Science.gov

Sample records for protein family analysis

  1. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  2. Genomic analysis of membrane protein families: abundance and conserved motifs

    PubMed Central

    Liu, Yang; Engelman, Donald M; Gerstein, Mark

    2002-01-01

    Background Polytopic membrane proteins can be related to each other on the basis of the number of transmembrane helices and sequence similarities. Building on the Pfam classification of protein domain families, and using transmembrane-helix prediction and sequence-similarity searching, we identified a total of 526 well-characterized membrane protein families in 26 recently sequenced genomes. To this we added a clustering of a number of predicted but unclassified membrane proteins, resulting in a total of 637 membrane protein families. Results Analysis of the occurrence and composition of these families revealed several interesting trends. The number of assigned membrane protein domains has an approximately linear relationship to the total number of open reading frames (ORFs) in 26 genomes studied. Caenorhabditis elegans is an apparent outlier, because of its high representation of seven-span transmembrane (7-TM) chemoreceptor families. In all genomes, including that of C. elegans, the number of distinct membrane protein families has a logarithmic relation to the number of ORFs. Glycine, proline, and tyrosine locations tend to be conserved in transmembrane regions within families, whereas isoleucine, valine, and methionine locations are relatively mutable. Analysis of motifs in putative transmembrane helices reveals that GxxxG and GxxxxxxG (which can be written GG4 and GG7, respectively; see Materials and methods) are among the most prevalent. This was noted in earlier studies; we now find these motifs are particularly well conserved in families, however, especially those corresponding to transporters, symporters, and channels. Conclusions We carried out a genome-wide analysis on patterns of the classified polytopic membrane protein families and analyzed the distribution of conserved amino acids and motifs in the transmembrane helix regions in these families. PMID:12372142

  3. Bioinformatic analysis of the TonB protein family.

    PubMed

    Chu, Byron C H; Peacock, R Sean; Vogel, Hans J

    2007-06-01

    TonB is a protein prevalent in a large number of Gram-negative bacteria that is believed to be responsible for the energy transduction component in the import of ferric iron complexes and vitamin B(12) across the outer membrane. We have analyzed all the TonB proteins that are currently contained in the Entrez database and have identified nine different clusters based on its conserved 90-residue C-terminal domain amino acid sequence. The vast majority of the proteins contained a single predicted cytoplasmic transmembrane domain; however, nine of the TonB proteins encompass a approximately 290 amino acid N-terminal extension homologous to the MecR1 protein, which is composed of three additional predicted transmembrane helices. The periplasmic linker region, which is located between the N-terminal domain and the C-terminal domain, is extremely variable both in length (22-283 amino acids) and in proline content, indicating that a Pro-rich domain is not a required feature for all TonB proteins. The secondary structure of the C-terminal domain is found to be well preserved across all families, with the most variable region being between the second alpha-helix and the third beta-strand of the antiparallel beta-sheet. The fourth beta-strand found in the solution structure of the Escherichia coli TonB C-terminal domain is not a well conserved feature in TonB proteins in most of the clusters. Interestingly, several of the TonB proteins contained two C-terminal domains in series. This analysis provides a framework for future structure-function studies of TonB, and it draws attention to the unusual features of several TonB proteins.

  4. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction

    PubMed Central

    2010-01-01

    Background Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels. Results This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all substructure comparison to determine Substructural Clusters (SCs). SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH) framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs. Conclusions FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated, statistically rigorous procedure

  5. Phylogenetic analysis of the Argonaute protein family in platyhelminths.

    PubMed

    Zheng, Yadong

    2013-03-01

    Argonaute proteins (AGOs) are mediators of gene silencing via recruitment of small regulatory RNAs to induce translational regression or degradation of targeted molecules. Platyhelminths have been reported to express microRNAs but the diversity of AGOs in the phylum has not been explored. Phylogenetic relationships of members of this protein family were studied using data from six platyhelminth genomes. Phylogenetic analysis showed that all cestode and trematode AGOs, along with some triclad planarian AGOs, were grouped into the Ago subfamily and its novel sister clade, here referred to as Cluster 1. These were very distant from Piwi and Class 3 subfamilies. By contrast, a number of planarian Piwi-like AGOs formed a novel sister clade to the Piwi subfamily. Extensive sequence searching revealed the presence of an additional locus for AGO2 in the cestode Echinococcus granulosus and exon expansion in this species and E. multilocularis. The current study suggests the absence of the Piwi subfamily and Class 3 AGOs in cestodes and trematodes and the Piwi-like AGO expansion in a free-living triclad planarian and the occurrence of exon expansion prior to or during the evolution of the most-recent common ancestor of the Echinococcus species studied. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Systematic analysis of the twin cx(9)c protein family.

    PubMed

    Longen, Sebastian; Bien, Melanie; Bihlmaier, Karl; Kloeppel, Christine; Kauff, Frank; Hammermeister, Miriam; Westermann, Benedikt; Herrmann, Johannes M; Riemer, Jan

    2009-10-23

    The Mia40-Erv1 disulfide relay system is of high importance for mitochondrial biogenesis. Most so far identified substrates of this machinery contain either two cysteine-x(3)-cysteine (twin Cx(3)C) or two cysteine-x(9)-cysteine (twin Cx(9)C) motifs. While the first group is composed of well-characterized components of the mitochondrial import machinery, the molecular function of twin Cx(9)C proteins still remains unclear. To systematically characterize this protein family, we performed a database search to identify the full complement of Cx(9)C proteins in yeast. Thereby, we identified 14 potential family members, which, with one exception, are conserved among plants, fungi, and animals. Among these, three represent novel proteins, which we named Cmc2 to 4 (for Cx(9)C motif-containing protein) and which we demonstrated to be dependent for import on the Mia40-Erv1 disulfide relay. By testing deletion mutants of all 14 proteins for function of the respiratory chain, we found a critical function of most of these proteins for the assembly or stability of respiratory chain complexes. Our data suggest that already early during the evolution of eukaryotic cells, a multitude of twin Cx(9)C proteins developed, which exhibit largely nonredundant roles critical for the biogenesis of enzymes of the respiratory chain in mitochondria.

  7. Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families.

    PubMed

    Patel, Prianka V; Gianoulis, Tara A; Bjornson, Robert D; Yip, Kevin Y; Engelman, Donald M; Gerstein, Mark B

    2010-07-01

    Recent metagenomics studies have begun to sample the genomic diversity among disparate habitats and relate this variation to features of the environment. Membrane proteins are an intuitive, but thus far overlooked, choice in this type of analysis as they directly interact with the environment, receiving signals from the outside and transporting nutrients. Using global ocean sampling (GOS) data, we found nearly approximately 900,000 membrane proteins in large-scale metagenomic sequence, approximately a fifth of which are completely novel, suggesting a large space of hitherto unexplored protein diversity. Using GPS coordinates for the GOS sites, we extracted additional environmental features via interpolation from the World Ocean Database, the National Center for Ecological Analysis and Synthesis, and empirical models of dust occurrence. This allowed us to study membrane protein variation in terms of natural features, such as phosphate and nitrate concentrations, and also in terms of human impacts, such as pollution and climate change. We show that there is widespread variation in membrane protein content across marine sites, which is correlated with changes in both oceanographic variables and human factors. Furthermore, using these data, we developed an approach, protein families and environment features network (PEN), to quantify and visualize the correlations. PEN identifies small groups of covarying environmental features and membrane protein families, which we call "bimodules." Using this approach, we find that the affinity of phosphate transporters is related to the concentration of phosphate and that the occurrence of iron transporters is connected to the amount of shipping, pollution, and iron-containing dust.

  8. [Immunodiffusion analysis of plasma proteins in the canine family].

    PubMed

    Baranov, O K; Iurishina, N A; Savina, M A

    1976-01-01

    Immunodiffusion studies have been made on the plasma of 9 species (Vulpes vulpes, V. corsak, Alopex lagopus, Canis aureus, C. lupus, C. familiaris, C. dingo, Nyctereutes procynoides, Fennecus zerde) from the family of Canidae using milk antisera. Unlike rabbit antisera used earlier, milk antisera make it possible to detect more significant antigenic divergency with respect to 5 alpha- and beta-globulins. These globulins seem to have a higher evolution rate of antigenic mosaics as compared to other plasma proteins in the family investigated. The family Canidae serologically may be divided into two main groups: 1) the genus Canis which includes the wolf, domestic dog, dingo, jackal and 2) species which significantly differ from the former (the fox, polar fox, dog fox, fennec). In relation to these two groups, the raccoon dog occupies special position.

  9. [Structure and function analysis of Arabidopsis thaliana SRO protein family].

    PubMed

    Li, Bao-Zhu; Zhao, Xiang; Zhao, Xiao-Liang; Peng, Lei

    2013-10-01

    Many biotic and abiotic stresses can cause oxidative stress in plants. The identification of components involved in plant response to oxidative stress has attracted wide attention. The members of AtSRO family, including AtRCD1, AtSRO1, and AtSRO5, regulate plants' response to oxidative stress. AtSROs participate in plant normal growth and development, and play important roles in plant response to stresses, such as drought, salt, heavy metal, and so on. In addition, AtSROs possess some special domains, including PARP and RST. It is speculated that AtSROs may function in regulating protein transcription, adjustment, and modification. This review highlights some recent progresses, such as basic situation of AtSROs, effects of AtSRO family proteins on plant growth and response to abiotic stress, which will provide a theoretical basis for further studying on biological functions of AtSRO.

  10. Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation.

    PubMed

    Hu, Yongfeng; Zhu, Ning; Wang, Xuemin; Yi, Qingping; Zhu, Deyan; Lai, Yan; Zhao, Yu

    2013-09-01

    Snf2 family proteins are ATP-dependent chromatin remodeling factors that control many aspects of DNA events such as transcription, replication, homologous recombination and DNA repair. In animals several members in this family have been revealed to control gene expression in concert with other epigenetic mechanisms including histone modification, histone variants and DNA methylation. Their function in regulating genome expression in plant has hardly been disclosed before except in Arabidopsis. Here we identified 40 members of this family in the rice (Oryza Sativa) genome and constructed a phylogenetic tree together with Arabidopsis 41 Snf2 proteins. Sequence alignment of the Snf2 helicase regions revealed conserved motifs and blocks in most proteins. Expression profile analysis indicates that many rice Snf2 family genes show a tissue-specific expression pattern and some of them respond to abiotic stresses including drought, salt and cold. The results provide a basis for further analysis of their roles in epigenetic regulation to control rice development.

  11. Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis.

    PubMed

    Du, Pingzhou; Kumar, Manoj; Yao, Yuan; Xie, Qiaoli; Wang, Jinyan; Zhang, Baolong; Gan, Siming; Wang, Yuqi; Wu, Ai-Min

    2016-11-24

    The Xklp2 (TPX2) proteins belong to the microtubule-associated (MAP) family of proteins. All members of the family contain the conserved TPX2 motif, which can interact with microtubules, regulate microtubule dynamics or assist with different microtubule functions, for example, maintenance of cell morphology or regulation of cell growth and development. However, the role of members of the TPX family have not been studied in the model tree species Eucalyptus to date. Here, we report the identification of the members of the TPX2 family in Eucalyptus grandis (Eg) and analyse the expression patterns and functions of these genes. In present study, a comprehensive analysis of the plant TPX2 family proteins was performed. Phylogenetic analyses indicated that the genes can be classified into 6 distinct subfamilies. A genome-wide survey identified 12 members of the TPX2 family in the sequenced genome of Eucalyptus grandis. The basic genetic properties of the TPX2 family in Eucalyptus were analysed. Our results suggest that the TPX2 family proteins within different sub-groups are relatively conserved but there are important differences between groups. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression levels of the genes in different tissues. The results showed that in the whole plant, the levels of EgWDL5 transcript are the highest, followed by those of EgWDL4. Compared with other tissues, the level of the EgMAP20 transcript is the highest in the root. Over-expression of EgMAP20 in Arabidopsis resulted in organ twisting. The cotyledon petioles showed left-handed twisting while the hypocotyl epidermal cells produced right-handed helical twisting. Finally, EgMAP20, EgWDL3 and EgWDL3L were all able to decorate microtubules. Plant TPX2 family proteins were systematically analysed using bioinformatics methods. There are 12 TPX2 family proteins in Eucalyptus. We have performed an initial characterization of the functions of several members of the TPX2

  12. Genome-wide Analysis of WD40 Protein Family in Human

    PubMed Central

    Zou, Xu-Dong; Hu, Xue-Jia; Ma, Jing; Li, Tuan; Ye, Zhi-Qiang; Wu, Yun-Dong

    2016-01-01

    The WD40 proteins, often acting as scaffolds to form functional complexes in fundamental cellular processes, are one of the largest families encoded by the eukaryotic genomes. Systematic studies of this family on genome scale are highly required for understanding their detailed functions, but are currently lacking in the animal lineage. Here we present a comprehensive in silico study of the human WD40 family. We have identified 262 non-redundant WD40 proteins, and grouped them into 21 classes according to their domain architectures. Among them, 11 animal-specific domain architectures have been recognized. Sequence alignment indicates the complicated duplication and recombination events in the evolution of this family. Through further phylogenetic analysis, we have revealed that the WD40 family underwent more expansion than the overall average in the evolutionary early stage, and the early emerged WD40 proteins are prone to domain architectures with fundamental cellular roles and more interactions. While most widely and highly expressed human WD40 genes originated early, the tissue-specific ones often have late origin. These results provide a landscape of the human WD40 family concerning their classification, evolution, and expression, serving as a valuable complement to the previous studies in the plant lineage. PMID:27991561

  13. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases.

    PubMed

    Suenkel, B; Steegborn, C

    2016-01-01

    Lysine acetylation is long known as a regulatory posttranslational modification of histone proteins and is emerging as a ubiquitous intracellular protein modification. Additional lysine acylations such as succinylation and glutarylation have also been found on histones and other proteins. Acylations are reversibly attached through nonenzymatic acylation mechanisms and the action of protein acyl transferases and protein deacylases (PDACs). Sirtuins are an evolutionary defined class of PDACs and act as metabolic sensors by catalyzing a unique deacylation reaction that requires the cosubstrate NAD(+). Sirtuins are found in all domains of life, and the mammalian sirtuin family comprises seven isoforms in different cellular compartments. They regulate a wide range of cellular targets and functions, such as energy metabolism and stress responses, and they have been implicated in aging processes and aging-related diseases. A large body of functional, biochemical, biophysical, and structural work on isolated sirtuins has provided many important insights that complement the many physiological studies on this enzyme family. They enabled the comprehensive structural and biochemical analysis of sirtuin catalysis, substrate selectivity, and regulation. Here, we describe the recombinant production of sirtuin proteins, with an emphasis on the mammalian isoforms. We then describe their application in activity and binding assays and for crystal structure analysis. We provide protocols for these procedures, and we discuss typical pitfalls in studying this enzyme family and how to avoid them. This information will support further molecular studies on sirtuin mechanisms and functions.

  14. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  15. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  16. An Insight into the Triabin Protein Family of American Hematophagous Reduviids: Functional, Structural and Phylogenetic Analysis.

    PubMed

    Hernández-Vargas, María J; Santibáñez-López, Carlos E; Corzo, Gerardo

    2016-02-15

    A transcriptomic analysis of the saliva of T. pallidipennis together with a short proteomic analysis were carried out to reveal novel primary structures of the lipocalin/triabin protein families in this reduviid. Although triabins share some structural characteristics to lipocalins and they are classified as in the calcyn/lipocalin superfamily, triabins differ from lipocalins in the direction of β-strands in the general conformation of the β-barrel. The triabin protein family encompasses a wide variety of proteins, which disrupt the hemostasis of warm-blooded animals. Likewise, the function of proteins classified as triabins includes proteins that are carriers of small molecules, protease inhibitors, binders of specific cell-surface receptors as well as proteins that form complexes with other macromolecules. For example, triabin and pallidipin from the saliva of T. pallidipennis are thrombin and platelet aggregation inhibitors, respectively; triplatin from T. infestans binds to thromboxane A2; and nitrophorin from Rhodnius prolixus carries nitric oxide. Therefore, based on 42 new transcriptome sequences of triabins from the salivary glands of T. pallidipennis reported at present, and on triabin sequences of other American hematophagous reduviids already reported in the literature, subfamilies of triabins were proposed following phylogenetic analyses and functional characterization of triabin members. Eight subfamilies of proteins were recognized with known functions, which were the nitrophorin and amine binding proteins, Rhodnius prolixus aggregation inhibitor, triafestin, triatin, dipetalodipin and pallidipin, triplatin and infestilin, dimiconin and triabin, and procalin subfamilies. Interestingly, 70% of the analyzed sequences came from these eight subfamilies because there was no biological function associated with them, implying the existence of a vast number of proteins with potential novel biological activities.

  17. An Insight into the Triabin Protein Family of American Hematophagous Reduviids: Functional, Structural and Phylogenetic Analysis

    PubMed Central

    Hernández-Vargas, María J.; Santibáñez-López, Carlos E.; Corzo, Gerardo

    2016-01-01

    A transcriptomic analysis of the saliva of T. pallidipennis together with a short proteomic analysis were carried out to reveal novel primary structures of the lipocalin/triabin protein families in this reduviid. Although triabins share some structural characteristics to lipocalins and they are classified as in the calcyn/lipocalin superfamily, triabins differ from lipocalins in the direction of β-strands in the general conformation of the β-barrel. The triabin protein family encompasses a wide variety of proteins, which disrupt the hemostasis of warm-blooded animals. Likewise, the function of proteins classified as triabins includes proteins that are carriers of small molecules, protease inhibitors, binders of specific cell-surface receptors as well as proteins that form complexes with other macromolecules. For example, triabin and pallidipin from the saliva of T. pallidipennis are thrombin and platelet aggregation inhibitors, respectively; triplatin from T. infestans binds to thromboxane A2; and nitrophorin from Rhodnius prolixus carries nitric oxide. Therefore, based on 42 new transcriptome sequences of triabins from the salivary glands of T. pallidipennis reported at present, and on triabin sequences of other American hematophagous reduviids already reported in the literature, subfamilies of triabins were proposed following phylogenetic analyses and functional characterization of triabin members. Eight subfamilies of proteins were recognized with known functions, which were the nitrophorin and amine binding proteins, Rhodnius prolixus aggregation inhibitor, triafestin, triatin, dipetalodipin and pallidipin, triplatin and infestilin, dimiconin and triabin, and procalin subfamilies. Interestingly, 70% of the analyzed sequences came from these eight subfamilies because there was no biological function associated with them, implying the existence of a vast number of proteins with potential novel biological activities. PMID:26891325

  18. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori

    PubMed Central

    Xia, Ai-Hua; Zhou, Qing-Xiang; Yu, Lin-Lin; Li, Wei-Guo; Yi, Yong-Zhu; Zhang, Yao-Zhou; Zhang, Zhi-Fang

    2006-01-01

    Background The major royal jelly proteins/yellow (MRJP/YELLOW) family possesses several physiological and chemical functions in the development of Apis mellifera and Drosophila melanogaster. Each protein of the family has a conserved domain named MRJP. However, there is no report of MRJP/YELLOW family proteins in the Lepidoptera. Results Using the YELLOW protein sequence in Drosophila melanogaster to BLAST silkworm EST database, we found a gene family composed of seven members with a conserved MRJP domain each and named it YELLOW protein family of Bombyx mori. We completed the cDNA sequences with RACE method. The protein of each member possesses a MRJP domain and a putative cleavable signal peptide consisting of a hydrophobic sequence. In view of genetic evolution, the whole Bm YELLOW protein family composes a monophyletic group, which is distinctly separate from Drosophila melanogaster and Apis mellifera. We then showed the tissue expression profiles of Bm YELLOW protein family genes by RT-PCR. Conclusion A Bombyx mori YELLOW protein family is found to be composed of at least seven members. The low homogeneity and unique pattern of gene expression by each member among the family ensure us to prophesy that the members of Bm YELLOW protein family would play some important physiological functions in silkworm development. PMID:16884544

  19. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa).

    PubMed

    Leng, Xiangpeng; Liu, Dan; Zhao, Mizhen; Sun, Xin; Li, Yu; Mu, Qian; Zhu, Xudong; Li, Pengyu; Fang, Jinggui

    2014-01-25

    The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics.

  20. BIS2Analyzer: a server for co-evolution analysis of conserved protein families.

    PubMed

    Oteri, Francesco; Nadalin, Francesca; Champeimont, Raphaël; Carbone, Alessandra

    2017-05-02

    Along protein sequences, co-evolution analysis identifies residue pairs demonstrating either a specific co-adaptation, where changes in one of the residues are compensated by changes in the other during evolution or a less specific external force that affects the evolutionary rates of both residues in a similar magnitude. In both cases, independently of the underlying cause, co-evolutionary signatures within or between proteins serve as markers of physical interactions and/or functional relationships. Depending on the type of protein under study, the set of available homologous sequences may greatly differ in size and amino acid variability. BIS2Analyzer, openly accessible at http://www.lcqb.upmc.fr/BIS2Analyzer/, is a web server providing the online analysis of co-evolving amino-acid pairs in protein alignments, especially designed for vertebrate and viral protein families, which typically display a small number of highly similar sequences. It is based on BIS2, a re-implemented fast version of the co-evolution analysis tool Blocks in Sequences (BIS). BIS2Analyzer provides a rich and interactive graphical interface to ease biological interpretation of the results. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. SAP family proteins.

    PubMed

    Fujita, A; Kurachi, Y

    2000-03-05

    Thus far, five members including Dlg, SAP97/hDlg, SAP90/PSD-95, SAP102, and PSD-93/chapsyn110 which belong to SAP family have been identified. Recent studies have revealed that these proteins play important roles in the localization and function of glutamate receptors and K(+) channels. Although most of them have been reported to be localized to the synapse, only one member, SAP97, is expressed also in the epithelial cells. In this review, we have summarized structural characters of SAP family proteins and discuss their functions in neurons and epithelial cells.

  2. Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family.

    PubMed

    Gasparini, Alessandra; Tosatto, Silvio C E; Murgia, Alessandra; Leonardi, Emanuela

    2017-07-28

    The emergence of genes implicated across multiple comorbid neurologic disorders allows to identify shared underlying molecular pathways. Recently, investigation of patients with diverse neurologic disorders found TANC1 and TANC2 as possible candidate disease genes. While the TANC proteins have been reported as postsynaptic scaffolds influencing synaptic spines and excitatory synapse strength, their molecular functions remain unknown. Here, we conducted a comprehensive in silico analysis of the TANC protein family to characterize their molecular role and understand possible neurobiological consequences of their disruption. The known Ankyrin and tetratricopeptide repeat (TPR) domains have been modeled. The newly predicted N-terminal ATPase domain may function as a regulated molecular switch for downstream signaling. Several putative conserved protein binding motifs allowed to extend the TANC interaction network. Interestingly, we highlighted connections with different signaling pathways converging to modulate neuronal activity. Beyond a known role for TANC family members in the glutamate receptor pathway, they seem linked to planar cell polarity signaling, Hippo pathway, and cilium assembly. This suggests an important role in neuron projection, extension and differentiation.

  3. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family.

    PubMed

    Levine, Mia T; McCoy, Connor; Vermaak, Danielle; Lee, Yuh Chwen G; Hiatt, Mary Alice; Matsen, Frederick A; Malik, Harmit S

    2012-01-01

    Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.

  4. Structural analysis of a MIP family protein from the digestive tract of Cicadella viridis.

    PubMed

    Beuron, F; Le Cahérec, F; Guillam, M T; Cavalier, A; Garret, A; Tassan, J P; Delamarche, C; Schultz, P; Mallouh, V; Rolland, J P

    1995-07-21

    Homopteran insects, and especially Cicadella viridis, display in their digestive tract a specialized epithelial differentiation, the filter chamber (FC) acting as a water-shunting complex. The main intrinsic membrane protein of the FC is a 25,000-Da polypeptide (P25). In this paper we demonstrate that this P25 polypeptide is a member of the MIP family of membrane channel proteins, and that P25 forms homotetramers in the native membranes. Using polymerase chain reaction, a 360-base pair cDNA, named cic, was isolated from RNA of the FC. cic encodes a 119-amino acid polypeptide (CIC) whose homologies with MIP26, AQP1 (CHIP), AQP2, and gamma-TIP are 38, 38, 34, and 20%, respectively. Using a specific antibody raised against a 15-amino acid peptide from the CIC sequence, we concluded that CIC and P25 are identical entities, and hence that P25 belongs to the MIP family. We investigated the quaternary structure of P25 in the membranes of the FC using biophysical analysis of P25 nondenaturing detergent micelles, scanning transmission electron microscopy, and image processing of conventional transmission electron microscopic images. All those different approaches converged to the conclusion that P25 exists as an homotetramer forming a regular two-dimensional array in the membranes.

  5. Experimental Analysis of Functional Variation within Protein Families: Receiver Domain Autodephosphorylation Kinetics.

    PubMed

    Page, Stephani C; Immormino, Robert M; Miller, Thane H; Bourret, Robert B

    2016-09-15

    Plants and microorganisms use two-component signal transduction systems (TCSs) to mediate responses to environmental stimuli. TCSs mediate responses through phosphotransfer from a conserved histidine on a sensor kinase to a conserved aspartate on the receiver domain of a response regulator. Typically, signal termination occurs through dephosphorylation of the receiver domain, which can catalyze its own dephosphorylation. Despite strong structural conservation between receiver domains, reported autodephosphorylation rate constants (kdephos) span a millionfold range. Variable receiver domain active-site residues D + 2 and T + 2 (two amino acids C terminal to conserved phosphorylation site and Thr/Ser, respectively) influence kdephos values, but the extent and mechanism of influence are unclear. We used sequence analysis of a large database of naturally occurring receiver domains to design mutant receiver domains for experimental analysis of autodephosphorylation kinetics. When combined with previous analyses, kdephos values were obtained for CheY variants that contained D + 2/T + 2 pairs found in 54% of receiver domain sequences. Tested pairs of amino acids at D + 2/T + 2 generally had similar effects on kdephos in CheY, PhoBN, or Spo0F. Acid or amide residues at D + 2/T + 2 enhanced kdephos CheY variants altered at D + 2/T + 2 exhibited rate constants for autophosphorylation with phosphoramidates and autodephosphorylation that were inversely correlated, suggesting that D + 2/T + 2 residues interact with aspects of the ground or transition states that differ between the two reactions. kdephos of CheY variants altered at D + 2/T + 2 correlated significantly with kdephos of wild-type receiver domains containing the same D + 2/T + 2 pair. Additionally, particular D + 2/T + 2 pairs were enriched in different response regulator subfamilies, suggesting functional significance. One protein family, defined by a conserved domain, can include hundreds of thousands of known

  6. The Basic Helix-Loop-Helix Protein Family: Comparative Genomics and Phylogenetic Analysis

    PubMed Central

    Ledent, Valérie; Vervoort, Michel

    2001-01-01

    The basic Helix-Loop-Helix (bHLH) proteins are transcription factors that play important roles during the development of various metazoans including fly, nematode, and vertebrates. They are also involved in human diseases, particularly in cancerogenesis. We made an extensive search for bHLH sequences in the completely sequenced genomes of Caenorhabditis elegans and of Drosophila melanogaster. We found 35 and 56 different genes, respectively, which may represent the complete set of bHLH of these organisms. A phylogenetic analysis of these genes, together with a large number (>350) of bHLH from other sources, led us to define 44 orthologous families among which 36 include bHLH from animals only, and two have representatives in both yeasts and animals. In addition, we identified two bHLH motifs present only in yeast, and four that are present only in plants; however, the latter number is certainly an underestimate. Most animal families (35/38) comprise fly, nematode, and vertebrate genes, suggesting that their common ancestor, which lived in pre-Cambrian times (600 million years ago) already owned as many as 35 different bHLH genes. PMID:11337472

  7. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  8. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family.

    PubMed

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-03-18

    A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  9. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants.

    PubMed

    Gallie, Daniel R; Liu, Renyi

    2014-11-25

    The poly(A)-binding protein (PABP) binds the poly(A) tail of eukaryotic mRNAs and functions to maintain the integrity of the mRNA while promoting protein synthesis through its interaction with eukaryotic translation initiation factor (eIF) 4G and eIF4B. PABP is encoded by a single gene in yeast and marine algae but during plant evolution the PABP gene family expanded substantially, underwent sequence divergence into three subclasses, and acquired tissue-specificity in gene family member expression. Although such changes suggest functional specialization, the size of the family and its sequence divergence have complicated an understanding of which gene family members may be foundational and which may represent more recent expansions of the family to meet the specific needs of speciation. Here, we examine the evolution of the plant PABP gene family to provide insight into these aspects of the family that may yield clues into the function of individual family members. The PABP gene family had expanded to two members by the appearance of fresh water algae and four members in non-vascular plants. In lycophytes, the first sequence divergence yielding a specific class member occurs. The earliest members of the gene family share greatest similarity to those modern members whose expression is confined to reproductive tissues, suggesting that supporting reproductive-associated gene expression is the most conserved function of this family. A family member sharing similarity to modern vegetative-associated members first appears in gymnosperms. Further elaboration of the reproductive-associated and vegetative-associated members occurred during the evolution of flowering plants. Expansion of the plant PABP gene family began prior to the colonization of land. By the evolution of lycophytes, the first class member whose expression is confined to reproductive tissues in higher plants had appeared. A second class member whose expression is vegetative-associated appeared in

  10. Immunohistochemical analysis of IA-2 family of protein tyrosine phosphatases in rat gastrointestinal endocrine cells.

    PubMed

    Gomi, Hiroshi; Kubota-Murata, Chisato; Yasui, Tadashi; Tsukise, Azuma; Torii, Seiji

    2013-02-01

    Islet-associated protein-2 (IA-2) and IA-2β (also known as phogrin) are unique neuroendocrine-specific protein tyrosine phosphatases (PTPs). The IA-2 family of PTPs was originally identified from insulinoma cells and discovered to be major autoantigens in type 1 diabetes. Despite its expression in the neural and canonical endocrine tissues, data on expression of the IA-2 family of PTPs in gastrointestinal endocrine cells (GECs) are limited. Therefore, we immunohistochemically investigated the expression of the IA-2 family of PTPs in the rat gastrointestinal tract. In the stomach, IA-2 and IA-2β were expressed in GECs that secrete serotonin, somatostatin, and cholecystokinin/gastrin-1. In addition to these hormones, secretin, gastric inhibitory polypeptide (also known as the glucose-dependent insulinotropic peptide), glucagon-like peptide-1, and glucagon, but not ghrelin were coexpressed with IA-2 or IA-2β in duodenal GECs. Pancreatic islet cells that secrete gut hormones expressed the IA-2 family of PTPs. The expression patterns of IA-2 and IA-2β were comparable. These results reveal that the IA-2 family of PTPs is expressed in a cell type-specific manner in rat GECs. The extensive expression of the IA-2 family of PTPs in pancreo-gastrointestinal endocrine cells and in the enteric plexus suggests their systemic contribution to nutritional control through a neuroendocrine signaling network.

  11. Prediction of the determinants of thermal stability by linear discriminant analysis: the case of the glutamate dehydrogenase protein family.

    PubMed

    Pavesi, Angelo

    2014-09-21

    Little is known about the determinants of thermal stability in individual protein families. Most of the knowledge on thermostability comes, in fact, from comparative analyses between large, and heterogeneous, sets of thermo- and mesophilic proteins. Here, we present a multivariate statistical approach aimed to detect signature sequences for thermostability in a single protein family. It was applied to the glutamate dehydrogenase (GDH) family, which is a good model for investigating this peculiar process. The structure of GDH consists of six subunits, each of them organized into two domains. Formation of ion-pair networks on the surface of the protein subunits, or increase in the inter-subunit hydrophobic interactions, have been suggested as important factors for explaining stability at high temperatures. However, identification of the amino acid changes that are involved in this process still remains elusive. Our approach consisted of a linear discriminant analysis on a set of GDH sequences from Archaea and Bacteria (33 thermo- and 36 mesophilic GDHs). It led to detection of 3 amino acid clusters as the putative determinants of thermal stability. They were localized at the subunit interface or in close proximity to the binding site of the NAD(P)(+) coenzyme. Analysis within the clusters led to prediction of 8 critical amino acid sites. This approach could have a wide utility, in the ligth of the notion that each protein family seems to adopt its own strategy for achieving thermostability.

  12. Sequence and partial functional analysis of canine Bcl-2 family proteins.

    PubMed

    de Brot, S; Schade, B; Croci, M; Dettwiler, M; Guscetti, F

    2016-02-01

    Dogs present with spontaneous neoplasms biologically similar to human cancers. Apoptotic pathways are deregulated during cancer genesis and progression and are important for therapy. We have assessed the degree of conservation of a set of canine Bcl-2 family members with the human and murine orthologs. To this end, seven complete canine open reading frames were cloned in this family, four of which are novel for the dog, their sequences were analyzed, and their functional interactions were studied in yeasts. We found a high degree of overall and domain sequence homology between canine and human proteins. It was slightly higher than between murine and human proteins. Functional interactions between canine pro-apoptotic Bax and Bak and anti-apoptotic Bcl-xL, Bcl-w, and Mcl-1 were recapitulated in yeasts. Our data provide support for the notion that systems based on canine-derived proteins might faithfully reproduce Bcl-2 family member interactions known from other species and establish the yeast as a useful tool for functional studies with canine proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family1[C][W

    PubMed Central

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C.; Dénervaud-Tendon, Valérie; Vermeer, Joop E.M.; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-01-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. PMID:24920445

  14. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family.

    PubMed

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C; Dénervaud-Tendon, Valérie; Vermeer, Joop E M; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-08-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

  15. CD44 family proteins in gastric cancer: a meta-analysis and narrative review.

    PubMed

    Wu, Ying; Li, Zhi; Zhang, Chenlu; Yu, Kai; Teng, Zan; Zheng, Guoliang; Wang, Shuang; Liu, Yunpeng; Cui, Lei; Yu, Xiaosong

    2015-01-01

    With a meta-analysis and narrative review, we evaluated the clinical and prognostic role of all CD44 family proteins in gastric cancer (GC). Literatures published up to August 2014 were searched on PubMed. Among the 37 eligible studies (6606 patients), 34 were included in meta-analysis, and 10 were subjected to narrative review. With meta-analysis, standard CD44 (CD44s) was demonstrated to predict reduced overall survival (OS) (HR = 1.93, 95% CI: 1.58-2.34, PHR = 0.0222) and disease free survival (HR = 3.13, 95% CI: 1.02-9.68, PHR = 0.0469), advanced N-stage (RR = 1.12, 95% CI: 1.04-1.21, PRR = 0.0019), and distant metastasis (RR = 2.14, 95% CI: 1.46-3.14, PRR < 0.0001) of GC. CD44 variant 6 (CD44v6) in GC might influence OS (5 studies; HR = 1.27, 95% CI: 0.75-2.14, PHR = 0.3783; 4 studies; HR = 1.52, 95% CI: 1.09-2.14, PHR = 0.0139), while significantly associated with N-stage (RR = 1.23, 95% CI: 1.03-1.48, PRR = 0.0240), M-stage (RR = 2.54, 95% CI: 1.08-6.00, PRR = 0.0333), TNM-stage (RR = 1.72, 95% CI: 1.18-2.50, PRR = 0.0045), Lauren type (RR = 0.67, 95% CI: 0.50-0.91, PRR = 0.0106), lymphatic invasion (RR = 1.13, 95% CI: 1.04-1.23, PRR = 0.0057), and liver metastasis (RR = 3.20, 95% CI: 1.94-5.27, PRR < 0.0001) of the disease. Moreover, a narrative review was performed for CD44 isoforms, such as v3, v5, v7, v8-10, and v9, in GC. In conclusion, CD44s and CD44v6 as evaluated by immunohistochemistry, respectively, predicts the prognosis and disease severity of GC.

  16. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus.

    PubMed

    Hussey, Steven G; Saïdi, Mohammed N; Hefer, Charles A; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    NAC domain transcription factors regulate many developmental processes and stress responses in plants and vary widely in number and family structure. We analysed the characteristics and evolution of the NAC gene family of Eucalyptus grandis, a fast-growing forest tree in the rosid order Myrtales. NAC domain genes identified in the E. grandis genome were subjected to amino acid sequence, phylogenetic and motif analyses. Transcript abundance in developing tissues and abiotic stress conditions in E. grandis and E. globulus was quantified using RNA-seq and reverse transcription quantitative PCR (RT-qPCR). One hundred and eighty-nine E. grandis NAC (EgrNAC) proteins, arranged into 22 subfamilies, are extensively duplicated in subfamilies associated with stress response. Most EgrNAC genes form tandem duplicate arrays that frequently carry signatures of purifying selection. Sixteen amino acid motifs were identified in EgrNAC proteins, eight of which are enriched in, or unique to, Eucalyptus. New candidates for the regulation of normal and tension wood development and cold responses were identified. This first description of a Myrtales NAC domain family reveals an unique history of tandem duplication in stress-related subfamilies that has likely contributed to the adaptation of eucalypts to the challenging Australian environment. Several new candidates for the regulation of stress, wood formation and tree-specific development are reported.

  17. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family

    PubMed Central

    Butt, Haroon; Luschnig, Christian

    2014-01-01

    RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. INVOLVED IN DE NOVO DNA METHYLATION 2 (IDN2) and the closely related FACTOR OF DNA METHYLATION (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1–VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins. PMID:24574485

  18. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase

    PubMed Central

    2014-01-01

    Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328

  19. Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins

    PubMed Central

    Kusch, Stefan; Pesch, Lina; Panstruga, Ralph

    2016-01-01

    Mildew resistance Locus O (MLO) proteins are polytopic integral membrane proteins that have long been considered as plant-specific and being primarily involved in plant–powdery mildew interactions. However, research in the past decade has revealed that MLO proteins diverged into a family with several clades whose members are associated with different physiological processes. We provide a largely increased dataset of MLO amino acid sequences, comprising nearly all major land plant lineages. Based on this comprehensive dataset, we defined seven phylogenetic clades and reconstructed the likely evolution of the MLO family in embryophytes. We further identified several MLO peptide motifs that are either conserved in all MLO proteins or confined to one or several clades, supporting the notion that clade-specific diversification of MLO functions is associated with particular sequence motifs. In baker’s yeast, some of these motifs are functionally linked to transmembrane (TM) transport of organic molecules and ions. In addition, we attempted to define the evolutionary origin of the MLO family and found that MLO-like proteins with highly diverse membrane topologies are present in green algae, but also in the distinctly related red algae (Rhodophyta), Amoebozoa, and Chromalveolata. Finally, we discovered several instances of putative fusion events between MLO proteins and different kinds of proteins. Such Rosetta stone-type hybrid proteins might be instructive for future analysis of potential MLO functions. Our findings suggest that MLO is an ancient protein that possibly evolved in unicellular photosynthetic eukaryotes, and consolidated in land plants with a conserved topology, comprising seven TM domains and an intrinsically unstructured C-terminus. PMID:26893454

  20. Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins.

    PubMed

    Kusch, Stefan; Pesch, Lina; Panstruga, Ralph

    2016-03-26

    Mildew resistanceLocusO(MLO) proteins are polytopic integral membrane proteins that have long been considered as plant-specific and being primarily involved in plant-powdery mildew interactions. However, research in the past decade has revealed that MLO proteins diverged into a family with several clades whose members are associated with different physiological processes. We provide a largely increased dataset of MLO amino acid sequences, comprising nearly all major land plant lineages. Based on this comprehensive dataset, we defined seven phylogenetic clades and reconstructed the likely evolution of the MLO family in embryophytes. We further identified several MLO peptide motifs that are either conserved in all MLO proteins or confined to one or several clades, supporting the notion that clade-specific diversification of MLO functions is associated with particular sequence motifs. In baker's yeast, some of these motifs are functionally linked to transmembrane (TM) transport of organic molecules and ions. In addition, we attempted to define the evolutionary origin of the MLO family and found that MLO-like proteins with highly diverse membrane topologies are present in green algae, but also in the distinctly related red algae (Rhodophyta), Amoebozoa, and Chromalveolata. Finally, we discovered several instances of putative fusion events between MLO proteins and different kinds of proteins. Such Rosetta stone-type hybrid proteins might be instructive for future analysis of potential MLO functions. Our findings suggest that MLO is an ancient protein that possibly evolved in unicellular photosynthetic eukaryotes, and consolidated in land plants with a conserved topology, comprising seven TM domains and an intrinsically unstructured C-terminus.

  1. Genome-wide identification, classification and expression analysis of the PHD-finger protein family in Populus trichocarpa.

    PubMed

    Wu, Shengnan; Wu, Min; Dong, Qing; Jiang, Haiyang; Cai, Ronghao; Xiang, Yan

    2016-01-01

    The plant homeobox domain (PHD) proteins are widespread in eukaryotes, and play important roles in regulating chromatin and transcription. Comprehensive analyses of PHD-finger proteins have been performed in animals, but few plant PHD-finger proteins involved in growth and development have been characterized functionally. In this study, we conducted a genome-wide survey of PHD-finger proteins in Populus trichocarpa by describing the phylogenetic relationship, gene structure, and chromosomal location and microarray analyses of each predicted PHD-finger family member. We identified 73 PHD-finger genes (PtPHD1-73) and classified them into eleven subfamilies (A-K) by phylogenetic analysis. Seventy-two of the 73 genes were unevenly distributed on all 19 chromosomes, with seven segmental duplication events. Analysis of the Ka (non-synonymous substitution rate)/Ks (synonymous substitution rate) ratios suggested that the duplicated genes of the PHD-finger family mainly underwent purifying selection with restrictive functional divergence after the duplication events. Expression profiles analysis indicated that 67 PHD-finger genes were differentially expressed in various tissues. Quantitative real-time RT-PCR (qRT-PCR) analyses of nine selected PtPHD genes under high salinity, drought and cold stresses were also performed to explore their stress-related expression patterns. The results of this study provide a thorough overview of poplar PHD-finger proteins and will be valuable for further functional research of poplar PHD-finger genes to unravel their biological roles.

  2. Structural analysis of the Drosophila rpA1 gene, a member of the eucaryotic 'A' type ribosomal protein family.

    PubMed Central

    Qian, S; Zhang, J Y; Kay, M A; Jacobs-Lorena, M

    1987-01-01

    The expression of ribosomal protein (r-protein) genes is uniquely regulated at the translational level during early development of Drosophila. Here we report results of a detailed analysis of the r-protein rpA1 gene. A cloned DNA sequence coding for rpA1 has been identified by hybrid-selected translation and amino acid composition analysis. The rpA1 gene was localized to polytene chromosome band 53CD. The nucleotide sequence of the rpA1 gene and its cDNA have been determined. rpA1 is a single copy gene and sequence comparison between the gene and its cDNA indicates that this r-protein gene is intronless. Allelic restriction site polymorphisms outside of the gene were observed, while the coding sequence is well conserved between two Drosophila strains. The protein has unusual domains rich in Ala and charged residues. The rpA1 is homologous to the "A" family of eucaryotic acidic r-proteins which are known to play a key role in the initiation and elongation steps of protein synthesis. Images PMID:3103101

  3. Insights into the Evolution of the CSP Gene Family through the Integration of Evolutionary Analysis and Comparative Protein Modeling

    PubMed Central

    2013-01-01

    Insect chemical communication and chemosensory systems rely on proteins coded by several gene families. Here, we have combined protein modeling with evolutionary analysis in order to study the evolution and structure of chemosensory proteins (CSPs) within arthropods and, more specifically, in ants by using the data available from sequenced genomes. Ants and other social insects are especially interesting model systems for the study of chemosensation, as they communicate in a highly complex social context and much of their communication relies on chemicals. Our ant protein models show how this complexity has shaped CSP evolution; the proteins are highly modifiable by their size, surface charge and binding pocket. Based on these findings, we divide ant CSPs into three groups: typical insect CSPs, an ancient 5-helical CSP and hymenopteran CSPs with a small binding pocket, and suggest that these groups likely serve different functions. The hymenopteran CSPs have duplicated repeatedly in individual ant lineages. In these CSPs, positive selection has driven surface charge changes, an observation which has possible implications for the interaction between CSPs and ligands or odorant receptors. Our phylogenetic analysis shows that within the Arthropoda the only highly conserved gene is the ancient 5-helical CSP, which is likely involved in an essential ubiquitous function rather than chemosensation. During insect evolution, the 6-helical CSPs have diverged and perform chemosensory functions among others. Our results contribute to the general knowledge of the structural differences between proteins underlying chemosensation and highlight those protein properties which have been affected by adaptive evolution. PMID:23723994

  4. Metagenomics analysis reveals a new metallothionein family: Sequence and metal-binding features of new environmental cysteine-rich proteins.

    PubMed

    Ziller, Antoine; Yadav, Rajiv Kumar; Capdevila, Mercè; Reddy, Mondem Sudhakara; Vallon, Laurent; Marmeisse, Roland; Atrian, Silvia; Palacios, Òscar; Fraissinet-Tachet, Laurence

    2017-02-01

    Metallothioneins are cysteine-rich proteins, which function as (i) metal carriers in basal cell metabolism and (ii) protective metal chelators in conditions of metal excess. Metallothioneins have been characterized from different eukaryotic model and cultivable species. Presently, they are categorized in 15 families but evolutionary relationships between these metallothionein families remain unresolved. Several cysteine-rich protein encoding genes that conferred Cd-tolerance in Cd-sensitive yeast mutants have previously been isolated from soil eukaryotic metatranscriptomes. They were called CRPs for "cysteine-rich proteins". These proteins, of unknown taxonomic origins, share conserved cysteine motifs and could be considered as metallothioneins. In the present work, we analyzed these CRPs with respect to their amino acid sequence features and their metal-binding abilities towards Cd, Zn and Cu metal ions. Sequence analysis revealed that they share common features with different known metallothionein families, but also exhibit unique specific features. Noticeably, CRPs display two separate cysteine-rich domains which, when expressed separately in yeast, confer Cd-tolerance. The N-terminal domain contains some conserved atypical Cys motifs, such as one CCC and two CXCC ones. Five CRPs were expressed and purified as recombinant proteins and their metal-binding characteristics were studied. All these CRPs chelated Cd(II), Zn(II) and Cu(I), although displaying a better capacity for Zn(II) coordination. All CRPs are able to confer Cd-tolerance, and four of them confer Zn-tolerance in the Zn-sensitive zrc1Δ yeast mutant. We designated these CRPs as environmental metallothioneins belonging to a new formerly undescribed metallothionein family. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Genome-Wide Characterization and Expression Analysis of the Germin-Like Protein Family in Rice and Arabidopsis

    PubMed Central

    Li, Lu; Xu, Xihui; Chen, Chen; Shen, Zhenguo

    2016-01-01

    Previous studies have shown that germin-like proteins (GLPs) are present ubiquitously in rice and Arabidopsis. However, the understanding regarding their role in development and abiotic/biotic stress resistance remains limited. In the present study, we report genome-wide identification, characterisation, subcellular localization, enzyme activity, and expression analysis of the GLP gene family in rice and Arabidopsis to study their functions. In total, 43 and 32 GLPs in the rice and Arabidopsis genome were identified based on a systematic analysis, respectively. The GLP genes were clustered into six clades based on phylogenetic analysis, and many stress and developmental-related cis-elements were detected in promoters of GLP genes. In addition, subcellular location and superoxide dismutase (SOD) analysis demonstrated that the random selected OsGLP genes on chromosomes 8 and 4 of rice were expressed in the cell wall with SOD activity. Overall, our results showed that tandem duplication events, especially the clusters of tandem duplication genes on chromosome 8 in rice, play a major role in expansion of the GLP family and thus increase our understanding of the role of the GLP family in abiotic/biotic stress and development. PMID:27669230

  6. New Insights on the Sialidase Protein Family Revealed by a Phylogenetic Analysis in Metazoa

    PubMed Central

    Giacopuzzi, Edoardo; Bresciani, Roberto; Schauer, Roland; Monti, Eugenio; Borsani, Giuseppe

    2012-01-01

    Sialidases are glycohydrolytic enzymes present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3 and NEU4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis, an inherited disease characterized by lysosomal storage disorder and neurodegeneration. The studies on the biology of sialic acids and sialyltransferases, the anabolic counterparts of sialidases, have revealed a complex picture with more than 50 sialic acid variants selectively present in the different branches of the tree of life. The gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. To date, less attention has been paid to the evolution of sialidases. Thus we have conducted a survey on the state of the sialidase family in metazoan. Using an in silico approach, we identified and characterized sialidase orthologs from 21 different organisms distributed among the evolutionary tree: Metazoa relative (Monosiga brevicollis), early Deuterostomia, precursor of Chordata and Vertebrata (teleost fishes, amphibians, reptiles, avians and early and recent mammals). We were able to reconstruct the evolution of the sialidase protein family from the ancestral sialidase NEU1 and identify a new form of the enzyme, NEU5, representing an intermediate step in the evolution leading to the modern NEU3, NEU4 and NEU2. Our study provides new insights on the mechanisms that shaped the substrate specificity and other peculiar properties of the modern mammalian sialidases. Moreover, we further confirm findings on the catalytic residues and identified enzyme loop portions that behave as rapidly diverging regions and may be involved in

  7. New insights on the sialidase protein family revealed by a phylogenetic analysis in metazoa.

    PubMed

    Giacopuzzi, Edoardo; Bresciani, Roberto; Schauer, Roland; Monti, Eugenio; Borsani, Giuseppe

    2012-01-01

    Sialidases are glycohydrolytic enzymes present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3 and NEU4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis, an inherited disease characterized by lysosomal storage disorder and neurodegeneration. The studies on the biology of sialic acids and sialyltransferases, the anabolic counterparts of sialidases, have revealed a complex picture with more than 50 sialic acid variants selectively present in the different branches of the tree of life. The gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. To date, less attention has been paid to the evolution of sialidases. Thus we have conducted a survey on the state of the sialidase family in metazoan. Using an in silico approach, we identified and characterized sialidase orthologs from 21 different organisms distributed among the evolutionary tree: Metazoa relative (Monosiga brevicollis), early Deuterostomia, precursor of Chordata and Vertebrata (teleost fishes, amphibians, reptiles, avians and early and recent mammals). We were able to reconstruct the evolution of the sialidase protein family from the ancestral sialidase NEU1 and identify a new form of the enzyme, NEU5, representing an intermediate step in the evolution leading to the modern NEU3, NEU4 and NEU2. Our study provides new insights on the mechanisms that shaped the substrate specificity and other peculiar properties of the modern mammalian sialidases. Moreover, we further confirm findings on the catalytic residues and identified enzyme loop portions that behave as rapidly diverging regions and may be involved in

  8. Dipeptide analysis of p53 mutations and evolution of p53 family proteins.

    PubMed

    Huang, Qiang; Yu, Long; Levine, Arnold J; Nussinov, Ruth; Ma, Buyong

    2014-01-01

    p53 gain-of-function mutations are similar to driver mutations in cancer genes, with both promoting tumorigenesis. Most previous studies focused on residues lost by mutations, providing information related to a dominantly-negative effect. However, to understand gain-of-function mutations, it is also important to investigate what are the distributions of residues gained by mutations. We compile available p53/p63/p73 protein sequences and construct a non-redundant dataset. We analyze the amino acid and dipeptide composition of p53/p63/p73 proteins across evolution and compare them with the gain/loss of amino acids and dipeptides in human p53 following cancer-related somatic mutations. We find that the ratios of amino acids gained via somatic mutations during evolution to those lost through p53 cancer mutations correlate with the ratios found in single nucleotide polymorphisms in the human proteome. The dipeptide mutational gain/loss ratios are inversely correlated with those observed over p53 evolution but tend to follow the increasing p63/p73-like dipeptide propensities. We successfully simulated the p53 cancer mutation spectrum using the dipeptide composition across the p53 family accounting for the likelihood of mutations in p53 codons. The results revealed that the p53 mutation spectrum is dominated not only by p53 evolution but also by reversal of evolution to a certain degree. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.

  9. Molecular and functional analysis of Popeye genes: A novel family of transmembrane proteins preferentially expressed in heart and skeletal muscle

    PubMed Central

    Andrée, Birgit; Fleige, Anne; Hillemann, Tina; Arnold, Hans-Henning; Kessler-Icekson, Gania; Brand, Thomas

    2002-01-01

    Popeye (Pop) genes encode novel transmembrane proteins, of which three family members are present in vertebrates, while in Drosophila a single gene is found. By northern blot analysis a restricted expression pattern is observed; Pop genes are predominantly expressed in the heart, skeletal and smooth muscle. Using homologous recombination, a null mutation was generated in the case of Pop1. The homozygous mutants are viable and do not display any obvious phenotype. They display an impaired ability to regenerate skeletal muscle while the hypertropic response of the heart after isoproterenol infusion revealed no difference between genotypes. Recently a function for Pop1 as a prototype of a novel class of cell adhesion molecules was proposed. Further work is required to substantiate these findings and to extend it to other members of the family. PMID:19649231

  10. Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family.

    PubMed

    Sugiyama, Akifumi; Shitan, Nobukazu; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; Yazaki, Kazufumi

    2006-10-31

    ATP-binding cassette (ABC) proteins constitute a large family in plants with more than 120 members each in Arabidopsis and rice, and have various functions including the transport of auxin and alkaloid, as well as the regulation of stomata movement. In this report, we carried out genome-wide analysis of ABC protein genes in a model legume plant, Lotus japonicus. For analysis of the Lotus genome sequence, we devised a new method 'domain-based clustering analysis', where domain structures like the nucleotide-binding domain (NBD) and transmembrane domain (TMD), instead of full-length amino acid sequences, are used to compare phylogenetically each other. This method enabled us to characterize fragments of ABC proteins, which frequently appear in a draft sequence of the Lotus genome. We identified 91 putative ABC proteins in L. japonicus, i.e. 43 'full-size', 40 'half-size' and 18 'soluble' putative ABC proteins. The characteristic feature of the composition is that Lotus has extraordinarily many paralogs similar to AtMRP14 and AtPDR12, which are at least six and five members, respectively. Expression analysis of the latter genes performed with real-time quantitative reverse transcription-PCR revealed their putative involvement in the nodulation process.

  11. Cohesion Group Approach for Evolutionary Analysis of TyrA, a Protein Family with Wide-Ranging Substrate Specificities

    PubMed Central

    Bonner, Carol A.; Disz, Terrence; Hwang, Kaitlyn; Song, Jian; Vonstein, Veronika; Overbeek, Ross; Jensen, Roy A.

    2008-01-01

    Summary: Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated. PMID:18322033

  12. Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities.

    PubMed

    Bonner, Carol A; Disz, Terrence; Hwang, Kaitlyn; Song, Jian; Vonstein, Veronika; Overbeek, Ross; Jensen, Roy A

    2008-03-01

    Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated.

  13. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  14. Family-wide Structural Analysis of Human Numb-Associated Protein Kinases.

    PubMed

    Sorrell, Fiona J; Szklarz, Marta; Abdul Azeez, Kamal R; Elkins, Jon M; Knapp, Stefan

    2016-03-01

    The highly diverse Numb-associated kinase (NAK) family has been linked to broad cellular functions including receptor-mediated endocytosis, Notch pathway modulation, osteoblast differentiation, and dendrite morphogenesis. Consequently, NAK kinases play a key role in a diverse range of diseases from Parkinson's and prostate cancer to HIV. Due to the plasticity of this kinase family, NAK kinases are often inhibited by approved or investigational drugs and have been associated with side effects, but they are also potential drug targets. The presence of cysteine residues in some NAK family members provides the possibility for selective targeting via covalent inhibition. Here we report the first high-resolution structures of kinases AAK1 and BIKE in complex with two drug candidates. The presented data allow a comprehensive structural characterization of the NAK kinase family and provide the basis for rational design of selective NAK inhibitors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Family-wide Structural Analysis of Human Numb-Associated Protein Kinases

    PubMed Central

    Sorrell, Fiona J.; Szklarz, Marta; Abdul Azeez, Kamal R.; Elkins, Jon M.; Knapp, Stefan

    2016-01-01

    Summary The highly diverse Numb-associated kinase (NAK) family has been linked to broad cellular functions including receptor-mediated endocytosis, Notch pathway modulation, osteoblast differentiation, and dendrite morphogenesis. Consequently, NAK kinases play a key role in a diverse range of diseases from Parkinson's and prostate cancer to HIV. Due to the plasticity of this kinase family, NAK kinases are often inhibited by approved or investigational drugs and have been associated with side effects, but they are also potential drug targets. The presence of cysteine residues in some NAK family members provides the possibility for selective targeting via covalent inhibition. Here we report the first high-resolution structures of kinases AAK1 and BIKE in complex with two drug candidates. The presented data allow a comprehensive structural characterization of the NAK kinase family and provide the basis for rational design of selective NAK inhibitors. PMID:26853940

  16. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  17. The Pfam protein families database.

    PubMed

    Finn, Robert D; Tate, John; Mistry, Jaina; Coggill, Penny C; Sammut, Stephen John; Hotz, Hans-Rudolf; Ceric, Goran; Forslund, Kristoffer; Eddy, Sean R; Sonnhammer, Erik L L; Bateman, Alex

    2008-01-01

    Pfam is a comprehensive collection of protein domains and families, represented as multiple sequence alignments and as profile hidden Markov models. The current release of Pfam (22.0) contains 9318 protein families. Pfam is now based not only on the UniProtKB sequence database, but also on NCBI GenPept and on sequences from selected metagenomics projects. Pfam is available on the web from the consortium members using a new, consistent and improved website design in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/), as well as from mirror sites in France (http://pfam.jouy.inra.fr/) and South Korea (http://pfam.ccbb.re.kr/).

  18. Phylogenetic Analysis of Members of the Phycodnaviridae Virus Family, Using Amplified Fragments of the Major Capsid Protein Gene▿

    PubMed Central

    Larsen, J. B.; Larsen, A.; Bratbak, G.; Sandaa, R.-A.

    2008-01-01

    Algal viruses are considered ecologically important by affecting host population dynamics and nutrient flow in aquatic food webs. Members of the family Phycodnaviridae are also interesting due to their extraordinary genome size. Few algal viruses in the Phycodnaviridae family have been sequenced, and those that have been have few genes in common and low gene homology. It has hence been difficult to design general PCR primers that allow further studies of their ecology and diversity. In this study, we screened the nine type I core genes of the nucleocytoplasmic large DNA viruses for sequences suitable for designing a general set of primers. Sequence comparison between members of the Phycodnaviridae family, including three partly sequenced viruses infecting the prymnesiophyte Pyramimonas orientalis and the haptophytes Phaeocystis pouchetii and Chrysochromulina ericina (Pyramimonas orientalis virus 01B [PoV-01B], Phaeocystis pouchetii virus 01 [PpV-01], and Chrysochromulina ericina virus 01B [CeV-01B], respectively), revealed eight conserved regions in the major capsid protein (MCP). Two of these regions also showed conservation at the nucleotide level, and this allowed us to design degenerate PCR primers. The primers produced 347- to 518-bp amplicons when applied to lysates from algal viruses kept in culture and from natural viral communities. The aim of this work was to use the MCP as a proxy to infer phylogenetic relationships and genetic diversity among members of the Phycodnaviridae family and to determine the occurrence and diversity of this gene in natural viral communities. The results support the current legitimate genera in the Phycodnaviridae based on alga host species. However, while placing the mimivirus in close proximity to the type species, PBCV-1, of Phycodnaviridae along with the three new viruses assigned to the family (PoV-01B, PpV-01, and CeV-01B), the results also indicate that the coccolithoviruses and phaeoviruses are more diverged from this

  19. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants.

    PubMed

    Jaspers, Pinja; Overmyer, Kirk; Wrzaczek, Michael; Vainonen, Julia P; Blomster, Tiina; Salojärvi, Jarkko; Reddy, Ramesha A; Kangasjärvi, Jaakko

    2010-03-12

    The SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

  20. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants

    PubMed Central

    2010-01-01

    Background The SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. Results SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. Conclusions The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation. PMID:20226034

  1. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families.

    PubMed

    Dewhurst, Henry M; Choudhury, Shilpa; Torres, Matthew P

    2015-08-01

    Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)--a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits--conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit-N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data. © 2015 by The American

  2. Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis.

    PubMed

    Hempel, Annemarie; Kühl, Susanne J

    2014-01-01

    Members of the cysteine-rich intestinal protein (Crip) family belong to the group 2 LIM proteins. Crip proteins are widely expressed in adult mammals but their expression profile and function during embryonic development are still mostly unknown. In this study, we have described for the first time the spatio-temporal expression pattern of the three family members crip1, crip2 and crip3 during Xenopus laevis embryogenesis by RT-PCR and whole mount in situ hybridization approaches. We observed that all three genes are expressed in the pronephros, branchial arches and the eye. Furthermore, crip1 transcripts could be visualized in the developing cranial ganglia and neural tube. In contrast, crip2 could be detected in the cardiovascular system, the brain and the neural tube while crip3 was expressed in the cranial ganglions and the heart. Based on these findings, we suggest that each crip family member may play an important role during embryonic development.

  3. Evolution of the NET (NocA, Nlz, Elbow, TLP-1) protein family in metazoans: insights from expression data and phylogenetic analysis

    PubMed Central

    Pereira, Filipe; Duarte-Pereira, Sara; Silva, Raquel M.; da Costa, Luís Teixeira; Pereira-Castro, Isabel

    2016-01-01

    The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease. PMID:27929068

  4. The Pfam protein families database

    PubMed Central

    Finn, Robert D.; Mistry, Jaina; Tate, John; Coggill, Penny; Heger, Andreas; Pollington, Joanne E.; Gavin, O. Luke; Gunasekaran, Prasad; Ceric, Goran; Forslund, Kristoffer; Holm, Liisa; Sonnhammer, Erik L. L.; Eddy, Sean R.; Bateman, Alex

    2010-01-01

    Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is ∼100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11 912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). PMID:19920124

  5. Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome

    PubMed Central

    Xu, Jia-Ning; Xing, Shan-Shan; Zhang, Zheng-Rong; Chen, Xue-Sen; Wang, Xiao-Yun

    2016-01-01

    Tubby-like proteins (TLPs), which have a highly conserved β barrel tubby domain, have been found to be associated with some animal-specific characteristics. In the plant kingdom, more than 10 TLP family members were identified in Arabidopsis, rice and maize, and they were found to be involved in responses to stress. The publication of the apple genome makes it feasible to systematically study the TLP family in apple. In this investigation, nine TLP encoding genes (TLPs for short) were identified. When combined with the TLPs from other plant species, the TLPs were divided into three groups (group A, B, and C). Most plant TLP members in group A contained an additional F-box domain at the N-terminus. However, no common domain was identified other than tubby domain either in group B or in group C. An analysis of the tubby domains of MdTLPs identified three types of conserved motifs. Motif 1 and 2, the signature motifs in the confirmed TLPs, were always present in MdTLPs, while motif 3 was absent from group B. Homology modeling indicated that the tubby domain of most MdTLPs had a closed β barrel, as in animal tubby domains. Expression profiling revealed that the MdTLP genes were expressed in multiple organs and were abundant in roots, stems, and leaves but low in flowers. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of MdTLPs. Expression profiling by qRT-PCR indicated that almost all MdTLPs were up-regulated at some extent under abiotic stress, exogenous ABA and H2O2 treatments in leaves and roots, though different MdTLP members exhibited differently in leaves and roots. The results and information above may provide a basis for further investigation of TLP function in plants. PMID:27895653

  6. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper

    PubMed Central

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  7. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects.

    PubMed

    Zhu, Qingsong; Arakane, Yasuyuki; Banerjee, Debarshi; Beeman, Richard W; Kramer, Karl J; Muthukrishnan, Subbaratnam

    2008-04-01

    A bioinformatics-based investigation of three insect species with completed genome sequences has revealed that insect chitinase-like proteins (glycosylhydrolase family 18) are encoded by a rather large and diverse group of genes. We identified 16, 16 and 13 putative chitinase-like genes in the genomic databases of the red flour beetle, Tribolium castaneum, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. Chitinase-like proteins encoded by this gene family were classified into five groups based on phylogenetic analyses. Group I chitinases are secreted proteins that are the most abundant such enzymes in molting fluid and/or integument, and represent the prototype enzyme of the family, with a single copy each of the catalytic domain and chitin-binding domain (ChBD) connected by an S/T-rich linker polypeptide. Group II chitinases are unusually larger-sized secreted proteins that contain multiple catalytic domains and ChBDs. Group III chitinases contain two catalytic domains and are predicted to be membrane-anchored proteins. Group IV chitinases are the most divergent. They usually lack a ChBD and/or an S/T-rich linker domain, and are known or predicted to be secreted proteins found in gut or fat body. Group V proteins include the putative chitinase-like imaginal disc growth factors (IDGFs). In each of the three insect genomes, multiple genes encode group IV and group V chitinase-like proteins. In contrast, groups I-III are each represented by only a singe gene in each species.

  8. Supervised Protein Family Classification and New Family Construction

    PubMed Central

    Yi, Gangman; Thon, Michael R.

    2012-01-01

    Abstract The goal of protein family classification is to group proteins into families so that proteins within the same family have common function or are related by ancestry. While supervised classification algorithms are available for this purpose, most of these approaches focus on assigning unclassified proteins to known families but do not allow for progressive construction of new families from proteins that cannot be assigned. Although unsupervised clustering algorithms are also available, they do not make use of information from known families. By computing similarities between proteins based on pairwise sequence comparisons, we develop supervised classification algorithms that achieve improved accuracy over previous approaches while allowing for construction of new families. We show that our algorithm has higher accuracy rate and lower mis-classification rate when compared to algorithms that are based on the use of multiple sequence alignments and hidden Markov models, and our algorithm performs well even on families with very few proteins and on families with low sequence similarity. A software program implementing the algorithm (SClassify) is available online (http://faculty.cse.tamu.edu/shsze/sclassify). PMID:22876787

  9. Genomic Identification and Comparative Expansion Analysis of the Non-Specific Lipid Transfer Protein Gene Family in Gossypium

    PubMed Central

    Li, Feng; Fan, Kai; Ma, Fanglu; Yue, Erkui; Bibi, Noreen; Wang, Ming; Shen, Hao; Hasan, Md Mosfeq-Ul; Wang, Xuede

    2016-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) are involved in many biological processes. In this study, 51, 47 and 91 nsLTPs were identified in Gossypium arboreum, G. raimondii and their descendant allotetraploid G. hirsutum, respectively. All the nsLTPs were phylogenetically divided into 8 distinct subfamilies. Besides, the recent duplication, which is considered cotton-specific whole genome duplication, may have led to nsLTP expansion in Gossypium. Both tandem and segmental duplication contributed to nsLTP expansion in G. arboreum and G. hirsutum, while tandem duplication was the dominant pattern in G. raimondii. Additionally, the interspecific orthologous gene pairs in Gossypium were identified. Some GaLTPs and GrLTPs lost their orthologs in the At and Dt subgenomes, respectively, of G. hirsutum. The distribution of these GrLTPs and GaLTPs within each subfamily was complementary, suggesting that the loss and retention of nsLTPs in G. hirsutum might not be random. Moreover, the nsLTPs in the At and Dt subgenomes might have evolved symmetrically. Furthermore, both intraspecific and interspecific orthologous genes showed considerable expression variation, suggesting that their functions were strongly differentiated. Our results lay an important foundation for expansion and evolutionary analysis of the nsLTP family in Gossypium, and advance nsLTP studies in other plants, especially polyploid plants. PMID:27976679

  10. Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae

    PubMed Central

    Cornman, R Scott; Togawa, Toru; Dunn, W Augustine; He, Ningjia; Emmons, Aaron C; Willis, Judith H

    2008-01-01

    Background The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity. Results We have identified 156 genes in Anopheles gambiae that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters). Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle. Conclusion The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other Anopheles genes. PMID:18205929

  11. Biochemical analysis of the human ENA/VASP-family proteins, MENA, VASP and EVL, in homologous recombination.

    PubMed

    Takaku, Motoki; Ueno, Hiroyuki; Kurumizaka, Hitoshi

    2011-06-01

    MENA, VASP and EVL are members of the ENA/VASP family of proteins and are involved in cytoplasmic actin remodeling. Previously, we found that EVL directly interacts with RAD51, an essential protein in the homologous recombinational repair of double-strand breaks (DSBs) and stimulates the RAD51-mediated recombination reactions in vitro. The EVL-knockdown MCF7 cells exhibited a clear reduction in RAD51-foci formation, suggesting that EVL may function in the DSB repair pathway through RAD51-mediated homologous recombination. However, the DSB repair defects were less significant in the EVL-knockdown cells, implying that two EVL paralogues, MENA and VASP, may complement the EVL function in human cells. Therefore, in the present study, we purified human MENA, VASP and EVL as recombinant proteins, and compared their biochemical activities in vitro. We found that all three proteins commonly exhibited the RAD51 binding, DNA binding and DNA-annealing activities. Stimulation of the RAD51-mediated homologous pairing was also observed with all three proteins. In addition, surface plasmon resonance analyses revealed that MENA, VASP and EVL mutually interacted. These results support the ideas that the ENA/VASP-family proteins are functionally redundant in homologous recombination, and that all three may be involved in the DSB repair pathway in humans.

  12. Protein family classification using sparse Markov transducers.

    PubMed

    Eskin, E; Grundy, W N; Singer, Y

    2000-01-01

    In this paper we present a method for classifying proteins into families using sparse Markov transducers (SMTs). Sparse Markov transducers, similar to probabilistic suffix trees, estimate a probability distribution conditioned on an input sequence. SMTs generalize probabilistic suffix trees by allowing for wild-cards in the conditioning sequences. Because substitutions of amino acids are common in protein families, incorporating wildcards into the model significantly improves classification performance. We present two models for building protein family classifiers using SMTs. We also present efficient data structures to improve the memory usage of the models. We evaluate SMTs by building protein family classifiers using the Pfam database and compare our results to previously published results.

  13. Mutation analysis of inhibitory guanine nucleotide binding protein alpha (GNAI) loci in young and familial pituitary adenomas.

    PubMed

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15-20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1, GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.

  14. Correlated rigid modes in protein families

    NASA Astrophysics Data System (ADS)

    Striegel, D. A.; Wojtowicz, D.; Przytycka, T. M.; Periwal, V.

    2016-04-01

    A great deal of evolutionarily conserved information is contained in genomes and proteins. Enormous effort has been put into understanding protein structure and developing computational tools for protein folding, and many sophisticated approaches take structure and sequence homology into account. Several groups have applied statistical physics approaches to extracting information about proteins from sequences alone. Here, we develop a new method for sequence analysis based on first principles, in information theory, in statistical physics and in Bayesian analysis. We provide a complete derivation of our approach and we apply it to a variety of systems, to demonstrate its utility and its limitations. We show in some examples that phylogenetic alignments of amino-acid sequences of families of proteins imply the existence of a small number of modes that appear to be associated with correlated global variation. These modes are uncovered efficiently in our approach by computing a non-perturbative effective potential directly from the alignment. We show that this effective potential approaches a limiting form inversely with the logarithm of the number of sequences. Mapping symbol entropy flows along modes to underlying physical structures shows that these modes arise due to correlated compensatory adjustments. In the protein examples, these occur around functional binding pockets.

  15. Structural and functional analysis of Aplysia attractins, a family of water-borne protein pheromones with interspecific attractiveness

    PubMed Central

    Painter, Sherry D.; Cummins, Scott F.; Nichols, Amy E.; Akalal, David-B. G.; Schein, Catherine H.; Braun, Werner; Smith, John S.; Susswein, Abraham J.; Levy, Miriam; de Boer, Pamela A. C. M.; ter Maat, Andries; Miller, Mark W.; Scanlan, Cory; Milberg, Richard M.; Sweedler, Jonathan V.; Nagle, Gregg T.

    2004-01-01

    Mate attraction in Aplysia involves a long-distance water-borne signal (the protein pheromone attractin), which is released during egg laying. Aplysia californica attractin attracts species that produce closely related attractins, such as Aplysia brasiliana, whose geographic distribution does not overlap that of A. californica. This finding suggests that other mollusks release attractin-related pheromones to form and maintain breeding aggregations. We describe four additional members of the attractin family: A. brasiliana, Aplysia fasciata, Aplysia depilans (which aggregates with A. fasciata aggregations), and Aplysia vaccaria (which aggregates with A. californica aggregations). On the basis of their sequence similarity with A. californica attractin, the attractin proteins fall into two groups: A. californica, A. brasiliana, and A. fasciata (91–95% identity), and A. depilans and A. vaccaria (41–43% identity). The sequence similarity within the attractin family, the conserved six cysteines, and the compact fold of the NMR solution structure of A. californica attractin suggest a common fold for this pheromone family containing two antiparallel helices. The second helix contains the IEECKTS sequence conserved in Aplysia attractins. Mutating surface-exposed charged residues within this heptapeptide sequence abolishes attractin activity, suggesting that the second helix is an essential part of the receptor-binding interface. PMID:15118100

  16. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. )

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  17. Genome-wide identification and analysis of FK506-binding protein gene family in peach (Prunus persica).

    PubMed

    Zhang, Yanping; Han, Jan; Liu, Dan; Wen, Xicheng; Li, Yu; Tao, Ran; Peng, Yongbin; Fang, Jinggui; Wang, Chen

    2014-02-25

    The FKBP protein family has prolyl isomerase activity and is related in function to cyclophilins. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete peach genome sequences allowed the identification of 21 FKBP genes by HMMER and BLAST analyses. Scaffold locations of these FKBP genes in the peach genome were determined and the protein domain and motif organization of peach FKBPs were analyzed. The phylogenetic relationships between peach FKBPs were also assessed. The expression profiles of peach FKBP gene results revealed that most peach FKBPs were expressed in all tissues, while a few peach FKBPs were specifically expressed in some of the tissues. This data could contribute to better understanding of the complex regulation of the peach FKBP gene family, and also provide valuable information for further research in peach functional genomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Targeting functional motifs of a protein family.

    PubMed

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β-lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β-lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β-lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  19. Targeting functional motifs of a protein family

    NASA Astrophysics Data System (ADS)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  20. Molecular Identification and Expression Analysis of Filaggrin-2, a Member of the S100 Fused-Type Protein Family

    PubMed Central

    Wu, Zhihong; Hansmann, Britta; Meyer-Hoffert, Ulf; Gläser, Regine; Schröder, Jens-Michael

    2009-01-01

    Genes of the S100 fused-type protein (SFTP) family are clustered within the epidermal differentiation complex and encode essential components that maintain epithelial homeostasis and barrier functions. Recent genetic studies have shown that mutations within the gene encoding the SFTP filaggrin cause ichthyosis vulgaris and are major predisposing factors for atopic dermatitis. As a vital component of healthy skin, filaggrin is also a precursor of natural moisturizing factors. Here we present the discovery of a member of this family, designated as filaggrin-2 (FLG2) that is expressed in human skin. The FLG2 gene encodes a histidine- and glutamine-rich protein of approximately 248 kDa, which shares common structural features with other SFTP members, in particular filaggrin. We found that FLG2 transcripts are present in skin, thymus, tonsils, stomach, testis and placenta. In cultured primary keratinocytes, FLG2 mRNA expression displayed almost the same kinetics as that of filaggrin following Ca2+ stimulation, suggesting an important role in molecular regulation of epidermal terminal differentiation. We provide evidences that like filaggrin, FLG2 is initially expressed by upper granular cells, proteolytically processed and deposited in the stratum granulosum and stratum corneum (SC) layers of normal epidermis. Thus, FLG2 and filaggrin may have overlapping and perhaps synergistic roles in the formation of the epidermal barrier, protecting the skin from environmental insults and the escape of moisture by offering precursors of natural moisturizing factors. PMID:19384417

  1. Bioinformatics identification and transcript profile analysis of the mitogen-activated protein kinase gene family in the diploid woodland strawberry Fragaria vesca

    PubMed Central

    Wei, Wei; Chai, Zhuangzhuang; Xie, Yinge; Gao, Kuan; Cui, Mengyuan; Jiang, Ying

    2017-01-01

    Mitogen-activated protein kinases (MAPKs) play essential roles in mediating biotic and abiotic stress responses in plants. However, the MAPK gene family in strawberry has not been systematically characterized. Here, we performed a genome-wide survey and identified 12 MAPK genes in the Fragaria vesca genome. Protein domain analysis indicated that all FvMAPKs have typical protein kinase domains. Sequence alignments and phylogenetic analysis classified the FvMAPK genes into four different groups. Conserved motif and exon-intron organization supported the evolutionary relationships inferred from the phylogenetic analysis. Analysis of the stress-related cis-regulatory element in the promoters and subcellular localization predictions of FvMAPKs were also performed. Gene transcript profile analysis showed that the majority of the FvMAPK genes were ubiquitously transcribed in strawberry leaves after Podosphaera aphanis inoculation and after treatment with cold, heat, drought, salt and the exogenous hormones abscisic acid, ethephon, methyl jasmonate, and salicylic acid. RT-qPCR showed that six selected FvMAPK genes comprehensively responded to various stimuli. Additionally, interaction networks revealed that the crucial signaling transduction controlled by FvMAPKs may be involved in the biotic and abiotic stress responses. Our results may provide useful information for future research on the function of the MAPK gene family and the genetic improvement of strawberry resistance to environmental stresses. PMID:28562633

  2. Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens.

    PubMed

    Wu, Hung-Yi; Chung, Pei-Che; Shih, Hsiao-Wei; Wen, Sy-Ray; Lai, Erh-Min

    2008-04-01

    Agrobacterium tumefaciens is a plant-pathogenic bacterium capable of secreting several virulence factors into extracellular space or the host cell. In this study, we used shotgun proteomics analysis to investigate the secretome of A. tumefaciens, which resulted in identification of 12 proteins, including 1 known secretory protein (VirB1*) and 11 potential secretory proteins. Interestingly, one unknown protein, which we designated hemolysin-coregulated protein (Hcp), is a predicted soluble protein without a recognizable N-terminal signal peptide. Western blot analysis revealed that A. tumefaciens Hcp is expressed and secreted when cells are grown in both minimal and rich media. Further biochemical and immunoelectron microscopy analysis demonstrated that intracellular Hcp is localized mainly in the cytosol, with a small portion in the membrane system. To investigate the mechanism of secretion of Hcp in A. tumefaciens, we generated mutants with deletions of a conserved gene, icmF, or the entire putative operon encoding a recently identified type VI secretion system (T6SS). Western blot analysis indicated that Hcp was expressed but not secreted into the culture medium in mutants with deletions of icmF or the t6ss operon. The secretion deficiency of Hcp in the icmF mutant was complemented by heterologous trans expression of icmF, suggesting that icmF is required for Hcp secretion. In tumor assays with potato tuber disks, deletion of hcp resulted in approximately 20 to 30% reductions in tumorigenesis efficiency, while no consistent difference was observed when icmF or the t6ss operon was deleted. These results increase our understanding of the conserved T6SS used by both plant- and animal-pathogenic bacteria.

  3. SSCP analysis and sequencing of the human prion protein gene (PRNP) detects two different 24 bp deletions in an atypical Alzheimer`s disease family

    SciTech Connect

    Perry, R.T.; Go, R.C.P.; Harrell, L.E.; Acton, R.T.

    1995-02-27

    Alzheimer`s disease (AD) is a progressive, degenerative neurological disorder of the central nervous system. AD is the fourth leading cause of death in elderly persons 65 years or older in Western industrialized societies. The etiology of AD is unknown, but clinical, pathological, epidemiological, and molecular investigations suggest it is etiologically heterogeneous. Mutations in the amyloid protein are rare and segregate with the disease in a few early-onset familial AD (FAD) families. Similarities between AD and the unconventional viral (UCV) diseases, and between the amyloid and prion proteins, implicate the human prion protein gene (PRNP) as another candidate gene. Single strand conformation polymorphism (SSCP) analysis was used to screen for mutations at this locus in 82 AD patients from 54 families (30 FAD), vs. 39 age-matched controls. A 24-bp deletion around codon 68 that codes for one of five Gly-Pro rich octarepeats was identified in two affected sibs and one offspring of one late-onset FAD family. Two other affected sibs, three unaffected sibs, and three offspring from this family, in addition to one sporadic AD patient and three age-matched controls, were heterozygous for another octarepeat deletion located around codon 82. Two of the four affected sibs had features of PD, including one who was autopsy-verified AD and PD. Although these deletions were found infrequently in other AD patients and controls, they appear to be a rare polymorphism that is segregating in this FAD family. It does not appear that mutations at the PRNP locus are frequently associated with AD in this population. 54 refs., 4 figs.

  4. A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients.

    PubMed

    Benoit, Joshua B; Attardo, Geoffrey M; Michalkova, Veronika; Krause, Tyler B; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A; Mireji, Paul O; Takáč, Peter; Denlinger, David L; Ribeiro, Jose M; Aksoy, Serap

    2014-04-01

    In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation

  5. A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients

    PubMed Central

    Benoit, Joshua B.; Attardo, Geoffrey M.; Michalkova, Veronika; Krause, Tyler B.; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A.; Mireji, Paul O.; Takáč, Peter; Denlinger, David L.; Ribeiro, Jose M.; Aksoy, Serap

    2014-01-01

    In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1–3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4–10). The genes encoding mgp2–10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2–10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2–10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2–10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2–10 to tsetse and their critical role during

  6. Exhaustive enumeration of protein domain families.

    PubMed

    Heger, Andreas; Holm, Liisa

    2003-05-02

    Domains are considered as the basic units of protein folding, evolution, and function. Decomposing each protein into modular domains is thus a basic prerequisite for accurate functional classification of biological molecules. Here, we present ADDA, an automatic algorithm for domain decomposition and clustering of all protein domain families. We use alignments derived from an all-on-all sequence comparison to define domains within protein sequences based on a global maximum likelihood model. In all, 90% of domain boundaries are predicted within 10% of domain size when compared with the manual domain definitions given in the SCOP database. A representative database of 249,264 protein sequences were decomposed into 450,462 domains. These domains were clustered on the basis of sequence similarities into 33,879 domain families containing at least two members with less than 40% sequence identity. Validation against family definitions in the manually curated databases SCOP and PFAM indicates almost perfect unification of various large domain families while contamination by unrelated sequences remains at a low level. The global survey of protein-domain space by ADDA confirms that most large and universal domain families are already described in PFAM and/or SMART. However, a survey of the complete set of mobile modules leads to the identification of 1479 new interesting domain families which shuffle around in multi-domain proteins. The data are publicly available at ftp://ftp.ebi.ac.uk/pub/contrib/heger/adda.

  7. Discovery, identification and comparative analysis of non-specific lipid transfer protein (nsLtp) family in Solanaceae.

    PubMed

    Liu, Wanfei; Huang, Dawei; Liu, Kan; Hu, Songnian; Yu, Jun; Gao, Gang; Song, Shuhui

    2010-12-01

    Plant non-specific lipid transfer proteins (nsLtps) have been reported to be involved in plant defense activity against bacterial and fungal pathogens. In this study, we identified 135 (122 putative and 13 previously identified) Solanaceae nsLtps, which are clustered into 8 different groups. By comparing with Boutrot's nsLtp classification, we classified these eight groups into five types (I, II, IV, IX and X). We compared Solanaceae nsLtps with Arabi-dopsis and Gramineae nsLtps and found that (1) Types I, II and IV are shared by Solanaceae, Gramineae and Arabidopsis; (2) Types III, V, VI and VIII are shared by Gramineae and Arabidopsis but not detected in Solanaceae so far; (3) Type VII is only found in Gramineae whereas type IX is present only in Arabidopsis and Solanaceae; (4) Type X is a new type that accounts for 52.59% Solanaceae nsLtps in our data, and has not been reported in any other plant so far. We further built and compared the three-dimensional structures of the eight groups, and found that the major functional diversification within the nsLtp family could be predated to the monocot/dicot divergence, and many gene duplications and sequence variations had happened in the nsLtp family after the monocot/dicot divergence, especially in Solanaceae.

  8. The protein kinase C family.

    PubMed

    Azzi, A; Boscoboinik, D; Hensey, C

    1992-09-15

    Protein kinase C represents a structurally homologous group of proteins similar in size, structure and mechanism of activation. They can modulate the biological function of proteins in a rapid and reversible manner. Protein kinase C participates in one of the major signal transduction systems triggered by the external stimulation of cells by various ligands including hormones, neurotransmitters and growth factors. Hydrolysis of membrane inositol phospholipids by phospholipase C or of phosphatidylcholine, generates sn-1,2-diacylglycerol, considered the physiological activator of this kinase. Other agents, such as arachidonic acid, participate in the activation of some of these proteins. Activation of protein kinase C by phorbol esters and related compounds is not physiological and may be responsible, at least in part, for their tumor-promoting activity. The cellular localization of the different calcium-activated protein kinases, their substrate and activator specificity are dissimilar and thus their role in signal transduction is unlike. A better understanding of the exact cellular function of the different protein kinase C isoenzymes requires the identification and characterization of their physiological substrates.

  9. Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato.

    PubMed

    Solanke, Amolkumar U; Sharma, Manoj K; Tyagi, Akhilesh K; Sharma, Arun Kumar

    2009-08-01

    Characterization of genes responsive to stress is important for efforts on improving stress tolerance of plants. To address components involved in stress tolerance of tomato (Solanum lycopersicum), a stress-responsive gene family encoding A20/AN1 zinc finger proteins was characterized. In the present study, 13 members of this gene family were cloned from tomato cultivar Pusa Ruby and named as Stress Associated Protein (SAP) genes. Out of 13 genes, 12 have been mapped on their respective chromosomes. Expression of these genes in response to cold, heat, salt, desiccation, wounding, abscisic acid, oxidative and submergence stresses was analysed. All tomato SAP genes were found to be responsive to one or other type of environmental stress. The phylogenetic analysis of these genes, along with their orthologs from Solanaceae species suggests the presence of a common set of SAP genes in the studied Solanaceae species. The present study characterizes a SAP gene family, which encodes A20/AN1 zinc finger containing proteins from tomato for the first time. Genes showing high expression in response to a particular stress can be exploited for improving stress tolerance of tomato and other Solanaceae members.

  10. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  11. Protein family classification using sparse markov transducers.

    PubMed

    Eskin, Eleazar; Noble, William Stafford; Singer, Yoram

    2003-01-01

    We present a method for classifying proteins into families based on short subsequences of amino acids using a new probabilistic model called sparse Markov transducers (SMT). We classify a protein by estimating probability distributions over subsequences of amino acids from the protein. Sparse Markov transducers, similar to probabilistic suffix trees, estimate a probability distribution conditioned on an input sequence. SMTs generalize probabilistic suffix trees by allowing for wild-cards in the conditioning sequences. Since substitutions of amino acids are common in protein families, incorporating wild-cards into the model significantly improves classification performance. We present two models for building protein family classifiers using SMTs. As protein databases become larger, data driven learning algorithms for probabilistic models such as SMTs will require vast amounts of memory. We therefore describe and use efficient data structures to improve the memory usage of SMTs. We evaluate SMTs by building protein family classifiers using the Pfam and SCOP databases and compare our results to previously published results and state-of-the-art protein homology detection methods. SMTs outperform previous probabilistic suffix tree methods and under certain conditions perform comparably to state-of-the-art protein homology methods.

  12. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species.

    PubMed

    Gupta, R S

    1995-11-01

    The heat shock protein (Hsp) sequences, because of their ubiquity and high degree of conservation, provide useful models for phylogenetic analysis. In this paper I have carried out a global alignment of all available sequences (a total of 31) for the 90-kD heat shock protein (Hsp90) family. The minimum amino acid identity that is seen between presently known Hsp90 homologs is about 40% over the entire length, indicating that it is a highly conserved protein. Based on the alignment, a number of signature sequences that either are distinctive of the Hsp90 family or that distinguish between the cytosolic and the endoplasmic reticular forms of Hsp90 have been identified. Detailed phylogenetic analyses based on Hsp90 sequences reported here strongly indicate that the cytosolic and the endoplasmic reticulum (ER) resident forms of Hsp90 constitute paralogous gene families which arose by a gene duplication event that took place very early in the evolution of eukaryotic cells. A minimum of two additional gene duplication events, which took place at a later time, are required to explain the presence of two different forms of Hsp90 that are found in fungi and vertebrate species. In a consensus neighbor-joining bootstrap tree based on Hsp90 sequences, plants and animals species grouped together 989 times of 1,000 (a highly significant score), indicating a closer relationship between them as compared to fungi. A closer affiliation of plant and animal species was also observed in the maximum-parsimony tree, although the relationship was not significantly supported by this method. A survey of the recent literature on this subject indicates that depending on the protein sequence and the methods of phylogenetic analysis, the animal species are indicated as closer relatives to either plants or fungi with significant statistical support for both topologies. Thus the relationship among the animal, plant, and fungi kingdoms remains an unresolved issue at the present time.

  13. Analysis of Transcriptionally Active Gene Clusters of Major Outer Membrane Protein Multigene Family in Ehrlichia canis and E. chaffeensis

    PubMed Central

    Ohashi, Norio; Rikihisa, Yasuko; Unver, Ahmet

    2001-01-01

    Ehrlichia canis and E. chaffeensis are tick-borne obligatory intramonocytic ehrlichiae that cause febrile systemic illness in humans and dogs, respectively. The current study analyzed the pleomorphic multigene family encoding approximately 30-kDa major outer membrane proteins (OMPs) of E. canis and E. chaffeensis. Upstream from secA and downstream of hypothetical transcriptional regulator, 22 paralogs of the omp gene family were found to be tandemly arranged except for one or two genes with opposite orientations in a 28- and a 27-kb locus in the E. canis and E. chaffeensis genomes, respectively. Each locus consisted of three highly repetitive regions with four nonrepetitive intervening regions. E. canis, in addition, had a 6.9-kb locus which contained a repeat of three tandem paralogs in the 28-kb locus. These total 47 paralogous and orthologous genes encoded OMPs of approximately 30 to 35 kDa consisting of several hypervariable regions alternating with conserved regions. In the 5′-end half of the 27-kb locus or the 28-kb locus of each Ehrlichia species, 14 paralogs were linked by short intergenic spaces ranging from −8 bp (overlapped) to 27 bp, and 8 remaining paralogs in the 3′-end half were connected by longer intergenic spaces ranging from 213 to 632 bp. All 22 paralogs, five unknown genes, and secA in the omp cluster in E. canis were transcriptionally active in the monocyte culture, and the paralogs with short intergenic spaces were cotranscribed with their adjacent genes, including the respective intergenic spaces at both the 5′ and the 3′ sides. Although omp genes are diverse, our results suggest that the gene organization of the clusters and the gene locus are conserved between two species of Ehrlichia to maintain a unique transcriptional mechanism for adaptation to environmental changes common to them. PMID:11254561

  14. Learning generative models for protein fold families.

    PubMed

    Balakrishnan, Sivaraman; Kamisetty, Hetunandan; Carbonell, Jaime G; Lee, Su-In; Langmead, Christopher James

    2011-04-01

    We introduce a new approach to learning statistical models from multiple sequence alignments (MSA) of proteins. Our method, called GREMLIN (Generative REgularized ModeLs of proteINs), learns an undirected probabilistic graphical model of the amino acid composition within the MSA. The resulting model encodes both the position-specific conservation statistics and the correlated mutation statistics between sequential and long-range pairs of residues. Existing techniques for learning graphical models from MSA either make strong, and often inappropriate assumptions about the conditional independencies within the MSA (e.g., Hidden Markov Models), or else use suboptimal algorithms to learn the parameters of the model. In contrast, GREMLIN makes no a priori assumptions about the conditional independencies within the MSA. We formulate and solve a convex optimization problem, thus guaranteeing that we find a globally optimal model at convergence. The resulting model is also generative, allowing for the design of new protein sequences that have the same statistical properties as those in the MSA. We perform a detailed analysis of covariation statistics on the extensively studied WW and PDZ domains and show that our method out-performs an existing algorithm for learning undirected probabilistic graphical models from MSA. We then apply our approach to 71 additional families from the PFAM database and demonstrate that the resulting models significantly out-perform Hidden Markov Models in terms of predictive accuracy.

  15. Analysis of the potato calcium-dependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans.

    PubMed

    Fantino, Elisa; Segretin, María Eugenia; Santin, Franco; Mirkin, Federico Gabriel; Ulloa, Rita M

    2017-07-01

    We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca(2+)) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca(2+)-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.

  16. The lipocalin protein family: structure and function.

    PubMed Central

    Flower, D R

    1996-01-01

    The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds. PMID:8761444

  17. Mass-spectrometric analysis of myelin proteolipids reveals new features of this family of palmitoylated membrane proteins.

    PubMed

    Bizzozero, Oscar A; Malkoski, Steve P; Mobarak, Charlotte; Bixler, Heather A; Evans, James E

    2002-05-01

    In this study, we have investigated the structure of the native myelin proteolipid protein (PLP), DM-20 protein and several low molecular mass proteolipids by mass spectrometry. The various proteolipid species were isolated from bovine spinal cord by size-exclusion and ion-exchange chromatography in organic solvents. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) of PLP and DM-20 revealed molecular masses of 31.6 and 27.2 kDa, respectively, which is consistent with the presence of six and four molecules of thioester-bound fatty acids. Electrospray ionization-MS analysis of the deacylated proteins in organic solvents produced the predicted molecular masses of the apoproteins (29.9 and 26.1 kDa), demonstrating that palmitoylation is the major post-translational modification of PLP, and that the majority of PLP and DM-20 molecules in the CNS are fully acylated. A series of myelin-associated, palmitoylated proteolipids with molecular masses raging between 12 kDa and 18 kDa were also isolated and subjected to amino acid analysis, fatty acid analysis, N- and C-terminal sequencing, tryptic digestion and peptide mapping by MALDI-TOF-MS. The results clearly showed that these polypeptides correspond to the N-terminal region (residues 1-105/112) and C-terminal region (residues 113/131-276) of the major PLP, and they appear to be produced by natural proteolytic cleavage within the 60 amino acid-long cytoplasmic domain. These proteolipids are not postmortem artifacts of PLP and DM-20, and are differentially distributed across the CNS.

  18. Characteristic motifs for families of allergenic proteins

    PubMed Central

    Ivanciuc, Ovidiu; Garcia, Tzintzuni; Torres, Miguel; Schein, Catherine H.; Braun, Werner

    2008-01-01

    The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver Motif-Mate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins. PMID:18951633

  19. Expansion of the Protein Repertoire in Newly Explored Environments: Human Gut Microbiome Specific Protein Families

    PubMed Central

    Ellrott, Kyle; Jaroszewski, Lukasz; Li, Weizhong; Wooley, John C.; Godzik, Adam

    2010-01-01

    The microbes that inhabit particular environments must be able to perform molecular functions that provide them with a competitive advantage to thrive in those environments. As most molecular functions are performed by proteins and are conserved between related proteins, we can expect that organisms successful in a given environmental niche would contain protein families that are specific for functions that are important in that environment. For instance, the human gut is rich in polysaccharides from the diet or secreted by the host, and is dominated by Bacteroides, whose genomes contain highly expanded repertoire of protein families involved in carbohydrate metabolism. To identify other protein families that are specific to this environment, we investigated the distribution of protein families in the currently available human gut genomic and metagenomic data. Using an automated procedure, we identified a group of protein families strongly overrepresented in the human gut. These not only include many families described previously but also, interestingly, a large group of previously unrecognized protein families, which suggests that we still have much to discover about this environment. The identification and analysis of these families could provide us with new information about an environment critical to our health and well being. PMID:20532204

  20. Transcription analysis of the major antigenic protein 1 multigene family of three in vitro-cultured Ehrlichia ruminantium isolates.

    PubMed

    Bekker, Cornelis P J; Postigo, Milagros; Taoufik, Amar; Bell-Sakyi, Lesley; Ferraz, Conchita; Martinez, Dominique; Jongejan, Frans

    2005-07-01

    Ehrlichia ruminantium, an obligate intracellular bacterium transmitted by ticks of the genus Amblyomma, causes heartwater disease in ruminants. The gene coding for the major antigenic protein MAP1 is part of a multigene family consisting of a cluster containing 16 paralogs. In the search for differentially regulated genes between E. ruminantium grown in endothelial and tick cell lines that could be used in vaccine development and to determine if differences in the map1 gene cluster exist between different isolates of E. ruminantium, we analyzed the map1 gene cluster of the Senegal and Gardel isolates of E. ruminantium. Both isolates contained the same number of genes, and the same organization as found in the genome sequence of the Welgevonden isolate (H. Van Heerden, N. E. Collins, K. A. Brayton, C. Rademeyer, and B. A. Allsopp, Gene 330:159-168, 2004). However, comparison of two subpopulations of the Gardel isolate maintained in different laboratories demonstrated that recombination between map1-3 and map1-2 had occurred in one subpopulation with deletion of one entire gene. Reverse transcription-PCR on E. ruminantium derived mRNA from infected cells using gene-specific primers revealed that all 16 map1 paralogs were transcribed in endothelial cells. In one vector (Amblyomma variegatum) and several nonvector tick cell lines infected with E. ruminantium, transcripts were found for between 4 and 11 paralogs. In all these cases the transcript for the map1-1 gene was detected and was predominant. Our results indicate that the map1 gene cluster is relatively conserved but can be subject to recombination, and differences in the transcription of map1 multigenes in host and vector cell environments exist.

  1. The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain.

    PubMed

    Girard, F; Venail, J; Schwaller, B; Celio, M R

    2015-05-21

    In mice, 249 putative members of the superfamily of EF-hand domain Ca(2+)-binding proteins, manifesting great diversity in structure, cellular localization and functions have been identified. Three members in particular, namely, calbindin-D28K, calretinin and parvalbumin, are widely used as markers for specific neuronal subpopulations in different regions of the brain. The aim of the present study was to compile a comprehensive atlas of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. This was achieved by a meticulous examination of the in-situ hybridization images in the Allen Brain Atlas database. Topographically, our analysis focused on the olfactory bulb, cerebral cortex (barrel cortex in the primary somatosensory area), basal ganglia, hippocampus, amygdala, thalamus, hypothalamus, cerebellum, midbrain, pons and medulla, and on clearly identifiable sub-structures within each of these areas. The expression profiles of four family-members, namely hippocalcin-like 4, neurocalcin-δ, plastin 3 and tescalcin, that have not been hitherto reported, at either the mRNA (in-situ-hybridization) or the protein (immunohistochemical) levels, are now presented for the first time. The fruit of our analysis is a document in which the gene-expression profiles of all members of the EF-hand family genes are compared, and in which future possible neuronal markers for specific cells/brain areas are identified. The assembled information could afford functional clues to investigators, conducive to further experimental pursuit.

  2. Genome-Wide Analysis of Drosophila RBf2 Protein Highlights the Diversity of RB Family Targets and Possible Role in Regulation of Ribosome Biosynthesis

    PubMed Central

    Wei, Yiliang; Mondal, Shamba S.; Mouawad, Rima; Wilczyński, Bartek; Henry, R. William; Arnosti, David N.

    2015-01-01

    RBf2 is a recently evolved retinoblastoma family member in Drosophila that differs from RBf1, especially in the C-terminus. To investigate whether the unique features of RBf2 contribute to diverse roles in gene regulation, we performed chromatin immunoprecipitation sequencing for both RBf2 and RBf1 in embryos. A previous model for RB−E2F interactions suggested that RBf1 binds dE2F1 or dE2F2, whereas RBf2 is restricted to binding to dE2F2; however, we found that RBf2 targets approximately twice as many genes as RBf1. Highly enriched among the RBf2 targets were ribosomal protein genes. We tested the functional significance of this finding by assessing RBf activity on ribosomal protein promoters and the endogenous genes. RBf1 and RBf2 significantly repressed expression of some ribosomal protein genes, although not all bound genes showed transcriptional effects. Interestingly, many ribosomal protein genes are similarly targeted in human cells, indicating that these interactions may be relevant for control of ribosome biosynthesis and growth. We carried out bioinformatic analysis to investigate the basis for differential targeting by these two proteins and found that RBf2-specific promoters have distinct sequence motifs, suggesting unique targeting mechanisms. Association of RBf2 with these promoters appears to be independent of dE2F2/dDP, although promoters bound by both RBf1 and RBf2 require dE2F2/dDP. The presence of unique RBf2 targets suggest that evolutionary appearance of this corepressor represents the acquisition of potentially novel roles in gene regulation for the RB family. PMID:25999584

  3. Genome-Wide Analysis of Drosophila RBf2 Protein Highlights the Diversity of RB Family Targets and Possible Role in Regulation of Ribosome Biosynthesis.

    PubMed

    Wei, Yiliang; Mondal, Shamba S; Mouawad, Rima; Wilczyński, Bartek; Henry, R William; Arnosti, David N

    2015-05-20

    RBf2 is a recently evolved retinoblastoma family member in Drosophila that differs from RBf1, especially in the C-terminus. To investigate whether the unique features of RBf2 contribute to diverse roles in gene regulation, we performed chromatin immunoprecipitation sequencing for both RBf2 and RBf1 in embryos. A previous model for RB-E2F interactions suggested that RBf1 binds dE2F1 or dE2F2, whereas RBf2 is restricted to binding to dE2F2; however, we found that RBf2 targets approximately twice as many genes as RBf1. Highly enriched among the RBf2 targets were ribosomal protein genes. We tested the functional significance of this finding by assessing RBf activity on ribosomal protein promoters and the endogenous genes. RBf1 and RBf2 significantly repressed expression of some ribosomal protein genes, although not all bound genes showed transcriptional effects. Interestingly, many ribosomal protein genes are similarly targeted in human cells, indicating that these interactions may be relevant for control of ribosome biosynthesis and growth. We carried out bioinformatic analysis to investigate the basis for differential targeting by these two proteins and found that RBf2-specific promoters have distinct sequence motifs, suggesting unique targeting mechanisms. Association of RBf2 with these promoters appears to be independent of dE2F2/dDP, although promoters bound by both RBf1 and RBf2 require dE2F2/dDP. The presence of unique RBf2 targets suggest that evolutionary appearance of this corepressor represents the acquisition of potentially novel roles in gene regulation for the RB family.

  4. The MAGE protein family and cancer

    PubMed Central

    Weon, Jenny L.; Potts, Patrick Ryan

    2015-01-01

    The Melanoma Antigen Gene (MAGE) protein family is a large, highly conserved group of proteins that share a common MAGE homology domain. Intriguingly, many MAGE proteins are restricted in expression to reproductive tissues, but are aberrantly expressed in a wide-variety of cancer types. Originally discovered as antigens on tumor cells and developed as cancer immunotherapy targets, recent literature suggests a more prominent role for MAGEs in driving tumorigenesis. This review will highlight recent developments into the function of MAGEs as oncogenes, their mechanisms of action in regulation of ubiquitin ligases, and outstanding questions in the field. PMID:26342994

  5. Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins.

    PubMed

    Chruszcz, Maksymilian; Ciardiello, Maria Antonietta; Osinski, Tomasz; Majorek, Karolina A; Giangrieco, Ivana; Font, Jose; Breiteneder, Heimo; Thalassinos, Konstantinos; Minor, Wladek

    2013-12-01

    The allergen Act d 11, also known as kirola, is a 17 kDa protein expressed in large amounts in ripe green and yellow-fleshed kiwifruit. Ten percent of all kiwifruit-allergic individuals produce IgE specific for the protein. Using X-ray crystallography, we determined the first three-dimensional structures of Act d 11, produced from both recombinant expression in Escherichia coli and from the natural source (kiwifruit). While Act d 11 is immunologically correlated with the birch pollen allergen Bet v 1 and other members of the pathogenesis-related protein family 10 (PR-10), it has low sequence similarity to PR-10 proteins. By sequence Act d 11 appears instead to belong to the major latex/ripening-related (MLP/RRP) family, but analysis of the crystal structures shows that Act d 11 has a fold very similar to that of Bet v 1 and other PR-10 related allergens regardless of the low sequence identity. The structures of both the natural and recombinant protein include an unidentified ligand, which is relatively small (about 250 Da by mass spectrometry experiments) and most likely contains an aromatic ring. The ligand-binding cavity in Act d 11 is also significantly smaller than those in PR-10 proteins. The binding of the ligand, which we were not able to unambiguously identify, results in conformational changes in the protein that may have physiological and immunological implications. Interestingly, the residue corresponding to Glu45 in Bet v 1 (Glu46), which is important for IgE binding to the birch pollen allergen, is conserved in Act d 11, even though it is not in other allergens with significantly higher sequence identity to Bet v 1. We suggest that the so-called Gly-rich loop (or P-loop), which is conserved in all PR-10 allergens, may be responsible for IgE cross-reactivity between Bet v 1 and Act d 11. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fos family protein degradation by the proteasome.

    PubMed

    Gomard, Tiphanie; Jariel-Encontre, Isabelle; Basbous, Jihane; Bossis, Guillaume; Moquet-Torcy, Gabriel; Mocquet-Torcy, Gabriel; Piechaczyk, Marc

    2008-10-01

    c-Fos proto-oncoprotein defines a family of closely related transcription factors (Fos proteins) also comprising Fra-1, Fra-2, FosB and DeltaFosB, the latter two proteins being generated by alternative splicing. Through the regulation of many genes, most of them still unidentified, they regulate major functions from the cell level up to the whole organism. Thus they are involved in the control of proliferation, differentiation and apoptosis, as well as in the control of responses to stresses, and they play important roles in organogenesis, immune responses and control of cognitive functions, among others. Fos proteins are intrinsically unstable. We have studied how two of them, c-Fos and Fra-1, are degraded. Departing from the classical scenario where unstable key cell regulators are hydrolysed by the proteasome after polyubiquitination, we showed that the bulk of c-Fos and Fra-1 can be broken down independently of any prior ubiquitination. Certain conserved structural domains suggest that similar mechanisms may also apply to Fra-2 and FosB. Computer search indicates that certain motifs shared by the Fos proteins and putatively responsible for instability are found in no other protein, suggesting the existence of degradation mechanisms specific for this protein family. Under particular signalling conditions, others have shown that a part of cytoplasmic c-Fos requires ubiquitination for fast turnover. This poses the question of the multiplicity of degradation pathways that apply to proteins depending on their intracellular localization.

  7. FIGfams : yet another set of protein families.

    SciTech Connect

    Meyer, F.; Overbeek, R.; Rodriguez, A.; Mathematics and Computer Science; Univ. of Chicago; Fellowship for the Interpretation of Genomes

    2009-11-01

    We present FIGfams, a new collection of over 100,000 protein families that are the product of manual curation and close strain comparison. Using the Subsystem approach the manual curation is carried out, ensuring a previously unattained degree of throughput and consistency. FIGfams are based on over 950,000 manually annotated proteins and across many hundred Bacteria and Archaea. Associated with each FIGfam is a two-tiered, rapid, accurate decision procedure to determine family membership for new proteins. FIGfams are freely available under an open source license. These can be downloaded at ftp://ftp.theseed.org/FIGfams/. The web site for FIGfams is http://www.theseed.org/wiki/FIGfams/.

  8. Novel protein families in archaean genomes.

    PubMed Central

    Ouzonis, C; Kyrpides, N; Sander, C

    1995-01-01

    In a quest for novel functions in archaea, all archaean hypothetical open reading frames (ORFs), as annotated in the Swiss-Prot protein sequence database, were used to search the latest databases for the identification of characterized homologues. Of the 95 hypothetical archaean ORFs, 25 were found to be homologous to another hypothetical archaean ORF, while 36 were homologous to non-archaean proteins, of which as many as 30 were homologous to a characterized protein family. Thus the level of sequence similarity in this set reaches 64%, while the level of function assignment is only 32%. Of the ORFs with predicted functions, 12 homologies are reported here for the first time and represent nine new functions and one gene duplication at an acetyl-coA synthetase locus. The novel functions include components of the transcriptional and translational apparatus, such as ribosomal proteins, modification enzymes and a translation initiation factor. In addition, new enzymes are identified in archaea, such as cobyric acid synthase, dCTP deaminase and the first archaean homologues of a new subclass of ATP binding proteins found in fungi. Finally, it is shown that the putative laminin receptor family of eukaryotes and an archaean homologue belong to the previously characterized ribosomal protein family S2 from eubacteria. From the present and previous work, the major implication is that archaea seem to have a mode of expression of genetic information rather similar to eukaryotes, while eubacteria may have proceeded into unique ways of transcription and translation. In addition, with the detection of proteins in various metabolic and genetic processes in archaea, we can further predict the presence of additional proteins involved in these processes. PMID:7899076

  9. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses

    PubMed Central

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T.; Martinez-Zapater, Jose M.; Fortes, Ana M.

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  10. Molybdenum Site Structure of MOSC Family Proteins

    PubMed Central

    2015-01-01

    Mo K-edge X-ray absorption spectroscopy has been used to probe as-isolated structures of the MOSC family proteins pmARC-1 and HMCS-CT. The Mo K-edge near-edge spectrum of HMCS-CT is shifted ∼2.5 eV to lower energy compared to the pmARC-1 spectrum, which indicates that as-isolated HMCS-CT is in a more reduced state than pmARC-1. Extended X-ray absorption fine structure analysis indicates significant structural differences between pmARC-1 and HMCS-CT, with the former being a dioxo site and the latter possessing only a single terminal oxo ligand. The number of terminal oxo donors is consistent with pmARC-1 being in the MoVI oxidation state and HMCS-CT in the MoIV state. These structures are in accord with oxygen-atom-transfer reactivity for pmARC-1 and persulfide bond cleavage chemistry for HMCS-CT. PMID:25166909

  11. Physiological functions of MTA family of proteins.

    PubMed

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-12-01

    Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.

  12. On the Entropy of Protein Families

    NASA Astrophysics Data System (ADS)

    Barton, John P.; Chakraborty, Arup K.; Cocco, Simona; Jacquin, Hugo; Monasson, Rémi

    2016-03-01

    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1- and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the mutation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.

  13. TIGRFAMS: The TIGRFAMs database of protein families

    DOE Data Explorer

    TIGRFAMs are protein families based on Hidden Markov Models or HMMs. Use this page to see the curated seed alignmet for each TIGRFam, the full alignment of all family members and the cutoff scores for inclusion in each of the TIGRFAMs. Also use this page to search through the TIGRFAMs and HMMs for text in the TIGRFAMs Text Search or search for specific sequences in the TIGRFAMs Sequence Search.[Copied from the Overview at http://www.jcvi.org/cms/research/projects/tigrfams/overview/] See also TIGRFAMs ordered by the roles they play at http://cmr.jcvi.org/tigr-scripts/CMR/shared/EvidenceList.cgi?ev_type=TIGRFAM&order_type=role.

  14. Human erythrocyte membrane proteins of zone 4.5 exist as families of related proteins.

    PubMed

    Whitfield, C F; Coleman, D B; Kay, M M; Shiffer, K A; Miller, J; Goodman, S R

    1985-01-01

    An analysis of the polypeptide composition of zone 4.5 of human erythrocyte membranes has been done by immunoautoradiographic and two-dimensional peptide mapping techniques. Results of these studies demonstrated that the Coomassie blue profile was constant, with 14 well-resolved bands present. Zone 4.5 polypeptides existed as at least four families of two or more components with closely related polypeptide backbones. The families could be distinguished on the basis of their extraction characteristics, immunological cross-reactivity, and two-dimensional peptide maps. One family was related to protein 4.1, one family was related to band 3, and two families were independent and not similar to other larger membrane proteins. The data show that all of the visualized bands in zone 4.5 do not have the same protein composition and that several closely related forms of some polypeptides are present.

  15. Subcellular localization of the Schlafen protein family.

    PubMed

    Neumann, Brent; Zhao, Liang; Murphy, Kathleen; Gonda, Thomas J

    2008-05-23

    Although the first members of the Schlafen gene family were first described almost 10 years ago, the precise molecular/biochemical functions of the proteins they encode still remain largely unknown. Roles in cell growth, haematopoietic cell differentiation, and T cell development/maturation have, with some experimental support, been postulated, but none have been conclusively verified. Here, we have determined the subcellular localization of Schlafens 1, 2, 4, 5, 8, and 9, representing all three of the murine subgroups. We show that the proteins from subgroups I and II localize to the cytoplasm, while the longer forms in subgroup III localize exclusively to the nuclear compartment. We also demonstrate upregulation of Schlafen2 upon differentiation of haematopoietic cells and show this endogenous protein localizes to the cytoplasm. Thus, we propose the different subgroups of Schlafen proteins are likely to have functionally distinct roles, reflecting their differing localizations within the cell.

  16. Subcellular localization of the Schlafen protein family

    SciTech Connect

    Neumann, Brent; Zhao Liang; Murphy, Kathleen; Gonda, Thomas J.

    2008-05-23

    Although the first members of the Schlafen gene family were first described almost 10 years ago, the precise molecular/biochemical functions of the proteins they encode still remain largely unknown. Roles in cell growth, haematopoietic cell differentiation, and T cell development/maturation have, with some experimental support, been postulated, but none have been conclusively verified. Here, we have determined the subcellular localization of Schlafens 1, 2, 4, 5, 8, and 9, representing all three of the murine subgroups. We show that the proteins from subgroups I and II localize to the cytoplasm, while the longer forms in subgroup III localize exclusively to the nuclear compartment. We also demonstrate upregulation of Schlafen2 upon differentiation of haematopoietic cells and show this endogenous protein localizes to the cytoplasm. Thus, we propose the different subgroups of Schlafen proteins are likely to have functionally distinct roles, reflecting their differing localizations within the cell.

  17. SUMOylation of Myc-Family Proteins

    PubMed Central

    Sabò, Arianna; Doni, Mirko; Amati, Bruno

    2014-01-01

    Myc-family proteins are key controllers of the metabolic and proliferative status of the cell, and are subjected to a complex network of regulatory events that guarantee their efficient and fast modulation by extracellular stimuli. Hence, unbalances in regulatory mechanisms leading to altered Myc levels or activities are often reported in cancer cells. Here we show that c- and N-Myc are conjugated to SUMO proteins at conserved lysines in their C-terminal domain. No obvious effects of SUMOylation were detected on bulk N-Myc stability or activities, including the regulation of transcription, proliferation or apoptosis. N-Myc SUMOylation could be induced by cellular stresses, such as heat shock and proteasome inhibition, and in all instances concerned a small fraction of the N-Myc protein. We surmise that, as shown for other substrates, SUMOylation may be part of a quality-control mechanism acting on misfolded Myc proteins. PMID:24608896

  18. A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location

    PubMed Central

    2010-01-01

    Background The Sp-family of transcription factors are evolutionarily conserved zinc finger proteins present in many animal species. The orthology of the Sp genes in different animals is unclear and their evolutionary history is therefore controversially discussed. This is especially the case for the Sp gene buttonhead (btd) which plays a key role in head development in Drosophila melanogaster, and has been proposed to have originated by a recent gene duplication. The purpose of the presented study was to trace orthologs of btd in other insects and reconstruct the evolutionary history of the Sp genes within the metazoa. Results We isolated Sp genes from representatives of a holometabolous insect (Tribolium castaneum), a hemimetabolous insect (Oncopeltus fasciatus), primitively wingless hexapods (Folsomia candida and Thermobia domestica), and an amphipod crustacean (Parhyale hawaienis). We supplemented this data set with data from fully sequenced animal genomes. We performed phylogenetic sequence analysis with the result that all Sp factors fall into three monophyletic clades. These clades are also supported by protein domain structure, gene expression, and chromosomal location. We show that clear orthologs of the D. melanogaster btd gene are present even in the basal insects, and that the Sp5-related genes in the genome sequence of several deuterostomes and the basal metazoans Trichoplax adhaerens and Nematostella vectensis are also orthologs of btd. Conclusions All available data provide strong evidence for an ancestral cluster of three Sp-family genes as well as synteny of this Sp cluster and the Hox cluster. The ancestral Sp gene cluster already contained a Sp5/btd ortholog, which strongly suggests that btd is not the result of a recent gene duplication, but directly traces back to an ancestral gene already present in the metazoan ancestor. PMID:20353601

  19. Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family.

    PubMed

    Hsueh, Yi-Ching; Flinner, Nadine; Gross, Lucia E; Haarmann, Raimund; Mirus, Oliver; Sommer, Maik S; Schleiff, Enrico

    2017-08-01

    Proteins of the Omp85 family chaperone the membrane insertion of β-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded β-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β-barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75-V, which is consistent with the phylogenetic clustering of P39 in the Toc75-V rather than the Toc75-III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75-III, Toc75-V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391-1401. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  20. The family of LSU-like proteins

    PubMed Central

    Sirko, Agnieszka; Wawrzyńska, Anna; Rodríguez, Milagros Collados; Sęktas, Pawel

    2015-01-01

    The plant response to sulfur deficiency includes extensive metabolic changes which can be monitored at various levels (transcriptome, proteome, metabolome) even before the first visible symptoms of sulfur starvation appear. Four members of the plant-specific LSU (response to Low SUlfur) gene family occur in Arabidopsis thaliana (LSU1-4). Variable numbers of LSU genes occur in other plant species but they were studied only in Arabidopsis and tobacco. Three out of four of the Arabidopsis LSU genes are induced by sulfur deficiency. The LSU-like genes in tobacco were characterized as UP9 (UPregulated by sulfur deficit 9). LSU-like proteins do not have characteristic domains that provide clues to their function. Despite having only moderate primary sequence conservation they share several common features including small size, a coiled–coil secondary structure and short conserved motifs in specific positions. Although the precise function of LSU-like proteins is still unknown there is some evidence that members of the LSU family are involved in plant responses to environmental challenges, such as sulfur deficiency, and possibly in plant immune responses. Various bioinformatic approaches have identified LSU-like proteins as important hubs for integration of signals from environmental stimuli. In this paper we review a variety of published data on LSU gene expression, the properties of lsu mutants and features of LSU-like proteins in the hope of shedding some light on their possible role in plant metabolism. PMID:25628631

  1. The family of LSU-like proteins.

    PubMed

    Sirko, Agnieszka; Wawrzyńska, Anna; Rodríguez, Milagros Collados; Sęktas, Pawel

    2014-01-01

    The plant response to sulfur deficiency includes extensive metabolic changes which can be monitored at various levels (transcriptome, proteome, metabolome) even before the first visible symptoms of sulfur starvation appear. Four members of the plant-specific LSU (response to Low SUlfur) gene family occur in Arabidopsis thaliana (LSU1-4). Variable numbers of LSU genes occur in other plant species but they were studied only in Arabidopsis and tobacco. Three out of four of the Arabidopsis LSU genes are induced by sulfur deficiency. The LSU-like genes in tobacco were characterized as UP9 (UPregulated by sulfur deficit 9). LSU-like proteins do not have characteristic domains that provide clues to their function. Despite having only moderate primary sequence conservation they share several common features including small size, a coiled-coil secondary structure and short conserved motifs in specific positions. Although the precise function of LSU-like proteins is still unknown there is some evidence that members of the LSU family are involved in plant responses to environmental challenges, such as sulfur deficiency, and possibly in plant immune responses. Various bioinformatic approaches have identified LSU-like proteins as important hubs for integration of signals from environmental stimuli. In this paper we review a variety of published data on LSU gene expression, the properties of lsu mutants and features of LSU-like proteins in the hope of shedding some light on their possible role in plant metabolism.

  2. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    PubMed Central

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  3. A Comparison of Rosetta Stones in Adapter Protein Families

    PubMed Central

    Kumar, Hulikal Shivashankara Santosh; Kumar, Vadlapudi

    2016-01-01

    The inventory of proteins used in different kingdoms appears surprisingly similar in all sequenced eukaryotic genome. Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. In this study we considered five important adapter domain families namely WD40, KELCH, Ankyrin, PDZ and Pleckstrin Homology (PH domain) family for the comparison of Domain versatility, Abundance and domain sharing between them. We used ecological statistics methods such as Jaccard’s Similarity Index (JSI), Detrended Correspondence Analysis, k-Means clustering for the domain distribution data. We found high propensity of domain sharing between PH and PDZ. We found higher abundance of only few selected domains in PH, PDZ, ANK and KELCH families. We also found WD40 family with high versatility and less redundant domain occurrence, with less domain sharing. Hence, the assignments of functions to more orphan WD40 proteins that will help in the identification of suitable drug targets. PMID:28246462

  4. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    PubMed

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under

  5. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening.

    PubMed

    Asif, Mehar Hasan; Lakhwani, Deepika; Pathak, Sumya; Bhambhani, Sweta; Bag, Sumit K; Trivedi, Prabodh Kumar

    2014-03-01

    Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database.

  6. Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel.

    PubMed

    Galaz, Sebastián; Morales-Quintana, Luis; Moya-León, María Alejandra; Herrera, Raúl

    2013-03-01

    Alcohol acyltransferases (AAT) play a key role in ester biosynthesis. In Cucumis melo var. cantalupensis, AATs are encoded by a gene family of four members (CmAAT1-4). CmAAT1, CmAAT3 and CmAAT4 are capable of synthesizing esters, with CmAAT1 the most active. CmAAT2 is inactive and has an Ala268 residue instead of a threonine which is present in all other active AATs, although the role of this residue is still unclear. The present work aims to understand the molecular mechanism involved in ester biosynthesis in melon fruit and to clarify the importance of the Ala268 residue. First, structural models for each protein were built by comparative modelling methodology. Afterwards, conformational interaction between the protein and several ligands, alcohols and acyl-CoAs was explored by molecular docking and molecular dynamics simulation. Structural analysis showed that CmAATs share a similar structure. Also, well-defined solvent channels were described in the CmAATs except for CmAAT2 which does not have a proper channel and instead has a small pocket around Ala268. Residues of the catalytic HxxxD motif interact with substrates within the solvent channel, with Ser363 also important. Strong binding interaction energies were described for the best substrate couple of each CmAAT (hexyl-, benzyl- and cinnamyl-acetate for CmAAT1, 3 and 4 respectively). CmAAT1 and CmAAT2 protein surfaces share similar electrostatic potentials; nevertheless the entrance channels for the substrates differ in location and electrostatic character, suggesting that Ala268 might be responsible for that. This could partly explain the major differences in activity reported for these two enzymes.

  7. Physiological Functions of APP Family Proteins

    PubMed Central

    Müller, Ulrike C.; Zheng, Hui

    2012-01-01

    Biochemical and genetic evidence establishes a central role of the amyloid precursor protein (APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the β-amyloid (Aβ) peptides produced from proteolytic processing of APP forms the defining pathological hallmark of AD; genetically, both point mutations and duplications of wild-type APP are linked to a subset of early onset of familial AD (FAD) and cerebral amyloid angiopathy. As such, the biological functions of APP and its processing products have been the subject of intense investigation, and the past 20+ years of research have met with both excitement and challenges. This article will review the current understanding of the physiological functions of APP in the context of APP family members. PMID:22355794

  8. Thiol Dioxygenases: Unique Families of Cupin Proteins

    PubMed Central

    Simmons, C. R.; Karplus, P. A.; Dominy, J. E.

    2011-01-01

    Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a 6-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative

  9. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects.

    PubMed

    Dixit, Radhika; Arakane, Yasuyuki; Specht, Charles A; Richard, Chad; Kramer, Karl J; Beeman, Richard W; Muthukrishnan, Subbaratnam

    2008-04-01

    A bioinformatics investigation of four insect species with annotated genome sequences identified a family of genes encoding chitin deacetylase (CDA)-like proteins, with five to nine members depending on the species. CDAs (EC 3.5.1.41) are chitin-modifying enzymes that deacetylate the beta-1,4-linked N-acetylglucosamine homopolymer. Partial deacetylation forms a heteropolysaccharide that also contains some glucosamine residues, while complete deacetylation produces the homopolymer chitosan, consisting exclusively of glucosamine. The genomes of the red flour beetle, Tribolium castaneum, the fruit fly, Drosophila melanogaster, the malaria mosquito, Anopheles gambiae, and the honey bee, Apis mellifera contain 9, 6, 5 and 5 genes, respectively, that encode proteins with a chitin deacetylase motif. The presence of alternative exons in two of the genes, TcCDA2 and TcCDA5, increases the protein diversity further. Insect CDA-like proteins were classified into five orthologous groups based on phylogenetic analysis and the presence of additional motifs. Group I enzymes include CDA1 and isoforms of CDA2, each containing in addition to a polysaccharide deacetylase-like catalytic domain, a chitin-binding peritrophin-A domain (ChBD) and a low-density lipoprotein receptor class A domain (LDLa). Group II is composed of CDA3 orthologs from each insect species with the same domain organization as group I CDAs, but differing substantially in sequence. Group III includes CDA4s, which have the ChBD domain but do not have the LDLa domain. Group IV comprises CDA5s, which are the largest CDAs because of a very long intervening region separating the ChBD and catalytic domains. Among the four insect species, Tribolium is unique in having four CDA genes in group V, whereas the other insect genomes have either one or none. Most of the CDA-like proteins have a putative signal peptide consistent with their role in modifying extracellular chitin in both cuticle and peritrophic membrane during

  10. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects

    USDA-ARS?s Scientific Manuscript database

    A bioinformatics investigation of four insect species with annotated genome sequences identified a family of genes encoding chitin deacetylase (CDA)-like proteins, with 5-9 members depending on the species. CDAs (EC 3.5.1.41) are chitin-modifying enzymes that deacetylate the b-1,4-linked N-acetylgl...

  11. Genome-Wide Analysis of the Fasciclin-Like Arabinogalactan Protein Gene Family Reveals Differential Expression Patterns, Localization, and Salt Stress Response in Populus

    PubMed Central

    Zang, Lina; Zheng, Tangchun; Chu, Yanguang; Ding, Changjun; Zhang, Weixi; Huang, Qinjun; Su, Xiaohua

    2015-01-01

    Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) involved in plant growth, development and response to abiotic stress. Although many studies have been performed to identify molecular functions of individual family members, little information is available on genome-wide identification and characterization of FLAs in the genus Populus. Based on genome-wide analysis, we have identified 35 Populus FLAs which were distributed on 16 chromosomes and phylogenetically clustered into four major groups. Gene structure and motif composition were relatively conserved in each group. All the members contained N-terminal signal peptide, 23 of which included predicted glycosylphosphatidylinositol (GPI) modification sites and were anchored to plasma membranes. Subcellular localization analysis showed that PtrFLA2/20/26 were localized in cell membrane and cytoplasm of protoplasts from Populus stem-differentiating xylem. The Ka/Ks ratios showed that purifying selection has played a leading role in the long-term evolutionary period which greatly maintained the function of this family. The expression profiles showed that 32 PtrFLAs were differentially expressed in four tissues at four seasons based on publicly available microarray data. 18 FLAs were further verified with qRT-PCR in different tissues, which indicated that PtrFLA1/2/3/7/11/12/20/21/22/24/26/30 were significantly expressed in male and female flowers, suggesting close correlations with the reproductive development. In addition, PtrFLA1/9/10/11/17/21/23/24/26/28 were highly expressed in the stems and differentiating xylem, which may be involved in stem development. To determine salt response of FLAs, qRT-PCR was performed to analyze the expression of 18 genes under salinity stress across two time points. Results demonstrated that all the 18 FLAs were expressed in root tissues; especially, PtrFLA2/12/20/21/24/30 were significantly induced at different time points. In summary

  12. De novo assembly and transcriptome analysis of Plasmodium gallinaceum identifies the Rh5 interacting protein (ripr), and reveals a lack of EBL and RH gene family diversification.

    PubMed

    Lauron, Elvin J; Aw Yeang, Han Xian; Taffner, Samantha M; Sehgal, Ravinder N M

    2015-08-05

    Malaria parasites that infect birds can have narrow or broad host-tropisms. These differences in host specificity make avian malaria a useful model for studying the evolution and transmission of parasite assemblages across geographic ranges. The molecular mechanisms involved in host-specificity and the biology of avian malaria parasites in general are important aspects of malaria pathogenesis that warrant further examination. Here, the transcriptome of the malaria parasite Plasmodium gallinaceum was characterized to investigate the biology and the conservation of genes across various malaria parasite species. The P. gallinaceum transcriptome was annotated and KEGG pathway mapping was performed. The ripr gene and orthologous genes that play critical roles in the purine salvage pathway were identified and characterized using bioinformatics and phylogenetic methods. Analysis of the transcriptome sequence database identified essential genes of the purine salvage pathway in P. gallinaceum that shared high sequence similarity to Plasmodium falciparum when compared to other mammalian Plasmodium spp. However, based on the current sequence data, there was a lack of orthologous genes that belonged to the erythrocyte-binding-like (EBL) and reticulocyte-binding-like homologue (RH) family in P. gallinaceum. In addition, an orthologue of the Rh5 interacting protein (ripr) was identified. These findings suggest that the pathways involved in parasite red blood cell invasion are significantly different in avian Plasmodium parasites, but critical metabolic pathways are conserved throughout divergent Plasmodium taxa.

  13. Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance.

    PubMed

    Yan, Xiaoxiao; Qiao, Hengbo; Zhang, Xiuming; Guo, Chunlei; Wang, Mengnan; Wang, Yuejin; Wang, Xiping

    2017-06-27

    Thaumatin-like protein (TLP) is present as a large family in plants, and individual members play different roles in various responses to biotic and abiotic stresses. Here we studied the role of 33 putative grape (Vitis vinifera L.) TLP genes (VvTLP) in grape disease resistance. Heat maps analysis compared the expression profiles of 33 genes in disease resistant and susceptible grape species infected with anthracnose (Elsinoe ampelina), powdery mildew (Erysiphe necator) or Botrytis cinerea. Among these 33 genes, the expression level of TLP29 increased following the three pathogens inoculations, and its homolog from the disease resistant Chinese wild grape V. quinquangularis cv. 'Shang-24', was focused for functional studies. Over-expression of TLP29 from grape 'Shang-24' (VqTLP29) in Arabidopsis thaliana enhanced its resistance to powdery mildew and the bacterium Pseudomonas syringae pv. tomato DC3000, but decreased resistance to B. cinerea. Moreover, the stomatal closure immunity response to pathogen associated molecular patterns was strengthened in the transgenic lines. A comparison of the expression profiles of various resistance-related genes after infection with different pathogens indicated that VqTLP29 may be involved in the salicylic acid and jasmonic acid/ethylene signaling pathways.

  14. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK) Gene Family in Brassica rapa.

    PubMed

    Lu, Kun; Guo, Wenjin; Lu, Junxing; Yu, Hao; Qu, Cunmin; Tang, Zhanglin; Li, Jiana; Chai, Yourong; Liang, Ying

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY) of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D). Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa.

  15. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK) Gene Family in Brassica rapa

    PubMed Central

    Yu, Hao; Qu, Cunmin; Tang, Zhanglin; Li, Jiana; Chai, Yourong; Liang, Ying

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY) of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D). Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa. PMID:26173020

  16. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.

    PubMed

    Bandyopadhyay, Deepak; Huan, Jun; Liu, Jinze; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2010-09-01

    We describe a new approach for inferring the functional relationships between nonhomologous protein families by looking at statistical enrichment of alternative function predictions in classification hierarchies such as Gene Ontology (GO) and Structural Classification of Proteins (SCOP). Protein structures are represented by robust graph representations, and the fast frequent subgraph mining algorithm is applied to protein families to generate sets of family-specific packing motifs, i.e., amino acid residue-packing patterns shared by most family members but infrequent in other proteins. The function of a protein is inferred by identifying in it motifs characteristic of a known family. We employ these family-specific motifs to elucidate functional relationships between families in the GO and SCOP hierarchies. Specifically, we postulate that two families are functionally related if one family is statistically enriched by motifs characteristic of another family, i.e., if the number of proteins in a family containing a motif from another family is greater than expected by chance. This function-inference method can help annotate proteins of unknown function, establish functional neighbors of existing families, and help specify alternate functions for known proteins.

  17. Comparative Analysis of Serine/Arginine-Rich Proteins across 27 Eukaryotes: Insights into Sub-Family Classification and Extent of Alternative Splicing

    PubMed Central

    Richardson, Dale N.; Rogers, Mark F.; Labadorf, Adam; Ben-Hur, Asa; Guo, Hui; Paterson, Andrew H.; Reddy, Anireddy S. N.

    2011-01-01

    Alternative splicing (AS) of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs) at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and “basal” eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs) as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes). AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3′ or 5′ splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%–88% of their SR genes experiencing some type of AS compared to the 40%–54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms. PMID:21935421

  18. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database

    PubMed Central

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung

    2016-01-01

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods. PMID:26903996

  19. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    SciTech Connect

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung

    2016-02-08

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). In conclusion, this new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.

  20. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  1. Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS

    PubMed Central

    Muthusamy, Nagendran; Ahmed, Sanaa A.; Rana, Brinda K.; Navarre, Sammy; Kozlowski, David J.; Liberles, David A.; Bergson, Clare

    2014-01-01

    Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses. PMID:19760447

  2. Phylogenetic analysis of the NEEP21/calcyon/P19 family of endocytic proteins: evidence for functional evolution in the vertebrate CNS.

    PubMed

    Muthusamy, Nagendran; Ahmed, Sanaa A; Rana, Brinda K; Navarre, Sammy; Kozlowski, David J; Liberles, David A; Bergson, Clare

    2009-10-01

    Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.

  3. The APSES family proteins in fungi: Characterizations, evolution and functions.

    PubMed

    Zhao, Yong; Su, Hao; Zhou, Jing; Feng, Huihua; Zhang, Ke-Qin; Yang, Jinkui

    2015-08-01

    The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed.

  4. Molecular cloning and sequence analysis of the Sta58 major antigen gene of Rickettsia tsutsugamushi: sequence homology and antigenic comparison of Sta58 to the 60-kilodalton family of stress proteins.

    PubMed Central

    Stover, C K; Marana, D P; Dasch, G A; Oaks, E V

    1990-01-01

    The scrub typhus 58-kilodalton (kDa) antigen (Sta58) of Rickettsia tsutsugamushi is a major protein antigen often recognized by humans infected with scrub typhus rickettsiae. A 2.9-kilobase HindIII fragment containing a complete sta58 gene was cloned in Escherichia coli and found to express the entire Sta58 antigen and a smaller protein with an apparent molecular mass of 11 kDa (Stp11). DNA sequence analysis of the 2.9-kilobase HindIII fragment revealed two adjacent open reading frames encoding proteins of 11 (Stp11) and 60 (Sta58) kDa. Comparisons of deduced amino acid sequences disclosed a high degree of homology between the R. tsutsugamushi proteins Stp11 and Sta58 and the E. coli proteins GroES and GroEL, respectively, and the family of primordial heat shock proteins designated Hsp10 Hsp60. Although the sequence homology between the Sta58 antigen and the Hsp60 protein family is striking, the Sta58 protein appeared to be antigenically distinct among a sample of other bacterial Hsp60 homologs, including the typhus group of rickettsiae. The antigenic uniqueness of the Sta58 antigen indicates that this protein may be a potentially protective antigen and a useful diagnostic reagent for scrub typhus fever. Images PMID:2108930

  5. The ADF/cofilin family: actin-remodeling proteins.

    PubMed

    Maciver, Sutherland K; Hussey, Patrick J

    2002-01-01

    The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms.

  6. Structural basis for protein–protein interactions in the 14-3-3 protein family

    PubMed Central

    Yang, Xiaowen; Lee, Wen Hwa; Sobott, Frank; Papagrigoriou, Evangelos; Robinson, Carol V.; Grossmann, J. Günter; Sundström, Michael; Doyle, Declan A.; Elkins, Jonathan M.

    2006-01-01

    The seven members of the human 14-3-3 protein family regulate a diverse range of cell signaling pathways by formation of protein–protein complexes with signaling proteins that contain phosphorylated Ser/Thr residues within specific sequence motifs. Previously, crystal structures of three 14-3-3 isoforms (zeta, sigma, and tau) have been reported, with structural data for two isoforms deposited in the Protein Data Bank (zeta and sigma). In this study, we provide structural detail for five 14-3-3 isoforms bound to ligands, providing structural coverage for all isoforms of a human protein family. A comparative structural analysis of the seven 14-3-3 proteins revealed specificity determinants for binding of phosphopeptides in a specific orientation, target domain interaction surfaces and flexible adaptation of 14-3-3 proteins through domain movements. Specifically, the structures of the beta isoform in its apo and peptide bound forms showed that its binding site can exhibit structural flexibility to facilitate binding of its protein and peptide partners. In addition, the complex of 14-3-3 beta with the exoenzyme S peptide displayed a secondary structural element in the 14-3-3 peptide binding groove. These results show that the 14-3-3 proteins are adaptable structures in which internal flexibility is likely to facilitate recognition and binding of their interaction partners. PMID:17085597

  7. Molecular evolution of the EGF-CFC protein family.

    PubMed

    Ravisankar, V; Singh, Taran P; Manoj, Narayanan

    2011-08-15

    The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Calcium channel gamma subunits: a functionally diverse protein family.

    PubMed

    Chen, Ren-Shiang; Deng, Tzyy-Chyn; Garcia, Thomas; Sellers, Zachary M; Best, Philip M

    2007-01-01

    The calcium channel gamma subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane domains and intracellular N- and C-termini. Although the first gamma subunit was identified as an auxiliary subunit of a voltage-dependent calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse protein family. A cluster containing gamma1 and gamma6 conforms to the original description of the protein family as they seem to act primarily as subunits of calcium channels expressed in muscle. Members of a second cluster (gamma2, gamma3, gamma4, gamma8) function as regulators of AMPA receptor localization and function in the brain and are collectively known as TARPs. The function of members of the third cluster (gamma5, gamma7) remains unclear. Our analysis shows that the members of each cluster contain conserved regulatory motifs that help to differentiate the groups. However, the physiological significance of these motifs in many cases remains to be demonstrated.

  9. Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins.

    PubMed

    Jaiswal, Mamta; Dvorsky, Radovan; Ahmadian, Mohammad Reza

    2013-02-08

    The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies.

  10. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    SciTech Connect

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi; Rubens, Craig E.; Goldman, Adrian

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  11. HMM Logos for visualization of protein families

    PubMed Central

    Schuster-Böckler, Benjamin; Schultz, Jörg; Rahmann, Sven

    2004-01-01

    Background Profile Hidden Markov Models (pHMMs) are a widely used tool for protein family research. Up to now, however, there exists no method to visualize all of their central aspects graphically in an intuitively understandable way. Results We present a visualization method that incorporates both emission and transition probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens. For each emitting state of the pHMM, we display a stack of letters. The stack height is determined by the deviation of the position's letter emission frequencies from the background frequencies. The stack width visualizes both the probability of reaching the state (the hitting probability) and the expected number of letters the state emits during a pass through the model (the state's expected contribution). A web interface offering online creation of HMM Logos and the corresponding source code can be found at the Logos web server of the Max Planck Institute for Molecular Genetics . Conclusions We demonstrate that HMM Logos can be a useful tool for the biologist: We use them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and we show that they are able to indicate structural elements of Ras. PMID:14736340

  12. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    PubMed

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells.

  13. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis.

    PubMed

    Poon, H Fai; Hensley, Kenneth; Thongboonkerd, Visith; Merchant, Michael L; Lynn, Bert C; Pierce, William M; Klein, Jon B; Calabrese, Vittorio; Butterfield, D Allan

    2005-08-15

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease characterized by the loss of neuronal function in the motor cortex, brain stem, and spinal cord. Familial ALS cases, accounting for 10-15% of all ALS disease, are caused by a gain-of-function mutation in Cu,Zn-superoxide dismutase (SOD1). Two hypotheses have been proposed to explain the toxic gain of function of mutant SOD (mSOD). One is that mSOD can directly promote reactive oxygen species and reactive nitrogen species generation, whereas the other hypothesis suggests that mSODs are prone to aggregation due to instability or association with other proteins. However, the hypotheses of oxidative stress and protein aggregation are not mutually exclusive. G93A-SOD1 transgenic mice show significantly increased protein carbonyl levels in their spinal cord from 2 to 4 months and eventually develop ALS-like motor neuron disease and die within 5-6 months. Here, we used a parallel proteomics approach to investigate the effect of the G93A-SOD1 mutation on protein oxidation in the spinal cord of G93A-SOD1 transgenic mice. Four proteins in the spinal cord of G93A-SOD1 transgenic mice have higher specific carbonyl levels compared to those of non-transgenic mice. These proteins are SOD1, translationally controlled tumor protein (TCTP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and, possibly, alphaB-crystallin. Because oxidative modification can lead to structural alteration and activity decline, our current study suggests that oxidative modification of UCH-L1, TCTP, SOD1, and possibly alphaB-crystallin may play an important role in the neurodegeneration of ALS.

  14. Dock protein family in brain development and neurological disease.

    PubMed

    Shi, Lei

    2013-11-01

    The family of dedicator of cytokinesis (Dock), a protein family that belongs to the atypical Rho guanine nucleotide exchange factors (GEFs) for Rac and/or Cdc42 GTPases, plays pivotal roles in various processes of brain development. To date, 11 members of Docks have been identified in the mammalian system. Emerging evidence has suggested that members of the Dock family are associated with several neurodegenerative and neuropsychiatric diseases, including Alzheimer disease and autism spectrum disorders. This review summarizes recent advances on the understanding of the roles of the Dock protein family in normal and diseased processes in the nervous system. Furthermore, interacting proteins and the molecular regulation of Docks are discussed.

  15. Analysis of familial hemophagocytic lymphohistiocytosis type 4 (FHL-4) mutant proteins reveals that S-acylation is required for the function of syntaxin 11 in natural killer cells.

    PubMed

    Hellewell, Andrew L; Foresti, Ombretta; Gover, Nicola; Porter, Morwenna Y; Hewitt, Eric W

    2014-01-01

    Natural killer (NK) cell secretory lysosome exocytosis and cytotoxicity are impaired in familial hemophagocytic lymphohistiocytosis type 4 (FHL-4), a disorder caused by mutations in the gene encoding the SNARE protein syntaxin 11. We show that syntaxin 11 binds to SNAP23 in NK cells and that this interaction is reduced by FHL-4 truncation and frameshift mutation proteins that delete all or part of the SNARE domain of syntaxin 11. In contrast the FHL-4 mutant proteins bound to the Sec-1/Munc18-like (SM) protein Munc18-2. We demonstrate that the C-terminal cysteine rich region of syntaxin 11, which is deleted in the FHL-4 mutants, is S-acylated. This posttranslational modification is required for the membrane association of syntaxin 11 and for its polarization to the immunological synapse in NK cells conjugated to target cells. Moreover, we show that Munc18-2 is recruited by syntaxin 11 to intracellular membranes in resting NK cells and to the immunological synapse in activated NK cells. This recruitment of Munc18-2 is abolished by deletion of the C-terminal cysteine rich region of syntaxin 11. These results suggest a pivotal role for S-acylation in the function of syntaxin 11 in NK cells.

  16. Analysis of Familial Hemophagocytic Lymphohistiocytosis Type 4 (FHL-4) Mutant Proteins Reveals that S-Acylation Is Required for the Function of Syntaxin 11 in Natural Killer Cells

    PubMed Central

    Hellewell, Andrew L.; Foresti, Ombretta; Gover, Nicola; Porter, Morwenna Y.; Hewitt, Eric W.

    2014-01-01

    Natural killer (NK) cell secretory lysosome exocytosis and cytotoxicity are impaired in familial hemophagocytic lymphohistiocytosis type 4 (FHL-4), a disorder caused by mutations in the gene encoding the SNARE protein syntaxin 11. We show that syntaxin 11 binds to SNAP23 in NK cells and that this interaction is reduced by FHL-4 truncation and frameshift mutation proteins that delete all or part of the SNARE domain of syntaxin 11. In contrast the FHL-4 mutant proteins bound to the Sec-1/Munc18-like (SM) protein Munc18-2. We demonstrate that the C-terminal cysteine rich region of syntaxin 11, which is deleted in the FHL-4 mutants, is S-acylated. This posttranslational modification is required for the membrane association of syntaxin 11 and for its polarization to the immunological synapse in NK cells conjugated to target cells. Moreover, we show that Munc18-2 is recruited by syntaxin 11 to intracellular membranes in resting NK cells and to the immunological synapse in activated NK cells. This recruitment of Munc18-2 is abolished by deletion of the C-terminal cysteine rich region of syntaxin 11. These results suggest a pivotal role for S-acylation in the function of syntaxin 11 in NK cells. PMID:24910990

  17. Structural and Functional Characterization of the VQ Protein Family and VQ Protein Variants from Soybean

    PubMed Central

    Zhou, Yuan; Yang, Yan; Zhou, Xinjian; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Proteins containing the FxxxVQxhTG or VQ motif interact with WRKY transcription factors. Although VQ proteins have been reported in several plants, knowledge about their structures, functions and evolution is still very limited. Here, we report structural and functional analysis of the VQ protein family from soybean. Like Arabidopsis homologues, soybean VQ proteins bind only Group I and IIc WRKY proteins and a substantial number of their genes are responsive to stress-associated phytohormones. Overexpression of some soybean VQ genes in Arabidopsis had strong effects on plant growth, development, disease resistance and heat tolerance. Phylogenetic analysis, sequence alignment and site-directed mutagenesis revealed that the region immediately upstream of the FxxxVQxhTG motif also affects binding to WRKY proteins. Consistent with a larger WRKY-binding VQ domain, soybean VQ22 protein from cultivated soybean contains a 4-amino acid deletion in the region preceding its VQ motif that completely abolishes its binding to WRKY proteins. By contrast, the 4-amino acid deletion is absent in the VQ22 protein from wild soybean species (Glycine soja). Overexpression of wild soybean VQ22 in cultivated soybean inhibited growth, particularly after cold treatment. Thus, the mutation of soybean VQ22 is associated with advantageous phenotypes and may have been positively selected during evolution. PMID:27708406

  18. WASP Family Proteins: Their Evolution and Its Physiological Implications

    PubMed Central

    Veltman, Douwe M.

    2010-01-01

    WASP family proteins control actin polymerization by activating the Arp2/3 complex. Several subfamilies exist, but their regulation and physiological roles are not well understood, nor is it even known if all subfamilies have been identified. Our extensive search reveals few novel WASP family proteins. The WASP, WASH, and SCAR/WAVE subfamilies are evolutionarily ancient, with WASH the most universally present, whereas WHAMM/JMY first appears in invertebrates. An unusual Dictyostelium WASP homologue that has lost the WH1 domain has retained its function in clathrin-mediated endocytosis, demonstrating that WASPs can function with a remarkably diverse domain topology. The WASH and SCAR/WAVE regulatory complexes are much more rigidly maintained; their domain topology is highly conserved, and all subunits are present or lost together, showing that the complexes are ancient and functionally interdependent. Finally, each subfamily has a distinctive C motif, indicating that this motif plays a specific role in each subfamily's function, unlike the generic V and A motifs. Our analysis identifies which features are universally conserved, and thus essential, and which are branch-specific modifications. It also shows the WASP family is more widespread and diverse than currently appreciated and unexpectedly biases the physiological role of the Arp2/3 complex toward vesicle traffic. PMID:20573979

  19. Methionine-rich repeat proteins: a family of membrane-associated proteins which contain unusual repeat regions.

    PubMed

    Weiss, Jamie L; Evans, Nicholas A; Ahmed, Tanweer; Wrigley, Jonathan D J; Khan, Shukria; Wright, Charles; Keen, Jeffrey N; Holzenburg, Andreas; Findlay, John B C

    2005-03-01

    We report the protein isolation, cloning and characterization of members of an unusual protein family, which comprise the most abundant proteins present in the squid eye. The proteins in this family have a range of molecular weights from 32 to 36 kDa. Electron microscopy and detergent solubilization demonstrate that these proteins are tightly associated with membrane structures where they may form tetramers. Despite this, these proteins have no stretches of hydrophobic residues that could form typical transmembrane domains. They share an unusual protein sequence rich in methionine, and contain multiple repeating motifs. We have therefore named these proteins Methionine-Rich Repeat Proteins (MRRPs). The use of structure prediction algorithms suggest very little recognized secondary structure elements. At the time of cloning no sequence or structural homologues have been found in any database. We have isolated three closely related cDNA clones from the MRRP family. Coupled in vitro transcription/translation of the MRRP clones shows that they encode proteins with molecular masses similar to components of native MRRPs. Immunoblot analysis of these proteins reveals that they are also present in squid brain, optic lobe, and heart, and also indicate that MRRP-like protein motifs may also exist in mammalian tissues. We propose that MRRPs define a family of important proteins that have an unusual mode of attachment or insertion into cell membranes and are found in evolutionarily diverse organisms.

  20. Monoubiquitination of Tob/BTG family proteins competes with degradation-targeting polyubiquitination

    SciTech Connect

    Suzuki, Toru; Kim, Minsoo; Kozuka-Hata, Hiroko; Watanabe, Masato; Oyama, Masaaki; Tsumoto, Kouhei; Yamamoto, Tadashi

    2011-05-27

    Highlights: {yields} Tob/BTG family proteins are monoubiquitinated in the absence of E3s in vitro. {yields} Monoubiquitination sites of Tob are identified by mass spectrometry. {yields} The monoubiquitination event correlates with lower levels of polyubiquitination. -- Abstract: Tob belongs to the anti-proliferative Tob/BTG protein family. The expression level of Tob family proteins is strictly regulated both transcriptionally and through post-translational modification. Ubiquitin (Ub)/proteosome-dependent degradation of Tob family proteins is critical in controlling cell cycle progression and DNA damage responses. Various Ub ligases (E3s) are responsible for degradation of Tob protein. Here, we show that Tob family proteins undergo monoubiquitination even in the absence of E3s in vitro. Determination of the ubiquitination site(s) in Tob by mass spectrometric analysis revealed that two lysine residues (Lys48 and Lys63) located in Tob/BTG homology domain are ubiquitinated. A mutant Tob, in which both Lys48 and Lys63 are substituted with alanine, is more strongly polyubiquitinated than wild-type Tob in vivo. These data suggest that monoubiquitination of Tob family proteins confers resistance against polyubiquitination, which targets proteins for degradation. The strategy for regulating the stability of Tob family proteins suggests a novel role for monoubiquitination.

  1. The MetaFam Server: a comprehensive protein family resource.

    PubMed

    Silverstein, K A; Shoop, E; Johnson, J E; Kilian, A; Freeman, J L; Kunau, T M; Awad, I A; Mayer, M; Retzel, E F

    2001-01-01

    MetaFam is a comprehensive relational database of protein family information. This web-accessible resource integrates data from several primary sequence and secondary protein family databases. By pooling together the information from these disparate sources, MetaFam is able to provide the most complete protein family sets available. Users are able to explore the interrelationships among these primary and secondary databases using a powerful graphical visualization tool, MetaFamView. Additionally, users can identify corresponding sequence entries among the sequence databases, obtain a quick summary of corresponding families (and their sequence members) among the family databases, and even attempt to classify their own unassigned sequences. Hypertext links to the appropriate source databases are provided at every level of navigation. Global family database statistics and information are also provided. Public access to the data is available at http://metafam.ahc.umn.edu/.

  2. Muscarinic receptor family interacting proteins: role in receptor function.

    PubMed

    Borroto-Escuela, Dasiel O; Correia, Patrícia A; Romero-Fernandez, Wilber; Narvaez, Manuel; Fuxe, Kjell; Ciruela, Francisco; Garriga, Pere

    2011-02-15

    G protein-coupled receptors constitute one of the most important families of membrane receptors through which cells respond to extracellular stimuli. Receptors of this superfamily likely function as signal transduction complexes. The identification and analysis of their components provide new insights into a better understanding of these receptors' function and regulation. We used tandem-affinity purification and mass spectrometry as a systematic approach to characterize multiprotein complexes in the acetylcholine muscarinic receptor subfamily. To overcome the limitations associated with membrane protein receptor solubilization with detergents, we developed a strategy in which receptors are co-expressed with a cytoplasmic minigene construct, encoding the third intracellular loop and the C-terminal tail tagged to the tandem-affinity-cassette of each receptor subtype. Numerous protein complexes were identified, including many new interactions in various signalling pathways. Systematic identification data set together with protein interactions reported in the literature revealed a high degree of connectivity. These allow the proposal, for the first time, of an outline of the muscarinic interactome as a network of protein complexes and a context for a more reasoned and informed approach to drug discovery and muscarinic receptor subtype specificities.

  3. Novel protein-protein interaction family proteins involved in chloroplast movement response.

    PubMed

    Kodama, Yutaka; Suetsugu, Noriyuki; Wada, Masamitsu

    2011-04-01

    To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.

  4. Involvement of PCH family proteins in cytokinesis and actin distribution.

    PubMed

    Lippincott, J; Li, R

    2000-04-15

    Pombe Cdc15 homology (PCH) proteins constitute an extensive protein family whose members have been found in diverse eukaryotic organisms. These proteins are characterized by the presence of several conserved sequence and structural motifs. Recent studies in yeast and mammalian cultured cells have implicated these proteins in actin-based processes, in particular, cytokinesis. Here we review the recent findings on the in vivo localization, function, and binding partners of PCH family members. We also provide new microscopy data regarding the in vivo dynamics of a budding yeast PCH protein involved in cytokinesis.

  5. Homo- and Hetero-Oligomerization in the Slc26a Protein Family

    NASA Astrophysics Data System (ADS)

    Currall, Benjamin; Jensen-Smith, Heather; Hallworth, Richard

    2011-11-01

    The motor-protein prestin is thought to be a homo-oligomer, but the oligomerization motifs are unknown. We used the acceptor-photobleach variant of fluorescence-lifetime based FRET analysis to demonstrate that homo-oligomerization is not only common to mammalian and non-mammalian prestins, but occurs in widely divergent members of the Slc26a family proteins. We therefore tested the hypothesis that oligomerization is conserved across the Slc26a family by measuring FRET between different Slc26a family molecules. Our results show that hetero-oligomerization is common between family members, which suggest that common oligomerization motifs exist.

  6. Mu-8: visualizing differences between proteins and their families

    PubMed Central

    2014-01-01

    Background A complete understanding of the relationship between the amino acid sequence and resulting protein function remains an open problem in the biophysical sciences. Current approaches often rely on diagnosing functionally relevant mutations by determining whether an amino acid frequently occurs at a specific position within the protein family. However, these methods do not account for the biophysical properties and the 3D structure of the protein. We have developed an interactive visualization technique, Mu-8, that provides researchers with a holistic view of the differences of a selected protein with respect to a family of homologous proteins. Mu-8 helps to identify areas of the protein that exhibit: (1) significantly different bio-chemical characteristics, (2) relative conservation in the family, and (3) proximity to other regions that have suspect behavior in the folded protein. Methods Our approach quantifies and communicates the difference between a reference protein and its family based on amino acid indices or principal components of amino acid index classes, while accounting for conservation, proximity amongst residues, and overall 3D structure. Results We demonstrate Mu-8 in a case study with data provided by the 2013 BioVis contest. When comparing the sequence of a dysfunctional protein to its functional family, Mu-8 reveals several candidate regions that may cause function to break down. PMID:25237392

  7. Proteomic analysis of integral plasma membrane proteins.

    PubMed

    Zhao, Yingxin; Zhang, Wei; Kho, Yoonjung; Zhao, Yingming

    2004-04-01

    Efficient methods for profiling proteins integral to the plasma membrane are highly desirable for the identification of overexpressed proteins in disease cells. Such methods will aid in both understanding basic biological processes and discovering protein targets for the design of therapeutic monoclonal antibodies. Avoiding contamination by subcellular organelles and cytosolic proteins is crucial to the successful proteomic analysis of integral plasma membrane proteins. Here we report a biotin-directed affinity purification (BDAP) method for the preparation of integral plasma membrane proteins, which involves (1) biotinylation of cell surface membrane proteins in viable cells, (2) affinity enrichment using streptavidin beads, and (3) depletion of plasma membrane-associated cytosolic proteins by harsh washes with high-salt and high-pH buffers. The integral plasma membrane proteins are then extracted and subjected to SDS-PAGE separation and HPLC/MS/MS for protein identification. We used the BDAP method to prepare integral plasma membrane proteins from a human lung cancer cell line. Western blotting analysis showed that the preparation was almost completely devoid of actin, a major cytosolic protein. Nano-HPLC/MS/MS analysis of only 30 microg of protein extracted from the affinity-enriched integral plasma membrane preparation led to the identification of 898 unique proteins, of which 781 were annotated with regard to their plasma membrane localization. Among the annotated proteins, at least 526 (67.3%) were integral plasma membrane proteins. Notable among them were 62 prenylated proteins and 45 Ras family proteins. To our knowledge, this is the most comprehensive proteomic analysis of integral plasma membrane proteins in mammalian cells to date. Given the importance of integral membrane proteins for drug design, the described approach will expedite the characterization of plasma membrane subproteomes and the discovery of plasma membrane protein drug targets.

  8. Comparative Analysis of in vivo Interactions Between Rev1 Protein and Other Y-Family DNA Polymerases in Animals and Yeasts

    PubMed Central

    Kosarek, J. Nicole; Woodruff, Rachel V.; Rivera-Begeman, Amanda; Guo, Caixia; D’Souza, Sanjay; Koonin, Eugene V.; Walker, Graham C.; Friedberg, Errol C.

    2008-01-01

    Summary Eukaryotes are endowed with multiple specialized DNA polymerases, some (if not all) of which are believed to play important roles in the tolerance of base damage during DNA replication. Among these DNA polymerases, Rev1 protein (a deoxycytidyl transferase) from vertebrates interacts with several other specialized polymerases via a highly conserved C-terminal region. The present studies assessed whether these interactions are retained in more experimentally tractable model systems, including yeasts, flies, and the nematode C. elegans. We observed a physical interaction between Rev1 protein and other Y-family polymerases in the fruit fly Drosophila melanogaster. However, despite the fact that the C-terminal region of Drosophila and yeast Rev1 are conserved from vertebrates to a similar extent, such interactions were not observed in S. cerevisiae or S. pombe. With respect to regions in specialized DNA polymerases that are required for interaction with Rev1, we find predicted disorder to be an underlying structural commonality. The results of this study suggest that special consideration should be exercised when making mechanistic extrapolations regarding translesion DNA synthesis from one eukaryotic system to another. PMID:18242152

  9. Highlight Commentary on "Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis".

    PubMed

    Calabrese, Vittorio

    2007-07-15

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by rapid degeneration of and loss of function in the motor cortex, brain stem, and spinal cord, particularly the anterior horn cells. Since the pioneering work of Brown and colleagues, more than 100 mutations in Cu,Zn superoxide dismutase (SOD1) have been described (P. Pasinelli, R. H. Brown, Nat. Rev. Neurosci.7, 710-723, 2006). There are toxic gain-of-function alterations in SOD1, because the enzymatic activity of this protein is not different in ALS from that of controls. The paper by Butterfield and colleagues reporting the use of redox proteomics to identify oxidatively modified proteins in the spinal cord in the G93A-SOD1 mouse model of familial amyotrophic lateral sclerosis was identified by the SCOPUS science literature information system to be one of the top 20 downloaded papers for 2005-2006 in Free Radical Biology and Medicine. Here my thoughts on the importance and impact of this paper are reported.

  10. Structure and function analysis of the CMS/CIN85 protein family identifies actin-bundling properties and heterotypic-complex formation.

    PubMed

    Gaidos, Gabriel; Soni, Shefali; Oswald, Duane J; Toselli, Paul A; Kirsch, Kathrin H

    2007-07-15

    Members of the CMS/CIN85 protein family participate in clathrin-mediated endocytosis and play a crucial role in maintaining the kidney filtration barrier. The CMS protein structure includes three Src homology 3 (SH3) domains and a proline-rich (PR) region that is connected by a 'linker' sequence to a coiled-coil (CC) domain. We show that CMS is a component of special actin-rich adhesion structures--podosomes--and demonstrate specific actin-binding properties of CMS. We have found that the entire C-terminal half of CMS is necessary for efficient binding to filamentous actin (F-actin). CMS and CIN85 can crosslink F-actin into bundles, a function that depends on the PR region and the CC domain. Removal of these domains reduces migration. CMS can also form heterotypic complexes with CIN85. CIN85 is expressed as multiple isoforms that share the CC domain, suggesting that heterotypic interactions with CMS provides a mechanism to regulate CMS binding to F-actin and thus for modulating dynamic rearrangements of the cytoskeleton.

  11. Class-paired Fuzzy SubNETs: A paired variant of the rank-based network analysis family for feature selection based on protein complexes.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2017-04-08

    Identifying reproducible yet relevant protein features in proteomics data is a major challenge. Analysis at the level of protein complexes can resolve this issue and we have developed a suite of feature-selection methods collectively referred to as Rank-Based Network Analysis (RBNA). RBNAs differ in their individual statistical test setup but are similar in the sense that they deploy rank-defined weights amongst proteins per sample. This procedure is known as gene fuzzy scoring. Currently, no RBNA exists for paired-sample scenarios where both control and test tissues originate from the same source (e.g. same patient). It is expected that paired tests, when used appropriately, are more powerful than approaches intended for unpaired samples. We report that the class-paired RBNA, PPFSNET, dominates in both simulated and real data scenarios. Moreover, for the first time, we explicitly incorporate batch-effect resistance as an additional evaluation criterion for feature-selection approaches. Batch effects are class irrelevant variations arising from different handlers or processing times, and can obfuscate analysis. We demonstrate that PPFSNET and PFSNET, are particularly resistant against batch effects, and only select features strongly correlated with class but not batch. This article is protected by copyright. All rights reserved.

  12. Interaction of Alzheimer's beta -amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade.

    PubMed

    Taru, Hidenori; Iijima, Ko-Ichi; Hase, Momoko; Kirino, Yutaka; Yagi, Yoshimasa; Suzuki, Toshiharu

    2002-05-31

    We have isolated a novel protein based on its association with Drosophila APP-like protein (APPL), a homolog of the beta-amyloid precursor protein (APP) that is implicated in Alzheimer's disease. This novel APPL-interacting protein 1 (APLIP1) contains a Src homology 3 domain and a phosphotyrosine interaction domain and is expressed abundantly in neural tissues. The phosphotyrosine interaction domain of APLIP1 interacts with a sequence containing GYENPTY in the cytoplasmic domain of APPL. APLIP1 is highly homologous to the carboxyl-terminal halves of mammalian c-Jun NH(2)-terminal kinase (JNK)-interacting protein 1b (JIP1b) and 2 (JIP2), which also contain Src homology 3 and phosphotyrosine interaction domains. The similarity of APLIP1 to JIP1b and JIP2 includes interaction with component(s) of the JNK signaling pathway and with the motor protein kinesin and the formation of homo-oligomers. JIP1b interacts strongly with the cytoplasmic domain of APP (APPcyt), as APLIP1 does with APPL, but the interaction of JIP2 with APPcyt is weak. Overexpression of JIP1b slightly enhances the JNK-dependent threonine phosphorylation of APP in cultured cells, but that of JIP2 suppresses it. These observations suggest that the interactions of APP family proteins with APLIP1, JIP1b, and JIP2 are conserved and play important roles in the metabolism and/or the function of APPs including the regulation of APP phosphorylation by JNK. Analysis of APP family proteins and their associated proteins is expected to contribute to understanding the molecular process of neural degeneration in Alzheimer's disease.

  13. Analysis of secreted proteins.

    PubMed

    Severino, Valeria; Farina, Annarita; Chambery, Angela

    2013-01-01

    Most biological processes including growth, proliferation, differentiation, and apoptosis are coordinated by tightly regulated signaling pathways, which also involve secreted proteins acting in an autocrine and/or paracrine manner. In addition, extracellular signaling molecules affect local niche biology and influence the cross-talking with the surrounding tissues. The understanding of this molecular language may provide an integrated and broader view of cellular regulatory networks under physiological and pathological conditions. In this context, the profiling at a global level of cell secretomes (i.e., the subpopulations of a proteome secreted from the cell) has become an active area of research. The current interest in secretome research also deals with its high potential for the biomarker discovery and the identification of new targets for therapeutic strategies. Several proteomic and mass spectrometry platforms and methodologies have been applied to secretome profiling of conditioned media of cultured cell lines and primary cells. Nevertheless, the analysis of secreted proteins is still a very challenging task, because of the technical difficulties that may hamper the subsequent mass spectrometry analysis. This chapter describes a typical workflow for the analysis of proteins secreted by cultured cells. Crucial issues related to cell culture conditions for the collection of conditioned media, secretome preparation, and mass spectrometry analysis are discussed. Furthermore, an overview of quantitative LC-MS-based approaches, computational tools for data analysis, and strategies for validation of potential secretome biomarkers is also presented.

  14. Cluster analysis in family psychology research.

    PubMed

    Henry, David B; Tolan, Patrick H; Gorman-Smith, Deborah

    2005-03-01

    This article discusses the use of cluster analysis in family psychology research. It provides an overview of potential clustering methods, the steps involved in cluster analysis, hierarchical and nonhierarchical clustering methods, and validation and interpretation of cluster solutions. The article also reviews 5 uses of clustering in family psychology research: (a) deriving family types, (b) studying families over time, (c) as an interface between qualitative and quantitative methods, (d) as an alternative to multivariate interactions in linear models, and (e) as a data reduction technique for small samples. The article concludes with some cautions for using clustering in family psychology research.

  15. Genealogy of an ancient protein family: the Sirtuins, a family of disordered members

    PubMed Central

    2013-01-01

    Background Sirtuins genes are widely distributed by evolution and have been found in eubacteria, archaea and eukaryotes. While prokaryotic and archeal species usually have one or two sirtuin homologs, in humans as well as in eukaryotes we found multiple versions and in mammals this family is comprised of seven different homologous proteins being all NAD-dependent de-acylases. 3D structures of human SIRT2, SIRT3, and SIRT5 revealed the overall conformation of the conserved core domain but they were unable to give a structural information about the presence of very flexible and dynamically disordered regions, the role of which is still structurally and functionally unclear. Recently, we modeled the 3D-structure of human SIRT1, the most studied member of this family, that unexpectedly emerged as a member of the intrinsically disordered proteins with its long disordered terminal arms. Despite clear similarities in catalytic cores between the human sirtuins little is known of the general structural characteristics of these proteins. The presence of disorder in human SIRT1 and the propensity of these proteins in promoting molecular interactions make it important to understand the underlying mechanisms of molecular recognition that reasonably should involve terminal segments. The mechanism of recognition, in turn, is a prerequisite for the understanding of any functional activity. Aim of this work is to understand what structural properties are shared among members of this family in humans as well as in other organisms. Results We have studied the distribution of the structural features of N- and C-terminal segments of sirtuins in all known organisms to draw their evolutionary histories by taking into account average length of terminal segments, amino acid composition, intrinsic disorder, presence of charged stretches, presence of putative phosphorylation sites, flexibility, and GC content of genes. Finally, we have carried out a comprehensive analysis of the putative

  16. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  17. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  18. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses.

    PubMed

    Xu, Jianing; Xing, Shanshan; Cui, Haoran; Chen, Xuesen; Wang, Xiaoyun

    2016-04-01

    The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.

  19. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers.

    PubMed Central

    Marck, C

    1988-01-01

    DNA Strider is a new integrated DNA and Protein sequence analysis program written with the C language for the Macintosh Plus, SE and II computers. It has been designed as an easy to learn and use program as well as a fast and efficient tool for the day-to-day sequence analysis work. The program consists of a multi-window sequence editor and of various DNA and Protein analysis functions. The editor may use 4 different types of sequences (DNA, degenerate DNA, RNA and one-letter coded protein) and can handle simultaneously 6 sequences of any type up to 32.5 kB each. Negative numbering of the bases is allowed for DNA sequences. All classical restriction and translation analysis functions are present and can be performed in any order on any open sequence or part of a sequence. The main feature of the program is that the same analysis function can be repeated several times on different sequences, thus generating multiple windows on the screen. Many graphic capabilities have been incorporated such as graphic restriction map, hydrophobicity profile and the CAI plot- codon adaptation index according to Sharp and Li. The restriction sites search uses a newly designed fast hexamer look-ahead algorithm. Typical runtime for the search of all sites with a library of 130 restriction endonucleases is 1 second per 10,000 bases. The circular graphic restriction map of the pBR322 plasmid can be therefore computed from its sequence and displayed on the Macintosh Plus screen within 2 seconds and its multiline restriction map obtained in a scrolling window within 5 seconds. PMID:2832831

  20. The Overlap of Small Molecule and Protein Binding Sites within Families of Protein Structures

    PubMed Central

    Davis, Fred P.; Sali, Andrej

    2010-01-01

    Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators. PMID:20140189

  1. Four Members of Heat Shock Protein 70 Family in Korean Rose Bitterling (Rhodeus uyekii)

    PubMed Central

    Kim, Jung Hyun; Dong, Chun Mae; Kim, Julan; An, Cheul Min; Baek, Hae Ja; Kong, Hee Jeong

    2015-01-01

    Heat shock protein (HSP) 70, the highly conserved stress protein families, plays important roles in protecting cells against heat and other stresses in most animal species. In the present study, we identified and characterized four Hsp70 (RuHSP4, RuHSC70, RuHSP12A, RuGRP78) family proteins based on the expressed sequence tag (EST) analysis of the Korean rose bitterling R. uyekii cDNA library. The deduced RuHSP70 family has high amino acid identities of 72-99% with those of other species. Phylogenetic analysis revealed that RuHsp70 family clustered with fish groups (HSP4, HSC70, HSP12A, GRP78) proteins. Quantitative RT-PCR analysis showed the specific expression patterns of RuHsp70 family members in the early developmental stages and several tissues in Korean rose bitterling. The expression of 4 groups of Hsp70 family was detected in all tested tissue. Particularly, Hsp70 family of Korean rose bitterling is highly expressed in hepatopancreas and sexual gonad (testis and ovary). The expression of Hsp70 family was differentially regulated in accordance with early development stage of Rhodeus uyekii. PMID:27004270

  2. The KP4 killer protein gene family

    USDA-ARS?s Scientific Manuscript database

    Killer protein 4 (KP4) is a well studied toxin secreted by the maize smut fungus Ustilago maydis that kills sensitive Ustilago strains as well as inhibits Fusarium and plant root growth. This small, cysteine rich protein is encoded by a virus that depends on host survival for replication. KP4 functi...

  3. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.

    PubMed

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig

    2007-03-01

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  4. The Sorcerer II Global Ocean Sampling Expedition: Expanding theUniverse of Protein Families

    SciTech Connect

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B.; Halpern,Aaron L.; Williamson, Shannon J.; Remington, Karin; Eisen, Jonathan A.; Heidelberg, Karla B.; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S.; Li, Huiying; Mashiyama, Susan T.; Joachimiak, Marcin P.; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A.; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael,Benjamin J.; Bafna, Vineet; Friedman, Robert; Brenner, Steven E.; Godzik,Adam; Eisenberg, David; Dixon, Jack E.; Taylor, Susan S.; Strausberg,Robert L.; Frazier, Marvin; Venter, J.Craig

    2006-03-23

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  5. The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families

    PubMed Central

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J. Craig

    2007-01-01

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature. PMID:17355171

  6. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining.

    PubMed

    Boutrot, Freddy; Chantret, Nathalie; Gautier, Marie-Françoise

    2008-02-21

    Plant non-specific lipid transfer proteins (nsLTPs) are encoded by multigene families and possess physiological functions that remain unclear. Our objective was to characterize the complete nsLtp gene family in rice and arabidopsis and to perform wheat EST database mining for nsLtp gene discovery. In this study, we carried out a genome-wide analysis of nsLtp gene families in Oryza sativa and Arabidopsis thaliana and identified 52 rice nsLtp genes and 49 arabidopsis nsLtp genes. Here we present a complete overview of the genes and deduced protein features. Tandem duplication repeats, which represent 26 out of the 52 rice nsLtp genes and 18 out of the 49 arabidopsis nsLtp genes identified, support the complexity of the nsLtp gene families in these species. Phylogenetic analysis revealed that rice and arabidopsis nsLTPs are clustered in nine different clades. In addition, we performed comparative analysis of rice nsLtp genes and wheat (Triticum aestivum) EST sequences indexed in the UniGene database. We identified 156 putative wheat nsLtp genes, among which 91 were found in the 'Chinese Spring' cultivar. The 122 wheat non-redundant nsLTPs were organized in eight types and 33 subfamilies. Based on the observation that seven of these clades were present in arabidopsis, rice and wheat, we conclude that the major functional diversification within the nsLTP family predated the monocot/dicot divergence. In contrast, there is no type VII nsLTPs in arabidopsis and type IX nsLTPs were only identified in arabidopsis. The reason for the larger number of nsLtp genes in wheat may simply be due to the hexaploid state of wheat but may also reflect extensive duplication of gene clusters as observed on rice chromosomes 11 and 12 and arabidopsis chromosome 5. Our current study provides fundamental information on the organization of the rice, arabidopsis and wheat nsLtp gene families. The multiplicity of nsLTP types provide new insights on arabidopsis, rice and wheat nsLtp gene families

  7. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles

    PubMed Central

    Zhong, Cuncong; Yooseph, Shibu

    2016-01-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  8. Genome Pool Strategy for Structural Coverage of Protein Families

    PubMed Central

    Jaroszewski, Lukasz; Slabinski, Lukasz; Wooley, John; Deacon, Ashley M.; Lesley, Scott A.; Wilson, Ian. A.; Godzik, Adam

    2010-01-01

    As noticed by generations of structural biologists, closely homologous proteins may have substantially different crystallization properties and propensities. These observations can be used to systematically introduce additional dimensionality into crystallization trials by targeting homologous proteins from multiple genomes in a “genome pool” strategy. Through extensive use of our recently introduced “crystallization feasibility score” (Slabinski et al., 2007a), we can explain that the genome pool strategy works well because the crystallization feasibility scores are surprisingly broad within families of homologous proteins, with most families containing a range of optimal to very difficult targets. We also show that some families can be regarded as relatively “easy”, where a significant number of proteins are predicted to have optimal crystallization features, and others are “very difficult”, where almost none are predicted to result in a crystal structure. Thus, the outcome of such variable distributions of such crystallizability' preferences leads to uneven structural coverage of known families, with “easier” or “optimal” families having several times more solved structures than “very difficult” ones. Nevertheless, this latter category can be successfully targeted by increasing the number of genomes that are used to select targets from a given family. On average, adding 10 new genomes to the “genome pool” provides more promising targets for 7 “very difficult” families. In contrast, our crystallization feasibility score does not indicate that any specific microbial genomes can be readily classified as “easier” or “very difficult” with respect to providing suitable candidates for crystallization and structure determination. Finally, our analyses show that specific physicochemical properties of the protein sequence favor successful outcomes for structure determination and, hence, the group of proteins with known 3D

  9. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis.

    PubMed

    Hatakeyama, Shigetsugu

    2017-01-21

    Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein-protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis.

  10. Monoubiquitination of Tob/BTG family proteins competes with degradation-targeting polyubiquitination.

    PubMed

    Suzuki, Toru; Kim, Minsoo; Kozuka-Hata, Hiroko; Watanabe, Masato; Oyama, Masaaki; Tsumoto, Kouhei; Yamamoto, Tadashi

    2011-05-27

    Tob belongs to the anti-proliferative Tob/BTG protein family. The expression level of Tob family proteins is strictly regulated both transcriptionally and through post-translational modification. Ubiquitin (Ub)/proteosome-dependent degradation of Tob family proteins is critical in controlling cell cycle progression and DNA damage responses. Various Ub ligases (E3s) are responsible for degradation of Tob protein. Here, we show that Tob family proteins undergo monoubiquitination even in the absence of E3s in vitro. Determination of the ubiquitination site(s) in Tob by mass spectrometric analysis revealed that two lysine residues (Lys48 and Lys63) located in Tob/BTG homology domain are ubiquitinated. A mutant Tob, in which both Lys48 and Lys63 are substituted with alanine, is more strongly polyubiquitinated than wild-type Tob in vivo. These data suggest that monoubiquitination of Tob family proteins confers resistance against polyubiquitination, which targets proteins for degradation. The strategy for regulating the stability of Tob family proteins suggests a novel role for monoubiquitination.

  11. Conservation of the prohormone convertase gene family in metazoa: analysis of cDNAs encoding a PC3-like protein from hydra.

    PubMed Central

    Chan, S J; Oliva, A A; LaMendola, J; Grens, A; Bode, H; Steiner, D F

    1992-01-01

    A subclass of proteolytic enzymes that correctly cleave precursor proteins at paired basic residues and are structurally related to the bacterial subtilisins has recently been identified. In yeast, a single membrane-bound proteolytic processing enzyme encoded by the kex2 gene has been found, whereas in higher vertebrates cDNAs encoding four distinct enzymes (PC2, PC3, furin, and PACE 4) have been identified. Like kex2, furin (also known as PACE) contains a hydrophobic transmembrane domain, but PC2, PC3, and PACE 4 lack this feature. All five enzymes exhibit striking similarities in their catalytic domains, and this suggests that they have arisen from a common ancestral subtilisin-like gene. We report here the identification of cDNAs encoding a protein that is similar in structure to PC3 from a simple metazoan, Hydra vulgaris (formerly Hydra attenuata). cDNAs encoding two isoforms of this PC3-like enzyme were obtained that differ only in their carboxyl-terminal sequences, probably due to alternative splicing of a common pre-mRNA. Neither form contains a transmembrane domain. Predicted amino acid sequence comparisons revealed that the hydra PC3-like enzyme is 55.4% and 56.7% identical in the catalytic domain to mouse PC3 and human furin, respectively. RNA blot analyses revealed that the PC3-like RNA is expressed predominantly in the hydra body column and not in the head region, although the hydra head contains a high density of nerve cells, which synthesize a variety of neuropeptides. For this reason, we suspect that another proprotein cleavage enzyme isoform may be expressed in head nerve cells. The isolation of a PC3-like cDNA from hydra is consistent with the presence of neuroendocrine cells and indicates that the PC/furin gene family has been well conserved in all metazoa. A simplified nomenclature for the group of mammalian processing proteases is proposed. Images PMID:1495957

  12. Docking validation resources: protein family and ligand flexibility experiments.

    PubMed

    Mukherjee, Sudipto; Balius, Trent E; Rizzo, Robert C

    2010-11-22

    A database consisting of 780 ligand-receptor complexes, termed SB2010, has been derived from the Protein Databank to evaluate the accuracy of docking protocols for regenerating bound ligand conformations. The goal is to provide easily accessible community resources for development of improved procedures to aid virtual screening for ligands with a wide range of flexibilities. Three core experiments using the program DOCK, which employ rigid (RGD), fixed anchor (FAD), and flexible (FLX) protocols, were used to gauge performance by several different metrics: (1) global results, (2) ligand flexibility, (3) protein family, and (4) cross-docking. Global spectrum plots of successes and failures vs rmsd reveal well-defined inflection regions, which suggest the commonly used 2 Å criteria is a reasonable choice for defining success. Across all 780 systems, success tracks with the relative difficulty of the calculations: RGD (82.3%) > FAD (78.1%) > FLX (63.8%). In general, failures due to scoring strongly outweigh those due to sampling. Subsets of SB2010 grouped by ligand flexibility (7-or-less, 8-to-15, and 15-plus rotatable bonds) reveal that success degrades linearly for FAD and FLX protocols, in contrast to RGD, which remains constant. Despite the challenges associated with FLX anchor orientation and on-the-fly flexible growth, success rates for the 7-or-less (74.5%) and, in particular, the 8-to-15 (55.2%) subset are encouraging. Poorer results for the very flexible 15-plus set (39.3%) indicate substantial room for improvement. Family-based success appears largely independent of ligand flexibility, suggesting a strong dependence on the binding site environment. For example, zinc-containing proteins are generally problematic, despite moderately flexible ligands. Finally, representative cross-docking examples, for carbonic anhydrase, thermolysin, and neuraminidase families, show the utility of family-based analysis for rapid identification of particularly good or bad

  13. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs.

    PubMed Central

    Korthout, H A; de Boer, A H

    1994-01-01

    The fusicoccin binding protein (FCBP) is a highly conserved plasma membrane protein present in all higher plants tested thus far. It exhibits high- and low-affinity binding for the fungal toxin fusicoccin (FC). We purified the active FCBP from a fraction highly enriched in plasma membrane by selective precipitation and anion exchange chromatography. After SDS-PAGE, the two FCBP subunits of 30 and 31 kD were detected as major bands. Amino acid sequence analysis of the 31-kD polypeptide displayed a high degree of identity with so-called 14-3-3 proteins, a class of mammalian brain proteins initially described as regulators of neurotransmitter synthesis and protein kinase C inhibitors. Thereafter, we affinity purified the 30- and 31-kD FCBP subunits, using biotinylated FC in combination with a monomeric avidin column. Immunodecoration of these 30- and 31-kD FCBP subunits with polyclonal antibodies raised against a 14-3-3 homolog from yeast confirmed the identity of the FCBP as a 14-3-3 homolog. Similar to all 14-3-3 protein homologs, the FCBP seems to exist as a dimer in native form. Thus far, the FCBP is the only 14-3-3 homolog with a receptor-like function. The conserved structure of the 14-3-3 protein family is a further indication that the FCBP plays an important role in the physiology of higher plants. PMID:7827499

  14. Genome-Wide Identification and Analysis of the VQ Motif-Containing Protein Family in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis).

    PubMed

    Zhang, Gaoyuan; Wang, Fengde; Li, Jingjuan; Ding, Qian; Zhang, Yihui; Li, Huayin; Zhang, Jiannong; Gao, Jianwei

    2015-12-02

    Previous studies have showed that the VQ motif-containing proteins in Arabidopsis thaliana and Oryza sativa play an important role in plant growth, development, and stress responses. However, little is known about the functions of the VQ genes in Brassica rapa (Chinese cabbage). In this study, we performed genome-wide identification, characterization, and expression analysis of the VQ genes in Chinese cabbage, especially under adverse environment. We identified 57 VQ genes and classified them into seven subgroups (I-VII), which were dispersedly distributed on chromosomes 1 to 10. The expansion of these genes mainly contributed to segmental and tandem duplication. Fifty-four VQ genes contained no introns and 50 VQ proteins were less than 300 amino acids in length. Quantitative real-time PCR showed that the VQ genes were differentially expressed in various tissues and during different abiotic stresses and plant hormone treatments. This study provides a comprehensive overview of Chinese cabbage VQ genes and will benefit the molecular breeding for resistance to stresses and disease, as well as further studies on the biological functions of the VQ proteins.

  15. ProPepper: a curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families.

    PubMed

    Juhász, Angéla; Haraszi, Réka; Maulis, Csaba

    2015-01-01

    ProPepper is a database that contains prolamin proteins identified from true grasses (Poaceae), their peptides obtained with single- and multi-enzyme in silico digestions as well as linear T- and B-cell-specific epitopes that are responsible for wheat-related food disorders. The integrated database and analysis platform contains datasets that are collected from multiple public databases (UniprotKB, IEDB, NCBI GenBank), manually curated and annotated, and interpreted in three main data tables: Protein-, Peptide- and Epitope list views that are cross-connected by unique identifications. Altogether 21 genera and 80 different species are represented. Currently, the database contains 2146 unique and complete protein sequences related to 2618 GenBank entries and 35 657 unique peptide sequences that are a result of 575 110 unique digestion events obtained by in silico digestion methods involving six proteolytic enzymes and their combinations. The interface allows advanced global and parametric search functions along with a download option, with direct connections to the relevant public databases. Database URL: https://propepper.net. © The Author(s) 2015. Published by Oxford University Press.

  16. Genome-Wide Identification and Analysis of the VQ Motif-Containing Protein Family in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis)

    PubMed Central

    Zhang, Gaoyuan; Wang, Fengde; Li, Jingjuan; Ding, Qian; Zhang, Yihui; Li, Huayin; Zhang, Jiannong; Gao, Jianwei

    2015-01-01

    Previous studies have showed that the VQ motif–containing proteins in Arabidopsis thaliana and Oryza sativa play an important role in plant growth, development, and stress responses. However, little is known about the functions of the VQ genes in Brassica rapa (Chinese cabbage). In this study, we performed genome-wide identification, characterization, and expression analysis of the VQ genes in Chinese cabbage, especially under adverse environment. We identified 57 VQ genes and classified them into seven subgroups (I–VII), which were dispersedly distributed on chromosomes 1 to 10. The expansion of these genes mainly contributed to segmental and tandem duplication. Fifty-four VQ genes contained no introns and 50 VQ proteins were less than 300 amino acids in length. Quantitative real-time PCR showed that the VQ genes were differentially expressed in various tissues and during different abiotic stresses and plant hormone treatments. This study provides a comprehensive overview of Chinese cabbage VQ genes and will benefit the molecular breeding for resistance to stresses and disease, as well as further studies on the biological functions of the VQ proteins. PMID:26633387

  17. Dock protein family in brain development and neurological disease

    PubMed Central

    Shi, Lei

    2013-01-01

    The family of dedicator of cytokinesis (Dock), a protein family that belongs to the atypical Rho guanine nucleotide exchange factors (GEFs) for Rac and/or Cdc42 GTPases, plays pivotal roles in various processes of brain development. To date, 11 members of Docks have been identified in the mammalian system. Emerging evidence has suggested that members of the Dock family are associated with several neurodegenerative and neuropsychiatric diseases, including Alzheimer disease and autism spectrum disorders. This review summarizes recent advances on the understanding of the roles of the Dock protein family in normal and diseased processes in the nervous system. Furthermore, interacting proteins and the molecular regulation of Docks are discussed. PMID:24563715

  18. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants

    PubMed Central

    Liu, Di; Sun, Wei; Yuan, Yaowu; Zhang, Ning; Hayward, Alice; Liu, Yongliang; Wang, Ying

    2014-01-01

    Background and Aims The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized. Methods Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato. Key Results Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family. Conclusions This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants. PMID:24812252

  19. Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets

    PubMed Central

    2010-01-01

    Background Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences. PMID:20718947

  20. Identification of a conserved 8 aa insert in the PIP5K protein in the Saccharomycetaceae family of fungi and the molecular dynamics simulations and structural analysis to investigate its potential functional role.

    PubMed

    Khadka, Bijendra; Gupta, Radhey S

    2017-08-01

    Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454-1467. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  2. Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication

    PubMed Central

    Aklilu, Behailu B.; Soderquist, Ryan S.; Culligan, Kevin M.

    2014-01-01

    Replication Protein A (RPA) is a heterotrimeric protein complex that binds single-stranded DNA. In plants, multiple genes encode the three RPA subunits (RPA1, RPA2 and RPA3), including five RPA1-like genes in Arabidopsis. Phylogenetic analysis suggests two distinct groups composed of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B, RPA1D (BD group). ACE-group members are transcriptionally induced by ionizing radiation, while BD-group members show higher basal transcription and are not induced by ionizing radiation. Analysis of rpa1 T-DNA insertion mutants demonstrates that although each mutant line is likely null, all mutant lines are viable and display normal vegetative growth. The rpa1c and rpa1e single mutants however display hypersensitivity to ionizing radiation, and combination of rpa1c and rpa1e results in additive hypersensitivity to a variety of DNA damaging agents. Combination of the partially sterile rpa1a with rpa1c results in complete sterility, incomplete synapsis and meiotic chromosome fragmentation, suggesting an early role for RPA1C in promoting homologous recombination. Combination of either rpa1c and/or rpa1e with atr revealed additive hypersensitivity phenotypes consistent with each functioning in unique repair pathways. In contrast, rpa1b rpa1d double mutant plants display slow growth and developmental defects under non-damaging conditions. We show these defects in the rpa1b rpa1d mutant are likely the result of defective DNA replication leading to reduction in cell division. PMID:24335281

  3. The schlafen family of proteins and their regulation by interferons.

    PubMed

    Mavrommatis, Evangelos; Fish, Eleanor N; Platanias, Leonidas C

    2013-04-01

    The Schlafen (SLFN) family of proteins includes several mouse and human members. There is emerging evidence that members of this family of proteins are involved in important functions, such as the control of cell proliferation, induction of immune responses, and the regulation of viral replication. These proteins span across all species with great diversity, with 10 murine and 5 human isoforms. Recent work has established that mouse and human SLFN proteins are regulated by interferons (IFNs). Several Slfn genes were shown to be induced as classical interferon-stimulated genes, and emerging evidence suggests that these proteins play important roles in the growth inhibitory and antineoplastic effects of IFNs. In the current review, the known properties of mouse and human SLFNs are reviewed, and the implications of their emerging functions are discussed.

  4. The Schlafen Family of Proteins and Their Regulation by Interferons

    PubMed Central

    Mavrommatis, Evangelos; Fish, Eleanor N.

    2013-01-01

    The Schlafen (SLFN) family of proteins includes several mouse and human members. There is emerging evidence that members of this family of proteins are involved in important functions, such as the control of cell proliferation, induction of immune responses, and the regulation of viral replication. These proteins span across all species with great diversity, with 10 murine and 5 human isoforms. Recent work has established that mouse and human SLFN proteins are regulated by interferons (IFNs). Several Slfn genes were shown to be induced as classical interferon-stimulated genes, and emerging evidence suggests that these proteins play important roles in the growth inhibitory and antineoplastic effects of IFNs. In the current review, the known properties of mouse and human SLFNs are reviewed, and the implications of their emerging functions are discussed. PMID:23570387

  5. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    DOE PAGES

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; ...

    2016-02-08

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based functionmore » assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). In conclusion, this new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.« less

  6. Using Amino Acid Correlation and Community Detection Algorithms to Identify Functional Determinants in Protein Families

    PubMed Central

    Bleicher, Lucas; Lemke, Ney; Garratt, Richard Charles

    2011-01-01

    Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms, resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that provide insight into the relationship between different communities, the individual importance of community members and the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/α-lactalbumin family), we show how our method and the proposed parameters and procedures are related to biological characteristics observed in these protein families, highlighting their potential use in protein characterization and gene annotation. PMID:22205928

  7. BCL-2 family proteins as regulators of mitochondria metabolism.

    PubMed

    Gross, Atan

    2016-08-01

    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  8. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    PubMed Central

    Vadnagara, Komal; Moe, Orson W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1–CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na+/H+ exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions. PMID:22189947

  9. Disorder and function: a review of the dehydrin protein family

    PubMed Central

    Graether, Steffen P.; Boddington, Kelly F.

    2014-01-01

    Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins. PMID:25400646

  10. Vaccinia Virus Protein A49 Is an Unexpected Member of the B-cell Lymphoma (Bcl)-2 Protein Family*

    PubMed Central

    Neidel, Sarah; Maluquer de Motes, Carlos; Mansur, Daniel S.; Strnadova, Pavla; Smith, Geoffrey L.; Graham, Stephen C.

    2015-01-01

    Vaccinia virus (VACV) encodes several proteins that inhibit activation of the proinflammatory transcription factor nuclear factor κB (NF-κB). VACV protein A49 prevents translocation of NF-κB to the nucleus by sequestering cellular β-TrCP, a protein required for the degradation of the inhibitor of κB. A49 does not share overall sequence similarity with any protein of known structure or function. We solved the crystal structure of A49 from VACV Western Reserve to 1.8 Å resolution and showed, surprisingly, that A49 has the same three-dimensional fold as Bcl-2 family proteins despite lacking identifiable sequence similarity. Whereas Bcl-2 family members characteristically modulate cellular apoptosis, A49 lacks a surface groove suitable for binding BH3 peptides and does not bind proapoptotic Bcl-2 family proteins Bax or Bak. The N-terminal 17 residues of A49 do not adopt a single well ordered conformation, consistent with their proposed role in binding β-TrCP. Whereas pairs of A49 molecules interact symmetrically via a large hydrophobic surface in crystallo, A49 does not dimerize in solution or in cells, and we propose that this hydrophobic interaction surface may mediate binding to a yet undefined cellular partner. A49 represents the eleventh VACV Bcl-2 family protein and, despite these proteins sharing very low sequence identity, structure-based phylogenetic analysis shows that all poxvirus Bcl-2 proteins are structurally more similar to each other than they are to any cellular or herpesvirus Bcl-2 proteins. This is consistent with duplication and diversification of a single BCL2 family gene acquired by an ancestral poxvirus. PMID:25605733

  11. The Amt/Mep/Rh family of ammonium transport proteins.

    PubMed

    Andrade, Susana L A; Einsle, Oliver

    2007-01-01

    The Amt/Mep/Rh family of integral membrane proteins comprises ammonium transporters of bacteria, archaea and eukarya, as well as the Rhesus proteins found in animals. They play a central role in the uptake of reduced nitrogen for biosynthetic purposes, in energy metabolism, or in renal excretion. Recent structural information on two prokaryotic Amt proteins has significantly contributed to our understanding of this class, but basic questions concerning the transport mechanism and the nature of the transported substrate, NH3 or [NH4(+)], remain to be answered. Here we review functional and structural studies on Amt proteins and discuss the bioenergetic issues raised by the various mechanistic proposals present in the literature.

  12. Systems Proteomics View of the Endogenous Human Claudin Protein Family

    PubMed Central

    Liu, Fei; Koval, Michael; Ranganathan, Shoba; Fanayan, Susan; Hancock, William S.; Lundberg, Emma K.; Beavis, Ronald C.; Lane, Lydie; Duek, Paula; McQuade, Leon; Kelleher, Neil L.; Baker, Mark S.

    2016-01-01

    Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein–protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation. PMID:26680015

  13. [Pedigree survey in a family with hereditary protein S deficiency].

    PubMed

    Huang, K Y; Kong, L Q; Wu, Z; Wen, X; Zhao, J; Zhang, H C; Xu, Y; Long, X J; Kang, Y

    2016-09-24

    Objective: To observe the clinical feature of familiar hereditary protein S deficiency(HPSD), and to explore the related gene mutations. Methods: A total of seven family members were enrolled in this study and examined during the June to September 2015. Medical histories of the families were analyzed to detect HPSD according to the diagnostic criteria. PROS1 genes of the proband and her family were analyzed. DNA was extracted from peripheral blood. The 15 exons and their intron-exon boundaries of PROS1 were amplified with PCR, and the PCR products were sequenced and analyzed to identify potential mutations. Medical histories from the family members died prior this study were also obtained. Results: Four out of 7 family members of 2 generations were diagnosed as HPSD. The proband suffered from pulmonary embolism, her elder brother suffered from cerebral infarction and her niece suffered from deep vein thrombosis. A missense mutation at the 1063 bp of cDNA(c.1063C>T)was detected in the exon 10 of PROS1, which resulted in arginine 355 to cysteine replacement in the first ball domain of laminin of the protein S(p.R355C). Conclusion: HPSD is an autosomal dominant genetic disease, patients often suffer from recurring vein thrombosis and pulmonary embolism. A missense mutation(c.1063C>T, p. R355C)of PROS1 was discovered in this Chinese family with HPSD, thus, this mutation might be the genetic basis responsible for these family members with HPSD .

  14. Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006

    PubMed Central

    Ouellette, Matthew; Jackson, Laura; Chimileski, Scott; Papke, R. Thane

    2015-01-01

    Restriction-modification (RM) systems have evolved to protect the cell from invading DNAs and are composed of two enzymes: a DNA methyltransferase and a restriction endonuclease. Although RM systems are present in both archaeal and bacterial genomes, DNA methylation in archaea has not been well defined. In order to characterize the function of RM systems in archaeal species, we have made use of the model haloarchaeon Haloferax volcanii. A genomic DNA methylation analysis of H. volcanii strain H26 was performed using PacBio single molecule real-time (SMRT) sequencing. This analysis was also performed on a strain of H. volcanii in which an annotated DNA methyltransferase gene HVO_A0006 was deleted from the genome. Sequence analysis of H26 revealed two motifs which are modified in the genome: Cm4TAG and GCAm6BN6VTGC. Analysis of the ΔHVO_A0006 strain indicated that it exhibited reduced adenine methylation compared to the parental strain and altered the detected adenine motif. However, protein domain architecture analysis and amino acid alignments revealed that HVO_A0006 is homologous only to the N-terminal endonuclease region of Type IIG RM proteins and contains a PD-(D/E)XK nuclease motif, suggesting that HVO_A0006 is a PD-(D/E)XK nuclease family protein. Further bioinformatic analysis of the HVO_A0006 gene demonstrated that the gene is rare among the Halobacteria. It is surrounded by two transposition genes suggesting that HVO_A0006 is a fragment of a Type IIG RM gene, which has likely been acquired through gene transfer, and affects restriction-modification activity by interacting with another RM system component(s). Here, we present the first genome-wide characterization of DNA methylation in an archaeal species and examine the function of a DNA methyltransferase related gene HVO_A0006. PMID:25904898

  15. DAZ Family Proteins, Key Players for Germ Cell Development.

    PubMed

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution.

  16. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones.

    PubMed

    Miernyk, J A

    2001-07-01

    A total of 89 J-domain proteins were identified in the genome of the model flowering plant Arabidopsis thaliana. The deduced amino acid sequences of the J-domain proteins were analyzed for an assortment of structural features and motifs. Based on the results of sequence comparisons and structure and function predictions, 51 distinct families were identified. The families ranged in size from 1 to 6 members. Subcellular localizations of the A thaliana J-domain proteins were predicted; species were found in both the soluble and membrane compartments of all cellular organelles. Based on digital Northern analysis, the J-domain proteins could be separated into groups of low, medium, and moderate expression levels. This genomics-based analysis of the A thaliana J-domain proteins establishes a framework for detailed studies of biological function and specificity. It additionally provides a comprehensive basis for evolutionary comparisons.

  17. Current overview of allergens of plant pathogenesis related protein families.

    PubMed

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.

  18. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  19. An Ancient Family of RNA-Binding Proteins: Still Important!

    PubMed

    Wells, Melissa L; Perera, Lalith; Blackshear, Perry J

    2017-04-01

    RNA-binding proteins are important modulators of mRNA stability, a crucial process that determines the ultimate cellular levels of mRNAs and their encoded proteins. The tristetraprolin (TTP) family of RNA-binding proteins appeared early in the evolution of eukaryotes, and has persisted in modern eukaryotes. The domain structures and biochemical functions of family members from widely divergent lineages are remarkably similar, but their mRNA 'targets' can be very different, even in closely related species. Recent gene knockout studies in species as distantly related as plants, flies, yeasts, and mice have demonstrated crucial roles for these proteins in a wide variety of physiological processes. Inflammatory and hematopoietic phenotypes in mice have suggested potential therapeutic approaches for analogous human disorders.

  20. A large family of anti‐activators accompanying XylS/AraC family regulatory proteins

    PubMed Central

    Yan, Michael B.; Tran, Minh; Wright, Nathan; Luzader, Deborah H.; Kendall, Melissa M.; Ruiz‐Perez, Fernando; Nataro, James P.

    2016-01-01

    Summary AraC Negative Regulators (ANR) suppress virulence genes by directly down‐regulating AraC/XylS members in Gram‐negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR‐activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC‐like member AggR. ANR‐AggR binding disrupted AggR dimerization and prevented AggR‐DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α‐helices. Site‐directed mutagenesis studies suggest that at least predicted α‐helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners. PMID:27038276

  1. A large family of anti-activators accompanying XylS/AraC family regulatory proteins.

    PubMed

    Santiago, Araceli E; Yan, Michael B; Tran, Minh; Wright, Nathan; Luzader, Deborah H; Kendall, Melissa M; Ruiz-Perez, Fernando; Nataro, James P

    2016-07-01

    AraC Negative Regulators (ANR) suppress virulence genes by directly down-regulating AraC/XylS members in Gram-negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR-activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC-like member AggR. ANR-AggR binding disrupted AggR dimerization and prevented AggR-DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α-helices. Site-directed mutagenesis studies suggest that at least predicted α-helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners.

  2. Comparative genomics of the Rab protein family in Apicomplexan parasites

    PubMed Central

    Langsley, Gordon; van Noort, Vera; Carret, Céline; Meissner, Markus; de Villiers, Etienne P.; Bishop, Richard; Pain, Arnab

    2008-01-01

    Rab genes encode a subgroup of small GTP-binding proteins within the ras super-family that regulate targeting and fusion of transport vesicles within the secretory and endocytic pathways. These genes are of particular interest in the protozoan phylum Apicomplexa, since a family of Rab GTPases has been described for Plasmodium and most putative secretory pathway proteins in Apicomplexa have conventional predicted signal peptides. Moreover, peptide motifs have now been identified within a large number of secreted Plasmodium proteins that direct their targeting to the red blood cell cytosol, the apicoplast, the food vacuole and Maurer's clefs; in contrast, motifs that direct proteins to secretory organelles (rhoptries, micronemes and microspheres) have yet to be defined. The nature of the vesicle in which these proteins are transported to their destinations remains unknown and morphological structures equivalent to the endoplasmic reticulum and trans-Golgi stacks typical of other eukaryotes cannot be visualised in Apicomplexa. Since Rab GTPases regulate vesicular traffic in all eukaryotes, and this traffic in intracellular parasites could regulate import of nutrient and drugs and export of antigens, host cell modulatory proteins and lactate we compare and contrast here the Rab families of Apicomplexa. PMID:18468471

  3. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families.

    PubMed

    de la Cruz, J; Kressler, D; Linder, P

    1999-05-01

    Members of the RNA-helicase family are defined by several evolutionary conserved motifs. They are found in all organisms - from bacteria to humans - and many viruses. The minimum number of RNA helicases present within a eukaryotic cell can be predicted from the complete sequence of the Saccharomyces cerevisiae genome. Recent progress in the functional analysis of various family members has given new insights into, and confirmed the significance of these proteins for, most cellular RNA metabolic processes.

  4. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase.

    PubMed

    Bujnicki, Janusz M; Feder, Marcin; Radlinska, Monika; Blumenthal, Robert M

    2002-10-01

    MT-A70 is the S-adenosylmethionine-binding subunit of human mRNA:m(6)A methyl-transferase (MTase), an enzyme that sequence-specifically methylates adenines in pre-mRNAs. The physiological importance yet limited understanding of MT-A70 and its apparent lack of similarity to other known RNA MTases combined to make this protein an attractive target for bioinformatic analysis. The sequence of MT-A70 was subjected to extensive in silico analysis to identify orthologous and paralogous polypeptides. This analysis revealed that the MT-A70 family comprises four subfamilies with varying degrees of interrelatedness. One subfamily is a small group of bacterial DNA:m(6)A MTases. The other three subfamilies are paralogous eukaryotic lineages, two of which have not been associated with MTase activity but include proteins having substantial regulatory effects. Multiple sequence alignments and structure prediction for members of all four subfamilies indicated a high probability that a consensus MTase fold domain is present. Significantly, this consensus fold shows the permuted topology characteristic of the b class of MTases, which to date has only been known to include DNA MTases.

  5. Genetic analysis of cancer in families.

    PubMed

    King, M C

    1990-01-01

    Cancer is genetic, in the sense that it is caused by DNA alterations at the cellular level. On the other hand, the most important risk factors for the common cancers are environmental: cigarette smoking, environmental pollution, occupational exposures, poor diet, and so on. These two observations are not in conflict: the DNA alterations that lead to cancer are very likely to be caused by environmental mutagens. It would be valuable to know exactly what genes are altered to cause a specific cancer, because the effects of these alterations might then be reversible before cancer has a chance to develop. A key to identifying these cancer genes may lie with rare families at extremely high risk of a specific cancer. Unlike most cancer patients, members of these families may inherit an alteration that confers increased susceptibility to cancer. In these rare instances, cancer is a genetic disease at the level of the family, as well as at the level of the cell. Therefore, in these families, genes predisposing to cancer can be mapped in the same way as genes for purely genetic diseases like sickle cell anaemia, cystic fibrosis, and Huntington's disease. The hypothesis that underlies the mapping of cancer genes in families is that the genes inherited in altered form in these rare families are the same genes that are altered in somatic cells of individuals without a remarkable family history of cancer. This hypothesis has proved correct for retinoblastoma. Genes responsible for other rare cancers have been mapped in families as well: neurofibromatosis, multiple endocrine neoplasia, Wilms' tumour, and colon cancer following familial adenomatous polyps, among others. Genes responsible for common cancers are also being defined by genetic analysis, most notably breast cancer and colon cancer. This review summarizes why, how, and what genetic analysis of families can reveal about human cancers.

  6. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins.

    PubMed

    Guénette, Suzanne; Strecker, Paul; Kins, Stefan

    2017-01-01

    Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.

  7. Meeting report - Arf and Rab family G proteins.

    PubMed

    Casanova, James E; Hsu, Victor W; Jackson, Catherine L; Kahn, Richard A; Roy, Craig R; Stow, Jennifer L; Wandinger-Ness, Angela; Sztul, Elizabeth

    2013-12-01

    A FASEB Summer Research Conference entitled 'Arf and Rab family G proteins' was held in July 2013 at Snowmass Village, Snowmass, Colorado. Arfs and Rabs are two families of GTPases that control membrane trafficking in eukaryotic cells, and increasing evidence indicates that their functions are tightly coordinated. Because many workers in this field have focused on only one family, this meeting was designed to integrate our understanding of the two families. The conference was organized by Elizabeth Sztul (University of Alabama, Birmingham, USA) and Jim Casanova (University of Virginia, Charlottesville, USA), and provided an opportunity for approximately 90 scientists to communicate their work and discuss future directions for the field. The talks highlighted the structural, functional and regulatory properties of Arf and Rab GTPases and the need to develop coordinated approaches to investigate them. Here, we present the major themes that emerged from the meeting.

  8. Three Members of the 6-cys Protein Family of Plasmodium Play a Role in Gamete Fertility

    PubMed Central

    Khan, Shahid M.; van Dooren, Maaike W.; Ramesar, Jai; Kaczanowski, Szymon; van Gemert, Geert-Jan; Kroeze, Hans; Stunnenberg, Hendrik G.; Eling, Wijnand M.; Sauerwein, Robert W.; Waters, Andrew P.; Janse, Chris J.

    2010-01-01

    The process of fertilization is critically dependent on the mutual recognition of gametes and in Plasmodium, the male gamete surface protein P48/45 is vital to this process. This protein belongs to a family of 10 structurally related proteins, the so called 6-cys family. To identify the role of additional members of this family in Plasmodium fertilisation, we performed genetic and functional analysis on the five members of the 6-cys family that are transcribed during the gametocyte stage of P. berghei. This analysis revealed that in addition to P48/45, two members (P230 and P47) also play an essential role in the process of parasite fertilization. Mating studies between parasites lacking P230, P48/45 or P47 demonstrate that P230, like P48/45, is a male fertility factor, consistent with the previous demonstration of a protein complex containing both P48/45 and P230. In contrast, disruption of P47 results in a strong reduction of female fertility, while males remain unaffected. Further analysis revealed that gametes of mutants lacking expression of p48/45 or p230 or p47 are unable to either recognise or attach to each other. Disruption of the paralog of p230, p230p, also specifically expressed in gametocytes, had no observable effect on fertilization. These results indicate that the P. berghei 6-cys family contains a number of proteins that are either male or female specific ligands that play an important role in gamete recognition and/or attachment. The implications of low levels of fertilisation that exist even in the absence of these proteins, indicating alternative pathways of fertilisation, as well as positive selection acting on these proteins, are discussed in the context of targeting these proteins as transmission blocking vaccine candidates. PMID:20386715

  9. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion

    PubMed Central

    Barbosa-Morais, Nuno L.; Carmo-Fonseca, Maria; Aparício, Samuel

    2006-01-01

    Although more than 200 human spliceosomal and splicing-associated proteins are known, the evolution of the splicing machinery has not been studied extensively. The recent near-complete sequencing and annotation of distant vertebrate and chordate genomes provides the opportunity for an exhaustive comparative analysis of splicing factors across eukaryotes. We describe here our semiautomated computational pipeline to identify and annotate splicing factors in representative species of eukaryotes. We focused on protein families whose role in splicing is confirmed by experimental evidence. We visually inspected 1894 proteins and manually curated 224 of them. Our analysis shows a general conservation of the core spliceosomal proteins across the eukaryotic lineage, contrasting with selective expansions of protein families known to play a role in the regulation of splicing, most notably of SR proteins in metazoans and of heterogeneous nuclear ribonucleoproteins (hnRNP) in vertebrates. We also observed vertebrate-specific expansion of the CLK and SRPK kinases (which phosphorylate SR proteins), and the CUG-BP/CELF family of splicing regulators. Furthermore, we report several intronless genes amongst splicing proteins in mammals, suggesting that retrotransposition contributed to the complexity of the mammalian splicing apparatus. PMID:16344558

  10. Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza.

    PubMed

    Saha, Jayita; Chatterjee, Chitrita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2014-04-01

    The over-expression of plant specific SnRK2 gene family members by hyperosmotic stress and some by abscisic acid is well established. In this report, we have analyzed the evolution of SnRK2 gene family in different plant lineages including green algae, moss, lycophyte, dicot and monocot. Our results provide some evidences to indicate that the natural selection pressure had considerable influence on cis-regulatory promoter region and coding region of SnRK2 members in Arabidopsis and Oryza independently through time. Observed degree of sequence/motif conservation amongst SnRK2 homolog in all the analyzed plant lineages strongly supported their inclusion as members of this family. The chromosomal distributions of duplicated SnRK2 members have also been analyzed in Arabidopsis and Oryza. Massively Parallel Signature Sequencing (MPSS) database derived expression data and the presence of abiotic stress related promoter elements within the 1 kb upstream promoter region of these SnRK2 family members further strengthen the observations of previous workers. Additionally, the phylogenetic relationships of SnRK2 have been studied in all plant lineages along with their respective exon-intron structural patterns. Our results indicate that the ancestral SnRK2 gene of land plants gradually evolved by duplication and diversification and modified itself through exon-intron loss events to survive under environmental stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A database of protein structure families with common folding motifs.

    PubMed

    Holm, L; Ouzounis, C; Sander, C; Tuparev, G; Vriend, G

    1992-12-01

    The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Ferritin family proteins and their use in bionanotechnology

    PubMed Central

    He, Didi; Marles-Wright, Jon

    2015-01-01

    Ferritin family proteins are found in all kingdoms of life and act to store iron within a protein cage and to protect the cell from oxidative damage caused by the Fenton reaction. The structural and biochemical features of the ferritins have been widely exploited in bionanotechnology applications: from the production of metal nanoparticles; as templates for semi-conductor production; and as scaffolds for vaccine design and drug delivery. In this review we first discuss the structural properties of the main ferritin family proteins, and describe how their organisation specifies their functions. Second, we describe materials science applications of ferritins that rely on their ability to sequester metal within their cavities. Finally, we explore the use of ferritin as a container for drug delivery and as a scaffold for the production of vaccines. PMID:25573765

  13. Molecular modeling of pathogenesis-related proteins of family 5.

    PubMed

    Thompson, Claudia E; Fernandes, Cláudia L; de Souza, Osmar N; Salzano, Francisco M; Bonatto, Sandro L; Freitas, Loreta B

    2006-01-01

    The family of pathogenesis-related (PR) 5 proteins have diverse functions, and some of them are classified as thaumatins, osmotins, and inhibitors of alpha-amylase or trypsin. Although the specific function of many PR5 in plants is unknown, they are involved in the acquired systemic resistance and response to biotic stress, causing the inhibition of hyphal growth and reduction of spore germination, probably by a membrane permeabilization mechanism or by interaction with pathogen receptors. We have constructed three-dimensional models of four proteins belonging to the Rosaceae and Fagaceae botanical families by using the technique of comparative molecular modelling by homology. There are four main structural differences between all the PR5, corresponding to regions with replacements of amino acids. Folding and the secondary structures are very similar for all of them. However, the isoelectric point and charge distributions differ for each protein.

  14. A family of human cdc2-related protein kinases.

    PubMed Central

    Meyerson, M; Enders, G H; Wu, C L; Su, L K; Gorka, C; Nelson, C; Harlow, E; Tsai, L H

    1992-01-01

    The p34cdc2 protein kinase is known to regulate important transitions in the eukaryotic cell cycle. We have identified 10 human protein kinases based on their structural relation to p34cdc2. Seven of these kinases are novel and the products of five share greater than 50% amino acid sequence identity with p34cdc2. The seven novel genes are broadly expressed in human cell lines and tissues with each displaying some cell type or tissue specificity. The cdk3 gene, like cdc2 and cdk2, can complement cdc28 mutants of Saccharomyces cerevisiae, suggesting that all three of these protein kinases can play roles in the regulation of the mammalian cell cycle. The identification of a large family of cdc2-related kinases opens the possibility of combinatorial regulation of the cell cycle together with the emerging large family of cyclins. Images PMID:1639063

  15. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  16. The APOBEC Protein Family: United by Structure, Divergent in Function.

    PubMed

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.

  17. IQGAPs in Cancer: A Family of Scaffold Proteins Underlying Tumorigenesis

    PubMed Central

    White, Colin D.; Brown, Matthew D.; Sacks, David B.

    2009-01-01

    The IQGAP family comprises three proteins in humans. The best characterized is IQGAP1, which participates in protein-protein interactions and integrates diverse signaling pathways. IQGAP2 and IQGAP3 harbor all the domains identified in IQGAP1, but their biological roles are poorly defined. Proteins that bind IQGAP1 include Cdc42 and Rac1, E-cadherin, β-catenin, calmodulin and components of the mitogen-activated protein kinase pathway, all of which are involved in cancer. Here, we summarize the biological functions of IQGAPs that may contribute to neoplasia. Additionally, we review published data which implicate IQGAPs in cancer and tumorigenesis. The cumulative evidence suggests IQGAP1 is an oncogene while IQGAP2 may be a tumor suppressor. PMID:19433088

  18. Ciliate pellicular proteome identifies novel protein families with characteristic repeat motifs that are common to alveolates.

    PubMed

    Gould, Sven B; Kraft, Lesleigh G K; van Dooren, Giel G; Goodman, Christopher D; Ford, Kristina L; Cassin, Andrew M; Bacic, Antony; McFadden, Geoffrey I; Waller, Ross F

    2011-03-01

    The pellicles of alveolates (ciliates, apicomplexans, and dinoflagellates) share a common organization, yet perform very divergent functions, including motility, host cell invasion, and armor. The alveolate pellicle consists of a system of flattened membrane sacs (alveoli, which are the defining feature of the group) below the plasma membrane that is supported by a membrane skeleton as well as a network of microtubules and other filamentous elements. We recently showed that a family of proteins, alveolins, are common and unique to this pellicular structure in alveolates. To identify additional proteins that contribute to this structure, a pellicle proteome study was conducted for the ciliate Tetrahymena thermophila. We found 1,173 proteins associated with this structure, 45% (529 proteins) of which represented novel proteins without matches to other functionally characterized proteins. Expression of four newly identified T. thermophila pellicular proteins as green fluorescent protein-fusion constructs confirmed pellicular location, and one new protein located in the oral apparatus. Bioinformatic analysis revealed that 21% of the putative pellicular proteins, predominantly the novel proteins, contained highly repetitive regions with strong amino acid biases for particular residues (K, E, Q, L, I, and V). When the T. thermophila novel proteins were compared with apicomplexan genomic data, 278 proteins with high sequence similarity were identified, suggesting that many of these putative pellicular components are shared between the alveolates. Of these shared proteins, 126 contained the distinctive repeat regions. Localization of two such proteins in Toxoplasma gondii confirmed their role in the pellicle and in doing so identified two new proteins of the apicomplexan invasive structure--the apical complex. Screening broadly for these repetitive domains in genomic data revealed large and actively evolving families of such proteins in alveolates, suggesting that these

  19. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    PubMed Central

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  20. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    PubMed

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further

  1. A novel family of plant nuclear envelope-associated proteins.

    PubMed

    Pawar, Vidya; Poulet, Axel; Détourné, Gwénaëlle; Tatout, Christophe; Vanrobays, Emmanuel; Evans, David E; Graumann, Katja

    2016-10-01

    This paper describes the characterisation of a new family of higher plant nuclear envelope-associated proteins (NEAPs) that interact with other proteins of the nuclear envelope. In the model plant Arabidopsis thaliana, the family consists of three genes expressed ubiquitously (AtNEAP1-3) and a pseudogene (AtNEAP4). NEAPs consist of extensive coiled-coil domains, followed by a nuclear localisation signal and a C-terminal predicted transmembrane domain. Domain deletion mutants confirm the presence of a functional nuclear localisation signal and transmembrane domain. AtNEAP proteins localise to the nuclear periphery as part of stable protein complexes, are able to form homo- and heteromers, and interact with the SUN domain proteins AtSUN1 and AtSUN2, involved in the linker of nucleoskeleton and cytoskeleton (LINC) complex. An A. thaliana cDNA library screen identified a putative transcription factor called AtbZIP18 as a novel interactor of AtNEAP1, which suggest a connection between NEAP and chromatin. An Atneap1 Atneap3 double-knockout mutant showed reduced root growth, and altered nuclear morphology and chromatin structure. Thus AtNEAPs are suggested as inner nuclear membrane-anchored coiled-coil proteins with roles in maintaining nuclear morphology and chromatin structure.

  2. The HMG-1 box protein family: classification and functional relationships.

    PubMed Central

    Baxevanis, A D; Landsman, D

    1995-01-01

    The abundant and highly-conserved nucleoproteins comprising the high mobility group-1/2 (HMG-1/2) family contains two homologous basic domains of about 75 amino acids. These basic domains, termed HMG-1 boxes, are highly structured and facilitate HMG-DNA interactions. Many proteins that regulate various cellular functions involving DNA binding and whose target DNA sequences share common structural characteristics have been identified as having an HMG-1 box; these proteins include the RNA polymerase I transcription factor UBF, the mammalian testis-determining factor SRY and the mitochondrial transcription factors ABF2 and mtTF1, among others. The sequences of 121 HMG-1 boxes have been compiled and aligned in accordance with thermodynamic results from homology model building (threading) experiments, basing the alignment on structure rather than by using traditional sequence homology methods. The classification of a representative subset of these proteins was then determined using standard least-squares distance methods. The proteins segregate into two groups, the first consisting of HMG-1/2 proteins and the second consisting of proteins containing the HMG-1 box but which are not canonical HMG proteins. The proteins in the second group further segregate based on their function, their ability to bind specific sequences of DNA, or their ability to recognize discrete non-B-DNA structures. The HMG-1 box provides an excellent example of how a specific protein motif, with slight alteration, can be used to recognize DNA in a variety of functional contexts. Images PMID:7784217

  3. Gene Network Analysis of Metallo Beta Lactamase Family Proteins Indicates the Role of Gene Partners in Antibiotic Resistance and Reveals Important Drug Targets.

    PubMed

    Parimelzaghan, Anitha; Anbarasu, Anand; Ramaiah, Sudha

    2016-06-01

    Metallo Beta (β) Lactamases (MBL) are metal dependent bacterial enzymes that hydrolyze the β-lactam antibiotics. In recent years, MBL have received considerable attention because it inactivates most of the β-lactam antibiotics. Increase in dissemination of MBL encoding antibiotic resistance genes in pathogenic bacteria often results in unsuccessful treatments. Gene interaction network of MBL provides a complete understanding on the molecular basis of MBL mediated antibiotic resistance. In our present study, we have constructed the MBL network of 37 proteins with 751 functional partners from pathogenic bacterial spp. We found 12 highly interconnecting clusters. Among the 37 MBL proteins considered in the present study, 22 MBL proteins are from B3 subclass, 14 are from B1 subclass and only one is from B2 subclass. Global topological parameters are used to calculate and compare the probability of interactions in MBL proteins. Our results indicate that the proteins associated within the network have a strong influence in antibiotic resistance mechanism. Interestingly, several drug targets are identified from the constructed network. We believe that our results would be helpful for researchers exploring MBL-mediated antibiotic resistant mechanisms.

  4. Nme protein family evolutionary history, a vertebrate perspective

    PubMed Central

    Desvignes, Thomas; Pontarotti, Pierre; Fauvel, Christian; Bobe, Julien

    2009-01-01

    Background The Nme family, previously known as Nm23 or NDPK, is involved in various molecular processes including tumor metastasis and some members of the family, but not all, exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in which some members have been extensively studied. In non-mammalian species, the Nme protein family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains thus incomplete and orthology relationships with mammalian counterparts were only partially characterized. The present study therefore aimed at characterizing the Nme gene repertoire in vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme gene family evolutionary history in vertebrates. Results In the present study, we present the evolutionary history of the Nme family in vertebrates and characterize the gene family repertoire for the first time in several non-mammalian species. Our observations show that vertebrate Nme genes can be separated in two evolutionary distinct groups. Nme1, Nme2, Nme3, and Nme4 belong to Group I while vertebrate Nme5, Nme6, Nme7, Nme8, and Nme9 belong to Group II. The position of Nme10 is in contrast more debatable due to its very specific evolutionary history. The present study clearly indicates that Nme5, Nme6, Nme7, and Nme8 originate from duplication events that occurred before the chordate radiation. In contrast, Nme genes of the Group I have a very different evolutionary history as our results suggest that they all arise from a common gene present in the chordate ancestor. In addition, expression patterns of all zebrafish nme transcripts were studied in a broad range of tissues by quantitative PCR and discussed in the light of the function of their mammalian counterparts. Conclusion This work offers an evolutionary framework that will pave the way for future studies on vertebrate Nme proteins and provides a unified vertebrate Nme

  5. Reviewing the current classification of inhibitor of growth family proteins

    PubMed Central

    Unoki, Motoko; Kumamoto, Kensuke; Takenoshita, Seiichi; Harris, Curtis C.

    2009-01-01

    Inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors for more than a decade. Recent emerging results using siRNA and knockout mice are expanding the previous understanding of this protein family. The results of ING1 knockout mouse experiments revealed that ING1 has a protective effect on apoptosis. Our recent results showed that ING2 is overexpressed in colorectal cancer, and induces colon cancer cell invasion through an MMP13-dependent pathway. Knockdown of ING2 by siRNA induces premature senescence in normal human fibroblast cells, and apoptosis or cell cycle arrest in various adherent cancer cells. Taken together, these results suggest that ING2 may also have roles in cancer progression and/or malignant transformation under some conditions. Additionally, knockdown of ING4 and ING5 by siRNA shows an inhibitory effect on the transition from G2/M to G1 phase and DNA replication, respectively, suggesting that these proteins may play roles during cell proliferation in some context. ING family proteins may play dual roles, similar to transforming growth factor-β, which has tumor suppressor-like functions in normal epithelium and also oncogenic functions in invasive metastatic cancers. In the present article, we briefly review ING history and propose a possible interpretation of discrepancies between past and recent data. PMID:19432890

  6. TIM-family proteins inhibit HIV-1 release

    PubMed Central

    Li, Minghua; Ablan, Sherimay D.; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S.; Rennert, Paul D.; Maury, Wendy; Johnson, Marc C.; Freed, Eric O.; Liu, Shan-Lu

    2014-01-01

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors. PMID:25136083

  7. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families.

    PubMed

    Igreja, Susana; Chahal, Harvinder S; King, Peter; Bolger, Graeme B; Srirangalingam, Umasuthan; Guasti, Leonardo; Chapple, J Paul; Trivellin, Giampaolo; Gueorguiev, Maria; Guegan, Katie; Stals, Karen; Khoo, Bernard; Kumar, Ajith V; Ellard, Sian; Grossman, Ashley B; Korbonits, Márta

    2010-08-01

    Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15-40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and beta-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6+/-11.2 years) than AIP mutation-negative patients (40.4+/-14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein-protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants.

  8. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    PubMed Central

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-01-01

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology. PMID:27185916

  9. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    SciTech Connect

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.

  10. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  11. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    SciTech Connect

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.

  12. Vaccinia Virus N1l Protein Resembles a B Cell Lymphoma-2 (Bcl-2) Family Protein

    SciTech Connect

    Aoyagi, M.; Zhai, D.; Jin, C.; Aleshin, A.E.; Stec, B.; Reed, J.C.; Liddington, R.C.; /Burnham Inst.

    2007-07-03

    Poxviruses encode immuno-modulatory proteins capable of subverting host defenses. The poxvirus vaccinia expresses a small 14-kDa protein, N1L, that is critical for virulence. We report the crystal structure of N1L, which reveals an unexpected but striking resemblance to host apoptotic regulators of the B cell lymphoma-2 (Bcl-2) family. Although N1L lacks detectable Bcl-2 homology (BH) motifs at the sequence level, we show that N1L binds with high affinity to the BH3 peptides of pro-apoptotic Bcl-2 family proteins in vitro, consistent with a role for N1L in modulating host antiviral defenses.

  13. ProML--the protein markup language for specification of protein sequences, structures and families.

    PubMed

    Hanisch, Daniel; Zimmer, Ralf; Lengauer, Thomas

    2002-01-01

    We propose a specification language ProML for protein sequences, structures, and families based on the open XML standard. The language allows for portable, system-independent, machine-parsable and human-readable representation of essential features of proteins. The language is of immediate use for several bioinformatics applications: we discuss clustering of proteins into families and the representation of the specific shared features of the respective clusters. Moreover, we use ProML for specification of data used in fold recognition bench-marks exploiting experimentally derived distance constraints.

  14. In silico modeling of the yeast protein and protein family interaction network

    NASA Astrophysics Data System (ADS)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.

  15. Comparative genomic and proteomic anatomy of Mycobacterium ubiquitous Esx family proteins: implications in pathogenicity and virulence.

    PubMed

    Deng, Wanyan; Xiang, Xiaohong; Xie, Jianping

    2014-04-01

    Secreted proteins are among the most important molecules involved in host-pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.

  16. Genetic heterogeneity and HOMOG analysis in British malignant hyperthermia families.

    PubMed Central

    Robinson, R; Curran, J L; Hall, W J; Halsall, P J; Hopkins, P M; Markham, A F; Stewart, A D; West, S P; Ellis, F R

    1998-01-01

    Malignant hyperthermia (MH) is an autosomal dominant genetic condition that presents in susceptible people undergoing general anaesthesia. The clinical disorder is a major cause of anaesthetic morbidity and mortality. The UK Malignant Hyperthermia Group has performed genetic linkage analysis on 20 large, well defined malignant hyperthermia families, using hypervariable markers on chromosome 19q13.1, including the candidate MH gene RYR1, the gene coding for the skeletal muscle ryanodine receptor protein. The results were analysed using LINKAGE to perform two point and multipoint lod scores, then HOMOG to calculate levels of heterogeneity. The results clearly showed genetic heterogeneity between MH families; nine of the families gave results entirely consistent with linkage to the region around RYR1 while the same region was clearly excluded in three families. In the remaining eight MHS families there were single recombinant events between RYR1 and MH susceptibility. HOMOG analysis was of little added benefit in determining the likelihood of linkage to RYR1 in these families. This confirmation of the presence of heterogeneity in the UK MH population, along with the possibility of the presence of two MH genes in some pedigrees, indicates that it would be premature and potentially dangerous to offer diagnosis of MH by DNA based methods at this time. PMID:9541102

  17. Cbln and C1q family proteins: new transneuronal cytokines.

    PubMed

    Yuzaki, M

    2008-06-01

    The C1q family is characterized by a C-terminal conserved global C1q domain, which is structurally very similar to the tumor necrosis factor homology domain. Although some C1q family members are expressed in the central nervous system, their functions have not been well characterized. Cbln1, a member of the Cbln subfamily of the C1q family, is predominantly expressed in cerebellar granule cells. Interestingly, Cbln1 was recently shown to play two unique roles at excitatory synapses formed between cerebellar granule cells and Purkinje cells: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytosis pathway. Since other Cbln subfamily members, Cbln2-Cbln4, are expressed in various regions of developing and mature brains, Cbln subfamily proteins may generally serve as a new class of transneuronal regulators of synapse development and synaptic plasticity in various brain regions.

  18. The Nck family of adapter proteins: regulators of actin cytoskeleton.

    PubMed

    Buday, László; Wunderlich, Livius; Tamás, Peter

    2002-09-01

    SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.

  19. Multilocus sequence analysis of the family Halomonadaceae.

    PubMed

    de la Haba, Rafael R; Márquez, M Carmen; Papke, R Thane; Ventosa, Antonio

    2012-03-01

    Multilocus sequence analysis (MLSA) protocols have been developed for species circumscription for many taxa. However, at present, no studies based on MLSA have been performed within any moderately halophilic bacterial group. To test the usefulness of MLSA with these kinds of micro-organisms, the family Halomonadaceae, which includes mainly halophilic bacteria, was chosen as a model. This family comprises ten genera with validly published names and 85 species of environmental, biotechnological and clinical interest. In some cases, the phylogenetic relationships between members of this family, based on 16S rRNA gene sequence comparisons, are not clear and a deep phylogenetic analysis using several housekeeping genes seemed appropriate. Here, MLSA was applied using the 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA genes for species of the family Halomonadaceae. Phylogenetic trees based on the individual and concatenated gene sequences revealed that the family Halomonadaceae formed a monophyletic group of micro-organisms within the order Oceanospirillales. With the exception of the genera Halomonas and Modicisalibacter, all other genera within this family were phylogenetically coherent. Five of the six studied genes (16S rRNA, 23S rRNA, gyrB, rpoD and secA) showed a consistent evolutionary history. However, the results obtained with the atpA gene were different; thus, this gene may not be considered useful as an individual gene phylogenetic marker within this family. The phylogenetic methods produced variable results, with those generated from the maximum-likelihood and neighbour-joining algorithms being more similar than those obtained by maximum-parsimony methods. Horizontal gene transfer (HGT) plays an important evolutionary role in the family Halomonadaceae; however, the impact of recombination events in the phylogenetic analysis was minimized by concatenating the six loci, which agreed with the current taxonomic scheme for this family. Finally, the findings of

  20. Investigating Structure and Dynamics of Atg8 Family Proteins.

    PubMed

    Weiergräber, O H; Schwarten, M; Strodel, B; Willbold, D

    2017-01-01

    Atg8 family members were the first autophagy-related proteins to be investigated in structural detail and continue to be among the best-understood molecules of the pathway. In this review, we will first provide a concise outline of the major methods that are being applied for structural characterization of these proteins and the complexes they are involved in. This includes a discussion of the strengths and limitations associated with each method, along with guidelines for successful adoption to a specific problem. Subsequently, we will present examples illustrating the application of these techniques, with a particular focus on the complementarity of information they provide. © 2017 Elsevier Inc. All rights reserved.

  1. Argonaute Family Protein Expression in Normal Tissue and Cancer Entities

    PubMed Central

    Bruckmann, Astrid; Hauptmann, Judith; Deutzmann, Rainer; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease. PMID:27518285

  2. Comparative Study on Sequence-Structure-Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family.

    PubMed

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor.

  3. Comparative Study on Sequence–Structure–Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family

    PubMed Central

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor. PMID:25374450

  4. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  5. Molecular evolution of the ependymin protein family: a necessary update

    PubMed Central

    Suárez-Castillo, Edna C; García-Arrarás, José E

    2007-01-01

    Background Ependymin (Epd), the predominant protein in the cerebrospinal fluid of teleost fishes, was originally associated with neuroplasticity and regeneration. Ependymin-related proteins (Epdrs) have been identified in other vertebrates, including amphibians and mammals. Recently, we reported the identification and characterization of an Epdr in echinoderms, showing that there are ependymin family members in non-vertebrate deuterostomes. We have now explored multiple databases to find Epdrs in different metazoan species. Using these sequences we have performed genome mapping, molecular phylogenetic analyses using Maximum Likelihood and Bayesian methods, and statistical tests of tree topologies, to ascertain the phylogenetic relationship among ependymin proteins. Results Our results demonstrate that ependymin genes are also present in protostomes. In addition, as a result of the putative fish-specific genome duplication event and posterior divergence, the ependymin family can be divided into four groups according to their amino acid composition and branching pattern in the gene tree: 1) a brain-specific group of ependymin sequences that is unique to teleost fishes and encompasses the originally described ependymin; 2) a group expressed in non-brain tissue in fishes; 3) a group expressed in several tissues that appears to be deuterostome-specific, and 4) a group found in invertebrate deuterostomes and protostomes, with a broad pattern of expression and that probably represents the evolutionary origin of the ependymins. Using codon-substitution models to statistically assess the selective pressures acting over the ependymin protein family, we found evidence of episodic positive Darwinian selection and relaxed selective constraints in each one of the postduplication branches of the gene tree. However, purifying selection (with among-site variability) appears to be the main influence on the evolution of each subgroup within the family. Functional divergence among the

  6. Characterization of Aryl Hydrocarbon Receptor Interacting Protein (AIP) Mutations in Familial Isolated Pituitary Adenoma Families

    PubMed Central

    Igreja, Susana; Chahal, Harvinder S; King, Peter; Bolger, Graeme B; Srirangalingam, Umasuthan; Guasti, Leonardo; Chapple, J Paul; Trivellin, Giampaolo; Gueorguiev, Maria; Guegan, Katie; Stals, Karen; Khoo, Bernard; Kumar, Ajith V; Ellard, Sian; Grossman, Ashley B; Korbonits, Márta

    2010-01-01

    Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation-negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010. © 2010 Wiley-Liss, Inc. PMID:20506337

  7. Family and Consumer Studies 13: Fashion Analysis.

    ERIC Educational Resources Information Center

    Carleo, A. Susan

    A description is provided of Family and Consumer Studies 13: Fashion Analysis, an introductory course on the basic principles of fashion and clothing, giving special consideration to the impact of societal, cultural, religious, and psychological factors on clothing choices. First, general information is provided on the course, its place in the…

  8. Family and Consumer Studies 13: Fashion Analysis.

    ERIC Educational Resources Information Center

    Carleo, A. Susan

    A description is provided of Family and Consumer Studies 13: Fashion Analysis, an introductory course on the basic principles of fashion and clothing, giving special consideration to the impact of societal, cultural, religious, and psychological factors on clothing choices. First, general information is provided on the course, its place in the…

  9. Secondary Data Analysis in Family Research

    ERIC Educational Resources Information Center

    Hofferth, Sandra L.

    2005-01-01

    This article first provides an overview of the part that secondary data analysis plays in the field of family studies in the early 21st century. It addresses changes over time in the use of existing omnibus data sets and discusses their advantages and disadvantages. The second part of the article focuses on the elements that make a study a…

  10. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer

    PubMed Central

    Rezvani, Khosrow

    2016-01-01

    The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth. PMID:27754413

  11. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  12. IQGAP1 Interaction with RHO Family Proteins Revisited

    PubMed Central

    Nouri, Kazem; Fansa, Eyad K.; Amin, Ehsan; Dvorsky, Radovan; Gremer, Lothar; Willbold, Dieter; Schmitt, Lutz; Timson, David J.; Ahmadian, Mohammad R.

    2016-01-01

    IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity, and transmigration. The RHO family proteins CDC42 and RAC1 have been shown to mainly interact with the GAP-related domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underlie a multiple-step binding mechanism: (i) a high affinity, GTP-dependent binding of RGCT to the switch regions of CDC42 or RAC1 and (ii) a very low affinity binding of GRD and a C terminus adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses. PMID:27815503

  13. Social Movements as Policy Entrepreneurs: The Family Protection Act and Family Impact Analysis.

    ERIC Educational Resources Information Center

    Boles, Janet K.

    Both the Family Impact Analysis and the Family Protection Act are perceived by governmental decision makers as pseudo-agenda items; thus, neither issue is being actively or seriously considered. The Family Impact Analysis and the concept of a Family Impact Statement (inspired but not modeled after the environmental impact statement) received an…

  14. Vav Family Proteins Couple to Diverse Cell Surface Receptors

    PubMed Central

    Moores, Sheri L.; Selfors, Laura M.; Fredericks, Jessica; Breit, Timo; Fujikawa, Keiko; Alt, Frederick W.; Brugge, Joan S.; Swat, Wojciech

    2000-01-01

    Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response to activation of multiple cell surface receptors. However, it is not known whether the recently identified isoforms Vav2 and Vav3, which are broadly expressed, can couple with similar classes of receptors, nor is it known whether all Vav isoforms possess identical functional activities. We expressed Vav1, Vav2, and Vav3 at equivalent levels to directly compare the responses of the Vav proteins to receptor activation. Although each Vav isoform was tyrosine phosphorylated upon activation of representative receptor tyrosine kinases, integrin, and lymphocyte antigen receptors, we found unique aspects of Vav protein coupling in each receptor pathway. Each Vav protein coprecipitated with activated epidermal growth factor and platelet-derived growth factor (PDGF) receptors, and multiple phosphorylated tyrosine residues on the PDGF receptor were able to mediate Vav2 tyrosine phosphorylation. Integrin-induced tyrosine phosphorylation of Vav proteins was not detected in nonhematopoietic cells unless the protein tyrosine kinase Syk was also expressed, suggesting that integrin activation of Vav proteins may be restricted to cell types that express particular tyrosine kinases. In addition, we found that Vav1, but not Vav2 or Vav3, can efficiently cooperate with T-cell receptor signaling to enhance NFAT-dependent transcription, while Vav1 and Vav3, but not Vav2, can enhance NFκB-dependent transcription. Thus, although each Vav isoform can respond to similar cell surface receptors, there are isoform-specific differences in their activation of downstream signaling pathways. PMID:10938113

  15. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  16. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical

  17. Gambogic acid is an antagonist of anti-apoptotic Bcl-2-family proteins

    PubMed Central

    Zhai, Dayong; Jin, Chaofang; Shiau, Chung-wai; Kitada, Shinichi; Satterthwait, Arnold C; Reed, John C.

    2008-01-01

    The natural product Gambogic acid (GA) has been reported to have cytotoxic activity against tumor cells in culture, and was identified as an active compound in a cell-based high-throughput screening (HTS) assay for activators of caspases, proteases involved in apoptosis. Using the anti-apoptotic Bcl-2-family protein, Bfl-1, as a target for screening of a library of natural products, we identified GA as a competitive inhibitor that displaced BH3 peptides from Bfl-1 in a fluorescent polarization assay (FPA). Analysis of competition for BH3 peptide binding revealed that GA inhibits all 6 human Bcl-2-family proteins to various extents, with Mcl-1 and Bcl-B the most potently inhibited (concentrations required for 50% inhibition [IC50] <1 μM). Competition for BH3 peptide binding was also confirmed using a time-resolved fluorescence resonance energy transfer (TR-FRET) assay. GA functionally inhibited the anti-apoptotic Bcl-2-family proteins, as demonstrated by experiments using isolated mitochondria in which recombinant purified Bcl-2-family proteins suppress SMAC release in vitro, showing that GA neutralizes their suppressive effects on mitochondria in a concentration-dependent manner. GA killed tumor cell lines via an apoptotic mechanism, whereas analogs of GA with greatly reduced potency at BH3 peptide displacement showed little or no cytotoxic activity. However, GA retained cytotoxic activity against bax−/− bak−/− cells in which anti-apoptotic Bcl-2-family proteins lack a cytoprotective phenotype, implying that GA also has additional targets that contribute to its cytotoxic mechanism. Altogether, the findings suggest that suppression of anti-apoptotic Bcl-2-family proteins may be among the cytotoxic mechanisms by which GA kills tumor cells. PMID:18566235

  18. Linkage analysis in familial Angelman syndrome

    SciTech Connect

    Wagstaff, J. ); Shugart, Y.Y. ); Lalande, M. Howard Hughes Medical Institute, Boston, MA )

    1993-07-01

    Familial Angelman syndrome (AS) can result from mutations in chromosome 15q11q13 that, when transmitted from father to child, result in no phenotypic abnormality but, when transmitted from mother to child, cause AS. These mutations therefore behave neither as dominant nor as recessive mutations but, rather, show an imprinted mode of inheritance. The authors have analyzed two sibling pairs with AS and a larger family with four AS offspring of three sisters with several recently described microsatellite polymorphisms in the AS region. AS siblings inherited the same maternal alleles at the GABRB3 and GABRA5 loci, and the unaffected siblings of AS individuals inherited the other maternal alleles at these loci. In one of the AS sibling pairs, analysis of a recombination event indicates that the mutation responsible for AS is distal to locus D15S63. This result is consistent with a previously described imprinted submicroscopic deletion causing AS, a deletion that includes loci D15S10, D15S113, and GABRB3, all distal to D15S63. The analysis of the larger AS family provides the first clear demonstration of a new mutation in nondeletion AS. Analysis of linkage of AS to GABRB3 in these three families, on the assumption of imprinted inheritance (i.e., penetrance of an AS mutation is 1 if transmitted maternally and is 0 if transmitted paternally), indicates a maximum lod score of 3.52 at 6 = 0. 34 refs., 4 figs., 1 tab.

  19. Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins

    PubMed Central

    Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick

    2010-01-01

    Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814

  20. Avidin related protein 2 shows unique structural and functional features among the avidin protein family

    PubMed Central

    Hytönen, Vesa P; Määttä, Juha AE; Kidron, Heidi; Halling, Katrin K; Hörhä, Jarno; Kulomaa, Tuomas; Nyholm, Thomas KM; Johnson, Mark S; Salminen, Tiina A; Kulomaa, Markku S; Airenne, Tomi T

    2005-01-01

    Background The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin. Results In the present study, we have employed multiple biochemical methods to better understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive dissociation analysis and differential scanning calorimetry were used to compare and study the biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal stability of AVR4. Conclusion Altogether, this study broadens our understanding of the structural features determining the ligand-binding affinities and stability as well as the molecular evolution within the protein family. This novel information can be applied to further develop and improve the tools already

  1. Evolutionary conservation and diversification of Rh family genes and proteins

    PubMed Central

    Huang, Cheng-Han; Peng, Jianbin

    2005-01-01

    Rhesus (Rh) proteins were first identified in human erythroid cells and recently in other tissues. Like ammonia transporter (Amt) proteins, their only homologues, Rh proteins have the 12 transmembrane-spanning segments characteristic of transporters. Many think Rh and Amt proteins transport the same substrate, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{3}/{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document}, whereas others think that Rh proteins transport CO2 and Amt proteins NH3. In the latter view, Rh and Amt are different biological gas channels. To reconstruct the phylogeny of the Rh family and study its coexistence with and relationship to Amt in depth, we analyzed 111 Rh genes and 260 Amt genes. Although Rh and Amt are found together in organisms as diverse as unicellular eukaryotes and sea squirts, Rh genes apparently arose later, because they are rare in prokaryotes. However, Rh genes are prominent in vertebrates, in which Amt genes disappear. In organisms with both types of genes, Rh had apparently diverged away from Amt rapidly and then evolved slowly over a long period. Functionally divergent amino acid sites are clustered in transmembrane segments and around the gas-conducting lumen recently identified in Escherichia coli AmtB, in agreement with Rh proteins having new substrate specificity. Despite gene duplications and mutations, the Rh paralogous groups all have apparently been subject to strong purifying selection indicating functional conservation. Genes encoding the classical Rh proteins in mammalian red cells show higher nucleotide substitution rates at nonsynonymous codon positions than other Rh genes, a finding that suggests a possible role for these proteins in red cell morphogenetic evolution. PMID:16227429

  2. Evolutionary conservation and diversification of Rh family genes and proteins.

    PubMed

    Huang, Cheng-Han; Peng, Jianbin

    2005-10-25

    Rhesus (Rh) proteins were first identified in human erythroid cells and recently in other tissues. Like ammonia transporter (Amt) proteins, their only homologues, Rh proteins have the 12 transmembrane-spanning segments characteristic of transporters. Many think Rh and Amt proteins transport the same substrate, NH(3)/NH(4)(+), whereas others think that Rh proteins transport CO(2) and Amt proteins NH(3). In the latter view, Rh and Amt are different biological gas channels. To reconstruct the phylogeny of the Rh family and study its coexistence with and relationship to Amt in depth, we analyzed 111 Rh genes and 260 Amt genes. Although Rh and Amt are found together in organisms as diverse as unicellular eukaryotes and sea squirts, Rh genes apparently arose later, because they are rare in prokaryotes. However, Rh genes are prominent in vertebrates, in which Amt genes disappear. In organisms with both types of genes, Rh had apparently diverged away from Amt rapidly and then evolved slowly over a long period. Functionally divergent amino acid sites are clustered in transmembrane segments and around the gas-conducting lumen recently identified in Escherichia coli AmtB, in agreement with Rh proteins having new substrate specificity. Despite gene duplications and mutations, the Rh paralogous groups all have apparently been subject to strong purifying selection indicating functional conservation. Genes encoding the classical Rh proteins in mammalian red cells show higher nucleotide substitution rates at nonsynonymous codon positions than other Rh genes, a finding that suggests a possible role for these proteins in red cell morphogenetic evolution.

  3. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    PubMed Central

    Nalbant, Demet; Youn, Hyewon; Nalbant, S Isil; Sharma, Savitha; Cobos, Everardo; Beale, Elmus G; Du, Yang; Williams, Simon C

    2005-01-01

    Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20) with three members (FAM20A, FAM20B and FAM20C) in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c) were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating differentiation and function of

  4. Family Impact Analysis: Application to Child Custody Determination

    ERIC Educational Resources Information Center

    Druckman, Joan M.; Rhodes, Clifton A.

    1977-01-01

    Family Impact Analysis, a framework for assessing the impact of legal and social policy on the family, is described as an objective approach of investigating the implementation of family legal policy. (Author)

  5. Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the α-crystallin family

    PubMed Central

    Hilario, Eduardo; Teixeira, Elaine Cristina; Pedroso, Gisele Audrei; Bertolini, Maria Célia; Medrano, Francisco Javier

    2006-01-01

    The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein (sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 Å. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress. PMID:16682772

  6. Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the alpha-crystallin family.

    PubMed

    Hilario, Eduardo; Teixeira, Elaine Cristina; Pedroso, Gisele Audrei; Bertolini, Maria Célia; Medrano, Francisco Javier

    2006-05-01

    The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein (sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 angstroms resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 angstroms. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.

  7. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER

    PubMed Central

    Noda, Yoichi; Hara, Takehiro; Ishii, Minako; Yoda, Koji

    2014-01-01

    ABSTRACT The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases. PMID:24585773

  8. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition

    PubMed Central

    Kinomoto, Masanobu; Kanno, Takayuki; Shimura, Mari; Ishizaka, Yukihito; Kojima, Asato; Kurata, Takeshi; Sata, Tetsutaro; Tokunaga, Kenzo

    2007-01-01

    Approximately 17% of the human genome is comprised of long interspersed nuclear element 1 (LINE-1, L1) non-LTR retrotransposons. L1 retrotransposition is known to be the cause of several genetic diseases, such as hemophilia A, Duchene muscular dystrophy, and so on. The L1 retroelements are also able to cause colon cancer, suggesting that L1 transposition could occur not only in germ cells, but also in somatic cells if innate immunity would not function appropriately. The mechanisms of L1 transposition restriction in the normal cells, however, are not fully defined. We here show that antiretroviral innate proteins, human APOBEC3 (hA3) family members, from hA3A to hA3H, differentially reduce the level of L1 retrotransposition that does not correlate either with antiviral activity against Vif-deficient HIV-1 and murine leukemia virus, or with patterns of subcellular localization. Importantly, hA3G protein inhibits L1 retrotransposition, in striking contrast to the recent reports. Inhibitory effect of hA3 family members on L1 transposition might not be due to deaminase activity, but due to novel mechanism(s). Thus, we conclude that all hA3 proteins act to differentially suppress uncontrolled transposition of L1 elements. PMID:17439959

  9. [The importance of ADAM family proteins in malignant tumors].

    PubMed

    Walkiewicz, Katarzyna; Gętek, Monika; Muc-Wierzgoń, Małgorzata; Kokot, Teresa; Nowakowska-Zajdel, Ewa

    2016-02-11

    Increasing numbers of reports about the role of adamalysins (ADAM) in malignant tumors are being published. To date, more than 30 representatives of this group, out of which about 20 occur in humans, have been described. The ADAM family is a homogeneous group of proteins which regulate, from the stage of embryogenesis, a series of processes such as cell migration, adhesion, and cell fusion. Half of them have proteolytic activity and are involved in the degradation of the extracellular matrix and the disintegration of certain protein complexes, thereby regulating the bioavailability of various growth factors. Many of these functions have a direct role in the processes of carcinogenesis and promoting the growth of tumor, which affect some signaling pathways, including those related to insulin-like growth factors (IGF1, IGF2), vascular growth factor (VEGF), tumor necrosis factor α (TNFα) and the EGFR/HER pathway. Another branch of studies is the evaluation of the possibility of using members of ADAM family proteins in the diagnosis, especially in breast, colon and non- small cell lung cancer. The detection of concentrations of adamalysin in serum, urine and pleural aspirates might contribute to the development of methods of early diagnosis of cancer and monitoring the therapy. However, both the role of adamalysins in the development and progression of tumors and their importance as a diagnostic and predictive further research still need to be checked on large groups of patients.

  10. Trends in genome dynamics among major orders of insects revealed through variations in protein families.

    PubMed

    Rappoport, Nadav; Linial, Michal

    2015-08-07

    Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging. We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies). An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated

  11. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  12. Genetic Association Analysis of ATP Binding Cassette Protein Family Reveals a Novel Association of ABCB1 Genetic Variants with Epilepsy Risk, but Not with Drug-Resistance

    PubMed Central

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with

  13. A phylogenetic analysis of the family Dermatophilaceae.

    PubMed

    Stackebrandt, E; Kroppenstedt, R M; Fowler, V J

    1983-06-01

    The comparative analysis of the 16S ribosomal ribonucleic acid (rRNA) of Geodermatophilus obscurus DSM 43060 and Dermatophilus congolensis DSM 43037 revealed that these members of the family Dermatophilaceae were only remotely related. While G. obscurus represented an individual and separate line of descent within the phylogenetically defined order Actinomycetales, D. congolensis was closely related to representatives of Arthrobacter, Micrococcus, Cellulomonas, Brevibacterium, Promicromonospora and Microbacterium.

  14. Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the α-crystallin family

    SciTech Connect

    Hilario, Eduardo; Teixeira, Elaine Cristina; Pedroso, Gisele Audrei; Bertolini, Maria Célia; Medrano, Francisco Javier

    2006-05-01

    XAC1151, a small heat-shock protein from X. axonopodis pv. citri belonging to the α-crystallin family, was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein (sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 Å. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.

  15. Expression Pattern and Subcellular Localization of the Ovate Protein Family in Rice

    PubMed Central

    Yu, Hui; Jiang, Wenzhu; Liu, Qing; Zhang, Hui; Piao, Mingxin; Chen, Zhengdao; Bian, Mingdi

    2015-01-01

    The Arabidopsis ovate family proteins (AtOFPs) have been shown to function as transcriptional repressors and regulate multiple aspects of plant growth and development. There are 31 genes that encode the full-length OVATE-domain containing proteins in the rice genome. In this study, the gene structure analysis revealed that OsOFPs are intron poor. Phylogenetic analysis suggested that OVATE proteins from rice, Arabidopsis and tomato can be divided into 4 groups (I–IV). Real-time quantitative polymerase chain reaction (RT-qPCR) analysis identified OsOFPs with different tissue-specific expression patterns at all stages of development in the rice plant. Interestingly, nearly half of the total number of OsOFP family was more highly expressed during the seed developmental stage. In addition, seed developmental cis-elements were found in the promoter region of the OsOFPs. Subcellular localization analysis revealed that YFP-OsOFP fusion proteins predominantly localized in the nucleus. Our results suggest that OsOFPs may act as regulatory proteins and play pivotal roles in the growth and development of rice. PMID:25760462

  16. Quantification of protein copy number in single mitochondria: The Bcl-2 family proteins.

    PubMed

    Chen, Chaoxiang; Zhang, Xiang; Zhang, Shuyue; Zhu, Shaobin; Xu, Jingyi; Zheng, Yan; Han, Jinyan; Zeng, Jin-Zhang; Yan, Xiaomei

    2015-12-15

    Bcl-2 family proteins, represented by antiapoptotic protein Bcl-2 and proapoptotic protein Bax, are key regulators of mitochondria-mediated apoptosis pathway. To build a quantitative model of how Bcl-2 family protein interactions control mitochondrial outer membrane permeabilization and subsequent cytochrome c release, it is essential to know the number of proteins in individual mitochondria. Here, we report an effective method to quantify the copy number and distribution of proteins in single mitochondria via immunofluorescent labeling and sensitive detection by a laboratory-built high sensitivity flow cytometer (HSFCM). Mitochondria isolated from HeLa cells were stained with Alexa Fluor 488 (AF488)-labeled monoclonal antibodies specifically targeting Bcl-2 or Bax and with nucleic acid dye. A series of fluorescent nanospheres with fluorescence intensity calibrated in the unit of molecules of equivalent soluble fluorochrome (MESF)-AF488 were used to construct a calibration curve for converting the immunofluorescence of a single mitochondrion to the number of antibodies bound to it and then to the number of proteins per mitochondrion. Under the normal condition, the measured mean copy numbers were 1300 and 220 per mitochondrion for Bcl-2 and Bax, respectively. A significant variation in protein copy number was identified, which ranged from 130 to 6000 (2.5-97.5%) for Bcl-2 and from 65 to 700 (2.5-97.5%) for Bax, respectively. We observed an approximately 4.4 fold increase of Bax copy number per mitochondrion upon 9h of apoptosis stimulation while the abundance of Bcl-2 remained almost unchanged. To the best of our knowledge, this is the first report of Bcl-2 family protein copy number and variance in single mitochondria. Collectively, we demonstrate that the HSFCM-based immunoassay provides a rapid and sensitive method for determining protein copy number distribution in single mitochondria.

  17. Classification epitopes in groups based on their protein family

    PubMed Central

    2015-01-01

    Background The humoral immune system response is based on the interaction between antibodies and antigens for the clearance of pathogens and foreign molecules. The interaction between these proteins occurs at specific positions known as antigenic determinants or B-cell epitopes. The experimental identification of epitopes is costly and time consuming. Therefore the use of in silico methods, to help discover new epitopes, is an appealing alternative due the importance of biomedical applications such as vaccine design, disease diagnostic, anti-venoms and immune-therapeutics. However, the performance of predictions is not optimal been around 70% of accuracy. Further research could increase our understanding of the biochemical and structural properties that characterize a B-cell epitope. Results We investigated the possibility of linear epitopes from the same protein family to share common properties. This hypothesis led us to analyze physico-chemical (PCP) and predicted secondary structure (PSS) features of a curated dataset of epitope sequences available in the literature belonging to two different groups of antigens (metalloproteinases and neurotoxins). We discovered statistically significant parameters with data mining techniques which allow us to distinguish neurotoxin from metalloproteinase and these two from random sequences. After a five cross fold validation we found that PCP based models obtained area under the curve values (AUC) and accuracy above 0.9 for regression, decision tree and support vector machine. Conclusions We demonstrated that antigen's family can be inferred from properties within a single group of linear epitopes (metalloproteinases or neurotoxins). Also we discovered the characteristics that represent these two epitope groups including their similarities and differences with random peptides and their respective amino acid sequence. These findings open new perspectives to improve epitope prediction by considering the specific antigen

  18. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes.

    PubMed

    Boriack-Sjodin, P Ann; Swinger, Kerren K

    2016-03-22

    Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.

  19. The Classical Arabinogalactan Protein Gene Family of Arabidopsis

    PubMed Central

    Schultz, Carolyn J.; Johnson, Kim L.; Currie, Graeme; Bacic, Antony

    2000-01-01

    Arabinogalactan proteins (AGPs) are extracellular proteoglycans implicated in plant growth and development. We searched for classical AGPs in Arabidopsis by identifying expressed sequence tags based on the conserved domain structure of the predicted protein backbone. To confirm that these genes encoded bona fide AGPs, we purified native AGPs and then deglycosylated and deblocked them for N-terminal protein sequencing. In total, we identified 15 genes encoding the protein backbones of classical AGPs, including genes for AG peptides—AGPs with very short backbones (10 to 13 amino acid residues). Seven of the AGPs were verified as AGPs by protein sequencing. A gene encoding a putative cell adhesion molecule with AGP-like domains was also identified. This work provides a firm foundation for beginning functional analysis by using a genetic approach. PMID:11006345

  20. Survival in families with hereditary protein C deficiency, 1820 to 1993.

    PubMed Central

    Allaart, C. F.; Rosendaal, F. R.; Noteboom, W. M.; Vandenbroucke, J. P.; Briët, E.

    1995-01-01

    OBJECTIVES--To establish the survival of individuals heterozygous for hereditary protein C deficiency, who have an increased risk of venous thrombotic events, and to compare it with the survival of the general population. DESIGN--Retrospective study in pedigrees of 23 families with hereditary protein C deficiency for period 1820 and 1993. SETTING--23 completed family trees of 24 probands from various parts of the Netherlands with symptoms of protein C deficiency. SUBJECTS--All 736 members of the 23 families with a 50% or 100% probability of being (or having been) heterozygous for the genetic defect on the basis of DNA analysis or their place in the pedigrees, following mendelian rules. MAIN OUTCOME MEASURES--Observed mortality compared with the mortality of the general Dutch population; the standardised mortality ratio was calculated by dividing the observed mortality by the expected mortality. RESULTS--No excess mortality was found in the 206 proved heterozygous individuals and "obligatory transmitters" (those who have definitely passed on the deficiency) (standardised mortality ratio 0.95 (95% confidence interval 0.5 to 1.2)) or in the 530 family members with a 50% genetic probability of heterozygosity (1.10 (0.9 to 1.3)). CONCLUSION--Heterozygous individuals with hereditary protein C deficiency type I have normal survival compared with the general population. Prophylactic anticoagulant treatment may prevent thrombotic events in heterozygous individuals but may not be expected to improve their survival. PMID:7580547

  1. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores.

    PubMed

    Bickel, Perry E; Tansey, John T; Welte, Michael A

    2009-06-01

    The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.

  2. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores

    PubMed Central

    Bickel, Perry E.; Tansey, John T.; Welte, Michael A.

    2009-01-01

    Summary The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kiloDaltons (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms. PMID:19375517

  3. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    SciTech Connect

    Wang, Shucai; Chang, Ying; Guo, Jianjun; Zeng, Qingning; Ellis, Brian; Chen, Jay

    2011-01-01

    BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  4. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    PubMed Central

    Guo, Jianjun; Zeng, Qingning; Ellis, Brian E.; Chen, Jin-Gui

    2011-01-01

    Background The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. Methodology/Principal Findings We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. Conclusions/Significance Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  5. Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development.

    PubMed

    Wang, Shucai; Chang, Ying; Guo, Jianjun; Zeng, Qingning; Ellis, Brian E; Chen, Jin-Gui

    2011-01-01

    The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed

  6. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family

    PubMed Central

    Bevans, Carville G.; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-01-01

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant α-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades. PMID:26230708

  7. Sparse Exponential Family Principal Component Analysis.

    PubMed

    Lu, Meng; Huang, Jianhua Z; Qian, Xiaoning

    2016-12-01

    We propose a Sparse exponential family Principal Component Analysis (SePCA) method suitable for any type of data following exponential family distributions, to achieve simultaneous dimension reduction and variable selection for better interpretation of the results. Because of the generality of exponential family distributions, the method can be applied to a wide range of applications, in particular when analyzing high dimensional next-generation sequencing data and genetic mutation data in genomics. The use of sparsity-inducing penalty helps produce sparse principal component loading vectors such that the principal components can focus on informative variables. By using an equivalent dual form of the formulated optimization problem for SePCA, we derive optimal solutions with efficient iterative closed-form updating rules. The results from both simulation experiments and real-world applications have demonstrated the superiority of our SePCA in reconstruction accuracy and computational efficiency over traditional exponential family PCA (ePCA), the existing Sparse PCA (SPCA) and Sparse Logistic PCA (SLPCA) algorithms.

  8. Targeting human SET1/MLL family of proteins

    PubMed Central

    Blazer, Levi; Eram, Mohammad S.; Barsyte‐Lovejoy, Dalia; Arrowsmith, Cheryl H.; Hajian, Taraneh

    2017-01-01

    Abstract The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription and key mediators of normal development and disease. Here, we summarize the detailed characterization of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5, ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A, and SET1B trimeric, tetrameric, and pentameric complexes to elaborate on substrate specificities and compare our findings with what has been reported before. We also review exciting recent work identifying potent inhibitors of oncogenic MLL1 function through disruption of protein–protein interactions within the MLL1 complex. PMID:28160335

  9. Palmitoylation of POTE family proteins for plasma membrane targeting

    SciTech Connect

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-11-23

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane.

  10. A comparative protein function analysis databaseof different Leishmania strains

    PubMed Central

    Dikhit, Manas Ranjan; Nathasharma, Yangya Prasad; Patel, Lelin; Rana, Sindhu Prava; Sahoo, Ganesh Chandra; Das, Pradeep

    2011-01-01

    A complete understanding of different protein functional families and template information opens new avenues for novel drug development. Protein identification and analysis software performs a central role in the investigation of proteins and leads to the development of refined database for description of proteins of different Leishmania strains. There are certain databases for different strains that lack template information and functional family annotation. Rajendra Memorial Research Institute of Medical Sciences (RMRIMS) has developed a web-based unique database to provide information about functional families of different proteins and its template information in different Leishmania species. Based on the template information users can model the tertiary structure of protein. The database facilitates significant relationship between template information and possible protein functional families assigned to different proteins by SVMProt. This database is designed to provide comprehensive descriptions of certain important proteins found in four different species of Leishmania i.e. L. donovani, L. infantum, L. major and L. braziliensis. A specific characterization information table provides information related to species and specific functional families. This database aims to be a resource for scientists working on proteomics. The database is freely available at http://biomedinformri.org/calp/. PMID:21464840

  11. The aquaporin family of water channel proteins in clinical medicine.

    PubMed

    Lee, M D; King, L S; Agre, P

    1997-05-01

    The aquaporins are a family of membrane channel proteins that serve as selective pores through which water crosses the plasma membranes of many human tissues and cell types. The sites where aquaporins are expressed implicate these proteins in renal water reabsorption, cerebrospinal fluid secretion and reabsorption, generation of pulmonary secretions, aqueous humor secretion and reabsorption, lacrimation, and multiple other physiologic processes. Determination of the aquaporin gene sequences and their chromosomal locations has provided insight into the structure and pathophysiologic roles of these proteins, and primary and secondary involvement of aquaporins is becoming apparent in diverse clinical disorders. Aquaporin-1 (AQP1) is expressed in multiple tissues including red blood cells, and the Colton blood group antigens represent a polymorphism on the AQP1 protein. AQP2 is restricted to renal collecting ducts and has been linked to congenital nephrogenic diabetes insipidus in humans and to lithium-induced nephrogenic diabetes insipidus and fluid retention from congestive heart failure in rat models. Congenital cataracts result from mutations in the mouse gene encoding the lens homolog Aqp0 (Mip). The present understanding of aquaporin physiology is still incomplete; identification of additional members of the aquaporin family will affect future studies of multiple disorders of water distribution throughout the body. In some tissues, the aquaporins may participate in the transepithelial movement of fluid without being rate limiting, so aquaporins may be involved in clinical disorders without being causative. As outlined in this review, our challenge is to identify disease states in which aquaporins are involved, to define the aquaporins' roles mechanistically, and to search for ways to exploit this information therapeutically.

  12. Sequence diversity of the Trypanosoma cruzi complement regulatory protein family.

    PubMed

    Beucher, M; Norris, K A

    2008-02-01

    As a central component of innate immunity, complement activation is a critical mechanism of containment and clearance of microbial pathogens in advance of the development of acquired immunity. Several pathogens restrict complement activation through the acquisition of host proteins that regulate complement activation or through the production of their own complement regulatory molecules (M. K. Liszewski, M. K. Leung, R. Hauhart, R. M. Buller, P. Bertram, X. Wang, A. M. Rosengard, G. J. Kotwal, and J. P. Atkinson, J. Immunol. 176:3725-3734, 2006; J. Lubinski, L. Wang, D. Mastellos, A. Sahu, J. D. Lambris, and H. M. Friedman, J. Exp. Med. 190:1637-1646, 1999). The infectious stage of the protozoan parasite Trypanosoma cruzi produces a surface-anchored complement regulatory protein (CRP) that functions to inhibit alternative and classical pathway complement activation (K. A. Norris, B. Bradt, N. R. Cooper, and M. So, J. Immunol. 147:2240-2247, 1991). This study addresses the genomic complexity of the T. cruzi CRP and its relationship to the T. cruzi supergene family comprising active trans-sialidase (TS) and TS-like proteins. The TS superfamily consists of several functionally distinct subfamilies that share a characteristic sialidase domain at their amino termini. These TS families include active TS, adhesions, CRPs, and proteins of unknown functions (G. A. Cross and G. B. Takle, Annu. Rev. Microbiol. 47:385-411, 1993). A sequence comparison search of GenBank using BLASTP revealed several full-length paralogs of CRP. These proteins share significant homology at their amino termini and a strong spatial conservation of cysteine residues. Alternative pathway complement regulation was confirmed for CRP paralogs with 58% (low) and 83% (high) identity to AAB49414. CRPs are functionally similar to the microbial and mammalian proteins that regulate complement activation. Sequence alignment of mammalian complement control proteins to CRP showed that these sequences are

  13. Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food.

    PubMed

    Malecová, Barbora; Ramser, Juliane; O'Brien, John K; Janitz, Michal; Júdová, Jana; Lehrach, Hans; Simúth, Jozef

    2003-01-16

    Mrjp1 gene belongs to the honeybee mrjp gene family encoding the major royal jelly proteins (MRJPs), secreted by nurse bees into the royal jelly. In this study, we have isolated the genomic clone containing the entire mrjp1 gene and determined its sequence. The mrjp1 gene sequence spans over 3038 bp and contains six exons separated by five introns. Seven mismatches between the mrjp1 gene sequence and two previously independently published cDNA sequences were found, but these differences do not lead to any change in the deduced amino acid sequence of MRJP1. With the aid of inverse polymerase chain reaction we obtained sequences flanking the 5' ends of other mrjp genes (mrjp2, mrjp3, mrjp4 and mrjp5). Putative promoters were predicted upstream of all mrjp genes (including mrjp1). The predicted promoters contain the TATA motif (TATATATT), highly conserved both in sequence and position. Ultraspiracle (USP) transcription factor (TF) binding sites in putative promoter regions and clusters of dead ringer TF binding sites upstream of these promoters were predicted computationally. We propose that USP, as a juvenile hormone (JH) binding TF, might possibly act as a mediator of mrjp expression in response to JH. Mrjp1's genomic locus is predicted to encode an antisense transcript, partially overlapping with five mrjp1 exons and entirely overlapping with the putative promoter and predicted transcriptional start point of mrjp1. This finding may shed light on the mechanisms of regulation of mrjps expression. Southern blot analysis of genomic DNA revealed that all so far known members of mrjp gene family (mrjp1, mrjp2, mrjp3, mrjp4 and mrjp5) are present as single-copy genes per haploid honeybee genome. Although MRJPs and the yellow protein of Drosophila melanogaster share a certain degree of similarity in aa sequence and although it has been shown that they share a common evolutionary origin, neither structural similarities in the gene organization, nor significant similarities

  14. Adducin family proteins possess different nuclear export potentials.

    PubMed

    Liu, Chia-Mei; Hsu, Wen-Hsin; Lin, Wan-Yi; Chen, Hong-Chen

    2017-05-10

    The adducin (ADD) family proteins, namely ADD1, ADD2, and ADD3, are actin-binding proteins that play important roles in the stabilization of membrane cytoskeleton and cell-cell junctions. All the ADD proteins contain a highly conserved bipartite nuclear localization signal (NLS) at the carboxyl termini, but only ADD1 can localize to the nucleus. The reason for this discrepancy is not clear. To avoid the potential effect of cell-cell junctions on the distribution of ADD proteins, HA epitope-tagged ADD proteins and mutants were transiently expressed in NIH3T3 fibroblasts and their distribution in the cytoplasm and nucleus was examined by immunofluorescence staining. Several nuclear proteins were identified to interact with ADD1 by mass spectrometry, which were further verified by co-immunoprecipitation. In this study, we found that ADD1 was detectable both in the cytoplasm and nucleus, whereas ADD2 and ADD3 were detected only in the cytoplasm. However, ADD2 and ADD3 were partially (~40%) sequestered in the nucleus by leptomycin B, a CRM1/exportin1 inhibitor. Upon the removal of leptomycin B, ADD2 and ADD3 re-distributed to the cytoplasm. These results indicate that ADD2 and ADD3 possess functional NLS and are quickly transported to the cytoplasm upon entering the nucleus. Indeed, we found that ADD2 and ADD3 possess much higher potential to counteract the activity of the NLS derived from Simian virus 40 large T-antigen than ADD1. All the ADD proteins appear to contain multiple nuclear export signals mainly in their head and neck domains. However, except for the leucine-rich motif ((377)FEALMRMLDWLGYRT(391)) in the neck domain of ADD1, no other classic nuclear export signal was identified in the ADD proteins. In addition, the nuclear retention of ADD1 facilitates its interaction with RNA polymerase II and zinc-finger protein 331. Our results suggest that ADD2 and ADD3 possess functional NLS and shuttle between the cytoplasm and nucleus. The discrepancy in the

  15. Automatic extraction of keywords from scientific text: application to the knowledge domain of protein families.

    PubMed

    Andrade, M A; Valencia, A

    1998-01-01

    Annotation of the biological function of different protein sequences is a time-consuming process currently performed by human experts. Genome analysis tools encounter great difficulty in performing this task. Database curators, developers of genome analysis tools and biologists in general could benefit from access to tools able to suggest functional annotations and facilitate access to functional information. We present here the first prototype of a system for the automatic annotation of protein function. The system is triggered by collections of s related to a given protein, and it is able to extract biological information directly from scientific literature, i.e. MEDLINE abstracts. Relevant keywords are selected by their relative accumulation in comparison with a domain-specific background distribution. Simultaneously, the most representative sentences and MEDLINE abstracts are selected and presented to the end-user. Evolutionary information is considered as a predominant characteristic in the domain of protein function. Our system consequently extracts domain-specific information from the analysis of a set of protein families. The system has been tested with different protein families, of which three examples are discussed in detail here: 'ataxia-telangiectasia associated protein', 'ran GTPase' and 'carbonic anhydrase'. We found generally good correlation between the amount of information provided to the system and the quality of the annotations. Finally, the current limitations and future developments of the system are discussed. The current system can be considered as a prototype system. As such, it can be accessed as a server at http://columba.ebi.ac. uk:8765/andrade/abx. The system accepts text related to the protein or proteins to be evaluated (optimally, the result of a MEDLINE search by keyword) and the results are returned in the form of Web pages for keywords, sentences and s. Web pages containing full information on the examples mentioned in the text

  16. Statistical Analysis of Protein Ensembles

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  17. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  18. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast.

    PubMed

    Kranz, A; Kinner, A; Kölling, R

    2001-03-01

    The multispanning membrane protein Ste6, a member of the ABC-transporter family, is transported to the yeast vacuole for degradation. To identify functions involved in the intracellular trafficking of polytopic membrane proteins, we looked for functions that block Ste6 transport to the vacuole upon overproduction. In our screen, we identified several known vacuolar protein sorting (VPS) genes (SNF7/VPS32, VPS4, and VPS35) and a previously uncharacterized open reading frame, which we named MOS10 (more of Ste6). Sequence analysis showed that Mos10 is a member of a small family of coiled-coil-forming proteins, which includes Snf7 and Vps20. Deletion mutants of all three genes stabilize Ste6 and show a "class E vps phenotype." Maturation of the vacuolar hydrolase carboxypeptidase Y was affected in the mutants and the endocytic tracer FM4-64 and Ste6 accumulated in a dot or ring-like structure next to the vacuole. Differential centrifugation experiments demonstrated that about half of the hydrophilic proteins Mos10 and Vps20 was membrane associated. The intracellular distribution was further analyzed for Mos10. On sucrose gradients, membrane-associated Mos10 cofractionated with the endosomal t-SNARE Pep12, pointing to an endosomal localization of Mos10. The growth phenotypes of the mutants suggest that the "Snf7-family" members are involved in a cargo-specific event.

  19. A new family of β-helix proteins with similarities to the polysaccharide lyases.

    PubMed

    Close, Devin W; D'Angelo, Sara; Bradbury, Andrew R M

    2014-10-01

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. Importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  20. A new family of β-helix proteins with similarities to the polysaccharide lyases

    SciTech Connect

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  1. Chemosensitization of Prostate Cancer by Modulating Bcl-2 Family Proteins

    PubMed Central

    Karnak, David; Xu, Liang

    2010-01-01

    A major challenge in oncology is the development of chemoresistance. This often occurs as cancer progresses and malignant cells acquire mechanisms to resist insults that would normally induce apoptosis. The onset of androgen independence in advanced prostate cancer is a prime example of this phenomenon. Overexpression of the pro-survival/anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 are hallmarks of this transition. Here we outline the evolution of therapeutics designed to either limit the source or disrupt the interactions of these pro-survival proteins. By either lessening the stoichiometric abundance of Bcl-2/xL/Mcl-1 in reference to their pro-apoptotic foils or freeing these pro-apoptotic proteins from their grip, these treatments aim to sensitize cells to chemotherapy by priming cells for death. DNA anti-sense and RNA interference have been effectively employed to decrease Bcl-2 family mRNA and protein levels in cell culture models of advanced prostate cancer. However, clinical studies are lagging due to in vivo delivery challenges. The burgeoning field of nanoparticle delivery holds great promise in helping to overcome the challenge of administering highly labile nucleic acid based therapeutics. On another front, small molecule inhibitors that block the hetero-dimerization of pro-survival with pro-apoptotic proteins have significant clinical advantages and have advanced farther in clinical trials with promising early results. Most recently, a peptide has been discovered that can convert Bcl-2 from a pro-survival to a pro-apoptotic protein. The future may lie in targeting multiple steps of the apoptotic pathway, including Bcl-2/xL/Mcl-1, to debilitate the survival capacity of cancer cells and make chemotherapy induced death their only option. PMID:20298153

  2. The Golgin Family of Coiled-Coil Tethering Proteins

    PubMed Central

    Witkos, Tomasz M.; Lowe, Martin

    2016-01-01

    The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins. PMID:26793708

  3. BCL2DB: database of BCL-2 family members and BH3-only proteins

    PubMed Central

    Rech de Laval, Valentine; Deléage, Gilbert; Aouacheria, Abdel; Combet, Christophe

    2014-01-01

    BCL2DB (http://bcl2db.ibcp.fr) is a database designed to integrate data on BCL-2 family members and BH3-only proteins. These proteins control the mitochondrial apoptotic pathway and probably many other cellular processes as well. This large protein group is formed by a family of pro-apoptotic and anti-apoptotic homologs that have phylogenetic relationships with BCL-2, and by a collection of evolutionarily and structurally unrelated proteins characterized by the presence of a region of local sequence similarity with BCL-2, termed the BH3 motif. BCL2DB is monthly built, thanks to an automated procedure relying on a set of homemade profile HMMs computed from seed reference sequences representative of the various BCL-2 homologs and BH3-only proteins. The BCL2DB entries integrate data from the Ensembl, Ensembl Genomes, European Nucleotide Archive and Protein Data Bank databases and are enriched with specific information like protein classification into orthology groups and distribution of BH motifs along the sequences. The Web interface allows for easy browsing of the site and fast access to data, as well as sequence analysis with generic and specific tools. BCL2DB provides a helpful and powerful tool to both ‘BCL-2-ologists’ and researchers working in the various fields of physiopathology. Database URL: http://bcl2db.ibcp.fr PMID:24608034

  4. Proteins on the catwalk: modelling the structural domains of the CCN family of proteins.

    PubMed

    Holbourn, Kenneth P; Perbal, Bernard; Ravi Acharya, K

    2009-03-01

    The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.

  5. The Cbln family of proteins interact with multiple signaling pathways.

    PubMed

    Wei, Peng; Pattarini, Roberto; Rong, Yongqi; Guo, Hong; Bansal, Parmil K; Kusnoor, Sheila V; Deutch, Ariel Y; Parris, Jennifer; Morgan, James I

    2012-06-01

    Cerebellin precursor protein (Cbln1) is essential for synapse integrity in cerebellum through assembly into complexes that bridge pre-synaptic β-neurexins (Nrxn) to post-synaptic GluRδ2. However, GluRδ2 is largely cerebellum-specific, yet Cbln1 and its little studied family members, Cbln2 and Cbln4, are expressed throughout brain. Therefore, we investigated whether additional proteins mediate Cbln family actions. Whereas Cbln1 and Cbln2 bound to GluRδ2 and Nrxns1-3, Cbln4 bound weakly or not at all, suggesting it has distinct binding partners. In a candidate receptor-screening assay, Cbln4 (but not Cbln1 or Cbln2) bound selectively to the netrin receptor, (deleted in colorectal cancer (DCC) in a netrin-displaceable fashion. To determine whether Cbln4 had a netrin-like function, Cbln4-null mice were generated. Cbln4-null mice did not phenocopy netrin-null mice. Cbln1 and Cbln4 were likely co-localized in neurons thought to be responsible for synaptic changes in striatum of Cbln1-null mice. Furthermore, complexes containing Cbln1 and Cbln4 had greatly reduced affinity to DCC but increased affinity to Nrxns, suggesting a functional interaction. However, Cbln4-null mice lacked the striatal synaptic changes seen in Cbln null mice. Thus, Cbln family members interact with multiple receptors/signaling pathways in a subunit composition-dependent manner and have independent functions with Cbln4 potentially involved in the less well-characterized role of netrin/DCC in adult brain.

  6. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    PubMed Central

    Harlow, Timothy J; Gogarten, J Peter; Ragan, Mark A

    2004-01-01

    recognition of protein families for phylogenomic analysis. PMID:15115543

  7. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins.

    PubMed

    Badgandi, Hemant B; Hwang, Sun-Hee; Shimada, Issei S; Loriot, Evan; Mukhopadhyay, Saikat

    2017-03-06

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein-coupled receptors (GPCRs) and the polycystic kidney disease-causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. © 2017 Badgandi et al.

  8. Non-apoptotic functions of BCL-2 family proteins.

    PubMed

    Gross, Atan; Katz, Samuel G

    2017-02-24

    The BCL-2 family proteins are major regulators of the apoptosis process, but the mechanisms by which they regulate this process are only partially understood. It is now well documented that these proteins play additional non-apoptotic roles that are likely to be related to their apoptotic roles and to provide important clues to cracking their mechanisms of action. It seems that these non-apoptotic roles are largely related to the activation of cellular survival pathways designated to maintain or regain cellular survival, but, if unsuccessful, will switch over into a pro-apoptotic mode. These non-apoptotic roles span a wide range of processes that include the regulation of mitochondrial physiology (metabolism, electron transport chain, morphology, permeability transition), endoplasmic reticulum physiology (calcium homeostasis, unfolded protein response (UPR)), nuclear processes (cell cycle, DNA damage response (DDR)), whole-cell metabolism (glucose and lipid), and autophagy. Here we review all these different non-apoptotic roles, make an attempt to link them to the apoptotic roles, and present many open questions for future research directions in this fascinating field.Cell Death and Differentiation advance online publication, 24 February 2017; doi:10.1038/cdd.2017.22.

  9. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  10. Molecular Evidence of RNA Editing in Bombyx Chemosensory Protein Family

    PubMed Central

    Xuan, Ning; Bu, Xun; Liu, Yan Yan; Yang, Xue; Liu, Guo Xia; Fan, Zhong Xue; Bi, Yu Ping; Yang, Lian Qun; Lou, Qi Nian; Rajashekar, Balaji; Leppik, Getter; Kasvandik, Sergo; Picimbon, Jean-François

    2014-01-01

    Chemosensory proteins (CSPs) are small scavenger proteins that are mainly known as transporters of pheromone/odor molecules at the periphery of sensory neurons in the insect antennae and in the producing cells from the moth female pheromone gland. Sequencing cDNAs of RNA encoding CSPs in the antennae, legs, head, pheromone gland and wings from five single individual adult females of the silkworm moth Bombyx mori showed that they differed from genomic sequences by subtle nucleotide replacement (RDD). Both intronless and intronic CSP genes expressed RDDs, although in different rates. Most interestingly, in our study the degree of RDDs in CSP genes were found to be tissue-specific. The proportion of CSP-RDDs was found to be significantly much higher in the pheromone gland. In addition, Western blot analysis of proteins in different tissues showed existence of multiple CSP protein variant chains particularly found in the pheromone gland. Peptide sequencing demonstrated the occurrence of a pleiad of protein variants for most of all BmorCSPs from the pheromone gland. Our findings show that RNA editing is an important feature in the expression of CSPs and that a high variety of RDDs is found to expand drastically thus altering the repertoire of CSP proteins in a tissue-specific manner. PMID:24551045

  11. Analysis of Family Research Designs: A Model of Interdependence.

    ERIC Educational Resources Information Center

    Kashy, Deborah A.; Kenny, David A.

    1990-01-01

    Presents both a conceptual model (which partitions family data into individual, dyadic, and family effects and permits examination of several types of interdependence between family members) and an analytical method (confirmatory factor analysis) that can be used in the evaluation of round-robin family research data. (SR)

  12. Yeast as a tool for studying proteins of the Bcl-2 family

    PubMed Central

    Polčic, Peter; Jaká, Petra; Mentel, Marek

    2015-01-01

    Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins permeabilize mitochondrial membrane, remain under dispute. Although yeast does not have apparent homologues of these proteins, when mammalian members of Bcl-2 family are expressed in yeast, they retain their activity, making yeast an attractive model system, in which to study their action. This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins. PMID:28357280

  13. Yeast as a tool for studying proteins of the Bcl-2 family.

    PubMed

    Polčic, Peter; Jaká, Petra; Mentel, Marek

    2015-03-02

    Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins permeabilize mitochondrial membrane, remain under dispute. Although yeast does not have apparent homologues of these proteins, when mammalian members of Bcl-2 family are expressed in yeast, they retain their activity, making yeast an attractive model system, in which to study their action. This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins.

  14. Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family

    PubMed Central

    Pérez-Pulido, Antonio J.; Reynaud, Emmanuel G.; Andrade-Navarro, Miguel A.

    2017-01-01

    Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis. PMID:28072865

  15. Common recognition principles across diverse sequence and structural families of sialic acid binding proteins.

    PubMed

    Bhagavat, Raghu; Chandra, Nagasuma

    2014-01-01

    Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.

  16. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria.

    PubMed

    Jaimes-Becerra, Adrian; Chung, Ray; Morandini, André C; Weston, Andrew J; Padilla, Gabriel; Gacesa, Ranko; Ward, Malcolm; Long, Paul F; Marques, Antonio C

    2017-10-01

    Cnidarians are probably the oldest group of animals to be venomous, yet our current picture of cnidarian venom evolution is highly imbalanced due to limited taxon sampling. High-throughput tandem mass spectrometry was used to determine venom composition of the scyphozoan Chrysaora lactea and two cubozoans Tamoya haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then compared against 5 other cnidarian venom proteomes taken from the literature. A total of 28 putative toxin protein families were identified, many for the first time in Cnidaria. Character mapping analysis revealed that 17 toxin protein families with predominantly cytolytic biological activities were likely recruited into the cnidarian venom proteome before the lineage split between Anthozoa and Medusozoa. Thereafter, venoms of Medusozoa and Anthozoa differed during subsequent divergence of cnidarian classes. Recruitment and loss of toxin protein families did not correlate with accepted phylogenetic patterns of Cnidaria. Selective pressures that drive toxin diversification independent of taxonomic positioning have yet to be identified in Cnidaria and now warrant experimental consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family.

    PubMed

    Mier, Pablo; Pérez-Pulido, Antonio J; Reynaud, Emmanuel G; Andrade-Navarro, Miguel A

    2017-01-01

    Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis.

  18. Family meals and body weight. Analysis of multiple family members in family units.

    PubMed

    Chan, Jeffrey C; Sobal, Jeffery

    2011-10-01

    Prior research suggests that frequent family meals are associated with lower body mass index (BMI) among children and adolescents. The primary focus of this study was examining associations of reported frequency of family meals with reported BMI for multiple members of family units that included adults and adolescents. A secondary focus was examining settings for family meals and body weight (home and away from home). A cross-sectional survey recruited 327 individuals in 103 family units visiting one U.S. University. Results revealed that for individuals, frequency of family meals at home was inversely related with BMI, while frequency of family meals away from home was directly related with BMI. Family role analyses showed that frequency of family meals eaten by fathers and sons at home was inversely related to BMI, while for only fathers the frequency of family meals away from home was directly related to BMI. Full family unit analyses summed family member characteristics and found associations between family meal frequency and family BMI at home were inverse, but they were direct away from home. Multilevel regression models indicated that family level characteristics accounted for a substantial portion of the variability in body weight measures both at home and away from home. These findings reveal that meal settings, family roles, and full family units help to understand family meals and body weight. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Cell cycle regulation by the NEK family of protein kinases.

    PubMed

    Fry, Andrew M; O'Regan, Laura; Sabir, Sarah R; Bayliss, Richard

    2012-10-01

    Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer.

  20. The secretory carrier membrane protein family: structure and membrane topology.

    PubMed

    Hubbard, C; Singleton, D; Rauch, M; Jayasinghe, S; Cafiso, D; Castle, D

    2000-09-01

    Secretory carrier membrane proteins (SCAMPs) are integral membrane proteins found in secretory and endocytic carriers implicated to function in membrane trafficking. Using expressed sequence tag database and library screens and DNA sequencing, we have characterized several new SCAMPs spanning the plant and animal kingdoms and have defined a broadly conserved protein family. No obvious fungal homologue has been identified, however. We have found that SCAMPs share several structural motifs. These include NPF repeats, a leucine heptad repeat enriched in charged residues, and a proline-rich SH3-like and/or WW domain-binding site in the N-terminal domain, which is followed by a membrane core containing four putative transmembrane spans and three amphiphilic segments that are the most highly conserved structural elements. All SCAMPs are 32-38 kDa except mammalian SCAMP4, which is approximately 25 kDa and lacks most of the N-terminal hydrophilic domain of other SCAMPs. SCAMP4 is authentic as determined by Northern and Western blotting, suggesting that this portion of the larger SCAMPs encodes the functional domain. Focusing on SCAMP1, we have characterized its structure further by limited proteolysis and Western blotting with the use of isolated secretory granules as a uniformly oriented source of antigen and by topology mapping through expression of alkaline phosphatase gene fusions in Escherichia coli. Results show that SCAMP1 is degraded sequentially from the N terminus and then the C terminus, yielding an approximately 20-kDa membrane core that contains four transmembrane spans. Using synthetic peptides corresponding to the three conserved amphiphilic segments of the membrane core, we have demonstrated their binding to phospholipid membranes and shown by circular dichroism spectroscopy that the central amphiphilic segment linking transmembrane spans 2 and 3 is alpha-helical. In the intact protein, these segments are likely to reside in the cytoplasm-facing membrane

  1. New Functions for the Ancient DedA Membrane Protein Family

    PubMed Central

    Sikdar, Rakesh; Kumar, Sujeet; Boughner, Lisa A.

    2013-01-01

    The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family. PMID:23086209

  2. MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia.

    PubMed

    Ouyang, Yi-Bing; Giffard, Rona G

    2014-11-01

    The BCL-2 family is centrally involved in the mechanism of cell death after cerebral ischemia. It is well known that the proteins of the BCL-2 family are key regulators of apoptosis through controlling mitochondrial outer membrane permeabilization. Recent findings suggest that many BCL-2 family members are also directly involved in controlling transmission of Ca(2+) from the endoplasmic reticulum (ER) to mitochondria through a specialization called the mitochondria-associated ER membrane (MAM). Increasing evidence supports the involvement of microRNAs (miRNAs), some of them targeting BCL-2 family proteins, in the regulation of cerebral ischemia. In this mini-review, after highlighting current knowledge about the multiple functions of BCL-2 family proteins and summarizing their relationship to outcome from cerebral ischemia, we focus on the regulation of BCL-2 family proteins by miRNAs, especially miR-29 which targets multiple BCL-2 family proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  4. Structural and functional insight into the universal stress protein family

    PubMed Central

    Tkaczuk, Karolina L; A Shumilin, Igor; Chruszcz, Maksymilian; Evdokimova, Elena; Savchenko, Alexei; Minor, Wladek

    2013-01-01

    We present the crystal structures of two universal stress proteins (USP) from Archaeoglobus fulgidus and Nitrosomonas europaea in both apo- and ligand-bound forms. This work is the first complete synthesis of the structural properties of 26 USP available in the Protein Data Bank, over 75% of which were determined by structure genomics centers with no additional information provided. The results of bioinformatic analyses of all available USP structures and their sequence homologs revealed that these two new USP structures share overall structural similarity with structures of USPs previously determined. Clustering and cladogram analyses, however, show how they diverge from other members of the USP superfamily and show greater similarity to USPs from organisms inhabiting extreme environments. We compared them with other archaeal and bacterial USPs and discuss their similarities and differences in context of structure, sequential motifs, and potential function. We also attempted to group all analyzed USPs into families, so that assignment of the potential function to those with no experimental data available would be possible by extrapolation. PMID:23745136

  5. Identification and functionality prediction of pathogenesis-related protein 1 from legume family.

    PubMed

    Tellis, Meenakshi; Mathur, Monika; Gurjar, Gayatri; Kadoo, Narendra; Gupta, Vidya

    2017-08-01

    The production and accumulation of pathogenesis-related (PR) proteins in plants is one of the important responses to biotic and abiotic stress. Large number of identified PR proteins has been categorized into 17 functional families based on their structure, phylogenetics, and biological activities. However, they are not widely studied in legume crops. Using 29 PR1 proteins from Arabidopsis thaliana, as query, here we have predicted 92 candidate PR1 proteins through the PSI-BLAST and HMMER programs. These candidate proteins were comprehensively analyzed with, multiple sequence alignment, domain architecture studies, signal peptide, and motif extraction followed by phylogenetic analysis. Further, response of two candidate PR1 proteins from chickpea against Fusarium oxysporum f.sp.ciceri attack was validated using qRT-PCR followed by their 3D structure prediction. To decipher mode of action for PR1s, docking of pathogen extracellular matrix components along with fungal elicitors was performed with two chickpea PR1 proteins. Based on these findings, we propose carbohydrate to be the unique pathogen-recognition feature for PR1 proteins and β-glucanase activity via β-glucan binding or modification. © 2017 Wiley Periodicals, Inc.

  6. Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population.

    PubMed

    Ogut, F; Bian, Y; Bradbury, P J; Holland, J B

    2015-06-01

    Quantitative trait locus (QTL) mapping has been used to dissect the genetic architecture of complex traits and predict phenotypes for marker-assisted selection. Many QTL mapping studies in plants have been limited to one biparental family population. Joint analysis of multiple biparental families offers an alternative approach to QTL mapping with a wider scope of inference. Joint-multiple population analysis should have higher power to detect QTL shared among multiple families, but may have lower power to detect rare QTL. We compared prediction ability of single-family and joint-family QTL analysis methods with fivefold cross-validation for 6 diverse traits using the maize nested association mapping population, which comprises 25 biparental recombinant inbred families. Joint-family QTL analysis had higher mean prediction abilities than single-family QTL analysis for all traits at most significance thresholds, and was always better at more stringent significance thresholds. Most robust QTL (detected in >50% of data samples) were restricted to one family and were often not detected at high frequency by joint-family analysis, implying substantial genetic heterogeneity among families for complex traits in maize. The superior predictive ability of joint-family QTL models despite important genetic differences among families suggests that joint-family models capture sufficient smaller effect QTL that are shared across families to compensate for missing some rare large-effect QTL.

  7. Wavelet Analysis of Protein Motion

    PubMed Central

    BENSON, NOAH C.

    2014-01-01

    As high-throughput molecular dynamics simulations of proteins become more common and the databases housing the results become larger and more prevalent, more sophisticated methods to quickly and accurately mine large numbers of trajectories for relevant information will have to be developed. One such method, which is only recently gaining popularity in molecular biology, is the continuous wavelet transform, which is especially well-suited for time course data such as molecular dynamics simulations. We describe techniques for the calculation and analysis of wavelet transforms of molecular dynamics trajectories in detail and present examples of how these techniques can be useful in data mining. We demonstrate that wavelets are sensitive to structural rearrangements in proteins and that they can be used to quickly detect physically relevant events. Finally, as an example of the use of this approach, we show how wavelet data mining has led to a novel hypothesis related to the mechanism of the protein γδ resolvase. PMID:25484480

  8. SCLIP: a novel SCG10-like protein of the stathmin family expressed in the nervous system.

    PubMed

    Ozon, S; Byk, T; Sobel, A

    1998-06-01

    Stathmin is a cytosolic phosphoprotein previously described as a ubiquitous relay integrating various signaling pathways. It is the generic element of a protein family in mammals as in Xenopus, including SCG10, a neuron-specific, growth-associated protein, and RB3/XB3, related to the expression of differentiated functions of mature cells of the nervous system. In an extensive search for other members of the stathmin family, we identified cDNAs coding for two novel stathmin-related proteins: (a) a cDNA from a rat striatum cDNA library codes for RB3", a splice variant of RB3, with an additional basic domain in its N-terminal region; and (b) another cDNA identified through a systematic search in EST databases codes for a novel protein, SCLIP, for "SCG10-like protein," displaying 70% identity with SCG10 and sharing the same domain organization, with an N-terminal domain likely involved in membrane attachment and a C-terminal stathmin-like domain. Northern blot analysis as well as in situ hybridization on 14-day rat embryos showed that SCLIP mRNA is expressed only in neural structures. SCLIP mRNA is expressed at comparable levels in neonatal and adult rat brain, suggesting a potential role not only in the acquisition, but also in the expression of differentiated neuronal functions.

  9. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

    PubMed Central

    Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  10. Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates

    PubMed Central

    Li, Shugang; Cao, Yiping; Geng, Fang

    2017-01-01

    Albumins are the most well-known globular proteins, and the most typical representatives are the serum albumins. However, less attention was paid to the albumin family, except for the human and bovine serum albumin. To characterize the features of albumin family, we have mined all the putative albumin proteins from the available genome sequences. The results showed that albumin is widely distributed in vertebrates, but not present in the bacteria and archaea. The phylogenetic analysis of vertebrate albumin family implied an evolutionary relationship between members of serum albumin, α-fetoprotein, vitamin D–binding protein, and afamin. Meanwhile, a new member from the albumin family was found, namely, extracellular matrix protein 1. The structural analysis revealed that the motifs for forming the internal disulfide bonds are highly conserved in the albumin family, despite the low overall sequence identity across the family. The domain arrangement of albumin proteins indicated that most of vertebrate albumins contain 3 characteristic domains, arising from 2 evolutionary patterns. And a significant trend has been observed that the albumin proteins in higher vertebrate species tend to possess more characteristic domains. This study has provided the fundamental information required for achieving a better understanding of the albumin distribution, phylogenetic relationship, characteristic motif, structure, and new insights into the evolutionary pattern. PMID:28680266

  11. The Protein Disulfide Isomerase gene family in bread wheat (T. aestivum L.)

    PubMed Central

    2010-01-01

    Background The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homoeologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species. Results Eight new non-homoeologous wheat genes were cloned and characterized. The nine PDI and PDI-like sequences of wheat were located in chromosome regions syntenic to those in rice and assigned to eight plant phylogenetic groups. The nine wheat genes differed in their sequences, genomic organization as well as in the domain composition and architecture of their deduced proteins; conversely each of them showed high structural conservation with genes from other plant species in the same phylogenetic group. The extensive quantitative RT-PCR analysis of the nine genes in a set of 23 wheat samples, including tissues and developmental stages, showed their constitutive, even though highly variable expression. Conclusions The nine wheat genes showed high diversity, while the members of each phylogenetic group were highly conserved even between taxonomically distant plant species like the moss Physcomitrella patens. Although constitutively expressed the nine wheat genes were characterized by different expression profiles reflecting their different genomic organization, protein domain architecture and probably promoter sequences; the high conservation among species indicated the ancient origin and diversification of the still evolving gene family. The comprehensive

  12. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.

    PubMed

    Zhu, Chong; Luo, Nana; He, Miao; Chen, Guanxing; Zhu, Jiantang; Yin, Guangjun; Li, Xiaohui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2014-01-01

    Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene

  13. Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family

    PubMed Central

    Silverio, Abe L. F.

    2014-01-01

    Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation–contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/ nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes. PMID:21519847

  14. Homeodomain-interacting protein kinase (Hipk) phosphorylates the small SPOC family protein Spenito.

    PubMed

    Dewald, D N; Steinmetz, E L; Walldorf, U

    2014-12-01

    The Drosophila homeodomain-interacting protein kinase (Hipk) is a versatile regulator involved in a variety of pathways, such as Notch and Wingless signalling, thereby acting in processes including the promotion of eye development or control of cell numbers in the nervous system. In vertebrates, extensive studies have related its homologue HIPK2 to important roles in the control of p53-mediated apoptosis and tumour suppression. Spenito (Nito) belongs to the group of small SPOC family proteins and has a role, amongst others, as a regulator of Wingless signalling downstream of Armadillo. In the present study, we show that both proteins have an enzyme-substrate relationship, adding a new interesting component to the broad range of Hipk interactions, and we map several phosphorylation sites of Nito. Furthermore, we were able to define a preliminary consensus motif for Hipk target sites, which will simplify the identification of new substrates of this kinase.

  15. Characterization of a new family of metal transport proteins. 1998 annual progress report

    SciTech Connect

    Guerinot, M.L.

    1998-06-01

    'Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal-contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before the authors can engineer such plants, they need more basic information on how plants acquire metals. An important long term goal of the research program is to understand how metals such as zinc, cadmium and copper are transported across membranes. The research is focused on a new family of metal transporters which they have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. They have identified a family of 19 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which the authors have designated the ZIP genes, provides a rich source of material with which to undertake studies on metal transport in eukaryotes. The project has three main objectives: Objective 1: Determine the sub-cellular location of the ZIP proteins in Arabidopsis. Objective 2: Carry out a structure/function analysis of the proteins encoded by the ZIP gene family to identify regions of the protein responsible for substrate specificity and affinity. Objective 3: Engineer plants to overexpress and underexpress members of the ZIP gene family and analyze these transgenic plants for alterations in metal accumulation. They now know that manipulation of transporter levels will also require an understanding of post-transcriptional control of ZIP gene expression. They

  16. Small G-protein Signaling in Neuronal Plasticity and Memory Formation: the Specific Role of Ras Family Proteins

    PubMed Central

    Ye, Xiaojing; Carew, Thomas J.

    2010-01-01

    Small G-proteins are an extensive family of proteins that bind and hydrolyze GTP. They are ubiquitous inside cells, regulating a wide range of cellular processes. Recently, many studies have examined the role of small G-proteins, particularly the Ras family of G-proteins, in memory formation. Once thought to be primarily involved in the transduction of a variety of extracellular signals during development, it is now clear that Ras family proteins also play critical roles in molecular processing underlying neuronal and behavioral plasticity. We here review a number of recent studies that explore how the signaling of Ras family proteins contributes to memory formation. Understanding these signaling processes is of fundamental importance both from a basic scientific perspective, with the goal of providing mechanistic insights into a critical aspect of cognitive behavior, and from a clinical perspective, with the goal of providing effective therapies for a range of disorders involving cognitive impairments. PMID:21040840

  17. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families

    PubMed Central

    Pei, Jimin; Li, Wenlin; Kinch, Lisa N; Grishin, Nick V

    2014-01-01

    The heme-copper oxidase (HCO) superfamily includes HCOs in aerobic respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices (TMHs) arranged in three-fold rotational pseudosymmetry, with six conserved histidines for heme and metal binding. Using sensitive sequence similarity searches, we detected a number of novel HCO/NOR homologs and named them HCO Homology (HCOH) proteins. Several HCOH families possess only four TMHs that exhibit the most pronounced similarity to the last four TMHs (TMHs 9–12) of HCOs/NORs. Encoded by independent genes, four-TMH HCOH proteins represent a single evolutionary unit (EU) that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1–4, TMHs 5–8, and TMHs 9–12. Single-EU HCOH proteins could form homotrimers or heterotrimers to maintain the general structure and ligand-binding sites defined by the HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 12-TMHs and three EUs. Most three-EU HCOH proteins possess two conserved histidines and could bind a single heme. Limited experimental studies and genomic context analysis suggest that many HCOH proteins could function in the denitrification pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) proteins. Gene duplication, fusion, and fission likely play important roles in the evolution of HCOs/NORs and HCOH proteins. PMID:24931479

  18. Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues.

    PubMed

    Shathasivam, Thiruchelvi; Kislinger, Thomas; Gramolini, Anthony O

    2010-12-01

    Four and a half LIM domain protein 1 (FHL1) is the founding member of the FHL family of proteins characterized by the presence of four and a half highly conserved LIM domains. The LIM domain is a protein-interaction motif and is involved in linking proteins with both the actin cytoskeleton and transcriptional machinery. To date, more than 25 different protein interactions have been identified for full length FHL1 and its spliced variants, and these interactions can be mapped to a variety of functional classes. Because FHL1 is expressed predominantly in skeletal muscle, all of these proteins interactions translate into a multifunctional and integral role for FHL1 in muscle development, structural maintenance, and signalling. Importantly, 27 FHL1 genetic mutations have been identified that result in at least six different X-linked myopathies, with patients often presenting with cardiovascular disease. FHL1 expression is also significantly up-regulated in a variety of cardiac disorders, even at the earliest stages of disease onset. Alternatively, FHL1 expression is suppressed in a variety of cancers, and ectopic FHL1 expression offers potential for some phenotype rescue. This review focuses on recent studies of FHL1 in muscular dystrophies and cardiovascular disease, and provides a comprehensive review of FHL1s multifunctional roles in skeletal muscle. © 2010 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues

    PubMed Central

    Shathasivam, Thiruchelvi; Kislinger, Thomas; Gramolini, Anthony O

    2010-01-01

    Abstract Four and a half LIM domain protein 1 (FHL1) is the founding member of the FHL family of proteins characterized by the presence of four and a half highly conserved LIM domains. The LIM domain is a protein-interaction motif and is involved in linking proteins with both the actin cytoskeleton and transcriptional machinery. To date, more than 25 different protein interactions have been identified for full length FHL1 and its spliced variants, and these interactions can be mapped to a variety of functional classes. Because FHL1 is expressed predominantly in skeletal muscle, all of these proteins interactions translate into a multifunctional and integral role for FHL1 in muscle development, structural maintenance, and signalling. Importantly, 27 FHL1 genetic mutations have been identified that result in at least six different X-linked myopathies, with patients often presenting with cardiovascular disease. FHL1 expression is also significantly up-regulated in a variety of cardiac disorders, even at the earliest stages of disease onset. Alternatively, FHL1 expression is suppressed in a variety of cancers, and ectopic FHL1 expression offers potential for some phenotype rescue. This review focuses on recent studies of FHL1 in muscular dystrophies and cardiovascular disease, and provides a comprehensive review of FHL1s multifunctional roles in skeletal muscle. PMID:20874719

  20. The protein-protein interaction network of the human Sirtuin family.

    PubMed

    Sharma, Ankush; Costantini, Susan; Colonna, Giovanni

    2013-10-01

    Protein-protein interaction networks are useful for studying human diseases and to look for possible health care through a holistic approach. Networks are playing an increasing and important role in the understanding of physiological processes such as homeostasis, signaling, spatial and temporal organizations, and pathological conditions. In this article we show the complex system of interactions determined by human Sirtuins (Sirt) largely involved in many metabolic processes as well as in different diseases. The Sirtuin family consists of seven homologous Sirt-s having structurally similar cores but different terminal segments, being rather variable in length and/or intrinsically disordered. Many studies have determined their cellular location as well as biological functions although molecular mechanisms through which they act are actually little known therefore, the aim of this work was to define, explore and understand the Sirtuin-related human interactome. As a first step, we have integrated the experimentally determined protein-protein interactions of the Sirtuin-family as well as their first and second neighbors to a Sirtuin-related sub-interactome. Our data showed that the second-neighbor network of Sirtuins encompasses 25% of the entire human interactome, and exhibits a scale-free degree distribution and interconnectedness among top degree nodes. Moreover, the Sirtuin sub interactome showed a modular structure around the core comprising mixed functions. Finally, we extracted from the Sirtuin sub-interactome subnets related to cancer, aging and post-translational modifications for information on key nodes and topological space of the subnets in the Sirt family network.

  1. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization1[OPEN

    PubMed Central

    2017-01-01

    Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events. PMID:28034953

  2. Interaction of TACC proteins with the FHL family: implications for ERK signaling.

    PubMed

    Lauffart, Brenda; Sondarva, Gautam V; Gangisetty, Omkaram; Cincotta, Melissa; Still, Ivan H

    2007-06-01

    The Transforming acidic coiled coil (TACC) proteins play a conserved role in normal development and tumorigenesis through interactions with multiple complexes involved in transcription, translation, and centrosomal dynamics. However, despite significant work on the function of TACC3 in the control of centrosomal mechanics, relatively little functional data is known about the family's founding member, TACC1. From a continued analysis of clones isolated by an unbiased yeast two-hybrid assay, we now show direct physical interactions between the TACC1 and the FHL (Four and a Half LIM-only) family of proteins. The authenticity of these interactions was validated both in vitro and in cellular systems. The FHLs exhibit diverse biological roles such as the regulation of the actin cytoskeleton and are promiscuous coregulators for several transcription factors. The interaction of the endogenous TACC-FHL proteins is primarily localized to the nucleus. However, similar to FHL2, overexpression of TACC1A in HEK293 is able to sequester serum activated ERK to the cytoplasm. This has the effect of reducing the serum induced transcriptional response of the c-fos and c-jun genes. The observation that TACCs can interact with the FHLs and alter their serum induced activities raises the possibility that the TACCs participate in crosstalk between cell signaling pathways important for cancer development and tumor progression. The transforming acidic coiled coil genes are known to be important prognostic indicators for breast, ovarian and lung cancer. In this manuscript, we identify a novel interaction between the TACCs and the FHL protein family. This interaction has an affect on ERK and may in part explain the variable associations and changes in subcellular locations of each family with specific subtypes of malignancy.

  3. Spermadhesins: a new protein family. Facts, hypotheses and perspectives.

    PubMed

    Töpfer-Petersen, E; Romero, A; Varela, P F; Ekhlasi-Hundrieser, M; Dostàlovà, Z; Sanz, L; Calvete, J J

    1998-01-01

    Spermadhesins are a novel family of secretory proteins expressed in the male genital tract of pig, horse and bull. They are major products of the seminal plasma and have been found to be peripherally associated to the sperm surface. The structure and function of spermadhesins have been thoroughly investigated in the pig, which exhibits the greatest diversity of members: AWN, AQN-1, AQN-2, PSP-I and PSP-II and its glycosylated isoforms. They are multifunctional proteins showing a range of ligand-binding abilities, e.g. carbohydrates, sulfated glycosaminoglycans, phospholipids and protease inhibitors, suggesting that they may be involved in different steps of fertilization. Isolated porcine spermadhesins bind the zona pellucida glycoproteins in a cation-dependent manner with a Kd in a low micromolar range, and AWN, AQN-1 and AQN-3 display similar binding affinity for glycoproteins containing Gal beta(1-3)-GalNAc and Gal beta(1-4)-GlcNAc sequences in O-linked and N-linked oligosaccharides, respectively. During sperm passage through the epididymis AQN-3 and AWN have been shown to bind tightly to the sperm surface by interaction with the phospholipids of the membrane bilayer. At ejaculation the spermadhesins form a protective coat around the sensitive acrosomal region of the sperm head, thus possibly preventing premature acrosome reaction. During in vitro capacitation most of these aggregated sperm adhesins are lost, with the exception of phospholipid-bound spermadhesins. AWN and AQN-3 may now serve as a primary receptor for the oocyte zona pellucida, thus contributing to initial binding and recognition between sperm and egg. The amino acid sequence of spermadhesins does not show any discernible similarity with known carbohydrate recognition domains (CRD). However, they belong to the superfamily of proteins with a CUB domain with a predicted all-beta structure. The crystal structure of the heterodimeric complex of the spermadhesins PSP-I/PSP-II has been solved, showing

  4. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Taddei, Lucilla; Stella, Giulio Rocco; Rogato, Alessandra; Bailleul, Benjamin; Fortunato, Antonio Emidio; Annunziata, Rossella; Sanges, Remo; Thaler, Michael; Lepetit, Bernard; Lavaud, Johann; Jaubert, Marianne; Finazzi, Giovanni; Bouly, Jean-Pierre; Falciatore, Angela

    2016-06-01

    Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.

  5. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    Taddei, Lucilla; Stella, Giulio Rocco; Rogato, Alessandra; Bailleul, Benjamin; Fortunato, Antonio Emidio; Annunziata, Rossella; Sanges, Remo; Thaler, Michael; Lepetit, Bernard; Lavaud, Johann; Jaubert, Marianne; Finazzi, Giovanni; Bouly, Jean-Pierre; Falciatore, Angela

    2016-01-01

    Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments. PMID:27225826

  6. Orthology prediction methods: a quality assessment using curated protein families.

    PubMed

    Trachana, Kalliopi; Larsson, Tomas A; Powell, Sean; Chen, Wei-Hua; Doerks, Tobias; Muller, Jean; Bork, Peer

    2011-10-01

    The increasing number of sequenced genomes has prompted the development of several automated orthology prediction methods. Tests to evaluate the accuracy of predictions and to explore biases caused by biological and technical factors are therefore required. We used 70 manually curated families to analyze the performance of five public methods in Metazoa. We analyzed the strengths and weaknesses of the methods and quantified the impact of biological and technical challenges. From the latter part of the analysis, genome annotation emerged as the largest single influencer, affecting up to 30% of the performance. Generally, most methods did well in assigning orthologous group but they failed to assign the exact number of genes for half of the groups. The publicly available benchmark set (http://eggnog.embl.de/orthobench/) should facilitate the improvement of current orthology assignment protocols, which is of utmost importance for many fields of biology and should be tackled by a broad scientific community. Copyright © 2011 WILEY Periodicals, Inc.

  7. Orthology prediction methods: A quality assessment using curated protein families

    PubMed Central

    Trachana, Kalliopi; Larsson, Tomas A; Powell, Sean; Chen, Wei-Hua; Doerks, Tobias; Muller, Jean; Bork, Peer

    2011-01-01

    The increasing number of sequenced genomes has prompted the development of several automated orthology prediction methods. Tests to evaluate the accuracy of predictions and to explore biases caused by biological and technical factors are therefore required. We used 70 manually curated families to analyze the performance of five public methods in Metazoa. We analyzed the strengths and weaknesses of the methods and quantified the impact of biological and technical challenges. From the latter part of the analysis, genome annotation emerged as the largest single influencer, affecting up to 30% of the performance. Generally, most methods did well in assigning orthologous group but they failed to assign the exact number of genes for half of the groups. The publicly available benchmark set (http://eggnog.embl.de/orthobench/) should facilitate the improvement of current orthology assignment protocols, which is of utmost importance for many fields of biology and should be tackled by a broad scientific community. PMID:21853451

  8. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  9. Genome-wide analysis of TCP family in tobacco.

    PubMed

    Chen, L; Chen, Y Q; Ding, A M; Chen, H; Xia, F; Wang, W F; Sun, Y H

    2016-05-23

    The TCP family is a transcription factor family, members of which are extensively involved in plant growth and development as well as in signal transduction in the response against many physiological and biochemical stimuli. In the present study, 61 TCP genes were identified in tobacco (Nicotiana tabacum) genome. Bioinformatic methods were employed for predicting and analyzing the gene structure, gene expression, phylogenetic analysis, and conserved domains of TCP proteins in tobacco. The 61 NtTCP genes were divided into three diverse groups, based on the division of TCP genes in tomato and Arabidopsis, and the results of the conserved domain and sequence analyses further confirmed the classification of the NtTCP genes. The expression pattern of NtTCP also demonstrated that majority of these genes play important roles in all the tissues, while some special genes exercise their functions only in specific tissues. In brief, the comprehensive and thorough study of the TCP family in other plants provides sufficient resources for studying the structure and functions of TCPs in tobacco.

  10. MKBP, a Novel Member of the Small Heat Shock Protein Family, Binds and Activates the Myotonic Dystrophy Protein Kinase

    PubMed Central

    Suzuki, Atsushi; Sugiyama, Yuki; Hayashi, Yukiko; Nyu-i, Nobuo; Yoshida, Michihiko; Nonaka, Ikuya; Ishiura, Sho-ichi; Arahata, Kiichi; Ohno, Shigeo

    1998-01-01

    Muscle cells are frequently subjected to severe conditions caused by heat, oxidative, and mechanical stresses. The small heat shock proteins (sHSPs) such as αB-crystallin and HSP27, which are highly expressed in muscle cells, have been suggested to play roles in maintaining myofibrillar integrity against such stresses. Here, we identified a novel member of the sHSP family that associates specifically with myotonic dystrophy protein kinase (DMPK). This DMPK-binding protein, MKBP, shows a unique nature compared with other known sHSPs: (a) In muscle cytosol, MKBP exists as an oligomeric complex separate from the complex formed by αB-crystallin and HSP27. (b) The expression of MKBP is not induced by heat shock, although it shows the characteristic early response of redistribution to the insoluble fraction like other sHSPs. Immunohistochemical analysis of skeletal muscle cells shows that MKBP localizes to the cross sections of individual myofibrils at the Z-membrane as well as the neuromuscular junction, where DMPK has been suggested to be concentrated. In vitro, MKBP enhances the kinase activity of DMPK and protects it from heat-induced inactivation. These results suggest that MKBP constitutes a novel stress-responsive system independent of other known sHSPs in muscle cells and that DMPK may be involved in this system by being activated by MKBP. Importantly, since the amount of MKBP protein, but not that of other sHSP family member proteins, is selectively upregulated in skeletal muscle from DM patients, an interaction between DMPK and MKBP may be involved in the pathogenesis of DM. PMID:9490724

  11. Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi

    PubMed Central

    Saunders, Diane G. O.; Win, Joe; Cano, Liliana M.; Szabo, Les J.; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components. PMID:22238666

  12. Comparative and Evolutionary Analysis of Major Peanut Allergen Gene Families

    PubMed Central

    Ratnaparkhe, Milind B.; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K.; Lemke, Cornelia; Compton, Rosana O.; Robertson, Jon; Gallo, Maria; Bertioli, David J.; Paterson, Andrew H.

    2014-01-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  13. Quantitative analysis of glycated proteins.

    PubMed

    Priego-Capote, Feliciano; Ramírez-Boo, María; Finamore, Francesco; Gluck, Florent; Sanchez, Jean-Charles

    2014-02-07

    The proposed protocol presents a comprehensive approach for large-scale qualitative and quantitative analysis of glycated proteins (GP) in complex biological samples including biological fluids and cell lysates such as plasma and red blood cells. The method, named glycation isotopic labeling (GIL), is based on the differential labeling of proteins with isotopic [(13)C6]-glucose, which supports quantitation of the resulting glycated peptides after enzymatic digestion with endoproteinase Glu-C. The key principle of the GIL approach is the detection of doublet signals for each glycated peptide in MS precursor scanning (glycated peptide with in vivo [(12)C6]- and in vitro [(13)C6]-glucose). The mass shift of the doublet signals is +6, +3 or +2 Da depending on the peptide charge state and the number of glycation sites. The intensity ratio between doublet signals generates quantitative information of glycated proteins that can be related to the glycemic state of the studied samples. Tandem mass spectrometry with high-energy collisional dissociation (HCD-MS2) and data-dependent methods with collision-induced dissociation (CID-MS3 neutral loss scan) are used for qualitative analysis.

  14. Adhesion family of G protein-coupled receptors and cancer.

    PubMed

    Lin, Hsi-Hsien

    2012-01-01

    The adhesion-class G protein-coupled receptors (adhesion-GPCRs) constitute the second largest GPCR sub-family in humans. Adhesion-GPCRs are defined by the chimeric structure of an unusually large extracellular cell-adhesion domain and a GPCR-like seven-pass transmembrane domain. Adhesion-GPCRs are hence expected to display both cellular adhesion and signaling functions in many biological systems. Adhesion-GPCRs are normally expressed in the central nervous, immune, and reproductive systems in a cell type- or tissue-restricted fashion. However, aberrant expression of distinct adhesion-GPCR molecules has been identified in various human cancers with some of the receptors closely associated with cancer development. Tumor-associated adhesion-GPCRs are thought to involve in tumorigenesis by affecting the growth of tumor cells, angiogenesis, tumor cell migration, invasion and metastasis either positively or negatively. Furthermore, some adhesion-GPCRs are considered potential biomarkers for specific types of cancers. In this review article, the expressional characteristics and functional role of cancer-associated adhesion-GPCRs are discussed in depth.

  15. Mining the Arabidopsis and Rice Genomes for Cyclophilin Protein Families

    PubMed Central

    Opiyo, S.O.

    2009-01-01

    Cyclophilins are a family of proteins that possess peptidyl-prolyl isomerase activity. They are present in both eukaryotes and prokaryotes. They are cellular targets of immunosuppressant drugs and involved in a wide variety of functions. The Arabidopsis thaliana genome contains the largest number of cyclophilins. However, the total number of plant cyclophilins available in sequence databases is small compared to that of other organisms. This implies that many cyclophilins are not yet identified in plants. In order to identify cyclophilin candidates from available plant sequence data, we examined alignment-free methods based on partial least squares (PLS) using physico-chemical properties for the mining of single and multiple-domain cyclophilins. PLS with selected descriptors after auto and cross-covariance (ACC) transformation had low false positives compared to PLS with all ACC descriptors. The former PLS classifier also performed better than profile hidden Markov models and PSI-BLAST in identifying cyclophilins from the Arabidopsis and rice genomes. PMID:19525202

  16. High-sensitivity C-reactive protein does not improve the differential diagnosis of HNF1A-MODY and familial young-onset type 2 diabetes: A grey zone analysis.

    PubMed

    Bellanné-Chantelot, C; Coste, J; Ciangura, C; Fonfrède, M; Saint-Martin, C; Bouché, C; Sonnet, E; Valéro, R; Lévy, D-J; Dubois-Laforgue, D; Timsit, J

    2016-02-01

    Low plasma levels of high-sensitivity C-reactive protein (hs-CRP) have been suggested to differentiate hepatocyte nuclear factor 1 alpha-maturity-onset diabetes of the young (HNF1A-MODY) from type 2 diabetes (T2D). Yet, differential diagnosis of HNF1A-MODY and familial young-onset type 2 diabetes (F-YT2D) remains a difficult challenge. Thus, this study assessed the added value of hs-CRP to distinguish between the two conditions. This prospective multicentre study included 143 HNF1A-MODY patients, 310 patients with a clinical history suggestive of HNF1A-MODY, but not confirmed genetically (F-YT2D), and 215 patients with T2D. The ability of models, including clinical characteristics and hs-CRP to predict HNF1A-MODY was analyzed, using the area of the receiver operating characteristic (AUROC) curve, and a grey zone approach was used to evaluate these models in clinical practice. Median hs-CRP values were lower in HNF1A-MODY (0.25mg/L) than in F-YT2D (1.14mg/L) and T2D (1.70mg/L) patients. Clinical parameters were sufficient to differentiate HNF1A-MODY from classical T2D (AUROC: 0.99). AUROC analyses to distinguish HNF1A-MODY from F-YT2D were 0.82 for clinical features and 0.87 after including hs-CRP. For the grey zone analysis, the lower boundary was set to miss<1.5% of true positives in non-tested subjects, while the upper boundary was set to perform 50% of genetic tests in individuals with no HNF1A mutation. On comparing HNF1A-MODY with F-YT2D, 65% of patients were classified in between these categories - in the zone of diagnostic uncertainty - even after adding hs-CRP to clinical parameters. hs-CRP does not improve the differential diagnosis of HNF1A-MODY and F-YT2D. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Analysis of Primary School Teachers' Opinions on Family Diversity

    ERIC Educational Resources Information Center

    Bosch, Alvaro Capano; Massonnier, Natalie; González Tornaría, Maria del L.

    2016-01-01

    This article aims to do an analysis based on the opinion of primary school teachers on family models that are different from the traditional nuclear family. We worked with 60 teachers from Montevideo and the metropolitan area. They answered the Questionnaire: Teachers' Opinion on Family Diversity (CIDF for its Spanish acronym) (Morgado,…

  18. A Family Structure Approach to the Analysis of Poverty.

    ERIC Educational Resources Information Center

    Stuby, Richard G.

    A typological approach to the analysis of poverty, based on selected characteristics of family structure, is suggested since the family unit is a concrete or actual structure in society, and much of the research and many of the action programs of the war on poverty have implicitly invoked some concept of the family. The typology of family…

  19. Expression profiling of a complex thaumatin-like protein family in western white pine.

    PubMed

    Liu, Jun-Jun; Zamani, Arezoo; Ekramoddoullah, Abul K M

    2010-02-01

    The protein content in the plant apoplast is believed to change dramatically as a result of host defense response upon infection with various pathogens. In this study, six novel thaumatin-like proteins (TLPs) were identified in western white pine (Pinus monticola) needle apoplast by a proteomic strategy using two-dimensional protein electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Sequent cDNA cloning found that ten P. monticola TLP genes (PmTLP-L1 to -L6 and -S1 to -S4) were expressed in various tissues. Phylogenetic analysis demonstrated that these PmTLP genes belong to a large, complex, and highly diverse plant TLP family. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) using gene-specific primer pairs showed that each PmTLP gene exhibited a characteristic pattern of mRNA expression based on their unique organ distribution, seasonal regulation, and response to abiotic and biotic stresses. A time-course analysis at the early stages of infection by white pine blister rust pathogen Cronartium ribicola revealed that a coordinated upregulation of multiple PmTLP genes was involved in P. monticola major gene (Cr2) resistance. The structural and expressional differentiations suggest that the PmTLP family may contribute to host defense as well as other mechanism.

  20. Unique motifs identify PIG-A proteins from glycosyltransferases of the GT4 family

    PubMed Central

    2008-01-01

    Background The first step of GPI anchor biosynthesis is catalyzed by PIG-A, an enzyme that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol. This protein is present in all eukaryotic organisms ranging from protozoa to higher mammals, as part of a larger complex of five to six 'accessory' proteins whose individual roles in the glycosyltransferase reaction are as yet unclear. The PIG-A gene has been shown to be an essential gene in various eukaryotes. In humans, mutations in the protein have been associated with paroxysomal noctural hemoglobuinuria. The corresponding PIG-A gene has also been recently identified in the genome of many archaeabacteria although genes of the accessory proteins have not been discovered in them. The present study explores the evolution of PIG-A and the phylogenetic relationship between this protein and other glycosyltransferases. Results In this paper we show that out of the twelve conserved motifs identified by us eleven are exclusively present in PIG-A and, therefore, can be used as markers to identify PIG-A from newly sequenced genomes. Three of these motifs are absent in the primitive eukaryote, G. lamblia. Sequence analyses show that seven of these conserved motifs are present in prokaryote and archaeal counterparts in rudimentary forms and can be used to differentiate PIG-A proteins from glycosyltransferases. Using partial least square regression analysis and data involving presence or absence of motifs in a range of PIG-A and glycosyltransferases we show that (i) PIG-A may have evolved from prokaryotic glycosyltransferases and lipopolysaccharide synthases, members of the GT4 family of glycosyltransferases and (ii) it is possible to uniquely classify PIG-A proteins versus glycosyltransferases. Conclusion Besides identifying unique motifs and showing that PIG-A protein from G. lamblia and some putative PIG-A proteins from archaebacteria are evolutionarily closer to glycosyltransferases, these studies

  1. Bacterial 5S rRNA-binding proteins of the CTC family.

    PubMed

    Gongadze, G M; Korepanov, A P; Korobeinikova, A V; Garber, M B

    2008-12-01

    The presence of CTC family proteins is a unique feature of bacterial cells. In the CTC family, there are true ribosomal proteins (found in ribosomes of exponentially growing cells), and at the same time there are also proteins temporarily associated with the ribosome (they are produced by the cells under stress only and incorporate into the ribosome). One feature is common for these proteins - they specifically bind to 5S rRNA. In this review, the history of investigations of the best known representatives of this family is described briefly. Structural organization of the CTC family proteins and their occurrence among known taxonomic bacterial groups are discussed. Structural features of 5S rRNA and CTC protein are described that predetermine their specific interaction. Taking into account the position of a CTC protein and its intermolecular contacts in the ribosome, a possible role of its complex with 5S rRNA in ribosome functioning is discussed.

  2. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  3. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  4. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    PubMed

    Li, Wan; Chen, Lina; He, Weiming; Li, Weiguo; Qu, Xiaoli; Liang, Binhua; Gao, Qianping; Feng, Chenchen; Jia, Xu; Lv, Yana; Zhang, Siya; Li, Xia

    2013-01-01

    The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial). Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  5. Internal organization of large protein families: relationship between the sequence, structure and function based clustering

    PubMed Central

    Cai, Xiao-hui; Jaroszewski, Lukasz; Wooley, John; Godzik, Adam

    2011-01-01

    The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects. PMID:21671455

  6. Internal organization of large protein families: relationship between the sequence, structure, and function-based clustering.

    PubMed

    Cai, Xiao-Hui; Jaroszewski, Lukasz; Wooley, John; Godzik, Adam

    2011-08-01

    The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.

  7. Pedigree analysis in families with febrile seizures.

    PubMed

    Johnson, W G; Kugler, S L; Stenroos, E S; Meulener, M C; Rangwalla, I; Johnson, T W; Mandelbaum, D E

    1996-02-02

    Febrile seizures are the most common form of seizures, occurring in an estimated 2-5% of North American children. We carried out a systematic pedigree study of febrile seizure probands. Forty of 52 probands (77%) in a referral population selected for increased severity had more than one case per family: one family had 10 cases, one family had 7, 3 families had 6, 2 had 5, 3 had 4, 13 had 3, and 17 had 2 cases. Mode of inheritance in the multicase families best fit the hypothesis of autosomal dominance with reduced penetrance. Polygenic inheritance could not be excluded for some of the smaller families. There was no support for X-linked or mitochondrial inheritance. Penetrance was calculated to be 0.64. Because the cases were selected for increased severity, this represents a useful estimate of the upper limit of penetrance and is in agreement with twin studies. Simulated lod scores showed adequate power for a linkage study in the absence of heterogeneity. Individual families had simulated average lod scores as high as 2.1. However, with potential heterogeneity, assuming only 70% of families share the same disease locus, average lod scores were marginal, and a high density map of marker loci and additional families would be required to document linkage.

  8. Pedigree analysis in families with febrile seizures

    SciTech Connect

    Johnson, W.G.; Kugler, S.L.; Stenroos, E.S.; Meulener, M.C.

    1996-02-02

    Febrile seizures are the most common form of seizures, occurring in an estimated 2-5% of North American children. We carried out a systematic pedigree study of febrile seizure probands. Forty of 52 probands (77%) in a referral population selected for increased severity had more than one case per family: one family had 10 cases, one family had 7, 3 families had 6, 2 had 5, 3 had 4, 13 had 3, and 17 had 2 cases. Mode of inheritance in the multicase families best fit the hypothesis of autosomal dominance with reduced penetrance. Polygenic inheritance could not be excluded for some of the smaller families. There was no support for X-linked or mitochondrial inheritance. Penetrance was calculated to be 0.64. Because the cases were selected for increased severity, this represents a useful estimate of the upper limit of penetrance and is in agreement with twin studies. Simulated lod scores showed adequate power for a linkage study in the absence of heterogeneity. Individual families had simulated average lod scores as high as 2.1. However, with potential heterogeneity, assuming only 70% of families share the same disease locus, average lod scores were marginal, and a high density map of marker loci and additional families would be required to document linkage. 41 refs., 3 figs., 2 tabs.

  9. Finding the heart of medical family therapy: a content analysis of medical family therapy casebook articles.

    PubMed

    Bischoff, Richard J; Springer, Paul R; Felix, Daniel S; Hollist, Cody S

    2011-09-01

    In an effort to identify the essential ingredients of medical family therapy, a content analysis of 15 peer-reviewed case studies in medical family therapy was conducted. The case studies were published from 1996 to 2007 in Families, Systems, & Health. Through a qualitative content analysis, three main themes emerged that describe the essence of the practice of medical family therapy: (1) The patient's multisystemic experience of disease, (2) treatment is about caring, not just caregiving, and (3) elevating the patient as collaborator in the care team.

  10. Identification and Characterization of Multi-gene Family Encoding Germin-like Proteins in Cultivated Peanut (Arachis hypogaea L.)

    USDA-ARS?s Scientific Manuscript database

    Germins and germin-like proteins (GLPs) play diversified roles in plant development and basic defense. In this study, 36 EST-clones encoding GLPs were identified. Sequence similarity analysis demonstrated that the peanut genome possessed multi-gene family encoding at least 8 GLPs, named AhGLP1 to Ah...

  11. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.

    PubMed

    Rasila, Tiina S; Vihinen, Mauno; Paulin, Lars; Haapa-Paananen, Saija; Savilahti, Harri

    2012-01-01

    MuA transposase protein is a member of the retroviral integrase superfamily (RISF). It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIβ, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIβ were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.

  12. Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom

    PubMed Central

    Dodge, Anthony G.; Preiner, Chelsea S.

    2013-01-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  13. Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases.

    PubMed

    Telkov, M V; Demina, G R; Voloshin, S A; Salina, E G; Dudik, T V; Stekhanova, T N; Mukamolova, G V; Kazaryan, K A; Goncharenko, A V; Young, M; Kaprelyants, A S

    2006-04-01

    The secreted Micrococcus luteus protein, Rpf, is required for successful resuscitation of dormant "non-culturable" M. luteus cells and for growth stimulation in poor media. The biochemical mechanism of Rpf action remained unknown. Theoretical predictions of Rpf domain architecture and organization, together with a recent NMR analysis of the protein structure, indicate that the conserved Rpf domain has a lysozyme-like fold. In the present study, we found that both the secreted native protein and the recombinant protein lyse crude preparations of M. luteus cell walls. They also hydrolyze 4-methylumbelliferyl-beta-D-N,N',N''-triacetylchitotrioside, a synthetic substrate for peptidoglycan muramidases, with optimum activity at pH 6. The Rpf protein also has weak proteolytic activity against N-CBZ-Gly-Gly-Arg-beta-naphthylamide, a substrate for trypsin-like enzymes. Rpf activity towards 4-methylumbelliferyl-beta-D-N,N',N''-triacetylchitotrioside was reduced when the glutamate residue at position 54, invariant for all Rpf family proteins and presumably involved in catalysis, was altered. The same amino acid substitution resulted in impaired resuscitation activity of Rpf. The data indicate that Rpf is a peptidoglycan-hydrolyzing enzyme, and strongly suggest that this specific activity is responsible for its growth promotion and resuscitation activity. A possible mechanism of Rpf-mediated resuscitation is discussed.

  14. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    PubMed Central

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig; Helin, Kristian; Nylandsted, Jesper; Jäättelä, Marja

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70 proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas the survival of tumorigenic as well as nontumorigenic cells depended on Hsc70. Cancer cells depleted for Hsp70 and Hsp70-2 displayed strikingly different morphologies (detached and round vs. flat senescent-like), cell cycle distributions (G2/M vs. G1 arrest) and gene expression profiles. Only Hsp70-2 depletion induced the expression of macrophage inhibitory cytokine-1 that was identified as a target of P53 tumor-suppressor protein and a mediator of the G1 arrest and the senescent phenotype. Importantly, concomitant depletion of Hsp70 and Hsp70-2 had a synergistic antiproliferative effect on cancer cells. Thus, highly homologous Hsp70 proteins bring about nonoverlapping functions essential for cell growth and survival. PMID:15741319

  15. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    PubMed Central

    2012-01-01

    Background Proteins convey the majority of biochemical and cellular activities in organisms. Over the course of evolution, proteins undergo normal sequence mutations as well as large scale mutations involving domain duplication and/or domain shuffling. These events result in the generation of new proteins and protein families. Processes that affect proteome evolution drive species diversity and adaptation. Herein, change over the course of metazoan evolution, as defined by birth/death and duplication/deletion events within protein families and domains, was examined using the proteomes of 9 metazoan and two outgroup species. Results In studying members of the three major metazoan groups, the vertebrates, arthropods, and nematodes, we found that the number of protein families increased at the majority of lineages over the course of metazoan evolution where the magnitude of these increases was greatest at the lineages leading to mammals. In contrast, the number of protein domains decreased at most lineages and at all terminal lineages. This resulted in a weak correlation between protein family birth and domain birth; however, the correlation between domain birth and domain member duplication was quite strong. These data suggest that domain birth and protein family birth occur via different mechanisms, and that domain shuffling plays a role in the formation of protein families. The ratio of protein family birth to protein domain birth (domain shuffling index) suggests that shuffling had a more demonstrable effect on protein families in nematodes and arthropods than in vertebrates. Through the contrast of high and low domain shuffling indices at the lineages of Trichinella spiralis and Gallus gallus, we propose a link between protein redundancy and evolutionary changes controlled by domain shuffling; however, the speed of adaptation among the different lineages was relatively invariant. Evaluating the functions of protein families that appeared or disappeared at the

  16. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    PubMed

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  17. Exploiting Gene Families for Phylogenomic Analysis of Myzostomid Transcriptome Data

    PubMed Central

    Hartmann, Stefanie; Helm, Conrad; Nickel, Birgit; Meyer, Matthias; Struck, Torsten H.; Tiedemann, Ralph; Selbig, Joachim; Bleidorn, Christoph

    2012-01-01

    Background In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic) protostomes that are either placed with annelids or flatworms. Methodology Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic. PMID:22276131

  18. Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system.

    PubMed

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2010-04-19

    During neural development, members of MTG family of transcriptional repressors are induced by proneural basic helix-loop-helix (bHLH) transcription factors and in turn inhibit the activity of the bHLH proteins, forming a negative feedback loop that regulates the normal progression of neurogenesis. Three MTG genes, MTG8, MTG16 and MTGR1, are expressed in distinct patterns in the developing nervous system. Various bHLH proteins are also expressed in distinct patterns. We asked whether there is a functional relationship between specific MTG and bHLH proteins in developing chick spinal cord. First, we examined if each MTG gene is induced by specific bHLH proteins. Although expression of NEUROG2, ASCL1 and MTG genes overlapped, the boundaries of gene expression did not match. Ectopic expression analysis showed that MTGR1 and NEUROD4, which show similar expression patterns, are regulated differently by NEUROG2 and ASCL1. Thus, our results show that expression of MTG genes is not regulated by a single upstream bHLH protein, but represents an integration of the activity of multiple regulators. Next, we asked if each MTG protein inhibits specific bHLH proteins. Transcription assay showed that NEUROG2 and ASCL1 are inhibited by MTGR1 and MTG16, and less efficiently by MTG8. Deletion mapping of MTGR1 showed that MTGR1 binds NEUROG2 and ASCL1 using multiple interaction surfaces, and all conserved domains are required for its repressor activity. These results support the model that MTG proteins form a higher-order repressor complex and modulate transcriptional activity of bHLH proteins during neurogenesis.

  19. Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system

    PubMed Central

    Aaker, Joshua D.; Patineau, Andrea L.; Yang, Hyun-jin; Ewart, David T.; Nakagawa, Yasushi; McLoon, Steven C.; Koyano-Nakagawa, Naoko

    2010-01-01

    During neural development, members of MTG family of transcriptional repressors are induced by proneural basic helix-loop-helix (bHLH) transcription factors and in turn inhibit the activity of the bHLH proteins, forming a negative feedback loop that regulates the normal progression of neurogenesis. Three MTG genes, MTG8, MTG16 and MTGR1, are expressed in distinct patterns in the developing nervous system. Various bHLH proteins are also expressed in distinct patterns. We asked whether there is a functional relationship between specific MTG and bHLH proteins in developing chick spinal cord. First, we examined if each MTG gene is induced by specific bHLH proteins. Although expression of NEUROG2, ASCL1 and MTG genes overlapped, the boundaries of gene expression did not match. Ectopic expression analysis showed that MTGR1 and NEUROD4, which show similar expression patterns, are regulated differently by NEUROG2 and ASCL1. Thus, our results show that expression of MTG genes is not regulated by a single upstream bHLH protein, but represents an integration of the activity of multiple regulators. Next, we asked if each MTG protein inhibits specific bHLH proteins. Transcription assay showed that NEUROG2 and ASCL1 are inhibited by MTGR1 and MTG16, and less efficiently by MTG8. Deletion mapping of MTGR1 showed that MTGR1 binds NEUROG2 and ASCL1 using multiple interaction surfaces, and all conserved domains are required for its repressor activity. These results support the model that MTG proteins form a higher-order repressor complex and modulate transcriptional activity of bHLH proteins during neurogenesis. PMID:20214951

  20. Bcl-2-related protein family gene expression during oligodendroglial differentiation.

    PubMed

    Itoh, Takayuki; Itoh, Aki; Pleasure, David

    2003-06-01

    Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.

  1. Interaction of TACC proteins with the FHL family: implications for ERK signaling

    PubMed Central

    Lauffart, Brenda; Sondarva, Gautam V.; Gangisetty, Omkaram; Cincotta, Melissa

    2007-01-01

    The Transforming acidic coiled coil (TACC) proteins play a conserved role in normal development and tumorigenesis through interactions with multiple complexes involved in transcription, translation, and centrosomal dynamics. However, despite significant work on the function of TACC3 in the control of centrosomal mechanics, relatively little functional data is known about the family’s founding member, TACC1. From a continued analysis of clones isolated by an unbiased yeast two-hybrid assay, we now show direct physical interactions between the TACC1 and the FHL (Four and a Half LIM-only) family of proteins. The authenticity of these interactions was validated both in vitro and in cellular systems. The FHLs exhibit diverse biological roles such as the regulation of the actin cytoskeleton and are promiscuous coregulators for several transcription factors. The interaction of the endogenous TACC-FHL proteins is primarily localized to the nucleus. However, similar to FHL2, overexpression of TACC1A in HEK293 is able to sequester serum activated ERK to the cytoplasm. This has the effect of reducing the serum induced transcriptional response of the c-fos and c-jun genes. The observation that TACCs can interact with the FHLs and alter their serum induced activities raises the possibility that the TACCs participate in crosstalk between cell signaling pathways important for cancer development and tumor progression. The transforming acidic coiled coil genes are known to be important prognostic indicators for breast, ovarian and lung cancer. In this manuscript, we identify a novel interaction between the TACCs and the FHL protein family. This interaction has an affect on ERK and may in part explain the variable associations and changes in subcellular locations of each family with specific subtypes of malignancy. PMID:18481206

  2. Quantitative proteome analysis of colorectal cancer-related differential proteins.

    PubMed

    Zhang, Yanbin; Liu, Yue; Ye, Yingjiang; Shen, Danhua; Zhang, Hui; Huang, Hongyan; Li, Sha; Wang, Shan; Ren, Jun

    2017-02-01

    To evaluate a new strategy for profiling proteomic changes in colorectal cancer (CRC). We used laser capture microdissection (LCM) to obtain cells from 20 CRC and paired normal mucosal tissues. The differential proteins between the microdissected tumor cells and normal mucosa epithelia were analyzed by acetylation stable isotopic labeling coupled with L linear ion trap Fourier transform ion cyclotron resonance mass spectrometry (LTQ-FT MS). Western blotting was used to assess the differential expression of proteins. We used bioinformatics tools for cluster and ingenuity pathway analysis of the differential proteins. In total, 798 confident proteins were quantified and 137 proteins were differentially expressed by at least twofold, including 67 that were upregulated and 70 that were downregulated in cancer. Two differential proteins, solute carrier family 12 member 2 (SLC12A2) and Ras-related protein Rab-10, were validated by Western blotting, and the results were consistent with acetylation stable isotopic labeling analysis. According to gene ontology analysis, CRC-related differential proteins covered a wide range of subcellular locations and were involved in many biological processes. According to ingenuity pathway analysis of the differential proteins, the most relevant canonical pathway associated with CRC was the 14-3-3-mediated signaling pathway, and seven reliable functional networks including cellular growth and proliferation, amino acid metabolism, inflammatory response, embryonic development, carbohydrate metabolism, cellular assembly and organization, and cell morphology were obtained. Combination of LCM, acetylation stable isotopic labeling analysis and LTQ-FT MS is effective for profiling proteomic changes in CRC cells.

  3. Analysis of oxidative modification of proteins.

    PubMed

    Yan, Liang-Jun

    2009-02-01

    Proteins are targets of oxidative modification. This unit describes detailed procedures for the analysis of popular indices of protein oxidation including protein carbonyl formation, loss of protein thiols, and nitrotyrosine and dityrosine formation, as well as isoaspartate formation. Procedures are detailed for the analysis of protein carbonyls labeled with 2,4-dinitrophenylhydrazine, tritiated sodium borohydride, and biotin-hydrazide, followed by detection measurements that are based on the distinguishing feature of each labeling chemical. Methods are outlined for the determination of protein cysteine oxidation by quantifying the loss of free protein thiols using radiolabeled [(14)C]-iodoacetamide. Protocols are described for the measurement of protein dityrosine by gas chromatography/mass spectrometry, as are the details for the detection of protein nitrotyrosine by a competitive ELISA approach. Finally, methods are described for the quantification of protein-bound isoaspartate using protein-L-isoaspartyl methyltransferase that converts aberrant L-isoaspartyl residues in peptides and proteins to normal aspartyl residues.

  4. Analysis of oxidative modification of proteins.

    PubMed

    Yan, Liang-Jun

    2009-04-01

    Proteins are targets of oxidative modification. This unit describes detailed procedures for the analysis of popular indices of protein oxidation including protein carbonyl formation, loss of protein thiols, and nitrotyrosine and dityrosine formation, as well as isoaspartate formation. Procedures are detailed for the analysis of protein carbonyls labeled with 2,4-dinitrophenylhydrazine, tritiated sodium borohydride, and biotin-hydrazide, followed by detection measurements that are based on the distinguishing feature of each labeling chemical. Methods are outlined for the determination of protein cysteine oxidation by quantifying the loss of free protein thiols using radiolabeled [(14)C]-iodoacetamide. Protocols are described for the measurement of protein dityrosine by gas chromatography/mass spectrometry, as are the details for the detection of protein nitrotyrosine by a competitive ELISA approach. Finally, methods are described for the quantification of protein-bound isoaspartate using protein-L-isoaspartyl methyltransferase that converts aberrant L-isoaspartyl residues in peptides and proteins to normal aspartyl residues.

  5. Topology analysis and visualization of Potyvirus protein-protein interaction network.

    PubMed

    Bosque, Gabriel; Folch-Fortuny, Abel; Picó, Jesús; Ferrer, Alberto; Elena, Santiago F

    2014-11-20

    One of the central interests of Virology is the identification of host factors that contribute to virus infection. Despite tremendous efforts, the list of factors identified remains limited. With omics techniques, the focus has changed from identifying and thoroughly characterizing individual host factors to the simultaneous analysis of thousands of interactions, framing them on the context of protein-protein interaction networks and of transcriptional regulatory networks. This new perspective is allowing the identification of direct and indirect viral targets. Such information is available for several members of the Potyviridae family, one of the largest and more important families of plant viruses. After collecting information on virus protein-protein interactions from different potyviruses, we have processed it and used it for inferring a protein-protein interaction network. All proteins are connected into a single network component. Some proteins show a high degree and are highly connected while others are much less connected, with the network showing a significant degree of dissortativeness. We have attempted to integrate this virus protein-protein interaction network into the largest protein-protein interaction network of Arabidopsis thaliana, a susceptible laboratory host. To make the interpretation of data and results easier, we have developed a new approach for visualizing and analyzing the dynamic spread on the host network of the local perturbations induced by viral proteins. We found that local perturbations can reach the entire host protein-protein interaction network, although the efficiency of this spread depends on the particular viral proteins. By comparing the spread dynamics among viral proteins, we found that some proteins spread their effects fast and efficiently by attacking hubs in the host network while other proteins exert more local effects. Our findings confirm that potyvirus protein-protein interaction networks are highly connected, with

  6. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  7. Cross-Pharmacology Analysis of G Protein-Coupled Receptors

    PubMed Central

    Briansó, Ferran; Carrascosa, Maria C.; Oprea, Tudor I.; Mestres, Jordi

    2013-01-01

    The degree of applicability of chemogenomic approaches to protein families depends on the accuracy and completeness of pharmacological data and the corresponding level of pharmacological similarity observed among their protein members. The recent public domain availability of pharmacological data for thousands of small molecules on 204 G protein-coupled receptors (GPCRs) provides a firm basis for an in-depth cross-pharmacology analysis of this superfamily. The number of protein targets included in the cross-pharmacology profile of the different GPCRs changes significantly upon varying the ligand similarity and binding affinity criteria. However, with the exception of muscarinic receptors, aminergic GPCRs distinguish themselves from the rest of the members in the family by their remarkably high levels of pharmacological similarity among them. Clusters of non-GPCR targets related by cross-pharmacology with particular GPCRs are identified and the implications for unwanted side-effects, as well as for repurposing opportunities, discussed. PMID:21851335

  8. Family Size Evolution in Drosophila Chemosensory Gene Families: A Comparative Analysis with a Critical Appraisal of Methods

    PubMed Central

    Almeida, Francisca C.; Sánchez-Gracia, Alejandro; Campos, Jose Luis; Rozas, Julio

    2014-01-01

    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila—the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families—to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia’s gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process. PMID:24951565

  9. PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance.

    PubMed

    Prill, Stephan K-H; Klinkert, Birgit; Timpel, Claudia; Gale, Cheryl A; Schröppel, Klaus; Ernst, Joachim F

    2005-01-01

    Protein O-mannosyltransferases (Pmt proteins) initiate O-mannosylation of secretory proteins. The PMT gene family of the human fungal pathogen Candida albicans consists of PMT1 and PMT6, as well as three additional PMT genes encoding Pmt2, Pmt4 and Pmt5 isoforms described here. Both PMT2 alleles could not be deleted and growth of conditional strains, containing PMT2 controlled by the MET3- or tetOScHOP1-promoters, was blocked in non-permissive conditions, indicating that PMT2 is essential for growth. A homozygous pmt4 mutant was viable, but synthetic lethality of pmt4 was observed in combination with pmt1 mutations. Hyphal morphogenesis of a pmt4 mutant was defective under aerobic induction conditions, yet increased in embedded or hypoxic conditions, suggesting a role of Pmt4p-mediated O-glycosylation for environment-specific morphogenetic signalling. Although a PMT5 transcript was detected, a homozygous pmt5 mutant was phenotypically silent. All other pmt mutants showed variable degrees of supersensitivity to antifungals and to cell wall-destabilizing agents. Cell wall composition was markedly affected in pmt1 and pmt4 mutants, showing a significant decrease in wall mannoproteins. In a mouse model of haematogenously disseminated infection, PMT4 was required for full virulence of C. albicans. Functional analysis of the first complete PMT gene family in a fungal pathogen indicates that Pmt isoforms have variable and specific roles for in vitro and in vivo growth, morphogenesis and antifungal resistance.

  10. The 75-kilodalton protein of Chlamydia trachomatis: a member of the heat shock protein 70 family?

    PubMed Central

    Danilition, S L; Maclean, I W; Peeling, R; Winston, S; Brunham, R C

    1990-01-01

    The gene encoding a 75-kilodalton (kDa) protein of Chlamydia trachomatis was cloned, expressed, and sequenced. Genomic libraries from C. trachomatis serovar D DNA were constructed in vectors pUC18 and lambda gt11 and were screened with a panel of monoclonal antibodies against C. trachomatis antigens. The only recombinants identified were those that reacted with antibody UM-13, which has specificity for a genus-specific epitope on the 75-kDa protein. The gene was localized to a 2.9-kilobase DNA fragment and sequenced. The gene consists of a long open reading frame of 1,956 nucleotides, which translates into 652 amino acids totalling 70,558 daltons in mass. Putative promoter elements and a ribosome binding site were identified within 5'-flanking sequences, and a typical rho-independent terminator was identified within 3'-flanking sequences. Screening of the GenBank nucleic acid sequence data bank revealed extensive similarity between the chlamydial 75-kDa gene and the heat shock protein 70 (hsp70) family or proteins. In particular, 71 and 69% amino acid sequence similarities were identified with hsp70 of Escherichia coli and Bacillus megaterium, respectively. Polyclonal antibodies were produced to the recombinant antigen in rabbits and detected epitopes on elementary bodies in enzyme-linked immunosorbent and indirect microimmunofluorescence assays. Antibodies reacted with an antigen of identical molecular mass in L2 and C serovars in an immunoblot assay and neutralized these serovars in cell culture. The 75-kDa protein appears to be a chlamydial homolog of hsp70, is immunoaccessible on native elementary bodies, and is a target for neutralization. Images PMID:2294048

  11. The CCN Family Proteins: Modulators of Bone Development and Novel Targets in Bone-Associated Tumors

    PubMed Central

    Chen, Po-Chun; Cheng, Hsu-Chen; Yang, Shun-Fa; Tang, Chih-Hsin

    2014-01-01

    The CCN family of proteins is composed of six extracellular matrix-associated proteins that play crucial roles in skeletal development, wound healing, fibrosis, and cancer. Members of the CCN family share four conserved cysteine-rich modular domains that trigger signal transduction in cell adhesion, migration, proliferation, differentiation, and survival through direct binding to specific integrin receptors and heparan sulfate proteoglycans. In the present review, we discuss the roles of the CCN family proteins in regulating resident cells of the bone microenvironment. In vertebrate development, the CCN family plays a critical role in osteo/chondrogenesis and vasculo/angiogenesis. These effects are regulated through signaling via integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch via direct binding to CCN family proteins. Due to the important roles of CCN family proteins in skeletal development, abnormal expression of CCN proteins is related to the tumorigenesis of primary bone tumors such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Additionally, emerging studies have suggested that CCN proteins may affect progression of secondary metastatic bone tumors by moderating the bone microenvironment. CCN proteins could therefore serve as potential therapeutic targets for drug development against primary and metastatic bone tumors. PMID:24551846

  12. The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors.

    PubMed

    Chen, Po-Chun; Cheng, Hsu-Chen; Yang, Shun-Fa; Lin, Chiao-Wen; Tang, Chih-Hsin

    2014-01-01

    The CCN family of proteins is composed of six extracellular matrix-associated proteins that play crucial roles in skeletal development, wound healing, fibrosis, and cancer. Members of the CCN family share four conserved cysteine-rich modular domains that trigger signal transduction in cell adhesion, migration, proliferation, differentiation, and survival through direct binding to specific integrin receptors and heparan sulfate proteoglycans. In the present review, we discuss the roles of the CCN family proteins in regulating resident cells of the bone microenvironment. In vertebrate development, the CCN family plays a critical role in osteo/chondrogenesis and vasculo/angiogenesis. These effects are regulated through signaling via integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch via direct binding to CCN family proteins. Due to the important roles of CCN family proteins in skeletal development, abnormal expression of CCN proteins is related to the tumorigenesis of primary bone tumors such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Additionally, emerging studies have suggested that CCN proteins may affect progression of secondary metastatic bone tumors by moderating the bone microenvironment. CCN proteins could therefore serve as potential therapeutic targets for drug development against primary and metastatic bone tumors.

  13. FGFR Family Members Protein Expression as Prognostic Markers in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Koole, Koos; Clausen, Martijn J A M; van Es, Robert J J; van Kempen, Pauline M W; Melchers, Lieuwe J; Koole, Ron; Langendijk, Johannes A; van Diest, Paul J; Roodenburg, Jan L N; Schuuring, Ed; Willems, Stefan M

    2016-08-01

    Fibroblast growth factor receptor family member proteins (FGFR1-4) have been identified as promising novel therapeutic targets and prognostic markers in a wide spectrum of solid tumors. The present study investigates the expression and prognostic value of four FGFR family member proteins in a large multicenter oral cavity squamous cell carcinoma (OCSCC) and oropharyngeal squamous cell carcinoma (OPSCC) cohort. Protein expression of FGFR1-4 was determined by immunohistochemistry on tissue microarrays containing 951 formalin-fixed paraffin embedded OCSCC and OPSCC tissues from the University Medical Center Utrecht and University Medical Center Groningen. Protein expression was correlated to overall survival using Cox regression models, and bootstrapping was performed as internal validation. FGFR proteins were highly expressed in 39-64 % of OCSCC and 63-79 % of OPSCC. Seventy-three percent (299/412) of OCSCC and 85 % (305/357) of OPSCC highly co-expressed two or more FGFR family member proteins. FGFR1 protein was more frequently highly expressed in human papillomavirus (HPV)-negative OPSCC than HPV-positive OPSCC (82 vs. 65 %; p = 0.008). Furthermore, protein expression of FGFR family members was not related to overall survival in OCSCC or OPSCC (p > 0.05). FGFR family members are frequently highly expressed in OCSCC and OPSCC. These FGFR family member proteins are therefore potential targets for novel therapies that are urgently required to improve survival of OCSCC and OPSCC patients.

  14. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family

    PubMed Central

    Filippakopoulos, Panagis; Picaud, Sarah; Fedorov, Oleg; Keller, Marco; Wrobel, Matthias; Morgenstern, Olaf; Bracher, Franz; Knapp, Stefan

    2012-01-01

    Benzodiazepines are psychoactive drugs with anxiolytic, sedative, skeletal muscle relaxant and amnestic properties. Recently triazolo-benzodiazepines have been also described as potent and highly selective protein interaction inhibitors of bromodomain and extra-terminal (BET) proteins, a family of transcriptional co-regulators that play a key role in cancer cell survival and proliferation, but the requirements for high affinity interaction of this compound class with bromodomains has not been described. Here we provide insight into the structure–activity relationship (SAR) and selectivity of this versatile scaffold. In addition, using high resolution crystal structures we compared the binding mode of a series of benzodiazepine (BzD) and related triazolo-benzotriazepines (BzT) derivatives including clinically approved drugs such as alprazolam and midazolam. Our analysis revealed the importance of the 1-methyl triazolo ring system for BET binding and suggests modifications for the development of further high affinity bromodomain inhibitors. PMID:22137933

  15. Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori.

    PubMed

    Gong, Da-Ping; Zhang, Hui-Jie; Zhao, Ping; Lin, Ying; Xia, Qing-You; Xiang, Zhong-Huai

    2007-03-01

    Insect chemosensory proteins (CSPs) as well as odorant-binding proteins (OBPs) have been supposed to transport hydrophobic chemicals to receptors on sensory neurons. Compared with OBPs, CSPs are expressed more broadly in various insect tissues. We performed a genome-wide analysis of the candidate CSP gene family in the silkworm. A total of 20 candidate CSPs, including 3 gene fragments and 2 pseudogenes, were characterized based on their conserved cysteine residues and their similarity to CSPs in other insects. Some of these genes were clustered in the silkworm genome. The gene expression pattern of these candidates was investigated using RT-PCR and microarray, and the results showed that these genes were expressed primarily in mature larvae and the adult moth, suggesting silkworm CSPs may be involved in development. The majority of silkworm CSP genes are expressed broadly in tissues including the antennae, head, thorax, legs, wings, epithelium, testes, ovaries, pheromone glands, wing disks, and compound eyes.

  16. Two cytosolic protein families implicated in lipid-binding: main structural and functional features.

    PubMed

    Schoentgen, F; Bucquoy, S; Seddiqi, N; Jollès, P

    1993-12-01

    1. According to the important biological role of fatty acids and phospholipids in cell membranes, two cytosolic proteins implicated in their binding and transport in brain were considered, namely: Fatty Acid-Binding Protein and basic 21 kDa protein. 2. They were reviewed as well as their related protein families. 3. Although the two protein groups do not present significant sequence homologies, they share several similar properties and might thus be implicated in common physiological functions.

  17. Six Subgroups and Extensive Recent Duplications Characterize the Evolution of the Eukaryotic Tubulin Protein Family

    PubMed Central

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-01-01

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. PMID:25169981

  18. Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization1

    PubMed Central

    Kliebenstein, Daniel J.; Monde, Rita-Ann; Last, Robert L.

    1998-01-01

    A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species. PMID:9765550

  19. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

    PubMed

    Yamaguchi, Ayami; Tanaka, Sae; Yamaguchi, Shiho; Kuwahara, Hirokazu; Takamura, Chizuko; Imajoh-Ohmi, Shinobu; Horikawa, Daiki D; Toyoda, Atsushi; Katayama, Toshiaki; Arakawa, Kazuharu; Fujiyama, Asao; Kubo, Takeo; Kunieda, Takekazu

    2012-01-01

    Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.

  20. A Family of Plasmodesmal Proteins with Receptor-Like Properties for Plant Viral Movement Proteins

    PubMed Central

    Schmitt-Keichinger, Corinne; Fernandez-Calvino, Lourdes; Didier, Pascal; Lerich, Alexander; Mutterer, Jérome; Thomas, Carole L.; Heinlein, Manfred; Mély, Yves; Maule, Andrew J.; Ritzenthaler, Christophe

    2010-01-01

    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement. PMID:20886105

  1. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins.

    PubMed

    Amari, Khalid; Boutant, Emmanuel; Hofmann, Christina; Schmitt-Keichinger, Corinne; Fernandez-Calvino, Lourdes; Didier, Pascal; Lerich, Alexander; Mutterer, Jérome; Thomas, Carole L; Heinlein, Manfred; Mély, Yves; Maule, Andrew J; Ritzenthaler, Christophe

    2010-09-23

    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement.

  2. Nucleo-cytoplasmic functions of the PDZ-LIM protein family: new insights in organ development

    PubMed Central

    Krcmery, Jennifer; Camarata, Troy; Kulisz, Andre; Simon, Hans-Georg

    2010-01-01

    Summary Recent work on the PDZ-LIM protein family has revealed important activities at the cellular level, mediating signals between the nucleus and the cytoskeleton, with significant impact on organ development. We review and integrate current knowledge about the PDZ-LIM protein family and propose a new functional role, sequestering nuclear factors in the cytoplasm. Characterized by their PDZ and LIM domains, the PDZ-LIM family is comprised of evolutionarily conserved proteins found throughout the animal kingdom, from worms to humans. Combining two functional domains in one protein, PDZ-LIM proteins have wide-ranging and multi-compartmental cell functions during development and homeostasis while, in contrast, misregulation can lead to cancer formation and progression. New emerging roles include interactions with integrins, T-box transcription factors, and receptor tyrosine kinases. Facilitating the assembly of protein complexes, PDZ-LIM proteins can act as signal modulators, influence actin dynamics, regulate cell architecture and control gene transcription. PMID:20091751

  3. A comprehensive analysis of the La-motif protein superfamily

    PubMed Central

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-01-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits. PMID:19299548

  4. A comprehensive analysis of the La-motif protein superfamily.

    PubMed

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-05-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.

  5. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990