalignant and healthy conditions with high sensitivity and specificity. The HPLC-LIF protein profiling combined with PCA, as a routine method for screening, diagnosis, and staging of cervical cancer and oral cancer, is discussed in this paper. In recent years, proteomics techniques have advanced tremendously in life sciences and medical sciences for the detection and identification of proteins in body fluids, tissue homogenates and cellular samples to understand biochemical mechanisms leading to different diseases. Some of the methods include techniques like high performance liquid chromatography, 2D-gel electrophoresis, MALDI-TOF-MS, SELDI-TOF-MS, CE-MS and LC-MS techniques. We have developed an ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from healthy and volunteers with different malignant conditions were recorded by using this set-up. The protein profile data were analyzed using principal component analysis (PCA) for objective classification and detection of malignant, premalignant and healthy conditions. The method is extremely sensitive to detect proteins with limit of detection of the order of femto-moles. The HPLC-LIF combined with PCA as a potential proteomic method for the diagnosis of oral cancer and cervical cancer has been discussed in this paper. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.
Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection
Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan
2014-01-01
Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins –Protein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2008-12-01
Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences. In this paper, a novel building block of proteins called Top-n-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-n-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-n-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-n-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-n-grams and LSA gives significantly better results compared to related methods. The method based on Top-n-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-n-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.
Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.
Detection of human immunodeficiency virus type 1 (HIV-1) Tat protein by aptamer-based biosensors
NASA Astrophysics Data System (ADS)
Hashim, Uda; Fatin, M. F.; Ruslinda, A. R.; Gopinath, Subash C. B.; Uda, M. N. A.
2017-03-01
A study was conducted to detect the human immunodeficiency virus (HIV-1) Tat protein using interdigitated electrodes. The measurements and images of the IDEs' finger gaps and the images of chitosan-carbon nanotubes deposited on top of the interdigitated electrodes were taken using the Scanning Electron Microscope. The detection of HIV-1 Tat protein was done using split aptamers and aptamer tail. Biosensors were chosen as diagnostic equipment due to their rapid diagnostic capabilities.
Romano, Christine A.; Sontz, Pamela A.; Barton, Jacqueline K.
2011-01-01
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75 and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. Based on circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome. PMID:21651304
Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform
NASA Astrophysics Data System (ADS)
Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.
2018-02-01
Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects <125 μg/ml. Also, a linear absorbance change up to protein concentration of 7500 μg/ml is experimentally attained which is based on the Beer-Lambert-law.
Vellaichamy, Adaikkalam; Tran, John C.; Catherman, Adam D.; Lee, Ji Eun; Kellie, John F.; Sweet, Steve M.M.; Zamdborg, Leonid; Thomas, Paul M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Valaskovic, Gary A.; Kelleher, Neil L.
2010-01-01
Despite the availability of ultra-high resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for on-line LC-MS to drive high-throughput top-down proteomics in a fashion similar to bottom-up. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary-LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier-Transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation (NSD) and detection of fragment ions with <5 ppm mass accuracy for highly-specific database searching using custom software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines pre-fractionated by their molecular weight using a gel-based sieving system. PMID:20073486
Advantages of Molecular Weight Identification during Native MS Screening.
Khan, Ahad; Bresnick, Anne; Cahill, Sean; Girvin, Mark; Almo, Steve; Quinn, Ronald
2018-05-09
Native mass spectrometry detection of ligand-protein complexes allowed rapid detection of natural product binders of apo and calcium-bound S100A4 (a member of the metal binding protein S100 family), T cell/transmembrane, immunoglobulin (Ig), and mucin protein 3, and T cell immunoreceptor with Ig and ITIM (immunoreceptor tyrosine-based inhibitory motif) domains precursor protein from extracts and fractions. Based on molecular weight common hits were detected binding to all four proteins. Seven common hits were identified as apigenin 6- C - β - D -glucoside 8- C - α - L -arabinoside, sweroside, 4',5-dihydroxy-7-methoxyflavanone-6- C -rutinoside, loganin acid, 6- C -glucosylnaringenin, biochanin A 7- O -rutinoside and quercetin 3- O -rutinoside. Mass guided isolation and NMR identification of hits confirmed the mass accuracy of the ligand in the ligand-protein MS complexes. Thus, molecular weight ID from ligand-protein complexes by electrospray ionization Fourier transform mass spectrometry allowed rapid dereplication. Native mass spectrometry using electrospray ionization Fourier transform mass spectrometry is a tool for dereplication and metabolomics analysis. Georg Thieme Verlag KG Stuttgart · New York.
Sankaran, Sindhuja; Panigrahi, Suranjan; Mallik, Sanku
2011-03-15
Detection of food-borne bacteria present in the food products is critical to prevent the spread of infectious diseases. Intelligent quality sensors are being developed for detecting bacterial pathogens such as Salmonella in beef. One of our research thrusts was to develop novel sensing materials sensitive to specific indicator alcohols at low concentrations. Present work focuses on developing olfactory sensors mimicking insect odorant binding protein to detect alcohols in low concentrations at room temperature. A quartz crystal microbalance (QCM) based sensor in conjunction with synthetic peptide was developed to detect volatile organic compounds indicative to Salmonella contamination in packaged beef. The peptide sequence used as sensing materials was derived from the amino acids sequence of Drosophila odorant binding protein, LUSH. The sensors were used to detect alcohols: 3-methyl-1-butanol and 1-hexanol. The sensors were sensitive to alcohols with estimated lower detection limits of <5 ppm. Thus, the LUSH-derived QCM sensors exhibited potential to detect alcohols at low ppm concentrations. Copyright © 2011. Published by Elsevier B.V.
Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui
2018-06-15
High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).
Chemical probes for analysis of carbonylated proteins: a review
Yan, Liang-Jun; Forster, Michael J.
2010-01-01
Protein carbonylation is a major form of protein oxidation and is widely used as an indicator of oxidative stress. Carbonyl groups do not have distinguishing UV or visible, spectrophotometric absorbance/fluorescence characteristics and thus their detection and quantification can only be achieved using specific chemical probes. In this paper, we review the advantages and disadvantages of several chemical probes that have been and are still being used for protein carbonyl analysis. These probes include 2, 4-dinitrophenylhydazine (DNPH), tritiated sodium borohydride ([3H]NaBH4), biotin-containing probes, and fluorescence probes. As our discussions lean toward gel-based approaches, utilizations of these probes in 2D gel-based proteomic analysis of carbonylated proteins are illustrated where applicable. Analysis of carbonylated proteins by ELISA, immunofluorescent imaging, near infrared fluorescence detection, and gel-free proteomic approaches are also discussed where appropriate. Additionally, potential applications of blue native gel electrophoresis as a tool for first dimensional separation in 2D gel-based analysis of carbonylated proteins are discussed as well. PMID:20732835
NASA Astrophysics Data System (ADS)
Lin, Xueliang; Lin, Duo; Ge, Xiaosong; Qiu, Sufang; Feng, Shangyuan; Chen, Rong
2017-10-01
The present study evaluated the capability of saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy (SERS) for noninvasive detection of nasopharyngeal carcinoma (NPC). A rapid and convenient protein purification method based on cellulose acetate membrane was developed. A total of 659 high-quality SERS spectra were acquired from purified proteins extracted from the saliva samples of 170 patients with pathologically confirmed NPC and 71 healthy volunteers. Spectral analysis of those saliva protein SERS spectra revealed specific changes in some biochemical compositions, which were possibly associated with NPC transformation. Furthermore, principal component analysis combined with linear discriminant analysis (PCA-LDA) was utilized to analyze and classify the saliva protein SERS spectra from NPC and healthy subjects. Diagnostic sensitivity of 70.7%, specificity of 70.3%, and diagnostic accuracy of 70.5% could be achieved by PCA-LDA for NPC identification. These results show that this assay based on saliva protein SERS analysis holds promising potential for developing a rapid, noninvasive, and convenient clinical tool for NPC screening.
Li, Dujuan; Scarano, Simona; Lisi, Samuele; Palladino, Pasquale; Minunni, Maria
2018-03-22
Human tau protein is one of the most advanced and accepted biomarkers for AD and tauopathies diagnosis in general. In this work, a quartz crystal balance (QCM) immunosensor was developed for the detection of human tau protein in buffer and artificial cerebrospinal fluid (aCSF), through both direct and sandwich assays. Starting from a conventional immuno-based sandwich strategy, two monoclonal antibodies recognizing different epitopes of tau protein were used, achieving a detection limit for the direct assay in nanomolar range both in HBES-EP and aCSF. Afterward, for exploring alternative specific receptors as secondary recognition elements for tau protein biosensing, we tested tubulin and compared its behavior to a conventional secondary antibody in the sandwich assay. Tau-tubulin binding has shown an extended working range coupled to a signal improvement in comparison with the conventional secondary antibody-based approach, showing a dose-response trend at lower tau concentration than is usually investigated and closer to the physiological levels in the reference matrix for protein tau biomarker. Our results open up new and encouraging perspectives for the use of tubulin as an alternative receptor for tau protein with interesting features due to the possibility of taking advantage of its polymerization and reversible binding to this key hallmark of Alzheimer's disease.
Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan
2017-09-01
Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Kai; Chang, Yong; Zhou, Binbin; Wang, Xiaojin; Liu, Lin
2017-01-01
This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide–kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications. PMID:28331314
Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela
2017-10-17
Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.
Kay, Richard; Barton, Chris; Ratcliffe, Lucy; Matharoo-Ball, Balwir; Brown, Pamela; Roberts, Jane; Teale, Phil; Creaser, Colin
2008-10-01
A rapid acetonitrile (ACN)-based extraction method has been developed that reproducibly depletes high abundance and high molecular weight proteins from serum prior to mass spectrometric analysis. A nanoflow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) multiple reaction monitoring (MRM) method for 57 high to medium abundance serum proteins was used to characterise the ACN-depleted fraction after tryptic digestion. Of the 57 targeted proteins 29 were detected and albumin, the most abundant protein in serum and plasma, was identified as the 20th most abundant protein in the extract. The combination of ACN depletion and one-dimensional nano-LC/MS/MS enabled the detection of the low abundance serum protein, insulin-like growth factor-I (IGF-I), which has a serum concentration in the region of 100 ng/mL. One-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the depleted serum showed no bands corresponding to proteins of molecular mass over 75 kDa after extraction, demonstrating the efficiency of the method for the depletion of high molecular weight proteins. Total protein analysis of the ACN extracts showed that approximately 99.6% of all protein is removed from the serum. The ACN-depletion strategy offers a viable alternative to the immunochemistry-based protein-depletion techniques commonly used for removing high abundance proteins from serum prior to MS-based proteomic analyses.
Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros
2013-06-01
Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.
Yang, Xu; Lazar, Iulia M
2009-03-27
The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing approximately 1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins.
2009-01-01
Background The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. Methods MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. Results In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Conclusion Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins. PMID:19327145
Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao
2018-06-01
Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.
Detection of proteins using a colorimetric bio-barcode assay.
Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T
2007-01-01
The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).
Integrated analyses of proteins and their glycans in a magnetic bead-based multiplex assay format.
Li, Danni; Chiu, Hanching; Chen, Jing; Zhang, Hui; Chan, Daniel W
2013-01-01
Well-annotated clinical samples are valuable resources for biomarker discovery and validation. Multiplex and integrated methods that simultaneously measure multiple analytes and generate integrated information about these analytes from a single measurement are desirable because these methods help conserve precious samples. We developed a magnetic bead-based system for multiplex and integrated glycoprotein quantification by immunoassays and glycan detection by lectin immunosorbent assays (LISAs). Magnetic beads coupled with antibodies were used for capturing proteins of interest. Biotinylated antibodies in combination with streptavidin-labeled phycoerythrin were used for protein quantification. In the LISAs, biotinylated detection antibodies were replaced by biotinylated lectins for glycan detection. Using tissue inhibitor of metallopeptidase 1 (TIMP-1), tissue plasminogen activator, membrane metallo-endopeptidase, and dipeptidyl peptidase-IV (DPP-4) as models, we found that the multiplex integrated system was comparable to single immunoassays in protein quantification and LISAs in glycan detection. The merits of this system were demonstrated when applied to well-annotated prostate cancer tissues for validation of biomarkers in aggressive prostate cancer. Because of the system's multiplex ability, we used only 300 ng of tissue protein for the integrated detection of glycans in these proteins. Fucosylated TIMP-1 and DPP-4 offered improved performance over the proteins in distinguishing aggressive and nonaggressive prostate cancer. The multiplex and integrated system conserves samples and is a useful tool for validation of glycoproteins and their glycoforms as biomarkers. © 2012 American Association for Clinical Chemistry
Isotachophoresis-Based Surface Immunoassay.
Paratore, Federico; Zeidman Kalman, Tal; Rosenfeld, Tally; Kaigala, Govind V; Bercovici, Moran
2017-07-18
In the absence of amplification methods for proteins, the immune-detection of low-abundance proteins using antibodies is fundamentally limited by binding kinetic rates. Here, we present a new class of surface-based immunoassays in which protein-antibody reaction is accelerated by isotachophoresis (ITP). We demonstrate the use of ITP to preconcentrate and deliver target proteins to a surface decorated with specific antibodies, where effective utilization of the focused sample is achieved by modulating the driving electric field (stop-and-diffuse ITP mode) or applying a counter flow that opposes the ITP motion (counterflow ITP mode). Using enhanced green fluorescent protein (EGFP) as a model protein, we carry out an experimental optimization of the ITP-based immunoassay and demonstrate a 1300-fold improvement in limit of detection compared to a standard immunoassay, in a 6 min protein-antibody reaction. We discuss the design of buffer chemistries for other protein systems and, in concert with experiments, provide full analytical solutions for the two operation modes, elucidating the interplay between reaction, diffusion, and accumulation time scales and enabling the prediction and design of future immunoassays.
A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing
Pagliaccia, Deborah; Shi, Jinxia; Pang, Zhiqian; Hawara, Eva; Clark, Kelley; Thapa, Shree P.; De Francesco, Agustina D.; Liu, Jianfeng; Tran, Thien-Toan; Bodaghi, Sohrab; Folimonova, Svetlana Y.; Ancona, Veronica; Mulchandani, Ashok; Coaker, Gitta; Wang, Nian; Vidalakis, Georgios; Ma, Wenbo
2017-01-01
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs. PMID:29403441
Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A
2014-09-22
We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.
Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe.
Ma, Changbei; Lv, Xiaoyuan; Wang, Kemin; Jin, Shunxin; Liu, Haisheng; Wu, Kefeng; Zeng, Weimin
2017-11-02
Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.
Yin, Ji Yong; Huo, Jun Sheng; Ma, Xin Xin; Sun, Jing; Huang, Jian
2017-12-01
To research a protein chip method which can simultaneously quantitative detect β-Lactoglobulin (β-L) and Lactoferrin (Lf) at one time. Protein chip printer was used to print both anti-β-L antibodies and anti-Lf antibodies on each block of protein chip. And then an improved sandwich detection method was applied while the other two detecting antibodies for the two antigens were added in the block after they were mixed. The detection conditions of the quantitative detection for simultaneous measurement of β-L and Lf with protein chip were optimized and evaluated. Based on these detected conditions, two standard curves of the two proteins were simultaneously established on one protein chip. Finally, the new detection method was evaluated by using the analysis of precision and accuracy. By comparison experiment, mouse monoclonal antibodies of the two antigens were chosen as the printing probe. The concentrations of β-L and Lf probes were 0.5 mg/mL and 0.5 mg/mL, respectively, while the titers of detection antibodies both of β-L and Lf were 1:2,000. Intra- and inter-assay variability was between 4.88% and 38.33% for all tests. The regression coefficients of protein chip comparing with ELISA for β-L and Lf were better than 0.734, and both of the two regression coefficients were statistically significant (r = 0.734, t = 2.644, P = 0.038; and r = 0.774, t = 2.998, P = 0.024). A protein chip method of simultaneously quantitative detection for β-L and Lf has been established and this method is worthy in further application. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Romano, Christine A; Sontz, Pamela A; Barton, Jacqueline K
2011-07-12
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75, and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. On the basis of circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome.
Pfaunmiller, Erika L.; Anguizola, Jeanethe A.; Milanuk, Mitchell L.; Carter, NaTasha; Hage, David S.
2016-01-01
Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limits of detection, and analysis time. All these methods gave detection limits in the range of 8–19 ng/mL and precisions ranging from ± 5% to ± 10% when using an injection flow rate of 0.10 mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest. PMID:26777776
A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence
Asanov, Alexander; Zepeda, Angélica; Vaca, Luis
2012-01-01
We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738
Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.
Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M
2008-06-01
Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse HIV-1 subtypes. Because the bio-barcode-amplification method does not require enzymatic amplification, this method could be translated into a robust point-of-care test.
Yan, Sheng; Zhu, Yuanqing; Tang, Shi-Yang; Li, Yuxing; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Jun; Zhang, Shiwu; Li, Weihua
2018-04-01
Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point-of-care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean-room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample-reagent mixing. With the integration of smartphone-based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone-based detection platform is portable for on-site quantitative detection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gibbs motif sampling: detection of bacterial outer membrane protein repeats.
Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.
1995-01-01
The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488
Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O’Callaghan, Dennis J.
2007-01-01
The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5′untranslated region (UTR), a 285 base pair open reading frame (ORF) and a poly adenylation (A) signal (Holden et al., 1992 DNA Seq 3, 143-52). Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed. PMID:17306852
NASA Astrophysics Data System (ADS)
Lim, China Ye-Ling
Over the past decade, our research group has worked on developing surface-based immunoassays to detect disease biomarkers. Our immunoassay platforms use a gold surface coated with an N-hydroxysuccinimide (NHS)-based monolayer and a layer of antibodies to capture a target antigen. Readout is achieved by surface-enhanced Raman scattering (SERS) or giant magnetoresistance (GMR) after labeling of the captured antigen with Raman dye-modified gold nanoparticles or magnetic particles, which are also coated with antibodies. Both of these platforms enable the low-level detection of numerous biomarkers and have the potential for translation into a point-of-need (PON) (i.e., rapid, easy to use, and field deployable) test. As part of an effort to develop a PON test, this dissertation includes investigations of: (1) SERS-based detection of botulinum neurotoxins (BoNTs), (2) protein immobilization procedures, and (3) magnetic microcapsules (MMCs) for use with GMR detection. First, a SERS-based immunoassay for bioterrorism agents, botulinum neurotoxins A (BoNT-A) and B (BoNT-B) with picomolar (or lower) detection limits for BoNT-A and BoNT-B in buffer and serum is described. These results not only demonstrate sufficient detection of these markers at levels important to homeland security and human health monitoring, but also the potential to translate this methodology to a PON test. Next, the reactivity of NHS ester-terminated monolayers, a common approach in protein immobilization chemistry, is investigated to assess the competition of the purported amidization reaction to that of hydrolysis. Results of kinetic studies on hydrolysis and aminolysis under relevant assay conditions show the rate of hydrolysis is 300x faster than that of aminolysis. These results indicate that it is highly unlikely that proteins are covalently linked to the surface and suggest that the protein layer is adsorbed via hydrophobic, hydrogen bonding, and electrostatic interactions. The last section examines the development of an MMC-based label. With marked improvement in both stability and magnetization over commercially-available magnetic nanoparticles, these MMCs show potential for the eventual enhanced function as a label in a GMR-based immunoassay. With these results, this dissertation aims to set the stage for the rational development of assays that will facilitate a paradigm shift towards PON tests.
2014-01-01
Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490
Akkerdaas, Jaap H; Wensing, Marjolein; Knulst, André C; Stephan, Oliver; Hefle, Susan L; Aalberse, Rob C; van Ree, Ronald
2004-12-15
Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and detecting rabbit antibodies were raised against pepsin-digested hazelnut and untreated hazelnut protein, respectively. The assay showed a detection limit of 0.7 ng/mL hazelnut protein or <1 microg hazelnut in 1 g food matrix and a maximum of 0.034% cross-reactivity (peanut). Chocolate samples spiked with 0.5-100 microg hazelnut/g chocolate showed a mean recovery of 97.3%. In 9/12 food products labeled "may contain nuts", hazelnut was detected between 1.2 and 417 microg hazelnut/g food. It can be concluded that the application of antibodies directed to pepsin-digested food extracts in ELISA can facilitate specific detection of stable proteins that have the highest potential of inducing severe food anaphylaxis.
Berggrund, Malin; Ekman, Daniel; Gustavsson, Inger; Sundfeldt, Karin; Olovsson, Matts; Enroth, Stefan; Gyllensten, Ulf
2016-01-01
The indicating FTA elute micro card™ has been developed to collect and stabilize the nucleic acid in biological samples and is widely used in human and veterinary medicine and other disciplines. This card is not recommended for protein analyses, since surface treatment may denature proteins. We studied the ability to analyse proteins in human plasma and vaginal fluid as applied to the indicating FTA elute micro card™ using the sensitive proximity extension assay (PEA). Among 92 proteins in the Proseek Multiplex Oncology Iv2 panel, 87 were above the limit of detection (LOD) in liquid plasma and 56 among 92 above LOD in plasma applied to FTA cards. Washing and protein elution protocols were compared to identify an optimal method. Liquid-based cytology samples showed a lower number of proteins above LOD than FTA cards with vaginal fluid samples applied. Our results demonstrate that samples applied to the indicating FTA elute micro card™ are amendable to protein analyses, given that a sensitive protein detection assay is used. The results imply that biological samples applied to FTA cards can be used for DNA, RNA and protein detection. PMID:28936257
Berggrund, Malin; Ekman, Daniel; Gustavsson, Inger; Sundfeldt, Karin; Olovsson, Matts; Enroth, Stefan; Gyllensten, Ulf
2016-01-01
The indicating FTA elute micro card™ has been developed to collect and stabilize the nucleic acid in biological samples and is widely used in human and veterinary medicine and other disciplines. This card is not recommended for protein analyses, since surface treatment may denature proteins. We studied the ability to analyse proteins in human plasma and vaginal fluid as applied to the indicating FTA elute micro card™ using the sensitive proximity extension assay (PEA). Among 92 proteins in the Proseek Multiplex Oncology Iv2 panel, 87 were above the limit of detection (LOD) in liquid plasma and 56 among 92 above LOD in plasma applied to FTA cards. Washing and protein elution protocols were compared to identify an optimal method. Liquid-based cytology samples showed a lower number of proteins above LOD than FTA cards with vaginal fluid samples applied. Our results demonstrate that samples applied to the indicating FTA elute micro card™ are amendable to protein analyses, given that a sensitive protein detection assay is used. The results imply that biological samples applied to FTA cards can be used for DNA, RNA and protein detection.
Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.
Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide
2017-07-07
Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng
2014-10-07
We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.
Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W
2004-01-15
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.
Multi-capillary based optical sensors for highly sensitive protein detection
NASA Astrophysics Data System (ADS)
Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji
2017-04-01
A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.
Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor
2015-09-11
We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed.
Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor
2015-01-01
We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed. PMID:26358842
Cai, Jian-Hua
2017-09-01
To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.
2017-01-01
Mass-spectrometry-based, high-throughput proteomics experiments produce large amounts of data. While typically acquired to answer specific biological questions, these data can also be reused in orthogonal ways to reveal new biological knowledge. We here present a novel method for such orthogonal data reuse of public proteomics data. Our method elucidates biological relationships between proteins based on the co-occurrence of these proteins across human experiments in the PRIDE database. The majority of the significantly co-occurring protein pairs that were detected by our method have been successfully mapped to existing biological knowledge. The validity of our novel method is substantiated by the extremely few pairs that can be mapped to existing knowledge based on random associations between the same set of proteins. Moreover, using literature searches and the STRING database, we were able to derive meaningful biological associations for unannotated protein pairs that were detected using our method, further illustrating that as-yet unknown associations present highly interesting targets for follow-up analysis. PMID:28480704
Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.
Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent
2017-10-15
Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.
An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin.
Vergara, Daniele; Bianco, Monica; Pagano, Rosanna; Priore, Paola; Lunetti, Paola; Guerra, Flora; Bettini, Simona; Carallo, Sonia; Zizzari, Alessandra; Pitotti, Elena; Giotta, Livia; Capobianco, Loredana; Bucci, Cecilia; Valli, Ludovico; Maffia, Michele; Arima, Valentina; Gaballo, Antonio
2018-06-11
Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred μl of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA. Copyright © 2018 Elsevier Inc. All rights reserved.
Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan; Wang, Jiasheng
2016-11-14
Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.
Coriano, Carlos; Powell, Emily; Xu, Wei
2016-01-01
The bioluminescent resonance energy transfer (BRET) assay has been extensively used in cell-based and in vivo imaging systems for detecting protein-protein interactions in the native environment of living cells. These protein-protein interactions are essential for the functional response of many signaling pathways to environmental chemicals. BRET has been used as a toxicological tool for identifying chemicals that either induce or inhibit these protein-protein interactions. This chapter focuses on describing the toxicological applications of BRET and its optimization as a high-throughput detection system in live cells. Here we review the construction of BRET fusion proteins, describe the BRET methodology, and outline strategies to overcome obstacles that may arise. Furthermore, we describe the advantage of BRET over other resonance energy transfer methods for monitoring protein-protein interactions.
Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi
2012-12-01
Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.
NASA Astrophysics Data System (ADS)
Mani, Vigneshwaran
Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based assays. The high sensitivity of these approaches will allow monitoring of biomarker levels in diseases states where proteins are in sub pg mL -1 concentrations that are normally challenging to detect using traditional methods such as enzyme linked immunosorbent assays (ELISA). Further emphases will be on SPR-based fundamental studies on binding affinity enhancement of MP conjugates to protein surfaces. In addition, this thesis describes the assembly of glucose/O2 enzymatic biofuel cells for power generation utilizing layer-by-layer films of osmium redox polymers and enzymes. Towards the end, the present thesis describes a simple, low-cost and accurate paper-based electrochemical device fabrication methods and its applications towards monitoring genotoxic activities in the environmental samples.
Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A
2016-12-01
Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.
Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi
2003-01-01
Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.
Saha, Arindam; Jana, Nikhil R
2015-01-14
Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.
Atomic layer deposition modified track-etched conical nanochannels for protein sensing.
Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming
2015-08-18
Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport.
Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions
Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...
2006-01-01
The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less
USDA-ARS?s Scientific Manuscript database
A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...
Gibertoni, Aliandra M.; Montassier, Maria de Fátima S.; Sena, Janete A. D.; Givisiez, Patrícia E. N.; Furuyama, Cibele R. A. G.; Montassier, Hélio J.
2005-01-01
A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA. PMID:15815038
Henry, James; Anand, Ashish; Chowdhury, Mustafa; Coté, Gerard; Moreira, Rosana; Good, Theresa
2004-11-01
A nanoparticle-based immunoassay for the detection of recombinant bovine prion protein (PrP) was developed as a step in the development of screening tools for the prevention of the spread of transmissible spongiform encephalopathies. The assay is based on the competitive binding between PrP and a peptide-fluorophore to a nanoparticle-labeled antibody which is specific for a conserved prion sequence. The fluorophore, when bound to the antibody, is subject to surfaced-modified fluorescence, enabling detection of changes in the concentration of bound fluorophore in the presence of prion protein. Important factors considered during the development of the assay were ease of use, robustness, and detection level. The effects of pH and nanoparticle conjugation chemistry on surface-modified fluorescence observed in the assay were explored. Effects of concentrations of antibody and fluorophore on reproducibility and detection limits were examined. At present, the detection limits of the system are approximately equal to the antibody-peptide fluorophore equilibrium dissociation constant, which is near one nanomolar concentration. Improved assay performance could be obtained by optimization of the nanoparticle surface resonance effects. The simplicity of the assay and ease of use may make the type of assay described in this report attractive for screening purposes in the food industry.
USDA-ARS?s Scientific Manuscript database
Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures have been helpful in identifying critical genes and proteins in biomolecular networks. The proposed centrality measure DiffSLc uses the number of interactions of a protein and gen...
Dong, De-Xin; Ji, Zhi-Gang; Li, Han-Zhong; Yan, Wei-Gang; Zhang, Yu-Shi
2017-12-30
Objective To evaluate the application of weak cation exchange (WCX) magnetic bead-based Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in detecting differentially expressed proteins in the urine of renal clear cell carcinoma (RCCC) and its value in the early diagnosis of RCCC.Methods Eleven newly diagnosed patients (10 males and 1 female, aged 46-78, mean 63 years) of renal clear cell carcinoma by biopsy and 10 healthy volunteers (all males, aged 25-32, mean 29.7 years) were enrolled in this study. Urine samples of the RCCC patients and healthy controls were collected in the morning. Weak cation exchange (WCX) bead-based MALDI-TOF MS technique was applied in detecting differential protein peaks in the urine of RCCC. ClinProTools2.2 software was utilized to determine the characteristic proteins in the urine of RCCC patients for the predictive model of RCCC. Results The technique identified 160 protein peaks in the urine that were different between RCCC patients and health controls; and among them, there was one peak (molecular weight of 2221.71 Da) with statistical significance (P=0.0304). With genetic algorithms and the support vector machine, we screened out 13 characteristic protein peaks for the predictive model. Conclusions The application of WCX magnetic bead-based MALDI-TOF MS in detecting differentially expressed proteins in urine may have potential value for the early diagnosis of RCCC.
Crusius, Kerstin; Finster, Silke; McClary, John; Xia, Wei; Larsen, Brent; Schneider, Douglas; Lu, Hong-Tao; Biancalana, Sara; Xuan, Jian-Ai; Newton, Alicia; Allen, Debbie; Bringmann, Peter; Cobb, Ronald R
2006-10-01
The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flagtrade mark, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGFalpha. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag-anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.
Shin, Kyeong Seob; Song, Hyung Geun; Kim, Haejung; Yoon, Sangsun; Hong, Seung Bok; Koo, Sun Hoe; Kim, Jimyung; Kim, Jongwan; Roh, Kyoung Ho
2010-07-01
Using an EZ-Step MRSA rapid kit, a novel screening test for methicillin-resistant Staphylococcus aureus (MRSA) that detects penicillin-binding protein 2a, 34 of 36 MRSA-positive clinical blood culture samples were positive on direct testing (sensitivity, 94.4%), whereas 21 of 21 methicillin-susceptible S. aureus-positive samples were negative (specificity, 100%).
Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene
NASA Astrophysics Data System (ADS)
Lerner, Mitchell Bryant
Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose for diabetes monitoring. Further, we explored the potential of graphene as a readout element in similar transistor-based biosensors. We functionalized clean graphene devices with Histidine-tagged fluorescent proteins (FPs), producing a protein-graphene photodetector with wavelength selectivity based on the absorption spectrum of the FP. The work represents significant progress towards a general method for the tailored and specific detection of trace biological compounds using electronic readout for biomedical applications. We also investigated the fundamental operational mechanisms behind such nanotube-based sensors with a set of pyrene compounds that alter the local electrostatic environment in a predictable manner. While this experiment makes possible tuning of nanotube transistor properties, more generally these results could inform the development of quantitative models for the response of nanotube- and graphene-based biochemical sensors. Generic protein attachment chemistry combined with biochemists' ability to express proteins with high affinity for a particular target makes this research a platform technology capable of detecting any target with excellent sensitivity. Conceptually, this opens up a very large domain of intra- and intercellular communication to electronic eaves-dropping and could serve as a powerful tool for molecular and cell biology research.
Schulze, Philipp; Ludwig, Martin; Kohler, Frank; Belder, Detlev
2005-03-01
Deep UV fluorescence detection at 266-nm excitation wavelength has been realized for sensitive detection in microchip electrophoresis. For this purpose, an epifluorescence setup was developed enabling the coupling of a deep UV laser into a commercial fluorescence microscope. Deep UV laser excitation utilizing a frequency quadrupled pulsed laser operating at 266 nm shows an impressive performance for native fluorescence detection of various compounds in fused-silica microfluidic devices. Aromatic low molecular weight compounds such as serotonin, propranolol, a diol, and tryptophan could be detected at low-micromolar concentrations. Deep UV fluorescence detection was also successfully employed for the detection of unlabeled basic proteins. For this purpose, fused-silica chips dynamically coated with hydroxypropylmethyl cellulose were employed to suppress analyte adsorption. Utilizing fused-silica chips permanently coated with poly(vinyl alcohol), it was also possible to separate and detect egg white chicken proteins. These data show that deep UV fluorescence detection significantly widens the application range of fluorescence detection in chip-based analysis techniques.
Single Molecule Sensing by Nanopores and Nanopore Devices
Gu, Li-Qun; Shim, Ji Wook
2010-01-01
Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore. PMID:20174694
NASA Astrophysics Data System (ADS)
Padmanabhan, Saraswathi; Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke M.; Padmanabhan, Parasuraman
2010-01-01
A simple optical method using hollow-core photonic crystal fiber for protein detection has been described. In this study, estrogen receptor (ER) from a MCF-7 breast carcinoma cell lysates immobilized inside a hollow-core photonic crystal fiber was detected using anti-ER primary antibody with either Alexa™ Fluor 488 (green fluorescent dye) or 555 (red Fluorescent dye) labeled Goat anti-rabbit IgG as the secondary antibody. The fluorescence fingerprints of the ERα protein were observed under fluorescence microscope, and its optical characteristics were analyzed. The ERα protein detection by this proposed method is based on immuno binding from sample volume as low as 50 nL. This method is expected to offer great potential as a biosensor for medical diagnostics and therapeutics applications.
Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples.
Kalb, Suzanne R; Schieltz, David M; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R
2015-11-25
Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin's activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.
Kubota, Yuji; Fujioka, Ko; Takekawa, Mutsuhiro
2017-01-01
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs selectively on serine and/or threonine residues of cytoplasmic and nuclear proteins, and dynamically regulates their molecular functions. Since conventional strategies to evaluate the O-GlcNAcylation level of a specific protein require time-consuming steps, the development of a rapid and easy method for the detection and quantification of an O-GlcNAcylated protein has been a challenging issue. Here, we describe a novel method in which O-GlcNAcylated and non-O-GlcNAcylated forms of proteins are separated by lectin affinity gel electrophoresis using wheat germ agglutinin (WGA), which primarily binds to N-acetylglucosamine residues. Electrophoresis of cell lysates through a gel containing copolymerized WGA selectively induced retardation of the mobility of O-GlcNAcylated proteins, thereby allowing the simultaneous visualization of both the O-GlcNAcylated and the unmodified forms of proteins. This method is therefore useful for the quantitative detection of O-GlcNAcylated proteins.
High-throughput screening based on label-free detection of small molecule microarrays
NASA Astrophysics Data System (ADS)
Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong
2017-02-01
Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.
USDA-ARS?s Scientific Manuscript database
A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...
Hevrøy, Ernst M; El-Mowafi, Adel; Taylor, Richard; Norberg, Birgitta; Espe, Marit
2008-12-01
To investigate the endocrine signalling from dietary plant protein on somatotropic system and gastrointestinal hormone cholecystokinin (CCK), two iso-amino acid diets based on either high plant or high fish meal protein were fed to Atlantic salmon. Salmon with an average starting weight of 641+/-23 g (N=180), were fed a fish meal (FM) based diet (containing 40% FM) or diets mainly consisting of blended plant proteins (PP) containing only 13% marine protein, of which only 5% was FM for 3 months. mRNA levels of target genes GH, GH-R, IGF-I, IGF-II, IGFBP-1, IGF-IR in addition to CCK-L, were studied in brain, hepatic tissue and fast muscle, and circulating levels of IGF-I in plasma of Atlantic salmon were measured. We detected reduced feed intake resulting in lower growth, weight gain and muscle protein accretion in salmon fed plant protein compared to a diet based on fish meal. There were no significant effects on the regulation of the target genes in brain or in hepatic tissues, but a trend of down-regulation of IGF-I was detected in fast muscle. Lower feed intake, and therefore lower intake of the indispensable amino acids, may have resulted in lower pituitary GH and lower IGF-I mRNA levels in muscle tissues. This, together with higher protein catabolism, may be the main cause of the reduced growth of salmon fed plant protein diet. There were no signalling effects detected either by the minor differences of the diets on mRNA levels of GH, GH-R, IGF-IR, IGF-II, IGFBP-1, CCK or plasma protein IGF-I.
[Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].
Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie
2012-07-01
To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.
Edwards, Katie A; Baeumner, Antje J
2013-03-05
A periplasmic binding protein (PBP) was investigated as a novel binding species in a similar manner to an antibody in a competitive enzyme linked immunosorbent assay (ELISA), resulting in a highly sensitive and specific assay utilizing liposome-based signal amplification. PBPs are located at high concentrations (10(-4) M) between the inner and outer membranes of gram negative bacteria and are involved in the uptake of solutes and chemotaxis of bacteria toward nutrient sources. Previous sensors relying on PBPs took advantage of the change in local environment or proximity of site-specific fluorophore labels resulting from the significant conformational shift of these proteins' two globular domains upon target binding. Here, rather than monitoring conformational shifts, we have instead utilized the maltose binding protein (MBP) in lieu of an antibody in an ELISA. To our knowledge, this is the first PBP-based sensor without the requirement for engineering site-specific modifications within the protein. MBP conjugated fluorescent dye-encapsulating liposomes served to provide recognition and signal amplification in a competitive assay for maltose using amylose magnetic beads in a microtiter plate-based format. The development of appropriate binding buffers and competitive surfaces are described, with general observations expected to extend to PBPs for other analytes. The resulting assay was specific for d-(+)-maltose versus other sugar analogs including d-(+)-raffinose, sucrose, d-trehalose, d-(+)-xylose, d-fructose, 1-thio-β-d-glucose sodium salt, d-(+)-galactose, sorbitol, glycerol, and dextrose. Cross-reactivity with d-lactose and d-(+)-glucose occurred only at concentrations >10(4)-fold greater than d-(+)-maltose. The limit of detection was 78 nM with a dynamic range covering over 3 orders of magnitude. Accurate detection of maltose as an active ingredient in a pharmaceutical preparation was demonstrated. This method offers a significant improvement over existing enzymatic detection approaches that cannot discriminate between maltose and glucose and over existing fluorescence resonance energy transfer (FRET)-based detection methods that are sensitivity limited. In addition, it opens up a new strategy for the development of biosensors to difficult analytes refractory to immunological detection.
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Protein- protein interaction detection system using fluorescent protein microdomains
Waldo, Geoffrey S.; Cabantous, Stephanie
2010-02-23
The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.
Deng, Xudong; Smeets, Niels M B; Sicard, Clémence; Wang, Jingyun; Brennan, John D; Filipe, Carlos D M; Hoare, Todd
2014-09-17
The passivation of nonspecific protein adsorption to paper is a major barrier to the use of paper as a platform for microfluidic bioassays. Herein we describe a simple, scalable protocol based on adsorption and cross-linking of poly(oligoethylene glycol methacrylate) (POEGMA) derivatives that reduces nonspecific adsorption of a range of proteins to filter paper by at least 1 order of magnitude without significantly changing the fiber morphology or paper macroporosity. A lateral-flow test strip coated with POEGMA facilitates effective protein transport while also confining the colorimetric reporting signal for easier detection, giving improved performance relative to bovine serum albumin (BSA)-blocked paper. Enzyme-linked immunosorbent assays based on POEGMA-coated paper also achieve lower blank values, higher sensitivities, and lower detection limits relative to ones based on paper blocked with BSA or skim milk. We anticipate that POEGMA-coated paper can function as a platform for the design of portable, disposable, and low-cost paper-based biosensors.
Lima, B S S; Fialho, L C; Pires, S F; Tafuri, W L; Andrade, H M
2016-06-15
Leishmania spp have a wide range of hosts, and each host can harbor several Leishmania species. Dogs, for example, are frequently infected by Leishmania infantum, where they constitute its main reservoir, but they also serve as hosts for L. braziliensis and L. amazonensis. Serological tests for antibody detection are valuable tools for diagnosis of L. infantum infection due to the high levels of antibodies induced, unlike what is observed in L. amazonensis and L. braziliensis infections. Likewise, serology-based antigen-detection can be useful as an approach to diagnose any Leishmania species infection using different corporal fluid samples. Immunogenic and secreted proteins constitute powerful targets for diagnostic methods in antigen detection. As such, we performed immunoproteomic (2-DE, western blot and mass spectrometry) and bioinformatic screening to search for reactive and secreted proteins from L. amazonensis, L. braziliensis, and L. infantum. Twenty-eight non-redundant proteins were identified, among which, six were reactive only in L. amazonensis extracts, 10 in L. braziliensis extracts, and seven in L. infantum extracts. After bioinformatic analysis, seven proteins were predicted to be secreted, two of which were reactive only in L. amazonensis extracts (52kDa PDI and the glucose-regulated protein 78), one in L. braziliensis extracts (pyruvate dehydrogenase E1 beta subunit) and three in L. infantum extracts (two conserved hypothetical proteins and elongation factor 1-beta). We propose that proteins can be suitable targets for diagnostic methods based on antigen detection. Copyright © 2016 Elsevier B.V. All rights reserved.
To, Tsz-Leung; Fadul, Michael J.; Shu, Xiaokun
2014-01-01
Many cellular processes are carried out by large protein complexes that can span several tens of nanometers. Whereas Forster resonance energy transfer has a detection range of <10 nm, here we report the theoretical development and experimental demonstration of a new fluorescence imaging technology with a detection range of up to several tens of nanometers: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes. PMID:24905026
DeepSig: deep learning improves signal peptide detection in proteins.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita
2018-05-15
The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website. pierluigi.martelli@unibo.it. Supplementary data are available at Bioinformatics online.
Novel Stool-Based Protein Biomarkers for Improved Colorectal Cancer Screening: A Case-Control Study.
Bosch, Linda J W; de Wit, Meike; Pham, Thang V; Coupé, Veerle M H; Hiemstra, Annemieke C; Piersma, Sander R; Oudgenoeg, Gideon; Scheffer, George L; Mongera, Sandra; Sive Droste, Jochim Terhaar; Oort, Frank A; van Turenhout, Sietze T; Larbi, Ilhame Ben; Louwagie, Joost; van Criekinge, Wim; van der Hulst, Rene W M; Mulder, Chris J J; Carvalho, Beatriz; Fijneman, Remond J A; Jimenez, Connie R; Meijer, Gerrit A
2017-12-19
The fecal immunochemical test (FIT) for detecting hemoglobin is used widely for noninvasive colorectal cancer (CRC) screening, but its sensitivity leaves room for improvement. To identify novel protein biomarkers in stool that outperform or complement hemoglobin in detecting CRC and advanced adenomas. Case-control study. Colonoscopy-controlled referral population from several centers. 315 stool samples from one series of 12 patients with CRC and 10 persons without colorectal neoplasia (control samples) and a second series of 81 patients with CRC, 40 with advanced adenomas, and 43 with nonadvanced adenomas, as well as 129 persons without colorectal neoplasia (control samples); 72 FIT samples from a third independent series of 14 patients with CRC, 16 with advanced adenomas, and 18 with nonadvanced adenomas, as well as 24 persons without colorectal neoplasia (control samples). Stool samples were analyzed by mass spectrometry. Classification and regression tree (CART) analysis and logistic regression analyses were performed to identify protein combinations that differentiated CRC or advanced adenoma from control samples. Antibody-based assays for 4 selected proteins were done on FIT samples. In total, 834 human proteins were identified, 29 of which were statistically significantly enriched in CRC versus control stool samples in both series. Combinations of 4 proteins reached sensitivities of 80% and 45% for detecting CRC and advanced adenomas, respectively, at 95% specificity, which was higher than that of hemoglobin alone (P < 0.001 and P = 0.003, respectively). Selected proteins could be measured in small sample volumes used in FIT-based screening programs and discriminated between CRC and control samples (P < 0.001). Lack of availability of antibodies prohibited validation of the top protein combinations in FIT samples. Mass spectrometry of stool samples identified novel candidate protein biomarkers for CRC screening. Several protein combinations outperformed hemoglobin in discriminating CRC or advanced adenoma from control samples. Proof of concept that such proteins can be detected with antibody-based assays in small sample volumes indicates the potential of these biomarkers to be applied in population screening. Center for Translational Molecular Medicine, International Translational Cancer Research Dream Team, Stand Up to Cancer (American Association for Cancer Research and the Dutch Cancer Society), Dutch Digestive Foundation, and VU University Medical Center.
Hu, Juan; Zheng, Peng-Cheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin; Liu, Guo-Kun
2009-01-01
We have developed an electrostatic interaction based biosensor for thrombin detection using surface-enhanced Raman spectroscopy (SERS). This method utilized the electrostatic interaction between capture (thrombin aptamer) and probe (crystal violet, CV) molecules. The specific interaction between thrombin and aptamer could weaken the electrostatic barrier effect from the negative charged aptamer SAMs to the diffusion process of the positively charged CV from the bulk solution to the Au nanoparticle surface. Therefore, the more the bound thrombin, the more the CV molecules near the Au nanoparticle surface and the stronger the observed Raman signal of CV, provided the Raman detections were set at the same time point for each case. This procedure presented a highly specific selectivity and a linear detection of thrombin in the range from 0.1 nM to 10 nM with a detection limit of about 20 pM and realized the thrombin detection in human blood serum solution directly. The electrostatic interaction based technique provides an easy and fast-responding optical platform for a "signal-on" detection of proteins, which might be applicable for the real time assay of proteins.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1998-01-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1997-12-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Towards NV-based magnetic sensing in the time domain
NASA Astrophysics Data System (ADS)
Urbach, Elana; Sumarac, Tamara; Lovchinsky, Igor; Landig, Renate; Sanchez-Yamagishi, Javier; Andersen, Trond; Park, Hongkun; Lukin, Mikhail
2017-04-01
The study of protein folding dynamics is an outstanding problem in the biological sciences. We show that nitrogen-vacancy (NV) centers in diamond can be used to dynamically sense the conformational states of individual proteins under ambient conditions. We present preliminary data on time-domain detection of electronic spin labels which were chemically attached to the proteins, as well as label-free detection of native hydrogen nuclear spins within the protein. In addition, we discuss work towards polarizing boron-11 spins in atomically-thin hexagonal boron nitride using Hartmann-Hahn double resonance, with the ultimate goal of studying many-body spin dynamics and performing quantum simulation. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1144152.
Zehender, Hartmut; Mayr, Lorenz M
2007-10-01
In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.
Chu, Chia-Ho; Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Chen, Chih-Chen; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin
2017-07-12
In this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength. The sensor shows high sensitivity and the detection takes only 5 minutes. The designs of the sensor, the methodology of the measurement, and the working mechanism of the sensor are discussed and investigated. A theoretical model is proposed based on the finding of the experiments. This sensor is promising for point-of-care, home healthcare, and mobile diagnostic device.
Protein detection using biobarcodes.
Müller, Uwe R
2006-10-01
Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.
Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James
2010-11-21
We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody "barcode" arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings.
NASA Astrophysics Data System (ADS)
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes.
Numnuam, Apon; Chumbimuni-Torres, Karin Y; Xiang, Yun; Bash, Ralph; Thavarungkul, Panote; Kanatharana, Proespichaya; Pretsch, Ernö; Wang, Joseph; Bakker, Eric
2008-02-01
We here report on the first example of an aptamer-based potentiometric sandwich assay of proteins. The measurements are based on CdS quantum dot labels of the secondary aptamer, which were determined with a novel solid-contact Cd2+-selective polymer membrane electrode after dissolution with hydrogen peroxide. The electrode exhibited cadmium ion detection limits of 100 pM in 100 mL samples and of 1 nM in 200 microL microwells, using a calcium-selective electrode as a pseudoreference electrode. As a prototype example, thrombin was measured in 200 microL samples with a lower detection limit of 0.14 nM corresponding to 28 fmol of analyte. The results show great promise for the potentiometric determination of proteins at very low concentrations in microliter samples.
Salivary protein adsorption and Streptococccus gordonii adhesion to dental material surfaces.
Schweikl, Helmut; Hiller, Karl-Anton; Carl, Ulrich; Schweiger, Rainer; Eidt, Andreas; Ruhl, Stefan; Müller, Rainer; Schmalz, Gottfried
2013-10-01
The initial adhesion of microorganisms to clinically used dental biomaterials is influenced by physico-chemical parameters like hydrophobicity and pre-adsorption of salivary proteins. Here, polymethyl methacrylate (PMMA), polyethylene (PE), polytetrafluoroethylene (PTFE), silicone (Mucopren soft), silorane-based (Filtek Silorane) and methacrylate-based (Tetric EvoCeram) dental composites, a conventional glassionomer cement as well as cobalt-chromium-molybdenum (Co28Cr6Mo) and titanium (Ti6Al4V) were tested for adsorption of salivary proteins and adhesion of Streptococcus gordonii DL1. Wettability of material surfaces precoated with salivary proteins or left in phosphate-buffered saline was determined by the measurement of water contact angles. Amounts of adsorbed proteins were determined directly on material surfaces after biotinylation of amino groups and detection by horseradish peroxidase-conjugated avidin-D. The same technique was used to analyze for the binding of biotinylated bacteria to material surfaces. The highest amount of proteins (0.18μg/cm(2)) adsorbed to hydrophobic PTFE samples, and the lowest amount (0.025μg/cm(2)) was detected on silicone. The highest number of S. gordonii (3.2×10(4)CFU/mm(2)) adhered to the hydrophilic glassionomer cement surface coated with salivary proteins, and the lowest number (4×10(3)CFU/mm(2)) was found on the hydrophobic silorane-based composite. Hydrophobicity of pure material surfaces and the number of attached microorganisms were weakly negatively correlated. No such correlation between hydrophobicity and the number of bacteria was detected when surfaces were coated with salivary proteins. Functional groups added by the adsorption of specific salivary proteins to material surfaces are more relevant for initial bacterial adhesion than hydrophobicity as a physical property. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Embedded Piezoresistive Microcantilever Sensors for Chemical and Biological Sensing
NASA Astrophysics Data System (ADS)
Porter, Timothy; Eastman, Michael; Kooser, Ara; Manygoats, Kevin; Zhine, Rosalie
2003-03-01
Microcantilever sensors based on embedded piezoresisative technology offer a promising, low-cost method of sensing chemical and biological species. Here, we present data on the detection of various gaseous analytes, including volatile organic compounds (VOC's) and carbon monoxide. Also, we have used these sensors to detect the protein bovine serum albumin (BSA), a protein important in the study of human childhood diabetes.
Bhagavat, Raghu; Sankar, Santhosh; Srinivasan, Narayanaswamy; Chandra, Nagasuma
2018-03-06
Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets in proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Detection and size analysis of proteins with switchable DNA layers.
Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard
2009-04-01
We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.
Label-free protein assay based on a nanomechanical cantilever array
NASA Astrophysics Data System (ADS)
Arntz, Y.; Seelig, J. D.; Lang, H. P.; Zhang, J.; Hunziker, P.; Ramseyer, J. P.; Meyer, E.; Hegner, M.; Gerber, Ch
2003-01-01
We demonstrate continuous label-free detection of two cardiac biomarker proteins (creatin kinase and myoglobin) using an array of microfabricated cantilevers functionalized with covalently anchored anti-creatin kinase and anti-myoglobin antibodies. This method allows biomarker proteins to be detected via measurement of surface stress generated by antigen-antibody molecular recognition. Reference cantilevers are used to eliminate thermal drifts, undesired chemical reactions and turbulences from injections of liquids by calculating differential deflection signals with respect to sensor cantilevers. The sensitivity achieved for myoglobin detection is below 20 µg ml-1. Both myoglobin and creatin kinase could be detected independently using cantilevers functionalized with the corresponding antibodies, in unspecific protein background. This approach permits the use of up to seven different antigen-antibody reactions simultaneously, including an additional thermomechanical and chemical in situ reference. Applications lie in the field of early and rapid diagnosis of acute myocardial infarction.
Western Blot of Stained Proteins from Dried Polyacrylamide Gels
NASA Technical Reports Server (NTRS)
Gruber, Claudia; Stan-Lotter, Helga
1996-01-01
Western blotting of proteins is customarily performed following their separation on polyacrylamide gels, either prior to staining (1) or, as recently reported, following staining (2). We describe here Western blotting with stained gels, which had been dried and some of which had been stored for years. This procedure permits immunological analysis of proteins, to which antisera may have become available only later, or where the application of newly developed sensitive detection methods is desired. Once rehydration of the gels is achieved, proteins can be-transferred to blotting membranes by any appropriate protocol. Proteins stained with Coomassie Blue have to be detected with a non-chromogenic method, such as the film-based enhanced chemiluminescence (ECL)2) procedure (3). Silver stained proteins, which transfer in the colorless form, may be visualized by any detection method, although, because of the usually very low amounts of proteins, detection by ECL is preferable. Blotting of stained proteins from rehydrated gels is as rapid and as quantitative as from freshly prepared gels, in contrast to blotting from wet stained gels, which requires extensive washing and results in low transfer efficiency (2). Together with a photographic record of the gel pattern, unambiguous identification of immunoreactive proteins from complex mixtures is possible. Some further applications of this work are discussed.
Yoo, Yong Kyoung; Yoon, Dae Sung; Kim, Gangeun; Kim, Jinsik; Han, Sung Il; Lee, Junwoo; Chae, Myung-Sic; Lee, Sang-Myung; Lee, Kyu Hyoung; Hwang, Kyo Seon; Lee, Jeong Hoon
2017-10-30
Sensitivity and limit of detection (LOD) enhancement are essential criteria for the development of ultrasensitive molecular sensors. Although various sensor types have been investigated to enhance sensitivity and LOD, analyte detection and its quantification are still challenging, particularly for protein-protein interactions with low association constants. To solve this problem, here, we used ion concentration polarization (ICP)-based preconcentration to increase the local concentration of analytes in a microfluidic platform for LOD improvement. This was the first demonstration of a microfluidic device with an integrated ICP preconcentrator and interdigitated microelectrode (IME) sensor to detect small changes in surface binding between antigens and antibodies. We detected the amyloid beta (Aβ) protein, an Alzheimer's disease marker, with low binding affinity to its antibodies by adopting ICP preconcentration phenomena. We demonstrated that a combination of ICP preconcentrator and IME sensor increased the LOD by 13.8-fold to femtomolar level (8.15 fM), which corresponds to a significant advance for clinical applications.
NASA Astrophysics Data System (ADS)
Hong, Surin; Lee, Suseung; Yi, Jongheop
2011-04-01
A highly sensitive and molecular size-selective method for the detection of proteins using heteroliganded gold nanoislands and localized surface plasmon resonance (LSPR) is described. Two different heteroligands with different chain lengths (3-mercaptopionicacid and decanethiol) were used in fabricating nanoholes for the size-dependent separation of a protein in comparison with its aggregate. Their ratios on gold nanoisland were optimized for the sensitive detection of superoxide dismutase (SOD1). This protein has been implicated in the pathology of amyotrophic lateral sclerosis (ALS). Upon exposure of the optimized gold nanoisland to a solution of SOD1 and aggregates thereof, changes in the LSPR spectra were observed which are attributed to the size-selective and covalent chemical binding of SOD1 to the nanoholes. With a lower detection limit of 1.0 ng/ml, the method can be used to selectively detect SOD1 in the presence of aggregates at the molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lishanski, A.; Ostrander, E.A.; Rine, J.
1994-03-29
An experimental strategy for detecting heterozygosity in genomic DNA has been developed based on preferential binding of Escherichia coli MutS protein to DNA molecules containing mismatched bases. The binding was detected by a gel mobility-shift assay. This approach was tested by using as a model the most commonly occurring mutations within the cystic fibrosis (CFTR) gene. Genomic DNA samples were amplified with 5{prime}-end-labeled primers that bracket the site of the {Delta}F508 3-bp deletion in exon 10 of the CFTR gene. The renatured PCR products from homozygotes produced homoduplexes; the PCR products from heterozygotes produced heteroduplexes and homoduplexes (1:1). MutS proteinmore » bound more strongly to heteroduplexes that correspond to heterozygous carriers of {Delta}F508 and contain a CTT or a GAA loop in one of the strands than to homoduplexes corresponding to homozygotes. The ability of MutS protein to detect heteroduplexes in PCR-amplified DNA extended to fragments {approximately} 500 bp long. The method was also able to detect carriers of the point mutations in exon 11 of the CFTR gene by a preferential binding of MutS to single-base mismatches in PCR-amplified DNA.« less
Uddin, Rokon; Burger, Robert; Donolato, Marco; Fock, Jeppe; Creagh, Michael; Hansen, Mikkel Fougt; Boisen, Anja
2016-11-15
We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25pM with the same sample-to-answer time (15min 30s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10µl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important steps for the implementation of these as portable tools in an out-of-lab setting. Copyright © 2016 Elsevier B.V. All rights reserved.
Selection of turning-on fluorogenic probe as protein-specific detector obtained via the 10BASEd-T
NASA Astrophysics Data System (ADS)
Uematsu, Shuta; Midorikawa, Taiki; Ito, Yuji; Taki, Masumi
2017-01-01
In order to obtain a molecular probe for specific protein detection, we have synthesized fluorogenic probe library of vast diversity on bacteriophage T7 via the gp10 based-thioetherification (10BASEd-T). A remarkable turning- on probe which is excitable by widely applicable visible light was selected from the library.
Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument
NASA Astrophysics Data System (ADS)
Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.
2016-10-01
We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.
Aptamer-based SERRS Sensor for Thrombin Detection
Cho, Hansang; Baker, Brian R.; Wachsmann-Hogiu, Sebastian; Pagba, Cynthia V.; Laurence, Ted A.; Lane, Stephen M.; Lee, Luke P.; Tok, Jeffrey B.-H.
2012-01-01
We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5'-capped, 3'-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes. PMID:19367849
Highly sensitive detection of target molecules using a new fluorescence-based bead assay
NASA Astrophysics Data System (ADS)
Scheffler, Silvia; Strauß, Denis; Sauer, Markus
2007-07-01
Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.
Template-based structure modeling of protein-protein interactions
Szilagyi, Andras; Zhang, Yang
2014-01-01
The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449
Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments
2013-01-01
Background Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. Results Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner’s size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degreeC up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. Conclusion Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu. PMID:23536995
A Protein Domain and Family Based Approach to Rare Variant Association Analysis.
Richardson, Tom G; Shihab, Hashem A; Rivas, Manuel A; McCarthy, Mark I; Campbell, Colin; Timpson, Nicholas J; Gaunt, Tom R
2016-01-01
It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals.
Fluorescence detection of a protein-bound 2Fe2S cluster.
Hoff, Kevin G; Goodlitt, Rochelle; Li, Rui; Smolke, Christina D; Silberg, Jonathan J
2009-03-02
A fluorescent biosensor is described for 2Fe2S clusters that is composed of green fluorescent protein (GFP) fused to glutaredoxin 2 (Grx2), as illustrated here. 2Fe2S detection is based on the reduction of GFP fluorescence upon the 2Fe2S-induced dimerization of GFP-Grx2. This assay is sufficiently sensitive to detect submicromolar changes in 2Fe2S levels, thus making it suitable for high-throughput measurements of metallocluster degradation and synthesis reactions.
A new optical method for a fast and simple detection of ephedrine
NASA Astrophysics Data System (ADS)
Varriale, Antonio; Staiano, Maria; Strianese, Maria; Marzullo, Vincenzo; Ruggiero, Giuseppe; Secchi, Alberto; Dispenza, Massimiliano; Fiorello, Anna Maria; D'Auria, Sabato
2011-11-01
In this work we describe the synthesis of a new ephedrine derivative with a carbon linker featuring an amino reactive group, and its conjugation to the glutamine binding protein (GlnBP) from E. coli as a carrier protein for the production of polyclonal antibodies in rabbits against ephedrine. Proof-of-principle results that an efficient SPR-based indirect competitive immunoassay for the detection and quantification of ephedrine are presented. The detection limit of this assay was found to be about 33ng/ml.
Interrogation of an autofluorescence-based method for protein fingerprinting.
Siddaramaiah, Manjunath; Rao, Bola Sadashiva S; Joshi, Manjunath B; Datta, Anirbit; Sandya, S; Vishnumurthy, Vasudha; Chandra, Subhash; Nayak, Subramanya G; Satyamoorthy, Kapaettu; Mahato, Krishna K
2018-03-14
In the present study, we have designed a laser-induced fluorescence (LIF) based instrumentation and developed a sensitive methodology for the effective separation, visualization, identification and analysis of proteins on a single platform. In this method, intrinsic fluorescence spectra of proteins were detected after separation on 1 or 2 dimensional Sodium Dodecyl Sulfate-Tris(2-carboxyethyl)phosphine (SDS-TCEP) polyacrylamide gel electrophoresis (PAGE) and the data were analyzed. The MATLAB assisted software was designed for the development of PAGE fingerprint for the visualization of protein after 1- and 2-dimensional protein separation. These provided objective parameters of intrinsic fluorescence intensity, emission peak, molecular weight and isoelectric point using a single platform. Further, the current architecture could differentiate the overlapping proteins in the PAGE gels which otherwise were not identifiable by conventional staining, imaging and tagging methods. Categorization of the proteins based on the presence or absence of tyrosine or tryptophan residues and assigning the corresponding emission peaks (309-356 nm) with pseudo colors allowed the detection of proportion of proteins within the given spectrum. The present methodology doesn't use stains or tags, hence amenable to couple with mass spectroscopic measurements. This technique may have relevance in the field of proteomics that is used for innumerable applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel microfluidics-based method for probing weak protein-protein interactions.
Tan, Darren Cherng-wen; Wijaya, I Putu Mahendra; Andreasson-Ochsner, Mirjam; Vasina, Elena Nikolaevna; Nallani, Madhavan; Hunziker, Walter; Sinner, Eva-Kathrin
2012-08-07
We report the use of a novel microfluidics-based method to detect weak protein-protein interactions between membrane proteins. The tight junction protein, claudin-2, synthesised in vitro using a cell-free expression system in the presence of polymer vesicles as membrane scaffolds, was used as a model membrane protein. Individual claudin-2 molecules interact weakly, although the cumulative effect of these interactions is significant. This effect results in a transient decrease of average vesicle dispersivity and reduction in transport speed of claudin-2-functionalised vesicles. Polymer vesicles functionalised with claudin-2 were perfused through a microfluidic channel and the time taken to traverse a defined distance within the channel was measured. Functionalised vesicles took 1.19 to 1.69 times longer to traverse this distance than unfunctionalised ones. Coating the channel walls with protein A and incubating the vesicles with anti-claudin-2 antibodies prior to perfusion resulted in the functionalised vesicles taking 1.75 to 2.5 times longer to traverse this distance compared to the controls. The data show that our system is able to detect weak as well as strong protein-protein interactions. This system offers researchers a portable, easily operated and customizable platform for the study of weak protein-protein interactions, particularly between membrane proteins.
Yang, Liu; Wang, Zhihua; Deng, Yuliang; Li, Yan; Wei, Wei; Shi, Qihui
2016-11-15
Circulating tumor cells (CTCs) shed from tumor sites and represent the molecular characteristics of the tumor. Besides genetic and transcriptional characterization, it is important to profile a panel of proteins with single-cell precision for resolving CTCs' phenotype, organ-of-origin, and drug targets. We describe a new technology that enables profiling multiple protein markers of extraordinarily rare tumor cells at the single-cell level. This technology integrates a microchip consisting of 15000 60 pL-sized microwells and a novel beads-on-barcode antibody microarray (BOBarray). The BOBarray allows for multiplexed protein detection by assigning two independent identifiers (bead size and fluorescent color) of the beads to each protein. Four bead sizes (1.75, 3, 4.5, and 6 μm) and three colors (blue, green, and yellow) are utilized to encode up to 12 different proteins. The miniaturized BOBarray can fit an array of 60 pL-sized microwells that isolate single cells for cell lysis and the subsequent detection of protein markers. An enclosed 60 pL-sized microchamber defines a high concentration of proteins released from lysed single cells, leading to single-cell resolution of protein detection. The protein markers assayed in this study include organ-specific markers and drug targets that help to characterize the organ-of-origin and drug targets of isolated rare tumor cells from blood samples. This new approach enables handling a very small number of cells and achieves single-cell, multiplexed protein detection without loss of rare but clinically important tumor cells.
Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo
2014-01-01
Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods. PMID:24242242
Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification
2010-01-01
Background Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range. PMID:20569466
Wiśniewski, Jacek R; Mann, Matthias
2016-07-01
Proteomics and other protein-based analysis methods such as Western blotting all face the challenge of discriminating changes in the levels of proteins of interest from inadvertent changes in the amount loaded for analysis. Mass-spectrometry-based proteomics can now estimate the relative and absolute amounts of thousands of proteins across diverse biological systems. We reasoned that this new technology could prove useful for selection of very stably expressed proteins that could serve as better loading controls than those traditionally employed. Large-scale proteomic analyses of SDS lysates of cultured cells and tissues revealed deglycase DJ-1 as the protein with the lowest variability in abundance among different cell types in human, mouse, and amphibian cells. The protein constitutes 0.069 ± 0.017% of total cellular protein and occurs at a specific concentration of 34.6 ± 8.7 pmol/mg of total protein. Since DJ-1 is ubiquitous and therefore easily detectable with several peptides, it can be helpful in normalization of proteomic data sets. In addition, DJ-1 appears to be an advantageous loading control for Western blot that is superior to those used commonly used, allowing comparisons between tissues and cells originating from evolutionarily distant vertebrate species. Notably, this is not possible by the detection and quantitation of housekeeping proteins, which are often used in the Western blot technique. The approach introduced here can be applied to select the most appropriate loading controls for MS-based proteomics or Western blotting in any biological system.
NASA Astrophysics Data System (ADS)
Shokri-Kojori, Hossein; Ji, Yiwen; Han, Xu; Paik, Younghun; Braunschweig, Adam; Kim, Sung Jin
2016-03-01
Localized surface Plasmon Resonance (LSPR) is a nanoscale phenomenon which presents strong resonance associated with noble metal nanostructures. This plasmon resonance based technology enables highly sensitive detection for chemical and biological applications. Recently, we have developed a plasmon field effect transistor (FET) that enables direct plasmonic-to-electric signal conversion with signal amplification. The plasmon FET consists of back-gated field effect transistor incorporated with gold nanoparticles on top of the FET channel. The gold nanostructures are physically separated from transistor electrodes and can be functionalized for a specific biological application. In this presentation, we report a successful demonstration of a model system to detect Con A proteins using Carbohydrate linkers as a capture molecule. The plasmon FET detected a very low concentration of Con A (0.006 mg/L) while it offers a wide dynamic range of 0.006-50 mg/L. In this demonstration, we used two-color light sources instead of a bulky spectrometer to achieve high sensitivity and wide dynamic range. The details of two-color based differential measurement method will be discussed. This novel protein-based sensor has several advantages such as extremely small size for point-of-care system, multiplexing capability, no need of complex optical geometry.
Targeted Quantification of Isoforms of a Thylakoid-Bound Protein: MRM Method Development.
Bru-Martínez, Roque; Martínez-Márquez, Ascensión; Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Esteso, María José; Pineda-Lucas, José Luis; Luque, Ignacio
2018-01-01
Targeted mass spectrometric methods such as selected/multiple reaction monitoring (SRM/MRM) have found intense application in protein detection and quantification which competes with classical immunoaffinity techniques. It provides a universal procedure to develop a fast, highly specific, sensitive, accurate, and cheap methodology for targeted detection and quantification of proteins based on the direct analysis of their surrogate peptides typically generated by tryptic digestion. This methodology can be advantageously applied in the field of plant proteomics and particularly for non-model species since immunoreagents are scarcely available. Here, we describe the issues to take into consideration in order to develop a MRM method to detect and quantify isoforms of the thylakoid-bound protein polyphenol oxidase from the non-model and database underrepresented species Eriobotrya japonica Lindl.
Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples
Kalb, Suzanne R.; Schieltz, David M.; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R.
2015-01-01
Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices. PMID:26610568
Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James
2012-01-01
We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody “barcode” arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings. PMID:20924527
Domain similarity based orthology detection.
Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich
2015-05-13
Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .
Functional and genomic analyses of alpha-solenoid proteins.
Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A
2013-01-01
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.
Niu, Ji-Cheng; Zhou, Ting; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Yang, Fu-Quan; Wu, Zhi-Yong
2018-02-01
In this work, fast isoelectric focusing (IEF) was successfully implemented on an open paper fluidic channel for simultaneous concentration and separation of proteins from complex matrix. With this simple device, IEF can be finished in 10 min with a resolution of 0.03 pH units and concentration factor of 10, as estimated by color model proteins by smartphone-based colorimetric detection. Fast detection of albumin from human serum and glycated hemoglobin (HBA1c) from blood cell was demonstrated. In addition, off-line identification of the model proteins from the IEF fractions with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was also shown. This PAD IEF is potentially useful either for point of care test (POCT) or biomarker analysis as a cost-effective sample pretreatment method.
NASA Astrophysics Data System (ADS)
Blank, K.; Mai, T.; Gilbert, I.; Schiffmann, S.; Rankl, J.; Zivin, R.; Tackney, C.; Nicolaus, T.; Spinnler, K.; Oesterhelt, F.; Benoit, M.; Clausen-Schaumann, H.; Gaub, H. E.
2003-09-01
A parallel assay for the quantification of single-molecule binding forces was developed based on differential unbinding force measurements where ligand-receptor interactions are compared with the unzipping forces of DNA hybrids. Using the DNA zippers as molecular force sensors, the efficient discrimination between specific and nonspecific interactions was demonstrated for small molecules binding to specific receptors, as well as for protein-protein interactions on protein arrays. Finally, an antibody sandwich assay with different capture antibodies on one chip surface and with the detection antibodies linked to a congruent surface via the DNA zippers was used to capture and quantify a recombinant hepatitis C antigen from solution. In this case, the DNA zippers enable not only discrimination between specific and nonspecific binding, but also allow for the local application of detection antibodies, thereby eliminating false-positive results caused by cross-reactive antibodies and nonspecific binding.
Encell, Lance P; Friedman Ohana, Rachel; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Wood, Monika G; Los, Georgyi V; McDougall, Mark G; Zimprich, Chad; Karassina, Natasha; Learish, Randall D; Hurst, Robin; Hartnett, James; Wheeler, Sarah; Stecha, Pete; English, Jami; Zhao, Kate; Mendez, Jacqui; Benink, Hélène A; Murphy, Nancy; Daniels, Danette L; Slater, Michael R; Urh, Marjeta; Darzins, Aldis; Klaubert, Dieter H; Bulleit, Robert F; Wood, Keith V
2012-01-01
Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins. PMID:23248739
NASA Astrophysics Data System (ADS)
Santra, Tapesh; Delatola, Eleni Ioanna
2016-07-01
Presence of considerable noise and missing data points make analysis of mass-spectrometry (MS) based proteomic data a challenging task. The missing values in MS data are caused by the inability of MS machines to reliably detect proteins whose abundances fall below the detection limit. We developed a Bayesian algorithm that exploits this knowledge and uses missing data points as a complementary source of information to the observed protein intensities in order to find differentially expressed proteins by analysing MS based proteomic data. We compared its accuracy with many other methods using several simulated datasets. It consistently outperformed other methods. We then used it to analyse proteomic screens of a breast cancer (BC) patient cohort. It revealed large differences between the proteomic landscapes of triple negative and Luminal A, which are the most and least aggressive types of BC. Unexpectedly, majority of these differences could be attributed to the direct transcriptional activity of only seven transcription factors some of which are known to be inactive in triple negative BC. We also identified two new proteins which significantly correlated with the survival of BC patients, and therefore may have potential diagnostic/prognostic values.
Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes
NASA Astrophysics Data System (ADS)
Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.
2016-06-01
A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.
Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R
2016-08-15
Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. Copyright © 2016 Elsevier B.V. All rights reserved.
Strohkamp, Sarah; Gemoll, Timo; Habermann, Jens K
2016-10-01
Hallmarks of malignancy can be monitored by protein signatures in serum or plasma. The current challenge in cancer research is the identification of clinically reliable protein biomarkers for diagnostic and prognostic purposes. A widely used and powerful technique to screen tumor markers is two-dimensional gel electrophoresis (2DE). This review provides an overview of 2DE functionality with its advantages and drawbacks as well as a current literature overview of gel-based cancer biomarker discovery in serum/plasma. In this context, 11 of the 12 studies reviewed here identified at least one of eight classical serum or high-abundant proteins (HAPs). Expression levels of those proteins are regulated by a vast variety of different physiological, metabolic and immunological stimuli leading to a questionable application as cancer-specific markers. Misinterpretation of HAPs as tumor markers might be caused by either the experimental setup or the technical and analytical potential in gel-based serum or plasma proteomics to detect low-abundant proteins, or a combination thereof. Additionally, based on currently available technology we propose an optimized experimental workflow to allow detecting cancer-specific protein markers of low abundance in future 2DE studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Konrad, Anna; Ashok, Nikhil; Pontén, Fredrik; Hober, Sophia; Asplund, Anna
2013-01-01
Antibody-based protein profiling on a global scale using immunohistochemistry constitutes an emerging strategy for mapping of the human proteome, which is crucial for an increased understanding of biological processes in the cell. Immunohistochemistry is often performed indirectly using secondary antibodies for detection, with the benefit of signal amplification. Direct immunohistochemistry instead brings the advantage of multiplexing; however, it requires labeling of the primary antibody. Many antibody-labeling kits do not specifically target IgG and may therefore cause labeling of stabilizing proteins present in the antibody solution. A new conjugation method has been developed that utilizes a modified Z-domain of protein A (ZBPA) to specifically target the Fc part of antibodies. The aim of the present study was to compare the ZBPA conjugation method and a commercially available labeling kit, Lightning-Link, for in situ protein detection. Fourteen antibodies were biotinylated with each method and stained using immunohistochemistry. For all antibodies tested, ZBPA biotinylation resulted in distinct immunoreactivity without off-target staining, regardless of the presence of stabilizing proteins in the buffer, whereas the majority of the Lightning-Link biotinylated antibodies displayed a characteristic pattern of nonspecific staining. We conclude that biotinylated ZBPA domain provides a stringent method for antibody biotinylation, advantageous for in situ protein detection in tissues. PMID:23920108
Protein remote homology detection based on bidirectional long short-term memory.
Li, Shumin; Chen, Junjie; Liu, Bin
2017-10-10
Protein remote homology detection plays a vital role in studies of protein structures and functions. Almost all of the traditional machine leaning methods require fixed length features to represent the protein sequences. However, it is never an easy task to extract the discriminative features with limited knowledge of proteins. On the other hand, deep learning technique has demonstrated its advantage in automatically learning representations. It is worthwhile to explore the applications of deep learning techniques to the protein remote homology detection. In this study, we employ the Bidirectional Long Short-Term Memory (BLSTM) to learn effective features from pseudo proteins, also propose a predictor called ProDec-BLSTM: it includes input layer, bidirectional LSTM, time distributed dense layer and output layer. This neural network can automatically extract the discriminative features by using bidirectional LSTM and the time distributed dense layer. Experimental results on a widely-used benchmark dataset show that ProDec-BLSTM outperforms other related methods in terms of both the mean ROC and mean ROC50 scores. This promising result shows that ProDec-BLSTM is a useful tool for protein remote homology detection. Furthermore, the hidden patterns learnt by ProDec-BLSTM can be interpreted and visualized, and therefore, additional useful information can be obtained.
Van Dorst, Bieke; Brivio, Monica; Van Der Sar, Elfried; Blom, Marko; Reuvekamp, Simon; Tanzi, Simone; Groenhuis, Roelf; Adojutelegan, Adewole; Lous, Erik-Jan; Frederix, Filip; Stuyver, Lieven J
2016-04-15
In this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings. The performance of the detection module was demonstrated in three assays: a peptide, a protein and an antibody detection assay. The antibody detection assay with readout in the detection module proved to be 7-fold more sensitive that the traditional colorimetric plate-based ELISA. The protein and peptide assay showed a lower limit of detection (LLOD) of 200 fM and 460 fM respectively. Results demonstrate that the sensitivity of the immunoassays is comparable with lab-based immunoassays and at least equal or better than current mainstream POC devices. This sensitive readout holds the potential to develop POC tests, which are able to detect low concentrations of biomarkers. This will broaden the diagnostic capabilities at the clinician's office and at patient's home, where currently only the less sensitive lateral flow and dipstick POC tests are implemented. Copyright © 2015 Elsevier B.V. All rights reserved.
Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao
2016-07-01
Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.
Human anti-HIV IgM detection by the OraQuick ADVANCE® Rapid HIV 1/2 Antibody Test.
Guillon, Geraldine; Yearwood, Graham; Snipes, Casey; Boschi, Daniel; Reed, Michael R
2018-01-01
The Centers for Disease Control and Prevention (CDC) and many public health jurisdictions continue to advocate for the most sensitive rapid HIV test that is available. Currently, the recommendation is to utilize tests that can detect HIV infection biomarkers within 30 days of infection, when initial immune responses are mounted. The infected patient's IgM response is often used to detect acute infection within a 20-25 days window after infection. This requirement applies to lab-based testing with automated analyzers and rapid, point of care (POC) testing used for screening in a non-clinical setting. A recent study has demonstrated that POC tests using a Protein A-based detection system can detect samples with predominantly HIV-1 IgM reactivity (Moshgabadi et al., 2015). The OraQuick ADVANCE ® Rapid HIV-1/2 Antibody Test (OraQuick ADVANCE ®) also uses Protein A as the detection protein in the antibody-binding colloidal gold conjugate, so it is expected that the OraQuick ADVANCE ® Test will also detect samples with predominantly IgM reactivity. This report definitively demonstrates that the OraQuick ADVANCE ® Test can detect IgM antibodies during an acute infection window period of approximately 20-25 days after infection, and is therefore suitable for use in testing environments requiring adherence to current CDC recommendations.
Engineered gold nanoparticles for identification of novel ovarian biomarkers
NASA Astrophysics Data System (ADS)
Giri, Karuna
Ovarian cancer is a leading cause of cancer related death among women in the US and worldwide. The disease has a high mortality rate due to limited tools available that can diagnose ovarian cancer at an early stage and the lack of effective treatments for disease free survival at late stages. Identification of proteins specifically expressed/overexpressed in ovarian cancer could lead to identification of novel diagnostic biomarkers and therapeutic targets that improve patient outcomes. In this regard, mass spectrometry is a powerful tool to probe the proteome of a cancer cell. It can aid discovery of proteins important for the pathophysiology of ovarian cancer. These proteins in turn could serve as diagnostic and treatment biomarkers of the disease. However, a limitation of mass spectrometry based proteomic analyses is that the technique lacks sensitivity and is biased against detection of low abundance proteins. With current approaches to biomarker discovery, we may therefore be overlooking candidate proteins that are important for ovarian cancer. This study presents a new approach to enrich low abundance proteins and subsequently detect them with mass spectrometry. Gold nanoparticles (AuNPs) and functionalization of their surfaces provide an excellent opportunity to capture and enrich low abundance proteins. First, the study focused on conducting an extensive investigation of the time evolution of nanoparticle-protein interaction and understanding drivers of protein attachment on nanoparticle surface. The adsorption of proteins to AuNPs was found to be highly dynamic with multiple attachment and detachment events which decreased over time. Initially, electrostatic forces played an important role in protein binding and structurally flexible proteins such as those involved in RNA processing were more likely to bind to AuNPs. More importantly, the feasibility and success of protein enrichment by AuNPs was evaluated. The AuNPs based approach was able to detect multiple proteins not detected by mass spectrometry alone. Differential expression analysis of proteins in cancer vs. non-cancer cells identified many proteins exclusively expressed in ovarian cancer. Hepatoma derived growth factor (HDGF) was one of the identified proteins that became the focus of the second part of the study. Understanding the role of HDGF in ovarian cancer would uncover its potential as a diagnostic and/or therapeutic marker. HDGF was found to be overexpressed in multiple ovarian cancer cell lines and xenograft models of ovarian cancer. Intracellular HDGF promoted cell proliferation, cell cycle progression and survival of ovarian cancer cell lines. While HDGF was exclusively localized in the nucleus, the protein was passively released from ovarian non-cancer and cancer cells during late apoptosis and necrosis. Extracellular HDGF activated MAP kinase pathways through a yet unknown receptor and promoted cell migration. Overall, the results presented in this study provide considerable support for the use of AuNPs for protein enrichment and detection of low abundance proteins. The functional study of HDGF, which revealed the importance of its expression in cancer cell, provides additional validation for AuNPs based cancer biomarker discovery. Further studies regarding the release of HDGF by cancer cells will help evaluate its utility in detecting and monitoring ovarian cancer. Additionally, initial results with knock down experiments indicate that HDGF has the potential to be a therapeutic target for inhibition of cancer progression.
Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin
2018-05-03
The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.
Yan, Xiaowen; Yang, Limin; Wang, Qiuquan
2013-07-01
Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.
Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József
2018-01-01
In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.
Schneiderman, M A; Sharma, A K; Mahanama, K R; Locke, D C
1988-01-01
Vitamin K1 (phylloquinone) is extracted from commercial soy protein-based and milk-based powdered infant formulas by using supercritical fluid extraction with CO2 at 8000 psi and 60 degrees C. Quantitative extraction requires only 15 min, and does not suffer from the problems associated with conventional solvent extraction of lipophilic materials from media such as formulas. Vitamin K1 is determined in the extracts by using reverse-phase liquid chromatography (LC) with reductive mode electrochemical detection at a silver electrode polarized at -1.1 V vs SCE. LC run time is 9 min. The minimum detectable quantity is 80 pg, and response is linear over at least 5 orders of magnitude. Recovery of vitamin K1 from a milk-based powdered formula was 95.6% with RSD of 7.4%, and from a soy protein-based product, 94.4% recovery with RSD of 6.5%.
Subgenomic Reporter RNA System for Detection of Alphavirus Infection in Mosquitoes
Steel, J. Jordan; Franz, Alexander W. E.; Sanchez-Vargas, Irma; Olson, Ken E.; Geiss, Brian J.
2013-01-01
Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes. PMID:24367703
Wang, Hsin-Wei; Hsu, Yen-Chu; Hwang, Jenn-Kang; Lyu, Ping-Chiang; Pai, Tun-Wen; Tang, Chuan Yi
2010-01-01
This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had “opened” their “closed” structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge loop determination is comparable to that of manual inspection. This method has been implemented as a web-based tool, which requires two protein structures as the input and then the type and/or existence of DS relationships between the input structures are determined according to the A-D image-based structural alignments and the DS score. The proposed method is expected to trigger large-scale studies of this interesting structural phenomenon and facilitate related applications. PMID:20976204
Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.
2016-01-01
We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452
Chemical Methods for the Direct Detection and Labeling of S-Nitrosothiols
Bechtold, Erika
2012-01-01
Abstract Significance: Posttranslational modification of proteins through phosphorylation, glycosylation, and oxidation adds complexity to the proteome by reversibly altering the structure and function of target proteins in a highly controlled fashion. Recent Advances: The study of reversible cysteine oxidation highlights a role for this oxidative modification in complex signal transduction pathways. Nitric oxide (NO), and its respective metabolites (including reactive nitrogen species), participates in a variety of these cellular redox processes, including the reversible oxidation of cysteine to S-nitrosothiols (RSNOs). RSNOs act as endogenous transporters of NO, but also possess beneficial effects independent of NO-related signaling, which suggests a complex and versatile biological role. In this review, we highlight the importance of RSNOs as a required posttranslational modification and summarize the current methods available for detecting S-nitrosation. Critical Issues: Given the limitations of these indirect detection methods, the review covers recent developments toward the direct detection of RSNOs by phosphine-based chemical probes. The intrinsic properties that dictate this phosphine/RSNO reactivity are summarized. In general, RSNOs (both small molecule and protein) react with phosphines to yield reactive S-substituted aza-ylides that undergo further reactions leading to stable RSNO-based adducts. Future Directions: This newly explored chemical reactivity forms the basis of a number of exciting potential chemical methods for protein RSNO detection in biological systems. Antioxid. Redox Signal. 17, 981–991. PMID:22356122
Transcriptional regulatory proteins as biosensing tools.
Turner, Kendrick; Joel, Smita; Feliciano, Jessika; Feltus, Agatha; Pasini, Patrizia; Wynn, Daniel; Dau, Peter; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia
2017-06-22
We have developed sensing systems employing different classes of transcriptional regulatory proteins genetically and chemically modified to incorporate a fluorescent reporter molecule for detection of arsenic, hydroxylated polychlorinated biphenyls (OH-PCBs), and cyclic AMP (cAMP). These are the first examples of optical sensing systems based on transcriptional regulatory proteins.
Clinical Utility of Urinary CD90 as a Biomarker for Prostate Cancer Detection — EDRN Public Portal
Tumor-associated stromal cells differ from normal gland-associated stromal cells in gene expression. Genes up-regulated in these stromal cells are potential cancer biomarkers, especially those encoding secreted or extracellular proteins. These proteins might be detected in urine. CD90/THY1 is one such candidate. A clinical test based on urinary CD90 would be useful in reducing the number of unnecessary biopsies done because of abnormal serum PSA and/or DRE finding. Elevated CD90 protein is found in tumor tissue and urine.
van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W
2015-09-01
The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Tang, Yin-Liang; Chiu, Chien-Yu; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Destura, Raul V.; Chao, Day-Yu; Wu, Han-Chung
2015-01-01
Dengue virus (DENV) infection is currently at pandemic levels, with populations in tropical and subtropical regions at greatest risk of infection. Early diagnosis and management remain the cornerstone for good clinical outcomes, thus efficient and accurate diagnostic technology in the early stage of the disease is urgently needed. Serotype-specific monoclonal antibodies (mAbs) against the DENV1 nonstructural protein 1 (NS1), DA12-4, DA13-2, and DA15-3, which were recently generated using the hybridoma technique, are suitable for use in diagnostic platforms. Immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA) and Western blot analysis further confirmed the serotype specificity of these three monoclonal antibodies. The ELISA-based diagnostic platform was established using the combination of two highly sensitive mAbs (DA15-3 and DB20-6). The same combination was also used for the flow cytometry-based diagnostic platform. We report here the detection limits of flow cytometry-based and ELISA-based diagnostic platforms using these mAbs to be 0.1 and 1 ng/mL, respectively. The collected clinical patient serum samples were also assayed by these two serotyping diagnostic platforms. The sensitivity and specificity for detecting NS1 protein of DENV1 are 90% and 96%, respectively. The accuracy of our platform for testing clinical samples is more advanced than that of the two commercial NS1 diagnostic platforms. In conclusion, our platforms are suitable for the early detection of NS1 protein in DENV1 infected patients. PMID:26610481
Chang, Kai-Chih; Chung, Chin-Yi; Yeh, Chen-Hsing; Hsu, Kuo-Hsiu; Chin, Ya-Ching; Huang, Sin-Siang; Liu, Bo-Rong; Chen, Hsi-An; Hu, Anren; Soo, Po-Chi; Peng, Wen-Ping
2018-04-01
The appearance and spread of carbapenem-resistant Acinetobacter baumannii (CRAB) pose a challenge for optimization of antibiotic therapies and outbreak preventions. The carbapenemase production can be detected through culture-based methods (e.g. Modified Hodge Test-MHT) and DNA based methods (e.g. Polymerase Chain Reaction-PCR). The culture-based methods are time-consuming, whereas those of PCR assays need only a few hours but due to its specificity, can only detect known genetic targets encoding carbapenem-resistance genes. Therefore, new approaches to detect carbapenemase-producing A. baumannii are of great importance. Here, we have developed a rapid and novel method using detonation nanodiamonds (DNDs) as a platform for concentration and extraction of A. baumannii carbapenemase-associated proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS) analysis. To concentrate and extract the A. baumannii carbapenemase-associated proteins, we tested several protein precipitation conditions and found a 0.5% trifluoroacetic acid (TFA) solution within the bacterial suspension could result in strong ion signals with DNDs. A total of 66 A. baumannii clinical-isolates including 51 carbapenem-resistant strains and 15 carbapenem-susceptible strains were tested. Our result showed that among the 51 carbapenem-resistant strains 49 strains had a signal at m/z ~40,279 (±87); among the 15 carbapenem-susceptible strains, 4 strains showed a signal at m/z ~40,279. With on-diamond digestion, we confirmed that the captured protein at m/z ~40,279 was related to ADC family extended-spectrum class C beta-lactamase, from A. baumannii. Using this ADC family protein as a biomarker (m/z ~ 40,279) for carbapenem susceptibility testing of A. baumannii, the sensitivity and the specificity could reach 96% and 73% as compared to traditional imipenem susceptibility testing (MIC results). However, the sensitivity and specificity of this method reached 100% as compared to polymerase chain reaction (PCR) result. Our approach could directly detect the carbapenemase-associated proteins of A. baumannii within 90 min and does not require addition of carbapenemase substrate which is required in the MHT or other mass spectrometric methods. For future applications, our method could be efficiently used in the detection of other carbapenemase-producing bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.
Testing of gastric contents for peanut proteins in a 13-year old anaphylaxis victim.
Beavers, Charles; Stauble, M Elaine; Jortani, Saeed A
2014-02-15
We report the case of a 13-y female who went into anaphylactic shock following the ingestion of a meal suspected to be contaminated by peanuts. The teenager had a known sensitivity to peanuts, however, the restaurant claimed that no peanut products were used in the preparation of her meal. The gastric contents of the decedent were retained and tested for peanut proteins due to the possible legal liability of the proprietor. Using antibodies against peanut proteins (roasted and unroasted), we optimized a method to detect total soluble peanut proteins by Western-blot analysis in gastric contents. In addition, we validated two commercially available tests which were originally intended for detection of peanut proteins in food matrices to examine the same gastric sample. One was an enzyme-linked immunosorbent assay (ELISA) that utilized polyclonal antibodies against Ara h 1 (Tepnel Life Sciences). The other was a laminar-flow assay directed against Ara h 1, Ara h 2 and Ara h 3 (R-Biopharm). A positive food-based control was created by reducing bread and peanuts (1:1, w/w) with water (1:1, w/v) using a mortar and pestle. A food-based negative food control was created similar to the positive control, except the peanuts were omitted and the amount of bread was doubled. The Western-blot assay was sensitive down to 2.5ng/ml of total peanut protein. The laminar flow was the most rapid and least complex. The ELISA was the most analytically sensitive with a cut-off of 1ng/ml of Ara h 1 protein compared to the laminar flow which had a cut-off of 4ng/ml Ara h 1 equivalent. Both ELISA and laminar flow assays were able to detect peanut proteins in the food matrices and positive controls, and not in negative controls. No peanut related proteins were detected in the decedent's gastric sample. The gastric sample spiked with peanuts was reliably detectable. The anaphylaxis patient had no peanut allergens detected in her gastric contents by any of the three methods employed. Both commercially available assays are easily adaptable for testing peanut allergens in the gastric contents as judged by the results of the immunoassays as well as the Western blot analysis. Due to the rising need for detecting peanut proteins in various heterogeneous and complex matrices, the use of appropriate controls should be also considered in these unique investigations. Copyright © 2013 Elsevier B.V. All rights reserved.
AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein
Lee, Hee Ho; Bae, Myunghan; Jo, Sung-Hyun; Shin, Jang-Kyoo; Son, Dong Hyeok; Won, Chul-Ho; Jeong, Hyun-Min; Lee, Jung-Hee; Kang, Shin-Won
2015-01-01
In this paper, we propose an AlGaN/GaN high electron mobility transistor (HEMT)-based biosensor for the detection of C-reactive protein (CRP) using a null-balancing circuit. A null-balancing circuit was used to measure the output voltage of the sensor directly. The output voltage of the proposed biosensor was varied by antigen-antibody interactions on the gate surface due to CRP charges. The AlGaN/GaN HFET-based biosensor with null-balancing circuit applied shows that CRP can be detected in a wide range of concentrations, varying from 10 ng/mL to 1000 ng/mL. X-ray photoelectron spectroscopy was carried out to verify the immobilization of self-assembled monolayer with Au on the gated region. PMID:26225981
An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo
2013-04-01
Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.
Zhou, Jie; Liao, Yu-xue; Chen, Zhong; Li, Yu-chun; Gao, Lu-Lu; Chen, Yi-xiong; Cai, Lian-gong; Chen, Qing; Yu, Shou-yi
2008-05-01
To develop an simple and sensitive method for detecting anti-coronavirus IgG antibodies in bat sera based on enzyme-linked immunosorbent assay (ELISA). A commercial ELISA kit for detecting SARS-CoV antibody was modified for detecting coronavirus antibodies in bat serum samples. The second antibody in the kit was replaced with horseradish peroxidase-conjugated protein-A (HRP-SPA) based on the characteristics of binding between Staphylococcus aureus protein A (SPA) and mammal IgG Fc fragment. The sera of 55 fulvous fruit bats (Rousettus dasymallus) were tested using the SPA-ELISA. The test results of the positive and negative controls in the kit and the serum samples from convalescent ;patient were consistent with expectation. Coronavirus antibody was detected in 2 out of the 55 bat serum samples. Serum neutralization test confirmed the validity of the SPA-ELISA method. This SPA-ELISA method is applicable for detecting coronavirus antibody in bat sera.
Analytical Devices Based on Direct Synthesis of DNA on Paper.
Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M
2016-01-05
This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.
Haynes, Lia M; Miao, Congrong; Harcourt, Jennifer L; Montgomery, Joel M; Le, Mai Quynh; Dryga, Sergey A; Kamrud, Kurt I; Rivers, Bryan; Babcock, Gregory J; Oliver, Jennifer Betts; Comer, James A; Reynolds, Mary; Uyeki, Timothy M; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M; Anderson, Larry J
2007-03-01
Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies.
Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G
2006-09-01
An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.
Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin
2013-07-25
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Kopylov, Arthur T; Zgoda, Victor G; Lisitsa, Andrew V; Archakov, Alexander I
2013-03-01
In this paper, we present a method for the determination of low- and ultralow copy-number proteins in biomaterials based on a combination of concentrating the protein from the sample onto cyanogen bromide-activated Sepharose 4B (via nonspecific binding of free amino groups) and MRM. The detection limit and the dependence of the MRM peak areas on the concentration of protein in the sample were determined using the proteins CYP102 and BSA, as a model system, both in solution and after their addition to human plasma. Nonspecific protein enrichment of proteins from diluted sample volumes of 10-50 mL was found to increase the range of linear dependence of the chromatographic peak area on concentration by more than three orders of magnitude, allowing a lower LOD limit (LLOD) of as low as 10(-18) M. At this LLOD, at least two tryptic peptides of CYP102 and BSA could be detected with S/N of ≥7.0. The results were equally good for samples containing pure protein mixtures and proteins spiked into diluted depleted human blood plasma. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Yuanhong; Li, Jing; Wang, Erkang
2008-05-01
Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00x10(-6), 2x10(-6), 7x10(-7), and 5x10(-7) mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips.
Profiling protein function with small molecule microarrays
Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.
2002-01-01
The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675
GAL4 transactivation-based assay for the detection of selective intercellular protein movement.
Kumar, Dhinesh; Chen, Huan; Rim, Yeonggil; Kim, Jae-Yean
2015-01-01
Several plant proteins function as intercellular messenger to specify cell fate and coordinate plant development. Such intercellular communication can be achieved by direct, selective, or nonselective (diffusion-based) trafficking through plasmodesmata (PD), the symplasmic membrane-lined nanochannels adjoining two cells. A trichome rescue trafficking assay was reported to allow the detection of protein movement in Arabidopsis leaf tissue using transgenic gene expression. Here, we provide a protocol to dissect the mode of intercellular protein movement in Arabidopsis root. This assay system involves a root ground tissue-specific GAL4/UAS transactivation expression system in combination with fluorescent reporter proteins. In this system, mCherry, a red fluorescent protein, can move cell to cell via diffusion, while mCherry-H2B is tightly cell autonomous. Thus, a protein fused to mCherry-H2B that can move out from the site of synthesis likely contains a selective trafficking signal to impart a cell-to-cell gain-of-trafficking function to the cell-autonomous mCherry-H2B. This approach can be adapted to investigate the cell-to-cell trafficking properties of any protein of interest.
Li, Xue; Zhou, Yunlei; Xu, Yan; Xu, Huijie; Wang, Minghui; Yin, Huanshun; Ai, Shiyun
2016-08-31
Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr(4+) ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Iliuk, Anton; Li, Li; Melesse, Michael; Hall, Mark C; Tao, W Andy
2016-05-17
Accurate protein phosphorylation analysis reveals dynamic cellular signaling events not evident from protein expression levels. The most dominant biochemical assay, western blotting, suffers from the inadequate availability and poor quality of phospho-specific antibodies for phosphorylated proteins. Furthermore, multiplexed assays based on antibodies are limited by steric interference between the antibodies. Here we introduce a multifunctionalized nanopolymer for the universal detection of phosphoproteins that, in combination with regular antibodies, allows multiplexed imaging and accurate determination of protein phosphorylation on membranes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detecting coupled collective motions in protein by independent subspace analysis
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Joti, Yasumasa; Kitao, Akio
2010-11-01
Protein dynamics evolves in a high-dimensional space, comprising aharmonic, strongly correlated motional modes. Such correlation often plays an important role in analyzing protein function. In order to identify significantly correlated collective motions, here we employ independent subspace analysis based on the subspace joint approximate diagonalization of eigenmatrices algorithm for the analysis of molecular dynamics (MD) simulation trajectories. From the 100 ns MD simulation of T4 lysozyme, we extract several independent subspaces in each of which collective modes are significantly correlated, and identify the other modes as independent. This method successfully detects the modes along which long-tailed non-Gaussian probability distributions are obtained. Based on the time cross-correlation analysis, we identified a series of events among domain motions and more localized motions in the protein, indicating the connection between the functionally relevant phenomena which have been independently revealed by experiments.
DYn-2 Based Identification of Arabidopsis Sulfenomes*
Akter, Salma; Huang, Jingjing; Bodra, Nandita; De Smet, Barbara; Wahni, Khadija; Rombaut, Debbie; Pauwels, Jarne; Gevaert, Kris; Carroll, Kate; Van Breusegem, Frank; Messens, Joris
2015-01-01
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana. PMID:25693797
Ren, Jun; Zhou, Wei; Wang, Jianxin
2014-01-01
Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945
Amylin Detection with a Miniature Optical-Fiber Based Sensor
NASA Astrophysics Data System (ADS)
Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark
We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.
Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity
Lee, Hui Sun; Im, Wonpil
2013-01-01
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286
NASA Astrophysics Data System (ADS)
Akhir, Nor Azurah Mat; Nadzirin, Nurul; Mohamed, Rahmah; Firdaus-Raih, Mohd
2015-09-01
Hypothetical proteins of bacterial pathogens represent a large numbers of novel biological mechanisms which could belong to essential pathways in the bacteria. They lack functional characterizations mainly due to the inability of sequence homology based methods to detect functional relationships in the absence of detectable sequence similarity. The dataset derived from this study showed 550 candidates conserved in genomes that has pathogenicity information and only present in the Burkholderiales order. The dataset has been narrowed down to taxonomic clusters. Ten proteins were selected for ORF amplification, seven of them were successfully amplified, and only four proteins were successfully expressed. These proteins will be great candidates in determining the true function via structural biology.
Cohen, Joshua D; Javed, Ammar A; Thoburn, Christopher; Wong, Fay; Tie, Jeanne; Gibbs, Peter; Schmidt, C Max; Yip-Schneider, Michele T; Allen, Peter J; Schattner, Mark; Brand, Randall E; Singhi, Aatur D; Petersen, Gloria M; Hong, Seung-Mo; Kim, Song Cheol; Falconi, Massimo; Doglioni, Claudio; Weiss, Matthew J; Ahuja, Nita; He, Jin; Makary, Martin A; Maitra, Anirban; Hanash, Samir M; Dal Molin, Marco; Wang, Yuxuan; Li, Lu; Ptak, Janine; Dobbyn, Lisa; Schaefer, Joy; Silliman, Natalie; Popoli, Maria; Goggins, Michael G; Hruban, Ralph H; Wolfgang, Christopher L; Klein, Alison P; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Lennon, Anne Marie
2017-09-19
The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient's primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types.
Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.
Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin
2017-06-01
Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional and Genomic Analyses of Alpha-Solenoid Proteins
Fournier, David; Palidwor, Gareth A.; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H.; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A.
2013-01-01
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/. PMID:24278209
USDA-ARS?s Scientific Manuscript database
Background: Conventional immunoblot assays are a very useful tool for specific protein identification, but are tedious, labor-intensive and time-consuming. An automated capillary electrophoresis-based immunoblot assay called "Simple Western" has recently been developed that enables the protein sepa...
Attomole-level protein fingerprinting based on intrinsic peptide fluorescence.
Okerberg, E; Shear, J B
2001-04-01
Protein identification has relied heavily on proteolytic analysis, but current techniques are often slow and generally consume large quantities of valuable protein sample. We report the development of a rapid, ultralow volume protein analysis strategy based on tryptic digestion within the tip of a 1.5-microm capillary channel followed by separation of the proteolytic fragments using capillary electrophoresis (CE). Two-photon excitation is used to probe the intrinsic fluorescence of peptide fragments through "deep-UV" excitation of aromatic amino acid residues at the outlet of the CE channel. Detection limits using this technique are 0.7, 2.4, and 23 amol for the aromatic amino acids tryptophan, tyrosine, and phenylalanine, respectively. In these studies, we demonstrate the capacity to differentiate bovine and yeast cytochrome c variants using less than 15 amol of protein through tryptic fingerprinting. Moreover, the detection of a single amino acid substitution between bovine and canine cytochrome c illustrates the sensitivity of this approach to minor differences in protein sequence. The 2-pL sample volume required for this on-column tryptic digestion is, to our knowledge, the smallest yet reported for a proteolytic assay.
Detecting cis-regulatory binding sites for cooperatively binding proteins
van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves
2008-01-01
Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778
Protein Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Lin, Ying; Ksendzov, Alexander
2006-01-01
Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.
Chen, Hongda; Zucknick, Manuela; Werner, Simone; Knebel, Phillip; Brenner, Hermann
2015-07-15
Novel noninvasive blood-based screening tests are strongly desirable for early detection of colorectal cancer. We aimed to conduct a head-to-head comparison of the diagnostic performance of 92 plasma-based tumor-associated protein biomarkers for early detection of colorectal cancer in a true screening setting. Among all available 35 carriers of colorectal cancer and a representative sample of 54 men and women free of colorectal neoplasms recruited in a cohort of screening colonoscopy participants in 2005-2012 (N = 5,516), the plasma levels of 92 protein biomarkers were measured. ROC analyses were conducted to evaluate the diagnostic performance. A multimarker algorithm was developed through the Lasso logistic regression model and validated in an independent validation set. The .632+ bootstrap method was used to adjust for the potential overestimation of diagnostic performance. Seventeen protein markers were identified to show statistically significant differences in plasma levels between colorectal cancer cases and controls. The adjusted area under the ROC curves (AUC) of these 17 individual markers ranged from 0.55 to 0.70. An eight-marker classifier was constructed that increased the adjusted AUC to 0.77 [95% confidence interval (CI), 0.59-0.91]. When validating this algorithm in an independent validation set, the AUC was 0.76 (95% CI, 0.65-0.85), and sensitivities at cutoff levels yielding 80% and 90% specificities were 65% (95% CI, 41-80%) and 44% (95% CI, 24-72%), respectively. The identified profile of protein biomarkers could contribute to the development of a powerful multimarker blood-based test for early detection of colorectal cancer. ©2015 American Association for Cancer Research.
Zilian, Eva; Maiss, Edgar
2011-12-01
In previous studies, protein interaction maps of different potyviruses have been generated using yeast two-hybrid (YTH) systems, and these maps have demonstrated a high diversity of interactions of potyviral proteins. Using an optimized bimolecular fluorescence complementation (BiFC) system, a complete interaction matrix for proteins of a potyvirus was developed for the first time under in planta conditions with ten proteins from plum pox virus (PPV). In total, 52 of 100 possible interactions were detected, including the self-interactions of CI, 6K2, VPg, NIa-Pro, NIb and CP, which is more interactions than have ever been detected for any other potyvirus in a YTH approach. Moreover, the BiFC system was shown to be able to localize the protein interactions, which was typified for the protein self-interactions indicated above. Additionally, experiments were carried out with the P3N-PIPO protein, revealing an interaction with CI but not with CP and supporting the involvement of P3N-PIPO in the cell-to-cell movement of potyviruses. No self-interaction of the PPV helper component-proteinase (HC-Pro) was detected using BiFC in planta. Therefore, additional experiments with turnip mosaic virus (TuMV) HC-Pro, PPV_HC-Pro and their mutants were conducted. The self-interaction of TuMV_HCpro, as recently demonstrated, and the self-interaction of the TuMV_ and PPV_HC-Pro mutants were shown by BiFC in planta, indicating that HC-Pro self-interactions may be species-specific. BiFC is a very useful and reliable method for the detection and localization of protein interactions in planta, thus enabling investigations under more natural conditions than studies in yeast cells.
Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.
Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin
2016-04-01
Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.
Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal
Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane
2017-01-01
Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024
Balakrishnan, Gurusamy; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2018-05-17
Methionine oxidation is a major degradation pathway in therapeutic proteins which can impact the structure and function of proteins as well as risk to drug product quality. Detecting Met oxidation in proteins by peptide mapping followed by liquid chromatography with mass spectrometry (LC-MS) is the industry standard but is also labor intensive and susceptible to artifacts. In this work, vibrational difference spectroscopy in combination with 18 O isotopic shift enabled us to demonstrate the application of Raman and FTIR techniques for the detection and quantification of Met oxidation in various therapeutic proteins, including mAbs, fusion proteins, and antibody drug conjugate. Vibrational markers of Met oxidation products, such as sulfoxide and sulfone, corresponding to S═O and C-S═O stretching frequencies were unequivocally identified based 18 O isotoptic shifts. The intensity of the isolated νC-S Raman band at 702 cm -1 was successfully applied to quantify the average Met oxidation level in multiple proteins. These results are further corroborated by oxidation levels measured by tryptic peptide mapping, and thus the confirmed Met oxidation levels derived from Raman and mass spectrometry are indeed consistent with each other. Thus, we demonstrate the broader application of vibrational spectroscopy to detect the subtle spectral changes associated with various chemical or physical degradation of proteins, including Met oxidation as well as higher order structural changes.
Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I
2015-01-01
A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.
Jaffe, Jacob D; Keshishian, Hasmik; Chang, Betty; Addona, Theresa A; Gillette, Michael A; Carr, Steven A
2008-10-01
Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.
Dong, Juyao; Salem, Daniel P; Sun, Jessica H; Strano, Michael S
2018-04-24
The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm 2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.
Lee, Jin Oh; Kim, Eun-Ji; Lim, Butaek; Kim, Tae-Wuk; Kim, Young-Pil
2015-01-20
We report a rapid colorimetric assay to detect protein phosphatase (PP) activity based on the controlled assembly and disassembly of gold nanoparticles (AuNPs) via Zn(II)-specific coordination in the presence of His6-tagged phosphopeptides. Among divalent metal ions including Ni(II), Cu(II), Co(II), Mg(II), Mn(II), and Zn(II), only Zn(II) triggered a strong association between phosphopeptides with hexahistidine at a single end and nitrilotriacetic acid (NTA)-modified AuNPs (21.3 nm in core diameter), leading to the self-assembly of AuNPs and consequently changes in color of the AuNP solution. In contrast, unphosphorylated peptides and His6-deficient phosphopeptides did not change the color of the AuNP solution. As a result, protein phosphatase 1 (PP1) activity and its inhibition were easily quantified with high sensitivity by determining the extinction ratio (E520/E700) of colloidal AuNPs. Most importantly, this method was capable of detecting protein phosphatase 2A (PP2A) activity in immunoprecipitated plant extracts. Because PPs play pivotal roles in mediating diverse signal transduction pathways as primary effectors of protein dephosphorylation, we anticipate that our method will be applied as a rapid format method to analyze the activities of various PPs and their inhibition.
A Novel Algorithm for Detecting Protein Complexes with the Breadth First Search
Tang, Xiwei; Wang, Jianxin; Li, Min; He, Yiming; Pan, Yi
2014-01-01
Most biological processes are carried out by protein complexes. A substantial number of false positives of the protein-protein interaction (PPI) data can compromise the utility of the datasets for complexes reconstruction. In order to reduce the impact of such discrepancies, a number of data integration and affinity scoring schemes have been devised. The methods encode the reliabilities (confidence) of physical interactions between pairs of proteins. The challenge now is to identify novel and meaningful protein complexes from the weighted PPI network. To address this problem, a novel protein complex mining algorithm ClusterBFS (Cluster with Breadth-First Search) is proposed. Based on the weighted density, ClusterBFS detects protein complexes of the weighted network by the breadth first search algorithm, which originates from a given seed protein used as starting-point. The experimental results show that ClusterBFS performs significantly better than the other computational approaches in terms of the identification of protein complexes. PMID:24818139
Phillips, Melissa M; Bedner, Mary; Reitz, Manuela; Burdette, Carolyn Q; Nelson, Michael A; Yen, James H; Sander, Lane C; Rimmer, Catherine A
2017-02-01
Two independent analytical approaches, based on liquid chromatography with absorbance detection and liquid chromatography with mass spectrometric detection, have been developed for determination of isoflavones in soy materials. These two methods yield comparable results for a variety of soy-based foods and dietary supplements. Four Standard Reference Materials (SRMs) have been produced by the National Institute of Standards and Technology to assist the food and dietary supplement community in method validation and have been assigned values for isoflavone content using both methods. These SRMs include SRM 3234 Soy Flour, SRM 3236 Soy Protein Isolate, SRM 3237 Soy Protein Concentrate, and SRM 3238 Soy-Containing Solid Oral Dosage Form. A fifth material, SRM 3235 Soy Milk, was evaluated using the methods and found to be inhomogeneous for isoflavones and unsuitable for value assignment. Graphical Abstract Separation of six isoflavone aglycones and glycosides found in Standard Reference Material (SRM) 3236 Soy Protein Isolate.
Patra, Kailash P.; Saito, Mayuko; Atluri, Vidya L.; Rolán, Hortensia G.; Young, Briana; Kerrinnes, Tobias; Smits, Henk; Ricaldi, Jessica N.; Gotuzzo, Eduardo; Gilman, Robert H.; Tsolis, Renee M.; Vinetz, Joseph M.
2014-01-01
Human brucellosis is most commonly diagnosed by serology based on agglutination of fixed Brucella abortus as antigen. Nucleic acid amplification techniques have not proven capable of reproducibly and sensitively demonstrating the presence of Brucella DNA in clinical specimens. We sought to optimize a monoclonal antibody-based assay to detect Brucella melitensis lipopolysaccharide in blood by conjugating B. melitensis LPS to keyhole limpet hemocyanin, an immunogenic protein carrier to maximize IgG affinity of monoclonal antibodies. A panel of specific of monoclonal antibodies was obtained that recognized both B. melitensis and B. abortus lipopolysaccharide epitopes. An antigen capture assay was developed that detected B. melitensis in the blood of experimentally infected mice and, in a pilot study, in naturally infected Peruvian subjects. As a proof of principle, a majority (7/10) of the patients with positive blood cultures had B. melitensis lipopolysaccharide detected in the initial blood specimen obtained. One of 10 patients with relapsed brucellosis and negative blood culture had a positive serum antigen test. No seronegative/blood culture negative patients had a positive serum antigen test. Analysis of the pair of monoclonal antibodies (2D1, 2E8) used in the capture ELISA for potential cross-reactivity in the detection of lipopolysaccharides of E. coli O157:H7 and Yersinia enterocolitica O9 showed specificity for Brucella lipopolysaccharide. This new approach to develop antigen-detection monoclonal antibodies against a T cell-independent polysaccharide antigen based on immunogenic protein conjugation may lead to the production of improved rapid point-of-care-deployable assays for the diagnosis of brucellosis and other infectious diseases. PMID:24901521
Winnard, Paul T; Kluth, Jessica B; Raman, Venu
2006-01-01
Abstract We have evaluated the use of the Xenogen IVIS 200 imaging system for real-time fluorescence protein-based optical imaging of metastatic progression in live animals. We found that green fluorescent protein-expressing cells (100 x 106) were not detectable in a mouse cadaver phantom experiment. However, a 10-fold lower number of tdTomato-expressing cells were easily detected. Mammary fat pad xenografts of stable MDA-MB-231-tdTomato cells were generated for the imaging of metastatic progression. At 2 weeks postinjection, barely palpable tumor burdens were easily detected at the sites of injection. At 8 weeks, a small contralateral mammary fat pad metastasis was imaged and, by 13 weeks, metastases to lymph nodes were detectable. Metastases with nodular composition were detectable within the rib cage region at 15 weeks. 3-D image reconstructions indicated that the detection of fluorescence extended to approximately 1 cm below the surface. A combination of intense tdTomato fluorescence, imaging at ≥ 620 nm (where autofluorescence is minimized), and the sensitivity of the Xenogen imager made this possible. This study demonstrates the utility of the noninvasive optical tracking of cancer cells during metastatic progression with endogenously expressed fluorescence protein reporters using detection wavelengths of ≥ 620 nm. PMID:17032496
Tian, Ruijun; Jin, Jing; Taylor, Lorne; Larsen, Brett; Quaggin, Susan E; Pawson, Tony
2013-04-01
Gangliosides are ubiquitous components of cell membranes. Their interactions with bacterial toxins and membrane-associated proteins (e.g. receptor tyrosine kinases) have important roles in the regulation of multiple cellular functions. Currently, an effective approach for measuring ganglioside-protein interactions especially in a large-scale fashion is largely missing. To this end, we report a facile MS-based approach to explore gangliosides extracted from cells and measure their interactions with protein of interest globally. We optimized a two-step protocol for extracting total gangliosides from cells within 2 h. Easy-to-use magnetic beads conjugated with a protein of interest were used to capture interacting gangliosides. To measure ganglioside-protein interaction on a global scale, we applied a high-sensitive LC-MS system, containing hydrophilic interaction LC separation and multiple reaction monitoring-based MS for ganglioside detection. Sensitivity for ganglioside GM1 is below 100 pg, and the whole analysis can be done in 20 min with isocratic elution. To measure ganglioside interactions with soluble vascular endothelial growth factor receptor 1 (sFlt1), we extracted and readily detected 36 species of gangliosides from perivascular retinal pigment epithelium cells across eight different classes. Twenty-three ganglioside species have significant interactions with sFlt1 as compared with IgG control based on p value cutoff <0.05. These results show that the described method provides a rapid and high-sensitive approach for systematically measuring ganglioside-protein interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of ricin contamination in liquid egg by electrochemiluminescence immunosorbent assay
USDA-ARS?s Scientific Manuscript database
A monoclonal antibody-based electrochemical luminescence (ECL) method was developed for detecting and quantifying ricin in liquid egg, with a limit of detection of 0.2 ng/mL. Because this highly toxic protein, present in the seeds of Ricinus communis (castor), has been used for intentional poisoning...
Yoo, Gu; Bong, Ji-Hong; Kim, Sinyoung; Jose, Joachim; Pyun, Jae-Chul
2014-07-15
A microarray-based immunoassay for the detection of autoantibodies against Ro protein was developed using Escherichia coli with autodisplayed Ro proteins (Ro(+)-E. coli). Patient serum usually contains various antibodies against the outer membrane components of E. coli as well as autoantibodies against the Ro protein. Therefore, the conventional immunoassay based on Ro(+)-E. coli requires both wild type E. coli (blank test) and Ro(+)-E. coli, and both strains of E. coli must be prepared in situ for each individual test serum. In this study, we tested the feasibility of using several types of animal sera as a replacement for individual human sera. An immunoassay without the blank test was developed using Ro(+)-E. coli by (1) blocking with rabbit serum, and (2) cleaving the Fc region from antibodies using papain. Modified E. coli with autodisplayed Ro protein was immobilized to a surface-modified microplate and the applicability of the immunoassay without the blank test was demonstrated using sera from patients with systemic lupus erythematosus (SLE). Using this approach, a microarray-based fluorescence immunoassay with immobilized Ro(+)-E. coli was able to detect anti-Ro autoantibodies in SLE patient sera with high specificity and selectivity and improved efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Xiaoyi; Lv, Guodong; Jia, Zhenhong; Wang, Jiajia; Mo, Jiaqing
2014-11-01
Detection of protein kinases P38 of Echinococcus granulosus and its homologous antibody have great value for early diagnosis and treatment of hydatidosis hydatid disease. In this experiment, n-type mesoporous silicon microcavities have been successfully fabricated without KOH etching or oxidants treatment that reported in other literature. We observed the changes of the reflectivity spectrum before and after the antigen-antibody reaction by n-type mesoporous silicon microcavities. The binding of protein kinases P38 and its homologous antibody causes red shifts in the reflection spectrum of the sensor, and the red shift was proportional to the protein kinases P38 concentration with linear relationship.
Adzemovic, Milena Z; Zeitelhofer, Manuel; Leisser, Marianne; Köck, Ulricke; Kury, Angela; Olsson, Tomas
2016-11-14
Immunohistochemistry (IHC) provides highly specific, reliable and attractive protein visualization. Correct performance and interpretation of an IHC-based multicolor labeling is challenging, especially when utilized for assessing interrelations between target proteins in the tissue with a high fat content such as the central nervous system (CNS). Our protocol represents a refinement of the standard immunolabeling technique particularly adjusted for detection of both structural and soluble proteins in the rat CNS and peripheral lymph nodes (LN) affected by neuroinflammation. Nonetheless, with or without further modifications, our protocol could likely be used for detection of other related protein targets, even in other organs and species than here presented.
Label-free electrical detection using carbon nanotube-based biosensors.
Maehashi, Kenzo; Matsumoto, Kazuhiko
2009-01-01
Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.
Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics
Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.
2012-01-01
Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010
Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tujin; Su, Dian; Liu, Tao
2012-04-01
Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, whichmore » have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.« less
A hybrid network-based method for the detection of disease-related genes
NASA Astrophysics Data System (ADS)
Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene
2018-02-01
Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.
Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob
2013-03-10
In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.
Molecular Dynamics Information Improves cis-Peptide-Based Function Annotation of Proteins.
Das, Sreetama; Bhadra, Pratiti; Ramakumar, Suryanarayanarao; Pal, Debnath
2017-08-04
cis-Peptide bonds, whose occurrence in proteins is rare but evolutionarily conserved, are implicated to play an important role in protein function. This has led to their previous use in a homology-independent, fragment-match-based protein function annotation method. However, proteins are not static molecules; dynamics is integral to their activity. This is nicely epitomized by the geometric isomerization of cis-peptide to trans form for molecular activity. Hence we have incorporated both static (cis-peptide) and dynamics information to improve the prediction of protein molecular function. Our results show that cis-peptide information alone cannot detect functional matches in cases where cis-trans isomerization exists but 3D coordinates have been obtained for only the trans isomer or when the cis-peptide bond is incorrectly assigned as trans. On the contrary, use of dynamics information alone includes false-positive matches for cases where fragments with similar secondary structure show similar dynamics, but the proteins do not share a common function. Combining the two methods reduces errors while detecting the true matches, thereby enhancing the utility of our method in function annotation. A combined approach, therefore, opens up new avenues of improving existing automated function annotation methodologies.
Opheim, Margareth; Strube, Mikael Lenz; Sterten, Hallgeir; Øverland, Margareth; Kjos, Nils Petter
2016-01-01
Salmon protein hydrolysates (SPH) from two different rest raw materials were evaluated in diets for weaning piglets. Four experimental diets were included in the study: a diet based on plant protein with soy protein as the main protein source (Diet PP), a diet based on fishmeal in exchange for soy protein (Diet FM) and two diets in which different SPH replaced fishmeal in the FM diet. The experimental diets were fed to piglets from the day of weaning until 32 d postweaning. In addition to the record of performance data, an intestinal sampling for mucosal morphometry and microbiota 16S rRNA gene sequencing were performed at day 11 on a subset of the animals. The duodenal villi absorption area was significantly larger in piglets receiving Diets SPH compared with Diet PP (p < 0.02). A significant positive correlation between duodenal villi height and average daily gain during the first 11 d postweaning was detected. Only small differences in intestinal microbiota community and no differences in growth performance were detected between the experimental diets. To conclude, SPH seem to be an interesting novel protein source in weanling piglets.
DeRocco, Vanessa; Anderson, Trevor; Piehler, Jacob; Erie, Dorothy A; Weninger, Keith
2010-11-01
To enable studies of conformational changes within multimolecular complexes, we present a simultaneous, four-color single molecule fluorescence methodology implemented with total internal reflection illumination and camera-based, wide-field detection. We further demonstrate labeling histidine-tagged proteins noncovalently with Tris-nitrilotriacetic acid (Tris-NTA)-conjugated dyes to achieve single molecule detection. We combine these methods to colocalize the mismatch repair protein MutSα on DNA while monitoring MutSα-induced DNA bending using Förster resonance energy transfer (FRET) and to monitor assembly of membrane-tethered SNARE protein complexes.
DeRocco, Vanessa C.; Anderson, Trevor; Piehler, Jacob; Erie, Dorothy A.; Weninger, Keith
2010-01-01
To allow studies of conformational changes within multi-molecular complexes, we present a simultaneous, 4-color single molecule fluorescence methodology implemented with total internal reflection illumination and camera based, wide-field detection. We further demonstrate labeling histidine-tagged proteins non-covalently with tris-Nitrilotriacetic acid (tris-NTA) conjugated dyes to achieve single molecule detection. We combine these methods to co-localize the mismatch repair protein MutSα on DNA while monitoring MutSα-induced DNA bending using Förster resonance energy transfer (FRET) and to monitor assembly of membrane-tethered SNARE protein complexes. PMID:21091445
Novel aminobenzanthrone dyes for amyloid fibril detection
NASA Astrophysics Data System (ADS)
Vus, Kateryna; Trusova, Valeriya; Gorbenko, Galyna; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Kinnunen, Paavo
2012-04-01
A series of novel fluorescent aminobenzanthrone dyes have been tested for their ability to identify and characterize the oligomeric and fibrillar aggregates of lysozyme. The parameters of the dye binding to native, oligomeric and fibrillar protein have been calculated from the results of fluorimetric titration. Furthermore, several additional quantities reflecting the preference of the probe to either pre-fibrillar or fibrillar protein aggregates, have been evaluated. Based on the comparative analysis of the recovered parameters, AM4 was recommended for selective detection of protein pre-fibrillar assemblies, while the dyes AM1, AM2, AM3 were selected as the most prospective amyloid tracers.
Garrido-Martín, Diego; Pazos, Florencio
2018-02-27
The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.
Wei, Kai; Zhang, Haiyan; Zhang, Yuewei; Xu, Jian; Jiang, Fei; Liu, Xu; Xu, Wei; Wu, Wenxue
2014-01-01
The pathogen Mycoplasma bovis (M. bovis) is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB) showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA) was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats). Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 (P<0.05). Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis. PMID:24520369
Lerner, Mitchell B.; D’Souza, Jimson; Pazina, Tatiana; Dailey, Jennifer; Goldsmith, Brett R.; Robinson, Matthew K.; Johnson, A.T. Charlie
2012-01-01
We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. Based on these observations, the detection mechanism is attributed to changes in scattering at scFv protein-occupied defect sites on the carbon nanotube sidewall. The functionalization procedure described here is expected to be generalizable to any antibody containing an accessible amine group, and to result in biosensors appropriate for detection of corresponding complementary proteins at fM concentrations. PMID:22575126
Immunological detection of phenylalanine hydroxylase protein in Drosophila melanogaster.
Silva, F J; Bel, Y; Botella, L M; Cotton, R G; Ferré, J
1992-01-01
A monoclonal antibody raised against monkey liver phenylalanine hydroxylase (PAH) has been used to detect this protein in Drosophila melanogaster. A cross-reacting material (CRM) band of apparent molecular mass 50-52 kDa, equivalent to that deduced for the Drosophila melanogaster PAH protein based on the pah gene cDNA sequence, has been detected. This CRM was analysed throughout development and showed an equivalent pattern to that reported for PAH activity in this insect, with maxima at pupariation and at pharate adult formation. Distribution of this CRM in larval tissues, the haemolymph and the adult body is mainly restricted to the larval fat body and the adult head. Demonstration of this CRM as the PAH protein comes from the correlation between the decreased PAH enzyme activities of two mutant strains and their decreased amounts of CRM by Western blotting. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1417795
Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity
Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil
2015-01-01
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934
Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity.
Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil
2015-07-23
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.
Wang, Zonghua; Yan, Zhiyong; Wang, Feng; Cai, Jibao; Guo, Lei; Su, Jiakun; Liu, Yang
2017-11-15
A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy) 3 ] 2+ photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO 2 /ITO electrode through the chelation between the Zr 4+ defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy) 3 ] 2+ adsorbed in the pores of UiO-66 injected into the TiO 2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy) 3 ] 2+ that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL -1 (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries. Copyright © 2017 Elsevier B.V. All rights reserved.
Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; ...
2015-06-18
Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less
Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R; Changelian, Armen; Laws, Edward R; Santagata, Sandro; Agar, Nathalie Y R; Van Berkel, Gary J
2015-08-01
Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections, using a fully automated droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS system for spatially resolved sampling, HPLC separation, and mass spectrometric detection. Excellent correlation was found between the protein distribution data obtained with this method and data obtained with matrix-assisted laser desorption/ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis), and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH-secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH-secreting adenomas and in normal anterior adenohypophysis compared with non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis, as expected. This work reveals that a fully automated droplet-based liquid-microjunction surface-sampling system coupled to HPLC-ESI-MS-MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, including AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity, and specificity of this method support the potential of this basic technology, with further advancement, for assisting surgical decision-making. Graphical Abstract Mass spectrometry based profiling of hormones in human pituitary gland and tumor thin tissue sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.
Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less
Huang, Ke-Jing; Shuai, Hong-Lei; Zhang, Ji-Zong
2016-03-15
A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1 nM and a detection limit of 20 fM. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Simon; Yoo, SooHyun; Kim, Hae-Yoon; Wang, Mannan; Zheng, Clare; Parkhouse, Wade; Krieger, Charles; Harden, Nicholas
2015-01-20
Discs large (Dlg) is a conserved member of the membrane-associated guanylate kinase family, and serves as a major scaffolding protein at the larval neuromuscular junction (NMJ) in Drosophila. Previous studies have shown that the postsynaptic distribution of Dlg at the larval NMJ overlaps with that of Hu-li tai shao (Hts), a homologue to the mammalian adducins. In addition, Dlg and Hts are observed to form a complex with each other based on co-immunoprecipitation experiments involving whole adult fly lysates. Due to the nature of these experiments, however, it was unknown whether this complex exists specifically at the NMJ during larval development. Proximity Ligation Assay (PLA) is a recently developed technique used mostly in cell and tissue culture that can detect protein-protein interactions in situ. In this assay, samples are incubated with primary antibodies against the two proteins of interest using standard immunohistochemical procedures. The primary antibodies are then detected with a specially designed pair of oligonucleotide-conjugated secondary antibodies, termed PLA probes, which can be used to generate a signal only when the two probes have bound in close proximity to each other. Thus, proteins that are in a complex can be visualized. Here, it is demonstrated how PLA can be used to detect in situ protein-protein interactions at the Drosophila larval NMJ. The technique is performed on larval body wall muscle preparations to show that a complex between Dlg and Hts does indeed exist at the postsynaptic region of NMJs.
Zhu, Tong; Zhang, John Z H; He, Xiao
2014-09-14
In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method for ab initio calculation of chemical shifts, incorrect side chain packing was detected in the NMR structures of the Pin1 WW domain. The NMR structure is then refined by using molecular dynamics simulation and the polarized protein-specific charge (PPC) model. The computationally refined structure of the Pin1 WW domain is in excellent agreement with the corresponding X-ray structure. In particular, the use of the PPC model yields a more accurate structure than that using the standard (nonpolarizable) force field. For comparison, some of the widely used empirical models for chemical shift calculations are unable to correctly describe the relationship between the particular proton chemical shift and protein structures. The AF-QM/MM method can be used as a powerful tool for protein NMR structure validation and structural flaw detection.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Su, Mengna; Venkatachalam, Mahesh; Liu, Changqi; Zhang, Ying; Roux, Kenneth H; Sathe, Shridhar K
2013-11-13
A sandwich enzyme-linked immunosorbent assay (ELISA) using anti-almond soluble protein rabbit polyclonal antibodies as capture antibodies and murine monoclonal antibody 4C10 as the detection antibodies was developed. The assay is specific and sensitive (3-200 ng almond protein/mL) for almond detection. The standardized assay is accurate (<15% CV) and reproducible (intra- and inter assay variability <15% CV). The assay did not register any cross-reactivity with the tested food matrices, suggesting the assay to be almond amandin specific. The assay could detect the presence of declared almond in the tested matched commercial samples. Further, the assay reliably detected the presence of almonds in the laboratory prepared food samples spiked with almond flour.
Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling.
Faden, Frederik; Eschen-Lippold, Lennart; Dissmeyer, Nico
2016-01-01
Western blot (WB) analysis is the most widely used method to monitor expression of proteins of interest in protein extracts of high complexity derived from diverse experimental setups. WB allows the rapid and specific detection of a target protein, such as non-tagged endogenous proteins as well as protein-epitope tag fusions depending on the availability of specific antibodies. To generate quantitative data from independent samples within one experiment and to allow accurate inter-experimental quantification, a reliable and reproducible method to standardize and normalize WB data is indispensable. To date, it is a standard procedure to normalize individual bands of immunodetected proteins of interest from a WB lane to other individual bands of so-called housekeeping proteins of the same sample lane. These are usually detected by an independent antibody or colorimetric detection and do not reflect the real total protein of a sample. Housekeeping proteins-assumed to be constitutively expressed mostly independent of developmental and environmental states-can greatly differ in their expression under these various conditions. Therefore, they actually do not represent a reliable reference to normalize the target protein's abundance to the total amount of protein contained in each lane of a blot.Here, we demonstrate the Smart Protein Layers (SPL) technology, a combination of fluorescent standards and a stain-free fluorescence-based visualization of total protein in gels and after transfer via WB. SPL allows a rapid and highly sensitive protein visualization and quantification with a sensitivity comparable to conventional silver staining with a 1000-fold higher dynamic range. For normalization, standardization and quantification of protein gels and WBs, a sample-dependent bi-fluorescent standard reagent is applied and, for accurate quantification of data derived from different experiments, a second calibration standard is used. Together, the precise quantification of protein expression by lane-to-lane, gel-to-gel, and blot-to-blot comparisons is facilitated especially with respect to experiments in the area of proteostasis dealing with highly variable protein levels and involving protein degradation mutants and treatments modulating protein abundance.
Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media.
Bresolí-Obach, Roger; Nos, Jaume; Mora, Margarita; Sagristà, Maria Lluïsa; Ruiz-González, Rubén; Nonell, Santi
2016-10-15
We have developed a novel singlet oxygen nanoprobe based on 9,10-anthracenedipropionic acid covalently bound to mesoporous silica nanoparticles. The nanoparticle protects the probe from interactions with proteins, which detract from its ability to detect singlet oxygen. In vitro studies show that the nanoprobe is internalized by cells and is distributed throughout the cytoplasm, thus being capable of detecting intracellularly-generated singlet oxygen. Copyright © 2016 Elsevier Inc. All rights reserved.
Ratiometric Raman Spectroscopy for Quantification of Protein Oxidative Damage
Jiang, Dongping; Yanney, Michael; Zou, Sige; Sygula, Andrzej
2009-01-01
A novel ratiometric Raman spectroscopic (RMRS) method has been developed for quantitative determination of protein carbonyl levels. Oxidized bovine serum albumin (BSA) and oxidized lysozyme were used as model proteins to demonstrate this method. The technique involves conjugation of protein carbonyls with dinitrophenyl hydrazine (DNPH), followed by drop coating deposition Raman spectral acquisition (DCDR). The RMRS method is easy to implement as it requires only one conjugation reaction, a single spectral acquisition, and does not require sample calibration. Characteristic peaks from both protein and DNPH moieties are obtained in a single spectral acquisition, allowing the protein carbonyl level to be calculated from the peak intensity ratio. Detection sensitivity for the RMRS method is ~0.33 pmol carbonyl/measurement. Fluorescence and/or immunoassay based techniques only detect a signal from the labeling molecule and thus yield no structural or quantitative information for the modified protein while the RMRS technique provides for protein identification and protein carbonyl quantification in a single experiment. PMID:19457432
Magnetoresistive biosensors for quantitative proteomics
NASA Astrophysics Data System (ADS)
Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.
2017-08-01
Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.
NASA Astrophysics Data System (ADS)
Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.
2017-02-01
The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.
Thomas-Porch, Caasy; Li, Jie; Zanata, Fabiana; Martin, Elizabeth C; Pashos, Nicholas; Genemaras, Kaylynn; Poche, J Nicholas; Totaro, Nicholas P; Bratton, Melyssa R; Gaupp, Dina; Frazier, Trivia; Wu, Xiying; Ferreira, Lydia Masako; Tian, Weidong; Wang, Guangdi; Bunnell, Bruce A; Flynn, Lauren; Hayes, Daniel; Gimble, Jeffrey M
2018-04-25
Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps. In addition to protein content, bioscaffolds were evaluated for DNA depletion, ECM composition, and physical structure using optical density, histochemical staining, and scanning electron microscopy (SEM). Mass spectrometry (MS) based proteomic analyses identified 25 proteins (having at least two peptide sequences detected) in the scaffolds generated with an enzymatic approach, 143 with the detergent approach, and 102 with the solvent approach, as compared to 155 detected in unprocessed native human fat. Immunohistochemical detection confirmed the presence of the structural proteins actin, collagen type VI, fibrillin, laminin, and vimentin. Subsequent in vivo analysis of the predominantly enzymatic- and detergent-based decellularized scaffolds following subcutaneous implantation in GFP + transgenic mice demonstrated that the matrices generated with both approaches supported the ingrowth of host-derived adipocyte progenitors and vasculature in a time dependent manner. Together, these results determine that decellularization methods influence the protein composition of adipose tissue-derived bioscaffolds. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Major quality trait analysis and QTL detection in hexaploid wheat in humid rain-fed agriculture.
Li, H M; Tang, Z X; Zhang, H Q; Yan, B J; Ren, Z L
2013-05-21
Humid rain-fed agriculture is a special environment for wheat (Triticum aestivum) culture that tends to negatively affect wheat yield and quality. To identify quality characters of wheat in a humid environment, we conducted quality analysis and quantitative trait loci (QTL) detection in a recombinant inbred line whose parent had a high level of quality for several years. We found that high-quality wheat had less gluten content and lower protein content. Apparently, wheat quality and associated quantity traits were in a dynamic state of equilibrium. We detected 83 QTL for 10 wheat quality traits in this recombinant inbred line population. Nine QTL were detected in both evaluation years; Q.DT.scau-2A, linked to Xwmc522-2A, was detected at the same genetic location in both years. Other QTL for different traits were detected simultaneously in more than one location. Consequently, there appeared to be pleiotropic genes that control wheat quality. Based on previous studies and our research on QTL analysis of grain protein content, we conclude that there must be one or more genes for grain protein content on chromosome 6B, whose expression was little affected by environment. We constructed a consensus map and projected the QTL on it. It was useful for choosing optimal markers for marker-assisted breeding and map-based cloning.
Fitting new technologies into the safety paradigm: use of microarrays in transfusion.
Fournier-Wirth, C; Coste, J
2007-01-01
Until the late 1990s, mandatory blood screening for transmissible infectious agents depended entirely on antigen/antibody-based detection assays. The recent emergence of Nucleic acid Amplification Technologies (NAT) has revolutionised viral diagnosis, not only by increasing the level of sensitivity but also by facilitating the detection of several viruses in parallel by multiplexing specific primers. In more complex biological situations, when a broad spectrum of pathogens must be screened, the limitations of these first generation technologies became apparent. High throughput systems, such as DNA Arrays, permit a conceptually new approach. These miniaturised micro systems allow the detection of hundreds of different targets simultaneously, inducing a dramatic decrease in reagent consumption, a reduction in the number of confirmation tests and a simplification of data interpretation. However, the systems currently available require additional instrumentation and reagents for sample preparation and target amplification prior to detection on the DNA array. A major challenge in the area of DNA detection is the development of methods that do not rely on target amplification systems. Likewise, the advances of protein microarrays have lagged because of poor stability of proteins, complex coupling chemistry and weak detection signals. Emerging technologies like Biosensors and nano-particle based DNA or Protein Bio-Barcode Amplification Assays are promising diagnostic tools for a wide range of clinical applications, including blood donation screening.
Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel
2016-01-01
Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.
Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua
2011-01-01
We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631
Functionalized nanoparticle probes for protein detection
NASA Astrophysics Data System (ADS)
Park, Do Hyun; Lee, Jae-Seung
2015-05-01
In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.
CMOS image sensor for detection of interferon gamma protein interaction as a point-of-care approach.
Marimuthu, Mohana; Kandasamy, Karthikeyan; Ahn, Chang Geun; Sung, Gun Yong; Kim, Min-Gon; Kim, Sanghyo
2011-09-01
Complementary metal oxide semiconductor (CMOS)-based image sensors have received increased attention owing to the possibility of incorporating them into portable diagnostic devices. The present research examined the efficiency and sensitivity of a CMOS image sensor for the detection of antigen-antibody interactions involving interferon gamma protein without the aid of expensive instruments. The highest detection sensitivity of about 1 fg/ml primary antibody was achieved simply by a transmission mechanism. When photons are prevented from hitting the sensor surface, a reduction in digital output occurs in which the number of photons hitting the sensor surface is approximately proportional to the digital number. Nanoscale variation in substrate thickness after protein binding can be detected with high sensitivity by the CMOS image sensor. Therefore, this technique can be easily applied to smartphones or any clinical diagnostic devices for the detection of several biological entities, with high impact on the development of point-of-care applications.
Yu, Yanbin; Piddington, Christopher; Fitzpatrick, Dan; Twomey, Brian; Xu, Ren; Swanson, Steven J; Jing, Shuqian
2006-10-20
The presence of neutralizing antibodies against protein therapeutics is a concern in the biomedical field. Such antibodies not only reduce the efficacy of protein therapeutics, but also impose potential dangers to the patients receiving them. To date, a small number of in vitro cell-based bioassays for detecting neutralizing antibodies against therapeutic proteins have been developed. Most of the existing assays, however, either involve the use of radioactive materials or have limited sensitivities and/or poor specificities. With advances in mRNA profiling and detection techniques, we have established a novel and non-radioactive bioassay system using branched DNA (bDNA) technology for detecting protein-therapeutic neutralizing antibodies in patient serum. Our assay measures the variations of target gene expression that reflect the biologic effect of the therapeutic agent and the capability of the antibodies, if present, to neutralize the therapeutics. Compared with most existing assays, the new assay is more sensitive and specific, and completely eliminates the use of radioactive materials. Application of the new assay system can be widely expanded if new target genes and responding cell lines for other therapeutics are identified or engineered.
Liu, Haipeng; Yu, Jia; Qiao, Rui; Zhou, Mi; Yang, Yongtao; Zhou, Jian; Xie, Peng
2016-01-01
The enormous depth complexity of the human plasma proteome poses a significant challenge for current mass spectrometry-based proteomic technologies in terms of detecting low-level proteins in plasma, which is essential for successful biomarker discovery efforts. Typically, a single-step analytical approach cannot reduce this intrinsic complexity. Current simplex immunodepletion techniques offer limited capacity for detecting low-abundance proteins, and integrated strategies are thus desirable. In this respect, we developed an improved strategy for analyzing the human plasma proteome by integrating polyethylene glycol (PEG) fractionation with immunoaffinity depletion. PEG fractionation of plasma proteins is simple, rapid, efficient, and compatible with a downstream immunodepletion step. Compared with immunodepletion alone, our integrated strategy substantially improved the proteome coverage afforded by PEG fractionation. Coupling this new protocol with liquid chromatography-tandem mass spectrometry, 135 proteins with reported normal concentrations below 100 ng/mL were confidently identified as common low-abundance proteins. A side-by-side comparison indicated that our integrated strategy was increased by average 43.0% in the identification rate of low-abundance proteins, relying on an average 65.8% increase of the corresponding unique peptides. Further investigation demonstrated that this combined strategy could effectively alleviate the signal-suppressive effects of the major high-abundance proteins by affinity depletion, especially with moderate-abundance proteins after incorporating PEG fractionation, thereby greatly enhancing the detection of low-abundance proteins. In sum, the newly developed strategy of incorporating PEG fractionation to immunodepletion methods can potentially aid in the discovery of plasma biomarkers of therapeutic and clinical interest. PMID:27832179
NASA Astrophysics Data System (ADS)
Connolly, Timothy; Archibald, Michelle M.; Nesbitt, Nathan T.; Rossi, Matthew; Glover, Jennifer A.; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.
2014-03-01
Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We are currently developing a novel 3-dimensional nanopillar dendrite biosensor array for the detection of human cancer biomarkers (e . g . CA-125 for early-stage ovarian cancer) in serum and other fluids. Here, we describe a nanoscale 3D architecture that can afford molecular detection at room temperature. We report our efforts on the development of an all-electronic, ambient temperature, rapid-response dendritic biosensor fabricated by directed electrochemical nanowire assembly (DENA) that achieves molecular-scale sensitivity for protein biomarker based detection. Each sensor is a vertically-oriented nanodendritic array where an electrochemical signal is detected from the oxidation of the redox end-product of an enzyme-linked immunosorbent assay (ELISA). Our results demonstrate the feasibility of using the present nanodendritic array structure as a sensitive device to detect a range of proteins of interest, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).
LANL Transfers Glowing Bio Technology to Sandia Biotech
Nakhla, Tony; Pino, Tony; Hadley, David
2018-03-02
Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.
LANL Transfers Glowing Bio Technology to Sandia Biotech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhla, Tony; Pino, Tony; Hadley, David
2012-05-21
Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.
Boja, Emily S; Rodriguez, Henry
2012-04-01
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benchtop Detection of Proteins
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Varaljay, Vanessa
2007-01-01
A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein complexes while allowing any remaining unbound dye/antibody pairs to flow away. The retained dye/antibody/protein complexes are transferred to a cuvette, wherein they are irradiated with light from a miniature near-infrared laser delivered via a fiber-optic cable. The resulting fluorescence from the dye(s) is measured by use of a miniature spectrometer, the output of which is digitized, then analyzed by laptop computer. The software running in the computer identifies the protein species by the wavelengths of their spectral peaks and determines the amounts of the proteins, and thus, one day, microbes of the various species from the intensities of the peaks. The abovementioned removal of the unbound dye/antibody pairs during centrifugation prevents false positive readings. The process proves successful in detecting proteins in solution and thus can now be employed for use in microbe detection.
Dong, Yadong; Sun, Yongqi; Qin, Chao
2018-01-01
The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.
Zhang, Yanfeng; Lou, Jianlong; Jenko, Kathy L.; Marks, James D.; Varnum, Susan M.
2012-01-01
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are a group of seven (A–G) immunologically distinct proteins and cause the paralytic disease botulism. These toxins are the most poisonous substances known to humans and are potential bioweapon agents. Therefore, it is necessary to develop highly sensitive assays for the detection of BoNTs in both clinical and environmental samples. In the current study, we have developed an enzyme-linked immunosorbent assay (ELISA)-based protein antibody microarray for the sensitive and simultaneous detection of BoNT serotypes A, B, C, D, E, and F. With engineered high-affinity antibodies, the BoNT assays have sensitivities in buffer ranging from 1.3 fM (0.2 pg/ml) to 14.7 fM (2.2 pg/ml). Using clinical and food matrices (serum and milk), the microarray is capable of detecting BoNT serotypes A to F to similar levels as in standard buffer. Cross-reactivity between assays for individual serotype was also analyzed. These simultaneous, rapid, and sensitive assays have the potential to measure botulinum toxins in a high-throughput manner in complex clinical, food, and environmental samples. PMID:22935296
Lin, Yen-Heng; Peng, Po-Yu
2015-04-15
Two major issues need to be addressed in applying semiconductor biosensors to detecting proteins in immunoassays. First, the length of the antibody on the sensor surface surpasses the Debye lengths (approximately 1 nm, in normal ionic strength solution), preventing certain specifically bound proteins from being tightly attached to the sensor surface. Therefore, these proteins do not contribute to the sensor's surface potential change. Second, these proteins carry a small charge and can be easily affected by the pH of the surrounding solution. This study proposes a magnetic bead-based immunoassay using a secondary antibody to label negatively charged DNA fragments for signal amplification. An externally imposed magnetic force attaches the analyte tightly to the sensor surface, thereby effectively solving the problem of the analyte protein's distance to the sensor surface surpassing the Debye lengths. In addition, a normal ion intensity buffer can be used without dilution for the proposed method. Experiments revealed that the sensitivity can be improved by using a longer DNA fragment for labeling and smaller magnetic beads as solid support for the antibody. By using a 90 base pair DNA label, the signal was 15 times greater than that without labeling. In addition, by using a 120 nm magnetic bead, a minimum detection limit of 12.5 ng mL(-1) apolipoprotein A1 can be measured. Furthermore, this study integrates a semiconductor sensor with a microfluidic chip. With the help of microvalves and micromixers in the chip, the length of the mixing step for each immunoassay has been reduced from 1h to 20 min, and the sample volume has been reduced from 80 μL to 10 μL. In practice, a protein biomarker in a urinary bladder cancer patient's urine was successfully measured using this technique. This study provides a convenient and effective method to measure protein using a semiconductor sensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of proteins and bacteria using an array of feedback capacitance sensors.
Mehta, Manav; Hanumanthaiah, Chandra Sekar; Betala, Pravin Ajitkumar; Zhang, Hong; Roh, SaeWeon; Buttner, William; Penrose, William R; Stetter, Joseph R; Pérez-Luna, Victor H
2007-12-15
An integrated array of micron-dimension capacitors, originally developed for biometric applications (fingerprint identification), was engineered for detection of biological agents such as proteins and bacteria. This device consists of an array of 93,184 (256 x 364) individual capacitor-based sensing elements located underneath a thin (0.8 microm) layer of glass. This glass layer can be functionalized with organosilane-based monolayers to provide groups amenable for the immobilization of bioreceptors such as antibodies, enzymes, peptides, aptamers, and nucleotides. Upon functionalization with antibodies and in conjunction with signal amplification schemes that result in perturbation of the dielectric constant around the captured antigens, this system can be used as a detector of biological agents. Two signal amplification schemes were tested in this work: one consisted of 4 microm diameter latex immunobeads and a second one was based on colloidal gold catalyzed reduction of silver. These signal amplification approaches were demonstrated and show that this system is capable of specific detection of bacteria (Escherichia coli) and proteins (ovalbumin). The present work shows proof-of-principle demonstration that a simple fingerprint detector based on feedback capacitance measurements can be implemented as a biosensor. The approach presented could be easily expanded to simultaneously test for a large number of analytes and multiple samples given that this device has a large number of detectors. The device and required instrumentation is highly portable and does not require expensive and bulky instrumentation because it relies purely on electronic detection.
In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs
Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard
2015-01-01
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953
Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis
Liu, Xuan
2017-01-01
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis. PMID:29207528
NASA Astrophysics Data System (ADS)
El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Pispas, Stergios; Riziotis, Christos
2014-03-01
A low cost and low complexity optical detection method of proteins is presented by employing a detection scheme based on electrostatic interactions, and implemented by sensitization of a polymer optical fibers' (POF) surface by thin overlayers of properly designed sensitive copolymer materials with predesigned charges. This method enables the fast detection of proteins having opposite charge to the overlayer, and also the effective discrimination of differently charged proteins like lysozyme (LYS) and bovine serum albumin (BSA). As sensitive materials the block and the random copolymers of the same monomers were employed, namely the block copolymer poly(styrene-b-2vinylpyridine) (PS-b- P2VP) and the corresponding random copolymer poly(styrene-r-2vinylpyridine) (PS-r-P2VP), of similar composition and molecular weights. Results show systematically different response between the block and the random copolymers, although of the same order of magnitude, drawing thus important conclusions on their applications' techno-economic aspects given that they have significantly different associated manufacturing method and costs. The use of the POF platform, in combination with those adaptable copolymer sensing materials could lead to efficient low cost bio-detection schemes.
Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.
Liu, Xuan; Jiang, Hui
2017-12-04
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Castillo, Daniela S.
2017-01-01
Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention. PMID:28759641
Castillo, Daniela S; Cassola, Alejandro
2017-01-01
Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention.
Solid-phase assays for small molecule screening using sol-gel entrapped proteins.
Lebert, Julie M; Forsberg, Erica M; Brennan, John D
2008-04-01
With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.
Zhu, Jing; Gan, Haiying; Wu, Jie; Ju, Huangxian
2018-04-17
A bipedal molecular machine powered surface programmatic chain reaction was designed for electrochemical signal amplification and highly sensitive electrochemical detection of protein. The bipedal molecular machine was built through aptamer-target specific recognition for the binding of one target protein with two DNA probes, which hybridized with surface-tethered hairpin DNA 1 (H1) via proximity effect to expose the prelocked toehold domain of H1 for the hybridization of ferrocene-labeled hairpin DNA 2 (H2-Fc). The toehold-mediated strand displacement reaction brought the electrochemical signal molecule Fc close to the electrode and meanwhile released the bipedal molecular machine to traverse the sensing surface by the surface programmatic chain reaction. Eventually, a large number of duplex structures of H1-H2 with ferrocene groups facing to the electrode were formed on the sensor surface to generate an amplified electrochemical signal. Using thrombin as a model target, this method showed a linear detection range from 2 pM to 20 nM with a detection limit of 0.76 pM. The proposed detection strategy was enzyme-free and allowed highly sensitive and selective detection of a variety of protein targets by using corresponding DNA-based affinity probes, showing potential application in bioanalysis.
Salama, Orly; Herrmann, Sebastien; Tziknovsky, Alina; Piura, Benjamin; Meirovich, Michael; Trakht, Ilya; Reed, Brent; Lobel, Leslie I; Marks, Robert S
2007-02-15
We report herein the development of an optical fiber based chemiluminescent immunosensor for detection of the native autoimmune response to GIPC-1, a PDZ containing protein involved in regulation of G-protein signaling. The recombinant protein GIPC-1 was expressed in bacteria, purified, refolded and conjugated to the tip of an optical fiber. A human monoclonal 27.B1 IgM isolated from a breast cancer patient, which targets the GIPC-1 protein, was used for calibration of the immunosensor and was detected down to a concentration of 30 pg/ml. We determined that the fiber-optic immunosensor had a detection limit 50 times lower than chemiluminescent ELISA, and approximately 500 times lower than colorimetric ELISA. In addition, sera from 11 ovarian cancer patients, 22 breast cancer patients and asymptomatic controls were tested for the presence of IgM anti-GIPC-1 autoantibodies in their serum using the two methods. The immunosensor assay detected 54% and 77% GIPC-1 positive sera within ovarian and breast cancer patients, respectively, as compared to chemiluminescent ELISA, which only detected 18% and 27%, respectively. We envision that this immunosensor may serve as a diagnostic tool for screening women for ovarian and breast cancer at an early stage, thus increasing their chance of survival.
Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki
2016-06-01
The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cryptic binding sites on proteins: definition, detection, and druggability.
Vajda, Sandor; Beglov, Dmitri; Wakefield, Amanda E; Egbert, Megan; Whitty, Adrian
2018-05-22
Many proteins in their unbound structures lack surface pockets appropriately sized for drug binding. Hence, a variety of experimental and computational tools have been developed for the identification of cryptic sites that are not evident in the unbound protein but form upon ligand binding, and can provide tractable drug target sites. The goal of this review is to discuss the definition, detection, and druggability of such sites, and their potential value for drug discovery. Novel methods based on molecular dynamics simulations are particularly promising and yield a large number of transient pockets, but it has been shown that only a minority of such sites are generally capable of binding ligands with substantial affinity. Based on recent studies, current methodology can be improved by combining molecular dynamics with fragment docking and machine learning approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Recombinant blood group proteins for use in antibody screening and identification tests.
Seltsam, Axel; Blasczyk, Rainer
2009-11-01
The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.
Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Hyun Lee, Jung; Kim, MinGin; Kim, Jeongmin; Song, Min-Jung; Jung, Hyo-Il; Lee, Wooyoung
2013-09-01
We present a study of a thermal biosensor based on bismuth nanowire that is fabricated for the detection of the human stress hormone cortisol using the Thomson effect. The Bi nanowire was grown using the On-Film Formation of Nanowires (OFF-ON) method. The thermal device was fabricated using photolithography, and the sensing area was modified with immobilized anti-cortisol antibodies conjugated with protein G for the detection of cortisol. The voltages were measured with two probe tips during surface modification to investigate the biochemical reactions in the fabricated thermal biosensor. The Bi nanowire-based thermal biosensor exhibited low detection limit and good selectivity for the detection of cortisol.
Mass Spectrometry for Paper-Based Immunoassays: Toward On-Demand Diagnosis.
Chen, Suming; Wan, Qiongqiong; Badu-Tawiah, Abraham K
2016-05-25
Current analytical methods, either point-of-care or centralized detection, are not able to meet recent demands of patient-friendly testing and increased reliability of results. Here, we describe a two-point separation on-demand diagnostic strategy based on a paper-based mass spectrometry immunoassay platform that adopts stable and cleavable ionic probes as mass reporter; these probes make possible sensitive, interruptible, storable, and restorable on-demand detection. In addition, a new touch paper spray method was developed for on-chip, sensitive, and cost-effective analyte detection. This concept is successfully demonstrated via (i) the detection of Plasmodium falciparum histidine-rich protein 2 antigen and (ii) multiplexed and simultaneous detection of cancer antigen 125 and carcinoembryonic antigen.
A stochastic context free grammar based framework for analysis of protein sequences
Dyrka, Witold; Nebel, Jean-Christophe
2009-01-01
Background In the last decade, there have been many applications of formal language theory in bioinformatics such as RNA structure prediction and detection of patterns in DNA. However, in the field of proteomics, the size of the protein alphabet and the complexity of relationship between amino acids have mainly limited the application of formal language theory to the production of grammars whose expressive power is not higher than stochastic regular grammars. However, these grammars, like other state of the art methods, cannot cover any higher-order dependencies such as nested and crossing relationships that are common in proteins. In order to overcome some of these limitations, we propose a Stochastic Context Free Grammar based framework for the analysis of protein sequences where grammars are induced using a genetic algorithm. Results This framework was implemented in a system aiming at the production of binding site descriptors. These descriptors not only allow detection of protein regions that are involved in these sites, but also provide insight in their structure. Grammars were induced using quantitative properties of amino acids to deal with the size of the protein alphabet. Moreover, we imposed some structural constraints on grammars to reduce the extent of the rule search space. Finally, grammars based on different properties were combined to convey as much information as possible. Evaluation was performed on sites of various sizes and complexity described either by PROSITE patterns, domain profiles or a set of patterns. Results show the produced binding site descriptors are human-readable and, hence, highlight biologically meaningful features. Moreover, they achieve good accuracy in both annotation and detection. In addition, findings suggest that, unlike current state-of-the-art methods, our system may be particularly suited to deal with patterns shared by non-homologous proteins. Conclusion A new Stochastic Context Free Grammar based framework has been introduced allowing the production of binding site descriptors for analysis of protein sequences. Experiments have shown that not only is this new approach valid, but produces human-readable descriptors for binding sites which have been beyond the capability of current machine learning techniques. PMID:19814800
Protein recognition by a pattern-generating fluorescent molecular probe.
Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David
2017-12-01
Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.
Identifying DNA-binding proteins using structural motifs and the electrostatic potential
Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.
2004-01-01
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290
Protein recognition by a pattern-generating fluorescent molecular probe
NASA Astrophysics Data System (ADS)
Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David
2017-12-01
Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.
Careri, Maria; Elviri, Lisa; Mangia, Alessandro; Mucchino, Claudio
2007-03-01
A novel ICP-MS-based ELISA immunoassay via element-tagged determination was devised for quantitative analysis of hidden allergens in food. The method was able to detect low amounts of peanuts (down to approximately 2 mg peanuts kg(-1) cereal-based matrix) by using a europium-tagged antibody. Selectivity was proved by the lack of detectable cross-reaction with a number of protein-rich raw materials.
Detection of biomolecules in complex media using surface plasmon resonance sensors
NASA Astrophysics Data System (ADS)
Malone, Michael R.; Masson, Jean-Francois; Barhnart, Margaret; Beaudoin, Stephen; Booksh, Karl S.
2005-11-01
Detection of multiple biologically relevant molecules was accomplished at sub-ng/mL levels in highly fouling media using fiber- optic based surface plasmon resonance sensors. Myocardial infarction markers, myoglobin and cTnI, were quantified in full serum with limits of detection below 1 ng/mL. Biologically relevant levels are between 15-30 ng/mL and 1-5 ng/mL for myoglobin and cTnI respectively. Cytokines involved in chronic wound healing, Interleukin 1, Interleukin 6, and tumor necrosis factor α, were detected at around 1 ng/mL in cell culture media. Preliminary results in monitoring these cytokines in cell cultures expressing the cytokines were obtained. The protein diagnostic of spinal muscular atrophy, survival motor neuron protein, was quantified from cell lysate. To obtain such results in complex media, the sensor's stability to non-specific protein adsorption had to be optimized. A layer of the N-hydroxysuccinimide ester of 16-mercaptohexadecanoic acid is attached to the sensor. This layer optimizes the antibody attachment to the sensor while minimizing the non-specific signal from serum proteins.
Detection of isolated protein-bound metal ions by single-particle cryo-STEM.
Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael
2017-10-17
Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.
Cohen, Joshua D.; Javed, Ammar A.; Thoburn, Christopher; Wong, Fay; Tie, Jeanne; Gibbs, Peter; Schmidt, C. Max; Yip-Schneider, Michele T.; Allen, Peter J.; Schattner, Mark; Brand, Randall E.; Singhi, Aatur D.; Petersen, Gloria M.; Hong, Seung-Mo; Kim, Song Cheol; Falconi, Massimo; Doglioni, Claudio; Weiss, Matthew J.; Ahuja, Nita; He, Jin; Makary, Martin A.; Maitra, Anirban; Hanash, Samir M.; Dal Molin, Marco; Wang, Yuxuan; Li, Lu; Ptak, Janine; Dobbyn, Lisa; Schaefer, Joy; Silliman, Natalie; Popoli, Maria; Goggins, Michael G.; Hruban, Ralph H.; Wolfgang, Christopher L.; Klein, Alison P.; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Lennon, Anne Marie
2017-01-01
The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient’s primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types. PMID:28874546
Detection of isolated protein-bound metal ions by single-particle cryo-STEM
Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael
2017-01-01
Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography. PMID:28973937
NASA Astrophysics Data System (ADS)
He, Shuai; Kah, James C. Y.
2017-04-01
Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.
Sobhan, Abdus; Oh, Jun-Hyun; Park, Mi-Kyung; Lee, Jinyoung
2018-06-12
Background : The peanut protein Arachis hypogaea (Ara h) 6 is one ofthe most serious food allergens that contributes to food-related, life-threatening problems worldwide. The extremely low allergic dose demands for more selective and rapid methods for detecting Ara h 6. Objective : The goal of this study was to develop a single-walled carbon nanotube (SWCNT)-based biosensor for the rapid detection of Ara h 6 in commercial food products. Methods : The detection principle of this biosensor was based on the binding of Ara h 6 to the anti-Ara h 6 antibody (pAb) through 1-pyrenibutanoic acid succinimidyl ester. The resistance difference (ΔR) was calculated via linear sweep voltammetry using a potentiostat. Results : The ∆R increased as the Ara h 6 concentrations increased above the range of 10 0 -10 7 pg/L. A specificity analysis showed that the anti-Ara h 6 pAb selectively interacted with Ara h 6 molecules in the buffer solution (pH 7.4). Conclusions : This research proposes that an SWCNT-based biosensor in self-assembly with antibodies could be an effective tool for the rapid detection of allergen proteins in food. Highlights : The developed biosensor exhibited higher sensitivity and selectivity. Application studies resulted in precise Ara h 6 detection in peanut-containing processed food.
Gel-based methods in redox proteomics.
Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip
2014-02-01
The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.
2016-01-01
Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.
Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won
2011-10-15
In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor. Copyright © 2011 Elsevier B.V. All rights reserved.
Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)
NASA Astrophysics Data System (ADS)
Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd
2018-04-01
The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.
Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence.
Garin-Muga, Alba; Odriozola, Leticia; Martínez-Val, Ana; Del Toro, Noemí; Martínez, Rocío; Molina, Manuela; Cantero, Laura; Rivera, Rocío; Garrido, Nicolás; Dominguez, Francisco; Sanchez Del Pino, Manuel M; Vizcaíno, Juan Antonio; Corrales, Fernando J; Segura, Victor
2016-11-04
The current catalogue of the human proteome is not yet complete, as experimental proteomics evidence is still elusive for a group of proteins known as the missing proteins. The Human Proteome Project (HPP) has been successfully using technology and bioinformatic resources to improve the characterization of such challenging proteins. In this manuscript, we propose a pipeline starting with the mining of the PRIDE database to select a group of data sets potentially enriched in missing proteins that are subsequently analyzed for protein identification with a method based on the statistical analysis of proteotypic peptides. Spermatozoa and the HEK293 cell line were found to be a promising source of missing proteins and clearly merit further attention in future studies. After the analysis of the selected samples, we found 342 PSMs, suggesting the presence of 97 missing proteins in human spermatozoa or the HEK293 cell line, while only 36 missing proteins were potentially detected in the retina, frontal cortex, aorta thoracica, or placenta. The functional analysis of the missing proteins detected confirmed their tissue specificity, and the validation of a selected set of peptides using targeted proteomics (SRM/MRM assays) further supports the utility of the proposed pipeline. As illustrative examples, DNAH3 and TEPP in spermatozoa, and UNCX and ATAD3C in HEK293 cells were some of the more robust and remarkable identifications in this study. We provide evidence indicating the relevance to carefully analyze the ever-increasing MS/MS data available from PRIDE and other repositories as sources for missing proteins detection in specific biological matrices as revealed for HEK293 cells.
Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence
2016-01-01
The current catalogue of the human proteome is not yet complete, as experimental proteomics evidence is still elusive for a group of proteins known as the missing proteins. The Human Proteome Project (HPP) has been successfully using technology and bioinformatic resources to improve the characterization of such challenging proteins. In this manuscript, we propose a pipeline starting with the mining of the PRIDE database to select a group of data sets potentially enriched in missing proteins that are subsequently analyzed for protein identification with a method based on the statistical analysis of proteotypic peptides. Spermatozoa and the HEK293 cell line were found to be a promising source of missing proteins and clearly merit further attention in future studies. After the analysis of the selected samples, we found 342 PSMs, suggesting the presence of 97 missing proteins in human spermatozoa or the HEK293 cell line, while only 36 missing proteins were potentially detected in the retina, frontal cortex, aorta thoracica, or placenta. The functional analysis of the missing proteins detected confirmed their tissue specificity, and the validation of a selected set of peptides using targeted proteomics (SRM/MRM assays) further supports the utility of the proposed pipeline. As illustrative examples, DNAH3 and TEPP in spermatozoa, and UNCX and ATAD3C in HEK293 cells were some of the more robust and remarkable identifications in this study. We provide evidence indicating the relevance to carefully analyze the ever-increasing MS/MS data available from PRIDE and other repositories as sources for missing proteins detection in specific biological matrices as revealed for HEK293 cells. PMID:27581094
Anderson, John P; Rascoe, Lisa N; Levert, Keith; Chastain, Holly M; Reed, Matthew S; Rivera, Hilda N; McAuliffe, Isabel; Zhan, Bin; Wiegand, Ryan E; Hotez, Peter J; Wilkins, Patricia P; Pohl, Jan; Handali, Sukwan
2015-01-01
The clinical spectrum of human disease caused by the roundworms Toxocara canis and Toxocara cati ranges from visceral and ocular larva migrans to covert toxocariasis. The parasite is not typically recovered in affected tissues, so detection of parasite-specific antibodies is usually necessary for establishing a diagnosis. The most reliable immunodiagnostic methods use the Toxocara excretory-secretory antigens (TES-Ag) in ELISA formats to detect Toxocara-specific antibodies. To eliminate the need for native parasite materials, we identified and purified immunodiagnostic antigens using 2D gel electrophoresis followed by electrospray ionization mass spectrometry. Three predominant immunoreactive proteins were found in the TES; all three had been previously described in the literature: Tc-CTL-1, Tc-TES-26, and Tc-MUC-3. We generated Escherichia coli expressed recombinant proteins for evaluation in Luminex based immunoassays. We were unable to produce a functional assay with the Tc-MUC-3 recombinant protein. Tc-CTL-1 and Tc-TES-26 were successfully coupled and tested using defined serum batteries. The use of both proteins together generated better results than if the proteins were used individually. The sensitivity and specificity of the assay for detecting visceral larval migrans using Tc-CTL-1 plus Tc-TES-26 was 99% and 94%, respectively; the sensitivity for detecting ocular larval migrans was 64%. The combined performance of the new assay was superior to the currently available EIA and could potentially be employed to replace current assays that rely on native TES-Ag.
Anderson, John P.; Rascoe, Lisa N.; Levert, Keith; Chastain, Holly M.; Reed, Matthew S.; Rivera, Hilda N.; McAuliffe, Isabel; Zhan, Bin; Wiegand, Ryan E.; Hotez, Peter J.; Wilkins, Patricia P.; Pohl, Jan; Handali, Sukwan
2015-01-01
The clinical spectrum of human disease caused by the roundworms Toxocara canis and Toxocara cati ranges from visceral and ocular larva migrans to covert toxocariasis. The parasite is not typically recovered in affected tissues, so detection of parasite-specific antibodies is usually necessary for establishing a diagnosis. The most reliable immunodiagnostic methods use the Toxocara excretory-secretory antigens (TES-Ag) in ELISA formats to detect Toxocara-specific antibodies. To eliminate the need for native parasite materials, we identified and purified immunodiagnostic antigens using 2D gel electrophoresis followed by electrospray ionization mass spectrometry. Three predominant immunoreactive proteins were found in the TES; all three had been previously described in the literature: Tc-CTL-1, Tc-TES-26, and Tc-MUC-3. We generated Escherichia coli expressed recombinant proteins for evaluation in Luminex based immunoassays. We were unable to produce a functional assay with the Tc-MUC-3 recombinant protein. Tc-CTL-1 and Tc-TES-26 were successfully coupled and tested using defined serum batteries. The use of both proteins together generated better results than if the proteins were used individually. The sensitivity and specificity of the assay for detecting visceral larval migrans using Tc-CTL-1 plus Tc-TES-26 was 99% and 94%, respectively; the sensitivity for detecting ocular larval migrans was 64%. The combined performance of the new assay was superior to the currently available EIA and could potentially be employed to replace current assays that rely on native TES-Ag. PMID:26485145
Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.
Yang, Shih-I; Lei, Kin Fong; Tsai, Shiao-Wen; Hsu, Hsiao-Ting
2013-01-01
Carbon nanotube (CNT) has been utilized for the biological detection due to its extremely sensitive to biological molecules. A paper-based CNT sensing microfluidic device has been developed for the detection of protein, i.e., biotin-avidin, binding. We have developed a fabrication method that allows controlled deposition of bundled CNTs with well-defined dimensions to form sensors on paper. Then, polydimethyl siloxane (PDMS) was used to pattern the hydrophobic boundary on paper to form the reaction sites. The proposed fabrication method is based on vacuum filtration process with a metal mask covering on a filter paper for the definition of the dimension of sensor. The length, width, and thickness of the CNT-based sensors are readily controlled by the metal mask and the weight of the CNT powder used during the filtration process, respectively. Homogeneous deposition of CNTs with well-defined dimensions can be achieved. The CNT-based sensor on paper has been demonstrated on the detection of the protein binding. Biotin was first immobilized on the CNT's sidewall and avidin suspended solution was applied to the site. The result of the biotin-avidin binding was measured by the resistance change of the sensor, which is a label-free detection method. It showed the CNT is sensitive to the biological molecules and the proposed paper-based CNT sensing device is a possible candidate for point-of-care biosensors. Thus, electrical bio-assays on paper-based microfluidics can be realized to develop low cost, sensitive, and specific diagnostic devices.
Addona, Terri A; Abbatiello, Susan E; Schilling, Birgit; Skates, Steven J; Mani, D R; Bunk, David M; Spiegelman, Clifford H; Zimmerman, Lisa J; Ham, Amy-Joan L; Keshishian, Hasmik; Hall, Steven C; Allen, Simon; Blackman, Ronald K; Borchers, Christoph H; Buck, Charles; Cardasis, Helene L; Cusack, Michael P; Dodder, Nathan G; Gibson, Bradford W; Held, Jason M; Hiltke, Tara; Jackson, Angela; Johansen, Eric B; Kinsinger, Christopher R; Li, Jing; Mesri, Mehdi; Neubert, Thomas A; Niles, Richard K; Pulsipher, Trenton C; Ransohoff, David; Rodriguez, Henry; Rudnick, Paul A; Smith, Derek; Tabb, David L; Tegeler, Tony J; Variyath, Asokan M; Vega-Montoto, Lorenzo J; Wahlander, Åsa; Waldemarson, Sofia; Wang, Mu; Whiteaker, Jeffrey R; Zhao, Lei; Anderson, N Leigh; Fisher, Susan J; Liebler, Daniel C; Paulovich, Amanda G; Regnier, Fred E; Tempst, Paul; Carr, Steven A
2010-01-01
Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low µg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma. PMID:19561596
Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya
2018-02-07
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R.; Cheng, Tian-Lu
2016-01-01
Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15–120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis. PMID:27494183
Lin, Wen-Wei; Chen, I-Ju; Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R; Cheng, Tian-Lu
2016-01-01
Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecale Zhou, C L; Zemla, A T; Roe, D
2005-01-29
Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set ofmore » ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.« less
Recent progress in graphene-material-based optical sensors.
Deng, Xianghua; Tang, Hao; Jiang, Jianhui
2014-11-01
Graphene material has been widely used for optical sensors owing to its excellent properties, including high-energy transfer efficiency, large surface area, and great biocompatibility. Different analytes such as nucleic acids, proteins, and small molecules can be detected by graphene-material-based optical sensors. This review provides a comprehensive discussion of graphene-material-based optical sensors focusing on detection mechanisms and biosensor designs. Challenges and future perspectives for graphene-material-based optical sensors are also presented.
Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard
2009-10-07
Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.
Conformational Change of Bacteriorhodopsin Quantitatively Monitored by Microcantilever Sensors
Braun, Thomas; Backmann, Natalija; Vögtli, Manuel; Bietsch, Alexander; Engel, Andreas; Lang, Hans-Peter; Gerber, Christoph; Hegner, Martin
2006-01-01
Bacteriorhodopsin proteoliposomes were used as a model system to explore the applicability of micromechanical cantilever arrays to detect conformational changes in membrane protein patches. The three main results of our study concern: 1), reliable functionalization of micromechanical cantilever arrays with proteoliposomes using ink jet spotting; 2), successful detection of the prosthetic retinal removal (bleaching) from the bacteriorhodopsin protein by measuring the induced nanomechanical surface stress change; and 3), the quantitative response thereof, which depends linearly on the amount of removed retinal. Our results show this technique to be a potential tool to measure membrane protein-based receptor-ligand interactions and conformational changes. PMID:16443650
A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood
NASA Astrophysics Data System (ADS)
Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin
2016-02-01
Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j
A flow-cytometry-based method for detecting simultaneously five allergens in a complex food matrix.
Otto, Gaetan; Lamote, Amandine; Deckers, Elise; Dumont, Valery; Delahaut, Philippe; Scippo, Marie-Louise; Pleck, Jessica; Hillairet, Caroline; Gillard, Nathalie
2016-12-01
To avoid carry-over contamination with allergens, food manufacturers implement quality control strategies relying primarily on detection of allergenic proteins by ELISA. Although sensitive and specific, this method allowed detection of only one allergen per analysis and effective control policies were thus based on multiplying the number of tests done in order to cover the whole range of allergens. We present in this work an immunoassay for the simultaneous detection of milk, egg, peanut, mustard and crustaceans in cookies samples. The method was based on a combination of flow cytometry with competitive ELISA where microbeads were used as sorbent surface. The test was able to detect the presence of the five allergens with median inhibitory concentrations (IC50) ranging from 2.5 to 15 mg/kg according to the allergen to be detected. The lowest concentrations of contaminants inducing a significant difference of signal between non-contaminated controls and test samples were 2 mg/kg of peanut, 5 mg/kg of crustaceans, 5 mg/kg of milk, 5 mg/kg of mustard and 10 mg/kg of egg. Assay sensitivity was influenced by the concentration of primary antibodies added to the sample extract for the competition and by the concentration of allergenic proteins bound to the surface of the microbeads.
Discovering protein complexes in protein interaction networks via exploring the weak ties effect
2012-01-01
Background Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. Results To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. Conclusions We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes. PMID:23046740
Visual Reading Method for Detection of Bacterial Tannase
Osawa, R.; Walsh, T. P.
1993-01-01
Tannase activity of bacteria capable of degrading tannin-protein complexes was determined by a newly developed visual reading method. The method is based on two phenomena: (i) the ability of tannase to hydrolyze methyl gallate to release free gallic acid and (ii) the green to brown coloration of gallic acid after prolonged exposure to oxygen in an alkaline condition. The method has been successfully used to detect the presence of tannase in the cultures of bacteria capable of degrading tannin-protein complexes. PMID:16348918
Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.
Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul
2016-02-01
To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.
Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.
Chertov, Oleg; Simpson, John T; Biragyn, Arya; Conrads, Thomas P; Veenstra, Timothy D; Fisher, Robert J
2005-01-01
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.
Wang, Michael Z; Howard, Brandon; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C
2003-09-01
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.
Improved catalyzed reporter deposition, iCARD.
Lohse, Jesper; Petersen, Kenneth Heesche; Woller, Nina Claire; Pedersen, Hans Christian; Skladtchikova, Galina; Jørgensen, Rikke Malene
2014-06-18
Novel reporters have been synthesized with extended hydrophilic linkers that in combination with polymerizing cross-linkers result in very efficient reporter deposition. By utilizing antibodies to stain HER2 proteins in a cell line model it is demonstrated that the method is highly specific and sensitive with virtually no background. The detection of HER2 proteins in tissue was used to visualize individual antigens as small dots visible in a microscope. Image analysis-assisted counting of fluorescent or colored dots allowed assessment of relative protein levels in tissue. Taken together, we have developed novel reporters that improve the CARD method allowing highly sensitive in situ detection of proteins in tissue. Our findings suggest that in situ protein quantification in biological samples can be performed by object recognition and enumeration of dots, rather than intensity-based fluorescent or colorimetric assays.
Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry
NASA Astrophysics Data System (ADS)
Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini
We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.
Refractometric total protein concentrations in icteric serum from dogs.
Gupta, Aradhana; Stockham, Steven L
2014-01-01
To determine whether high serum bilirubin concentrations interfere with the measurement of serum total protein concentration by refractometry and to assess potential biases among refractometer measurements. Evaluation study. Sera from 2 healthy Greyhounds. Bilirubin was dissolved in 0.1M NaOH, and the resulting solution was mixed with sera from 2 dogs from which food had been withheld to achieve various bilirubin concentrations up to 40 mg/dL. Refractometric total protein concentrations were estimated with 3 clinical refractometers. A biochemical analyzer was used to measure biuret assay-based total protein and bilirubin concentrations with spectrophotometric assays. No interference with refractometric measurement of total protein concentrations was detected with bilirubin concentrations up to 41.5 mg/dL. Biases in refractometric total protein concentrations were detected and were related to the conversion of refractive index values to total protein concentrations. Hyperbilirubinemia did not interfere with the refractometric estimation of serum total protein concentration. The agreement among total protein concentrations estimated by 3 refractometers was dependent on the method of conversion of refractive index to total protein concentration and was independent of hyperbilirubinemia.
Wang, Hou-Yu; Guo, Cheng-Ye; Guo, Chen-Gang; Fan, Liu-Yin; Zhang, Lei; Cao, Cheng-Xi
2013-04-24
A visual electrophoretic titration method was firstly developed from the concept of moving reaction boundary (MRB) for protein content analysis. In the developed method, when the voltage was applied, the hydroxide ions in the cathodic vessel moved towards the anode, and neutralized the carboxyl groups of protein immobilized via highly cross-linked polyacrylamide gel (PAG), generating a MRB between the alkali and the immobilized protein. The boundary moving velocity (V(MRB)) was as a function of protein content, and an acid-base indicator was used to denote the boundary displacement. As a proof of concept, standard model proteins and biological samples were chosen for the experiments to study the feasibility of the developed method. The experiments revealed that good linear calibration functions between V(MRB) and protein content (correlation coefficients R>0.98). The experiments further demonstrated the following merits of developed method: (1) weak influence of non-protein nitrogen additives (e.g., melamine) adulterated in protein samples, (2) good agreement with the classic Kjeldahl method (R=0.9945), (3) fast measuring speed in total protein analysis of large samples from the same source, and (4) low limit of detection (0.02-0.15 mg mL(-1) for protein content), good precision (R.S.D. of intra-day less than 1.7% and inter-day less than 2.7%), and high recoveries (105-107%). Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Low-Cost Charged-Coupled Device (CCD) Based Detectors for Shiga Toxins Activity Analysis.
Rasooly, Reuven; Prickril, Ben; Bruck, Hugh A; Rasooly, Avraham
2017-01-01
To improve food safety there is a need to develop simple, low-cost sensitive devices for detection of food-borne pathogens and their toxins. We describe a simple, low-cost webcam-based detector which can be used for various optical detection modalities, including fluorescence, chemiluminescence, densitometry, and colorimetric assays. The portable battery-operated CCD-based detection system consists of four modules: (1) a webcam to measure and record light emission, (2) a sample plate to perform assays, (3) a light emitting diode (LED) for illumination, and (4) a portable computer to acquire and analyze images. To demonstrate the technology, we used a cell based assay for fluorescence detection of the activity of the food borne Shiga toxin type 2 (Stx2), differentiating between biologically active toxin and inactive toxin which is not a risk. The assay is based on Shiga toxin inhibition of cell protein synthesis measured through inhibition of the green fluorescent protein (GFP). In this assay, GFP emits light at 509 nm when excited with a blue LED equipped with a filter at 486 nm. The emitted light is then detected with a green filter at 535 nm. Toxin activity is measured through a reduction in the 509 nm emission. In this system the level of detection (LOD) for Stx2 was 0.1 pg/ml, similar to the LOD of commercial fluorometers. These results demonstrate the utility and potential of low cost detectors for toxin activity. This approach could be readily adapted to the detection of other food-borne toxins.
Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe.
Zhou, Miao; Yang, Minghui; Zhou, Feimeng
2014-05-15
Paper based colorimetric biosensing platform utilizing cross-linked siloxane 3-aminopropyltriethoxysilane (APTMS) as probe was developed for the detection of a broad range of targets including H2O2, glucose and protein biomarker. APTMS was extensively used for the modification of filter papers to develop paper based analytical devices. We discovered when APTMS was cross-linked with glutaraldehyde (GA), the resulting complex (APTMS-GA) displays brick-red color, and a visual color change was observed when the complex reacted with H2O2. By integrating the APTMS-GA complex with filter paper, the modified paper enables quantitative detection of H2O2 through the monitoring of the color intensity change of the paper via software Image J. Then, with the immobilization of glucose oxidase (GOx) onto the modified paper, glucose can be detected through the detection of enzymatically generated H2O2. For protein biomarker prostate specific antigen (PSA) assay, we immobilized capture, not captured anti-PSA antibody (Ab1) onto the paper surface and using GOx modified gold nanorod (GNR) as detection anti-PSA antibody (Ab2) label. The detection of PSA was also achieved via the liberated H2O2 when the GOx label reacted with glucose. The results demonstrated the possibility of this paper based sensor for the detection of different analytes with wide linear range. The low cost and simplicity of this paper based sensor could be developed for "point-of-care" analysis and find wide application in different areas. © 2013 Published by Elsevier B.V.
Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin
2010-01-01
The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904
CMOS image sensor-based immunodetection by refractive-index change.
Devadhasan, Jasmine P; Kim, Sanghyo
2012-01-01
A complementary metal oxide semiconductor (CMOS) image sensor is an intriguing technology for the development of a novel biosensor. Indeed, the CMOS image sensor mechanism concerning the detection of the antigen-antibody (Ag-Ab) interaction at the nanoscale has been ambiguous so far. To understand the mechanism, more extensive research has been necessary to achieve point-of-care diagnostic devices. This research has demonstrated a CMOS image sensor-based analysis of cardiovascular disease markers, such as C-reactive protein (CRP) and troponin I, Ag-Ab interactions on indium nanoparticle (InNP) substrates by simple photon count variation. The developed sensor is feasible to detect proteins even at a fg/mL concentration under ordinary room light. Possible mechanisms, such as dielectric constant and refractive-index changes, have been studied and proposed. A dramatic change in the refractive index after protein adsorption on an InNP substrate was observed to be a predominant factor involved in CMOS image sensor-based immunoassay.
Gámez-Díaz, Laura; Sigmund, Elena C; Reiser, Veronika; Vach, Werner; Jung, Sophie; Grimbacher, Bodo
2018-01-01
The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.
Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju
2016-12-01
Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system. Copyright © 2016 Elsevier B.V. All rights reserved.
Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N
2016-09-16
Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. Copyright © 2016 Elsevier B.V. All rights reserved.
Gotesman, M; Soliman, H; El-Matbouli, M
2014-01-01
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study. PMID:23347276
Peckeu, Laurene; Delasnerie-Lauprètre, Nicole; Brandel, Jean-Philippe; Salomon, Dominique; Sazdovitch, Véronique; Laplanche, Jean-Louis; Duyckaerts, Charles; Seilhean, Danielle; Haïk, Stéphane; Hauw, Jean-Jacques
2017-01-01
Diagnostic criteria of Creutzfeldt–Jakob disease (CJD), a rare and fatal transmissible nervous system disease with public health implications, are determined by clinical data, electroencephalogram (EEG), detection of 14-3-3 protein in cerebrospinal fluid (CSF), brain magnetic resonance imaging and prion protein gene examination. The specificity of protein 14-3-3 has been questioned. We reviewed data from 1,572 autopsied patients collected over an 18-year period (1992–2009) and assessed whether and how 14-3-3 detection impacted the diagnosis of sporadic CJD in France, and whether this led to the misdiagnosis of treatable disorders. 14-3-3 detection was introduced into diagnostic criteria for CJD in 1998. Diagnostic accuracy decreased from 92% for the 1992–1997 period to 85% for the 1998–2009 period. This was associated with positive detections of 14-3-3 in cases with negative EEG and alternative diagnosis at autopsy. Potentially treatable diseases were found in 163 patients (10.5%). This study confirms the usefulness of the recent modification of diagnosis criteria by the addition of the results of CSF real-time quaking-induced conversion, a method based on prion seed-induced misfolding and aggregation of recombinant prion protein substrate that has proven to be a highly specific test for diagnosis of sporadic CJD. PMID:29043964
Adewole, Olanisun Olufemi; Erhabor, Greg Efosa; Adewole, Temitayo Oluwatoyin; Ojo, Abiodun Oluwasesan; Oshokoya, Harriet; Wolfe, Lisa M; Prenni, Jessica E
2016-05-01
Excessive sweating is a common symptom of the disease and an unexplored biofluid for TB diagnosis; we conducted a proof-of-concept study to identify potential diagnostic biomarkers of active TB in eccrine sweat. We performed a global proteomic profile of eccrine sweat sampled from patients with active pulmonary TB, other lung diseases (non-TB disease), and healthy controls. A comparison of proteomics between Active-TB, Non-TB, and Healthy Controls was done in search for potential biomarkers of active TB. Sweat specimens were pooled from 32 active TB patients, 27 patients with non-TB diseases, and 24 apparently healthy controls, all were negative for HIV. Over 100 unique proteins were identified in the eccrine sweat of all three groups. Twenty-six proteins were exclusively detected in the sweat of patients with active TB while the remaining detected proteins overlapped between three groups. Gene ontology evaluation indicated that the proteins detected uniquely in sweat of active TB patients were involved in immune response and auxiliary protein transport. Gene products for cellular components (e.g. ribosomes) were detected only in active TB patients. Data are available via ProteomeXchange with identifier PXD003224. Proteomics of sweat from active TB patients is a viable approach for biomarker identification, which could be used to develop a nonsputum-based test for detection of active TB. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Knowledge-based model building of proteins: concepts and examples.
Bajorath, J.; Stenkamp, R.; Aruffo, A.
1993-01-01
We describe how to build protein models from structural templates. Methods to identify structural similarities between proteins in cases of significant, moderate to low, or virtually absent sequence similarity are discussed. The detection and evaluation of structural relationships is emphasized as a central aspect of protein modeling, distinct from the more technical aspects of model building. Computational techniques to generate and complement comparative protein models are also reviewed. Two examples, P-selectin and gp39, are presented to illustrate the derivation of protein model structures and their use in experimental studies. PMID:7505680
Jain, Swati; Ponmariappan, S.; Kumar, Om
2011-01-01
Background & objectives: Botulinum neurotoxins (A-G) are among most poisonous substances in the world, produced by obligate anaerobic bacteria Clostridum botulinum. Among the seven serotypes A, B, E and F are of human importance. In India, the prevalence of C. botulinum as well as botulism outbreaks have been reported. Due to its extreme toxicity it has been classified in the Category A of biological warfare agent. So far, there is no commercial detection system available in India to detect botulism. The present study aims to develop an immuno detection system for botulinum neurotoxin serotype B using synthetic gene approach. Methods: The truncated fragment of the botulinum neurotoxin type B from amino acid 1-450 was synthesized using PCR overlap primers; the constructed gene was cloned in the pQE30UA vector and transformed to Escherichia coli SG 13009. The recombinant protein expression was optimized using various concentration of isopropylthiogalactoside (IPTG) induction, further the expression was confirmed by Western blot analysis using anti-His antibody. Recombinant protein was purified under denatured condition using Ni-NTA affinity chromatography. Antibody was generated against the recombinant protein using alum adjuvant in BALB/c mice and tested for cross reactivity with other serotypes of C. botulinum as well as closely related clostridia. An ELISA test was developed for the detection of botulinum neurotoxin and the minimum detection limit was also estimated. Results: The recombinant protein was expressed at maximum yield at 4.3 h of post-induction with 0.5 mM IPTG concentration. The recombinant protein was purified using Ni-NTA affinity chromatography up to the homogeneity level. The polyclonal antibodies were raised in mice with a titre of 1:2048000. The developed antibody was highly specific with a sensitivity of detecting approximately 15 ng/ml of recombinant protein and not showing any cross-reactivity with other serotypes. Interpretation & conclusions: There is no commercial immunodetection system available in India to detect botulism. The developed detection system is highly specific. It will be useful for growing food industry to detect botulinum neurotoxin in food samples as well as in clinical samples. PMID:21808132
Kim, Kyeong Seok; Yang, Hun Yong; Song, Hosup; Kang, Ye Rim; Kwon, JiHoon; An, JiHye; Son, Ji Yeon; Kwack, Seung Jun; Kim, Young-Mi; Bae, Ok-Nam; Ahn, Mee-Young; Lee, Jaewon; Yoon, Sungpil; Lee, Byung Mu; Kim, Hyung Sik
2017-01-01
Acute kidney injury (AKI) is associated with increased mortality rate in patients but clinically available biomarkers for disease detection are currently not available. Recently, a new biomarker, selenium-binding protein 1 (SBP1), was identified for detection of nephrotoxicity using proteomic analysis. The aim of this study was to assess the sensitivity of urinary SBP1 levels as an early detection of AKI using animal models such as cisplatin or ischemia/reperfusion (I/R). Sprague-Dawley rats were injected with cisplatin (6 mg/kg, once i.p.) and sacrificed at 1, 3, or 5 days after treatment. Ischemia was achieved by bilaterally occluding both kidneys with a microvascular clamp for 45 min and verified visually by a change in tissue color. After post-reperfusion, urine samples were collected at 9, 24, and 48 hr intervals. Urinary excretion of protein-based biomarkers was measured by Western blot analysis. In cisplatin-treated rats, mild histopathologic alterations were noted at day 1 which became severe at day 3. Blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly increased at day 3. Levels of urinary excretion of SBP1, neutrophil gelatinase-associated lipocalin (NGAL), and a tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly elevated at day 3 and 5 following drug treatment. In the vehicle-treated I/R group, serum levels of BUN and SCr and AST activity were significantly increased compared to sham. Urinary excretion of SBP1 and NGAL rose markedly following I/R. The urinary levels of SBP1, NGAL, TIMP-1, and KIM-1 proteins excreted by AKI patients and normal subjects were compared. Among these proteins, a marked rise in SBP1 was observed in urine of patients with AKI compared to normal subjects. Based upon receiver-operator curves (ROC), SBP1 displayed a higher area under the curve (AUC) scores than levels of SCr, BUN, total protein, and glucose. In particular, SBP1 protein was readily detected in small amounts of urine without purification. Data thus indicate that urinary excretion of SBP1 may be useful as a reliable biomarker for early diagnosis of AKI in patients.
Tran, Duc T; Banerjee, Sambuddha; Alayash, Abdu I; Crumbliss, Alvin L; Fitzgerald, Michael C
2012-02-07
Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application. © 2011 American Chemical Society
Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice.
Zhao, Mei; Li, Huifang; Liu, Wei; Guo, Yumei; Chu, Weiru
2016-05-15
A novel protein immobilization method based on plasma treatment of paper on the low-cost paper-based immunodevice was established in this work. By using a benchtop plasma cleaner, the paper microzone was treated by oxygen plasma treatment for 4 min and then the antibody can be directly immobilized on the paper surface. Aldehyde group was produced after the plasma treatment, which can be verified from the fourier transform infrared spectroscopy (FT-IR) spectra and x-ray photoelectron spectroscopy (XPS) spectra. By linked to aldehyde group, the antibody can be immobilized on the paper surface without any other pretreatment. A paper-based immunodevice was introduced here through this antibody immobilization method. With sandwich chemiluminescence (CL) immunoassay method, the paper-based immunodevice was successfully performed for carcinoembryonic antigen (CEA) detection in human serum with a linear range of 0.1-80.0 ng/mL. The detection limit was 0.03 ng/mL, which was 30 times lower than the clinical CEA level. Comparing to the other protein immobilization methods on paper-based device, this strategy was faster and simpler and had potential applications in point-of-care testing, public health and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions
Abnousi, Armen; Broschat, Shira L.; Kalyanaraman, Ananth
2016-01-01
Background Identifying conserved regions in protein sequences is a fundamental operation, occurring in numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich regions within proteins, to compute protein clusters, to annotate sequence function, and to compute evolutionary relationships among protein sequences. A number of approaches exist for identifying and characterizing protein families based on their domains, and because domains represent conserved portions of a protein sequence, the primary computation involved in protein family characterization is identification of such conserved regions. However, identifying conserved regions from large collections (millions) of protein sequences presents significant challenges. Methods In this paper we present a new, alignment-free method for detecting conserved regions in protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method exploits the abundance of exact matching short subsequences (k-mers) to quickly detect conserved regions, and the power of machine learning is used to improve the prediction accuracy of detection. We present a parallel implementation of NADDA using the MapReduce framework and show that our method is highly scalable. Results We have compared NADDA with Pfam and InterPro databases. For known domains annotated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with new domains not present in the training set an average accuracy of 63% is achieved when compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability of NADDA to capture conserved regions beyond those present in Pfam. We have also compared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a single processor were 49s, 10,566s, and 456s for NADDA, ADDA, and MKDOM2, respectively, for a data set comprised of approximately 2500 sequences. PMID:27552220
El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Hajj, Hazem; Kobeissy, Firas H
2017-01-01
Degradomics is a novel discipline that involves determination of the proteases/substrate fragmentation profile, called the substrate degradome, and has been recently applied in different disciplines. A major application of degradomics is its utility in the field of biomarkers where the breakdown products (BDPs) of different protease have been investigated. Among the major proteases assessed, calpain and caspase proteases have been associated with the execution phases of the pro-apoptotic and pro-necrotic cell death, generating caspase/calpain-specific cleaved fragments. The distinction between calpain and caspase protein fragments has been applied to distinguish injury mechanisms. Advanced proteomics technology has been used to identify these BDPs experimentally. However, it has been a challenge to identify these BDPs with high precision and efficiency, especially if we are targeting a number of proteins at one time. In this chapter, we present a novel bioinfromatic detection method that identifies BDPs accurately and efficiently with validation against experimental data. This method aims at predicting the consensus sequence occurrences and their variants in a large set of experimentally detected protein sequences based on state-of-the-art sequence matching and alignment algorithms. After detection, the method generates all the potential cleaved fragments by a specific protease. This space and time-efficient algorithm is flexible to handle the different orientations that the consensus sequence and the protein sequence can take before cleaving. It is O(mn) in space complexity and O(Nmn) in time complexity, with N number of protein sequences, m length of the consensus sequence, and n length of each protein sequence. Ultimately, this knowledge will subsequently feed into the development of a novel tool for researchers to detect diverse types of selected BDPs as putative disease markers, contributing to the diagnosis and treatment of related disorders.
Kooijman, Lotte J; Mapes, Samantha M; Pusterla, Nicola
2016-07-01
Equine coronavirus (EqCoV) infection has been documented in most reports through quantitative qPCR analysis of feces and viral genome sequencing. Although qPCR is used to detect antigen during the acute disease phase, there is no equine-specific antibody test available to study EqCoV seroprevalence in various horse populations. We developed an enzyme-linked immunosorbent assay (ELISA) targeting antibodies to the spike (S) protein of EqCoV and validated its use, using acute and convalescent sera from 83 adult horses involved in 6 outbreaks. The EqCoV S protein-based ELISA was able to reliably detect antibodies to EqCoV in naturally infected horses. The greatest seroconversion rate was observed in horses with clinical signs compatible with EqCoV infection and EqCoV qPCR detection in feces. The EqCoV S protein-based ELISA could be used effectively for seroepidemiologic studies in order to better characterize the overall infection rate of EqCoV in various horse populations. © 2016 The Author(s).
Chromatography/Mass Spectrometry-Based Biomarkers in the Field of Obstructive Sleep Apnea
Xu, Huajun; Zheng, Xiaojiao; Jia, Wei; Yin, Shankai
2015-01-01
Abstract Biomarker assessment is based on quantifying several proteins and metabolites. Recent developments in proteomics and metabolomics have enabled detection of these small molecules in biological samples and exploration of the underlying disease mechanisms in obstructive sleep apnea (OSA). This systemic review was performed to identify biomarkers, which were only detected by chromatography and/or mass spectrometry (MS) and to discuss the role of these biomarkers in the field of OSA. We systemically reviewed relevant articles from PubMed and EMBASE referring to proteins and metabolite profiles of biological samples in patients with OSA. The analytical platforms in this review were focused on chromatography and/or MS. In total, 30 studies evaluating biomarkers in patients with OSA using chromatography and/or MS methods were included. Numerous proteins and metabolites, including lipid profiles, adrenergic/dopaminergic biomarkers and derivatives, amino acids, oxidative stress biomarkers, and other micromolecules were identified in patients with OSA. Applying chromatography and/or MS methods to detect biomarkers helps develop an understanding of OSA mechanisms. More proteomic and metabolomic studies are warranted to develop potential diagnostic and clinical monitoring methods for OSA. PMID:26448002
Yamamoto, Tetsushi; Kudo, Mitsuhiro; Peng, Wei-Xia; Takata, Hideyuki; Takakura, Hideki; Teduka, Kiyoshi; Fujii, Takenori; Mitamura, Kuniko; Taga, Atsushi; Uchida, Eiji; Naito, Zenya
2016-10-01
Colorectal cancer (CRC) is one of the most common cancers worldwide, and many patients are already at an advanced stage when they are diagnosed. Therefore, novel biomarkers for early detection of colorectal cancer are required. In this study, we performed a global shotgun proteomic analysis using formalin-fixed and paraffin-embedded (FFPE) CRC tissue. We identified 84 candidate proteins whose expression levels were differentially expressed in cancer and non-cancer regions. A label-free semiquantitative method based on spectral counting and gene ontology (GO) analysis led to a total of 21 candidate proteins that could potentially be detected in blood. Validation studies revealed cyclophilin A, annexin A2, and aldolase A mRNA and protein expression levels were significantly higher in cancer regions than in non-cancer regions. Moreover, an in vitro study showed that secretion of aldolase A into the culture medium was clearly suppressed in CRC cells compared to normal colon epithelium. These findings suggest that decreased aldolase A in blood may be a novel biomarker for the early detection of CRC.
Dixit, Chandra K.; Kadimisetty, Karteek; Otieno, Brunah A.; Tang, Chi; Malla, Spundana; Krause, Colleen E.; Rusling, James F.
2015-01-01
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. Simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that doesn’t require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for highly sensitive detection of the panel of cancer-specific biomarkers with high specificity and at the same time have the potential to be translated into a POC. PMID:26525998
Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F
2016-01-21
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.
NASA Astrophysics Data System (ADS)
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong
2013-10-01
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies. Electronic supplementary information (ESI) available: Absorbance and fluorescence spectra of quantum dot nanoprobes, electrophoresis analysis, and experimental setup for fluorescence imaging with dual channels. See DOI: 10.1039/c3nr03291d
NASA Astrophysics Data System (ADS)
Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi
2016-05-01
Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.
Cho, Ki-hyun; Kim, Jeongmi; Yoo, Hyun-ah; Kim, Dae-hee; Park, Seung-yong; Song, Chang-seon; Choi, In-soo; Lee, Joong-bok
2014-12-01
Simple methods for measuring the levels of serum antibody against canine distemper virus (CDV) would assist in the effective vaccination of dogs. To develop an enzyme-linked immunosorbent assay (ELISA) specific for CDV, we expressed hydrophilic extra-viral domain (HEVD) protein of the A75/17-CDV H gene in a pET 28a plasmid-based Escherichia (E.) coli vector system. Expression was confirmed by dot and Western blotting. We proposed that detection of E. coli-expressed H protein might be conformation- dependent because intensities of the reactions observed with these two methods varied. The H gene HEVD protein was further purified and used as an antigen for an ELISA. Samples from dogs with undetectable to high anti-CDV antibody titers were analyzed using this HEVD-specific ELISA and a commercial CDV antibody detection kit (ImmunoComb). Levels of HEVD antigenicity measured with the assays and immunochromatography correlated. These data indicated that the HEDV protein may be used as antigen to develop techniques for detecting antibodies against CDV.
A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents.
Mechaly, Adva; Cohen, Hila; Cohen, Ofer; Mazor, Ohad
2016-08-01
Biolayer interferometry (BLI) is an optical technique that uses fiber-optic biosensors for label-free real-time monitoring of protein-protein interactions. In this study, we coupled the advantages of the Octet Red BLI system (automation, fluidics-free, and on-line monitoring) with a signal enhancement step and developed a rapid and sensitive immunological-based method for detection of biowarfare agents. As a proof of concept, we chose to demonstrate the efficacy of this novel assay for the detection of agents representing two classes of biothreats, proteinaceous toxins, and bacterial pathogens: ricin, a lethal plant toxin, and the gram-negative bacterium Francisella tularensis, the causative agent of tularemia. The assay setup consisted of biotinylated antibodies immobilized to the biosensor coupled with alkaline phosphatase-labeled antibodies as the detection moiety to create nonsoluble substrate crystals that precipitate on the sensor surface, thereby inducing a significant wavelength interference. It was found that this BLI-based assay enables sensitive detection of these pathogens (detection limits of 10 pg/ml and 1 × 10(4) pfu/ml ricin and F. tularensis, respectively) within a very short time frame (17 min). Owing to its simplicity, this assay can be easily adapted to detect other analytes in general, and biowarfare agents in particular, in a rapid and sensitive manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization.
Cissell, Kyle A; Rahimi, Yasmeen; Shrestha, Suresh; Deo, Sapna K
2009-01-01
Reassembly of split reporter proteins, also referred to as protein complementation, is utilized in the detection of protein-protein or protein-nucleic acid interactions. In this strategy, a reporter protein is fragmented into two inactive polypeptides to which interacting/binding partners are fused. The interaction between fused partners leads to the formation of a reassembled, active reporter. In this Communication, we have presented a proof-of-concept for the detection of a target nucleic acid sequence based on the reassembly of the bioluminescent reporter Renilla luciferase (Rluc), which is driven by DNA hybridization. Although, reassembly of Rluc though protein interactions has been demonstrated by others, the Rluc reassembly through DNA hybridization has not been shown yet, which is the novelty of this work. It is well established that bioluminescence detection offers significant advantages due to the absence of any background signal. In our study, two rationally designed fragments of Rluc were conjugated to complementary oligonucleotide probes. Hybridization of the two probes with fused Rluc fragments resulted in the reassembly of the fragments, generating active Rluc, measurable by the intensity of light given off upon addition of coelenterazine. Our study also shows that the reassembly of Rluc can be inhibited by an oligonucleotide probe that competes to bind to the hybridized probe-Rluc fragment complex, indicating a potential strategy for the quantitative detection of target nucleic acid. We were able to achieve the reassembly of Rluc fused to oligonucleotide probes using femtomole amounts of the probe-fragment protein conjugate. This concentration is approximately 4 orders of magnitude less than that reported using green fluorescent protein (GFP) as the reporter. A DNA-driven Rluc reassembly study performed in a cellular matrix did not show any interference from the matrix.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-In
2016-02-01
Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules.Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules. Electronic supplementary information (ESI) available: Typical SEM images of the ZnO NRs used in the biomarker assays are provided in Fig. S1. See DOI: 10.1039/c5nr08706f
A Coffee Ring Aptasensor for Rapid Protein Detection
Wen, Jessica T.; Ho, Chih-Ming; Lillehoj, Peter B.
2013-01-01
We introduce a new biosensing platform for rapid protein detection that combines one of the simplest methods for biomolecular concentration, coffee ring formation, with a sensitive aptamer-based optical detection scheme. In this approach, aptamer beacons are utilized for signal transduction where a fluorescence signal is emitted in the presence of the target molecule. Signal amplification is achieved by concentrating aptamer-target complexes within liquid droplets, resulting in the formation of coffee ring “spots”. Surfaces with various chemical coatings were utilized to investigate the correlation between surface hydrophobicity, concentration efficiency and signal amplification. Based on our results, we found that the increase in coffee ring diameter with larger droplet volumes is independent of surface hydrophobicity. Furthermore, we show that highly hydrophobic surfaces produce enhanced particle concentration, via coffee ring formation, resulting in signal intensities 6-fold greater than those on hydrophilic surfaces. To validate this biosensing platform for the detection of clinical samples, we detected α-thrombin in human serum and 4x diluted whole blood. Based on our results, coffee ring spots produced detection signals 40x larger than samples in liquid droplets. Additionally, this biosensor exhibits a lower limit of detection of 2 ng/mL (54 pM) in serum, and 4 ng/mL (105 pM) in blood. Based on its simplicity and high performance, this platform demonstrates immense potential as an inexpensive diagnostic tool for the detection of disease biomarkers, particularly for use in developing countries that lack the resources and facilities required for conventional biodetection practices. PMID:23540796
Expanding the bovine milk proteome through extensive fractionation.
Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria
2013-01-01
Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the different fractions reduced the number to 376 unique proteins in 2 replicates. In addition, 366 proteins were detected by this process in 1 replicate. Hence, by applying different fractionation techniques to milk, we expanded the milk proteome. The milk proteome map may serve as a reference for scientists working in the dairy sector. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.
Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S
2005-10-14
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.
Protein-diazonium adduct direct electrografting onto SPRi-biochip.
Corgier, Benjamin P; Bellon, Sophie; Anger-Leroy, Marielle; Blum, Loïc J; Marquette, Christophe A
2009-08-18
A direct protein immobilization method for surface plasmon resonance imaging (SPRi) gold chip arraying is exposed. The biomolecule electroaddressing strategy, previously demonstrated by our team on carbon surfaces, is here valuably involved and adapted to create a straightforward and efficient protein immobilization process onto SPRi-biochips. The proteins, modified with an aryl-diazonium adduct, are addressed to the SPRi chip surface through the electroreduction of the aryl-diazonium. The biomolecule deposition was followed through SPRi live measurements during the electrografting process. A specially designed setup enabled us to directly observe the mass increasing at the sensor surface while the proteins were electrografted. A pin electrospotting method, allowing the achievement of distinct sensing layers on gold SPRi-biochips, was used to generate microarray biochips. The integrity of the immobilized proteins and the specificity of the detection, based on antigen/antibody interactions, were demonstrated for the detection of specific antibodies and ovalbumin. The SPRi detection limit of ovalbumin using the electroaddressing of anti-ovalbumin IgG was compared with two other immobilization procedures, cystamine-glutaraldehyde self-assembled monolayer and pyrrole, and was found to be a decade lower than these ones (100 ng/mL, i.e., 2 nM).
Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection
NASA Astrophysics Data System (ADS)
Shikha, Swati; Zheng, Xiang; Zhang, Yong
2018-06-01
Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.
Wawegama, Nadeeka K.; Kanci, Anna; Marenda, Marc S.; Markham, Philip F.
2014-01-01
Mycoplasma bovis causes a range of diseases in cattle, including mastitis, arthritis, and pneumonia. However, accurate serological diagnosis of infection remains problematic. The studies described here aimed to identify an antigen that might be used to develop a more specific and sensitive diagnostic assay. A 226-kDa immunogenic protein was consistently detected in Western blots by antibodies in sera from calves experimentally infected with M. bovis. This protein was shown to be a membrane protein with lipase activity and was named mycoplasma immunogenic lipase A (MilA). Different regions of MilA were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins and recombinant products from the amino-terminal end shown to have strong immunoreactivity with M. bovis-specific bovine sera. The most immunoreactive fusion protein, GST-MilA-ab, was used to develop indirect IgM and IgG enzyme-linked immunosorbent assays (ELISAs). The IgM ELISA detected M. bovis-specific IgM antibody 2 weeks after infection with 97.1% sensitivity and had a specificity of 63.3%, while the IgG ELISA detected M. bovis-specific IgG 3 weeks after infection with 92.86% sensitivity and had a specificity of 98.7%, demonstrating that the IgG ELISA has potential for use as a sensitive and specific assay for detecting infection in cattle. PMID:24334686
Dong, Meili; Wu, Jiandong; Ma, Zimin; Peretz-Soroka, Hagit; Zhang, Michael; Komenda, Paul; Tangri, Navdeep; Liu, Yong; Rigatto, Claudio; Lin, Francis
2017-03-26
Traditional diagnostic tests for chronic diseases are expensive and require a specialized laboratory, therefore limiting their use for point-of-care (PoC) testing. To address this gap, we developed a method for rapid and low-cost C-reactive protein (CRP) detection from blood by integrating a paper-based microfluidic immunoassay with a smartphone (CRP-Chip). We chose CRP for this initial development because it is a strong biomarker of prognosis in chronic heart and kidney disease. The microfluidic immunoassay is realized by lateral flow and gold nanoparticle-based colorimetric detection of the target protein. The test image signal is acquired and analyzed using a commercial smartphone with an attached microlens and a 3D-printed chip-phone interface. The CRP-Chip was validated for detecting CRP in blood samples from chronic kidney disease patients and healthy subjects. The linear detection range of the CRP-Chip is up to 2 μg/mL and the detection limit is 54 ng/mL. The CRP-Chip test result yields high reproducibility and is consistent with the standard ELISA kit. A single CRP-Chip can perform the test in triplicate on a single chip within 15 min for less than 50 US cents of material cost. This CRP-Chip with attractive features of low-cost, fast test speed, and integrated easy operation with smartphones has the potential to enable future clinical PoC chronic disease diagnosis and risk stratification by parallel measurements of a panel of protein biomarkers.
Dong, Meili; Wu, Jiandong; Ma, Zimin; Peretz-Soroka, Hagit; Zhang, Michael; Komenda, Paul; Tangri, Navdeep; Liu, Yong; Rigatto, Claudio; Lin, Francis
2017-01-01
Traditional diagnostic tests for chronic diseases are expensive and require a specialized laboratory, therefore limiting their use for point-of-care (PoC) testing. To address this gap, we developed a method for rapid and low-cost C-reactive protein (CRP) detection from blood by integrating a paper-based microfluidic immunoassay with a smartphone (CRP-Chip). We chose CRP for this initial development because it is a strong biomarker of prognosis in chronic heart and kidney disease. The microfluidic immunoassay is realized by lateral flow and gold nanoparticle-based colorimetric detection of the target protein. The test image signal is acquired and analyzed using a commercial smartphone with an attached microlens and a 3D-printed chip–phone interface. The CRP-Chip was validated for detecting CRP in blood samples from chronic kidney disease patients and healthy subjects. The linear detection range of the CRP-Chip is up to 2 μg/mL and the detection limit is 54 ng/mL. The CRP-Chip test result yields high reproducibility and is consistent with the standard ELISA kit. A single CRP-Chip can perform the test in triplicate on a single chip within 15 min for less than 50 US cents of material cost. This CRP-Chip with attractive features of low-cost, fast test speed, and integrated easy operation with smartphones has the potential to enable future clinical PoC chronic disease diagnosis and risk stratification by parallel measurements of a panel of protein biomarkers. PMID:28346363
Proteomics profiling of interactome dynamics by colocalisation analysis (COLA).
Mardakheh, Faraz K; Sailem, Heba Z; Kümper, Sandra; Tape, Christopher J; McCully, Ryan R; Paul, Angela; Anjomani-Virmouni, Sara; Jørgensen, Claus; Poulogiannis, George; Marshall, Christopher J; Bakal, Chris
2016-12-20
Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.
Karain, Wael
2016-10-01
The dynamics of a protein and the water surrounding it are coupled via nonbonded energy interactions. This coupling can exhibit a complex, nonlinear, and nonstationary nature. The THz frequency spectrum for this interaction energy characterizes both the vibration spectrum of the water hydrogen bond network, and the frequency range of large amplitude modes of proteins. We use a Recurrence Plot based Wiener-Khinchin method RPWK to calculate this spectrum, and the results are compared to those determined using the classical auto-covariance-based Wiener-Khinchin method WK. The frequency spectra for the total nonbonded interaction energy extracted from molecular dynamics simulations between the β-Lactamase Inhibitory Protein BLIP, and water molecules within a 10 Å distance from the protein surface, are calculated at 150, 200, 250, and 310 K, respectively. Similar calculations are also performed for the nonbonded interaction energy between the residues 49ASP, 53TYR, and 142PHE in BLIP, with water molecules within 10 Å from each residue respectively at 150, 200, 250, and 310 K. A comparison of the results shows that RPWK performs better than WK, and is able to detect some frequency data points that WK fails to detect. This points to the importance of using methods capable of taking the complex nature of the protein-solvent energy landscape into consideration, and not to rely on standard linear methods. In general, RPWK can be a valuable addition to the analysis tools for protein molecular dynamics simulations. Proteins 2016; 84:1549-1557. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yoosefian, Mehdi; Etminan, Nazanin
2018-06-01
We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.
2016-01-01
We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276
Gao, Hongfei; Wen, Luke; Wu, Yuhua; Yan, Xiaohong; Li, Jun; Li, Xiaofei; Fu, Zhifeng; Wu, Gang
2018-05-23
A highly sensitive electrochemiluminescent (ECL) immunoassay targeting PAT/ bar protein was facilely developed for genetically modified (GM) rapeseed detection using carbon nanoparticles (CNPs) originally prepared from printer toner. In this work, CNPs linked with antibody for PAT/ bar protein were used to modify a working electrode. After an immunoreaction between the PAT/ bar protein and its antibody, the immunocomplex formed on the electrode receptor region resulted in an inhibition of electron transfer between the electrode surface and the ECL substance, thus led to a decrease of ECL response. Under the optimal conditions, the ECL responses linearly decreased as the increase of the PAT/ bar protein concentration and the GM rapeseed RF3 content in the ranges of 0.10-10 ng/mL and 0.050-1.0%, with the limits of detection of 0.050 ng/mL and 0.020% (S/N = 3). These results open a facile, sensitive, and rapid approach for the safety control of agricultural GM rape.
Modeling the SHG activities of diverse protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.
2012-10-18
A symmetry-additiveab initiomodel for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within themore » crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ~84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less
Lichtenauer, Anton Michael; Herzog, Rebecca; Tarantino, Silvia; Aufricht, Christoph; Kratochwill, Klaus
2014-05-01
Peritoneal dialysis effluent (PDE) represents a rich pool of potential biomarkers for monitoring disease and therapy. Until now, proteomic studies have been hindered by the plasma-like composition of the PDE. Beads covered with a peptide library are a promising approach to remove high abundant proteins and concentrate the sample in one step. In this study, a novel approach for proteomic biomarker identification in PDEs consisting of a depletion and concentration step followed by 2D gel based protein quantification was established. To prove this experimental concept a model system of artificial PDEs was established by spiking unused peritoneal dialysis (PD) fluids with cellular proteins reflecting control conditions or cell stress. Using this procedure, we were able to reduce the amount of high abundant plasma proteins and concentrate low abundant proteins while preserving changes in abundance of proteins with cellular origin. The alterations in abundance of the investigated marker for cell stress, the heat shock proteins, showed similar abundance profiles in the artificial PDE as in pure cell culture samples. Our results demonstrate the efficacy of this system in detecting subtle changes in cellular protein expression triggered by unphysiological stress stimuli typical in PD, which could serve as biomarkers. Further studies using patients' PDE will be necessary to prove the concept in clinical PD and to assess whether this technique is also informative regarding enriching low abundant plasma derived protein biomarker in the PDE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time protein aggregation monitoring with a Bloch surface wave-based approach
NASA Astrophysics Data System (ADS)
Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter
2014-05-01
The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.
Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming
2017-09-16
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.
Herrera, Victoria L M; Steffen, Martin; Moran, Ann Marie; Tan, Glaiza A; Pasion, Khristine A; Rivera, Keith; Pappin, Darryl J; Ruiz-Opazo, Nelson
2016-06-14
In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein's existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions. To dissect the nucleotide sequence discrepancy, we performed Maxam-Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR's existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects. Maxam-Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5 kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass spectrometry analysis of anti-DEspR mAb pull-down proteins do not detect DEspR, but detect DEspR-protein interactions with proteins implicated in intracellular trafficking and cancer. FACS analyses also detect DEspR-protein in different human cancer stem-like cells (CSCs). DEspR-inhibition studies identify DEspR-roles in CSC survival and growth. Live cell imaging detects fluorescently-labeled anti-DEspR mAb targeted-receptor internalization, concordant with the single internalization-recognition sequence also located beyond codon#14. Data confirm translatability of DEspR, the full-length DEspR protein beyond codon#14, and elucidate DEspR-specific functionality. Along with detection of the tryptophan [TGG]-codon#14 within an error-prone compression site, cumulative data demonstrating DEspR protein existence fulfill multiple UNIPROT criteria, thus refuting its pseudogene designation.
Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.
Borrebaeck, Carl A K
2017-03-01
Interest in precision diagnostics has been fuelled by the concept that early detection of cancer would benefit patients; that is, if detected early, more tumours should be resectable and treatment more efficacious. Serum contains massive amounts of potentially diagnostic information, and affinity proteomics has risen as an accurate approach to decipher this, to generate actionable information that should result in more precise and evidence-based options to manage cancer. To achieve this, we need to move from single to multiplex biomarkers, a so-called signature, that can provide significantly increased diagnostic accuracy. This Opinion article focuses on the progress being made in identifying protein biomarker signatures of clinical utility, using blood-based proteomics.
Identification of the neurofibromatosis type 1 gene product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutmann, D.H.; Wood, D.L.; Collins, F.S.
The gene for neurofibromatosis type 1 (NF1) was recently identified by positional cloning. The complete cDNA encodes a polypeptide of 2818 amino acids. To study the NF1 gene product, antibodies were raised against both fusion proteins and synthetic peptides. Initial characterization of two anti-peptide antibodies and one fusion-protein antibody demonstrated a specific protein of {approx}250 kDa by both immunoprecipitation and immunoblotting. This protein was found in all tissues and cell lines examined and is detected in human, rat, and mouse tissues. To demonstrate that these antibodies specifically recognize the NF1 protein, additional fusion proteins containing the sequence specific to themore » synthetic peptide were generated. Both peptide antisera recognize the proper specific fusion proteins so generated. Immunoprecipitates using the peptide antisera were shown to recognize the same protein detected by immunoblotting with either the other peptide antiserum or the fusion-protein antiserum. Immunoblotting using antiserum specific to spatially distinct epitopes conducted on tissue homogenates demonstrated the NF1 protein in all adult tissues. Based on the homology between the NF1 gene product and members of the GTPase-activating protein (GAP) superfamily, the name NF1-GAP-related protein (NF1GRP) is suggested.« less
Rafii, Mohd Yusop; Maziah, Mahmood
2014-01-01
Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m−1 of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb. PMID:25423252
Label-Free QCM Immunosensor for the Detection of Ochratoxin A
Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma
2018-01-01
Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2–200 ng/mL detection range which can be used for on-site detection of feedstuffs. PMID:29641432
Label-Free QCM Immunosensor for the Detection of Ochratoxin A.
Pirinçci, Şerife Şeyda; Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma
2018-04-11
Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2-200 ng/mL detection range which can be used for on-site detection of feedstuffs.
Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.
Ortiz-Aguayo, Dionisia; Del Valle, Manel
2018-01-26
This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.
Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy
2018-01-01
This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis. PMID:29373502
2013-01-01
Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, David L.; Ahram, Mamoun; Adkins, Joshua N.
Shedding, the release of cell surface proteins by regulated proteolysis, is a general cellular response to injury and is responsible for generating numerous bioactive molecules including growth factors and cytokines. The purpose of our work is to determine whether low doses of low-linear energy transfer (LET) radiation induce shedding of bioactive molecules. Using a mass spectrometry-based global proteomics method, we tested this hypothesis by analyzing for shed proteins in medium from irradiated human mammary epithelial cells (HMEC). Several hundred proteins were identified, including transforming growth factor beta (TGFB); however, no changes in protein abundances attributable to radiation exposure, based onmore » immunoblotting methods, were observed. These results demonstrate that our proteomic-based approach has the sensitivity to identify the kinds of proteins believed to be released after low-dose radiation exposure but that improvements in mass spectrometry-based protein quantification will be required to detect the small changes in abundance associated with this type of insult.« less
Gu, Chengcheng; Gai, Panpan; Han, Lei; Yu, Wen; Liu, Qingyun; Li, Feng
2018-05-24
We developed a facile and ultrasensitive enzymatic biofuel cell (EBFC)-based self-powered biosensor of protein kinase A (PKA) activity and inhibition via thiophosphorylation-mediated interface engineering. The detection limit was down to 0.00022 U mL-1 (S/N = 3). In addition, the PKA activities from MCF-7 and A549 cell lysates were analyzed and achieved reliable results.
Super-duper chemiluminescent proteins applicable to wide range of bioimaging
NASA Astrophysics Data System (ADS)
Suzuki, Kazushi; Nagai, Takeharu
2017-02-01
We report five new spectral variants of bright luminescent protein made by concatenation of the brightest luciferase, NanoLuc, with various color hues of fluorescent proteins. These proteins, which we call enhanced Nano-lanterns (eNLs), allow five-color live-cell imaging without external light illumination as well as detection of single molecules. Furthermore, eNL-based Ca2+ indicators could be used to image long-term Ca2+ dynamics in iPS-derived cardiomyocytes.
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.
Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang
2014-01-01
A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.
A highly sensitive and selective diagnostic assay based on virus nanoparticles
NASA Astrophysics Data System (ADS)
Park, Jin-Seung; Cho, Moon Kyu; Lee, Eun Jung; Ahn, Keum-Young; Lee, Kyung Eun; Jung, Jae Hun; Cho, Yunjung; Han, Sung-Sik; Kim, Young Keun; Lee, Jeewon
2009-04-01
Early detection of the protein marker troponin I in patients with a higher risk of acute myocardial infarction can reduce the risk of death from heart attacks. Most troponin assays are currently based on the conventional enzyme linked immunosorbent assay and have detection limits in the nano- and picomolar range. Here, we show that by combining viral nanoparticles, which are engineered to have dual affinity for troponin antibodies and nickel, with three-dimensional nanostructures including nickel nanohairs, we can detect troponin levels in human serum samples that are six to seven orders of magnitude lower than those detectable using conventional enzyme linked immunosorbent assays. The viral nanoparticle helps to orient the antibodies for maximum capture of the troponin markers. High densities of antibodies on the surfaces of the nanoparticles and nanohairs lead to greater binding of the troponin markers, which significantly enhances detection sensitivities. The nickel nanohairs are re-useable and can reproducibly differentiate healthy serum from unhealthy ones. We expect other viral nanoparticles to form similar highly sensitive diagnostic assays for a variety of other protein markers.
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
NASA Astrophysics Data System (ADS)
Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.
2018-01-01
Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.
Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph
2016-01-01
The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170
Determining the relative susceptibility of four prion protein genotypes to atypical scrapie
USDA-ARS?s Scientific Manuscript database
Atypical scrapie is a sheep prion (PrPSc) disease whose epidemiology is consistent with a sporadic origin and is associated with specific polymorphisms of the normal cellular prion protein (PrPC). We describe a mass spectrometry-based method of detecting and quantifying the polymorphisms of sheep P...
USDA-ARS?s Scientific Manuscript database
Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm is a devastating pest controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein. However, fall armyworm populations ...
Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.
Schmelcher, Mathias; Loessner, Martin J
2014-01-01
Diagnostic protocols for food-borne bacterial pathogens such as Listeria need to be sensitive, specific, rapid, and inexpensive. Conventional culture methods are hampered by lengthy enrichment and incubation steps. Bacteriophage-derived high-affinity binding molecules (cell wall-binding domains, CBDs) specific for Listeria cells have recently been introduced as tools for detection and differentiation of this pathogen in foods. When coupled with magnetic separation, these proteins offer advantages in sensitivity and speed compared to the standard diagnostic methods. Furthermore, fusion of CBDs to differently colored fluorescent reporter proteins enables differentiation of Listeria strains in mixed cultures. This chapter provides protocols for detection of Listeria in food by CBD-based magnetic separation and subsequent multiplexed identification of strains of different serotypes with reporter-CBD fusion proteins.
Blood Pyrrole-Protein Adducts--A Biomarker of Pyrrolizidine Alkaloid-Induced Liver Injury in Humans.
Ruan, Jianqing; Gao, Hong; Li, Na; Xue, Junyi; Chen, Jie; Ke, Changqiang; Ye, Yang; Fu, Peter Pi-Cheng; Zheng, Jiang; Wang, Jiyao; Lin, Ge
2015-01-01
Pyrrolizidine alkaloids (PAs) induce liver injury (PA-ILI) and is very likely to contribute significantly to drug-induced liver injury (DILI). In this study we used a newly developed ultra-high performance liquid chromatography-triple quadrupole-mass spectrometry (UHPLC-MS)-based method to detect and quantitate blood pyrrole-protein adducts in DILI patients. Among the 46 suspected DILI patients, 15 were identified as PA-ILI by the identification of PA-containing herbs exposed. Blood pyrrole-protein adducts were detected in all PA-ILI patients (100%). These results confirm that PA-ILI is one of the major causes of DILI and that blood pyrrole-protein adducts quantitated by the newly developed UHPLC-MS method can serve as a specific biomarker of PA-ILI.
Couvin, David; Bernheim, Aude; Toffano-Nioche, Claire; Touchon, Marie; Michalik, Juraj; Néron, Bertrand; C Rocha, Eduardo P; Vergnaud, Gilles; Gautheret, Daniel; Pourcel, Christine
2018-05-22
CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.
Field, Anjalie; Field, Jeffrey
2010-08-01
In the fall of 2007 pet food contaminated with melamine and cyanuric acid caused kidney stones in thousands of animals. In the summer of 2008, a more serious outbreak of adulterated dairy food caused the deaths of six infants and sickened about 290,000 children in China. In all cases, melamine was likely added to inflate the apparent protein content of the foods. To determine if we could measure protein without interference from melamine and cyanuric acid we tested these compounds in the Bradford and Ninhydrin assays, two common dye-based assays for protein, as well as by ammonia release, the most common assay used in the food industry. Neither compound was detected in the Ninhydrin and Bradford assays at concentrations of >100 μg/ml. The ammonia assay detected melamine but was inconclusive with respect to cyanuric acid. To develop an accurate test for food that would not detect either chemical as a protein, assays were run on cat food and reconstituted milk powder. The Bradford assay readily measured the protein content of each food, and importantly, the addition of melamine or cyanuric acid to reconstituted milk did not affect the readings. The protein concentrations obtained for reconstituted milk powder were as expected, but those for the cat food were 10 to 30-fold lower, due to its low solubility. We conclude that dye-binding assays can be employed to detect protein in food without interference from melamine and cyanuric acid, thus reducing the incentive to use them as additives.
Single-protein detection in crowded molecular environments in cryo-EM images
Rickgauer, J Peter; Grigorieff, Nikolaus; Denk, Winfried
2017-01-01
We present an approach to study macromolecular assemblies by detecting component proteins’ characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and—in the presence of protein background—a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material. DOI: http://dx.doi.org/10.7554/eLife.25648.001 PMID:28467302
Elguoshy, Amr; Hirao, Yoshitoshi; Xu, Bo; Saito, Suguru; Quadery, Ali F; Yamamoto, Keiko; Mitsui, Toshiaki; Yamamoto, Tadashi
2017-12-01
In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10 -4 )% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.
Detection of Foodborne Pathogenic Bacteria using Bacteriophage Tail Spike Proteins
NASA Astrophysics Data System (ADS)
Poshtiban, Somayyeh
Foodborne infections are worldwide health problem with tremendous social and financial impacts. Efforts are focused on developing accurate and reliable technologies for detection of food contaminations in early stages preferably on-site. This thesis focuses on interfacing engineering and biology by combining phage receptor binding proteins (RBPs) with engineered platforms including microresonator-based biosensors, magnetic particles and polymerase chain reaction (PCR) to develop bacterial detection sensors. We used phage RBPs as target specific bioreceptors to develop an enhanced microresonator array for bacterial detection. These resonator beams are optimized to feature a high natural frequency while offer large surface area for capture of bacteria. Theoretical analysis indicates a high mass sensitivity with a threshold for the detection of a single bacterial cell. We used phage RBPs as target specific bioreceptors, and successfully demonstrated the application of these phage RBB-immobilized arrays for specific detection of C. jejuni cells. We also developed a RBP-derivatized magnetic pre-enrichment method as an upstream sample preparation method to improve sensitivity and specificity of PCR for detection of bacterial cells in various food samples. The combination of RBP-based magnetic separation and real-time PCR allowed the detection of small number of bacteria in artificially contaminated food samples without any need for time consuming pre-enrichment step through culturing. We also looked into integration of the RBP-based magnetic separation with PCR onto a single microfluidic lab-on-a-chip to reduce the overall turnaround time.
Norman, Anders; Hestbjerg Hansen, Lars; Sørensen, Søren J
2005-05-01
Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 microM, 1.1 microM, and 141 microM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.
Electrical Detection of Cancer Biomarker using Aptamers with Nanogap Break-Junctions
Ilyas, Azhar; Asghar, Waseem; Allen, Peter B.; Duhon, Holli; Ellington, Andrew D.; Iqbal, Samir M.
2012-01-01
Epidermal Growth Factor Receptor (EGFR) is a cell surface protein overexpressed in cancerous cells. It is known to be the most common oncongene. EGFR concentration also increases in the serum of cancer patients. The detection of small changes in the concentration of EGFR can be critical for early diagnosis, resulting in better treatment and improved survival rate of cancer patients. This article reports an RNA aptamer based approach to selectively capture EGFR protein and an electrical scheme for its detection. Pairs of gold electrodes with nanometer separation were made through confluence of focused ion beam scratching and electromigration. The aptamer was hybridized to a single stranded DNA molecule, which in turn was immobilized on SiO2 surface between the gold nanoelectrodes. The selectivity of the aptamer was demonstrated by using control chips with mutated non–selective aptamer and with no aptamer. Surface functionalization was characterized by optical detection and two orders of magnitude increase in direct current (DC) was measured when selective capture of EGFR occurred. This represents an electronic biosensor for the detection of proteins of interest for medical applications. PMID:22706642
Detecting fish parvalbumin with commercial mouse monoclonal anti-frog parvalbumin IgG.
Chen, Lingyun; Hefle, Sue L; Taylor, Steve L; Swoboda, Ines; Goodman, Richard E
2006-07-26
Parvalbumin is a calcium-binding muscle protein that is highly conserved across fish species and amphibians. It is the major cross-reactive allergen associated with both fish and frog allergy. We used two-dimensional electrophoretic and immunoblotting techniques to investigate the utility of a commercial monoclonal anti-frog parvalbumin IgG for detecting parvalbumin present in some commonly consumed fish species. The 2D electrophoresis and immunoblots revealed species-specific differences in proteins that appear to represent various numbers of isoforms of parvalbumin in carp (5), catfish (3), cod (1) and tilapia (2). No parvalbumin was detected in yellowfin tuna. Based on minor differences in relative intensities of protein staining and immunodetection, parvalbumin isoforms may have slight differences in the epitope region recognized by the anti-frog parvalbumin antibody. These results suggest that the frog anti-parvalbumin antibody can be used as a valuable tool to detect parvalbumins from the fish tested in this study, except yellowfin tuna.
Horka, Marie; Ruzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel
2006-12-15
The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary.
Yu, Cui; Yang, Cuiyun; Song, Shaoyi; Yu, Zixiang; Zhou, Xueping; Wu, Jianxiang
2018-04-04
Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.
López-Cobo, Sheila; Campos-Silva, Carmen; Moyano, Amanda; Oliveira-Rodríguez, Myriam; Paschen, Annette; Yáñez-Mó, María; Blanco-López, María Carmen; Valés-Gómez, Mar
2018-05-02
Tumour-derived exosomes can be released to serum and provide information on the features of the malignancy, however, in order to perform systematic studies in biological samples, faster diagnostic techniques are needed, especially for detection of low abundance proteins. Most human cancer cells are positive for at least one ligand for the activating immune receptor NKG2D and the presence in plasma of NKG2D-ligands can be associated with prognosis. Using MICA as example of a tumour-derived antigen, endogenously expressed in metastatic melanoma and recruited to exosomes, we have developed two immunocapture-based assays for detection of different epitopes in nanovesicles. Although both techniques, enzyme-linked immunosorbent assay (ELISA) and Lateral flow immunoassays (LFIA) have the same theoretical basis, that is, using capture and detection antibodies for a colorimetric read-out, analysis of exosome-bound proteins poses methodological problems that do not occur when these techniques are used for detection of soluble molecules, due to the presence of multiple epitopes on the vesicle. Here we demonstrate that, in ELISA, the signal obtained was directly proportional to the amount of epitopes per exosome. In LFIA, the amount of detection antibody immobilized in Au-nanoparticles needs to be low for efficient detection, otherwise steric hindrance results in lower signal. We describe the conditions for detection of MICA in exosomes and prove, for the first time using both techniques, the co-existence in one vesicle of exosomal markers (the tetraspanins CD9, CD63 and CD81) and an endogenously expressed tumour-derived antigen. The study also reveals that scarce proteins can be used as targets for detection antibody in LFIA with a better result than very abundant proteins and that the conditions can be optimized for detection of the protein in plasma. These results open the possibility of analyzing biological samples for the presence of tumour-derived exosomes using high throughput techniques.
NASA Astrophysics Data System (ADS)
Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.
2011-03-01
A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanfeng; Lou, Jianlong; Jenko, Kathryn L.
2012-11-15
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are a group of seven (A-G) immunologically distinct proteins and cause the paralytic disease botulism. These toxins are the most poisonous substances known to humans and are potential bioweapon agents. Therefore, it is necessary to develop highly sensitive assays for the detection of BoNTs in both clinical and environmental samples. In the present study, we have developed an ELISA-based protein antibody microarray for the sensitive and simultaneous detection of BoNT serotype A, B, C, D, E and F. With engineered high-affinity antibodies, the assays have sensitivities in buffer of 8 fM (1.2 pg/mL)more » for serotypes A and B, and 32 fM (4.9 pg/mL) for serotypes C, D, E, and F. Using clinical and environmental samples (serum and milk), the microarray is capable of detecting BoNT/A-F to the same levels as in standard buffer. Cross reactivity between assays for individual serotype was also analyzed. These simultaneous, rapid, and sensitive assays have the potential to measure botulinum toxins in a high-throughput manner in complex clinical or environmental samples.« less
Small acid soluble proteins for rapid spore identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.
2006-12-01
This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescencemore » detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.« less
Nath, Anjali K; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A
2009-01-01
Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.
Nath, Anjali K.; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C.; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A.
2009-01-01
Background Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Methodology/Principal Findings Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. Conclusions/Significance The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs. PMID:19156209
Reiz, Bela; Li, Liang
2010-09-01
Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tujin; Zhou, Jianying; Gritsenko, Marina A.
2012-02-01
Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up tomore » 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Zhang, Z; Jain, V
2010-01-01
The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for thismore » kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.« less
Kalaiyarasu, Semmannan; Mishra, Niranjan; Rajukumar, Katherukamem; Nema, Ram Kumar; Behera, Sthita Pragnya
2015-01-01
The aim of this study was to develop an indirect ELISA using the helicase domain of bovine viral diarrhoea virus (BVDV) NS3 protein instead of full-length NS3 protein for detection of BVDV and BDV antibodies in sheep and goats and its validation by comparing its sensitivity and specificity with virus neutralization test (VNT) as the reference test. The purified 50 kDa recombinant NS3 protein was used as the coating antigen in the ELISA. The optimal concentration of antigen was 320 ng/well at a serum dilution of 1:20 and the optimal positive cut-off optical density value was 0.40 based on test results of 418 VNT negative sheep and goat sera samples. When 569 serum samples from sheep (463) and goats (106) were tested, the ELISA showed a sensitivity of 91.71% and specificity of 94.59% with BVDV VNT. A good correlation (93.67%) was observed between the two tests. It showed a sensitivity of 85% and specificity of 86.6% with VNT in detecting BDV antibody positive or negative samples. This study demonstrates the efficacy of truncated recombinant NS3 antigen based ELISA for seroepidemiological study of pestivirus infection in sheep and goats.
[Eukaryotic expression and application of HCV Hebei strain E2 extracellular core region].
Ye, Chuantao; Bian, Peiyu; Weng, Daihui; Zhang, Hui; Yang, Jing; Zhang, Ying; Lei, Yingfeng; Jia, Zhansheng
2016-06-01
Objective To express core region of HCV1b (Hebei strain) E2 protein (E2c) by eukaryotic system, and establish the detection method of specific anti-HCV E2 antibody in the sera from hepatitis C patients. Methods Based on the literature, the E2c gene was modified from the HCV1b gene and synthesized via overlapping PCR. Thereafter, the E2c gene including tissue-type plasminogen activator (tPA) signal peptide was cloned into the pCI-neo eukaryotic expression vector, and the product was named pCI-tpa-1bE2c. After HEK293T cells were transfected with pCI-tpa-1bE2c, the supernatant was collected, condensed and purified. Its specificity was identified by Western blotting. Galanthus nivalis agglutinin (GNA)-based ELISA was used to detect the antibody against HCVE2 in the sera from hepatitis C patients. Results Modified HCV E2c protein was successfully expressed in HEK293T cells and the GNA-based ELISA was developed for detecting the antibody against HCV E2 in the sera from hepatitis C patients. Conclusion HCV-1bE2c protein can be effectively expressed in HEK293T cells and applied clinically.
Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A
2007-08-01
For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.
Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X
2016-03-01
Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.
Myndrul, Valerii; Viter, Roman; Savchuk, Maryna; Shpyrka, Nelya; Erts, Donats; Jevdokimovs, Daniels; Silamiķelis, Viesturs; Smyntyna, Valentyn; Ramanavicius, Arunas; Iatsunskyi, Igor
2018-04-15
A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A (OTA) has been developed. This immunosensor was based on porous silicon (PSi) and modified by antibodies against OTA (anti-OTA). PSi layer was fabricated by metal-assisted chemical etching (MACE) procedure. Main structural parameters (pore size, layer thickness, morphology and nanograins size) and composition of PSi were investigated by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. PL-spectroscopy of PSi was performed at room temperature and showed a wide emission band centered at 680 ± 20nm. Protein A was covalently immobilized on the surface of PSi, which in next steps was modified by anti-OTA and BSA in this way a anti-OTA/Protein-A/PSi structure sensitive towards OTA was designed. The anti-OTA/Protein-A/PSi-based immunosensors were tested in a wide range of OTA concentrations from 0.001 upto 100ng/ml. Interaction of OTA with anti-OTA/Protein-A/PSi surface resulted in the quenching of photoluminescence in comparison to bare PSi. The limit of detection (LOD) and the sensitivity range of anti-OTA/Protein-A/PSi immunosensors were estimated. Association constant and Gibbs free energy for the interaction of anti-OTA/Protein-A/PSi with OTA were calculated and analyzed using the interaction isotherms. Response time of the anti-OTA/Protein-A/PSi-based immunosensor toward OTA was in the range of 500-700s. These findings are very promising for the development of highly sensitive, and potentially portable immunosensors suitable for fast determination of OTA in food and beverages. Copyright © 2017 Elsevier B.V. All rights reserved.
Wan, Zijian; Zhong, Longjie; Pan, Yuxiang; Li, Hongbo; Zou, Quchao; Su, Kaiqi; Wang, Ping
2017-01-01
A microplate method provides an efficient way to use modern detection technology. However, there are some difficulties concerning on-site detection, such as being non-portable and time-consuming. In this work, a novel portable microplate analyzer with a thermostatic chamber based on a smartphone was designed for rapid on-site detection. An analyzer with a wide-angle lens and an optical filter provides a proper environment for the microplate. A smartphone app-iPlate Monitor was used for RGB analyze of image. After a consistency experiment with a microtiter plate reader (MTPR), the normalized calibration curves were y = 0.7276x + 0.0243 (R 2 = 0.9906) and y = 0.3207x + 0.0094 (R 2 = 0.9917) with a BCA protein kit as well as y = 0.182x + 0.0134 (R 2 = 0.994) and y = 0.0674x + 0.0003 (R 2 = 0.9988) with a glucose kit. The times for obtaining the detection requirement were 15 and 10 min for the BCA protein kit and the glucose kit at 37°C; in contrast, it required more than 30 and 20 min at ambient temperature. Meanwhile, it also showed good repeatability for detections.
Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens.
Prado, M; Ortea, I; Vial, S; Rivas, J; Calo-Mata, P; Barros-Velázquez, J
2016-11-17
Currently, food allergies are an important health concern worldwide. The presence of undeclared allergenic ingredients or the presence of traces of allergens due to contamination during food processing poses a great health risk to sensitized individuals. Therefore, reliable analytical methods are required to detect and identify allergenic ingredients in food products. The present review addresses the recent developments regarding the application of DNA- and protein-based methods for the detection of allergenic ingredients in foods. The fitness-for-purpose of reviewed methodology will be discussed, and future trends will be highlighted. Special attention will be given to the evaluation of the potential of newly developed and promising technologies that can improve the detection and identification of allergenic ingredients in foods, such as the use of biosensors and/or nanomaterials to improve detection limits, specificity, ease of use, or to reduce the time of analysis. Such rapid food allergen test methods are required to facilitate the reliable detection of allergenic ingredients by control laboratories, to give the food industry the means to easily determine whether its product has been subjected to cross-contamination and, simultaneously, to identify how and when this cross-contamination occurred.
Chang, Chih-Chun; Su, Ming-Jang; Ho, Jung-Li; Tsai, Yu-Hui; Tsai, Wei-Ting; Lee, Shu-Jene; Yen, Tzung-Hai; Chu, Fang-Yeh
2016-01-01
Urine protein detection could be underestimated using the conventional dipstick method because of variations in urine aliquots. This study aimed to assess the efficacy of the semi-quantitative urine protein-to-creatinine (P/C) ratio compared with other laboratory methods. Random urine samples were requested from patients undergoing chronic kidney disease screening. Significant proteinuria was determined by the quantitative P/C ratio of at least 150 mg protein/g creatinine. The semi-quantitative P/C ratio, dipstick protein and quantitative protein concentrations were compared and analyzed. In the 2932 urine aliquots, 156 (5.3 %) urine samples were considered as diluted and 60 (39.2 %) were found as significant proteinuria. The semi-quantitative P/C ratio testing had the best sensitivity (70.0 %) and specificity (95.9 %) as well as the lowest underestimation rate (0.37 %) when compared to other laboratory methods in the study. In the semi-quantitative P/C ratio test, 19 (12.2 %) had positive, 52 (33.3 %) had diluted, and 85 (54.5 %) had negative results. Of those with positive results, 7 (36.8 %) were positive detected by traditional dipstick urine protein test, and 9 (47.4 %) were positive detected by quantitative urine protein test. Additionally, of those with diluted results, 25 (48.1 %) had significant proteinuria, and all were assigned as no significant proteinuria by both tests. The semi-quantitative urine P/C ratio is clinically applicable based on its better sensitivity and screening ability for significant proteinuria than other laboratory methods, particularly in diluted urine samples. To establish an effective strategy for CKD prevention, urine protein screening with semi-quantitative P/C ratio could be considered.
Lesponne, Isabelle; Naar, Jérôme; Planchon, Sébastien; Serchi, Tommaso; Montano, Mauricio
2018-06-26
Adverse food reactions (AFR) are a common cause of skin diseases in cats and dogs. The correct diagnosis and management of AFR relies upon clinical nutrition. The reliability of commercial hypoallergenic diets commonly used in AFR has been questioned because studies have shown the presence of proteins not declared on the label ingredients. It is proposed that extensively hydrolysed protein-based diets constitute a reliable nutritional solution. Royal Canin Anallergenic™ Canine and Feline diets are formulated with very low molecular weight feather protein and purified corn starch. Protein gel electrophoresis and thin layer paper chromatography were used to characterize protein hydrolysis in these diets and their hydrolysed raw materials; protein species were identified by mass spectrometry. To detect cross-contaminating protein, species-specific DNA was measured and correlated with ancillary protein content using calibration curves. The only protein components detected in the extensively hydrolysed feather protein raw material were amino acids and small oligopeptides. GBSS-I (Granule-bound starch synthase 1) was detected in the finished diets; this has not been reported as a clinically apparent allergen in dogs or cats. The DNA threshold corresponding to the maximum acceptable level of ancillary protein was not exceeded in 99.9% of more than 2150 product batches tested and no products were released to the market with cross-contaminating proteins. These results demonstrate the extensive level of protein hydrolysis in Royal Canin Anallergenic™ Canine and Feline diets and the absence of cross-contaminating protein, both key requirements for a diet to be used during diagnosis and for management of pets with AFR.
Phillips, Melissa M.; Bedner, Mary; Gradl, Manuela; Burdette, Carolyn Q.; Nelson, Michael A.; Yen, James H.; Sander, Lane C.; Rimmer, Catherine A.
2017-01-01
Two independent analytical approaches, based on liquid chromatography with absorbance detection and liquid chromatography with mass spectrometric detection, have been developed for determination of isoflavones in soy materials. These two methods yield comparable results for a variety of soy-based foods and dietary supplements. Four Standard Reference Materials (SRMs) have been produced by the National Institute of Standards and Technology to assist the food and dietary supplement community in method validation and have been assigned values for isoflavone content using both methods. These SRMs include SRM 3234 Soy Flour, SRM 3236 Soy Protein Isolate, SRM 3237 Soy Protein Concentrate, and SRM 3238 Soy-Containing Solid Oral Dosage Form. A fifth material, SRM 3235 Soy Milk, was evaluated using the methods and found to be inhomogeneous for isoflavones and unsuitable for value assignment. PMID:27832301
Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping
2014-05-15
In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia
2012-06-21
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
Jessie, Kala; Pang, Wei Wei; Haji, Zubaidah; Rahim, Abdul; Hashim, Onn Haji
2010-01-01
A gel-based proteomics approach was used to screen for proteins of differential abundance between the saliva of smokers and those who had never smoked. Subjecting precipitated proteins from whole human saliva of healthy non-smokers to two-dimensional electrophoresis (2-DE) generated typical profiles comprising more than 50 proteins. While 35 of the proteins were previously established by other researchers, an additional 22 proteins were detected in the 2-DE saliva protein profiles generated in the present study. When the 2-DE profiles were compared to those obtained from subjects considered to be heavy cigarette smokers, three saliva proteins, including interleukin-1 receptor antagonist, thioredoxin and lipocalin-1, showed significant enhanced expression. The distribution patterns of lipocalin-1 isoforms were also different between cigarette smokers and non-smokers. The three saliva proteins have good potential to be used as biomarkers for the adverse effects of smoking and the risk for inflammatory and chronic diseases that are associated with it. PMID:21151451
A Protein Nanopore-Based Approach for Bacteria Sensing
NASA Astrophysics Data System (ADS)
Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor
2016-11-01
We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.
Zhang, Yuwen; Zhang, Wei; Liu, Yan; Wang, Jianhua; Wang, Guoying; Liu, Yunjun
2016-11-01
Cry1Ie is a kind of Bacillus thuringiensis (Bt) toxin protein which has a different action model than the Cry1Ab and Cry1Ac protein. The transgenic maize expressing Cry1Ie might be commercially used in the near future and it is urgent to develop a method to detect Cry1Ie protein in transgenic plants and their products. To develop an ELISA method, Cry1Ie protein was expressed in Escherichia coli strain Transetta DE3, purified with the Ni-NTA spin columns, and then validated by sequencing. Bioassay results showed that the purified Cry1Ie protein was highly toxic to the Asian corn borer. The polyclonal antibody (pAb) and the specific monoclonal antibody (mAb) 1G 4 2D 6 were generated from rabbit and mice which were immunized with Cry1Ie protein, respectively. Western blotting of crude Cry1Ie protein extracts was established by employing mAb 1G 4 2D 6 , whereas the mAb 1G 4 2D 6 negligibly recognized other Bt proteins. Sandwich ELISA against Cry1Ie protein was established by coating with pAb and detecting with mAb 1G 4 2D 6 . The limit of detection (LOD), the limit of quantification (LOQ), and the quantification range of the assay in different matrices of maize plant were determined as 0.27-0.51, 0.29-0.78, and 0.45-15.71 ng/mL, respectively. Recoveries of Cry1Ie protein spiked in different maize tissues ranged from 75.1 to 99.5 %. The established sandwich ELISA was verified using transgenic maize overexpressing Cry1Ie. The results in this study suggested that the established ELISA method is effective for detecting Cry1Ie protein in transgenic plants.
Huang, Na-Li; Ye, Lei; Lv, Hui; Du, Yi-Xin; Schneider, Marion; Fan, Li-Bin; Du, Wei-Dong
2017-09-01
Dithiobis (succinimidyl undecanoate) modified gold surface biochip were used as a combined immunoassay platform for concurrently detecting immune responses to Borrelia burgdorferi (B. burgdorferi) sensu lato antigens, flagellin, outer surface protein C, variable major protein-like sequence proteins, and 3 VlsE protein IR 6 peptides. The peptides represented intrinsic Borrelia genospecies: B. burgdorferi sensu stricto, B. garinii, and B. afzelii, respectively. Fourier transform infrared spectroscopy was utilized to validate the surface chemical characteristics on the modified gold surface. The limits in detection of IgG antibody on the biochips were as little as 0.39μg/ml for anti-VlsE and 0.78μg/ml for anti-flagellin and anti-OspC, respectively. Samples from 56 neuroborreliosis (NB) patients and 114 healthy individuals were analyzed by the combined biochip. We found that the seroprevalences of IgM or IgG antibody against the 6 antigens were contributed to increased overall sensitivity by the multiplex immunobiochip assay. Serum combined positive rates of the 6 antigens in the patients were 92.86% for IgM antibody and 91.07% for IgG antibody. Part of the patients bore antibody responses against the 3 VlsE IR 6 variant peptides, indicating that Lyme borreliosis would attribute to consequence of multiple infections by one or more Borrelia burgdorferi strains. Concurrent assessment for both IgM and IgG antibodies against the protein antigens and B. burgdorferi IR 6 peptides in the sera of NB patients was beneficial from the biochip format, enabling detection of expanded serologic infection status and therapy strategy-making more efficiently. The combined biochip-based immunoassay, as a potential substitution of ELISA, provided a promising approach to extend the detection spectrum of infectious antibodies against a panel of Borrelia antigens. Copyright © 2017 Elsevier B.V. All rights reserved.
Assah, Enock; Goh, Walter; Zheng, Xin Ting; Lim, Ting Xiang; Li, Jun; Lane, David; Ghadessy, Farid; Tan, Yen Nee
2018-05-05
The tumor suppressor protein p53 plays a central role in preventing cancer through interaction with DNA response elements (REs) to regulate target gene expression in cells. Due to its significance in cancer biology, relentless efforts have been directed toward understanding p53-DNA interactions for the development of cancer therapeutics and diagnostics. In this paper, we report a rapid, label-free and versatile colorimetric assay to detect wildtype p53 DNA-binding function in complex solutions. The assay design is based on a concept that alters interparticle-distances between RE-AuNPs from a crosslinking effect induced through tetramerization of wildtype p53 protein (p53-WT) upon binding to canonical DNA motifs modified on gold nanoparticles (RE-AuNPs). This leads to a visible solution color change from red to blue, which is quantifiable by the UV- visible absorption spectra with a detection limit of 5 nM. Contrastingly, no color change was observed for the binding-deficient p53 mutants and non-specific proteins due to their inability to crosslink RE-AuNPs. Based on this sensing principle, we further demonstrate its utility for fast detection of drug-induced DNA binding function to cancer-associated Y220C mutant p53 protein using well-established reactivating compounds. By exploiting the dominant-negative property of mutant p53 over p53-WT and interactions with RE-AuNPs, this assay is configurable to detect low numbers of mutant p53 expressing cells in miniscule sample fractions obtained from typical core needle biopsy-sized tissues without signal attrition, alluding to the potential for biopsy sampling in cancer diagnostics or for defining cancer margins. This nanogold enabled colorimetric assay provides a facile yet robust method for studying important parameters influencing p53-DNA interactions with great promises for clinically pertinent applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Jiang, Yandong; Liu, Dali; Yang, Yudan; Xu, Ru; Zhang, Tianxiang; Sheng, Kuang; Song, Hongwei
2016-01-01
In this work, a new photoelectrochemical biosensor based on Ag2S nanoparticles (NPs) modified macroporous ZnO inverse opals structure (IOs) was developed for sensitive and rapid detection of alpha fetal protein (AFP). Small size and uniformly dispersed Ag2S NPs were prepared using the Successive Ionic Layer Adsorption And Reaction (SILAR) method, which were adsorbed on ZnO IOs surface and frame work as matrix for immobilization of AFP. The composite structure of ZnO/Ag2S expanded the scope of light absorption to long wavelength, which can make full use of the light energy. Meanwhile, an effective matching of energy levels between the conduction bands of Ag2S and ZnO are beneficial to the photo-generated electrons transfer. The biosensors based on FTO (fluorine-doped tinoxide) ZnO/Ag2S electrode showed enough sensitivity and a wide linear range from 0.05 ng/mL to 200 ng/mL with a low detection limit of 8 pg/mL for the detection of AFP. It also exhibited high reproducibility, specificity and stability. The proposed method was potentially attractive for achieving excellent photoelectrochemical biosensor for detection of other proteins. PMID:27922086
Muneoka, Satoshi; Nakamura, Ryuichi; Hoshino, Masato; Utsugisawa, Kimiaki; Makino, Tomohiro
2018-05-29
Membrane proteins, such as G-protein-coupled receptors and ion channels are attractive targets for antibody-based therapeutics as pharmaceutical and biotech companies have increasingly moved their attention to biologics. However, lack of appropriate screening systems to correctly detect specific antibodies against membrane proteins has hampered antibody discovery and development so far. In the present study, we described the development of a novel high-throughput immunoassay platform based on AlphaLISA to screen antibodies against intact membrane proteins, taking nicotinic acetylcholine receptor (nAChR), one of the best-known ion channel membrane proteins, as an example. By using signal transfer between α-bungarotoxin, the ligand of the receptor, conjugated with donor beads, and anti-nAChR antibodies (mAb35 and mAb210) with acceptor beads, we could detect strong and specific signals, directly from the homogenates of cells expressing nAChR. Using this platform, we isolated a new human IgG antibody against nAChR in a high-throughput manner. This methodology can be applied for the discovery of antibodies against other types of membrane proteins. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Yang, Zhen; Wang, Huanhuan; Guo, Pengfei; Ding, Yuanyuan; Lei, Chong; Luo, Yongsong
2018-06-01
Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.
Microbial Biosensor for the Detection of Protease-Virulent Factors from Pathogens
2017-04-28
cleavage in the extracellular space. The cleavage of TCS receptor protein would abolish the kinase activity responsible for the phosphorylation of the...cytoplasmic response regulator, AgrA, which functions as a transcriptional activator . As the cell-based protease biosensor response requires over...to AIP; AgrC is a AIP receptor that phosphorylates AgrA, an activator for P2 and P3. Protein-based protease biosensor construction To facilitate
Haynes, Lia M.; Miao, Congrong; Harcourt, Jennifer L.; Montgomery, Joel M.; Le, Mai Quynh; Dryga, Sergey A.; Kamrud, Kurt I.; Rivers, Bryan; Babcock, Gregory J.; Oliver, Jennifer Betts; Comer, James A.; Reynolds, Mary; Uyeki, Timothy M.; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M.; Anderson, Larry J.
2007-01-01
Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies. PMID:17229882
Cornell, Thomas A; Fu, Jing; Newland, Stephanie H; Orner, Brendan P
2013-11-06
Proteins that form cage-like structures have been of much recent cross-disciplinary interest due to their application to bioconjugate and materials chemistry, their biological functions spanning multiple essential cellular processes, and their complex structure, often defined by highly symmetric protein–protein interactions. Thus, establishing the fundamentals of their formation, through detecting and quantifying important protein–protein interactions, could be crucial to understanding essential cellular machinery, and for further development of protein-based technologies. Herein we describe a method to monitor the assembly of protein cages by detecting specific, oligomerization state dependent, protein–protein interactions. Our strategy relies on engineering protein monomers to include cysteine pairs that are presented proximally if the cage state assembles. These assembled pairs of cysteines act as binding sites for the fluorescent reagent FlAsH, which, once bound, provides a readout for successful oligomerization. As a proof of principle, we applied this technique to the iron storage protein, DNA-binding protein from starved cells from E. coli. Several linker lengths and conformations for the presentation of the cysteine pairs were screened to optimize the engineered binding sites. We confirmed that our designs were successful in both lysates and with purified proteins, and that FlAsH binding was dependent upon cage assembly. Following successful characterization of the assay, its throughput was expanded. A two-dimension matrix of pH and denaturing buffer conditions was screened to optimize nanocage stability. We intend to use this method for the high throughput screening of protein cage libraries and of conditions for the generation of inorganic nanoparticles within the cavity of these and other cage proteins.
Development of optical immunosensors for detection of proteins in serum.
Kyprianou, Dimitris; Chianella, Iva; Guerreiro, Antonio; Piletska, Elena V; Piletsky, Sergey A
2013-01-15
The detection of proteins in biological samples such as blood, serum or plasma by biosensors is very challenging due to the complex nature of the matrix, which contains a high level of many interfering compounds. Here we show the application of a novel polymeric immobilisation matrix that helps in the detection of specific protein analytes in biological samples by surface plasmon resonance (SPR) immunosensors. This polymer matrix contains thioacetal functional groups included in the network, and these groups do not require any further activation in order to react with proteins, making it attractive for sensor fabrication. The protein prostate specific antigen (PSA) was selected as a model target analyte. A sandwich format with two primary antibodies recognising different parts (epitopes) of the analyte was used for the detection of PSA in serum. The efficiency of the reduction of non-specific binding achieved with novel polymer was compared with those of other techniques such as coating of sensor surface with polyethylene glycol (PEG), use of charged hydrophilic aspartic acid and surfactants such as Tween20. The detection limit of the polymer based immunosensor was 0.1 ng ml(-1) for free form PSA (f-PSA) in buffer and 5 ng ml(-1) in 20% serum. This is an improvement compared with similar devices reported on literature, indicating the potential of the immunosensor developed here for the analysis of real samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Ping; Powell, Saul R.
2010-01-01
Carbonylation is a commonly studied form of oxidative modification to proteins which can be conveniently detected using commercially available kits. The most common of these kits is the Oxyblot™ Protein Oxidation Detection Kit (Chemicon/Millipore). Over the past year we have observed severely diminished sensitivity of these kits which was shown to be a result of a change in the formulation of one of the components supplied in the kit. This component, the 10X 2,4-dinitrophenylhydrazine derivatization solution, which had previously been dissolved in 100% trifluoroacetic acid (TFA), was now dissolved in 2N hydrochloric acid, which according to our results is not acid enough. Further, we observed that upon storage even DNPH dissolved in TFA is subject to degradation. Based on these studies, we make recomendations that should improve the sensitivity and reproducibilty of this assay. PMID:20230891
Prediction of physical protein protein interactions
NASA Astrophysics Data System (ADS)
Szilágyi, András; Grimm, Vera; Arakaki, Adrián K.; Skolnick, Jeffrey
2005-06-01
Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.
Development and Validation of a Protein Based Signature for the Detection of Ovarian Cancer
Kim, Kyongjin; Visintin, Irene; Alvero, Ayesha B.; Mor, Gil
2009-01-01
In order to overcome the significant mortality associated with ovarian cancer, a highly sensitive and specific screening test is urgently needed. CA125 is used to monitor response to chemotherapy, detect recurrence and detect late stage ovarian cancer. However, CA-125 alone or in combination with ultrasonography has not been adequate for early detection of ovarian cancer. Here we discuss our recent report of a novel multiplex assay that uses a panel of six serum biomarkers:Leptin, Prolactin, Osteopontin, Insulin-Like Growth Factor II, Macrophage Inhibitory Factor and CA-125. The combination of these six proteins yielded 95.3 % sensitivity and 99.4% specificity. The application of this test in the clinical context and the most appropriate population which could benefit of the test is discussed. PMID:19389550
NASA Astrophysics Data System (ADS)
Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.
2016-07-01
Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.
Gold nanocage-based lateral flow immunoassay for immunoglobulin G
Yang, Yunhui; Ozsoz, Mehmet
2017-01-01
The authors describe a gold nanocage-based lateral flow strip biosensor (LFSB) for low-cost and sensitive detection of IgG. This protein was used as a model analyte to demonstrate the proof-of-concept. The method combines the unique optical properties of gold nanocages (GNCs) with highly efficient chromatographic separation. A sandwich-type of immunoreactions occurs on the GNC-based LFSB which has the attractive features of avoiding multiple incubation, separation, and washing steps. The captured GNCs on the purple test zone and control zone of the biosensor are producing characteristic purple bands, and this enables IgG even to be visually detected. Quantitatation was accomplished by reading the intensities of the bands with a portable strip reader. The LFSB fabrication and assay parameters were optimized. The biosensor displays a linear response in the 0.5 to 50 ng·mL−1 IgG concentration range, and it has a 15 min assay time. The detection limit is 0.1 ng·mL−1 of IgG, which is 2.5 times lower than that when using a gold nanoparticle-based LFSB. In our perception, this assay has a wide potential for the detection of other proteins and species for which respective antibodies are available. PMID:29187761
ZnO thin film transistor immunosensor with high sensitivity and selectivity
NASA Astrophysics Data System (ADS)
Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum
2011-04-01
A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.
Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A
2016-01-01
Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2016-10-06
Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .
Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks
Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi
2014-01-01
Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481
Detection of Antibodies in Blood Plasma Using Bioluminescent Sensor Proteins and a Smartphone.
Arts, Remco; den Hartog, Ilona; Zijlema, Stefan E; Thijssen, Vito; van der Beelen, Stan H E; Merkx, Maarten
2016-04-19
Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.
Mantini, Dante; Petrucci, Francesca; Del Boccio, Piero; Pieragostino, Damiana; Di Nicola, Marta; Lugaresi, Alessandra; Federici, Giorgio; Sacchetta, Paolo; Di Ilio, Carmine; Urbani, Andrea
2008-01-01
Independent component analysis (ICA) is a signal processing technique that can be utilized to recover independent signals from a set of their linear mixtures. We propose ICA for the analysis of signals obtained from large proteomics investigations such as clinical multi-subject studies based on MALDI-TOF MS profiling. The method is validated on simulated and experimental data for demonstrating its capability of correctly extracting protein profiles from MALDI-TOF mass spectra. The comparison on peak detection with an open-source and two commercial methods shows its superior reliability in reducing the false discovery rate of protein peak masses. Moreover, the integration of ICA and statistical tests for detecting the differences in peak intensities between experimental groups allows to identify protein peaks that could be indicators of a diseased state. This data-driven approach demonstrates to be a promising tool for biomarker-discovery studies based on MALDI-TOF MS technology. The MATLAB implementation of the method described in the article and both simulated and experimental data are freely available at http://www.unich.it/proteomica/bioinf/.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.
Chahrour, Osama; Malone, John
2017-01-01
Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.